(83)

THE ANATOMY
 OF THE
 DOMESTIC ANIMALS

BY
SEPTIMUS SISSON, S.B., V.S.
PROFESSOR OF COMPARATIVE ANATOMY IN THE OHIO STATE UNIVERSITY, COLUMBUS, OHIO WEMBER OF THE AMERSCAN ASSOCIATION OF ANATOMISTS FELLOW OF THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

WITH 725 ILLUSTRATIONS

 MANY IN COLORS
SECOND EDITION. ENTIRELY RESET

PHILADELPHIA AND LONDON

W. B. SAUNDERS COMPANY

1927

Copyrtght, 1910, by W. B. satydera Company

Reprinted June, 1911

Revised, Entirely Reset, Reprinted and Recopyrighted september, 1914

Copyright, 1914, by W. B. Satnveris Company

Reprinted Neptember, 1917

Reprinted March, 1! ! 1

Reprinted October. 1927

PRESS OF
W, B. SAUNDERS COMPANY
philladelphia

TO
MV WIFE

KATHERINE OLDHAM SISCON

IN GRATEFLL RECOGNITION OF CONSTANT INSPIRATION AND ENCOURAGEMENT

PREFACE

This book supersedes the author's Text-book of Veterinary Anatomy. A comparison of the two will show the new title to be justified by the extent and character of the changes which have been made.

The number of illustrations has been inereased from 588 to 725 . More than three hundred new and original figures have been prepared. Nearly all of these are reproductions of photographs, most of which were taken by the author. The preparation of the prints for reproduction has been executed by Mr. W. J. Norris with unusual care and skill.

Continued observations of well-hardened material and frozen sections have led to a considerable number of modifications of statement. It is scarcely necessary to say that the recent literature, so far as available, has been utilized.

Many changes in nomenclature have been made. Most of the synonyms have been dropped or relegated to foot-notes. Exceedingly fow new names have been introduced. Nearly all eponyms have been eliminated, on the ground that they are not designative and are usually incorrect historically. The changes made in this respect are in conformity with the report of the Committee on Revision of Anatomieal Nomenclature which was adopted by the American Veterinary Medical Association two years ago. Progress in the direction of a simplified and uniform nomenclature is much impeded by the archaic terminology which persists to a large extent in clinical literature and instruction.

The author is under special obligation to Professors Ellenberger, Baum, and Schmaltz, and to their publishers, for permission to use or to copy figures from their excellent works. Their generosity in this matter has been of great value to those who are unable to use the German literature. A few illustrations have been taken from other sources and credit has been given in each casc.

For helpful suggestions and for assistance in the reading of the proof-sheets the author is much inclebted to his colleague, Dr. F. A. Lambert.

Great credit is due the publishers for their determination to spare neither pains nor expense in attaining a high degree of typographical excellence.

Septimus Sisson
The Ohio State Cunverity, Columbus, Ohio.

PREFACE TO THE FIRST EDITION

The lack of a modem and well-illustrated hook on the structure of the principal domestic animals has been acutely felt for a long time by teachers, students, and practitioners of veterinary medicine. The work here offered is the expression of a desire to close this gap in our literature.

The study of frozen sections and of material which has been hardened by intravascular injection of formalin has profoundly modified our views concerning the natural shape of many of the viscera and has rendered possible much greater precision in topographic statements. The experience of the author during the last ten years, in which ahmost all of the material used for dissection and for frozen sections in the anatomical laboratory of this University has been hardened with formalin, has demonstrated that many of the current descriptions of the organs in animals contain the same sort of errors as those which prevailed in regard to similar structures in man previous to the adoption of modern methods of preparation.

While the method of treatment of the subject is essentially systematic, topography is not by any means neglected either in text or illustrations; it is hoped that this will render the book of value to the student in his clinical courses and to the practitioner. Embryological and histological data have been almost entirely excluded, since it was desired to offer a text-book of convenient size for the student and a work of ready reference for the practitioner. It is believed that the use of black type for the names of important structures and of small print for certain details or matter of secondary importance will prove useful in this respect.

Veterinary anatomical nomenclature is at present quite chaotic in Englishspeaking countries. In this work an attempt is made to eliminate some terms which do not appear to the author to fulfil any useful purpose, and others which are clearly erroneous or otherwise undesirable. In many cases the terms agreed upon by the Congresses at Baden and stuttgart are adopted either in the original Latin or in anglicized form; otherwise these terms are added in parenthesis. The author favors the substantial adoption of this terminology, but considered it desirable to offer a sort of transitional stage at present.

The original illustrations are chiefly reproductions of photographs, many of which were taken by Mr. F. H. Haskett. The preparation of the pictures for reproduction was carried out by Messrs. J. V. Alteneder and W. J. Norris. The author takes pleasure in expressing his appreciation of the care and skill exercised by these gentlemen in this often difficult task.

The author is under great obligation to Professors EHenberger and Baum in Dresden, to Professor Schmaltz in Berlin, and to their publishers for permission to use or to copy figures from their most excellent works. Their generosity in this matter has made it possible to supply this text with a larger number of high-class illustrations than is to be found in any other. A few figures have been taken from other sources, and proper credit has been given in each case.

For checking over certain data and for assistance in the correction of the proofs the author is much indebted to his associate, Dr. F. B. Hadley.

The author desires to express his high appreciation of the determination and constant effort of the publishers to do all in their power to render the book worthy of favorable reception by the profession for whom it is intended.

CONTENTS

INTRODUCTION
OSTEOLOGY page
The Skeleton 20
Structure of Bones 21
Development and Growth of Bone 23
Composition and Physical Properties of Bone. 24
Descriptive Terms 25
The Vertebral Column 25
The Ribs and Costal Cartilages 27
Costal Cartilages 27
The Sternum 28
The Thorax 28
The Skull 28
Bones of the Thoracic Limb 29
Bones of the Pelvic Limb 30
Skeleton of the Horse 32
Vertebral Column 33
Ribs. 45
Sternum 48
Bones of the Skull 19
Cranium 49
Face. 63
The Skull as a Whole 73
The Cranial Cavity S1
The Nasal Cavity 82
The Paranasal Sinuses S4
Bones of the Thoracic Limb S6
Bones of the Pelvic Limb 105
Skeleton of the OX 125
Fertebral Column 125
Ribs. 130
Sternum 131
Bones of the Skull 131
The skull as a Whole 140
Bones of the Thoracic Limb 145
Bones of the Pelvic Limb 151
Skeleton of the Sheep 156
Vertebral Column 156
Ribs. 156
Sternum 157
Skull. 157
Bones of the Thoracic Limb 160
Bones of the Pelvic Limb 160
Skeleton of the Pig 161
Vertebral Column 161
Ribs. 16.3
Sternum 166
Bones of the Skull 166
The skull as a Whole 173
PAGE
Bones of the Thoracic：Limb 176
Bones of the Pelvic Limb， 1s0
Skeleton uf the Dog 181
Vertchral Column 184
Ribs 1s\％
Sternum． 188
Bones of the skull 18s
The skull as a Whole 19.5
Bones of the Thoracie Limb 197
Bones of the Pelvie Limh 202
IRTHROLOGY
S゙エズARTHIOREN 207
Diarthiroses 20,
Amphiarthroses 210
Articulations of the Hohse 211
Joints and Ligaments of the Vertebres 211
Atlanto－occipital Articulation 214
Costo－vertebral Articukations 215
Costo－chondral Articulations 216
Chondru－sternal Articulations 216
Sternal Juints and Ligaments 217
Articulations of the skull 217
Articulations of the Thoraric Limb 21．
Articulations of the Pelvie Limb， 229
Arthulations of the Ox，P1hi，An？Doh； 244
MYOLOGY
The Muscles and Accessory Stryctrores 252
Fascle and Muscles of the Ilorse． 2.5
Fasciax and Museles of the Head 255
Fascia and Museles of the Nork 2 （i）
Fascier and Muscles of the Back aud Loins 276
Fasciex and Muscles of the Tail 279
Nuscles of the Thoras 2 N 1
Ablominal Fasciae and Museles 2×7
Mustles of the Thoracie Limb 293
Fasmia and Museles of the Pelvic Limb 317
Mcaches of the（ox 343
Muscles of the Pig． 359
Muscles of the Dog 36
SPLANCINNOLOGY
Digestive Nystem of the Horse 385
The Mouth 385
The Tongue 390
The Treeth 394
The Salivary Clands 104
The Pharynx 105
The CEsophagus （0）？
The Abdominal Cavity 410
The Peritoneum 111
The Pebvic Cavity 112
The stomach 415
The simall Intestine 119
The Large Intustine 12
The Pancreas 432
The liver 434
The spleen
PAGE 439
The Peritoneum
411
Digestive sistem of the Ox 44
Digestive sistem of the Sheep 470
Digestive šrstem of the Pig 47
Digestive sisten of the Dog 491
THE RESPIR．ITORI SY TEM
Respiratory system of the Horse． 505
The Nasal Cavity 509
The Larynx 514
The Trachea 523
The Bronchi 525
The Thoracic Cavity 525
The Pleure 526
The Lungs 530
The Thyroid Glaid of the Horse 535
The Thymes of the Horse． 536
Respirttory system of the Ox 537
Respiratory system of the Pig 545
Respiratory System of the Dog 54
THE I＇ROGENITAL SISTEN
Urinary Orgavs of the Horse 554
The Kidneys 554
The I＇reters 561
The U＇rinary Bladder 561
The Adresal Bodies． 563
Urinary Organs of the Ox 564
Urinary Organs of the Pig． 565
Urinary Organs of the Dog 569
THE MALE GENITAL ORGANS
Gevital Orgays of the stallion 571
The Testicles 5.1
The Scrotum 5.4
The Ductus Deferens 575
The Spermatic Cord 575
The Tunica Vaginalis 576
Descent of the Testicles． 57
The Vesicule Seminales 575
The Prostate 575
The Uterus Masculinus 579
The Bulbo－urethral Glands 579
The Penis 5ヘ0
The Prepuce が2
Gevital Orgajs of the Bell 556
Genital Orgais of the Boar 591
Gental Organs of the Dog． 593
THE FEMALE GENITAL ORGANS
Genital Orgais of the Mare 596
The Oraries 596
The Iterine or Fallopian Tubes 599
The Iterus 599
The Vagina 602
PAGE
The Vulva 1003
The Lrethra 604
The Nammary Glamls 604
Genithl Orgins of the Cow 60.5
Cifittal Organs of the Ewe 609
Gienital Organs of the suw 610)
Genital (Orgaxs of the Bitch 612
ANGGIOLOGY
General Coxsiderations 614
The ()rgids of Circtlatios 614
BLOOD-vascilar System of the: Ilorse 617
The Pericardium 617
The Meart 617
The Pulmonary Artery 629
The systemie Arteries 629
The Coronary Arteries 630
Common Brachiocephalie Trunk 631
Arturies of the Thoracic Limb 650
Branches of the Thoracic . Dorta 660
Branehes of the Abilominal Aortat 661
Arteries of the Petvic Limb. 673
The Veins 6 Cl
The Pulmonary Veins 651
Curdiae Veins 6 K 1
The Anterior Vena Cava and its Tributaries 682
The Posterior Vena Cava and its Tributaries 692
The Lymphatic System 697
The Thoracic Duet 697
The Right Lymphatic Duet 698
The Lymph Glands and Vessels of the I 698
The Lximph Glands and Vessels of the Thorax. 700
The Lymph Glands and Vessels of the Abdomen and Pelvis 701
The Lymph Glands and Vessels of the Thoracie Limb 703
The Lymph Glands and Vessels of the Pelvie Limb 703
The Feftal Circulation 704
Blood-varcelar system of the Ox 705
The Perieardium and Heart 705
The Arteries 706
The Veins 719
Lymphatit System of the OX and sheep. 722
Circelatury Nisten of the Pig. 734
The Perieardium and Heart 7.34
The Arteries 736
The Veins 7.40
Lymphatie system 740
Cirollatory sistem of the Dog 742
The Pericartium and Heart 742
The Arteries 741
The V'eins 7.54
Lymphatic System 7.56
NELROLOGY-TIIE NERVOLS SYSTEM
Cieneral Considerations 760
Nervors system of the Horse. 764
The Spinal Cord 76.4
The Brain 768
PAGEThe Cranial Nerves
The Spinal Nerves 10
Sympathetic Neryous Srstem of the Horse $\$ 29$
Neryous Sistem of the Ox 834
Nervous System of the Pig \& 43
Nervor's System of the Dog 847
ESTHESIOLOGY
The Sense Organs and Common Integcment of the Horse 857
The Eye 857
The Ear 870
The Common Integument 854
The Ergot and Chestnut 895
The Olfactory and Gustatory Apparatus 895
The Sense Organs and Common Integument of the Ox 896
The Sevse Organs and Common Integtment of the Pig 900
The Sense Organs and Common Integument of the Dog 902
Index 907

THE ANATOMY OF THE DOMESTIC ANIMALS

INTRODUCTION

Abstract

Anatomy is the branch of biological science which deals with the form and structure of organisms, both animal and vegetal. It is therefore in close correlation with physiology, which treats of the functions of the body.

Etymologically the word "anatomy" signifies the cutting apart or disassociating of parts of the body. In the earlier phases of its development anatomy was necessarily a purely descriptive science, based on such observations as were possible with the unaided eye and simple diseecting instruments-the scalpel, forceps, and the like. At this time, therefore, the term adequately expressed the nature of the sulbject. But as the scope of the science extended and the body of anatomical knowledge grew, subdivisions became necessary and new terms were introduced to designate special fields and methods of work. With the introduction of the microzcope and its accessories it became possible to study the finer details of structure and minute organisms hitherto unknown, and this field of inquiry rapidly developed into the science of microscopic anatomy or histology as conventionally distimguished from macroscopic or gross anatomy. In the same way the study of the changes which organisms undergo during their development soon attained sufficient importance to be regarded on practical grounds as a separate branch known as embryology. ${ }^{1}$

Comparative anatomy is the description and comparison of the structure of animals, and forms the basis for their classification. By this means-including extinct forms in the scope of inquiry-it has been possible to show the genetic relationship of various groups of animals and to elucidate the significance of many facts of structure which are otherwise quite obscure. The deductions concerning the general laws of form and structure derived from comparative anatomical studies constitute the science of morphology or philosophical anatomy. The morphologist, however, deals only with such anatomical data as are necessary to form a basis for his generalizations. The anatomical knowledge required in the practice of medicine and surgery is evidently of a different character and must include many details which are of no particular interest to the morphologist.

Special anatomy is the description of the structure of a single type or species, e. g., anthropotomy, hippotomy:

Veterinary anatomy is the branch which deals with the form and structure of the principal domesticated animals. It is usually pursued with regard to professional requirements, and is therefore largely descriptive in character. As a matter of convenience, the horse is generally selected as the type to be studied in detail and to form a basis for comparison of the more essential differential characters in the other animals.

Two chief methods of study are employed-the systematic and the topographic. In the former the body is regarded as consisting of systems of organs or

[^0]apparatus which are similar in origin and strueture and are associated in the performance of eertain functions. The divisions of systematic anatomy are:

1. Osteology, the description of the skeleton.
2. Arthrology, the deseription of the Joints.
3. Myology, the description of the Museles and accessory structures.
4. Splanehnology, the description of the Viscera. This indudes the following subedivisions:
(1) Digestive System
(2) Repiratory sy: stom
(3) Lrogenital System
(a) Urinary ()rgans
(b) Genital Organs
5. Angiology, the deseription of the Organs of Circulation
6. Neurology, the description of the Nervous System
7. Esthesiology, the description of the Fense Organs and Common lntegument
The tem topographic anatomy designates the methods by which the relative positions of the various parts of the bexly are accurately determined. It presupposes a fair working knowledge of systematic anatomy.

Descriptive Terms. - In order to indieate precisely the position and direction of parts of the body, certain deseriptive terms are employed, and must be understood at the outset. In the explanation of these terms it is assumed here that they apply to a quadruped such as the horse in the ordinary standing position. The surface directed toward the plane of support (the ground) is termed ventral (or inferion), and the opposite surface is dorsal (or superior); the relations of parts in this direction are named aceordingly. The longitudinal median plane divides the borly into similar halves. A structure or surface whieh is nearer than another to the median plane is medial (or internal) to it, and an object or surface which is further than another from the median plane is lateral (or external) to it. Planes parallel to the median plane are sagittal. Transverse or segmental planes cut the long axis of the body perpendicular to the median plane, or an organ or limb at right angles to its long axis. A frontal plane is perpendieular to the median and transverse planes. The term is also used with reference to parts of the limbs or various organs in a similar sense. The head end of the body is termed anterior or cranial; and the tail end posterior or caudal; relations of structures with regard to the longitudinal axis of the body are designated aceordingly. With respect to parts of the head, the corresponding terms are oral and aboral. Certain terms are used in a special sense as applicel to the limbs. Proximal and distal express relative distanees of parts from the long axis of the body. The anterior face of the thoracie limb from the elbow downward is termed dorsal, and the opposite face volar. la the corresponding part of the pelvic limb the terms are dorsal and plantar respectively. In the same regions radial and ulnar (thoracie limb), tibial and fibular (pelvic limb), may be used to designate that side of the extremity on which the eorresponding bone is situated; they are therefore equivalent respectively to medial and lateral in the animals with which we are eoncernol. The terme superficial (superficialis) and deep (profuntus) are uscful to indicate relative distances of parts from the surfate of the body.

It is evidently advantageons to employ terms which are as far as possible independent of the position of the body in space and capable of general application, e. g., tlorsal, ventral, proximul, ete. It is also desirable that the terms internal and external be reserved to indicate relations of depth in cavities or organs, and medial and lateral to designate relations to the median plane. Such terms are coming into more extemsive use in human and veterinary anatomy, but the older nomenclature is very firmly establisholl and cannot well he discarded at onee and entirely, To facilitate the transition, a table of the older and more recent terms is given below; the recent terms are in the first column and the older equivalents in the second.
A. Relating to Head, Neck, and Trunk:

Dorsalis	Superior
Ventralis.	Inferior
Merlialis	Internal
Lateralis.	External
(ranialis	Interior
Oralis	Anterior
('mudalis	Posterior

B. Relating to Limbs:

Proximalis	Superior
Distalis.	Inferior
Dorsalis.	Anterior
Volaris	
Plantaris	Posterior
Ractialis	
Tibialis	Internal
Ulnaris	
Fibularis	External

OSTEOLOGY

THE SKELETON

The term skeleton is applied to the framework of hard structures which supports and protects the soft tissues of animals. In the deseriptive anatomy of the higher animals it is usually restricted to the bones and cartilages, although the ligaments which bind these together might well be included.

In zoölogy the term is used in a much more comprehensive sense, and includes all the harder supporting and protecting structures. When the latter are situated externally, they form an exoskeleton, derived from the ectoderm. Ramples of this are the shells and chitinons coverings of many invertebrates, the seales of fishes, the shields of turtles, and the feathers, hair, and hoofs of the higher vertebrates. The endoskeleton (with which we have to deal at present) is conbedded in the soft tissues. It is derised from the mesoderm, but includes the notochord or primitive axial skeleton, which is of entodermal origin.

The skeleton may be elivided primarily into three parts: (1) axial; (2) appendicular; (3) splanchnic.

The axial skeleton comprises the vertehral column, rils, stermum, and skull.
The appendicular skeleton inclutles the benes of the limbs.
The splanchnic or visceral skeleton consists of certain bones developed in the suhstance of some of the viscera or soft organs, e. g., the os penis of the dog and the os cordis of the ox.

The number of the lones of the skeleton of an animal varies with age, owing to the fusion during growth of skeletal elements which are separate in the foetus or the young subject. Eren in adults of the same species mumerical variations oceur, $e . g$., the tarsus of the horse may consist of six or seven bones, and the carpus of seven or eight; in all the domestic mammals the number of coceygeal vertebre varies eonsiderally.

The bones are commonly divided into four classes according to their shape and function. ${ }^{1}$
(I) Long bones (Ossa longa) are typically of elongated cylindrical form with enlarged extremities. They oecur in the himbs, where they act as supporting colmms and as levers. The celindrical part, termed the shaft or body (Corpus), is tubular, and incloses the medullary cavity, which contains the medulla or marrow.
(2) Flat bones (Ussa plana) are expanded in two directions. They furnish sufficient area for the attachment of museles and afford protection to the organs which they eover.
(3) Short bones (Ossa brevia), surh as those of the carpus and tarsus, present somewhat similar dimensions in length, brealth, and thickness. Their chief function appears to be that of diffusing eoncussion. Sesamoid bones, which are developet in the capsules of some joints or in tendons, may be included in this group. They diminish friction or change the direction of temlons.
(4) Irregular bones (Ossa irregularia). This group would include lones of irregular shape, such as the vertebre and the bones of the cranial base; they are median and umpaired. Their functions are various and not so clearly specialized as those of the preceding classes.
${ }^{1}$ This classification is not entircly satisfactory; some bones, e. g. , the ribs, are not clearly provided for, and others might be variously placed.

STRUCTURE OF BONES ${ }^{1}$

Bones consist chiefly of bone tissue, but eonsidered as organs they present also an enveloping membrame, termed the periosteum, the marrow, vessels, and nerves.

The architecture of bone can be studied best by means of longitudinal and transverse sections of specimens which have been macerated so as to remove most of the organic matter. These show that the bone consists of an external shell of dense compact substance, within which is the more loosely arranged spongy substance. In typical long bones the shaft is hollowed to form the medullary cavity (Cavum medullare).

The compact substance (Substantia compacta) differs greatly in thickness in various situations, in conformity with the stresses and strains to which the bone is subjected. In the long bones it is thickest in or near the middle part of the shaft and thins out toward the extremities. On the latter the layer is very thin, and is especially dense and smooth on joint surfaces.

The spongy substance (Substantia spongiosa) consists of delicate bony plates and spicules which run in various directions and intereross. These are definitely arranged with regard to mechanieal requirements, so that systems of pressure and tension plates can be recognized, in conformity with the lines of pressure and the pull of tendons and ligaments respectively. The intervals between the plates are oceupied by marrow, and are temed marrow spaces (Cellute medullares). The spongy substance forms the bulk of short bones and of the extremities of long bones; in the latter it is not confined to the ends, but extends a variable distance along the shaft also. Some bones contain air-spaces within the compact substance instead of spongy bone and marrow, and hence are called pneumatic bones (Ossa pneumatica). These cavities are termed sinuses, and are lined with mucous membrane; they communicate indirectly with the external air. In certain situations the two compact layers of flat bones are not separated by spongy bone, but fuse with each other; in some eases of this kind the bone is so thin as to be translueent, or may undergo absorption, producing an aetual defieiency.

The flat bones of the cranial vault and sides are eomposed of an outer layer of ordinary compact

Fig. 1.-Sagittal Section of Large Metstarsal Bone of Horse (Right).
S.c., Compact substance; S.s., spongy substance; C.m., medullary carity: F.n., nutrient foramen. Note the greater thickness of the compact substance of the anterior part of the shaft. substance, the lamina externa, an inner layer of very dense bone, the lamina interna or tabula vitrea, and between these a variable amount of spongy bone, here termed diploë.

The periosteum is the membrane which invests the outer surface of bone, except where it is covered with eartilage. It consists of an outer protective fibrous
${ }^{1}$ Only the gross structure is discussed here. For the microscopic structure reference is to be made to histological works.
layer, and an imer cellular osteogenic layer. During active growth the osteogenic layer is well developed, but later it becomes murh redueed. The fibrous layer varies much in thickness, being in general thickest in exposed situations. The athesion of the periosteum to the bone also differs greatly in various phaces; it is usually very thin and easily detached where it is thickly covered with muscular tissue which has little or no attachment. The degree of vascularity conforms to the activity of the periosteum.

The endosteum is a thin fibrous membrane which lines the medullary carity and the larger Haversian canals.

The marrow (Medulla nsium) oceupies the interstices of the spongy bone and the medullary cavity of the long bones. There are two varieties in the adultred and yellow. In the young subject there is only red marrow (Medulla ossium rubra), lat later this is replaced in the medullary cavity by yellow marrow (Medulla ossium flava). The red marrow contains several types of characteristic eells and is a blood-forming substance. while the yellow is practically ordinary adipose tissue. ${ }^{1}$

Vessels and Nerves.-It is customary to recognize two sets of arteries - the periosteal and the medullary. The former ramify in the periostemm and give off

Fig. 2.-Crobs-section of Proximal Third of Shaft of light Hiverus af Horse.

Fig. 3.-Cboss-section of Distal Third of Shaft of Left Humerus of Horme.
Section passes through nutrient foramen and canal.
innumerable small branches which enter minute openings (Vollimam's canals) on the surface and reach the Haversian canals of the compact substance. Other branches enter the extremities of the long bones and supply the spongy bone and marrow in them. In the case of the larger bones-and expecially the long lemesthe large nutrient or medullary artery (Arteria nutricia) enters at the so-called nutrient foramen (Foramen mutricium), passes in a canal (Canalis mutricius) through the emmpact substance, and ramifis in the marrow; its brancles anastomose with the eentral branches of the periosteal set. The larger veins of the spongy bone do not, as a ruke, accompany the arterios, Jut emerge chefly near the articular surfaces. Within the bone they are destitute of values. The lymph-vessels exist as perivaseular chanels in the periostemm and the Ilaversian cants of the compact substance. They also form a fine sulperiosteal network, from which the larger vessels proced, usually in company with veins. Lymph-spaces exist at the periphery of the marrow:

The nerves appear to be distributod chiofly to the blowl-vessels. Sipecial nerve-
${ }^{1}$ Since yellow marrow is formed by regressive changes in red marrow, incluling fatty infiltration and legemeration of the characteristif cells, we find transitional forms or stages in the process. In aged or hadly nourished subjects the marrow may undergo gelatinous degeneration, resulting in the formation of gelatinous marrow.
endings (Vater-Pacini corpuscles) in the periosteum are to be regarted as sensory, and probably are concerned in mediating the muscle sense (kinesthesia)

DEVELOPMENT AND GROWTH OF BONE ${ }^{1}$

The primitive embryonal skeleton consists of cartilage and fibrous tissue, in which the bones develop. The process is termed ossification or osteogenesis, and is effected essentially ly bone-producing cells, called osteoblasts. It is customary, therefore, to designate as membrane bones those which are developed in fibrous tissue, and as cartilage bones these which are preformed in cartilage. The principal membrane bones are those of the roof and sides of the cranium and most of the bones of the face. The cartilage bones comprise, therefore, most of the skeleton. Correspondingly we distinguish intramembranous and endochondral ossification.

In intramembranous ossification the process begins at a definite center of ossification (Punctum ossifieationis), where the osteoblasts surround themselves with a deposit of hone. The process extends from this center to the periphery of the future bone, thus producing a network of bony trabeculæ. The trabeculex rapidly thicken and coalesce, forming a bony plate which is separated from the adjacent bones by persistent fibrous tissue. The superficial part of the original tissue becomes periosteum, and on the deep face of this suceessive layers of periosteal bone are formed by osteoblasts until the bone attains its definitive thickness. Increase in circumference takes place by ossification of the surrounding fibrous tissue, which continues to grow until the bone has reached its definitive size.

In endochondral ossification the process is fundamentally the same, but not quite so simple. Osteoblasts emigrate from the deep face of the perichondrium or primitive periosteum into the cartilage and cause calcification of the matrix or groundsubstance of the latter. Vessels extend into the calcifying area, the cartilage cells shrink and disappear, forming primary marrow cavities which are occupied by processes of the osteogenic tissue. There is thus formed a sort of scaffolding of calcareous trabecula on which the bone is constructed ly the osteoblasts.

Fig. 4.-Left Femer of Young Pig. Lateral Viet, to Show Divisron of a Long Bone into Shaft (s) And Extremities.
Proximal extremity consists of two parts, head (h) and trochanter major (t.m.), which have separate centers of ossification. Distal extremity consists of trochlea (t) and condyles (c) ; e.l., epiphyseal cartilages; s.f., supracondyloid fossa. At the same time perichondral bone is formed by the osteoblasts of the primitive periosteum. The calcified cartilage is broken down and absorbed through the agency of large cells called osteoclasts, and is replaced by bone deposited by the osteoldasts. The osteoclasts also cause absorption of the primitive bone, producing the marrow cavities; thus in the case of the long bones the primitive central spongy bone is largely absorbed to form the medullary cavity of the shaft, and persists chiefly in the extremities. Destruction of the central part and formation of subperiosteal bone continue until the shaft of the bone has completed its growth.

A typical long bone is developed from three primary centers of ossification,
${ }^{1}$ Only a brief general statement of osteogenesis can be made here; details must be sought in embryological literature.
one, which appears first, for the diaphysis or shaft and one for each epiphysis or extremity. Many bones have secondary eenters from which processes or apophyses avelop.

The foregoing outline accounts for the growth of bones except in regarel to length. Inerease in length may be explained briefly as follows: Provision for continued ossification at either end of the diaphysis is made by a layer of actively growing cartilage-the epiphyseal cartilage-which intervenes between the diaphysis and the epiphysis. It is evident that so long as this cartilage persists and grows, new lome may continue to be formed at its expense, and increase of length is posishle. When the epiphyseal cartilage ceases to grow, it undergoes ossification, the bone is comsolidated, and no further increase in length is possible. This fusion takes place at failly clefinite periods in the various bones, and it is of value to know the usual times at which it vecurs in the larger bones of the limhs at least. In the case of membrane bones, increase in circunference is provided for by the ossification and new formation of the surrounding fibrous tissue.
-ffer the benes have reacherl their full size, the periosteun becomes relatively reduced and inactive so fir as its ostensenic layer ix concernct; the bone-forming function may be stimulated by varions canses, as is well seen in the healing of fractures and the oecurrenee of bony enlargements.

Profound changes oceur in the skeleton after birth, and during the period of growth the bones are much more plastic than might he supposed. In the new-horn foal, for exanple, it is evident that the metacarpal and metatarsal bones are relatively bong and the seapula and humerus short; also that in gencral the shafts of the long bones are slemer in comparison with the extremities. The varims prominences are much lese pronounced than in the alult, and most of the minor surface markings are absent, so that the bone have a relatively smowth appearance. The period of grow th may he regarded as termating with the mion of the extremities and shafts of the long 1,ones and the fusion of the parts of other homs.. During adult life the skeletal changes proceed more slowly: they comprise accentuation of the larger prominches and depressions and the appearance of smaller ones. Thew secondary markings are chiefly correlated with the attachments of muscles, tendons, and ligaments, or are prodncol by presinne exerted by varions structures on the bones. Later in life ussification invades mure or less extensively the cartilages and the attachments of temolons and ligaments. senile changes in the benes, consisting of decrease of the organic matter and rarefaetion of the bone tissur, render them luritthe and liable to fracture.

CHEMICAL COMPOSITION OF BONE

Dried hone comsists of organic and inorganic matter in the ratio of $1: 2$ approximately. The animal matter gives tonghness and dasticity, the mineral matter hardness, to the bone tissue. Removal of the orgamie matter by heat does not change the general form of a hone, but retuces the weight by about one-third, and makes it very fragile. Comversely, deealcification, while not affeeting the form and size of the bone, renders it soft and pliable. The organic matter (ossem) when builed yields gelatin. The following table represents the emposition in 100 parts of ox bone of average quality:

Pedatin	33.30
Phosshate of lime ${ }^{\text {a }}$.	.37.35
('arbomate of lime	3.nis
Phosphate of magnesia	2.05
C'arhonate and chlorid of soclimm	3.4.5

PHYSICAL PROPERTIES OF BONE

Fresh dead hone has a yellowish-white color; when macerated or boiled and hleacherl, it is white. The specifie gravity of fresh compact hone is a little over 1.93. It is wery hard and resistant to pressure; a 5 -millimeter rube of compact bome of the ox will resist pressure up to sise pounds, if the pressure be applied in the line of the lamelle (Rauber). Its tensile strength is estimated to be nearly twice that of oak.

DESCRIPTIVE TERMS

The surfaces of the bones present a great variety of eminences and depressions, as well as perforations. The prominenees and cavities may be articular, or nonarticular, furuishing attachment to muscles, tendons, ligaments, or fascia. A number of deseriptive terms are used to designate these features, and the following are some of those in general use:

Process (Processus) is a general term for a prominence.
A tuberosity (Tuber, Tuberositas) is a large, rounded projection; a tubercle (Tuberculum) is a smaller one.

The term trochanter is applied to a few prominences, $e . g$., the trochanters of the femur.

A spine (Spina) or spinous process (Processus spinosus) is a pointed projertion.
A crest (Crista) is a sharp ridge.
A line (Linea) is a very small ridge.
A head (Caput) is a rounded articular enlargement at the end of a bone; it may be joined to the shaft by a constrieted part, the neck (Collum).

A condyle (Condylus) is an articular eminence which is somewhat eylindrical; a non-articular projection in connection with a condyle may be termed an epicondyle (Epicondylus).

A trochlea is a pulley-like articular mass.
A glenoid cavity (Cavitas glenoidalis) is a shallow articular depression, and a cotyloid cavity or acetabulum is a deeper one.

The term facet is commonly applied to articular surfaces of small extent, especially when they are not strongly concave or convex.

The terms fossa, fovea, groove or sulcus, and impression are applied to various forms of depressions.

A foramen is a perforatiou for the transmission of vessels, nerves, ete.
A sinus is an air-cavity within a bone or bones; it is lined with mucous membrane and commmieates with the exterior.

Other terms, such as canal, fissure, notch, ete., require no explanation. ${ }^{1}$

THE VERTEBRAL COLUMN

The vertebral column (Columna vertebralis) is the fundamental part of the skeleton. It consists of a chain of median, unpaired, irregular bones which extends from the skull to the end of the tail. In the adult certain vertebre have become fused to form a single bony mass with which the pelvie girdle articulates. Vertebres so fused are termed fixed (or "false") vertebræ (Vertebre immobiles), as distinguished from the movable (or "true") vertebræ (Vertebrie mobiles).

The column is subdivided for description into five regions, which are named according to the part of the body in which the vertebree are situated. Thus the vertebree are desiguated as cervical, thoracic, lumbar, sacral, coccygeal (Vertebree cervicales, thoracales, lumbales, sacrales, coceygex). The number of vertebre in a given species is fairly constant in each region exeept the last, so that the vertebral formula may be expressed (for the horse, for example) as follows:

$$
\mathrm{C}_{7} \mathrm{~T}_{18} \mathrm{~L}_{6} \mathrm{~S}_{5} \mathrm{C}_{15-21} .
$$

The vertebra in a given region have characters by which they may be distinguished from those of other regions, and individual vertebre have special character: which are more or less clearly recognizable. All typical vertebre have
${ }^{1}$ As might be expected from the history of anatomy, a good many of these terms are more or less interchangeable; furthermore, a given skeletal feature may differ greatly in various species.
a common plan of structure, which must first be understood. The parts of which a vertebra comsists are the body, the arch, and the processes.

The body (Corpus verteloret) is the more or less extintrical mass on which the other parts are construeted. The anterior and posterior extremities of the body are attached to the adjacent vertehre by intervertelral fibro-cartilages, and are usually convex and concave respectively. The dorsal surface is flattened and enters into the formation of the vertebral canal, white the ventral arpect is rounded haterathy, and is in relation to various muscles and viscera. In the thoracic region the borly presents two pairs of facets (Foves costales) at the extremities for artienlation with part of the heats of two pairs of ribs.

The arch (Arcus vertebrat) is constructed on the dorsal aspert of the body. It consists originally of two lateral halves, cach of which is considered to consist of a pedicle and a lamina. The perticle (Radix arens vertebre) forms the lateral part of the arch, and is cut into in front and behind by the vertebral notches (Incisura vertebralis cranialis, caudalis). The notelus of two adjacent vertebres form intervertebral foramina (Foramina intervertebralia) for the passage of the spinal nerves and vessels; in some vertebre, how-

Fig. 5.-First Thoracic Vertebra of Horse. To illustrate plan of structure of vertebras. ever, there are complete formma instead of notches. The lamine are plates which complete the areh dorsally, uniting with each other medially at the root of the spinons process.

The brody and the arch form a bony ring which incloses the vertebral foramen (Foramen vertebrake): the series of vertebral rings, tugether with the ligaments which unite them, inelose the vertebral canal (Canalis vertebralis), which contains the spinal cord an! its cowerings and vessels.

The articular processes, two anterior and two posterior (Processus artieulares eraniatus, candalss), projeet from the borders of the arch. They present articular surfaers adapted to those of adjacent vertebras, and the remaining surface is roughened for museular and ligamentons attachment.

The spinous process or spine (Processus spinosus) is single, and projects dorsally from the midde of the areln. It varies greathy in form, size, and direction in different vertebme. It furnishes attachment to muscles and ligaments.

The transverse processes (Processus transwersi) are two in number and project laterally from the sides of the arch or from the junction of the arch and body. In the thoracic region each has a faret for artieubation with the tubercle of a rib (Fovea costalis transversatis). They also give attachment to museles and ligatments.

Some vertobre have also a ventral spine or a hæmal arch.

Mammillary processes (Processus manillares) are found in most animat: on the last thoraric and anterior lumbar vertehne, hetween the transwerse and anterior artimular procesises or on the latter.

Accessory processes (l'rocessus arcessorii), when present, are situated between the transverse and pesterion articular processes.

Development. - The wortebre are developed by ossification in the cartiage which surromels the notorhord and ferms the sites of the neural canal. There are three primary centers of ossification, one for the body and one for each side of the
arch. Secondary centers appear later for the summit of the spinous process (except in the cervical region), the extremities of the transverse processes, and the thin epiphyseal plates at the extremities of the body:
sometimes there are at first two centers for the body, which soon fuse. The process of ossification extends from the lateral centers to form, not only the corresponding part of the arch, but also the processes and a part of the body next to the root of the arch (Radix arcus). In the horse and ox the body and arch are fused at birth or unite very soon after, hut the epiphyses do not fuse till growth is complete. In the pig, sheep, and dog the body and arch are united at birth by cartilage (neurocentral synchondrosis), but fuse in the first few months.

THE RIBS

The ribs (Costre) are elongated curved bones which form the skeleton of the lateral thoracic walls. They are arranged serially in pairs which correspond in number to the thoracic vertebre. Each articulates dorsally with two vertebre and is continued rentrally by a costal cartilage. Those which articulate with the sternum by means of their cartilages are termed sternal ribs (Costæ sternales); the remainder are asternal ribs (Costre asternales). Ribs at the end of the series which have their ventral ends free in the abdominal wall are named floating ribs (Costæf fluctuantes). The intervals between the ribs are termed intercostal spaces (spatia intercostalia).

A trpical rib ${ }^{1}$ consists of a shaft and two extremities. The shaft (Corpus costie) is band-like and varies much in length, breadth, and curvature in different ribs. In the case of some ribs the curvature is not uniform, but is accentuated at a certain point, termed the angle of the rib (Angulus costæ); this occurs at a variable distance from the vertebral end, and is usually marked by a rough ridge. The direction also varies; the first rib is usually almost vertical, while the remainder stope backward in increasing degree. The lateral surface (Facies lateralis) is convex, and the medial surface (Facies medialis) flattened from edge to edge; on the latter, close to the posterior border, is the costal groove (sulcus costre), which fades out ventrally. It contains the intercostal vein. The anterior and posterior borders (Margo cranialis, caudalis) are thin and sharp on some ribs rounded on others.

The vertebral extremity (Extremitas vertebralis) consists of the head, neck, and tubercle. The head (Capitulum costie) is the actual end of the rib, and is rounded and somewhat enlarged. It presents two facets (Facies articularis capituli costie) for articulation with the bodies of two adjacent thoracic vertebre; these surfaces are separated by a groove in which the conjugal ligament is attached. The neck (Collum costæ) joins the head to the shaft. It varies in length and diameter. Its lateral surface is rough, its medial smooth. The tubercle (Tnberculum costie) projects backward at the junction of the neek and shaft. It has a facet Facies articularis tuberculi costæ) for articulation with the transverse process of the posterior vertebra of the two with which the head articulates. The tubercle gradually approaches the head in the posterior ribs, and eventually fuses with it.

The sternal extremity (Extremitas sternalis) is commonly slightly enlarged, and is roughened at the junction with the costal cartilage.

Development.-The ribs are ossified in cartilage from three centers-one each for the shaft (and sternal end), head, and tubercle; the third center is absent in some ribs at the terminal part of the series.

THE COSTAL CARTILAGES

These (Cartilagines costales) are bars of hyaline cartilage which continue the ribs. Those of the sternal ribs articulate with the sternum, while those of the
${ }^{1}$ The term is employed here, as is usual in descriptive anatomy, to designate only the bony part of the rib (Os costale; morphologically it includes the cartilaginous part also.
asternal rilss overlap and are attached to each other to form the costal arch (Areus (costalis). The (artilages of floating ribs are not attached to those adjacent.

THE STERNUM

The sternum (or breast-hone) is a median scgmental lome which completes the skeleton of the thorax ventrally, and articulates with the cartilages of the sternal ribs laterally. It consists of six to eight bony segments (sternebre) comected by intervening cartilage in the roung subject. Its form varies with that of the thorax in general and with the development of the clavicles in animats in which these bones are present. Its anterior extemity, the manubrium sterni or presternum, is specially affecterl by the latter factor, being broad and strong when the clavicles are well develoned and articulate with it (as in man), relatively small and laterally (ompressed when they are absent (as in the horse) or rudimentary (as in the dog). The cartilages of the first pair of ribs articulate with it. The body or mesosternum (Corpus sterni) presents laterally, at the junction of the segments, coneave facets (Incisure costales) for articulation with the cartilages of the sternal rihs. The posterior extremity or metasternum presents the xiphoid cartilage (Processus xiphoidens); this is thin and wide, as in the horse and ox, or narrow and short, as in the dog.

Development.-The cartilaginous stemum is formed by the fusion medially of two lateral bars which unite the ventral ends of the first eight or nine costal cartilages, and is primitively unsegmented. The manubrium ossifies from a single center, lout the centers for the other segments appear to be primitively pairet. The sternum never becomes eompletely ossified; details in regard to persisting cartilage will be given in the special deseriptions. The layer of compact tisene is for the greater part very thin and the spongy substance is open-meshed and very vascular.

THE THORAX

The skeleton of the thorax comprises the thoracie vertebse florsally, the ribs and costal cartilages laterally, and the stermum ventrally. The thoracic cavity (Cavum thoracis) resembles in shape an irrexula truncated cone; it is compressed laterally, especially in front, and the dowal wall or roof is much longer than the ventral wall or floor. The anterior aperture or inlet (Apertura thoracis cranialis) is bounded by the first thoracic vertebra dorsally, the first pair of ribs and costal cartilages laterally, and the manubrium stemi ventrally. The posterior aperture (Apertura thoracis caudalis) is hommed by the last thoracic vertebra, the last pair of ribs, the costal arches, and the anterior part of the siphoil cartilage.

[^1]
THE SKULL

The term skull is ustally understool to inchude all of the bones of the head. The head eonsists of the cramium and the face, and it is therefore eonvenient to divide the bones into cranial and facial groups.

The cranial bones (1)wa (ranii) inclose the brain with its membranes and vessels and the essential organs of hearing. They concur with the facial bones in forming the orbital and nasal cavities, in which the peripheral organs of sight and of smell are situated.

The facial bones (Ossa facici) form the skeleton of the oral and nasal caritics, and also support the pharymx, the larymx, and the root of the tongue.

Most of the bones of the skull are flat bones, developed in membrane; those of the cranial base may be classed as irregular, and are developed in cartilage. Only two form permanent movable joints with other parts of the skull. The mandible (or lower jaw-bone) forms diarthrodial joints with the temporal bones, and the hyoid bone is attached to the latter by bars of cartilage. The other bones form immovable joints, most of which disappear with age.

In order to study the separate bones, skulls of young subjects are necessary, since later most of the lines of demarcation become effaced. The relations of each bone to its surroundings should be specially noted, since the final object is to understand the skull as a whole. In the descriptions which follow the skull is considered with its long axis horizontal, and that of the horse will serve as a type.

THE BONES OF THE THORACIC LIMB

The thoracic limb (Extremitas thoracalis) consists of four chief segments, viz., the shoulder girdle, the arm, the forearm, and the manus.

The shoulder girdle (Cingulum extremitatis thoracalis), when fully developed, consists of three bones-the scapula (or shoulder-blade), the coracoid, and the clavicle (or collar-bone). In the domesticated mammals only the seapula, a large, flat bone, is well developed, and the small coracoid element has fused with it, while the clavicle is either absent or is a small rudiment embedded in the brachiocephalicus muscle. There is therefore no articulation of the shoulder with the axial skeleton.

The shoulder girdle is fully developed in birds and the lower mammals (monotremata). In the higher nammals the coracoid is reduced to the coracoid process of the scapula, and the development of the clavicle is in conformity with the function of the himb. Thus in typical quatrupeds, such as the horse and ox, in which the forclimbs are used only for support and locomotion, the clavicle is absent. Other animals which use these limbs for grasping, burrowing, climbing, ete. (e.g., man, apes, moles), have well-developed clavicles which connect the scapula with the sternum.

The arm (Brachium) contains a single long bone, the humerus (or arm bone).
In the forearm (Antibrachium) are two bones, the radius and ulna. These vary in relative size and mobility. In the horse and ox the two bones are fused, and the distal part of the limb is fixed in the position of pronation. The radius is placed in front and supports the weight. The ulna is rell developed only in its proximal part, which forms a lever for the extensor muscles of the elbow. In the pig the uha is the larger and longer of the two bones, but is closely attached to the back of the radius. In the dog the ulna is also well developed and a small amount of movement is possible between the two bones.

The manus, ${ }^{1}$ the homologue of the hand in man, consists of three subdivisions, viz., the carpus, metacarpus, and digit or digits.

The carpus, popularly termed the "knee" in animals, and homologous with the wrist of man, contains a group of short bones, the ossa carpi. ${ }^{2}$ These are typically eight in number and are arranged in two transverse rows - a proximal or antibrachial, and a distal or metacarpal. The bones of the proximal row, named from the radial to the ulnar side (i.e., from within outward), are the radial, intermediate, ulnar, and accessory carpal bones. The bones of the distal row are designated numerically, in the same direction, as first, second, third, and fourth carpal bones.

This nomenclature, introduced by Gegenbaur, and now used largely by comparative anatomists, seems decidedly preferable to the variety of terms borrowed from human anatomy and based on the form of the bones in man. The following table of synonyms in common use is appended for comparison. The Latin terms and abbreviated notations are given in parentheses.

[^2]The central carpal bone (Os carpi central) is omitted, since it is not a separate element in the animals under consideration here.

The metacarpus contains typically five metacarpal bones (Ossa metacarpalia I- ${ }^{-}$), one for each digit; they are long bones and are designated numerically from the radial to the ulnar side (i. e., from within outward). This arrangement occurs in the dog, although the first metacarpal is much smaller than the others, and the second and fifth are somewhat reduced. Further reduction has taken place in the other animals, resulting in the perissodactyl and artiodactyl forms. In the horse the first and fifth metacarpals are absent, the third is the large supporting metacarpal bone and carries the single digit, while the second and fourth are much reduet. In artiodactyls ($e, g .$, ox, sheep, pig) the third and fourth are the chief metacarpals and carry the well developed digits; they are fused in the ox and sheep. The others are variously reduced or absent, as noted in the special descriptions to follow.

The fossil] remains of the ancestors of the existing Equate illustrate in a most complete mannet the reduction which has occurred in this respect. The earliest known ancestor of the horse, Eohippus of the Lower Eocene, hat four well developed metacarpal bones, each of which carried a digit; the first metacarpal hone was small. Intermediate forms show the gradual evolution of the race from this primitive animal, which was about the size of the domestic cat. There is reason to behove that earle forms had five digits.

The digits (Digiti manas) are homologous with the fingers of man, and are typically five in number. They are designated numerically from the radial to the ulnar side, in correspondence with the metacarpus. The full number is present in the dog. In the ox and pig the third and fourth are well developed and support. the weight, while the second and fifth are reduced. The existing horse has a single digit, the third of his pentadactyl ancestors. The skeleton of each fully developed digit consists of three phalanges and certain sesamoid bones. The first phalanx (Phalanx primal) articulates with the corresponding metacarpal bone above and with the second phalanx (Phalanx serunda) below. The third phalanx (Phalanx tertial) is enclosed in the hoof or claw, and is modified to conform to the latter. The sesamoid bones (0)sa sesamoidea) are developed along the course of tendons or in the joint capsules at points where there is increased pressure. Two proximal sesamoids (Ossa sesamoilea phalangis primes) of eur at the flexor side of the meta-carpo-phalangeal joint and form a pulley for the flexor tenon. The distal seamod ($)$ s sesamoideum phatangis sortie) is similarly placed between the deep flexor tendon and the joint between the second and third phalanx; it is absent in the chg, which has a small sesamoid on the extensor side of the metacarpo-phalangeal joint, and often at the proximal interphalangeal joint also.

Numerous (aves are recorded of the occurrence of supernumerary digits (hyperdactylism) in the horse and other animals. In some pigs, on the other hand, the two chief digits are fused, and the condition (syndactylism) appears to be inherited.

THE BONES OF THE PELVIC LIMB

The pelvic limb (Extremitas pelvina), like the thoracic, consists of four seqments, viz., the pelvic girdle, thigh, leg, and the pes; the last is subdivided into tarsus, metatarsus, and digits.

The pelvic girdle (Cingulum extremitatis pelvinze) consists of the os coxa (or
hip bone), which joins its fellow of the opposite side ventrally at the symphysis pelvis, and articulates very firmly with the strum dorsally. The two coxal bones, together with the sacrum and the first three or more cocergeal vertebre, constitute the bony pelvis. The os coxie consists originally of three flat bones, the ilium, ischium, and pubis, which mect at the acetabulum, a large cotyloid cavity with which the head of the femur articulates. These three parts are fused before growth is complete, but are considered separately for convenience of description. The ilium (0 s ilium) is situated in the lateral wall of the pelvis, the pubis (O s pubis) in the anterior part, and the ischium (Os ischii) in the posterior part of the ventral wall.

The thigh (Femur), like the arm, contains a single long bone, the femur (or thigh bone) (Os femoris). This articulates with the acetabulum above and the tibia and patella below.

The skeleton of the leg (Crus) comprises three bones (Ossa cruris), viz., the tibia, fibula, and patella. The tibia is a large, prismatic long bone which supports the weight, and articulates distally with the tibial tarsal bone. The fibula is situated along the lateral border of the tibia, from which it is separated by the interosseous space of the leg. It is much more slender than the tihia and does not articulate with the femur. In the pig and dog it has a complete shaft and two extremitics, but in the horse and ox it is much reduced and otherwise morlified. The patella (or "knee-cap") is a short bone which articulates with the trochlea of the distal end of the feumr; it is to be regarded as a large sesamoid bone intercalated in the tendon of the quadriceps femoris muscle.

The tarsus (or "hock") consists of a group of short bones, the ossa tarsi, numbering five to seven in the different animals. The proximal or crural row consists of two bones, the tibial and fibular tarsals; the former is situated at the tibial side, and has a trochlea for articulation with the distal end of the tibia; the latter, situated at the fibular side, has a process, the tuber calcis, which projects upward and backward and constitutes a lever for the muscles which extend the hock joint. The distal or metatarsal row consists of four bones when seven tarsal elements are present, as in the pig and dog. They are best designated numerically as first tarsal, second tarsal, ete. The central tarsal is interposed betwcen the rows.

The preceding terms are anglicized abbreviations of those introduced by Gegenbaur into comparative anatomy. The Latin names and synonyms are given in the following table:

Tibial (Os tarsi tibiale, Tt.).
Fibular Os tarsi filulare, Tf.) Central $\langle O$ s tarsi centrale, Te.) First Tarsal Os tarsale primum, T1 Second Tarsal (Os tarsale secundum, T2) Third Tarsal (Os tarsale tertium, T3) Fourth Tarsal (Os tarsale quartum, T4)
. Astragalus or Talus
Calcaneus or Os calcis
Scaphoid or Navicular First or internal cuneiform Second or middle cuneiform Third or external cuneiform Cuboid

The metatarsal and digital bones resemble in general those of the corresponding regions of the thoracic limb; the differential features will be noted in the special descriptions.

THE SKELETON OF THE HORSE

The skeleton of the horse consists of 205 bones, as shown in the following table:

Vertebral column	54
Rilss....	36
Sternum.	1
Skull (incluting auditory ossiches).	34
Thoracie limbs.	10
Pelvic limbs.	10

In this emmeration the aserage number of cocygeal wertebra is taken to be 18 , the temporal amd as cosar are not divided into parts, the usual number of earpat and tarsal clements is taken, and the stsamoids are incluted.

Fig. 6.-Nbeleton of Hobse, with wtline of Contotir of Body.
 1.L., first lumbat vertelora; 6.L., sixhh lumbar vertubra; K, sacrum; $1 . S_{n}$, first coceygeal vertebra; $16 . S .$, sixteunth
 of scapula; 4 , humerus; 4^{\prime} lateral epirendyle of humerus; 5 , lateral tuberosity of humerus; 6, deltoid tuberosity; 7 , shuft of ulna; h, olecranon: 9, radius; 10, carpus; 11, accessory carpal bone; 12, metacarpus; 13, digit; 14, sternum, $14^{\prime \prime}$, xiphoid cartilage; 15 , ilium; $16 ; 14 i^{\prime}$, angles of ilium; 17 , ischium; 18 , fenur (shaft); 19, trochanter major: 20), patella; 21, tibia (shaft); 21', lateral condyle of tibia; 23, fibula; 22, tarsus; 24, tuber calcis; 25, metatarsus; 26, digit; 27, trochanter mizor of femur; 2S, trochader tertius of femur. 〈After Ellenberger-Baum, Anat. für Küustler.)

The Vertebral Columin

The vertebral formula of the horse is $\mathrm{C}_{7} \mathrm{~T}_{15} \mathrm{~L}_{6}{ }^{\prime} \mathrm{S}_{5} \mathrm{Y}_{15}{ }_{15}$. .

Fig. 7.-Cervical Vektebras of Horae; Dorsal View.
a, Articular processes: b, transverse processes; I, dorsal arch of atlas; 2 . wing of atlas; 3 , intervertebral foramen of atlas; 4 , alar foramen of atlas: \bar{b}, foramen transversarium of atlas; 6 , dens of axis; $\tilde{\gamma}$, intervertebral foramen of axis; δ, foramen transversarium of axis; 9 . spinous processes.

THE CERVICAL VERTEBRIE

The cervical vertehree (Vertebrat cerviceles) are seven in number.
The first and serond cervical vertebre are highly modifieal in conformity with the special functions of support and mevements of the head.

Fig. ! - Sixth Cervical Vertebra of lloram; Anterior V́icw. The sixth aud seventh present special characters, but do not differ greatly from the type. With the exception of the first, they are quadrangular, massive, and longer than the vertebree of other regions; they decrease in length from the second to the last. The third, fourth, and fifth have the following characters:

1. The body is Jong as compared with those of other vertelnie. The ventral surface presents a median ventral spine, which becomes more prominent as it is traced lackwarl, and is tuberculate at its posterior end; it separates two concave areas. The dorsal surface has a flat central area which is narrow in the middle of the vertebre, and wide at either end; it gives attachment to the dorsal longitudinal ligament. On either side of this area there is a gronse which loxtges the longitudinal spinal vein. These lateral grooves are connected about the midelle of the surface ly a transerse furrow, in which there are several foramina through which veins emerge from the spongy sul)stance of the body. The anterior extremity or liead (C'aput vertelras) has an oval articular surface which fares forward and downored; it is strongly fonvex, and wider above than lelow. The posterior extremity is larger and has a nearly cireular cotyloil cavity (Fossa vertelras).
2. The arch is large and strong. It is perforated on either side hy a foramen which communicates with the foramen transversarium. The vertebral notelues are large.
3. The articular processes

Fig, 10.-Seventh Cervicil Vertebra of Ilorne; Anterior View. are large. Their articular surfaces are extensive, oval in outline, and slightly concave; the anterior ones are dieected dorso-medially; the posterior, ventro-laterally. The remaining surface is mainly roughened for ligamentous and muscular attachment. A erest connects
the articular processes of the same side on the fourth and fifth; on the third it does not reach the anterior process.
4. The transverse processes are large and plate-like. Each arises by two roots, one from the arch and one from the bolly; between these is the foramen transversarium, through which the vertebral vessels and a nerve pass. The aggregate of these foramina constitutes the canalis transversarius. The process divides laterally into anterior and posterior branches, which are thickened and rough for muscular attachment.
5. The spinous process has the form of a low crest (Crista spinosa), which widens behind, and is connected by ridges with the posterior articular processes.

The sixth cervical vertebra has the following distinctive features: It is shorter and wider than the fifth. The arch is large, especially posteriorly. The posterior articular processes are shorter, thicker, and further apart; each is connected with the corresponding anterior one by a thick ridge. The spinous process is less rudinentary; it is half an inch or more (ea. 1.5 cm .) in height. The transverse processes have three branches; the third part is a thick, almost sagittal plate, which forms with its fellow and the body a wide ventral groove; the other branches correspond to those of the typical vertehre, but are short and thicker. ${ }^{1}$ The foramen transversarium is large; below its posterior end there is a fossa. The ventral spine is small and is less prominent posteriorly.

The seventh cervieal vertebra is readily distinguished by the following eharacters: It is shorter and wider than the others. The body is flattened dorso-ventrally and wide, especially behind; here it has a facet on each side for articulation with part of the head of the first rib. The arch and its notches are large. The anterior articular processes are wider and longer than the posterior pair. The spinous process is an inch or more (ca. 3 cmi .) in height. The transverse process is undivided, and has no foramen transversarium. ${ }^{2}$ The ventral crest is replaced by a pair of tubercles.

The atlas

This vertebra is decidedly atypical in form and structure. The body and spinous process are absent. It has the form of a strong ring, from which two curved plates, the wings, project laterally. The ring incloses a very large vertebral foramen, and consists of two lateral masses connected by dorsal and ventral arches.

The lateral masses (Masse laterales) present two deep oval anterior

Fig. 11.-Atlas of Horse, Dorsal Tiew after Remoral of Dorsal Arch.
1, Anterior articular cavities; 2. 22. posterior articular surfaces; 3 , articular surface of ventral arch for dens of axis; 4 , transverse ridge; $\bar{y}, \bar{s}^{\prime}$, alar foramina; $6,6^{\prime}$, foramina transversaria. articular cavities (Fovee articulares craniales) which receive the occipital condyles; they are separated by a wide notch above and a narrow one below. The lateral margin is also notehed, and a triangular non-articular depression cuts into the medial part of each cavity. The posterior articular surfaces (Facies articulares caudales) are somewhat saddle-shaped; they are confluent on the ventral arch, but are widely separated dorsally, and do not conform in shape to the corresponding surfaces of the axis.
${ }^{1}$ The third branch of the transverse process and the fossa are sometimes absent or reduced on one side.
${ }^{2}$ In some specimens a large foramen transversarium is present on one side or (rarely) on both sides.

The dorsal arch (Arcus dorsalis) presents a median dorsal tubercle (Tuberculum dorsale) and is concave ventrally. It is perforated on cither side near its antrior margin by the intervertebral foramen (Foramen invertebrale). The anterior border is depply nothed, and the posterior is thin and concave.

The ventral arch (Arcus ventralis) is thicker, narrower, and less curved than the dorsal. On its lower surface is the ventral tubercle (Tuberculum wentrale), into which the terminal tendon of the fongus colli muscle is inserterl. The upper face has pensteriorly a transwersely coneave articular surface, the fovea dentis, on which the dens or odontoid process of the axis rests. In front of this is a transverse rough exavation and a ridge for the attachment of the ligamentum dentis.

The wings or alæ are modifiol transverse processes. They are extensive curved plates which project ventro-laterally and backward from the lateral masses. The dorsal surface is coneave. Between the ventral aspect of the wing and the lateral mass is a cavity, the fossa atlantis; in this there is a foramen which opens into the vertebral canal. The border is thick and rough; its position can be recognized in the living animal. Two foramina perforate each wing. The anterior one, the foramen alare, is eomected with the intervertebral foramen by a short groove. The posterior one is the foramen transversarium.

Development. -The atlas onsifics from four centers, two for the ventral arch, and one on cither side for each lateral mass, wing, and half of the dorsal arch. At birth the bone consists of three pieces the ventral arch and two lateral parts, Whiclt are separated by a layer of cartilage in the dorsal median line and by two bentro-lateral layers. These parts are usually fused at about six months.

The Axis

The axis (Axis s. Epistrophens) is the longest of the vertebrex, and is eharacterizad by the presence of the dens or olentoid process, which projects from the anterior part of the body.

The anterior extremity of the body presents centrally the dens or odentoid

Fhe. 12.- - Ixis of Ilohse, Left Vigets.

1. Srch; 2, intervertcbral foramen; 3 , notch; \&, foramen transversarium.
prowes (Dens axis); this has a convex articular surfaee ventrally for articulation witl! the ventral arch of the atlas, and two rough depressions for the attachment of the liganentum dentis dorsally. Flanking this on either side are the modified anterior articular processes, which have suldle-shaped articular surfaces confluent
ventrally with that of the dens. The posterior extremity has the usual cavity. The rentral spine resembles that of the typical vertebræ.

The arch presents in the young subject a notch on each side of its anterior border; this is converted into a foramen by a ligament which ossifies later. The posterior border has the usual notches.

The posterior articular processes are typical.
The transverse processes are small, single, and project backward. The foramen transversarium is small.

The spinous process is very large and strong. Its free border is rough, thickens posteriorly, and is continued to the articular processes by two ridges. The lateral surfaces are concave and rough for muscular attachment.

Development.-The axis has six or seven centers of ossification. In addition to the usual five, one or two appear for the dens, which is regarded as the displaced borly of the atlas. A nucleus behind the dens, which remains distinct to three or four years of age, is considered to be the head of the axis.

THE THORACIC VERTEBRIE

The thoracic vertebre (Vertebre thoracales) are usually eighteen in number in the horse, but there are sometimes nineteen, rarely scventcen. As regional characters we note the surfaces for articulation with the ribs and the length and form of the spinous processes. Those in the middle of the series are the most typical and present the following features:

1. The bodies are short and constricted in the middle. The ends are expanded and have articular surfaces which are not strongly curved; the anterior surface is convex, the posterior concave. On the upper part of each side are anterior and posterior costal facets (Fovea costalis cranialis, caudalis), which, with those of adjacent vertebree and the interveming fibro-cartilages, form sockets for the heads of the ribs.
2. The arches are small. Their posterior notches are relatively large and are often converted into foramina.
3. The articular processes are small. The anterior processes are in fact represented only by two oval facets on the anterior part of the arch which

Fig 13.-Seventh Thoracic Vertebra of Horse, Anterior View. face almost directly upward. The posterior processes spring from the base of the spinous process; their facets face almost directly downward.
4. The transverse processes are short, thick, and tuberous at the free end. Each has a facet (Fovea transversaria) for articulation with the tubercle of the rib which has the same serial number.
5. The spinous process is large, narrow, and slopes upward and backward. The anterior border is thin, the posterior wider and furrowed. The summit is expanded and rough.

The first thoracic vertebra has the following specifie characters: The body is wide and flattened dorso-ventrally. In front it has a head like the cervical verte-

Fig. 1i.-First Thoficic Vebtebra of Horse, Pustemur View.
bris, and behind a cavity somewhat decerer than any other thoracic vertebra. Two large costal facets are found on either side, and a well-marked spine ventrally.

Fig. 1.j.-I Ist'Thref Thortcic Yertebre of Horse, Ieff Y'ifw.

1. Borly; 2, 2, fareta for hewl of rib; 3 , facit for tubercle of rib; 4,4 , artucular processes; 3 , intorvertebral foramen; 6, mammillary process; γ, spinous process.

The arch is large and strong, and has large notehes. The articular processes are much larger than those of other thoracic vertebre, and resemble a good deal those of the seventh cervical. The transverse processes are short and thick, and each
has on its ventral aspect a large concave facet for articulation with the tubercle of the first rib. The spinous process is curved backward and tapers to a point. Its length is usually about three or four inches (ca. 8 to 10 cm.). This vertebra may be mistaken at first glance for the last cervical, but is promptly identified by the three costal facets on each side and the length of the spine.

The last thoracic vertebra is distinguished by the absence of the posterior pair of costal facets, and the confluence of the anterior pair with those on the transverse processes.

The serial position of others may be determined at least approximately by the following data: (1) The bodies gradually diminish in length and width to the middle of the region and then increase slightly. Their costal facets become smaller and less concare from first to last. The ventral crest is distinct on three or four vertebree at either eud of the region. (2) The transverse processes diminish in size and are placed lower down as they are traced backward. Their costal facets become smaller and lower in position; on the last (and sometimes on it predecessor also) it fuses with the costal facet of the body. The upper non-articular part of the process gradually becomes more sharply defined, and in the last four or five forms a distinct mammillary process. (3) The spinous processes increase in length to the third and fourth, and then gradually diminish to the fifteenth, beyond which they have about the same length. The backward inclination is most pronounced in the second, the sixteenth is vertical, and the last two are directed a little forward. The longest spines (i.e., those of the withers) are the thickest and have expanded summits which remain more or less cartilaginous; the others are more plate-like, and are surmounted by a thick lip. The second spine is more than twice as large as the first. The summits of the fourth and fifth usually form the highest point of the withers.

Development.-There are six or seven centers of ossification, three for the body, two for the arch, and one for the spinous process; some of the latter have an additional center for the summit.

THE LUMBAR VERTEBRE

The lumbar vertebre (Vertebre lumbales) are usually six in number in the horse. They are characterized by the size and form of their transverse processes.

The bodies of the first three are semi-elliptical on cross-section, and present a distinct rentral crest. From the fourth backward they become wider and flatter and the ventral crest subsides.

The arches of the first three are about equal in size and similar to that of the last thoracic; behind this they increase in breadth and height. The posterior notches are much deeper than the anterior ones.

The anterior articular processes are fused with the mammillary processes, and present dorsally concave surfaces for articulation with the posterior pair of the preceding vertebra. The posterior articular processes project distinctly from the arch at the base of the spinous process, and have ventrally convex articular surfaces, which fit into the concave surfaces of the anterior pair of the next vertebra.

The transverse processes are elongated plates, flattened dorso-ventrally, which project outward and usually curve slightly dormward; their length increases to the third or fourth, and then diminishes to the last, which is the shortest. The first one or two usually curve somewhat backward, the last two decidedly forward. Those of the fifth have an oval concave facet on the medial part of the posterior border for articulation with the sisth process; the latter has a corresponding convex facet on the anterior border, and a larger concave surface on the posterior border for articulation with the wing of the sacrum. Sometimes the fifth process has a small surface for articulation with the fourth. The medial part of the sixth process
is thiek, the lateral part thinner, narrower, and eurved forward. The medial part of the fifth is also somewhat thickened. Medial to the articular surfaees the edges of the transverse proeeses are cut into by motehes, which form foramina by apposition with each other and the saerum.

The spinous processes resemble those of the last two thoracic vertebrie.

Fig. 16.-Second Lembar Vertebra of Horme; Posterior View.

They are usually about equal in height, but minor differences are common, and the width diminishes in the last threes.

Development.-This is similar to that of the thoracie vertebre. The extremities of the transerse processes remain cartilaginous for some time after ossifieation is otherwise complete.

The transverse processes of this region are considered equivalent to the proper transwerse process + the costal element, and hence the distinetive term processus lateralis (s. costarius)

Fig. 17.-Last Ix mbar Verterra of IIorse; Posterior View:
has heen proposel. The oceurence of a rib in connection with the transyerse process of the first lumbar vertebra is common. Redustion of the number to five has been observed frequently, and may or may not be eompensated by an additional thoracic vertebra. Very few caves are recorded of seven lumbar vertebra- especially with the normal thoracic number. An anomalous vertebra with mixed thoracic and humbar charaeters sometimes occurs at the junction of the two regions.

THE SACRUM

The sacrum (Os sacrum) is formed by the fusion of five vertebre, and is conveniently described as a single bone. It is triangular in form and is wedged in between the ilia, with which it articulates very firmly on each side. Its long axis is gently curved and stightly oblique, so that the posterior end is a little higher than the anterior. It presents two surfaces, two borders, a base, and an apex.

The dorsal surface (Facies dorsalis) presents centrally the five sacral spines (Processus spinosi), which are directed upward and backward, and have (with the exception of the first) tuberous summits which are sometimes bifid.

Fig. 18.-Sacrum of Horse; Dorso-lateral View.
$I-\sqrt{\prime}$, Spinous processes; $1-\frac{1}{}$, dorsal sacral foramina; $5,5^{\prime}$, articular processes; 6 , surfaces of wings for articulation with transverse processes of last lumbar vertebra; γ, body of first sacral vertebra. Arrows point into sacral canal.

The first spine is relatively thin and narrow, and is not so high as the sacral angle of the itium. The second is the longest and highest, and the length and height diminish to the last. The bases of the spines are often fused in old subjects.

On either side of the spines there is a groove, in which are the four dorsal sacral foramina (Foramina sacralia dorsalia); the dorsal branches of the sacral nerves emerge through them.

The pelvic surface (Facies pelvina) is concave in its length, wide in front, narrow behind. The curvature is variable and is more pronounced in the mare than in the stallion. It is marked by four more or less distinct transverse lines (Lines transversa), which indicate the demarcation of the bodies of the vertebre. At the ends of these lines are the ventral sacral foramina (Foramina sacralia ven-
tralia), which are larger than the dorsal series and diminish in size from first to last: they transmit the wontral divisions of the sacral nerves.

The dorsal and ventral foramina communicate with the sacral eanal and are together equivalent to the nsual intervertehral foramina.

The lateral borders are rongh, thick in front, thin behind.
The base (Basis osis sacri) is directed forwarl, and is relatively very wile. It presents centrally the body of the first sacrat segment, which is wide transversely, flattened dorso-ventrally, and has a rounded surface which articulates with the last lumbar vertebra through the medium of an intervertebral fibro-eartibage. The ventral margin projects slightly, forming the promontory (Promostorium). On

Fig. 19.-sicrem of Horse; Ventril Viett.
$I-T$, Bodies of original five vortebra, marked off by transverse lnes; $1-\frac{1}{2}$, ventral sacral foramina; 5 , articular
 lumbar vertebra; $s, 8$, mings; 2 , auricular surface; 10, lateral border; 11 , transverse process; 12 , posterior orifice of sacral canal; 13, last spinous process.
either side of the body there is a smooth notch, which, with one on the last lumbar vertehra, forms a large foramen for the pasage of the ventral branch of the last lumbar nerve. Ahore the body is the entrance to the sacral canal, Hanked by a pair of articular processes, which project upward and forward from the areh, and have eoncave surfaces medially for articulation with those of the last lumbar vertebra. Lateral to each of these is a smooth notch whieh is converted into a foramen hy apposition with the last lumbar vertebra. The lateral parts of the base, the alæ or wings (Alee saerales), are strong prismatic masses with pointed ends. Each has in front a large, oval, sightly convex surface for articulation with the transverse process of the last lumbar vertebra. Posteriorly there is an elongated oval area which faces dorso-laterally; this is the auricular surface (Facies auricu-
laris), which artieulates with the ilium; it is slightly concave in its length, and somewhat rough and irregular. The rest of the dorsal surface of the wing is roughened for ligamentous attachment, while the ventral surface is smooth.

The apex (Apex ossis sacri) is the posterior aspect of the last sacral vertebra and is quite small. It presents the elliptical flattened surface of the body; above which is the triangular posterior opening of the sacral eanal, surmounted by the last sacral spine. There is a pair of narrow notches between the areh and body, above which rudiments of articular processes may necur.

The name sacral canal (Canatis sacralis) is applied to that part of the vertebral canal which traverses the sacrum. Its anterior part is large and has the form of a triangle with the angles rounded off; its wilth is nearly twice its height. Traced backward it is scen to diminish in size rapidly, and the posterior opening is small and triangular.

The term lateral part (Pars lateralis) designates the portion lateral to the foramina, which results from the fusion of the transverse processes.

Development. -The several saeral rertebre ossify in the typical manner. Separate centers for costal elements in the lateral parts have not yet been found in the domesticated animals. Fusion begins in front, and is usually not complete till adult age. ${ }^{1}$ The lateral parts unite before the bodies. It is rather curious that the epiphyseal plates of adjacent segments unite with each other before they fuse with the main portion of the bodies.

THE COCCYGEAL VERTEBR压

The coceygeal vertebre (Vertebree coccygea) vary considerably in number, but eighteen may be taken as an average. From first to last they beeome reduced in size and, with the exception of a few at the beginning of the series, consist of

Fig. 20.-First Coccygeal Vertebra of Horse; losterior View.

Fig. 21.-Second Coccygeal Tertebra of Horse; Posterior View.

Leader to arch points to rudimentary articular process.
bodies only. The first three have bodies whieh are somewhat flattened dorsoventrally, constricted in the middle, and have at the ends convex, elliptical, articular surfaces. The ventral surface has a median groove (Sulcus vasculosus) for the coccygeal artery. The arch is small and triangular; it is formed of two flat plates which are prolonged to form a short spinous process with a thickened and often double summit. The anterior notehes are absent. Functional articular processes are not present, but sinall rudiments of the anterior pair commonly oceur. The transverse processes are relatively large plates which project horizontally outward. Further back the arch becomes incomplete dorsally, and soon disappears; the transverse processes gradually fade out, and the vertebræ are reduced to cylindrical rods of diminishing size. The last one has a pointed end.
${ }^{1}$ It is not rare to find fusion of some of the bodies incomplete even in adult subjects.

Variations.-The number is sail by good observers to vary between fourteen and twentyone. In ohd age the first is often fused with the sacrum, atul sometimes with the second. The arch of the third may be open.

THE VERTEBRAL COLUMN AS A WHOLE

In the mid-dorsal line is the series of spinous processes, which are low ridges in the cervical region with the exception of the second and sewonth, reach their maximum height at the fourth and fifth thoracie vertebre, and diminish to the fifteenth or sisteenth thoracie. Behind this they are about equal in height as far as the last lumbar and first sacral, which are somewhat lower. 'The second sacral spine is alout as high as the middle humbar; behind this they diminish rather rapilly in height and fade out about the thirl coceygeal. Their inclination backward is most decided at the second thoracic and diminishes from the sixth or seventh to the sixteenth thoracic, which is vertical and is termed the anticlinal or diaphragmatic vertebra. Behind this they are inclined a little forward until the sacrum is reached; here there is an abrupt change to the backward inelination, so that a considerabte interspinous angle is formed.

On either side of the spinous processes is a vertoral groove which contains the deep musides of the spine. The floor of the groove is formed by the arches and articular processes. It is wide in the nock and narrows progressively in the back.

Viewel from the side, the column presents a series of curves. When the head and neck are in the ordinary neutral position, the anterior part of the cervical spine forms a gentle eurve, concave ventrally. The posterior ervical and first thoracie vertehre form a more pronounces curve in the opposite direction. It the junction of the cervical and thoracic regions there is a marked change of direction, forming a ventral projection or angle. It the second thoracic vertebra a gentle curve, concave ventrally, begins. This is continued to the lumbo-sacral junction, where there is a change of direction, and hence a promontory. The sacrum has a variable, but never very pronounexl, ventral concave curvature, which is continued in a much accontuated form in the coceygeal region. It should be noted that a line through the summits of the spines does not correspond to these curves formed by the bodies.

The vertebral canal corresponds in its curvature to that of the brodies. Its caliber varies greatly at different points. The greatest diameter is in the atlas, where it contains the dens of the axis in addition to the spinal cord, and provision must be made for extensive moventent. It is very much smaller in the axis. It widens considerably at the jumetion of the eervical and thoracie regions to accommodate the cervical mlargement of the spinal corl. Beyond this it diminishes, and is smatler in the middle of the back than at any preceding point; this is correlated with the smatl size of the spinal cord and the very limited movement of the spine here. Beyond the middle of the lumbar region it again enlarges considerably to contain the lumbar enlargement of the spinal cord. The caliber diminishes very rapidly from the second sacral segment backward, and the canal ceases to be complete at the fourth coreygeal vertelra.

The transverse and vertical diameters of the vertebral canal at various points are given in the annexed table. The measurements were made on a horse of melinm size; they represent the maximum width and height in the middle of the vertebra and are expressed in centimeters.

Vertebra	C1	C 2	C4	C7	T10	13	L6	S1	S5
Trimmsverse	5.2	2.6	2.6	3.5	2.3	2.4	4.0	4.0	1.8
Vertical. .	4.2	2.5	2.1	2.5	1.7	1.)	2.5	2.1	1.5

The articular processes are very large and wide apart in the neek, greatly
reduced and much closer together in the back, larger and interlocking in the lumbar region.

The transverse processes are large and outstanding in the neck, where they form the lateral boundary of a ventral groove occupied by the longus colli muscle. In the back they are short and stout, and are characterized by the facets for the tubercles of the ribs. On the first thoracic vertebra this facet is large, deeply concave, and situated almost directly outward from the cavity for the head of the rib; traced backward it becomes smaller and flatter, and gradually comes to lie behind the cavity for the head of the rib, with which it is fused on the last and often also on the next to the last thoracic vertebra. The processes in the lumbar region have a characteristic elongated plate-like form. In the sacral region they are fused to form the wings and lateral parts of the sacrum. In the coccrgeal region they are at first of considerable size relatively, but undergo rapid reduction, and disappear at the fifth or sixth vertebra.

The cavitics for the heads of the ribs diminish progressively in size and depth from first to last.

The mammillary processes are usually distinct on the fourteenth to the seventeenth thoracic vertebræ. In front of these they blend with the transverse, behind with the anterior articular, processes.

The length of the rertebral column (including the intervertebral fibro-cartilages) in a horse of medium size is about nine feet (ca. 2.7 meters). The relative lengths of the tarious regions appear to vary most in the neck and back. The following average lengths of the several regions were ohtainel by measurement of several subjects: Cervical, 70 cm .; thoracic, $86 \mathrm{~cm} .:$ lumbar, 34 cm .; sacral, 20 cm .; coccygeal, 60 cm . The percentage values are approximately $26,32,12.5$ $7.5,22$

The Ribs

There are usually eighteen pairs of ribs in the horse, but a nineteenth rib on one side or both is not at all rare. Eight are sternal ribs, the remainder asternal. Ribs from different parts of the series vary much in length, curvature, and other characters. We will therefore consider as a type a rib from the middle of the series first, and afterward note the chief serial differences; such a rib has the following characters:

The shaft or body (Corpus costæ) is elongated, relatively very narrow, and strongly curved; the curvature is most pronounced in the dorsal third. and the ventral part is twisted and inclined inward, so that when a rib is laid with its lateral surface on the table, the sternal end is raised. The lateral surface is convex in its length and also transversely; its anterior part is, however, grooved longitudinally. A distinct angle, $i . e_{\text {. , a }}$ a point at which the curve of the rib changes rather suddenly, as in man, can scarcely be said to exist in the horse. The term is sometimes applied, however, to a corresponding rough elevation which gives attachment to the longissimus muscle. The medial surface is smooth, concave in its length, and rounded from side to side; the costal groove (sulcus costæ), situated posteriorly, is very distinct above and fades out about the middle; it contains the intercostal vein. The anterior border is concave, the posterior convex.

The vertebral extremity (Extremitas vertebralis) consists of the head, neck, and tubercle. The head (Capitulum costæ) has au articular surface (Facies articularis capituli coste) which is composed of two convex facets, anterior and posterior, separated by a groove (Sulcus capituli) for the attachment of the conjugal higament. It articulates with the cavity formed by facets on the bodies of two adjacent thoracic vertebræ and the intervertebral fibro-cartilage. The neck (Collum costre) is roughened above and in front. The tubercle (Tuberculum costæ) is placed above and behind the junction of neck and shaft; it has an oval surface
(Facies artieularis tubereuli contie) for articulation with the transverse process of the corresponding thorarid vertebra.

The sternal extremity (Extremitas sternalis) is slightly enlarged, and is united with the costal cartilage.

The first rib is easily distinguished. It is shortest and the shaft widens greatly teward the stemal end. It the lower part of the anterior border there is a smooth

impression where the brachial vein curves around it ; alsove this there is commonly a small tubercle (Tubereulum scaleni) which indicates the lower limit of the insertion of the scalenus muscle. The enstal groove is absent. The head is large and has two facets of unequal extent, which meet at an acute angle in front; the smaller one faces forward and articulates with the last cervical vertebra; the larger one is directed medially and articulates with the first thoracie rertebra. The neck is thick and very short. The tubercle is larger than that of any other rib and has an
extensive articular surface which is convex in its length. The sternal end is larger than that of any other rib; it is thick and very wide, and is turned a little forward.

The last rib is the most slender and regularly curved. It is usually but little longer than the second. The facet on the tubercle is confluent with that of the head. (This feature, however, is common on the sevententh also, and may occur on the sixtecnth.)

The scrial position of the other ribs may be determined approximately by the following considerations: The length increases from the first to the tenth and eleventh and then diminishes. The width increases somewhat to the sixth and then diminishes. The anterior border is thin and sharp from the second to the eighth, and behind this becomes thick and rounded. The groove of the lateral surface is distinct on the fourth to the eighth inclusive. The curvature increases in degree rapidly from the second to the seventh, remains about the same to the sixteenth, and then decreases very noticeably. In regard to dorso-ventral direction, the first rib inclines a little forward, the second is about vertical, while behind this they slope backward in increasing degree, so that a transverse plane tangent to the ventral ends of the last pair cuts the third lumbar vertebra. The head and tubercle diminish in size from first to last. Their relative positions change, in that the tubercle of the first rib is almost directly lateral to the head, while further back it gradually comes to lie behind it. The neck is longest on the longest ribs, and is absent on the last two or three. A costo-transverse foramen (Foramen costo-transversarium) is formed between the neck and the transverse process.

Development.-The ribs ossify in cartilage from three centers, one each for the shaft, head, and tubercle; the third center is absent in some of the posterior ribs.

Variations. - A nineteenth rib on one side or both is not at all rare. It is usually imperfectly developed and quite variable. In many cases it is a mere strip of cartilage connected by ligament with the first lumbar transverse process; in other

Fig. 24.-Left First Rib of Horse; Medal View. cases it is well dereloped, and may be fused with the process; in others again it is connected with a vertebra which may be thoracie or lumbar or ambiguous in character. It is commonly floating, but may be attached to the eighteenth costal cartilage. Reduction in number is uncommon. In rare cases the first rib is imperfectly developed and does not reach to the sternum. Partial fusion of adjacent ribs and other anomalies occur.

THE COSTAL CARTILAGES

The first costal cartilage is an inch or more (2.5) to 3 em.) in length. The dorsal end is very wide and thick. The sternal end is small. The tro articulate with each other as well as with the sternum. The cartilages of the other sternal ribs increase progressively in length and become more rounded. The sternal end is enlarged and has an elliptical convex facet for articulation with the sternum. The cartilages of the asternal ribs are long, slender, and pointed. The ninth is very firmly attached to the eighth; it and the next two are the longest and behind this they diminish progressively in size. The cartilages of the asternal ribs overlap and are attached to each other by elastic tissue, forming the costal arch (Arcus
costarum). Except in the case of the first, the cartilage does not continue the direction of the rib, but forms witly the latter an angle which is open in front, and increases from second to lasis. More or less extensive ossification is to be regarded as a normal occurrence, especially in the cartilages of the sternal ribs.

The Sternum

The sternum of the horse is shaped somewhat like a canoe; it is compressed laterally, except in its posterior part, which is flattened dorso-ventrally. It is inclined obliquely so that the posterior end is about six to eight inches (15 to 20 cm .) lower than the anterior.

The dorsal surface (Facies dorsalis) has the form of a very narrow isosceles triangle with the apex in front. It is coneave longitudinally, flattened transversely.

The lateral surfaces (Facies laterales) are convex above, slightly concave below, and dimimish in extent behind. Each presents on its upper part seven costal cavities (Fovere costales), with which the sternal ends of the second to the eighth costal eartilages inclusive artieulate. These cavities are situated in scries at the intersternebral junctions. The first four are elliptical in outline with the long diameter vertical, and are separated by considerable regular intervals. The others are progressively smaller, more circular, and closer together. The area below these cavities gives attachment to the peetoral museles.

The dorso-lateral horders separate the dorsal and lateral surfaces. They give attachment to the lateral branches of the sternal ligament.

The ventral border forms the prominent keel-like crest of the sternum (Crista sterni) which may be felt in the living animal; it fades out belind.

Fhg. 26. Sterny of Horse; Lateral View.
The sternebre are designated by Roman numerals and the costal faceta by ordinary figures.
The anterior extremity or manubrium sterni ${ }^{1}$ ean be distinctly felt in the central furrow of the breast. It consists largely of a laterally compressed cartilaginous profongation, commonly ealled the cariniform cartilage. Its lateral surfaces are flat and furnish attarhment to muscles of the breast and neek. The
${ }^{1}$ The manubrium sterni of man is equivalent, strictly speaking, to the cariniform cartilage + the first osscous segment of the horse.
rentral border is rounded, and is continued backward on the body of the bone. The dorsal border is concave and has an articular cavity for the first pair of costal cartilages.

The posterior extremity is formed by the xiphoid cartilage (Processus xiphoideus). This is a thin plate. connected in front with the last bony segment by a relatively thick, narrow neek, and expanding in nearly circular form behind and laterally. Its dorsal surface is concave, and gives attarhment to the diaphragm. The ventral surface is convex and furnishes attachment to the transversus abdominis and the linea alba. The free margin is very thin.

Development.-At birth the sternum of the horse consists of seven bony segments termed sternebrex, which are united by intersterncbral cartilages. The last two sternebre fuse in the second month, but the others do not usually unite completely even in old age. The sternebree consist of very vascular spongy bone covered by a very thin laver of compact sub)stance. The adult sternum thus consists to a very considerable extent of persisting cartilage, riz., the intersternebral cartilages, the ventral keel, and the extremities; in old age these undergo partial ossification.

THE THORAX

The bony thoras of the horse is remarkably compressed laterally in its anterior part, but widens greatly behind. The anterior aperture (Apertura thoracis cramialis) is oval and very narrow below; in a horse of medium size its greatest width is about 4 inches (10 cm .), and its height 7 to S inches (ca. $18-20 \mathrm{~cm}$.). The ventral wall or floor is about 16 inches (40 cm .) long, and the dorsal wall or roof about 38 to 40 inches $(9 \bar{j}-100 \mathrm{~cm}$.$) long. The height from the last seg-$ ment of the sternum to the seventh or eighth thoracic vertebra is about twice that of the anterior aperture; this is due to the obliquity and divergence of the roof and floor. The greatest midth of

Fig. 27-Anterior Apertcre of Thofax of Horse. (After Schmaltz, Atlas d. Anat. d. Pferdes.) the posterior aperture is about 20 to 24 inches ($50-60 \mathrm{~cm}$.). The intercostal spaces (Spatia intercostalia) increase in width from the first to the seventh or eighth, and then diminish. Their average midth is about $1 \frac{1}{4}$ to $11 / 2$ inches ($3-3.5 \mathrm{~cm}$.).

The Skull
 (A) BONES OF THE CRANIUM

The bones of the cranium (Ossa cranii) are the occipital, sphenoid, ethmoid, interparietal, parietal, frontal, and temporal. The first three are single, the others paired.

The Occipital Bone

The occipital bone (Os occipitale) is situated at the posterior part of the cranium, of which it forms the posterior wall and part of the ventral wall or base. ${ }^{1}$
${ }^{1}$ The long axis of the skull is considered to be horizontal in these descriptions.

Its lower part is perforated centrally by a large, almost circular opening, the foramen magnum (Foramen oceipitale magnum), at which the cranial cavity and vertebral canal join. The foramen is bounded laterally and dorsally by the lateral parts of the bone, aml ventrally by the basilar part. Above the lateral partsbut not entering into the formation of the foramen magnum-is the squamous part.

The lateral parts (Partes laterales) ${ }^{1}$ bear the occipital condyles (Condyli occipitales), which artieulate with the athas. The conlyles are obliquely placed, wide apart dorsally, and separated ventrally he a small interval (Incisura intercondytuideal. The articular surface is curved so sharply in the dorso-ventral

Fis. 2s.-Skull of Morse, Rinht View.
1, Occipital condyle: 2, paramastoid process; 3, mastord process; 4, posterior pocess of squamous temporal bone;
 temporal bone; 9 condylo of same; 10 , suprashotal process of frontal bone; 11 , temporal part of frontal bone; 12 . orbital part of frontal bone: 1.3 , fonsa sacei larrmatis; 1 , orbital surface of lacrimal bone: 1.5 , lacrimal tubercle: 16 . zygonatic process of malar bone: 1%, maxillary tuberosty; 15, farial erest; 19, infrarbital foramen; 20, aaso-maxillary notch; 21, body of premsxilla: 21', nasal process of sume; 22, body of mandible; 23, mental foramen; 24, 25, honzontal and rertical parts of ramus of nandible; 2f, comblye of mandible; 27 , coronoud process of mandible: 28 , angle of madible; 20, vascular impression; 30, meralveolar margin; 31, incisor teeth; 32, camme teeth; 33, hyod bone (great cormu).
diection as to form a bhunt ridge. The cranial surface is concave and smooth. Lateral to the condyle is the paramastoid process (Processus paramastodetes), ${ }^{2}$ a strong plate of bone which projects downward and lackward; its lateral surface is convex and roughened for muscular attachment; its medial surface is concave from end to emb. Betwen the root of this process and the comdyle is a smooth depression, the condyloid fossa (Forsa eondyloidea ventralis); in this is the hypoglossal foramen (Formmen hypoglossi), which tramsmits the nerve of like name.

The basilar part (Pars loasitaris) ${ }^{3}$ is a strong, somewhat prismatic bar, which

[^3]extents forward from the ventral margin of the foramen magnum. It is wide and flattened behind, narrower and thicker in front. The ventral surface is rounded. The cranial surface is concave and smooth; its posterior part supports the medulla oblongata, and its anterior part has a shallow cavity on which the pons rests. The lateral borders are thin and sharp, and form the medial margin of the foramen lacerum. The anterior end has, in the young subject, a semicircular, flat, pitted surface which is attached to the body of the sphenoid bone by a layer of cartilage: in the adult there is complete fusion. (In the ventral aspect of the junction are the basilar tubercles (Tubercula basilaria) for the attachment of the ventral straight muscles of the head.

The squamous part (Squama oceipitalis) ${ }^{2}$ is the somewhat quadrilateral mass

Fig. 29.-Occtpitsl. Bone of Colt; Front Viek.

1. Depression of squamous part for cerebellum; 2, foramen magoum; 3, paramastoid process; 4 , coedyloid fossa: a, squamous part; b, lateral part: c, basilar part: d, junction with ioterparietal boue; ϵ, junction with parietal bone; f, junctiun with petro-mastoid part of temporal boce
situated dorsal to the lateral parts, from which it remains distinct till the second year. The external surface is crossed by a very prominent ridge, the nuchal crest (Crista nuchalis); the middle part of this is thick, transverse in direction, and forms the highest point of the skull when the head is in the ordinary position; laterally it becomes thinner and runs downward and forward to join the temporal crest. ${ }^{2}$ The crest divides the surface into two very unequal parts; the small dorsal area (Planum parietale) presents a median ridge which is the posterior part of the external parietal crest (Crista sagittalis externa); the large area ventral to the crest (Planum nuchale) has a central eminence, the external occipital protuberance, on which the funicular part of the ligamentum nuche is attached. The internal surface is concave

${ }^{1}$ Also known as the supraoccipital.

${ }^{2}$ The nuchal crest of this description is equivalent to the external occipital protuberance and superior nuchal line of man; it has been commonly termed the occipital crest, but is not the equivalent of that feature of the human skull. A curved line a little lower down, which is continued on the paramastoid process, represents the inferior nuchal line of man.
and presents a deep central depression and two shallower lateral ones which adapt it to the surface of the cerebedlum.

The parietal border (Margo parietalis) is united hy suture with the parietal and interparietal. The mastoid border (Margo mastoidens) joins the petromastoid part of the temporal bone. The basilar part is connected by cartilage (in the young subject) with the body of the sphenoid. The condrles articulate with the atlas.

Development.-The oceipital bone ossifis in cartilage from four renters, and consists at birth of four pieces as described above. The lateral parts unite with the

Fig. 30.-Craniem of New-born Fehal; Posterior View.
A. B. F. squamous, lateral, and hasiar parts sf oceiphal bone; D, interparietat bone; E. parietal bone; F, squamots totnporal bone; $(i$, petro-mastoid part of temporal bone; 1 , extermal occipital protuberance; 2, 2, depressfons ith whoch "omplexus tendons are attawhed; 3, sutural (preinterpariotal?) bone; 4, supraorbital process; 5, zygomatic procrss of temporal bone: 6 , postgkenoid process; 7 . posterior process of squamons temporal hone; s, mastoid process; 9, paramastond process; 10, vecipital condyle; 11, arrow in foramen magnum.
basilar part at three to four months, and with the squama in the second year, when the bone is consolidated.

The paricto-occipital suture and the spheno-oceipital synchondrosis are obliterated ahout the fiftly year usually. The ordipito-mastoid suture partially ossifies in old subjeets.

The Sphenoid Bone

The sphenoid bone (O s sphenoidale) is situated in the base of the cranjum, its central part lying in front of the lasilar part of the oxeipital. It consists of the borly, two pairs of wings, and two pterygoid processes.

The body (Corpus) is situated medially; it is ('ylindrical, but flattened dorsoventrally, and wider in front than lohind. Its ventral surface (Facies external) is convex in the transverse direction, and its anterior part is concealed to a large extent by the vomer and pterygoid bones. The cerebral surface (Facies cerebralis) presents the following features: (f) In front there is a raised, flattened part (Jugum sphenoidale) which is partially subdivided by a median elevation into two slightly concave lateral areas; this part has a posterior, thin, free margin (Limbus sphe-
noidalis), which overlies the entrance to the optic foramina. The median ridge is termed the ethmoidal spine, since it fits into a notch of the cribriform plate of the ethmoid bone and joins the crista galli. (2) Just behind this and at a lower level is a smooth transverse depression, the optic groove (sulcus chiasmatis), on which the optic chiasma rests. (3) From each end of this groose the optic foramen (Foramen opticum) passes forward and outward to terminate in the posterior part of the orbital fussa. ${ }^{1}$ (4) Near the posterior end is a central depression, the hypophyseal or pituitary fossa (Fossa hypophyseos), which lodges the hypophysis cerebri or pituitary body. On each side of this is a shallow groove for the internal carotid artery and the carernous sinus. The anterior end is expanded, and joins the ethmoid and palatine bones; it is excavated to form the sphenoidal sinuses. These cavities extend baek as far as the optic groove, and are usually contimuous in front with the carities in the rertical parts of the palate bones; ${ }^{2}$ they are separated by a complete septum which is not always median. The posterior end is flat and is joined to the basilar part of the occipital; at the line of junction there is dorsally a slight transverse elevation, the spheno-occipital crest (Crista spheno-occipitalis).

The orbital wings (Alæ orbitales) curve dorso-laterally from the sides of the body of the presphenoid. Their cerebral surface is concave, and is marked by digital impressions (Impressiones digitatæ) for the gyri of the cerebrum. The lateral surface is convex and is largedy concealed by the overlapping temporal wing and the squamous temporal and frontal bones; a narrow part of it (Facies orbitalis) is uncorered on the media! wall of the orbital cavity at the sphenoidal notch of the frontal bone. The dorsal border unites with the frontal bone at the spheno-frontal suture. The anterior border joins the ethmoid at the spheno-ethmoidal suture; at its lower part it concurs with the ethmoid and frontal in the formation of the ethmoidal foramen (Foramen ethmoidale). ${ }^{3}$ The posterior border is overlapped by the temporal wing and the squamous temporal. The root of the wing is perforated by the

Fig. 31.- Sphenotd Bove and Basilar Part of Occipital Bone of New-borx Foal; Dofsal ViEाT.
C. Body of presphenoid: C^{\prime}, body of postsphenoid; B.o., basilar part of occipital bone; A.o., orbital wing of sphenoid bone; A.t., temporal wing of sphenoid bone: 1. 1, optic foramina; 2, optic groove; 3, hypophyseal fosss: 4, 5, grooves; 6, ethrnoidal notch; 3 , ethmoidal spine: 3 . junction with cribriform plate of ethmoid bone; 9, junetion with frontal bone: 10 , junction with squamous temporal bone; 11. margin of foramen lacerum anterius; 12 , spheno-occipita! crest: 13 , junction of basilar part of oceipital bone with lateral part. optic foramen (Foramen opticum). Immediately belor and behind the latter (i.e., beneath the root) is the foramen orbitale. Below this, and separated from it usually by a thin and often incomplete plate, is a larger opening, the foramen rotundum, which is bounded externally by the root of the pterygoid process.

The temporal wings (Ale temporales) extend outward and somewhat upward from the body of the postsphenoid; they are smaller than the orbital mings and

[^4]are irregularly quadrilateral in outline. The temporal surface (Facies temporalis) enters into the formation of the infratemporal fossa, and bears the pteryoud process on its anterior part; at the junetion with the body there is a small groove which leats forward to the pterygoid canal. The cerebral surface (Facies cerebralis) presents, at the junction with the body, two longitulinal grooves (sulei nervorum). The lateral groove is the larger, and leads forward to the foramen rotundum; it contains the maxillary nerve. The medial groove conducts to the foramen orbitate, and contains the cavernous sinus of the dura mater. The outer groove is bounded laterully by a thin orerhanging crest, on which is a small groove for the fourth nerve. The remainder of the surface is concave aml supports the pyriform tohe of the brain. The dorsal border joins the squamons temporal at the spheno-squamons suture. The anterior border joins the orhital wing above; below this it is free and forms the pterygoid crest (Crista pterygoidea). The crest is continued on the pterygoid process; on or under its upper part there is usually a small opening, the trochlear foramen (Foramen trochleare). Just behind the crest is the foramen alare parvam, ${ }^{1}$ through which the anterior deep temporal artery emerges from the alar canal of the pterygoid process. The posterior border forms the anterior fromulary of the foramen lacerum; it presents three notches, which are, from within outward, the carotid, oval, and spinous (Incisura carotien, ovadis, spinosa). The angle of junetion of the dersal and posterior iorelers articulates with the parietal bone.

The pterygoid processes (Proecsins pterygoidei) arise from the temporal wings and the booly. They project downward and forward, and curve outward at the lower part. The root is perforated by the alar canal (Canalis alaris), ${ }^{2}$ which transmits the internal maxillary artery. From this camal a branch leads upward and forward to onen at the foramen alare parvom. The lateral surface is coneave, and is marked by lines for musular attachment. The medial surface is comvex; it is largely eoncealed hy the overlapping palate and pterygoid hones.

The pterygoid canal (Canalis pterygoidens) ${ }^{3}$ contimues the groove noted on the ventral surface of the temporal wing at its jumetion with the body. It extends forward and upward between the ront of the pterygoid process, the presphenoid, and the ptargoil hone, and opens in the posterior part of the pterygo-patatine fossa. It transmits the nerve of the perygoid canal.

Development.-The shenoid is ossified in cartilage, and consists in early life of two distinct parts, the presphenoid and postrphemoid. The former develops from two centers, ome in each wing; the latter has three centers, one for the body and one for each wing. The pterygoid processes ossify from the centers of the temproral wing.

In the new-lom foad the unossifiel dorsal part of the orlital wing fits into a hiatus of the frontal bone; in some cases it mones to the surface through a defert in the frontal bone at the phace where the horn process is situated in animale which have frontal horns.

The Ethmoid Bone

The ethmoid bone (Osethmoidale) lies in front of the body and orbital wings of the sphenoid. It projects forward betweren the orlital parts of the frontal bones and renters into the formation of the cranial, nasal, and paranasal cavities. ${ }^{4}$ It consists of four parts- the eribriform phate, two lateral masses, and the perpendicular plate.

The cribriform plate Lanina cribrosa) is a sieve-like partition between the
${ }^{1}$. Aso termed the temporal foramen.
${ }^{2}$ This is also eallel the subsphenoilal canal or pterygoid foramen.
${ }^{3}$. Also known as the Vidian eanal.
${ }^{1}$ (1) arcount of ite ilepp situation and the fact that it cannot be separated from its surroundings, the ethmoil must be studied by means of appropriate sagittal and transyerse sections of the skull.
cranial and nasal eavities. Its margin joins the orbital wings of the sphenoid laterally, the body of the sphenoid ventrally, and the cranial plate of the frontal bones dorsally. Its cerebral surface is divided into two parts by a median ridge, the crista galli, which may be regarded as the intracranial projection of the perpenclicular plate. Each half forms a deep oval cavity, the ethmoidal fossa, which lolges the olfactory bull. The plate is perforated by numerous small foramina for the passage of the olfactory nerve filaments, and on either side is the mueh larger ethmoidal foramen. The nasal surface is convex, and has the lateral masses attached to it.

Each lateral mass or labyrinth (Labyrinthus ethmoidalis) is conieal in shape and its base is attached to the cribriform plate. It projects forward into the posterior

Fig. 3o.-Cross-section of Cranitu of Ilorse, The Nection Panses Through the Midole of the Orbits and is Viewed from Iv Front.

1. I.ateral mass of ethmoid bone; 2. perpendicular plate of same; 3, common nasal meat us: 4. sphenopalatine sinus; 5, perpendicular part of palatine bone: 6, zygomatic process of temporal bone: 7, zygomatic arch; 8, orbital part of frontal bone.
part of the nasal cavity. The medial surface is separated by a narrow space from the perpendicular plate. The lateral surface is convex and faces chiefly into the frontal and maxillary sinuses, but is attached behind to the inner wall of the orbital cavity; it is covered by a very thin layer of bone, the lamina lateralis. The mass consists of a large number of delicate, scroll-like plates of bone, termed ethmo-turbinates. ${ }^{1}$ These are attached to the lamina lateralis, and are separated by narrow intervals termed ethmoidal meatuses, which communicate with the nasal cavity. In the fresh state the ethmo-turbinates are covered with mucous membrane.

The lateral mass is a very complex structure, the arrangement of which may be underatood by examination of cross-sections. Each mass consists of six turbinates which extend almosit to the

[^5]perpendicular plate and are termed endoturbinates. These diminish in size from above downward; the largest is attached to the nasal hone, and is hence usually called the dorsat or nasal turbinate; the seeond is much smaller, and is very commonly termed the great ethmoid cell. The eavity enelosed by this communieates laterally with the maxillary simus, but not directly with the nasal eavity. Betwen the endoturbinates are twenty-one small ectoturbinates, and all are beset with secondary and tertiary coiled lamelle.

The perpendicular plate (Lamina perpendicularis) is median, and forms the posterior part of the septum nasi. Its lateral surfaces are mearly plane, but are marked below by some grooves and ridges; they are eovered by the nasal mucous membrame. The anterior border is irregular and is continuous with the septal cartilage. The posterior border projects into the eranial eavity as a ridge, the

Fig 33.-Cross-section of Craniem of Hurse. The Section la Cet Just in Front of the Tempural Condyle and Is Viewed from Behind.

1. Internal plate of frontal bone; 2, crista gall; 3, cribriform plate; 4, ethmodal foramen: 5 , ethmoidal spine of sphenoid bone; 6 , optuc foramina.
crista galli. The dorsal border joins the fromtal bones at their line of junction. The ventral border is receiverl into the groove of the vomer.

Development. - The ethuod dovelops in cartilage from five centers, two for each lateral mass, and one for the perpendicular plate; from the latter ossification extents into the cribriform plate. At hirth the perpendicular and cribriform plates are eartilaginoms. By the time ossification is complete the ethmoid has unite! with surrounding lones to such an extent that it camot be separated intact for study.

The Interparietal Bone

This bone (0 s interparistale) is centrally placed between the squamous part of the oceipital and the parictal bones. It is usually deseribed as a single bone, although it ossifies from two elnief lateral eenters, and is often distinetly paired in skulls of young foals.

The external, parietal surface (Facies parietalis) is quadrilateral and is flat and smooth in the very young foal; later it presents the parietal crest.

The internal, cerebral surface (Facies cerehralis) presents the internal occipital protuberance, a three-sided process which projects downward and forward into the cranial cavity between the cerebral hemispheres and the cerebellum; it has three concave surfaces, and three sharp borders which form part of the tentorium osseum. Behind the base of the protuberance there is a transverse groove for the sinus communicans of the dura mater.

The posterior border is thick; it joins the squamous part of the occipital bone. The lateral and anterior borders are united with the parietal bones.

Development.-The interparietal ossifies in membrane from two chief lateral centers. ${ }^{1}$ It fuses first with the parietals, somewhat later with the occipital, but the periol at which this union takes place is quite variable.

The Parietal Bones

The two parieial bones (Ossa parietalia) form the greater part of the roof of the cranium; they unite in the median line. forming the parietal suture. Each is quadrilateral in outline and has two surfaces and four borders.

The external, parietal surface (Facies parietalis) is convex, and is marked by a more or less prominent curved line, the external parietal crest; this is median in its posterior part, and is continuous with the crest of like name on the interparietal and occipital; in front it curves outward and is continuous with the frontal crest. The surface lateral to the crest (Planum temporale) enters into the formation of the temporal fossa, and is roughened for the attachment of the temporal muscle.

The intermal, cerebral surface (Facies cerebralis) is concave. It presents numerous

Fig. 34.-Interparietal and Sqeamots Part of Occipital Bone of New-born Foali Ventral View.

1. Junction of interparietal with squamous part of occipital bone: 2, interparietal suture: 3, internal ocripital protuberance: 4 , transverse groove for sinus; 5, depression for vermis cerebelli; 6. depression for hemisphere of cerebellum; 7 , junction of squamous part with lateral part of occipital bone; s. junction of oceipital with petro-mastoid; 9,9 , junction of interparietal with parietal. digital impressions (Impressiones digitate) which correspond to the gyri, and ridges (Juga cerebralia) which correspond to the sulci, of the cerebrum. There are also furroms (sulci vasculosi) for the meningeal arteries. Along the medial border there is a sagittal groove (sulcus sagittalis) for the superior longitudinal sinus.

The anterior border joins the frontal bone at the parieto-frontal suture (Sutura parieto-frontalis).

The posterior border meets the occipital bone at the parieto-occipital suture. Below this junction it curves inward and concurs with the temporal bone in the formation of the temporal canal (Xeatus temporalis). A transverse groove (Sulcus transversus) connects this canal with the sagittal sulcus.

The medial border is thick and serrated. It joins its fellow in great part at the parietal suture, but (in the young subject) meets the interparietal at its posterior

[^6]part. The line of junction of the two parietal bones is marked internally by the internal parietal crest ('rista parietalis interna).

The lateral border is beveled and is overlapped hy the squamous temporal

Fig. 35 . Rigift Pabietal Bone of New-rora Fohl; Dormolateral Viekt

1. Junction with opposite bome; 2. junction wath interparietal; 3, junction with oecipital; 4. junction with squamous temporal; 5 , junction with frontal,
bone, forming the squamous suture (sutura squamosa). The angle of junction of the lateral and posterior borders articulates with the posterior angle of the temporal wing of the sphenoith.

Development. Wach parietal bone ossifies in membrane from a single eenter.

Fig. 3f.-Right Partetil Bone of New-bors Fobl. (erebral Serfice.
1, Wmetion with opposite bone; 2, junction whth interparictal: 3, junction with occipitai; 4, junction with squamous (1uporal: 5. junction with frontal: 6, edge which concurs with temporal bone in formation of temporal canal.

In the young foal the central part of the bone is more convex than in the adult and forms a prominence similar to the pronounced tuber parietale of the young ehild; the external parietal crest is not present, and the external surface is smooth. The
parietal suture is usually closed at four years, the parieto-occipital at five years, and the squamous at twelve to fifteen years.

The Frontal Bones

The frontal bones (Ossa frontalia) arr situated on the limits of the cranium and face, between the parietals behind and the nasal bones in front. Each is irregularly quadrilateral, and consists of nase-frontal, orbital, and temporal parts.

The naso-frontal part (Pars naso-frontalis) forms the basis of the forehead. Its external or frontal surface (Facies frontalis) is nearly flat, and is smooth and subcutaneous; it is separated from the temporal part by the external frontal crest (Crista frontalis externa). At the junetion with the orbital part the supraorbital or zygomatic process (Proc, zygomaticus) curves outward and downward to join the zygomatic arch. The process partially separates the orbit from the temporal fosea; its root is perforated by the supraorbital foramen (Foramen supraorbitale), or presents instead a noteh on its anterior border; its upper surface is convex, while the orhital surface is concave and smooth, forming a shallow fossa for the lacrimal

Fig. 37.-Left Frontal Bone of Nen-born Foal: Vestro-medial Vien.
A. Curebral surface; B, B, orbital part; C, temporal part; D, nasal surface; 1, surface of junction with opposite bone; 2, frontal sinus; 3, ridge to which cribriform plate of cthmoid bone is attached; 5 , fissure into which orbital wing of sphenoid bone fits; 6 , sphenoidal notch; 7 , supraorbital process; s, junction with nasal bone; 9 , junction with parietal bone: 10 , junction with squamous temporal bone.
gland (Fossa glandule lacrimalis). The internal surface enters into the formation of the cranial and nasal cavities. The two plates of the bone separate and diverge in front, and thus inclose a large air-space which is part of the frontal sinus. The internal plate curves downward and forward and joins the eribriform plate of the ethmoid. Beyond this it inclines upward and joins the external plate at the masofrontal suture. The cerebral surface presents digital impressions, for the cerebral grri. The nasal surface is longiturlinally grooved. The external plate extends forward and joins the nasal and lacrimal bones.

The orbital part (Pars orbitalis) forms the major part of the medial wall of the orbital cavity. It is separated from the naso-frontal part by a prominent ridge which is part of the orbital margin. Its orbital surface (Facies orbitalis) is coneave and smooth, and presents superiorly a small depression (Forea trochlearis), which is bridged by a small bar of cartilage, around which the superior oblique musele of the eye is reflected. The lower border concurs with the orbital wing of the sphenoid in the formation of the ethmoidal foramen. The nasal surface faces into the frontal simus and is to a small extent united with the lateral mass of the ethmoid.

The temporal part (Pars temporalis) is separated from the orbital part by the
deep sphenoidal notch (Ineisura sphenoidalis), which is closed by the orbital wing of the sphenoid. Its lateral surface forms part of the inner wall of the temporal fossa. The medial surface is largely covered hy the orbital wing of the sphenoid in the young subject, but later forms part of the watl of the frontal sinus.

The principal connections of the frontal hone are as follows: (1) The medial borker joins its fellow at the frontal suture. (2) The anterior horder meets the masal and lacrimal at the naso-frontal and fronto-lacrimal sutures. (3) Laterally it forms the spheno-frontal suture with the orbital wing of the sphenoid, and also joins the palatine bone and maxilla at the fronto-palatine and fronto-maxillary sutures. (4) Posteriorly it meets the parietal at the parieto-frontal suture, and articulates below this with the suamous temporal at the squamous suture. (5) The extremity of the supraorhital process unites with the zygonatic process of the temporal bone.

Development. - Lach ossifies in membrane from one center which appears in the root of the supraorbital process. In the new-horn foral there is a slit between the "raial plate and the orbital and temporal plates which receives the unossified dorsal part of the orbital wing of the sphenoid.

The Temporal Bones

The temporal bone (Os temporale) forms the greater part of the lateral wall of the cranium. It is situated between the occipital behind, the parietal dorsally, the lrontal in front, and the sphenoid ventrally. It consists in the horse of two distinct parts, squamous and petrous.

1. The squamous temporal bone (Squama temporalis) is a shell-like plate which has two surfaces and four borders.

The cerebral surface (Facies cerelralis) is concave and is largely overlapped by the surrounding bones, but its central part is free and presents digital impressions and vascular grooves.

The temporal surface (Facies temporalis) is convex, and enters into the formation of the temporal fossa. From its ventral part there springs the zygomatic process (Processus zygomaticus), which forms the lateral boundary of the temporal fossa. The process is at first directed outward, and is wide and flattened dursu-ventrally. It then turns forward, beomes narrower, and is twisted so that its surfaces are medial and lateral. Its anterior end is pointed and joins the zygomatic process of the malar bone, with which it forms the zygomatic arch (Arcus zygomaticus). The narrow anterior part has a convex lateral surface and a concave medial one. Its dorsal border has a rough area for articulation with the supraorhital process of the frontal. Its ventral border is wide and rough. The wide posterior part presents on its ventral face a surface for articulation with the condyle of the mandible. This surface consists of a transversely elongated condyle (Condylus temporalis), behind whiels is the glenoid cavity. The fossa is limited behind by the postglenoid process (Processus postglentidalis), the anterior surface of which is articular. Behind this process there is a fossa, in which is the postglenoid foramen (F . porstglenoidale), the external opening of the temporal eanal. The dorsal surface is concave and forms the lateral boundary of the temporal fossa. The dorsal horder is sinuons and is continuons behind with the temporal erest.

The posterior process (Proecessus aboralis) springs from the posterior part of the surama. Its lateral surface bears the temporal crest, which forms here the lateral limit of the temporal fossa. The merlial surface forms the outer boundary of the temporal canal, and is elsewhere applied to the petrous portion. It divides into two branches, upper and lower; the upper branch unites with the oceipital bone, while the lower one curves downward behind the external acoustic process and overlaps the mastoid proeess.

The dorsal border of the squamous temporal articulates with the parietal,
forming the squamous suture. The ventral border joins the temporal wing of the sphenoid at the spheno-squamous suture. The anterior border unites with the frontal bone at the squamo-frontal suture, and the posterior with the orcipital and petrous temporal bones.
2. The petrous temporal bone (Os petrosum) is placed between the occipital

Fig. 3s.-Right Sqcamots Temporal Bone of New-bors Foal; Lateral View.

1. Zygomatic process; 2. glenoid cavity; 3. condyle; 4, postgleooid process; 5, potch; 6, posterior process; 7, temporal crest; s, junction with parietal; 9 , junction with frontal; 10, junction with supraorbital process: 11, junction with zygomatic process of malar; 12, juaction with sphenoid; 13, juaction with perro-mastoid I4, junction with occipital.
behind and the parietal in front, and is largely overlapped by the squamous temporal. It has the form of a four-sided pyramid, the base of which is ventral.

The lateral surface is mainly conceated by the squamous temporal, but two features are visible. A short tube of bone, the external acoustic process (Processus acusticus externus), protrudes from the lowest part through the notch of the squamous temporal. The process is directed outward, upward, and a little forward.

Fig. 39--Right squamots Temporal Bone of Net-born Foal; Medial View
F.c., Cerebral surface; 1, zygomatic process; 2, junction with parietal; 3, junction with temporal wing of sphenoid; 4. posterior process (overlaps petro-mastoid).

It gives attachment to the annular cartilage of the ear. Its lumen, the external acoustic meatus (Meatus acusticus externus), conducts to the cavity of the middle ear (tympanum) in the dry skull, but is separated from it by the tympanic membrane in the natural state. The mastoid process (Processus mastoideus) projects ventrally in the interval between the posterior process of the squamous temporal

and the root of the paramastoifl process of the occipital bone. It is crosserl by a groove which leads to the mastoid foramen (Foramen mastoiderm), from which a canal extends forward to the temporal cemal.

The medial surface faces into the cerebellar fossa of the cranium. It is coneave and smosth, but irregular. In its ventral part is the entrance to a short canal, the internal acoustic meatus (XIcatus acusticus internu*), which transmits the seventh and eighth cranial nerves.

The entrance to the meatus is termed the poras acusticus imernus. The fundus of the meatus is divided by a crest into two fossar. In the superior ons is the origin of the facial canal, which curres through the bone and opens externally at the stylo-mastod foramen; it transmits the tacial (seventh eranial) nerve. The inferior fussa presents small formmina for the passage of fibers of the acoustic (eighth cranial) nerve.

Behind the meatus and near the posterior margin of the surface is the slit-like external opening of the aqueductus vestibuli (Apertura externa aqueductus ves-

Fig. 40.-Left Petrov: Tempohal Bone of horse; Lateral View:

1. External acoustic muatus: 2, mastoid process: 3, hyoid process; 4, muscular process; 5 . petrosal crest; 6 , grome. which concurs in formation of temporal canal; 7. groove for posterior meningeal artery.

Fig. 41.-Left Pfthots Tremphal Bune of Horse; Poatero-medial View.

1. Mastoid process; 2, noteh which concurs with oecipital bone in formation of mastoid foramen: 3, apex; 4. opening of armorluctus vestibuli: 5 , medial surface; fi, petrusal crest; 7, internal acoustic meatus; s, muscular prscess: 9, bulla osstrat: 10, stylo-mastoid foramen; A.c., operning of anustluetas cochlea.
tibuli), covered ly a scale of bone Bolow this there is a narrow fissure, the orifiee of the aquaductus cochlea (Apertura extorna aquaductus coebleae).

The anterior surface looks upward and forward. The greater part articulates with the parietal bone, but a small medial part faces into the cerebral fossa of the cranium. A sharp horder, the petrosal crest (Crista petrosa), separates this surface from the merlial one.

The posterior surface is slightly concave and is attached to the lateral part of the uccipital home.

The base forms the lateral boundary of the formen lacerum. It is very irregular and presents a number of important features. The hyoid process (Pro('essus hyouleus) is a short rod which projects downward and forward below the hase of the external acoustic process, inclosed in a bony tube; it is conneeted by a har of cartilage with the byoid bone. The stylo-mastoid foramen (F. stylomastoideum) is situated betreen the hyoid process and the mastoid process; it is
the external opening of the facial canal, through which the facial nerve emerges. The bulla ossea is a considerable eminence situated centrally; it is thin walled and incloses a cavity which is part of the tympanum. The muscular process (Processus muscularis) ${ }^{1}$ is a sharp spine which projects downward and forward from the anterior part of the base; it gives origin to the tensor and levator palati muscles. Lateral to the root of the preceding is the small petrotympanic fissure (Fissura petrotympanica) for the passage of the chorda tympani nerve. The osseous auditory or Eustachian tube (Tuba auditiva ossea) is a semicanal at the medial side of the root of the muscular process; it leads to the tympanum. At the medial side of the preceding is the slit-like orifice of the petrosal canal, which communicates with the tacial canal.

The apex projects upward and backward between the squamous temporal and the occipital bone.

Development.-The squamous temporal develops in membrane. The petrous temporal may be regarded as consisting of petro-mastoid and tympanic parts. The latter includes the external acoustic process, the bulta ossea, and the museular process; it is developed in membrane. The petro-mastoid is developed in the cartilaginous ear capsule. Its petrous part consists of very dense bone which contains the labyrinth or internal ear and forms the medial wall of the tympanum.

The auditory ossicles and the interior of the petrous temporal bone are described in the section on the organ of hearing.

The temporal canal (Meatus temporalis) ${ }^{2}$ is a continuation of the transverse groove which extends laterally from the base of the tentorium osseum. It is directed downward, forward, and somewlat outward, and opens exterually in front of the root of the acoustic process. It is bounded by the squamous temporal laterally, the petrous behind, and the parietal in front and medially. Several foramina open from it into the temporal fossa. It contains a large vein (Vena cerebralis dorsalis), the contimuation of the transverse sinus of the dura mater.

The foramen lacerum (basis cranii) is a large, irregular opening in the cranial base, bounded medially- by- the basilar part of the occipital bone, laterally by the petrous temporal, and in front by the temporal wing of the sphenoid. It consists of a large anterior part (Foramen lacerum anterius), and a narrow posterior part (Foramen lacerum posterius). It transmits the internal carotid artery, the middle meningeal artery, the mandibular, ninth, tenth, and cleventh cranial nerves, and the ventral cerebral vein.

In the fresh state the foramen is occupied by a dense fibrous membrane which is perforated by apertures for the various structures transmitted. Thus there are thrce openings in front for the internal carotid artery, the mandibular nerve, and the middle meningeal artery; these are named (from within outward) the foramen caroticum, ovale, spinosum.

(B) BONES OF THE FACE

The bones of the face (Ossa faciei) are the maxilla, premaxilla, palatine, pterygoid, nasal, lacrimal, malar, dorsal turbinate, ventral turbinate, vomer, mandible, and hyoid. The last three are single, the others paired.

The Maxille

The maxillæ are the principal bones of the upper jaw and carry the upper cheek teeth. They are situated on the lateral aspeet of the face, and articulate with almost all of the facial bones and the frontal and temporal also. For description each may be divided into a body and two processes.
${ }^{1}$ This has been termed the styloid process. It is not the homologue of the styloid process of man.
${ }^{2}$ This is also known as the parieto-temporal canal.

The body (Corpus maxillæ) presents two surfaces, two borders, and two extremities. The lateral surface (Facies lateralis) is somewhat concave in front and comer hehind. ${ }^{1}$ On its posterior part there is a horizontal ridge, the facial crest (Crista facialis); in a skull of medium size its anterior end is about an inch and a half (3 to $t \mathrm{~cm}$.) above the third or fourth cheek tooth, and it is continued behind on the malar bone. Ahout two inches (5 cm.) above and a little in front of the anterior end of the crest is the infraorbital foramen (Foramen infraorhitale); this is the external opening of the infraorbital canal.

The medial or nasal surface (Facies nasalis) is concave (lorso-ventrally; it forms the greater part of the lateral wall of the nasal cavity. Its upper part is (rossed oblipuely forward and downward by the shallow lacrimal groove (Suleus laerimalis), which contains the naso-lacrimad eluct ; in the adult the posterior part of the groove is converted into a canal, which is contimous with that on the inner surface of the lacrimal bone. Below the groove is the ventral turbinate crest (C'rista turbinata ventralis), to which the rentral turhinate bone is attached. Lower down and parallel with the turbinate erest is the palatine process, which

Fig. 42.-Right Maxilla of New-bory Foal; Medil View.
1, Lacrimal groove: 2, ventral turbinate crest; 3, palatine process; 4, maxillary sinus; 5, 5, arpa of articulation with palatime bone; 6 , groove whech concurs with one on the palatine bone to form the palatine canal; 7 , zygomatic process; 8 , msxillary tuberosity; 9 . junction with nasal bone; 10 , junction with nasal process of premaxilia.
projects horizontally like a shelf. Behind this the surface is rough for articulation with the palatine bome; this areat is crossed hy a groove which concurs with one on the palatine bone in the formation of the palatine canal (Canalis palatinus). The posterior part of the bone is exeavated to form part of the maxillary sinus.

The dorsal border is irregular and sealy. Its anterior part is grooved and its posterior part beveled for articulation with the nasal process of the premaxilla and the nasal and lacrimal bones.

The ventral or alveolar border (Processus alveolaris) is in its greater part thick, and presents six large cavities, the dental alveoli, for the check teeth. The alveoli are separated by transverse interalveolar septa. There is often a small alveolus for the first premolar ("wolf tooth") close to the first large one. At the bottom of the alveoli there are small openings (Foramina alveolaria) for the passage of vessels and nerves. Further forward the border is narrow and forms part of the interalveolar or interdental space (Margo interalveolaris). Behind the last alveolus is a rough area, the alveolar tuberosity (Tuber alveolare).

The anterior extremity is pointed. It joins the premaxilla, and forms with it the alveolus for the canine tooth.
${ }^{1}$ In the young horse the anterior part of the surface is convex over the embedded parts of the teeth. As the latter are extruded the surface flattens and beeomes coneave in old subjects. The form of the underlying teeth may be indieated by ridges (Juga alveolaria), and sometimes in young horses there may be defects in the bone over the teeth.

The posterior extremity forms a rounded prominence, the maxillary tuberosity (Tuber maxillare). Medial to the tuberosity is a deep recess (Recessus maxillaris), in which are three foramina. The upper one, the maxillary foramen (Foramen maxillare), leads into the infraorbital eanal. The lower one, the posterior palatine foramen (Foramen palatinum aborale), is the entrance to the palatine canal. The sphenopalatine foramen (Foramen sphenopalatinum) perforates the medial wall of the recess and opens into the nasal cavity.

The zygomatic process (Processus zygomaticus) projects backward, dorsolateral to the tuberosity; it is overlapped by the corresponding part of the malar and also articulates with the zygomatic process of the temporal. A small curved plate (Processus temporalis) extends medially from it and joins the frontal and palatine bones, forming part of the floor of the orbit.

The palatine process (Processus palatinus) is a horizontal plate which projects from the lower part of the medial surface of the body. It forms the greater part of the basis of the hard palate. Its nasal surface is smooth and is concave transversely; on its anterior part, close to the medial border, there is a shallow groove in which the vomero-nasal organ (of Jacobson) is situated. The palatine surface is slightly coneare from side to side, and presents along its lateral part the palatine groove (Sulcus palatinus); this is continuous at the anterior palatine foramen (Foramen palatimum orale) with the palatine canal, and contains the palatine vessels and nerve. The medial border unites with its fellow to form the median palatine suture; its nasal aspect bears the nasal crest (Crista nasalis), which forms, with that of the opposite process, a groove for the vomer. The posterior border unites with the horizontal part of the palatine bone at the transverse palatine suture. Variable accessory palatine foramina perforate the process.

The infraorbital canal (Canalis infraorbitalis) ${ }^{1}$ extends almost horizontally from the maxillary foramen to the infraorbital foramen. It is placed at the upper edge of the imner plate of the maxilla, and traverses the maxillary sinus. Near the infraorbital foramen it gives off a small canal (Canalis alveolaris incisivus) which lies above the roots of the premolars and extends also into the premaxilla, carrying ressels and nerves to the teeth there.

Development.-The maxilla ossifies in membrane ventral and lateral to the cartilaginous nasal capsule. It has one chief center and a supplementary one in the region of the deciduous canine tooth (Martin).

The Premaxille

The premaxillæ (Ossa incisiva) form the anterior part of the upper jaw and carry the incisor teeth. Each consists of a body, a nasal process, and a palatine process.

The body (Corpus) is the thick anterior part which carries the incisor teeth. Its labial surface (Facies labialis) is convex and smooth, and is related to the upper lip. The palatine surface (Facies palatina) is concave and often presents a foramen a little behind its middle. ${ }^{2}$ The medial surface (Facialis medialis) is rough, and joins the opposite bone; it is marked by a curved groove, which forms, with that on the opposed surface, the foramen incisivum. The alveolar border (Limbus alveolaris) separates the palatine and labial surfaces; it is curved and thick, and presents three deep alveoli for the incisor teeth; behind the third alveolus it is free, forming part of the interalveolar space.

The nasal process (Processus nasalis) projects backward and upward from the body, forming here the lateral wall of the nasal cavity. The two surfaces, facial

[^7]and nasal, are smooth and rounded The dorsal border is free, thick, and smooth; it coneurs with the free margin of the nasal bonc in forming the naso-maxillary noteh (Incisura nasomaxillaris). The ventral border is dentated and joins the maxilla; at its anterior end it forms with the latter the alveolus for the permanent canine tooth. ${ }^{1}$ 'The posterior ex-

Fig. 43.-Tpper Jaw of lionse Abott Four and a Half Yeabs (h,1, Ventral View.

1. 2. Chosnte or posterwor nares; 2, vomer; 3, horizontal part of palatum bone: 4, anterior palatine foramon; 5, palatine groove; 7, transverse palatune suture; 7 , median palatine suture; 8 , palatine process of maxilla; 9, palatine provess of premaxilla; 10, foramen ineisivum; 11, malar bone; 12, maxalla; 13, anterior end of facial erst: 14, interalveolar space; I. $1-3$, incisor teeth; C, camine tooth: P.1, first promolar or "wolf" tooth. The opening lateral to 9 is the palatine fissure. tremity fits into the interval betworn the nasal bone and the maxills.

The palatine process (Processus palatinus.) is a thin plate which forms the anterior part of the basis of the hari palate. Its nasal surface (Facies nasalis) has a longitudinal ridge which forms with that of the other side a groove for the septal cartilage; lateral to the ridge there is a groove for the vomero-nasal organ. The palatine surface (Farcics palatina) is flat. The medial border is serrated and meets it. fellow at the metian palatine suture. The lateral border is separated from the maxilla and the natsal process by the palatine fissure (Fissura palatina). The posterior extremity fits into the interval between the vomer and the palatine proess of the maxilla.

Development.-The premaxilla ossififs from al single center. Fusion of the two bones is complete at the end of the thisd or the begiming of the fourth year.

The Palatine Bones

The palatine bones (Ossa pulatina) are situated on either side of the choane or posterior nares, and form the posterior margin of the hard palate. Lach is twisted so as to form a horizontal and a perpendicular part.

The horizontal part (Pars horizontalis) is a narrow plate which forms the posterior part of the hard pilate. It presents smooth nasal and palatine surfaces (Facies nasalis, palatina). The medial border meets it.s fellow at the median palatine suture, on the nasal aspect of which is the nasal crest. The anterior border joins the palatine process of the maxilla at the transererse palatine suture, and forms with it the anterior palatine foramen (Foramen palatinum anterins). The posterior border is comeave and free; it gives attachment to the aponeurosis of the soft palate.
${ }^{1}$ The alveolus for the temporary canine is commonly formed in the maxilla alone,

The perpendicular part (Pars perpendicularis) is more extensive and forms most of the lateral wall of the choane or posterior nares. The nasal surface (Facies nasalis) is in the greater part of its extent concave and smooth, but presents a narrow rough area to which the pterygoid bone is attached. Below this the bone curves outward, forming the pterygoid process. The maxillary surface (Facies maxillaris) presents three areas for consideration. The largest articulates with the maxilla: it is rough and is crossed by a groose which concurs with one on the maxilla in the formation of the palatine canal. Behind this is a smooth part which assists in forming the pterygo-palatine fossa (Fossa pterygopalatina). The rough area below this is overlapped by the pteryoid process of the sphenoid bone. The dorsal border is perforated by the sphenopalatine foramen. Behind the foramen the two plates of the bone separate to inclose part of the sphenopalatine sinus. The imer plate curves medially to articulate with the vomer. The outer plate joins the maxilla and frontal and the orbital wing of the sphenoid; it may join the lacrimal bone also.

Development.-The palatine bone ossifies in membrane from a single center.

The Pterygoid Bones

The pterygoid bones (Ossa pterygoidea) are narrow, thin. bent plates, situated on either side of the posterior nares. Each has two surfaces and two extremities. The medial surface is smooth, and forms part of the wall of the posterior nares. The lateral surface articulates with the palatine, vomer, and sphenoid, concurring with the last in the formation of the pterygoid canal. The ventral extremity is free, turned slightly outward, and forms the hamulus pterygoideus; this is grooved externally and forms a pulley around which the tendon of the tensor palati muscle is reflected.

Development.-The pterygoid ossifies in membrane from a single center.

The Nasal Bones

The nasal bones (Ossa nasalia) are situated in front of the frontal bones and form the greater part of the roof of the nasal cavity. They have an elongated triangular outline. wide behind, pointed in front. Each presents two surfaces. two borders, and two extremities.

The facial surface is smooth and is convex transversely; the profile contour is usually slightly wary, with a depression about its middle and a variably prominent area in front.

The nasal surface is smooth and concave from side to side. About in its middle it presents the dorsal turbinate crest (Crista turbinata dorsalis), which is parallel with the medial horder, and has the dorsal turbinate hone attached to it. Most of this surface faces into the nasal cavity, hut its posterior part, lateral to the turbinate crest, enters into the formation of the frontal sinus; the latter area is marked off by an oblique ridge which corresponds to the septum between the anterior and posterior parts of the dorsal turbinate bone.

The medial border is straight, and meets the opposite bone at the nasal suture.
The lateral border is irregular. Its anterior third is free and concurs with the nasal process of the premaxilla in forming the naso-maxillary notch (Incisura nasi-maxillaris). Behind this it joins the end of the nasal process, the maxilla, and the lacrimal, forming the naso-maxillary and naso-lacrimal sutures.

The greater part of the edge is beveled and fits into a groove on the upper border of the nasal process, the maxilla, and the lacrimal bone.

The posterior extremity or base is beveled and overlaps the frontal bone, forming the naso-frontal suture.

The anterior extremity or apex is pointed and thin.

Development.-Each nasal bone ossifies in membrane from a single eenter. The nasal suture does not elose completely even in old age. In some eases the two plates scparate to inclose a small air-space (nasal sinus) in the posterior part.

The Lacrimal Bones

The lacrimal bones (0)sa larrimalia) are situated at the anterior part of the orbit, and extend forward on the face to the posterior borter of the maxilla. Each presents threr surfaces and a circumference.

The lateral face is clearly divided inte orbital and facial parts ly the orbital margin. The orbital surface (Facies orbitalis) is triangular in outline, smooth and eoncave; it forms part of the medial and front wall of the orbit. Near the orbital margin it presents a fumel-like fossa (Fossa saeci kucrimatis), whieh is the entrance to the lacrimal eanal; the fossa is oceupied by the larrimal sac, which is the dilated origin of the naso-lacrimal duet. Behind this is a depression in which the inferior ohlique musele of the ere takes origin. The facial surface (Facies fuciatis) is more extensive, and has the form of an irregular pentagon. It is slightly convex and smooth in the foal, flattened in the alult. It usually bears the small lacrimal tubercle, which is situated nearly an inch (ea. 2 cm.) from the orbital margin. The orbital margin (Xargo orbitatis) is concare, rough above, smooth below.

The nasal surface (Facies nasalis) faces inte the frontal and maxillary sinuses. It is concave and very irregular, and is crossed almost horizontally by the osseous lacrimal canal (Canalis larrimalis osseus).

The circumference articulates dorsally with the frontal and nasal bones, ventrally with the malar and maxilla, in front with the maxilla, and belind with the frontal. The various sutures so formed are designated by combinations of the names of the bones.

Development. Each ossifies in membrane from a single center.

The Malar Bones

The malar or zygomatic bones (0 sisa zygomatica) are placed hetween the lacrimal above and the maxilla below and in front. Each is inregularly triangular in outline and presents three surfaces, three forders, and a process.

The facial surface (lacies facialis) is smowth, slightly convex, wide in front, and narrow behinel. It its lower part it presents the facial crest, which is continuous in front with the similar ridge on the maxilla and belind with the zygomatic proeess of the temporal; the erest is rough betow, where the masseter musche is attached to it.

The orbital surface is much smaller than the facial surface, from which it is separated by the eoncare orbital margin (Margo orbitalis). It is eoneave and smooth, and forms part of the lower and front wall of the orbit.

The nasal surface is concave and faces into the maxillary sinus. In the young foal a considerable part of it articulates with the maxilla.

The dorsal border artieulates with the lacrimal chiefly, but to a small extent behind with the maxilla also.

The ventral and anterior borders articulate with the maxilla.
The posterior extremity is formed by the zygomatic process, which is beveled above and is overtapped by the zygomatic process of the temporal bone.

Development.-Each ossifie's in membranc from one or two centers.

The Turbinate Bones

These (Ossa turbinata) are delicate, scroll-like bones, four in number, which are attached to the lateral walls of the nasal cavity. They project into the cavity and greatly diminish its extent. Each is composed of a very thin lamina, cribri-
form in many places, and covered on both sides with mucous membrane in the fresh state. They are arranged in two pairs dorsal and ventral.

The dorsal turbinate bone (Os turbinatum dorsale) ${ }^{1}$ is somewhat eylindrical in form, but is flattened from side to side and tapers at each end. It is attached to the turbinate crest of the nasal bone and the nasal plate of the frontal bone. The anterior part is rolled like a scroll one and a half times, thus inclosing a cavity which communicates with the middle meatus nasi. The arrangement is best seen on a cross-section (Fig. 55). The posterior part is not rolled, but its ventral border is attached to the lateral nasal wall, thus helping to inclose a large space which is part of the frontal sinus. This cavity is separated from that of the scroll-like part by a transverse septum. The medial surface is flattened, and is separated from the septum nasi by a narrow interval, the common meatus (Meatus nasi communis). Another narron passage, the dorsal meatus (Meatus nasi dorsalis), separates the dor:al surface from the roof of the nasal cavity. The space between the ventral surface and the ventral turbinate is the middle meatus (Meatus nasi medius). The

Fig. 44.-Part of Sagitral Section of Sitll of Horse.
1, Perpendicular plate of ethmoid bone; 2, great ethmo-turbinate: 3, dorsal turbinate: 4 , ventral turbinate: 5 , vomer: 6, middle nasal meatus; $\overline{7}$. ventral nasal meatus; s, perpendicular part of palatine bone: 9 , palatine process of maxilla; 10, body of premaxilla; 11, nasal process of premaxilla: 12, palatine process of premaxilla: 13, pterygoid process of palatine bone. Dotted lines indicate septa.
anterior extremity is prolonged toward the nostril by two small bars of cartilage. The posterior extremity is small, and joins the cribriform plate and lateral mass of the ethmoid.

The ventral turbinate bone (O s turbinatum ventrale) ${ }^{2}$ is shorter and smaller than the upper one. It is attached to the ventral turbinate crest, and consists, like the upper one, of an anterior coiled and a posterior uncoiled portion.

To express briefly the mode of coiling of the two bones of the same side we may say that they are rolled toward the septum and each other.

The ventral and posterior borders of the posterior part are attached to the maxilla, thus helping to inclose a cavity which is part of the maxillary sinus. The lower surface is separated from the floor of the nasal cavity by the ventral meatus (Meatus nasi ventralis), which is much larger than the other nasal passages. The anterior extremity is prolonged toward the nostril by a curved bar of cartilage.

Development.-Each ossifies in cartilage from a single center.
${ }^{1}$ This bone is also termed the naso-turbinal; it is really a greatly developed first ethmoturbinate.
${ }^{2}$ This is also called the maxillo-turbinal.

The Vomer

The vomer is a metian bone, which assists in forming the ventral part of the septum nasi. It is compened of a thin lamina which is bent (exeept in its posterior part) so as to form a narrow groove (sulcus vomeris), in which the lower part of the perpendicular plate of the ethmoil bone and the septal cartilage are received. The lateral surfaces, right and left, are highest near the posterior end and diminish gradually to the anterior end; they are slightly conves dorso-ventratly, and are fovered by the nasal mucous membrane during life. The ventral border is thin and fres in its posterior third, and divides the choana or postarior nares medially; in the remainder of its extent it is wider and is attached to the nasil crest. The anterior extremity lies above the embls of the palatine processos of the premaxillip. The posterior extremity consists of two wings (Ale vomeris) which extend outward bekw the body of the presphenoid; posteriorly they form a notch (In(isura vomeris), and laterally join the palatine and pterygoid bones.

Development. - The vomer is primitively double, and ossifies from a center on either side in the membrane covering the cartilaginous septum nasi; the two lamine then fuse below and form a groove.

The Mandible

The mandible (Mantibuta), ${ }^{1}$ or lower jaw lone, is the largest bone of the face. The two halves of which it consists at birth mite during the second or third month, and it is misually described as a single bone. It carries the lower teeth, and articulates by its eondyles with the squamous temporal on either side. It consists of a broly and two rami. ${ }^{2}$

The body ('orpus mandibute) is the thick anterior part whieh hears the incisur tecth. It presents two surfaces and a border. The lingual surface (Facies lingualis) is smooth and slightly concave; during life it is rovered by mucous memlrame, and the tip of the tongue owrerlies it. The mental surface (Facies mentalis) is convex and is related to the lower lip. It is marked by a median furrow which inticates the position of the primitive symphysis mandibule. The curved alveolar border (Limbus alveolaris) presents six alveoli for the incisor teeth, and a little further back two alveoli for the camine teeth in the male; in the mare the latter are usually absent or small.

The rami (Rami mandibule) extent backward from the body and diverge to inclose the mandibular (or submaxillary) space ('patium mantibulare). Each ramus is bent so as to consist of a horizontal part (Pars molaris) which bears the lower cheek teeth, and a vertical part (Ramus mandibulee [s. N. A.]) which is expanded and furnishes attachment to powerful muscles; the term angle is applied to the most prominent part of the eurve. The ramus presents two surfaces, two borders, and two extremities. The lateral surface is smouth and slightly convex from edge to elge on the horizontal part; at the junction with the body it presents the mental foramen (Foramen mentale), which is the external opening of the mandibular canal. On the vertical part it is somewhat concave and presents a number of rough lines for the attachment of the masseter muscle. The medial surface of the horizontal part is smooth, and presents a shallow longitudinal depression in its nitelle; above this there is often a faint mylo-hyoid line (Linea mylohyoidea) for the attachment of the muscle of like name. At the lower part of the junction with the body there is a small fossa for the attachment of the genio-hyoid and genio-

[^8]glossus museles. On the vertical part the surface is concave, and is marked in its lower and posterior part by rough lines for the attachment of the medial pterygoid muscle. In front of its middle is the mandibular foramen (Foramen mandibulare), ${ }^{1}$ which is the posterior orifice of the mandibular canal (Canalis mandibulie). ${ }^{2}$ The canal curves downward and passes forward below the cheek teeth, opening externally at the mental foramen; it is continued into the body of the bone as a small canal (Canalis alveolaris incisivus), which carries the vessels and nerves to the incisor teeth. The dorsal or alveolar border (1 imbus alveolaris) forms anteriorly part of the interalveolar space; here it is thin. Behind this it is thick and is excavated by six alveoli for the lower cheek teeth. Behind the last alveolus it curves sharply upwarel and is narrow and rough. In the young foal there is commonly a small alveolus for the vestige of the first premolar ("wolf tooth") close to the first large one. The ventral border of the horizontal part is nearly straight; it is thick and rounded in the young horse, becoming narrower and sharp in old subjects. At

Fig. 45.-Left Half of Mandible of Horse; Medial View.
1, Borly of mandible (median section); 2. 2^{\prime}, horizontal and vertical parts of ramus: 3 . interalveolar border; 4, depression for attachment of genio-hyoideus muscle; 5. mandibular foramen; 6, vascular impression: 7, angle; 8, condyle; 9, coronoid process; 10, mandibular notch; 11, incisor teeth; 12, canine tooth; 13, cheek teeth.
its posterior part there is a smooth impression (Incisura vasorum) where the facial vessels and parotid duct turn round the bone. Behind this point the border curves sharply upward, forming the angle of the mandible (Angulus mandibulæ) ; this part is thick and has two roughened lips, separated by a considerable intermediate space; near the condyle it becomes narrower. The anterior extremity joins the body. The articular extremity comprises the coronoid process in front and the condyle behind, the two being separated by the mandibular notch (Incisura mandibulæ), through which the nerve to the masseter muscle passes. The coronoid process (Processus coronoideus) is thin transversely and curved slightly medially and backward. It projects upward in the temporal fossa and furmishes insertion to the temporal muscle. The condyle of the mandible (Condylus mandibulæ) lies at a much lower level than the end of the coronoil process. It is elongated transversely and articulates with the squamous temporal through the medium of an

[^9]articular dise. The part below the eondyle is usually termed the neck of the nandible (Collum mandibule); on its antero-medial part is a depression, the fovea pterygoidea, in which the lateral pterygoid muscle is attached. The middle of the vertical part of the ramus consists to a large extent of a single plate of compact substance which may he so thin in places as to be tramslucent.

Development.- The mandible develops from two chief renters in the comeetive tissue whieh owerlies the paired Meckel's cartilages. At birth it consists of two symmetrieal halves which meet at the mertian symphysis mandibulæ. Fusion usually oceurs in the second or third month.

Age Changes.-These are associated largely with the growth, and later with the refuction, of the teeth. In the young horse, in which the tecth are long and are in great part embedded in the bone, the body is thick and strongly curved, and the horizontal part of the ramus is also thiek. Later, as the teeth are extrudel from the bone, the body becomes flattened and narrower, and the horizontal part of the ramus is thinner, especially in its lower part. In the old subjeet the angle, the vascular impression in front of it, and the lines for the attachment of tendinous layers of the masocter and pterygoil museles are more pronomeed.

The Hyoid Bone

The hyoid bone (O. hyoidemm) is situated chiefly between the vertieal parts of the rami of the mandible, hat its upper part extends somewhat further back. It is attached to the petrous temporal hones her rods of eartitage, and supports the rowt of the tongue, the pharymx, and the

Fig. 46.-Ifroid Boxe of IIorse, Viewed from the Side and somewhat from in Front.
a, Body; b, lingual process; c, thyroid cornn: c^{\prime}, cartilage of $c: ~ d$, suall cornu: c, middle cornu: f, great cornu: f^{\prime}, nuscular angle of great cornu; g, cartilage of great cornu. (Ellenberger-Baum, Anat. d. Haustiere.) laryn. It consists of a body, a lingual process, and three pairs of cornua.

The body or basihyoid (Corpus ossis hyoidei) is a short transverse bar, compressed dorso-ventrally. The dorsal surfate is concave and smooth in its middle, ancl presents at each end a convex facet or tubercle for articulation with the small eornu. The ventral surfare is flattened and is slightly roughened for museular attachment. The anterior border carries medially the lingual process. The posterior horder is coneave and smooth in its middle, and earries on either side the thyroid comu. The hooly, the lingual process, and the thyroid cormua are fused and may be compared to a spur or a fork with a very short handle.

The lingual process (Proeessus lingualis) projects forward medially from the broly, and is embedded in the root of the tongue during life. It is eompressed laterally and has a blunt-pointed free end. The lateral surfaces are slightly eoneave. The dorsal border is thin and irregular, and the ventral border is thiek and rough.

The thyroid cornua or thyrohyoids (Cornua thyreoilea) ${ }^{1}$ extend backward and upward from the lateral parts of the body. They are compressed laterally (exeept at their junction with the body), and the posterior (and has a short eartilaginous prolongation which is connected with the anterior cornu of the thyroid eartilage of the laryon.

The small cornua or keratohyoids (Cornua minora) are short rods which are tlirected upward and forward from either end of the body. Each is somewhat constrieted in its middle part and has slightly enlarged ends. The ventral end has

[^10]a small concave facet which articulates with the body. The dorsal end articulates with the great cornu, or with the middle cornu when present.

The great cornua or stylohyoids are much the largest parts of the bone. They are directed dorsally and backward, and are comercted above with the base of the petrous temporal bones. Each is a thin plate, seven or eight inches (car. 18 to 20 cm.) long, which is slightly curved in its length, so that the lateral surface is concave and the medial surface is convex; both are smooth. The borders are thin. The dorsal extremity is large and forms two angles; the articular angle is connected by a rod of cartilage with the hyoid proeess of the petrous temporal bone; the muscular angle is somewhat thickened and rough for muscular attachment. The ventral extremity is small, and articulates with the small or the middle cornu.

The middle cornua or epihyoids are smatl, wedge-shaped pieces or nodules interposed between the small and great cornua. They are usually transitory, and unite with the great cornua in the adult.

Development.-The hyoid ossifies in the cartilages of the second and third visceral arches. Each part has a separate center, except the lingual process, which ossifies by extension from the bocly. In the foal there is a separate nucleus at each end of the body which intervenes between the latter and the thyroid cormu; it articulates with the small cornu. The anterior part of the lingual process may be a separate piece.

THE SKULL AS A WHOLE

The skull of the horse has, as a whole, the form of a long, four-sided pyramid, the base of which is posterior. It is convenient, however, to exelude the mandible and hyoid from present consideration. The division between the cranium (Cranium cerebrale) and the face (Cranium viscerale) may be indicated approximately by a transverse plane through the anterior margins of the orbits.

The dorsal or frontal surface (Norma frontalis) is formed by the squamous part of the occipital, interparietal, parietal, frontal, nasal, and premaxillary bones. It may be divided into parietal, frontal, nasal, and premaxillary regions. The parietal region extends from the nuchal crest to the parieto-frontal suture. It is marked medially by the external parietal crest, which bifurcates in front, the branches becoming continuous with the frontal crests. The latter eurve outward on either side to the root of the supraorbital process. The frontal region is the widest part of the surface, and is smooth and almost flat. It is bounded in front by the naso-frontal suture. On either side of it is the root of the supraorbital process, pierced by the supraorbital foramen. The nasal region is convex from side to side, wide behind, narrow in front. Its profile is in some cases nearly straight; in others it is undulating, with a variably marked depression about its middle and at the anterior end. The premaxillary region presents the osseous nasal aperture (Apertura nasalis ossea) and the foramen incisivum.

The lateral surface (Norma lateralis) (Fig. 28) may be divided into cranial, orbital, and preorbital or maxillary regions.

The cranial region presents the temporal fossa, the zygomatic arch, and the outer part of the petrous temporal bone. The temporal fossa is bound medially by the parietal and frontal crests, laterally by the temporal crest and the zygomatic arch, and behind by the nuchal erest. Its upper and middle parts are rough for the attachment of the temporal muscle. In its lower posterior part are several foramina which communicate with the temporal canal. The fossa is continuous in front with the orbital cavity. The zygomatic arch is formed by the zygomatic processes of the temporal, malar, and maxilla. Its ventral face presents the condyle and glenoid cavity for articulation with the lower jaw, through the medium of the articular disc. Behind the glenoid cavity is the postglenoid process. The
external acoustic process projects outward through ad deep notch in the pentral margin of the squamous temporal below the temporal crest. A little further back is the mastoid process, crossed in its upper part hy a groove for the posterior meningeal artery.

The orbital region comprises the orlit and the pterygo-palatine fossal. The

Fig. 17.-Skull of Horse; Dorsal View,

1. Parietn-ocripital suture; 2, squatmons suture; 3, parietal suture; 4, parieto-frontal suture; 5, frontal suture; fi, masu-frontal suture; 7 , naso-laerimal suture; i, lacrimo-malat suture; 9, lacrimo-maxillary suturn; 10, maxillomalar suture; 11, yaso-maxillary suture; 12 , nawal suture.
orbit is a cavity which incloses the eychall, with the muscles, vessels, and nerves assoctated with it. It is not seprated in the skeleton from the temporal fossia. The axis of the orlit (Axis orbiter), taken from the optic foramen to the middle of the inlet, is directed forwarel, outware, and slightly upward. The medial wall (Paries medialis) is complete and extensive. It is concave and smooth, and is formed by the frontal and lacrimal and the orbital wing of the sphenoid. In its
extreme anterior part is the fossa for the lacrimal sae. Behind this there is a small depression in which the inferior oblique muscle of the eve arises; here the plate which separates the orbit from the maxillary sinu* is very thin. The dorsal wall (Paries dorsalis) is formed by the frontal and to a small extent by the laerimal bone. It presents the supraorbital foramen, which perforates the root of the supraorhital process. The ventral wall (Paries ventralis) is very incomplete, and is formed by the malar, the zygomatic process of the temporal, and to a small extent by the maxilla. The lateral wall (Paries lateralis) is the supraorbital process. At the extreme posterior part is the orbital group of foramina. Four are situated in front of the pteryguid crest. Of these, the uppermost is the ethmoidal foramen, which trans-

Fig. 45-Cranear and Obbital Regions of Secll of Horse: Lateral Viet. The Zygomitic Aach and Sepra. orbital Phocess Have Been Sawn Off.
S.o., Squamous part of occipital: P. parietai; S. squamous temporal: B.a., basilar part of occipital; B.s., body of sphenoid; A.t., temporal wing of sphenoid: A.o., orbital wing of sphenoid: Pt.p., pterygoid process of sphenoid; P.p., perpendicular part of palate bone; F, F^{\prime}, facial and orbital parts of frontal bone: L, L^{\prime}, orbital and facial parts of lacrimal bone; M, facial part of malar bone; M. $x_{\text {. }}$, maxilla; a, parieto-occipital suture; b, squamous suture; c, d, sphenosquamous suture; e, fronto-palatine suture; f, fronto-lacrimal suture. 1, Oceipital condyle; 2, condyloid fosss; 3, paramastoid process; 4. nuchal crest; 5 , external occipital protuberance; 6, external acoustic meatus; 7 , mastoid process; 3 , hyoid process; 9, stylomastoid foramen; 10 . muscular process; 11, foramen lacerum; 12, postglenoid process: 13 . glenoid cavity; 14, temporal condyle; 15, pterygoid groove; 16, alar canal of pteryeoid process indicated by arrow; 15, alar foramen; 15, ethmoidal foramen; 19, optic foramen; 20, foramen orbitale; 21, maxillary forsmen; 22, sphenopalatine foramen; 23, posterior palatine foramen; 24, supraorbital foramen (opened); 25, fossa for lacrimal sac: 20. depression for origin of obliquus oculi inferior; 2- facial crest; 25, maxillary tuberosity; 29, alveolar tuberosity; 30, hamulus of pterygoid bone.
mits the ethmoidal vessels and nerve. The optic foramen is situated a little lower and further lack; it transmits the optic nerve. Immediately below the optic is the foramen orbitale, which transmits the ophthalmic, third, sixth, and sometimes the fourth nerve; commonly there is a very small trochlear foramen in the crest for the last-named nerve. The foramen rotundum is below the foramen orbitale, from which it is separated by a thin plate; it transmits the maxillary nerve. The alar canal opens in common with the foramen rotundum, and the anterior opening of the pterygoid canal is also found here. The foramen alare parvum is just behind the pterygoid crest and on a level with the foramen orbitale. It is the upper opening of a canal which leads from the alar canal, and through it the anterior deep
temporal artery emerges. The inlet of the orbital cavity (Aditus orbite) is circumscribed by a complete bony ring, which is nearly circular. Its infraorbital margin (Margo infraorbitalis) is smooth and rounded; the supraorbital margin (Margo supraorbitalis) is rough and irregularly notched. During life the cavity is completed by the periorbita, a conieal fibrous membrane, the apex of which is attached around the optic foramen. Ventral to the orbital eavity is the pterygopalatine fossa. Its wall is formed by the pterygoid process, the perpendicular part of the palate bone, and the tuber maxillare. Its deep anterior reeess contains three formmina. The upper one, the maxillary foramen, is the entrance to the in-

Fig. 49.-Line Draming of Posterior Malf of Base of siktll of Morse, Without Mandiale. (Fey to Fig. 50.)
A. Basilar part of oecipital: B, body of sphenoid; C, temporal wing of sphenoid; D, squamous temporal bone: E, petrous temporal bone; F, orbital part of frontal bone. 1, Incisura carotica; 2, incispra ovalis; 3, incisura spinosa; 4. externat orifice of temporal canal; 5 , osseous auditory or Eustachian tube; 0 , petro-tympanic fissure; 7 , external acoustic process; 8 , hyoid process; 9 , pterygoid groove; 10 , supraorbital process.
fraorbital caual, which transmits the infraorhital nerve and vessels. The sphenopalatine foramen perforates the mefial wall of the recess and transmits vessels and nerves of like name to the nasal cavity. The lower formen, the posterior palatine, transmits the palatime artery and nerve to the patatine canal. The upper part of the fossa is smooth, and is erossed by the intermal maxillary artery and the maxillary nerve. The lower part is chiefly roughened for the attachment of the lateral pterygoid muscle, but is crossed in front by a smooth groore in which the palatine vein lies. In its extreme posterior part is the smatl opening of the pterygoid canal.

The preorbital or maxillary region is formed chiefly by the maxilla, but also by
the premaxilla, and the facial parts of the lacrimal and malar bones. Its contour is approximately triangular, the base being posterior. It offers two principal features. The facial crest extends forward from the ventral margin of the orbit, and ends abruptly at a point about an inch and a quarter (ca. 3 to 3.5 cm .) above the

Fig. 50. Ventral Serface of Skell of Horse, Posterior Half Without Mandible. The skull is inclined slightly. (Notation on key Fig. 49.)
third or fourth eheek tooth; ${ }^{1}$ its ventral aspect is rough for the attachment of the masseter muscle. The infraorbital foramen is situated in a transverse plane about an inch (ca. 2 to 3 cm .) in front of the end of the erest and about two inches (5 cm .)
${ }^{1}$ This relation varies with age. In the new-born foal the posterior part of the second tonth, in the young horse the posterior part of the third tooth, in the older subject the fourth, lies below the end of the crest.
above it. The foramen opens forward. and through it the infraorbital artery and nerve emerge. The surface over the premolar teeth varies greatly with age, in conformity with the size of the embeded parts of the teeth. In the young horse the surface here is strongly convex, the outer plate of bone is thin and even defective sometimes in places, and the form of the teeth is indieated by eminences (Juga aheolaria). In the old aminsal the surface is concave on account of the extrusion of the teeth from the bone. The downward curve of the premaxilla is pronounced in the young subjeet, very slight in the aged.

In some skulls there is a distinct depression a short distance in front of the orbit; here the levator labii superioris proprius arises.

The ventral or basal surface (Norma hasalis), exclusive of the mandible, consists of cranial, chomal, and palatine regions.

The cranial region (Basis eramii extema) extends forward to the vomer and pterygoid processes (Fig. 50). At its posterior end is the foramen magnum, flanked by the occipital condyles. Lateral to these is the condyloid fossa, in which is the hypoglossal foramen, which transmits the hypoglossal nerve amd the condyloid vein. Further outward are the paramastoid processes (Processus jugulares) of the occipital bone. Extending forward eentrally is a prismatie bar, formed by the basilar part of the oecipital and the body of the sphenoid bone; at the junction of these parts are tubereles for the attachment of the ventral straight museles of the head. On either side of the hasilar part of the occipital bone is the foramen lacerum (basis cranii), bounded haterally by the base of the petrous temporal bone. In front of these the region becomes very wide on account of the lateral extension of the zygomatic processes, which present ventrally the condyle and glenoid cavity for articulation with the mandible. Berond this the process turns forwad and joins the zygomatic process of the malar, completing the zygomatic arch and the surface for the attachment of the masseter muscle. On either side of the body of the sphenoid is the infratemporal fossa, formed by the temporal wing and the rest of the petergoid process of the sphenoid bone. It is bounded in front by the pteryooid crest, which separates it from the orbit and the pterygo-palatine fossa. In it is the alar canal, which transmits the internal maxillary artery. A little lower is the entrance to the pterygoid canal.

The choanal region presents the pharyngeal orifice of the nasal cavity. This is elliptical and is divided in ite depth mediatly hy the vomer into two choanæ or posterior nares. It is hounded in front and laterally by the palate and pterygoid hones, behind by the vomer. It is flankel by the hamular process of the pterygoid bone. The plane of the opening is nearly horizontal, and the length is about twiee the width.

The palatine region comprises a little more than half of the entire longth of the hase of the skull (Fig. 43). The hard palate (Palatum durum) is comeave from side to side, and in its length also in the anterior part. It is formed by the palatine processes of the premaxillae and maxilla, and the horizontal parts of the palatime lomes. It is circumseribed in front and laterally by the alyoolar parts of the maxilla ant premaxilla. The interalveolar space (Margo interalveolaris) is that part of the arch in which alveoli are not present. Behind the last alreolus is the alveolar tuberosity, and medial to this is a groove for the palatine win. In the middle line is the median palatine suture (sutura palatina mediama). In the line of the suture, a little behind the central incisors, is the foramen incisivum, through which the palato-lahial artery passes. (on either side, parallel with the alveolar part of the maxilla, is the palatine groove (sulcus palatims), which eontains the palatine resels and nerve. It is contimuns at the anterior palatine formen with the palatime canal, which is sitnated between the maxilla and the palatine bone. The palatine fissure is the narrow interval along the lateral margin of the palatine
process of the premaxilla; it is closed in the fresh state by a process of the cartilage of the septum nasi. Scattered along each side of the palate are several accessory foramina. The transverse palatine suture (Nutura palatina transversa) is about half an inch from the posterior border. The latter is opposite to the fifth cheek tooth in the adult, and is concave and free.

The nuchal or occipital surface (Norma occipitalis) is formed by the occipital

Fig. j1.-Skull of Horse; Postertor View. The Hyoin Bone Has Been Removed.

1. External occipital protuberance; 2, curved line; 3, foramen magnum; 4, orcipital condyle; 5, paramastord process; 6, basilar part of occopitit; 7. mastoid foramen; 8, mastoid process; 9, postglenoid process; 10, muscular process of petrous temporal; 11, alar canal; 12, pturygoid process of splenoid; 13, body of sphenoid; I4, vomer; 15 , 15^{\prime}, perpendicular and horizontal parts of palatine bone; 16,16 , posterior nares or choane; 17, hamvlus of ptersgoid bone; 18 , maxillary tuberosity; 19 , palatine process of maxilla; 20, palatine process of premaxilla; 21, palatine fissure; 22 , accessory palatine foramina; 23, body of mandible; 24, mandibular foramen.
bone. It is trapezoidal in outline, wider below than above, concave dorso-ventrally, convex transversely. It is separated from the dorsal surface by the nuchal crest. Below the crest are two rough areas for that attachment of the complexus muscles. A little lower is a central eminence, the external occipital protuberance, on which the ligamentum nuchæ is attached. At the lowest part centrally is tle foramen magnum. This is bounded laterally by the occipital condyle, lateral to which is the paramastoid process.

The apex of the skull is formed by the bodies of the premaxillit and mandible, carrying the ineisor teeth.

THE CRANIAL CAVITY

This eavity (Cavum eranii) incloses the brain, with its membranes and vessels. It is relatively small and is ovoid in shape.

The dorsal wall or roof (Calvaria) (Fig. 52) is formed ber the supraoceipital, interparietal, parietal, and frontal bones. In the middle line is the internal parietal crest, which joins the crista galli in front, and furnishes attachment to the falx cerebri. Posteriorly the crest is continued by the sharp anterior margin of the

Fig. 54.-Sigittal Section of Craniem of Horse.
1, Lateral wall of foramen maguum; 2, hypoglossal foramen; 3, foramen lacurum posterius; 4, 5, 6, carotid, oval, and spinous notches; 7, floccular fossa; 8, internal acoustic meatus; 9, petrosal crest; 10, hypoohyseal or pituitary pons (Fossa pontis) depression below 12 is the hypophyseal fossa; 11, groove for maxillary nerve; 12, groove for cavernous sinus; 13 , optic foramen; 14,14 , sphenoidal sinus; 15 , erista galli; 16 , perpendicular plate of ethmoid boae; 17, vomer; 18, septum betweea frontal sinuses; 19, orbital wing of sphenoid; 20, temporal wing of sphenoid; 21, interaal occipital protuberance; 22, canalis transversus; 23, depression for vermis cerebelli.
tentorium osseum, which projects downward and forward into the eavity, and gives attachment to the tentorimm cerebelli by its sharp lateral edges. Behind this the roof is grooved centrally for the middle lobe or vermis of the cerebellum. Transverse grooves pass from the base of the tentorium osseum to the temporal canals. The anterior part of the roof is hollowed by the frontas simus. The occipital part is very thick and strong.

The lateral wall (Fig. 54) is formed chiefly by the temporal and frontal bones and the orbital wing of the sphenoid. It is crossed obliquely by the petrosal crest, which concurs with the margin of the parietal bone and the internal oceipital protuberance in dividing the eavity into cerebral and cerebellar compartments. Behind
the erest is a depression for the hemisplere of the cerebellum. Behind this are the internal acoustic meatus and the openings of the aqueductus vestibuli and aquæductus cochlere.

The roof and lateral walls are marked by digital impressions and vascular grooves.

The ventral wall or floor (Basis cranii interna) (Fig. 53) may be regarded as forming three fosse. The anterior fossa (Fossa cranii oralis) supports the frontal and offactory parts of the ecrebrum. It is formed chiefly by the presphenoid, and lies at a higher lewt than the midtle fossa. In front the fossa is divided medially by the crista galli, lateral to which are the deep ethmoidal fossæ for the olfactory bulls. The ethmoidal foramen perforates the cranial wall at the outer side of these fosse. Further track the central part of the surface is slightly elevated, and is flanked by shaltow depressions which support the olfactory trasts. Posteriorly is a bony shelf which covers the entrance to the optic foramina; the edge of this shelf and the posterior borkers of the orlyital wings of the sphenoid may be taken as the line of demarcation between the anterior and middle fosse. The middle fossa (Fussil cranii media) is the widest part of the cavity. It extends backward to the spheno-occipital and petrosal crests, thus corresponding to the posisphenoid. In its middle is the hypophyseal fossa in which the hypophysis eerehri lies. On either side are two grooves: the medial one tramsmits the cavernous sinus and the ophthalmic, third, and sixth nerves to the foramen orbitale; the laterat one leads to the foramen rotundum, and lolges the maxillary nerve. Lateral to the grooves is a depression for the piriform tobe of the cerebrum. The posterior fossa (Possa cranii posterior) eorresponds to the hasilar part of the occipital bone. It contains the medulla oblongata, pons, and cerebellum. In front is a median depression (Fussa pontis) for the pons. The surface behind this (Fossa medulle oblongates) is concave transversely and slopes gently downward to the foramen magmom; it supports the medulla oblongata. On either side are the foramen lacerum and the hypoglossal foramen.

The anterior or nasal wall (Fig. 33) is formed by the cribriform phate of the ethmoid, which separates the cranimm from the nasal cavity. It is perforated by numerous formmina for the passage of the offactory nerve-bundles.

THE NASAL CAVITY

The nasal cavity (Cavum nasi) is a longitudinal passage which extends throngh the upper part of the face. It is divided into right and left hakees by a median septum nasi. The lateral walls are formed by the maxilla, premaxilla, the perpendicular part of the palatine, and the turbinate and ethonod lones in part. This wall is crossed oldiquely by the lacrimal canal and groove for the naso-lacrimal duct, and its posterior part is perforated by the sphenopalatine foramen. The dorsal wall or roof is formed by the frontal and nasal bones, which form a median prominence at their junction. It is concave from side to side, and nearly straight longitudinally, except in the posterior part, where it eurves downward. The ventral wall or floor is formed by the palatime processes of the premaxille and maxilke, and the horizontal parts of the palate bones. It is wider but considerably shorter than the roof. It is concave transversely, and nearly horizontal from before baekward, except in the posterior third, where there is a slight deelivity. The anterior part presents at median groove for the eartilage of the septum, and a furrow for the vomero-nasal organ (of Jacobson) on either side. P'osteriorly there is a median elevation, the nasal crest, to which the vomer is attached. Lateral to the palatine process of the premaxilla is the palatine fissure.

The septum nasi osseum is formed by the perpendicular plate of the ethmoid
behind, and the vomer below. In the fresh state it is completed by the cartilage of the septum nasi (Cartilago septi nasi).

Fig. ās.-Cros-section of Nasal Region of Skell of Horse; the section Pasaes Throcgi the Anterior Evio of the Fachal Crest, and Between the Thifd and Focrte Cheek Teeth.
a. Dorsal, b, ventral, turbinate bone; c, d, cavities of a and $b ; c$, common meatus: f, a, h, dorsal, middle, ventral meatus: i, k, passages to cavities of turbinate bones; l, naso-lacrimal duct; m, infraorbital canal: n, anterior eod of maxillary sinus; o, septal cartilage. (After Elleaberger, in Leisering's Atlas.)

Fig. 56.-Cross-section oe Nasal Region of Nintll of Horse; the section is Cet About Halfway hetween the Obht and the ANterior Exd of the Faclal Crest, ano Pasaes between the Fifth ano Sixth Cheek Teeth.
a. Dorsal, b, ventral, turinate bone; c, d, cavities of a and $b ; ~ f$, common meatus: i, dors $3 l, g$, middle, h. veatral meatus: i, placed over ridge io maxillary sinus; k, communieation between outer and inner (turbinate) part of maxillary sinus: l, naso-maxillary opening; m, naso-lacrimal canal: n. infraorbital canal. After Ellenberger, in Leisering's Atlas.)

The turbinate bones divide each half of the nasal cavity into three meatus nasj.

The dorsal meatus (Meatus nasi dorsalis) is a narrow passage between the roof and the dorsal turbinate bone. It ends at the cribriform plate of the ethmoid.

Ftg. 57.-Secle of Youvg Horse; Lateral View, with Sineses Opeveo Tp.
A^{\prime}, A. Anterior and posterior compartments of maxillary sinus; B, B^{\prime}, frontal and turbinate parts of frontal sinux, C, orbit: 1, septum between compartments of maxillary sinus; 2, 2, infraorbital canal; 3, turbinate part of maxillary snus: $4,5,6$, last three cheek teeth (covered by thin plate of bone); $\overline{\mathbf{7}}$, anterior limir nf maxillary sinus in older subject; 8. infraorbital foramen; 9, anterior end of facial crest; 10, course of naso-lacrimal duct: 11. fossa for lacrimsl sac; 12, dorsal turbinate bone; 13, fronto-maxillary opening.

The middle meatus (Meatus nasi medius) is the space between the two turbinate bones. In its posterior part is the very narrow opening into the maxillary sinus. The ventral meatus (Meatus nasi ventralis) is the channel along the floor which is
overhung by the ventral turbinate bone; it is much the largest and is the direct path between the nostrils and posterior nares.

The osseous nasal aperture (Apertura nasi

Fig. 58.- Kirvll of Young Horse; Dorsal. View, with Sintaes (Opened \mathbf{U}^{\prime}.
1, 2, Ends of frontal sinus: 3, frontomaxillary opening: 4, dorsal turbinate bone; 5, lateral mass of ethmoid bone; 6, 6', two compartments of maxillary sunus; 7 , septum between 6 _and 6^{\prime}; . S, orbit; 9, anterior end of facial erest; A, frontal bone; B, nasal bode; (C, lacrmal bone; D, maxilla. Note difference in position and form of septum in maxillary ainus as compared with preecding figure. ossea) is hounded by the nasal bones and the premaxillie.

The posterior extremity or fundus is separated from the eranial cavity by the eribriform plate of the ethmoid, and is largely occupied by the lateral masses of that bone.

THE PARANASAL SINUSES

Comected directly or indirectly with the nasal cavity, of which they are diverticula, are four pairs of air-sinuses (Sinus paranasales), riz., maxillary, frontal, sphenopalatine, and ethmoidil.

The maxillary sinus (Sinus maxillaris) is the largest. Its lateral wall is formed by the maxilla, the laerimal, and the malar. It is bounded medially by the maxilla, the ventral turbinate, and the lateral mass of the ethmoid bone. It extends backward to a transverse plane in front of the root of the supraorbital process, and its anterior limit is indicated approximately by a line drawn from the anterior end of the facial crest to the infraorbital foramen. Its dorsal boundary corresponds to a line drawn backward from the infraorbital foramen parallel to the facial crest. The ventral wall or floor is formed by the alveolar part of the maxilla; it is very irregular and is crossed by bony plates running in various directions. The last three eheek teeth project up into the cavity to an extent which varies with age; they are covered by a thin plate of bone. The cavity is divided into anterior and posterior parts by an oblique septum (Scptum sinus maxillaris). The lateral margin of the septum is commonly about two inches (ea. 5 cm .) from the anterior end of the facial erest; from bere it is directed inward, backward, and upwarl. The upper part of the septum (formed by the posterior end of the ventral turbinate bone) is very delicate and usually cribriform.

The position and shape of the septum are very variable. It is often further forward-in some cases even as far forward as the anterior end of the facial erest. Exceptionally it is much nearer the orbit than is stated above. In the recent state, i. e., when covered by the mucous membrane on both surfaces, it is nearly always complete, but in very exceptional cases there is an opening of variable size in the upper part.

The anterior compartment, often called the inferior maxillary sinus, is partially divided by the infruorbital canal into a lateral maxillary part and a medial smaller turbinate part. The latter communicates with the middle meatus by a very narrow slit situated at its highest part. The posterior compartment, often called the
superior maxillary sinus, is also crossed by the infraorbital canal, over which it opens freely into the sphenopalatine simus. It communicates dorsally with the frontal sinus through the large oval fronto-maxillary opening, situated at the level of the osseous lacrimal canal and the corresponding part of the medial wall of the orbit; the orifice is commonly about one and a half to two inches (ca. 4 to 5 cm .) long and an inch or more (2 to 3 cm .) wide. Just in front of this, and covered by a thin plate, is the narrow naso-maxillary fissure (Aditus naso-maxillaris), by which the sims opens into the posterior part of the middle meatus.

The foregoing statements refer to the arrangement in the average adult animal. In the foal the eavity (with the exception of its turbinate part) is largely occupied by the developing teeth. In horses five to six years of age the maxillary part of the sinus is filled up to a large degree by the embedded parts of the teeth. As the teeth are extruded to compensate the wear, more and more of the eavity becomes free, until in old age only the short roots project up in the floor, covered by a layer of bone. Other facts in this eonnection will be given in the deseription of the teeth. In exceptional eases the posterior part of the rentral turbinate is smaller than usual and leaves a considerable interval, through which the maxillary sints communicates with the nasal cavity. The fronto-maxillary opening is very variable in size.

Fig. 59.- Skull of Foal About Two Montis Old.
This figure illustrates differential features of skull of young foal as compared with that of adult animal shown in Fig. 25. 1, Occipital condyle; 2, paramastoid process; 3, mastoid process; 4, external acoustic meatus; 5, zygomatic process of temporal bone; 6, supraorbital process of frontal bone; $7,2 y$ gomatic process of malar bone; 8 , facial crest; 9 , infraorbital foramen; 10 , mental foramen; 11 , angle of mandible; 12, condyle of mandible; 13 , coronoid process of mandible.

The frontal or fronto-turbinate sinus (Sinus frontalis) consists of frontal and turbinate parts. The frontal part is bounded chiefly by the two plates of the frontal bone, but its floor is formed in part by the lateral mass of the ethmoid. It extends forward to a plane through the anterior margins of the orbits, backward to one through the temporal condyles, and outward into the root of the supraorbital process. It is separated from the sinus of the opposite side by a complete septum (Septum sinuum frontalium). It is partially subdivided by a number of hony plates. The turbinate part is situated in the posterior part of the dorsal turbinate bone, roofed in by the nasal and lacrimal bones. It extends forward to a transverse plane about half-way between the anterior margin of the orbit and the end of the facial crest. It is in free communication behind with the frontal part over the lateral mass of the ethmoid. It is separated from the nasal cavity by the thin
turbinate plate. The frontal and maxillary sinuses communicate through the large opening described above.

The sphenopalatine sinus (Hinus sphenopalatinus) consists of two parts which communicate under the lateral mass of the ethmoid. The sphenoikal (pusterior) part is excavated in the body of the presphenoid. The patatine (anterior) part is between the two plates of the perpenticular part of the palatine bone, under the hateral mass of the ethmoid; it communicates freely with the maxillary sinus. The septum between the right and left simses is not usually median in the sphenoidal part.

In alout one-third of the cases (aceording to Paulli) the sphenoidal and palatine parts are separated hy a transverse soptum, and the sphenoidal part then communicates only with the ventral cthmoilal meatuses.

The term ethmoidal sinus is often applied to the eavity of the largest ethmoturlinate. It communicates with the maxillary sinus through an opening in the lateral lamina.

The Bones of the Thoracic Limb THE SCAPULA

The scapula is a flat brome which is situated on the anterior part of the lateral wall of the thorax; its long axis extents oldiquely from the fourth thoracie spine to the sternal end of the first rih. It is curved slightly and slopes outward in athaptation to the form of the thoracic wall. It is triangular in outline, and has two surfaces, three berders, and three angles.

The lateral surface (Faries hateralis) is dividet into two fossa by the spine of the seapula (ripina scapula), which extends from the velterbal border to the neek of the bone, where it subsiles. The free edge of the spine is thick, rough, and in great part subcutaneous. I little abowe its miblle there is a variable prominence, the tuber spinæ, to which the trapezius musele is attached. The supraspinous fossa (Fossa supraspinata) is situated in front of the spine, and the infraspinous fossa (Fussa infraspinata) behind it. The former is much the smaller of the two; it is smooth and is vecupiol by the supraspinatus musele. The infraspinous fussa longes the inframinatus muscle; it is wide and smonth in its upper part, narrower below, where it is marked ly several rough tines for musenlar attachment; near the neek is the nutrient formen, and a little lower is a vascular groove.

The costal surface (Facies costalis) is hollowed in its length by the subscapular fossa (Fossa sulscapularis); this occupies nearly the whole of the lower part of the surface, but is pointed above and sparates two rough triangular areas (Facies serrata), to which the serratus ventralis is attachel. In the lower thirel there is a vascular growe with several hranches.

The anterior border (Aargo cranialis) is convex aml rough above, coneave and smenth below.

The posterior border (Margo cautalis) is slightly concave. It is thick and rough in its upper third, thin in its middle, and thickens again below.

The vertebral border (Margo vertebralis) ("arries the scapular cartilage (Cartilago seapulare). In the young subject this edge of the bone is thick, and is pitted by impressions into, which the cartilage fits. The cartilage is the unossified part of the fretal scapula. Its lower etge fits the depressions and elevations of the bone. It thins out toward the fres edge, which is convex and lies alongside of the vertebral spines. In front it continues the line of the bone, but behind it forms a rounded projection. The lower part of the cartilage undergoes more or less ossification, so that the vertelral border of the lwo in old subjects is thin, irregular, and porous.

The anterior or cervical angle (Angulus cranialis) is at the junction of the

Fig. 60 .-Left Scaptla of Horse; Lateral Strface,
1, spiue: 2, tuber spinæ; 3, cartilage; 4, anterior angle; 5 . posterior angle: 6, supraspinous fosss; 7 . infraspinous fossa: \$, anterior border: 9, posterior border; 10, muscular lines; 11, nutrient foramen; 12 , vascular groove; 13, neck; 14, tuber scapula: 15, glenoid cavity.

Fig. 61.-Riget Scaptla of Horse: Costal strface.

1. Anterior angle: ?. posterior angle: 3. anterior border; 4, posterior border: 5 , neck; 6 , vascular groove; \bar{T}, glenoid cavity: S. coracoid process; 9, tuber scapuls.
anterior and vertebral borders and lies opposite to the second thoracic spine. It is relatively thin and is about a right angle.

The posterior or dorsal angle (Angulus caudalis) is thick and rough; it is opposite to the rertebral end of the seventh rib, and its position can be determined readily in the living animal.

The glenoid or articular angle Angulus glenoidalis) is joined to the body of the bone by the neck of the scapula (Collum scapule). It is enlarged, especially in the sagittal direction. It bears the glenoid cavity (Cavitas glenoidalis) for articulation with the head of the humerus. The cavity is oval in outline, and its margin is cut into in front by the glenoid notch Incisura glenoidalis), and is rounded off laterally: just abore its postero-lateral part is a tubercle to which a tendon of the teres minor is attached. The tuber scapulæ ${ }^{1}$ is the large rough prominence in front, to which the tendon of origin

[^11]

Fig. 62.-Distal Extremity of Left Scaprla of Horze; End View.
of the biceps brachii is attached: projecting from its medial side is the small coracoid process (Processus coracoideus), from which the coraco-brachialis muscle arises.

Development.-- The seapula has four centers of ossification, viz, one each for the body of the bone, the tuber scapulse and coracoid process, the anterior part of the glenoid cavity, and the tuber spinæ. The last ossifies after birth and fuses with the spine about the third year. The tuler scapulat and coracoid process fuse with the body of the bone about the end of the first year.

In old subjects the spongy substance disappears at the middle part of the fosse, so that the bone consists here of a thin layer of compuet substance. C'onsiderable ossification of the cartilage is usual, the borders become much rougher, the muscular lines are more pronounced, and a medullary catity may appear in the neek. Jheh variation oecurs in dimensions and slope. The average ratio hetween the length and breadth (seapular index) is about $1: 0.5$, but in many cases the base is relatively wider. The inclination on a horizontal phane varies from 50 to 65 degrees. Exceptionally the coracoid process reaches a length of an inch or more ($21{ }_{2}$ to 3 cm .), and the chief notrient foramen may be on the posterior border or in the subscapular fossa.

THE HUMERUS

The humerus is a long bone which rxtends from the shoulder above, where it articulates with the scapula, to the elbow below and leehind, where it articulates with the radius and ulna. It is directed obliquely downward and backward, forming an angle of about 50 degrees with a horizontal plane. It consists of a shaft and two extremities.

The shaft (Corpus humeri) is irregularly eylindrical and has a twisted appearance. It may be regarded as having four surfaces. The lateral surface (Facies lateralis) is smooth and is spirally curved, forming the musculo-spiral groove (suleus musculi brachialis), which contains the brachialis musele; the groove is continuous with the posterior surface ahore and winds around toward the front below: The medial surface (Facies medialis) is nearly straight in its length, rounded from side to side, and blends with the anterior and posterior surfaces. Just above its middle is the teres tuberosity (Tuberositas teres), to which the tendon of the latissimus dorsi and teres major museles is attached. The nutrient foramen is in the distal third of this surface. The anterior surface (Facies cranialis) is trimgular, wide and smooth above, narrow and roughened below. It is separated from the lateral surface by a distinet border, the crest of the humerus (Crista humeri), which bears above its middle thr deltoid tuberosity (Tuberositas deltodea). From the latter a rough line curves upward and backward to the lateral surface of the neck, and gives origin to the lateral head of the triceps muscle. Below the tuberosity the border inclines forward, becomes less salient, and ends at the coronoid fossa. The posterior surface (Facies caudalis) is rounded from side to sirle and smooth.

The proximal extremity (Extremitas proximatis) consists of the head, neck, two tuberosities, and the intertuberal groove. The head (C'aput humeri) presents an almost circular convex articular surface, which is about twice as extensive as the glenoid carity of the scapula, with which it articulates. In front of the head is a fossa, in which are several foramina. The neck (Collum humeri) is well defined betiml, but is practically alsent elsewhere. ${ }^{1}$ The lateral tuberosity (Tuberositas lateralis. ${ }^{2}$ is placel antero-lattrally, and consists of two parts: the anterior part forms the lateral boundary of the intertuberal or bicipital groove and gives attachment to the lateral branch of the supraspinatus muscle; the posterior part gives attachment to the short insertion of the infraspinatus, while its outer surface is coated with cartilage, over which the chief tenton of the same muscle passes to be
${ }^{1}$ The proper "anatomical modk" (Collum anatomieum) is, however, indieated by the shallow depression which separates the head from the tuberosities, and gives attachment to the joint capsule.
${ }^{2}$ The term "tuleercle" as used in human anatomy does not apply well to the domestic animals.
inserted into a triangular rough area below the anterior part. The medial tuberosity (Tuberositas medialis) is less salient, and consists of anterior and posterior parts; the anterior part forms the medial boundary of the intertuberal groore, and furnishes insertion to the medial branch of the supraspinatus above, and the posterior deep pectoral muscle below; the posterior part gives attachment to the subscapularis muscle. The intertuberal or bicipital groove (Sulcus intertuberalis) ${ }^{1}$ is situated in front; it is bounded by the anterior parts of the tuberosities, and is subdivided by an intermediate ridge. The groove is covered in the fresh state by

Fio. 63.-Left Hemeres of Horse; Lateral View.
1, Rough area to which tendon of infraspinatus is attached; 2, crest; 3, depression for attachment of lateral ligament.

Fig. 64.-Right Henerts of Horse; Front View.

1. Rough area for attachment of extensor carpi radialis and extensor digitalis communis; 2, synovial fossa.
cartilage, and lodges the tendon of origin of the biceps brachii muscle. Just below the intermediate ridge is a small fossa in which several foramina open.

The distal extremity has an oblique surface for articulation witb the radius and ulna, which consists of two condyles of very unequal size, separated by a ridge. The medial condyle (Condylus medialis) is much the larger. aud is crossed by a sagittal groove, on the anterior part of which there is usually a synovial fossa. Posteriorly the groove extends upward considerably above the rest of the articular surface and reaches the olecranon fossa, and this part articulates with the semilunar

[^12]notch of the uina. The lateral condyle (Condylus lateralis) is much smaller and is placed somewhat lower and further back, giving the extremity an oblique appearance; it is marked by a wide shathow groove. The coronoid fossa (Fossa coronoidea) is situated in front, alove the groove on the medial condyle; it furnishes origin to part of the extensor carpi, and lateral to it is a rough depression from which the common digital extensor arises. Behind and above the condyles are two thick ridges, the epicondyles. The medial epicondyle (Epicondylus medialis) is the more salient; it furnishes origin to flexor muscles of the carpus and digit, and bears a tubercle for the attachment of the metial ligament of the elbow joint. The lateral epicondyle (Epicontytus lateralis) bears laterally the condyloid crest (Crista condyloidea), which forms here the outer bomelary of the musculo-spiral groove, and gives origin to the extensor carpi radialis. Below this is a rough excavation in which the lateral ligament is attached. The distal border of the epicondyle gives attachment to the ulnaris lateralis. Between the epicondyles is the deep olecranon fossa (Fussa olecrani), into which the processus anconseus projects.

Fig. 65.-Pronimal Extremity of Left Humerts of Horse; End Yiew.

1. Intertuberal (or hicipital) groove; 2, 3, anterior parts of lateral and medial tuberositues; 4, fussa; 5, 6, pusterior parts of lateral and medial tuberosities; 7 , head.

Fig. 66.-Distal Fitremity of Left IIemerta of Horse; ENd View.
1, Merlial condyle; 2, lateral condyle; 3 , part of medial epsondyle to which dedial ligament is attached; 4. depression in which lateral ligament is attached; 5,6 areas of attachment of flexor ant extensor muscles of carpus and digit; 7 , olecranon fussa.

Development.-The humerus ossifies from six centers, viz, three primary centers for the shaft and extremities, and three secondary centers for the lateral tubcrosity, the deltoid tuberosity, and the medial comdyle respectively. The proximal fond fuses with the shaft at about three and one-half years, the distal at about one and a half years of age.

THE RADIUS

The radius is much the larger of the two bones of the forearm in the horse. It extends in a vertical direction from the cibow, where it articulates with the humcrus, to the carpus. It is gently curved, the convexity lowing dorsal. It consists of a shaft and two extremitios.

The shaft (Corpus radii) is curved in its length, somewhat flattened from before backward, and wilened at its ends. It presents for deseription two surfaces and two borders. The dorsal surface (Facies clorsalis) is smooth, slightly convex in its length, and romedel from side to side. The volar surface (Facies volaris)
is correspondingly concave in its length and is flattened in the transverse direction. At its proximal part there is a smooth shallow groove, which concurs with the ulna in the formation of the interosseous space of the forearm (Spatium interosseum antibrachii) ; the nutrient foramen is in the lower part of this groove. Below this there is in the young subject a narrow, rough, triangular area to which the ulna is

Fig. 67.-Left Ridicsand Clena of Horse; Lateral View.

1. Tuherosity for attachraent of lateral ligament of elhow joint, and common and lateral extensor muscles; 2 , tuberosity for attachment of lateral hgament of carpal joint: 3, groove for common extensor tendon; 4, groove for lateral extensor teddon.

Fig. 65.-Left Radics ano Utaa of Honse; Medlal View.

1. Tuberosity for attachment of short part of medial ligament of elbow; 2, prominence for long part of stme; 3, groove for ead of brachialis muscle; 4 , tuberosity for attachment of medial ligament of carpal joint; 5 , oblique groove for teudon of extensor carpi obliquus.
attached by an interosscous ligament; in the adult the two bones are fused here. A rariable rough elevation distal to the middle and close to the medial border gives attachment to the radial check ligament. The medial border (Margo medialis) is slightly concave in its length and is largely subcutaneous: at its proximal end there is a smooth area on which the tendon of insertion of the brachialis muscle lies, and a small rough area just below gives attachment to that muscle and the long
medial tigament of the elbow-joint. The lateral border (Margo lateralis) is more strongly curved, but presents no spectial features.

The proximal extremity or head ((Extremitas proximalis s. capitulum radii) is flattened from before backward and wide transversely. It presents the humeral articular surface (Facies articularis humeralis) which corresponds to that of the distal end of the humerus; it is crossed by a sagittal ridge, which has a synovial fussa on its posterior part, and ends in front at a prominent lip, the coronoid process (Processus coronoideus). Just bedow the posterior border, and separated by a depression, there are two concave facets (Facies articularis uhnaris) for articulation with the uha, and between these and the interosscous space is a quadrilateral rough area at which the two bones are united by an interosseons ligament. At the medial side of the dorsal surface is the radial or bicipital tuberosity (Tuberositas radii), into which the biceps tendon is inserted. The medial tuberosity (Tuberositas proximalis medialis) is continuous with the preceding eminence, and furnishes attachment to the short part of the medial ligament. The lateral tuberosity (Tuberositas proximalis lateralis) is more salient; it gives attachment to the lateral ligament and to the common and lateral extensor muscles of the digit.

The distal extremity is also compressed from before backwarl. It presents the carpal articular surface (Facies articularis carpea), which consists of three parts. The medial facet is the largest, is quadrilateral, concavo-convex from before backward, and articulates with the radial carpal honc; the intermediate one is somewhat similar in form but smaller, and articulates with the intermediate carpal bone; the lateral facet is smaller, is convex, and articulates below with the ulnar carpal and behind with the acecsory carpal. The dorsal surface presents three grooves, separated by ridges. The middle one is vertical and gives passage to the tendon of the extensor carpi radialis; the lateral one is similar and contains the tendon of the common digital extensor; the medial one is small and ollique and lotges the tenton of the extensor carpi obliquus. The volar aspect is crossed by a rough ridge, below which are three depressions. On either side is a tuberosity (Tuberculum tigamenti) to which the collateral ligament is attached. The tateral one is marked hy a small vertical groose for the passage of the lateral extensor tendon.

Development.-The radius ossifies from four centers, viz., one each for the shaft, the two extremities, and the lateral part of the distal end; the last is morphologically the distal end of the ulna which has fused with the radius, and the line of fusion is often indicated by a distinct groove on the carpal articular surface. The proximal extremity unites with the shalt at about one and a half years, the distal end at about three and a half years usually.

THE ULNA

The ulna of the horse is a reduced long bone situated behind the radius, with which it is partially fused in the adult.

The shaft (Corpus ulnee) is threc-sided and tapers to a point distally. The dorsal surface (Facies dorsalis) is applied to the volar surface of the radius, and below the interosseous space the two bones are fused in the adult. The surface which enters into the formation of the space is smooth and usually presents a small nutrient foramen, directed upward. Nbove the space it is rough and is attached to the radius by an interusseous ligament which is usually permanent. The medial surface (Facies medialis) is smooth and slightly concave. The lateral surface (Facies lateralis) is flattencl. The medial and lateral borders (Xlargo medialis, lateralis) are thin and sharp, except at the interosscous space. The volar border (Alargo volaris) is slightly coneave in its length and is rounded. The distal end is pointed and is usually a little below the middle of the radius. It is commonly
continued by a fibrous eord to the distal tuberosity of the radius, but this band may be replaced in part or entirely by bone.

The proximal extremity (Extremitas proximalis) is the major part of the bone. It projects upward and somewhat baekward behind the distal end of the humerus, and forms a lever arm for the extensor museles of the elbow. The medial surface is concare and smooth. The lateral surface is convex and is roughened above. The dorsal border bears on its middle a pointed projection, the processus anconæus or "beak," which overhangs the semilunar notch (Incisura semilunaris). ${ }^{1}$ The latter is triangular in outline, concave from above downward, convex transversely, and articulates with the humerus; in its lower part there is an extensive synovial fossa. Just below the notch are two convex facets which articulate with those on the volar aspect of the proximal end of the radius. The volar border is nearly straight, and is thick and rounded. The free end or summit is a rough tuberosity, the olecranon, which gives attachment to the triceps brachii and other muscles.

The primitive distal extremity has, as previously stated, fused with the radins.

Development.-The ulna ossifies from three centers, of which one is for the main part of the bone, one for the olecranon, and one for the distal end. The cartilaginous embryonic ulna extends the entire length of the forearm. The distal part of the shaft is usually reduced to a small fibrous band or may disappear entirely; in some cases a variable remnant of it ossifies. The distal ex-

Fio. 69.-Distal End of Left Radius and Ľlna of Horse; End View.
1, 2, 3, 4, Facets which articulate with radial, intermediate, ulnar, and accessory carpal bones respectively; 5 , groove for teadon of extensor carpi radialis: 6, groove for tendon of common digital extensor: 7 , tuberosity for attacbment of medial ligament of carpal joist.

Fio, 70.-Sagittal, Section of Tpper Part of Radies and Ulia of Horse. Cm, Medullary cavity of ulna.
tremity fuses before birth with the radius. The olecranon unites with the rest of the bone at about three and a half years. A medullary cavity appears to occur constantly in the adult-contrary to the statements of some anthors.

THE CARPUS

The carpus of the horse consists of seven or eight carpal bones (Ossa carpi) arranged in two rows, proximal or antibrachial and distal or metacarpal. The
${ }^{1}$ Formerly called the sigmoid cavity.
(ablreviated) names and relative positions of the bones of the left carpus are indicated below:

The Radlal Carpal Bone

The radial carpal lome (O. carpi radiale)' is the largest bone of the proximal row; it is somewhat compressed transersely, and is dearly six-sided. The proximal surface is convex in front, concave behind, and articulates with the medial facet on the distal ent of the ratims. The distal surface is also convex in front and concave behind; it articulates witl the second and third earpal bones. The lateral surface bears upper and lower facets on its anterior part for articulation with the intermediate; between and behind these it is excavated and rough. The dorsal surface is rough and slightly convex. The medial surface and the volar surface are rough and tuberculate.

The Intermediate Carpal Bone

The intermediate carpal hone (O. eapi intermedium) ${ }^{2}$ is somewhat wedgeshaped, wider in front than behind. The proximal surface is saddle-shapect, and articulates with the middle facet on the distal end of the radius. The distal surface is smaller, convex in front, concave behind, and articulates with the third and fourth carpal bones. The medial surface has upper and lower facets for articulation with the radial earpal, and between these it is excavated and rough. The lateral surface is similar to the preceding and articulates with the ulnar carpal. The dorsal surface is rough and slightly convex. The volar surface bears a tuberosity on its lower part.

The Ulnar Carpal Bone

The ulnar carpal bone (Os earpi ulnare $)^{3}$ is the smallest and most irregular bone of the proximal row. The proximal surface is concave and fits the lower part of the lateral facet on the distal end of the ratims. The distal surface is oblique and undulating for articulation with the fourth carpal bone. The medial surface has upper and lower facets for articulation with the intermediate. The dorsal and lateral surfaces are continuous, convex, and rough. The volar surface is oblique, and hears a concave facet for articulation with the accessory carpal bone; below this is a tulererle.

The Accessory Carpal Bone

The accessory carpal hone (O : carpi accessorium $)^{4}$ is situated behind the uhar carpal lone and the lateral part of the distal end of the radius. It is discoid and presents for deseription two surfaces and a circumference. The medial surface is concave and forms the lateral wall of the carpal groove. The lateral surface is convex and rough; a smooth groove for a tendon crosses its anterior part obliquely downward and slightly forward. The dorsal border bears two facets; the proximal one is concave and articulates with the back of the lateral facet on the distal end of the radius; the distal one is convex and articulates with the ulnar carpal bone. The remainder of the ciremmference is roundet and rough.

[^13]The accessory does not directly bear weight, and may be regarded as a sesamoid bone interposed in the course of the tendons of the middle and lateral flexors of the carpus, whech it enables to act at a mechanical advantage. The posterior borler furnishes attachment to the transverse carpal ligament, which completes the carpal canal for the flexors of the digit.

The First Carpal Bone

The first carpal bone $(\mathrm{Os} \text { carpale primum })^{2}$ is a small inconstant bone, commonly about the size and shape of a per, which is situated in the distal part of the medial ligament of the carpus, behind the second carpal bone.

This bone appears to be absent on both sides in about half of the cases; in a good many subjects it is present on one side only. In size it varies from a minute nodule to a discoid or eylindrical mass $12-15 \mathrm{~mm}$. in length. In exceptional cases it articulates with both the second carpal and the second metacarpal bone; in other cases with the former only, but in the majority of specimens no articular facet is present.

Fig. al.-Left Carpts of Horse, with Parts of Abuacent Bones; Lateral View.
$C i$, Intermediate carpal; $C u$, uinar carpal; Ca, accessory carpal; $C 3$, third carpal; $C 4$, fourth carpal; if $\sim I I I$, $M c I L^{*}$, metacarpal bones: 1, groove for common extensor tendon; 2, groove for tateral extensor tendon; 3 , groove for tong tendon of ulnaris lateralis; 4 , metacarpal tuberosity; 5 , original distal end of ulna, which is fused with the radius and regarded as part of the latter.

The Second Carpal Bone

The second carpal bone $\left(O s\right.$ carpale secundum) ${ }^{2}$ is the smallest constant bone of the distal row, and is irregularly hemispherical in shape. The proximal surface is a convex facet, which is continued upon the volar surface and articulates with the radial carpal. The lateral surface faces obliquely outward and forward, and bears

[^14]three facets for articulation with the third carpal bone. The dorsal and medial surfaces are continuous and bear a tuberosity to which the collateral ligament is attached. The distal surface is articular and consists of a large flattened facet for the second or inner metacarpal bone, and a small one for the third or large metacarpal bone. Some specimens have a small facet on the lower part of the volar surface which articulates with the first carpal bone.

The Third Carpal Bone

The third carpal bone $\left(O\right.$ s carpale tertium 1 is much the largest bone of the distal row, forming more than

Fig. 72.-Left Carpes of Horse, with Parts of Adjacent Bones; Medial View.
Cr. Radial carpal; (a, ancessory carpal; C1, first carpal; CQ, second carpal; MCII, MCIII, metacarpal bones; 1, tuberosity of radius for attachment of medial ligament of earpus; 2, groove for tendon of exteusor carpi obliquus; 3, third carpal; 4, metacarpal tuberosity. two-thirds of the width of the latter. It is flattened from above downward, and is twice as wide in front as behind. The proximal surface consists of two facets scparated by an antero-posterior ridge; the medial facet is concave and articulates with the radial carpal; the lateral facetfor the intermediate carpal-is coneave in front and convex behind, where it encroaches on the volar surface. The distal surface is slightly undulating, and articulates almost entirely with the third or large metacarpal bone, but it usually hears a small oblique facet at its medial side for the second metacarpal, and there is commonly a non-articular depression laterally. The medial surface faces backward and inward, and bears three facets for articulation with the second carpal, between which it is excavated and rough. The lateral surface has two facets for articulation with the fourth carpal, and is depressed and rough in its middle. The dorsal surface is convex and is crossed by a rough transwerse ridge. The volar surface is relatively small, and is rounded; its upper part is encroached upon by the proximal articular surface, below which it is rough.

The Fourth Carpal Bone

The fourth carpal bone (Os carpale quartum) ${ }^{2}$ is somewhat wedge-shaped, and is readily distinguished from the second by its greater size and its volar tuberele. The proximal surface articulates with the intermediate and ulnar; it is convex and curves outward, backward, and downward, encroaching on the lateral and volar surfacts. The distal surface bears two medial facets for the third or large metacarpal

[^15]and a lateral one for the fourth or lateral metaearpal bone. The medial surface has two or three facets for articulation with the third carpal, between which it is excavated and rough. The dorsal surface is convex and rough. The lateral sur-

Fio. 73.-Left Carpus of Horme, with Parts of Abjacent Bones; Volir Viet.
The accessory and first carpal bones have been moved out of their natural position and their articular connections indicated by arrows. Cr, Radial carpal; 3, intermediate carpal; C'u, ulnar carpal; C'a, accesory carjal; C 1 , first carpal; C2, second earpal; 4, third carpal; C.4, fourth carpal; 1, groove for lateral extensor teudon; 2, tuberosity of radius for medial ligament of carpal joint; 5, volar tuberele of fourth carpal; 6, rougb area on large metacarpal bone for attachment of suspensory ligament.

Fig. 74.-Proximal Row of Left Carpus of Horse; Proximal View.
1-f. Articular fuchts corresponding with those on Fig. 69; 5, groove for teadon of ulnaris lateralis.

Fig. 75.-Distal Row of Left Carpts of Horse: Proximal View.

1, Articulation of first earpal with spond; $2, \tilde{\Sigma}^{7}$, facets for radial; $3,3^{\prime}$, facets for intermediate; 4 , facet for ulbar.
face is small, being encroached upon ly the proximal articular surface. The volai surface bears a tuberele on its distal part. ${ }^{1}$

The Carpus as a Whole

The bones of the earpus, exclusive of the accessory, form an irregular quadrangular mass, the width of which is about twice the height or the dorvo-volar diameter. The dorsal surface is convex from side to side, depressed along the line of junction of the two rows, and prominent below. The volar surface is in general slightly convex, but very irregular. It forms with the accessory

Fig. 7h. -Right Metararpal Boner of llorse; Yolar View.

1. Nutrient foramen of large (third) metacarpal bone; 2, 3, 4, proximal extremitics; 5_{2} surface for attachment of suspensory ligament; 6, sagittal ridge of distal end of large metaearpal bone; $7,7^{-1}$, distal ends of small (second and fourth) metacarpal bones. (arpal the carpal groove (Sulcus earpi), whieh in the recent state is rendered smooth by the volar ligament; it is converted into the carpal canal (Canalis carpi) for the flexor tendons by the transverse carpal ligament, whieh stretehes across from the accessory bone to the medial side. The proximal surface is widest medially and is elevated in front, concave behind; it is entirely articular and adapted to the earpal articular surface of the radius. The distal surface is also articular and is irregularly faceted in adaptation to the surfaces of the metacarpal hones; each of the distal bones usually articulates with two metacarpal hones, but sometimes the third rests on the third metacarpal only. The medial and lateral surfaces are hoth irregular and rough, the former being the wider. With the exception of the accessory, ulnar, and sceond, each bone articulates with two bones of the other row.

Development.-Each ossifies from a single center.

Fig. 7.-Proximal Extremities of left Metacarpal Bones of Morme; End liew.
2, 2^{\prime}. Facets for sccond carpal bone; $3,3^{\prime}$, facets for third carpal bone; $4,4^{\prime}$, facets for fourth carpal bone; 5 , metacarpal tuberosity.

THE METACARPUS

Three metacarpal bones (Ossa metacarpalia) are present in the horse. Of these, only one, the third or large metacarpal bone, is fully developed and carries a digit; the other two, the second and fourth, are much reduced, and are commonly called the small metacarpal or "splint" bones.

The Third or Large Metacarpal Bone

This (O s metaearpale tertium) is a very strong long bome, whieh is sitnated vertieally between the carpus and the first phalan. It consists of a shaft and two extremities.
${ }^{1}$ This bone is probably equivalent to the fourth and fifth carpals of forms in which five carpal elements are present in the distal row.

The shaft (Corpus) is semicylindrical, and presents two surfaces and two borders. The dorsal surface is smooth, convex from side to side, and nearly straight in its length. The volar surface is somewhat convex from side to side and, with the small bones, forms a wide groove which lodges the suspensory ligament. On either side of its proximal two-thirds it is roughened for the attachment of the small metacarpal bones. The nutrient foramen occurs at the junction of the proximal and middle thirds. The distal part is wider and flattened. The borders are rounded.

The proximal extremity (Extremitas proximalis s. basis) bears an undulating articular surface adapted to the distal row of carpal bones. The greater part supports the third carpal bone; the oblique lateral part, separated from the preceding by a ridge, articulates with the fourth, and a small facet for the second is usually found at the medio-volar angle. On either side is a notch separating two small facets which articulate with the proximal ends of the small metacarpal bones. Toward the medial side of the dorsal surface is the metacarpal tuberosity, into which the extensor carpi radialis is inserted. The volar surface is roughened for the attachment of the suspensory ligament.

The distal extremity (Extremitas distalis s. capitulum) presents an articular surface for the first phalanx and the proximal sesamoid bones, which is composed of two condyles, separated by a sagittal ridge; the medial condyle is slightly the larger. On either side is a small fossa, surmounted by a tubercle, for the attachment of the collateral ligaments of the fetlock joint.

The large metacarpal is one of the strongest bones in the skeleton. The compact substance is specially thick in front and medially. The medullary cavity extends further toward the ends than in most of the long bones of the horse and there is little spongy substance.

The Small Metacarpal Bones

These, numerically the second and fourth metacarpal bones (Ossa metacarpalia secundum et quartum), are situated on either side of the volar surface of the large metacarpal bone, and form the sides of the metacarpal groove. Each consists of a shaft and two extremities.

The shaft (Corpus) is threc-sided and tapers to the distal end. It is variably curved, convex toward the middle line of the limb. The attached surface is flattened aud is rough, except in its lower part; it is attached to the large metacarpal bone by an interosscous ligament, except near the distal end. The dorsal or abaxial surface is smooth and rounded from side to side above, grooved below. The volar or axial surface is smooth and concave from edge to edge, except below, where it forms a rounded edge.

The proximal extremity (Extremitas proximalis s. basis) is relatively large. In the case of the medial bone it usually bears two facets above which support the second and third carpal bones, while the lateral bone has here a single facet for articulation with the fourth carpal bone. Each has also two facets for articulation with the large metacarpal, and is elsewhere roughened for the attachment of ligaments and muscles. The medial bone may present a small facet behind for the first carpal bone.

The distal extremity (Extremitas distalis s. capitulum) is usually a small nodule, which projects to a variable extent in different subjects, and is easily felt in the living animal. It is situated two-thirds to three-fourths of the way down the region.

[^16]Development.-The large metacarpal bone ossifies from three centers. The
proximal extremity unites with the shaft before birth, the distal extrenity toward the midele of the second year. The small metacarpal benes ossify from two centers, one of which is for the proximal extremity. Their distal cods are eartilaginons at birth. Fusion of the midelle part of the shaft with the large metacarpal bone is common.

THE PHALANGES

The First Phalanx

The first phalanx (Phalanx prima) ${ }^{1}$ is a long bone, and is situated between the large metacarpal bone and the second phalanx. It is directed obliquely downward and forward, forming an angle of 50 to 55 degrees with the horizontal plane in wellformed limbs. It consists of a shaft and two extremities.

Fig. 7S.-SEeleton of Digit and Distal Part of Metacibpts of Morse: Lateral View. $1-7$. Eminences and depression for attachment of ligaments. Cartilage of third phalans is removed.

The shaft (Corpus) is wider and much thicker above than below, and presents two surfaes and two borilers. The dorsal surface is convex from side to side and smooth. The volar surface is flattened, and bears a triangular rough area, bounded by ridges which begin at the proximal tuberosities and converge distally; this area furnishes attachment to the distal sesamoidean ligaments. The borders, medial and lateral, are rounded and have a rough area or a tubercheon their middle parts.

The proximal extremity (Extremitas proximalis s. hasis) is relatively large. It bears an articular surfoce adapted to the distal end of the large metacarpal bone,
${ }^{1}$ This bone is also called the large pastern bone or os suffraginis.
consisting of two glenoid cavities separated by a sagittal groove; the medial cavity is a little larger than the lateral one. On each side is a buttress-like tuberosity for ligamentous attachment. The dorsal surface has a slight elevation for the attachment of the extensor tendons.

The distal extremity (Extremitas distalis) is smaller, especially in its dorsovolar diameter. It presents a trochlea for articulation with the second phalanx, consisting of a shallow sagittal groove separating two condyles; the medial con-

Fig. 79.-Phalanges and Distal Sesanoid of Horse; Dorsat Aspect.
dyle is a little the larger, and the two are separated posteriorly by a notch. On either side, just above the margin of the articular surface, is a depression surmounted by a tubercle, to both of which the collateral ligament is attached. Behind the tubercle is a distinct mark to which the superfieial flexor tendon is attached.

Development.-The first phalanx ossifies from three centers. The distal end unites with the shaft before birth, the proximal end at about one year of age.

The first phalanx contains a small medullary cavity in the middle of the shaft. It may be
remarked that the bonce is twisted slightly; when placed volar surface down on the table, it touches the latter by three points only, the proximal tuberosities and the merlial condyle.

The Second Phalanx

The second phalanx (Phalamx secunda) ${ }^{1}$ is situated between the first and third phalanges, its direction corresponding to that of the first phatans. It is flatened from before backward, and its wilth is greater than its height. It may be described as possessing four surfaces.

The proximal surface presents two glenoid cavitios separated by a low ridge, and articulates with the first phalans.

Fig. mo.-Digital Bonea of Fore Jimb of Hohse; Volar Aspeet.
to which it conforms in a general way. The middle of the dorsal border is elevated and ronghened in front for the attachment of the common extensor tendon. The volar border is thick and overhanging; in the fresh state its middle part is covered with cartilage, over which the deep llexor tendon passes. On either side there is an eminence, to which the collateral ligament and the superficial ftexor temelon are attached.

The distal surface is trochlear, and articulates with the third phalanx and distal spsamoid bone. It resemhes somewhat the trochlea of the first phalanx, but is more extensive and encroaches more on the dorsal and volar surfaces.

The dorsal surface is convex from side to side and smooth in its middle; on each side of its distal part is a rough depression, surmounted by a tuberosity, to both of which ligaments are attached.

The volar surface is smooth and flattened. The borders whiels separate the dorsal and volar surlaces are concave from above downward, rounded from before backward.

Development. -The second phalanx ossifies like the first, but the proximal end unites witl the shaft two or three months earlier.

The Third Phalanx

The third phalanx (Phalans tertia) $)^{2}$ is entirely inclosed by the hoof, It presents for examination three surfaces, three borders, and two angles.

The articular surface (Facies articularis) faces upward and backward, and is chiefly adapted to the distal surface of the second phalanx, but a narrow, flattened area along the volar horder articulates with the distal sesamoid. The proximal or coronary border bears a central eminence, the extensor process (Processus exten-

[^17]sorius), to which the common extensor tendon is attached. (in either side is a depression for the attachment of the collateral ligament.

The dorsal or wall surface (Facies dorsalis) slopes downward and forward. The angle of inclination on the ground plane is about 45 to 50 degrees in front.

Fig. s1.-Third Phalant of Horse: Lateral V゙tem. a, b, Anterior and posterior extremitics of cartilage.

Laterally the height diminishes, and the slope becomes steeper, especially on the medial side. From side to side the curvature is almost semicircular. The surface is rough and porous, resembling pumice stone somewhat. It is perforated by numerous foramina of various sizes; a series of larger ones is situated on or near the distal border. On either side the dorsal groove (Sulcus dorsalis)² passes forward from the angle and ends at one of the larger foramina. In the fresh state this surface is covered by the corium of the wall of the hoof. The distal border is thin, sharp, and irregularly notehed; there is commonly a wider notch in front.

The volar surface (Facies volaris) is arched, and divided into two unequal parts by a curved rough line, the semilunar crest (Crista semilunaris). The larger area in front of the crest is cres-cent-shaped, concave, and comparatively smooth; it corresponds to the sole of the hoof, and may be termed the sole surface. The part behind the crest is much smaller, and is semilunar; it is related to the deep flexor tendon, and is hence called the flexor surface (Facies flexoria). It presents a central prominent rough area, on either side of

Fig. 82.-Section of Third Pealanx of Horse. Section is cut approximately parallel with volar surface and opens up the semilunar canal (C.s.). Volar foramina indicated by arrows.
which is the volar foramen (Foramen volare), to which the volar groove (Sulcus volaris) conducts from the angle. ${ }^{3}$ The foramina lead into the semilunar canal (Canalis semilunaris) within the bone, from which small canals lead to some of the foramina of the dorsal sur-

[^18]face. The deep flexor tendon is inserted into the semilunar crest and the central rough area behind it.

The volar grooves and foramina transmit the terminations of the digital arteries into the semilunar eanal, where they mert and form a terminal arelh, from which branches pass through canals in the bone and emerge through the foraminat on the dorsal surface.

The angles or wings (Anguli) are prismatic masses which project backward on either side; the medial one is usually the shorter. Each is divided into upper and lower parts by a noteh, or is perforated by a foramen whieh leads to the dorsal groove. ${ }^{1}$ The proximal border carries the cartilage.

The cartilages of the third phalans (Cartilagines phalangis tertis) ${ }^{2}$ are rhomboid curved plates which summount the angles on cither side. They are relatively large and extemd above the margin of the hoof sufficiently to be distinetly palpable. The abaxial suface is convex, the axial, concave. The proximal border is sinuous

Fig. 83.-Phalanges of New-born Fohl; Dorsal View.
Cartilages of third phalanx removed.

Fig. 84.--Phalangea and Distal Sfatmoli of New-bors Foal; V'Ular View.

Cartilages of third phalans removed. and thin; the distal is thicker and is in part attached to the wing. The anterior end is attached by ligament to the side of the second phalans. The posterior end eurves toward its fellow at the heel, and is perforated by numerous foramina for the passage of veins.

It will he noted that the size and form of the angles vary much in slifferent specimens. In the new-horn foal the angle is a small, pointed projection. Later the process of ossifieation invales the lower part of the eartilage to a varying extent. In some cases the greater part of the eartilage is ossified-a contition commonly termel "sidebone." In the roung subjeet the carilage is hyaline, but later it changes to the fibrous type.

Development. -The ossification of the third phalans is peculiar. While the proximal articular part is still eartihginous, a perichondrial cap of bone is formed in relation to the hoof. Later the process extends into the upper part.

Structure.-The interior of this bome is channcled by numerous eanals for vessels, most of which radiate from the semilunar canal to the dorsal surface; these are not eanals for nutrient vessels of the bone, but transmit arteries to the corium of the hoof. Thirk havers of compact substance are found at the articular and flexor surfaces and the extensor process, i. e., at the points of greatest pressure and traction.

The Sesamoid Bones

The two proximal sesamoids (1)ssa sesamoidea phalangis primæ) are situated behind the distal end of the large metacarpal bone, and are closely attached to the first phalanx by strong ligaments. Each has the form of a three-sided pyramicl. The articular surface (Facies articularis) conforms to the corresponding part of the

[^19]distal end of the large metacarpal bone. The flexor surface (Facies flexoria) is flattened and oblique; in the fresh state it is covered by a layer of cartilage which also fills the interval between the opposed borders of the two bones, and forms a smooth groove for the deep flexor tendon. The abaxial surface is concave, and gives attachment to part of the suspensory ligament; it is separated from the flexor surface by a rough everted border. The base is distal, and furnishes attachment to the distal sesamoidean ligaments. The apex is proximal and is rounded.

The distal sesamoid or navicular bone (O s sesamoideum phalangis tertix) is shuttle-shaped, and is situated behind the junction of the second and third phalanges. Its long axis is transverse, and it possesses two surfaces, two borders, and two extremities. The articular surface (Facies articularis) faces upward and forward; it consists of a central eminence, flanked by concave areas, and articulates with the distal end of the second phalan.. The flexor or tendon surface (Facies flexoria) is directed downward and backward. It resembles the articular surface in form, but is more extensive and not so smooth. In the fresh state it is coated with cartilage and the deep flexor tendon plays over it. The proximal border (Margo proximalis) is wide and grooved in its middle, narrower and rounded on either side. The distal border (Margo distalis) bears in front a narrow facet for articulation with the third phalanx. Behind this is a groove, which contains a number of rełatively large formmina, and is bounded behind by a prominent edge. The extremities are blunt-pointed.

Development.-Each ossifies from a single center.

The Bones of the Pelvic Limb

The pelvic girdle (Cingulum extremitatis pelvinæ) consists of the os coxæ, which unites ventrally with the opposite bone at the symphysis pelvis, and articulates with the saerum dorsally.

OS COXA

The os coxæ or hip bone ${ }^{1}$ is the largest of the flat bones. It consists primarily of three parts, the ilium, ischium, and pubis, which meet to form the acetabulum, a large cotyloid cavity for articulation with the head of the femur. These parts are fused at about one year of age, but it is convenient to describe them separately. ${ }^{2}$

The Illum

The ilium (O s ilium) is the largest of the three parts. It is irregularly triangular and presents two surfaces, three borders, and three angles.

The wide part of the bone is the wing (Ala ossis ilium). Its gluteal surface (Facies glutiea) faces dorso-laterally and backward. It is wide and coneave in front, narrower and convex behind. The wide part is crossed by the curved gluteal line (Linea glutæa), which extends from the middle of the medial border toward the tuber coxx. This surface gives attachment to the middle and deep gluteal muscles.

The pelvic surface (Facies pelvina) faces in the opposite direction; it is convex, and consists of two distinet parts. The medial triangular part (Pars articularis) is roughened for ligamentous attachment, and bears an irregular facet, the auricular surface (Facies auricularis), for articulation with the sacrum. The lateral quadrilateral part (Pars iliaea) is in general smooth. It is crossed by the ilio-pectineal line (Linea iliopectinea), which begins below the auricular surface and is continued

[^20]${ }^{2}$ The proper terms, strictly speaking, for these bones are os ilium, os ischii, and os pubis, but the names given above are sanctioned by common usage.
on the shaft of the bone to join the anterior border of the pubis. The line is interrupted by furrows for the iliaco-femoral vessels, and below these it bears the psoas tubercle (Tuberculum psoadieum), which gives attachment to the psoas minor musele. The iliacus muscle is attacherl to the surface lateral to the ilio-pectineal line.

The anterior border or crest ((rista iliaca) is concave, thick, and rough.
The medial border (Margo medialis) is deeply concave. Its midile part forms the greater sciatic notch (Incisura ischiadica major) and it is contimous behind with the ischiatic spine.

The lateral border (Margo lateralis) is concave and in great part rough. Its anterior part is crossed ly grooves for the ilio-lumbar vessels, which are continned

Fig. S5.-Right Os Coxe And Siscrua of Horse; Riget Lateral View.

1. Gluteal line; 2, impression of ilio-lumbar artery; 3, impression of iliaco-feroral artery: 4, depressions for attachments of tendons of origin of rectus femoris; 5 , crest to which lateral tendou of reetua fernoris and capsularis are attached; B, 6^{\prime}, articular surface of acetabulum (facies lunatal): $\overline{7}$, acetabular fossa; 5. obturator foramen; 9, line for attachment of gemellus musele; 10, lateral border of sacrum; 11, dorsal sacral foramina.
on the pelvic surface. The nutrient foramen is usually situated on or near the posterior part of this border.

The medial angle is termed the tuber sacrale; it curves upward and a little backward opposite to the first sacral spine, and forms here the highest point of the skeleton. It is somewhat thickened and rough.

The lateral angle, tuber coxæ, forms the basis of the point of the hip. It is a large quadrangular mass, narrow in its middle, and enlarged at either end, where it bears a pair of tuberosities. It is roughened for muscular attachment.

The acetabular angle (Angulus acetahularis) meets the other two bones at the acetabulum, of which it forms ahout two-fifths. Its prominent dorsal border forms
part of the ischiatic spine (Spina ischiadica), which is roughened laterally, smooth medially. Two depressions above and in front of the acctabulum give attachment to the tendons of origin of the rectus femoris musele. This angle is connected with the wing or wide part of the bone by a constrieted part, termed the shaft (Corpus ossis ilium). The latter is of three-sided, prismatie form. Its lateral surfaee is convex and rough, and gives attachment to the deep gluteus muscle. Its pelvic surface is smooth and is grooved for the obturator vessels and nerve. Its ventral surface is erossed lyy vaseular grooves, below which there is a rough area, which is bounded medially ly the psoas tuberele.

Fig. S6.-Ossa Coxarlas of Horse; Dorsal View.
A, Wiag: A'. sbaft of ilium; B, acetabular, B^{\prime}, symphyseal branch of pubis; C, body, C^{\prime}, acetabular branch (or shaft), ("'", symphyseal branch, of ischium: 1, gluteal line; 2, grooves for obturator nerve and vessels; 3, symphysis pelvis: 4, greater seiatic notch; 5, ilio-pectineal eminence; 6, pubic tubercle. Dotted lines indicate primitive separation of three bones.

The Ischium

The ischium (Os ischii) forms the posterior part of the ventral wall or floor of the bony pelvis. It slopes a little downward and inward, lout is practically horizontal in the longitudinal direction. The body of the ischium (Corpus ossis ischii) is irregularly quadrilateral, and may be deseribed as having two surfaces, four borders, and four angles.

The pelvic surface (Facies pelvina) is smooth and slightly concave from side to side.

The ventral surface (Facies ventralis) is nearly flat, and is in great part roughened for the attachment of the adduetor muscles.

The anterior border forms the posterior margin of the obturator foramen.

The posterior border is thick and rough. It slopes medially and forward to meet the border of the other side, forming with it the ischial arch (Areus ischiadieus).

The medial border meets the opposite bone at the symphysis ischii.
The lateral border is thick and rounded, but coneave in its length; it forms the lesser sciatic notch (Incisura ischiadiea minor), the lower boundary of the lesser seiatic foramen.

The antero-medial angle or symphyseal branch (Ramus symphyseos)

Fig. 87.-Onsh Coxarum of Mare; Vlentrdl Vew.
A, Wing, A^{\prime}, shaft of ilimn: B, aretabular brauch. B^{\prime}, symphysonl brameh, of pubis: C, boty, $C^{\prime \prime}$, acetabular branch (shaft), $\ell^{\prime \prime \prime}$. symphyseal branch, of ischium; 1, aturicular surface; 2, ilio-peetineal line; 2', psoas tubercle; 3 , arcuate line; 4, artirular part, 5, ilian part, of pelvie surface of ilium; ti, ilio-pectineal eminence; 7, pubic tubercle; s, acetabular fossa; 9, artimular surfacr of acctabulum (facies luuata); 10, symphysis pelvis; 11, pubic groove. Dotted lines indicate primitive division of os coxa.
meets the pubis, with which it forms the medial boundary of the obturator foramen.

The antero-lateral angle or acetabular branch (Ramus acetabularis) joins the other two bones at the acetabulum, of which it forms more than half. Dorsally it bears part of the ischiatic spine (spina ischiadica), and medially it is grooved for the obturator vassels. The term shaft is often applied to the constricted part of the acetabular branch.

The postero-medial angle joins its fellow at the symphysis.
The postero-lateral angle is a thick, three-sided mass, the tuber ischii (Tuber ischiadicuni); its lower border is the ventral ischiatic spine, to which the bieeps femoris and semitendinosus muscles are attached.

The Pubis

The pubis (Os pubis) is the smallest of the three parts of the os coxæ. It forms the anterior part of the pelvic floor, and may be described as having two surfaces, three borders, and three angles.

The pelvic surface (Facies pelvina) is convex in the young subject and the stallion, concave and smooth in the mare and usually in the gelding also. ${ }^{1}$

The ventral surface (Facies ventralis) is convex, and in great part rough for muscular attachment. Near the anterior border it is crossed by the pubic groove (Sulcus pubis), the medial part of which is occupied by a large vein, the lateral part by the accessory ligament; the groove leads to the acetabular notch.

The anterior border is thin in its medial part (except in the young subject and the stallion), forming the pecten ossis pubis. Laterally it bears the rough iliopectineal eminence (Eminentia iliopectinea), beyond which it is continuous with the ilio-pectineal line. Near the symphysis is a variable prominence, the tuberculum pubicum.

The medial border joins the opposite bone at the symphyis pubis.
The posterior border forms the anterior margin of the obturator foramen, and is marked laterally by the obturator groove.

The medial angle meets its fellow at the anterior end of the symphysis. This part is very thick in the young subject and the stallion, but in the mare, and usually in the gelding also, it becomes thin with advancing age.

The acetabular angle joins the ilium and ischium at the acetabulum.
The posterior angle joins the ischium, with which it forms the inner boundary of the obturator foramen.

The pubis may conveniently be regarded as consisting of a body (Corpus ossis pubis) and two branehes; the latter are termed the acetabular branch (Ramus acetabularis) and the symphyseal branch (Ramus symphyseos).

The Acetabulum

The acetabulum is a cotyloid cavity which lodges the head of the femur. It faces ventro-laterally, and consists of an articular and a non-articular part. The articular part (Facies lunata) is crescentic, and is cut into internally by a rough non-articular depression, the acetabular fossa (Fossa acetabuli). The medial part of the rim is correspondingly cut into by the acetabular notch (Incisura acetabuli), which is converted into a foramen by the transverse ligament in the fresh state, and transmits the accessory and round ligaments to the head of the femur.

The Obturator Foramen

The obturator foramen (Foramen obturatum) is situated between the pubis and ischium. It is oral in outline, the longer axis being dirceted forward and outward. It.s margin is grooved antero-laterally for the obturator nerve and vessels.

Development.-Each division of the os coxæ ossifies from one chief center. The center for the ilium first appears near the acetabulum, followed quichly by one for the ischium, and a little later by the pubic center. Secondary centers appear for the crest and tuber coxæ of the ilium, the tuber and posterior border of the ischium, and the acetabular part of the pubis. The symphyseal branches of the pubis and ischium are usually united with each other before birth, but the three

[^21]bones are not fused until the second year. The epiphyseal parts fuse with the main mass at four and a half to five years of age.

The acetabular part of the pubis ossifice from a separate center. It is most distinet in the embryo at three months, and is often called the os acetabuli. Martin says that the ilium has a center for the acetabular part, one for the shaft and wing, and a third for the crest. He also states that there is a special center for the acetabular part of the ischium, and a transitory nucleus in the symphyseal part of the pubis.

THE PELVIS

The bony pelvis is composed of the ossa coxarum, the sarum, and the first three eoecygeal vertebre. The dorsal wall or roof is formed by the sacrum and first three corevgeal vertedme, and the ventral wall or floor hey the pubic and ischial

Fig. 88. -Pelvic Bonea of Mare, Viewed from in Front and somewhat fnom Below.

1. Body of first sacral segment; 2. surface on wing of sacruni for articulation with like surface on transverse process of last lumbar vertebra; 3, wing of sacrum; 4, sacro-iliar articulation; 5, sucral canal; b; promontory; 7, apex of sacrum; s, ilio-pectineal line; 9 , ischiatic spine; 10 , grooves for ilio-lumbar vessels; 11, grooves for iliaco-femoral vessels.
bones. The lateral walls are formed by the ilia and the acetabular part of the ischa. The defect in the skeleton here is supplied in the fresh state by the sacrosciatic ligaments and semimembranosis museles.

The anterior aperture or inlet of the pelvis (Apertura pelvis eranialis) is boumed by the terminal line (Linea terminatis) or brim, which is composed of the base of the sacrum dorsally, the ilio-pectineal lines laterally, and the pecten pubis ventrally. It is ahmost cireular in the mare, semi-rliptical in the stallion, and faces obliquely downward and forward. It has two principal diameters. of these, the conjugate or sulcro-pubic diameter (Comjugata anatomica) is measured from the saeral promontory to the anterior and of the symphysis. The transverse diameter
(Diameter transversa) is measured at the greatest width, i. e., just above the psoas tubercle.

The posterior aperture or outlet of the pelvis (Apertura pelvis caudalis) is much smaller and is very incomplete in the skeleton. It is bounded dorsally by the

Fig. s9.-Pelvic Boves of Stallion: Front View.
C. Conjugate, D.t., transverse diameter of pelvic inlet.

Fig. 90.-Pelvic Bones of Mare; Front View. C, Conjugate, D.t., transverse, diameter of pelvic inlet.
third coccygeal vertebra and ventrally by the ischial arch; in the fresh state it is completed laterally by the sacro-seiatic ligament and the semimembranosus muscle.

The axis of the pelvis is an imaginary line drawn through the centers of the inlet, cavity, and outlet.

Sexual Differences.-Marked differences exist in the size and form of the pelvis in the two sexes. The average conjugate diameter is about $9 \frac{1}{2}$ inches (ca. 23 to

24 cm .) in the mare, 7.2 inches (ca. 18.75 cm .) in the stallion. The transverse diameter of the inlet is about the same as the conjugate in the mare, but is about S inches (ca. 20 cm. .) in the stallion. The obliquity of the inlet or inclination of the pelvis (Inelinatio pelvis) is greater in the female; the difference is indicated by the fact that a vertical plane from the pecten cuts the fourth sacral segment in the female, the second in the male. The outlet is also larger in the mare, the ischial arch being about one-third wider than in the stallion. The cavity is much more roomy in the female; the transverse diameter between the midelles of the superior ischatie spines is about 8 inches (20 cm .) in the mare, 6 inches (15 cm .) in the stallion. The pubic part of the floor in the female is concave and lies considerably lower than the ischatic part, which is wide and ahoost flat. In the stallion the pubis is very thick medially, and this part of the floor is convex, while the ischial part is relatively narrow, and is coneave from side to side. The obturator foramina are correspondingly harger in the female. The ilium is shorter, expecially with regard to its shaft, and the greater sciatic notch is deeper and narrower in the male. The petvis of the gelding, when castration has been performel eary, resembles that of the mare; otherwise the male characters appear to be rotained to a large degree.

THE FEMUR

The femur or thigh bone (Os femoris) is the largest and most massive of the long bones. It extemds obliquely downward and forwarl, articulating with the acetabulum above and the tibia and patella below. It presents for examination a shaft and two extremities.

The shaft (Corpus femoris) is in general evtindrical, hat flattened behind, and larger above than below. The anterior, medial, and lateral surfaces are eontinuous and strongly convex from side to side; there is often a central vertical rough line on the proximal part, but otherwise these surfaces are smooth. They are covered by the fuadriceps femoris musele. The posterior surface is wide, flat, and smooth in its proximal fourth. Distal to this part there is a rough devation laterally for the attachment of the femoral tendon of the biceps femoris, and a rough line medially to which the quadratus femoris is attachect. The midkle third is narrower, and is rough for the attachment of the adductor muscle. Just distal to this area an oblique groove crosees the surface, indieating the position of the femoral vessels. The medial border bears on its proximal part the trochanter minor, a thick rough ridge, to whieh the ilio-psoas musele is attached. From this a rough line curres up to the front of the neek and indicates the posterior limit of the attachment of the vastus medialis musele. A narrow rough area about the middle of the border gives attachment to the peetineus musele, and the nutrient foramen is usually found just in front of this mark. The medial supracondyloid crest (Crista supraeomlyboidea medialis) is situated below the groove for the femoral vessels, and gives origin to the medial head of the gastromemius. The lateral border is prominent in its upper part, and bears at the junetion of its proximal and middle thirds the trochanter tertius; ${ }^{1}$ this process is curved forward, and has a thick elge to which the tendon of the superficial ghteus muscle is attached. At the distal part is the supracondyloid fossa (Fossa supraeondyloidea), ${ }^{2}$ in which the superfieial digital flexor arises: it is brounded laterally hy a thick, rough margin, the lateral supracondyloid crest (Crista supracondyloidea lateralis), to which the lateral head of the gastromemius muscle is attached.

The proximal extremity (Extremitas proximalis) is large and consists of the head, neek, and trochanter major. The head ('aput femoris) is placed at the medial side and is dirested inward, upward, and somewhat forward. It is approximately hemispherical and articulates with the acetabulum. It is cut into
medially by a deep notch, the fovea capitis, in which the aceessory and round ligaments are attached. The articular surface is surrounded by a distinct margin. The neck (Collum femoris) is most distinct in front and medially. The trochanter major is situated laterally; it presents three features. The anterior part or convexity is situated opposite to the head and rises little above the level of the latter; it gives attachment to the deep gluteus muscle, and in the fresh state its lateral surface is coated with cartilage, over which a tendon of the middle gluteus passes, to be inserted into the crest, which is placed below and behind the convexity. The posterior part or summit is separated from the anterior part by a notch; it is situated behind the plane of the head and rises to a much greater height. It

Trochtea
Fig. 91.-Right Femer of Horse; Front Vitew.

Fig. 92.-Right Femur of Horse; Posterior View.
furnishes insertion to part of the middle gluteus muscle. Its posterior border is continued downward as the trochanteric ridge (Crista trochanterica), which forms the lateral wall of the trochanteric fossa (Fossa trochanterica). A number of foramina are found in the concave area medial to the convexity.

The distal extremity (Extremitas distalis) is large in both directions and comprises the trochlea in front and two condyles behind. The trochlea consists of two ridges separated by a groove, and forms an extensive surface (Facies patellaris) for articulation with the patella. It is very unsymmetrical; the medial ridge is much wider, more prominent, and extends up higher than the lateral one, and the two converge below. The condyles, medial and lateral (Condylus medialis, lateralis),
are separated hy the deep intercondyloid fossa (Fossa intereondyloidea), and articulate with the condyles of the tibia and the menser of the stifle joint. A ridge connects each eondyle with the lower part of the corresponding ridge of the trochlea. The intercondyloid fossa lodges the spine of the tiha and the eruciate ligaments of the stifle joint, which are attached here.

The condyles are obliquely placed with their long axes directed downward, forward, and inward. The artieular surface of the lateral condyle is more strongly convex from side to side than that of the medial one, and the rilge which comects it with the trochlea is much narrower.

The medial epicondyle (Epicondylus medialis) is a rounded proninence on the medial surface of the distal extremity, to which the collateral ligament and the adductor muscle are attached. The corresponding lateral epicondyle (Epicondylus

Fif. ! ab-Proximal Extremitt of Right Femer of Horse; End View.

1. Huad; 2, fovea capitis; 3, neck; 4, 5, anterior and posterior parts of trochanter major.

Fig. 94.-Distal Extremity of Richt Femur of Hurse; End View.
1, 1^{\prime}, Medial and lateral ridges of trochiea; 2, 2^{\prime}, medial and lateral condyles: $3,3^{\prime}$, mediat and lateral epicondyles; 4, extensor fossa; 5, depression for origin of poplitens.

Jateralis) is less distinct; it presents a mark where the lateral ligament is attached, below and behind which there is a depresion (Fossa musculi poplitei) in which the pophiteus muscle arises. Between the lateral condyle and trochlea is the extensor fossa (Fossa extensoria), in which the common tendon of origin of the extensor digitalis longus and peroneus tertius is attached.

Development.-The shaft and the distal end each ossify from one center, but the proximal end has two centers, one of which is for the head and the other for the trochanter major. The adge of the trochanter tertius also has a separate center. The proximat end fuses with the shaft at three to three and a half years, the distal at about three and a half years.

THE TIBIA

The tibia is a long bone which extends obliquely downward and backward from the stifle to the hock. It articulates above with the femur, below with the tarsus, and laterally with the fibula. It possesses a shaft and two extremities.

The shaft (Corpus tihis), large and three-sided above, becomes smaller and flattened in the sagittal direction below, but widens at the distal end. It presents for notice three surfaces and three horders. The medial surface (Facies medialis) is broad ahove, where it presents rough prominences for the attachment of the
medial ligament and the sartorius and gracilis muscles; below this it is narrower, convex from edge to edge and subcutaneous. The lateral surface (Facies lateralis) is smooth and somewhat spiral. It is wide and concave in its proximal fourth,

Fig. 95.-Rigut Tibia and Fibula of Hobse; Lateral View.
1, Tuberosity; 2, sulcus muscularis; 3, crest; 4, spine; 5 , lateral condyle; 6 . head of fibula: 7 , impression of anterior tibial vessels; 8 , shaft of fibula; 9 , lateral border of tibia; 10, lateral malleolus; 11, groove for lateral extensor tendon.

Fig. 96.-Riget Tibia and Fibuli of Horse; Postebior View.
1, Medial condyle; 2, lateral condyle; 3, spine; $\{$, fossa for anterior cruciate ligament; 5, popliteal notch; 6 , tubercle for posterior cruciate ligament; 7 , head of fibula; 8, vascular impression; 9 , interosseous space; 10, shaft of fibula; 11, muscular lines; 12, tubercle; 13, nutrient foramen; 14, medial malleolus; 15 , groove for tendou of flexor digitalis longus; 16 , lateral malleolus.
below which it becomes narrower and convex, and winds gradually to the front of the bone; near the distal end it widens a little, becomes flat, and faces forward. The posterior surface (Facies caudalis) is flattened, and is divided into two parts by the rough popliteal line (Linea poplitea), which runs obliquely from the proxi-
mal part of the laterat borter to the middle of the metial border. The triangular area above the line is oceupied by the popliteus musele, while the area betow is marked by rough lines (Lince musculares) to which the deep flexor muscle of the digit is attached; the lines fade out distally,

Fig. 97.-Right Tibia and Fibela of llorse: Anterior View.

1. Spiuf; 2, tuberosity; 3, gronve for middle patellar ligament; 4 , medial condyle; 5 , sulcus muscularis; 6 , lateral rondyle; 7 . head of fibula; S. interosseous space; 9 . lateral surface of tibia: 10 , shaft of fibula; 11 , imprint for attachment of gracilis; 12 , erest; 13 , prominence for attachment of semitendinosus; 14 , medial surface of tibia; 15 , medial mallcolus; 16. lateral malleolus. where the surface is smooth and flat. The nutrient foramen is situated on or near the popliteal line. The anterior border is very prominent in its proximal third, forming the crest of the tilia (Crista tibie); distally it is reeluced to a rough line, which ents at a small devation near the distal end of the bone. The medial surface of the crest presents a rough prominence for the attachment of the tendon of the semitendinosus. The medial border (Aargo medialis) is rounded in its proximat half, to which the popliteus musele is attached, and a tubercle is found on this part. The distat part is a rough line on well-marked bones. The lateral border (Crista interossea) is concave in its proximal part and concurs with the fibula in the formation of the interosseous space of the leg (Apatium interosseum cruris); a smooth impression indicates the course of the anterior tibial vessels through the space to the front of the leg. About the middle of the bone the border divides and incloses a narrow triangular sufface.

The proximal extremity (Extremitas proximatis) is large and three-sided. It bears two articular eminences, the medial and lateral condyles (Condylus medialis, lateralis). Each presents a somewhat saddle-shaped surface for articulation with the eorresponding condlyle of the femur and meniscus. The spine or intercondyloid eminence (Eminentia intereondyloidea) is the central prominence, upon the sides of which the articular surfaces are continued; it consists of a high medial part and a lower lateral part (Tubereuhm intercondyloideum mediale, laterate). On, before, and behind the spine are the intercondyloid fossæ, in which the anterior eruciate ligament and the menisei are attached. The conlyles are separated behind by the deep popliteal notch (Incisura poplitea), on the medial side of which there is a tubercle for the attachment of the posterior cruciate ligament. The lateral condyle has an overhanging outer margin (Margo infraglenoidalis), below which there is a facet (Facies articularis fibularis) for articulation with the fibula. The large anterior eminence is the tuberosity of the tibia (Tuberositas tibie). It is marked in front by a groove (Sulcus ligamenti), the lower part of which gives attachment to the middle patellar ligament, and the groove is flanked by rough areas for the attachment of the medial and lateral
patellar ligaments. A semicireular smooth noteh, the sulcus muscularis, separates the tuberosity from the lateral condyle, and gives passage to the common tendon of origin of the extensor digitalis longus and the peroneus tertius.

The distal extremity (Extremitas distalis) is much smaller than the proximal one; it is quadrangular in form and larger metlially than laterally. It presents an articular surface (Cochlea tibiep), which is adapted to the trochlea of the tibial tarsal bone, and consists of two grooves separated ly a ridge. The ridge and grooves are directed obliquely forward and laterally, and are bounded on either side by the malleoli, to which the collateral ligaments of the hoek joint are attached. A shallow synovial fossa is usually present on the midelle of the articular ridge. The lateral groove is wider and shallower than the medial one; it is frequently marked by a line or groove which indieates the former demarcation between the tibia and fibula. The medial malleolus (Malleolus medialis) is the more prominent of the two, and forms the anterior boundary of a groove for the tendon of the flexor digitalis longus. The lateral malleolus (Malleolus lateralis) is broader, and is marked by a vertical groove for the passage of the lateral extensor tendon.

Development.-The tibia has the usual three chief centers of ossification and supplementary ones for the tuberosity and the lateral malleolus. The latter is really the distal end of the fibula; it is a separate piece at birth, and the line of union is commonly quite evident in the adult in the articular groove. The proximal end unites with the shaft at about three and a half years, and the distal end at about two years of age.

Fig. 9n.--Promimal Extremity of Right Tibia of Horse; End View.

1. Medial condyle: 2, lateral condyle; 3. groove on 2 for popliteus tendon; 4 , popliteal noteh; 5 , tuberosity; f, groove for middle patellar ligament: 7, tubercles of spine: 8 , sulcus muscularis; l.c.a., l.c.p., depressions for attachment of anterior and posterior cruciate ligaments; l, m, m, depressions for attachment of menisci.

Fig 99.-Distal Extbemitt of Right Tibla ind Fibula) of Horse; Esd View.

1, 1', Artictalar grooves: 2, intermediate ringe and synovial fossa: 3. line of fusion of primitive distal end of fibula with tibia; 4 , medial malleolus; 5,5 , lateral malleolus; 6, anterior border.

THE FIBULA

The fibula of the horse is a much reduced long bone, situated along the lateral border of the tibia.

The shaft (Corpus fibule) is a slender rod whieh forms the lateral boundary of the interosseous space of the leg; it usually terminates below in a pointed end about one-half to two-thirds of the way down the lateral horder of the tibia.

The proximal extremity or head (Capitulum fibula) is relatively large, and is flattened transversely. Its medial surface presents a narrow area (Facies articularis eapituli) along the upper border for artieulation with the lateral condyle of tibia. The lateral surface is rough and gives attachment to the lateral ligament of the stifle joint. It has rounded anterior and posterior borders.

The distal extremity is fused with the tibia, constituting the lateral malleolus.
Development.--This resembles that of the ulna. The embryonic cartilaginous fibula extends the entire length of the leg, bat dow not articulate with the femur. The distal part of the shaft is usually reduced to a fibrous band. Three eenters of ossification appara, one each for the shaft and the extremities. The distal end unites carly with the tibia, forming the lateral malleolus.

It is interesting to note that in some eases the entire shaft of the fibula develops, a reversion to the condition in the Miocene ancestors of the horse.

THE PATELLA

The patella is a large sesamoid bone which articulates with the trochlea of the femur. It presents for description two surfaces, two borders, a base, and an apex.

The anterior, free surface (Facies libera) is qualrikateral, convex, and rough for muscular and ligamentous attachment.

The articular surface (Facies articularis) is also quadrilateral, but much less extensise. It presents a vertical rounded ridge, which corresponds to the groove

Fig, 100.-Right Patella of liorme; Anterinf View.

1. Attarhment areat of middle patellar liyament: 2. attachment area of lateral patellar ligament and biceps femoris.

Fini. 101.- Rheht Patella gf Morse; Pusterior View. 1, Medial part, 2, lateral part, of artimular surface.
on the trochlea of the femm, and separates two concave areas. Of the later, the medial one is much the larger, and is not very well adapted to the corresponding ridge of the trodlea; in the fresh state, however, it is completed and rendered more congruent by the eurved accessory fibro-cartilage.

The borders, medial and lateral, converge to the apex bekow, and each forms an angle at the base. The medial border is concave. The lateral border is rounded and its angle is less prominent. The medial angle and the adjacent part of the posterior margin of the lase give attachment to the fibro-cartilage of the patella (Fihrocartilago patellæ).

The base (Basis patellee) faces upward and hackward, and is convex transversely, concave from before backward.

The apex (Apex patellie) forms a hount point directed distally:
Development. -The patella develops as a sesamoid bone from a single center in a cartilaginous deposit in the tembon of the quadriceps femoris musele.

THE TARSUS

The tarsus or hock of the horse usually comprises six short bones (Ossa tarsi), but exeeptionally seven are present.

Fig. 103.- T\{riat Thameta and Proximal Paht of

 Tr, central turval: Th, first tarsal (fused with second) $T \Omega$, third tarsal; $T_{\text {h }}$, fourth tarsal; 1, tuher calcis; 2 , tarsal groove for deedp flexor trndun; 3, proximal 5, suatentuculum; 6, vascular camul; ML. II, $115, I \mathrm{~V}$. metatarsal bones.

The Tibial Tarsal Bone

The tibial tarsal lone (O s tarsi tibiale $)^{1}$ is the medial bone of the proximal row. It is extremely irregular in form, but may le considered as offering six surfaces for description.

The proximal and dorsal surfaces are contimuous, and form a trochlea (Trochlea tali) for articulation with the distal end of the tibia. The trochlea consists of two oblique ridges with a cleep groove between them; these curse spirally forward, downward, and outward, forming an angle of 12 to 1 in degrees with a sagittal plane. There is usually a shallow synovial fossa in the groove. The distal surface is convex from before backward, and most of it articulates with the central tarsal; laterally it has an oblique facet for the fourth tarsal, and a non-articular groove cuts into the surface to its middle. The plantar surface (Facies plantaris) is oblique and extremely irregular; it presents four facets for articulation with the fibular tarsal bone: the facets are separated by

Fig. 105.-Right Tarses and Proximal Part of Metatarsis of Horse; Lateral View
$T t$. Tihial tarsal (trophlea); Tf, fibular tarsal (body): $T c$, central tarsal; $T 3$, thard tarsal; $T \neq *$ fourth tarsal; 1, depression for attachment of lateral ligament; 2, processus cochlearis; 3, prominence for attachment of lateral ligument; \pm, groove for great metatitrsal artery; 5, tuber calcis; Mt, MII, $I \mathrm{~F}$, metatarsal bones. Arrow poiuts to vascular canal.

Fig. 106.-Rigitt Tibial Tarsal Bone of Horse; Plantar View.
1-4, Facets for articulation with fibular tarsal; 5, fossa; 6, distal tuberonity; 7, proximal tuberosity.
rough exeavated areas, and the largest fossa (sulcus tali) forms with a corresponding one on the fibular tarsal a cavity termed the sinus tarsi. The mediad surface bears on its distal part a large tuberosity and on its proximal part a small one for the attachment of the medial ligament of the hoselk joint. The lateral surface is smaller than the medial, and is marked by a wide rough fossa in which the lateral higament is attached.

The Fibular Tarsal Bone

The fibular tarsal bone (0 . tarsi fibulare $)^{2}$ is the largest bone of the hoek. It is clongated, flattened from sile to side, and forms a lever for the muscles which

[^22]extend the hock joint. It consists of a body and a medial process, the sustentaculum tali.

The body (Corpus) is enlarged at its proximal end to form the tuber calcis or "point of the hock"; the posterior part of this eminence gives attachment to the tendon of the gastrocnemius, while in front and on each side it furnishes insertion to tendons of the superficial digital flexor, biceps, and semitendinosus muscles. The distal extremity bears a concave facet for articulation with the fourth tarsal bone. The medial surface of the borly has on its lower part a strong process, the sustentaculum tali, which projects inward. The process has a large, oval, slightly concave facet in front for articulation with the tilial tarsal, and sometimes a small articular surface below for the central bonc. Its plantar surface forms with the smooth medial surface of the body a groove for the deep flexor tendon (Sulcus tarsi). Its merlial surface has a prominence on the clistal part for the attachment of the medial ligament. The lateral surface of the body is flattened, except below, where there is a rough prominence for the attachment of the lateral

Fig. 107. - Right Fibular Tarsal Bone of Horse; Dorsal View.
1-4, Facets for articulation with tibial tarsal bone; 5, fossa. ligament. The dorsal border is concave in its length, smooth and rounded in its upper part. About its middle is a bluntpointed projection (Processus cochlearis) which bears facets ou its medial and lower surfaces for articulation with the tibial tarsal bone, and is roughened laterally for ligamentous attachment. Below this are two facets for the tibial tarsal, and an extensive rough fossa which concurs in the formation of the sinus tarsi. The plantar border is straight and broad, and widens a little at each end; it is rough, and gives attachment to the long plantar ligament.

Fig. 108.-Right Central Tarsal Bone of Horse; Proximal Surface.
1, Articular surface for tibial tarsal; 2, facet for fibular tarsal; 3, non-articular depression.

The Central Tarsal Bone

The central tarsal bone (Os tarsi centrale) ${ }^{1}$ is irregularly quadrilateral, and is situated between the tibial tarsal and the third tarsal. It is flattened from above downward, and may be described as having two surfaces and four borders. The proximal surface is concave from before backward, and almost all of it articulates with the tibial tarsal; a non-articular depression cuts into its lateral part, and sometimes there is a facet for the fibular tarsal bone on the posterior angle. The distal surface is convex, and is crossed by a non-articular groove, which separates facets for articulation with the third and the first and second (fused) tarsals. The dorsal border and the medial border are continuous, convex, and rough. The plantar border bears two prominences, separated ly a notch. The lateral border is oblique, and bears anterior and posterior facets for articulation with the fourth tarsal, between which it is excavated and rough.
${ }^{1}$ Also termed the scaphoid or navicular bone.

First and Second Tarsal Bones

The first and second tarsal bones (0s tarsale primum et secundum) ${ }^{1}$ are usually fused in the horse, forming a bone of very irregular shape, situated in the medioplantar part of the distal row, below the central and behind the third tarsal. It is the smallest of the tarsal bones, and may be described as having four surfaces and two extremities. The medial surface faces lackward and inwarl, and is convex. Its anterior part is ridged, and gives attachment to the medial ligament, and its posterior part bears an imprint where the medial tendon of the tibialis anterior is inserted. The lateral surface is marked by a defp noteh which indicates the division between the first and second tarsal elements; it bears on its anterior part a facet for the thirl tarsal. The proximal surface is concave and has two facets for articulation with the central tarsal; it is separateal from the medial surfaee by a prominent border. The distal surface is hroad in front, where it articulates with

Fig. 109.-Rinht First and Second (Femed) Tarsal Bonea of Horse; Lateral Scrface-
$T 1, T 2$, First and second tarsal bones; 1, 1', articular surface for central tarsal: 2, facet for third tarsal; 3, facet for medial small metatarsal bone. Separation between two hones (when present) is indicated so far as visible by dutted line between I and 1^{\prime}.

Fig. 110--light Third Tarsal Bone of llorse: Promimal Surface.

1. 2, Facets for erntral tarsal; 3. 4. farets for formeth tarsal: 5, nonarticular depression; 6 , dorsal ridge.

Fig. 111.-Right Fourth Tarsal Bone or Horme; Medial SurFACE.

1, 1', l'acets for central tarsal; 2, 2', farets for third tarsal; 3, facet for tibial tursal; 4. 4', facets for fibular tarsal; 5, facet for large metatarsal bone; 6, groove which concurs with central and third tarsals in formation of vascular canal of tarsus.
the large and medial small metatarsal bones. The dorsal extremity bears a ridge or tuberele. The plantar extremity is a blunt point.

In some cases the first and second tarsal bones remain separate-a remarkable reversion to the eomelition in the carly andestors of the horse. In such specimens the first tarsal is a discoid bone, articulating above with the central, below with the small metacarpal bone. The second tarsal is qualrangular, equivalent to the thick anterior part of the bone as described above, and overlapped in part by the first tarsal.

The Third Tarsal Bone

The third tarsal bone (O s tarsale tertium $)^{2}$ resembles the eentral, but is smaller and triangular in outline. It is situated between the eentral above and the large motatarsal bone lolow. It possesses two surfaces and threp lorders.

The proximal surface is concave, and is crossed ly a non-articular depression which divides it into two unequal facets; it articulates with the central tarsal. The distal surface is slightly convex, and rests on the iarge metatarsal bone; it has an extensive central rongh exavation. The dorsal border is convex and hears a rounted ridge on its metial part. The medial border is deeply motehed and has a small facet for the second tarsal on its anterior part. The lateral border is also divided by a notrh into two parts, ant bears two diagonally opposite facets for

[^23]articulation with the fourth tarsal. In some cases there is a facet for the medial small metatarsal bone.

The Fourth Tarsal Bone

The fourth tarsal bone $(O \text { s tarsale quartum })^{1}$ is the lateral bone of the distal row, and is equal in height to the central and third together. It is cuboid in shape and presents six surfaces.

The proximal surface is convex from side to side, and articulates chiefly with the fibular tarsal, but to a small extent with the tibial tarsal also. The distal surface rests on the large and lateral
 sour metataral hore for third tarsal bones. It is crossed from before backward by a smooth groove, which by apposition with the adjacent bones forms the canal of the tarsus (Canalis tarsi) for the passage of the perforating tarsal vessels. The dorsal, lateral, and plantar surfaces are continuous and rough. A tuberosity behind gives attachment to the plantar ligament.

Development.-The fibular tarsal hone has two centers of ossification, one for the main mass and the other for the tuber calcis; the latter fuses with the rest of the bone at about three years of age. The first and second tarsals have separate centers, but fusion usually occurs before birth. Each of the other bones ossifies from a single center.

THE METATARSUS

The metatarsal bones (Ossa metatarsalia), three in number, have the same general arrangement as

Fig. 113.-Proximal Extremities of Riget Metatarsal Bones of Horse: End Viet

1. Facet for first tarsal; 2. 2'. facets for second tarsal: 3, 3', facets for third tarsal; $4,4^{\prime}, 4^{\prime \prime}$, facets for fourth tarsal; 5. pon-articular deprescon. Compare with Fig. 77.
the metacarpal bones, but present some important differences. Their direction is slightly oblique, downward and a little forward.

The third or large metatarsal bone (Os metatarsale tertium) is about onesixth longer than the corresponding metaearpal: in an animal of medium size the

[^24]difference is about two inches. The shaft is more cylindrical, and is atmost circular on eross-section, except in its distal part. At the proximal part of its lateral surface there is a groose, which is directed obliquely downward and backward, and is continued by the furrow formed by the apposition of the fourth or lateral metatarsal bone; it indicates the course of the great metatarsal artery. A shallow impression in a similar place on the medial side marks the position of the corresponding vein. The nutricnt foramen is rela-

Fign. I14, 115-Cross-sections of Left Metaciarpal and Metatarmal Bones.
Sections are cut a little above middle of bones. tively higher than on the metacarpal bone. The proximal extremity is much witer from before backwarl than that of the metacarpal bone. Its articular surface is slightly concave, and is marked by a large central non-articular depression, continued outward by a deep notch. The greater part of the surface articulates with the third tarsal, but there is a lateral facet for the fourth, and usually a small facet postero-medially for the second tarsal bone. Posteriorly there are two pairs of facets for articulation with the small metatarsal bones. The front is crossed by a rough ridge for insertion, which becomes larger and turns downward on the lateral side behind the vascular groove. The distal extremity closely resembles that of the corresponding metaearpal bone.

In some cases the distal part of the shaft is hent backward somewhat. The distal articular surface extends a little higher behind than in the case of the metacarjal bone. The large metittarsal bone is even more strongly eonstructend than the metacarpal. The shell of compact substance is very thick in the middle of the slaft, especially in front and medially.

Fig. 116.-Third Phalanx of Thoracic Limb of Horse.

Fig. 117.-Third Phatavy of Pelyic Limb of Horse.

The small metatarsal bones (O ssa metatarsalial secunclum et quartum) are a little longer than the corresponding metacarpals. The lateral (fourth) metatarsal bone is relatively massive, especially in its upper part. The head is large and outstanding, and bears one or two facets ahove for the fourth tarsal, and two in front and medially for articulation with the large metatarsal; elsewhere it is roughened for attardment. The medial (serond) metatarsal bone is much more slender than the lateral one, especially in its proximal part. The head hears two facets above for the first and second tarsals, and sometimes one for the third tarsal.

THE PHALANGES AND SESAMOID BONES

The axis of the phalanges of the hind limb forms with the ground plane an angle which is about five degrees greater than that of the fore limb, and the chief differences in the form and size of the bones are as follows:

The first phalanx is a little shorter, wider above, and narrower below.
The second phalanx is narrower and slightly longer.
The third phalanx is narrower, the angle of inclination of the dorsal surface is a little (ca. 5 degrees) greater, the plantar surface is more concave, and the angles are less prominent and closer together. The term plantar is to be substituted for volar in the designation of corresponding features.

The proximal sesamoids are a little smaller, except in thickness. The distal sesamoid is narrower and shorter.

SKELETON OF THE OX

VERTEBRAL COLUMN

The usual vertebral formula is $\mathrm{C}_{7} \mathrm{~T}_{13} \mathrm{~L}_{6} \stackrel{5}{5}^{2} \mathrm{Cy}_{15}{ }_{15}{ }_{20}$.
The cervical vertebræ are much shorter than those of the horse and are smaller in their other dimensions. The articular processes are smaller than in the horse, and a plate of bone connects each two of the same side. The transverse processes of the third, fourth, and fifth are double; the upper part projects backward, and is short and stout; the lower part is directed downward and forward, and is longer and more plate-like. The lower part of the sixth transterse process is a large, thick, quadrilateral and almost sagittal plate, directed ventrally. The seventh transverse process is single, short, and thick, and presents no foramen transversarium; it is in series with the upper part of the preceding processes. The spinous processes are well developed, and increase in height from before backward. They are directed upward and forward, with the exception of the last, which is nearly vertical and is about four or five inches (ca. 10 to 12 emı.) in height. The summit of that of the third vertebra is usually bifid. The ventral spines are prominent and thick in their posterior part; they are absent on the last two.

The atlas has a large rough tuberosity on its dorsal arch. The ventral arch is very

Fig. 118.-Third Cervical Vertebra of Ox; Lateral View.
1, Spinous process; $2,2^{\prime}$, anterior and posterior articular processes; $3,3^{\prime}$, ends of body; 4, 4^{\prime}, transverse process; 5 , foramen transversarium; 6, ventral spine. thick. The wings are less curved than in the horse, and the foramen transversarium is absent. The anterior articular cavities for the occipital condyles are partially divided into dorsal and ventral parts by a nonarticular area, and are separated by a narrow interval below. The posterior articular surfaces are flattened behind and are continued into the vertebral canal, forming an extensive area for the dens of the axis.

The axis is short. The spine projects a little in front, and increases in height and thickness behind; its posterior border descends abruptly. The dens is wide, and its dorsal surface is deeply concave from side to side. The intervertebral

foramen is circular and not so elose to the anterior border of the arch as in the horse. The posterior notches are not so deep. The transverse processes are stouter, but the foramen transversarium is small and sometimes absent.

The thoracic vertebræ, thirteen in number, are larger than those of the horse.

Fig. 120.-Sixth Cervical Vertebra of Ox: Posterior View.

1. Posterior casity of body; 2, vertebral foramen; 3, arch; 4, 4', posterior articular processes; 5, 5, agterior articular processes; 6, 6', lateral braacbes of transverse processes; 7,7 ', ventral branches of transverse processes; 8 , foramen transversarium; 9, spipous process.

Fig. 122.-Atlas of Ox; Dorsal View.
1, Dorsal tubercle; 2, intervertebral foramen: 3, alar foramen; 4 , wing; 5,5 , posterior articular surfaces; 6 , ventral arch (surface for dens of axia).

Fig. 121.-Seventh Cervical Vertebra of Ox; Posterior View.

1, Posterior cavity of body; 2, 2', facets for head of first rib: 3, vertebral foramen; $4,4^{\prime}$, arch; $5,5^{\prime}$, articular processes; $6,6^{\prime}$, transverse processes; 7, spinous process.

Fig. 123.-Axis of Ox; Lateral View.

1. Body; 2, ventral spioe; 3, anterior articular process; 4 , posterior articular process; 5, deos; 6 , arch; 7, intervertebral foramen; 8 , transverse process; 9, foramen traosversarium and caralis transversarius (dotted lioe); 10, spinous process.

The body is longer and is distinetly constricted in the middle. It bears a thinedged ventral crest. The arch-in addition to the usual notches, whieh are shallow- is perforated in the posterior part by a foramen. The transverse proc-

Fig. 124.-Fourth Lembar Vertebra of Ox; Ponterior View.

1. Cavity of posterior end of borly, 2, notch of arch; 3, 4, articular processes; 5 , spinous process; 6 , transverse process.
ess is thick and strong, and bears a rounded mammillary process (except at the posterior end of the series) ; the last two, although prominent, clo not always articulate with the ribs. The spinous process is long. The first is much higher than in the horse, the next two are usu-

Fig. 125.-Sacrum of Ox: Dorsal View.
1-4, Dorsal sacral formmina; 5, sacral canal; 6, 6, articular processes; 7, auricular surface; 8, apex. tally the most prominent, and behind this there is a very gradual diminution in height. The backward slope, slight at first, inereases to the tenth; the last is vertical and lumbar in charaeter. The summit is usually pointed on the first, and the thickening on those further back is less than in the horse. The width diminishes from the fifth to the eleventh usually. Both borders of the spines are in general thim and sharp, but the last three or four sometimes have thick posterior margins.

The lumbar vertebræ, six in number, are much longer than in the horse. The body is much constricted in the middle, expanded at either end, and bears a rudimentary ventral erest. The fourth and fifth are usually the longest. The intervertebral foramina are often double in the anterior part of the series, and are very large further back. The articular processes are large, and their facets are more strongly curved than in the horse. The transverse processes all curve forward. They are separated by considerable intervals, and form no articulations with each other or with the sacrum. Their borders are thin and
irregular, and often bear projections of variable size and form. The first is the shortest and the length increases to the fifth, the last being considerably shorter. The spinous processes are relatively low and wide, the last being the smallest; their summits are moderately thickened.

The sacrum is longer than that of the horse. It consists originally of five segments, but fusion is more complete and involves the spinous processes, which are united to form a median sacral crest (Crista sacralis media), with a convex thick and rough margin. A lateral sacral crest is formed by the fusion of the articular processes. The pelvic surface is concave in both directions, and is marked by a central groove (Sulcus vasculosus), which indicates the course of the middle sacral artery. The ventral sacral foramina are large. The wings curve downward and forward; they are quadrangular, short, compressed from before backward, and high dorso-ventrally. They have an extensive anterior surface, which is concave from side to side and nonarticular. The posterior surface is rough, and at its lower part there is a triangular area for articulation with the ilium. The body of the first segment is very wide, and the entrance to the sacral canal correspondingly wide and low. The anterior articular processes are large and widely separated; they are concave and semicylindrical in curvature medially. The lateral borders are thin, sharp, and irregular. The bone does not become narrower posteriorly, so that the apex is usually a little wider than the part just behind the wings; the posterior end of the median crest forms a pointed projection over the opeming of the sacral canal.

The coccygeal vertebræ

Fig. 126.-Sacrtas of Ox; Vemtral View.
$I-\tau^{*}$, Segments; 1-4, ventral sacral foramina; 5 , anterior end of body of first sacral vertebra; 6, vascular groove; 7, posterior end of body of last sacra! vertebra. are longer and better developed than in the horse. The first five or six have complete arches and spinous processes. The transverse processes are relatively large in the anterior part of the series, in which there are also anterior articular processes (which do not articulate), and a pair of ventral spines which form a groove (sulcus vasculosus) for the middle coccygeal artery.

Vertebral Curves.-The cervical curve is very slight and is concave dorsally. The thoracic and lumbar regions form a gentle curve, concave ventrally. The promontory is more pronounced than in the horse, especially in subjects in which the sacrum is inclined upward behind. Another prominence occurs at the junction of the sacrum and first coccrgeal vertebre.

Length.-The following table gives the lengths (inclusive of the inter-
vertebral fibro-eartilages) of the vertebral regions of a shorthorn cow of medium size:

Cervieat.	50 cm.
Thoracie	50 cm.
Lumbar	40 cm.
Sural.	2.5 cm.
Coreygeal	75 cm.
	270 cm.

Variations.-Sometimes fourteen thoracie vertebre and fourteen pairs of ribs are present; reduction to twetve with the normal number

Fig. 127.-Right Eighth Ria of Ox; Medial Vien. of lumbar vertebrae is very rare. Aceording to Franck there are sometimes seven lumbar vertebra with the normat number in the thoracie region. The number of coceygenal vertebre may vary from sixteen to twenty-one.

THE RIBS

Thirtern pairs of ribs are present normally, of which eight are sternal and five asternal. They are in general longer, wider, flatter, less curved, and tess regular in form than in the horse. The eighth, ninth, and tenth are the longest and widest. The wilth of most of the rils increases considerably in the middle, and

Fig. 12s.-First Rib of Ox; Medial View.
the breadth of the intercostal spaces is correspondingly diminished; this is not the case in the posterior part of the series, where the intercostal spaces are very wide.

The neck is long, and forms (except in the posterior part of the series) a smaller angle with the shaft than in the horse. The articular surface of the tubercle is concave transversely, except on the last two or three, where the facet is small and flat or absent. The ventral ends of the secoud to the tenth or eleventh inclusive form diarthrodial joints with the costal cartilages. The first costal cartilages are very short; they articulate by their medial surfaces with the sternum, but not with each other.

The presence of a fourteenth rib is not very rare. It is usually floating and may correspond to an additional thoracic vertebra or to the first lumbar. Reduction of the thirteenth is more common. The eighth cartilage often does not reach the sternum, but articulates with the seventh.

THE STERNUM

The sternum consists of seven sternebræ, most of which are developed from two lateral centers. It is wider, flatter, and relatively longer than in the horse, and the ventral crest or "ked" is absent. The manulrium is somewhat wedgeshaped and laterally compressed. Its base forms a diarthrodial joint with the body of the bone, and laterally it bears extensive facets for articulation with the first pair of costal cartilages. The body widens from before backward, but behind the last pair of costal facets it becomes much narrower. The ventral surface is prominent on the second and third segments, concave further back. The lateral borders are notched for the passage of vessels. The cariniform cartilage is absent. The xiphoid cartilage is like that of the horse but is smaller.

THE THORAX

The bony thorax is shorter than in the horse. The inlet is higher. The roof is short, and the floor is wider and relatively longer. The transverse diameter is wider in the posterior part. The summits of the spinous processes are almost in a straight line from the second thoracic vertebra to the middle of the lumbar region.

The Skull

Bones of the Cranium

The occipital bone forms the lower part only of the posterior surface of the skull, and is separated from the highest part (the frontal eminence) by the parietal and interparietal bones. The supraoceipital, interparietals, and parietals fuse before birth or soon after, and the mass so formed is separated from the lateral parts of the occipital bone by a transverse suture in the skull of the calf. Above this suture is a central tuberosity, the external occipital protuberance, to which the ligamentum nuchae is attached, and the surface on either side is depressed and rough for muscular attachment. There is commonly a median occipital crest which extends ventrally from the protuberance. Below the suture the bone is much wider than that of the horse. The foramen magnum is wide, so that the condyles are further apart, except below. The paramastoid processes are short and wide and are bent inward. Usually at least two foramina are found in the condyloid fossa; the ventral one is the hypoglossal, the other (often double) conducts a vein from the condyloid canal. ${ }^{1}$ The latter passes upward from a foramen on the medial side of the condyle and opens into the temporal canal. The mastoid for-

[^25]
amen is situated on each side, at the junction of the oceipital and temporal bones; it communicates with the temporal and condyloid eanals at their junction. The cerebral surface of the supraoceipital presents a central depression, and above this is a variable but never very pronounced eminence, the internal oceipital protuberance. A groove on either side leads to the temporal canal. The basilar part is short and wide; its cerehral surface is deeply eoneave, and the internal spheno-necipital erest is prominent. Two large tubereles ventrally mark the junction with the sphenoid.

Mental foramen
Fig. 129.—skull of Ox; Lateral. View.
The jaws are separated for the sake of clearness. 1. Parietal bone; B. squamous temporal bone; C, occipital bone; D, perpendicular part of palatine bone; E, maxilla; F, malar bone; G, lacrimal bone; H, premazilla; 1 , occipital condyle; 2, paramastoid process; 3, meatus acusticus externus; 4, bulla ossea; 5, zygomatic proccss of temporal bone; $6,6^{\prime}$, zygomatic and temporal processes of malar bone; 7 , suprarbital process; S, orbital part of lacrimal bone; 9 , larrimal bulla: 10, fossa sacci lacrimalis; 11 , facial tuberosity; 12, infrnorbital foramen; 13, condyle of ruandible; 14, coronoid process of mandible.

The foramen lacerum is short and very narrow. In the arlutt animal the bone is excavated to contain an air-cavity which is regarded as a part of the frontal sims.

The sphenoid bone is short. The cerehral surface of the body presents a deep sella turciea, in front of which it rises abruptly. The high anterior part bears a central ridge, the ethmoidal spine, whieh joins the crista galli of the ethmoid. Two foramina oceur on either side. Of these, the large anterior one is equivalent to the foramen rotundum, orbitale, and trochleare of the horse; it may be termed

Fig. 190-- Choss-section of Crainitar of Ox.
The section cuts the posterior part of the temporal condyle and is viewed from behind, a, Body of sphenoid; b, bulla ossea; c, temporal condyle; 1 , dorsum sellx: 2 , foramen ovale; 3 , hypophyseal or pituitary fossa; 4 , foramen orbito-sotundum; 5. optic foraming; 6, crista galli; 7, cribriform plate of ethmoid; 8 , orbital wing of sphenoid; 9 , temporal wing of sphenoid; 10, internal plate of frontal bone; 11 , frontal sinus; 12, temporal process of malar bone.

Fig. 131.-Cross-section of Cranitm of Ox.
The section cuts the posterior part of the temporal condyle and is viewed from in front. a, Basilar part of occipital bone; b, bulla ossea; c, paramastoid process; d, meatus acusticus externus; e, temporal fossa; 1, tympanic cavity; 2 , internal opeming of condyloid canal; 3, internal opening of temporal canal; 4 , depression for vermis cerebelli; 5 , internal oceipital protuberance; 6 , internal plate of parietal bone; 7 , intornal plate of frontal bone; 8 , irontal sinus; 9 , petrous temporal bone; 10, postglenoid process; 11, byoid process.
the foramen orbito-rotundum. The posterior one is the foramen ovale, which transmits the mandibular nerve. The orbital wing is thick and is overlapped by the frontal in such manner as to appear externally to divide into two branches; the anterior part joins the ethmoid at the sphenopalatine formen, and contains a small sinus which commmicates with an ethmeidal meatus The temporal wing is small, but forms a prominent thick pterygoid crest. The pterygoid process is wide, and there is no alar eanal. The sphenoidal sinus is absent in the calf and small in the adult; it commmicates by one or two small openings with an ethnoidal meatus, and so with the nasal cavity.

Fig. 132.-Crantal and Orbital Regions of Skuth of Ox
The horn core, supraomital process, and greater part of z ygomatie arch have been sawn off: A, Frontal bone; $A^{\prime}, A^{\prime \prime}$, twmporal and orbital parts of same; B, parietal bone; C^{\prime}, squamous temporal bone; D, D^{\prime}, orbital and facial
 paramastuid process: 3, temporal crest: 4, temporal condyle: 5, postglenoid process; 6, external opening of temporal canal; 7. meatus acusticus exthruus; s, bulla ossea; 9, stylo-mastoid formmen; 10, muscular process of temporal bone; 11, tip of basilar tuberele: 12, foramen ovale; 13, foramen orbito-rotnodum: 14, optic foramen; 15 , ethmoidal foramen; 16, orbital opening of supraorbital canal; 17 , pterygoid crest; 1 s , ridge of orbital wing of splenoil; 19, pterygoid process of sphenoid; 20, hamulns of ptorygoid bone; 21, lacrimal bulla; 22, fossa sace lacrimalis; 23, root of supraorbital process; 24, processus cormis (section); 25, frontal eninence.

The ethmoid bone has an extensive perpendicular plate. The lateral mass consists of five endoturbinates and eighteen ectoturhinates (laulli). The largest ethmoturbinate is so extensive as to be termed a third or middle turbinate bone; it projects forward between the dorsal and ventral turbinates. The lamina lateralis appears to a small extent externally in the pterygo-palatine fossa, forming part of the dorsal margin of the sphenopalatine formene

The interparietals are primitively paired, but unite before birth. As already mentioned, fusion oreurs before or shortly after birth with the parietals and supraoceipital. The bone has no intracranial projection.

The parietal bones clo not enter into the formation of the roof of the cramium.

They constitute the upper part of the posterior wall, bend sharply forward along the lateral wall, and enter into the formation of the temporal fossa. The line of inflection is marked by the prominent parietal crest, which is continuous with the temporal crest below and the frontal erest anteriorly. The parietals are exeavated to form part of the frontal sinuses in the adult animal.

Fig. 133.-Setll of Jersey Cow; Dorsal View.

The condition in the young subjeet is as follows: The two parietals are united with each other and also with the interparietal and supraccipital. The resulting mass is somewhat horseshoeshapenl. Its oecipital part (Planum occipitale) forms the greater part of the posterior wall of the cramum and bears about its center the tuberosity for the attachment of the ligamentum nuchæ. From either side of this a line curves outward and divides the surface into an upper smooth area and a lower area which is rough for muscular attachment. The upper border joins the frontal bone and concurs in the formation of the frontal eminence. The temporal parts (Plana temporalia) are much smaller and are concave externally; they join the frontal above and the squamous temporal below. A median oecipital crest extends ventrally from the external occipital protuberance.

The frontal bones are very extensive, forming about one-half of the entire
length of the skull, and all of the roof of the eranium. The posterior borders form with the parietals a large central frontal eminence (Torus frontalis), the highest point of the skull. It the junction of the posterior and the lateral border is the processus cornus or "horn core," for the support of the horn. These proc-

Fig. 134, -secll of Ox, without Mlandible: Vextral View.

1. Foramen magnum; 2, occipital condyle; 3, paramastoid process; 4, condyloid foramen; 5, foramen lacerum; 6, hasilar part of occipital bone; $\overline{1}, \bar{\sigma}^{\prime}$, basilar tubercles; 8 , bulla ossea; 9 , foramen ovale (concealed by muscular process) ; 10, meatus acusticus externus; 11, zygomatic process of temporal bone, 12, condyle of same; 13, external opening of temporal canal; 14, proensaus corntus; 15. muscular process of temporal bone; 16, pterygoid crest; 17, orbital opening of supraorbital canal; 12 , choanæ or posterior nares: 19, hatmulus of pterygoid bone; 20, crest formed by pterygoid processes of sphenoid and palatine bones; 21, horizontal part of palatine bone; 22, anterior palatine foramen; 23, lacrimal bulla; 24, maxillary tuberosity; 25 , palatine process of maxilla; 26 , zygomatic process of malar bone; $2 \overline{4}$, facial tuberosity: 2s, body of premaxilla; 29, palatine process of same; 30, palatine fissure; 31, incisive fissure; 32, premolars; 33, molars.
esses are of elongated conical form, and vary greatly in size, length, curvature, and direction. The external surface is rough and porous, marked by numerous grooves and formmina; in the fresh state it is covered by the corium of the horn. The base has a constriction, the neek. The interior is excavated to form a number of irregular spaces, partially divided by bony septa, and communicating with the
frontal sinus. In the polled breeds these processes are absent, the skull is narrower here, and the frontal eminence more pronounced (Fig. 139). The supraorbital process is situated about half-way between the anterior and posterior margins; it is short and joins the frontal process of the malar bone. The supraorbital foramen (often double) is situated about an inch medially from the root of the process; it is the external orifice of the supraorbital canal (Canalis supraorbitalis), which passes downward and forward to the orbit. The foramen is in the course of the supraorbital groove (Sulcus supraorbitalis), which marks the course of the frontal vein. The anterior ends of the naso-frontal parts form a notch which receives the nasal bones, and sutural (or Wormian) bones are often found at this junction (nasofrontal suture). The orbital part is extensive; it is perforated behind by the orbital opening of the supraorbital canal, and below by the ethmoidal foramen. It does not articulate with the palatine bone, from which it is separated by the orbital wing of the sphenoid. The temporal part is also more extensive than in the horse. The frontal simus is very extensive, being continued into the parietals and occipital, and the horn processes when present.

The squamous and petrous parts of the temporal bone fuse early-in fact union is nearly complete at birth. The squamous part is relatively small. Its lateral surface is divided into two parts by the prominent temporal crest, which is continuous with the parietal crest above and turns forward below, ending at a tubercle above the external acoustic meatus. The part behind the crest faces backward, and is partly free, partly united with the occipital. The area in front of the crest is concave and enters into the formation of the temporal fossa; it is perforated by foramina which communicate with the temporal canal. The zygomatic process is much shorter and weaker than in the horse, and articulates with the malar only. The condyle is convex in both directions. The postglenoid process is less prominent, and behind it is the chief external opening of the temporal canal. The cerebral surface is ahmost completely overlapped by the parietal and sphenoid. The petrous part is small, but the tympanic part is extensive. The external acoustic meatus is smaller than in the horse and is directed laterally. From it a plate projects downward and helps to inclose the deep depression in which the hyoid process is placed. Behind this plate is the stylo-mastoil foramen. The muscular process is large and often bifid at its free end. The bulla ossea is large and laterally compressed. It is separated from the occipital bone by a narrow opening which is equivalent to part of the foramen lacerum of the horse. The temporal canal is formed entirely in the temporal bone. The facial canal, on the other hand, is bounded partly by the occipital bone.

Bones of the Face

The maxilla is shorter but broader and relatively higher than in the horse. Its lateral surface bears the rough facial tuberosity (Tuber faciale), placed above the third and fourth cheek teeth; a rough line which extends backward from it to the upper part of the malar bone may be regarded as the facial erest. The infraorbital foramen-often double-is situated above the first cheek tooth. The tuber maxillare is small, laterally compressed, and usually bears a small pointed process (Processus pterygoideus). The zygomatic process is very small. The interalveolar border is concave, and there is no alveolus for a canine tooth. The palatine process is wider, but somewhat shorter than in the horse. It incloses a large air-space, which is continuous behind with a like eavity in the horizoutal part of the palate bone, forming the palatine sinus (Sinus palatinus). This commonicates daterally (over the infraorbital canal) with the maxillary siuus; in the macerated skull it communicates with the nasal cavity by a large oval opening, which is closed by mucous membrane in the fresh state. A median septum sepa-
rates the two palatine sinuses. The alveoli for the theek teeth increase in size from before batkward. The maxillary sinus proper is small and is modivided. The maxillary foramen is a narrow fisure, deeply placed at the medial side of the laermal bulla. The maxilla takes no part in the fomation of the palatine canal. sutural (or Wormian) bones are often present at its junction with the lacrimal and matar bones.

The body of the premaxilla is thin and flattened, and has no alveoli, since the canine and upper incisor teeth are alment. A decp motel takes the place of the foramen incisivum. The nasal process is short, convex laterally, and does not reach to the nasal bone; the space between the two processes is greater than in the horse. The palatine process is narrow and is grooved on its nasal surfuce for the septal cartilage and the vomer. The palatine fissure is very wide.

The palatine bone is very extensive. The horizontal part forms one-fouth or

Fig. 135.-Sigittal Semtion of Skull of Ox, without Mandible.
A, A^{\prime}. Sumamous and hasilar parts of occipital bonc; B, B^{\prime}, postsphenoid, presphenoid; (', laterai mass of ethmoid bone; D, inturnal plate of frontal bone; E, parietal bone; F, petrons temporal bone; G, pterygoid bone; H, perpendicular part of palatine bone; I, outline of vomer (dotted line); J, palatine process of maxilla: K, nasal process of premaxilla;
 condyle; 2, paramastoid process; 3, bulta ossea; 4, basilar tuborelu: 5, muscular process; 6, hypoglossal foramen; 7, opemings of condyloid canal; S, direction of condylod canal (doted line); 9 internal opening of temporal canal; 10 , meatus acusticus internus; 11, foramen lacerum; 12, sefla turcica; 13, optic foramen; 14, sphenoidal sinus; 15, orbital wing of sphenoid bone; 16, frontal sinus: $1 i^{\prime}$, interior limit of frontal sinus (dotwd line): 17 , dorsal nasal meatus; 18 , middle nasal meatus; $1 s^{\prime}$, dorsal branch of middle nu atus; 19, ethrmodal meatuses; 20, maxilla: 21 , sphenopalatine foramen; 22, opening into maxillary sius: 23. opening into palatise sinus, and arrow indicating communication of latter with maxillary sinus; 24, palatine sinus; 25 , cross indicates anterior end of palatine sinus; 26, palatine fissure.
more of the hard palate. The anterior palatine foramen opens near the junction with the maxilla, aloot half an inch from the median palatine suture and trest. Accessory palatine foramina (Foramina palatina aceessoria) are ako present. The palatime groowe is usually not very distinct. The palatine canal is formet entirely in this part, and there is no articulation with the vomer. A romuled ridge occurs on the nasal side of the modian suture. The interior is hollow, forming part of the palatine simus. The perpendicular part is an extensive, quadrilateral, thin plate, which forms the posterior part of the lateral wall of the nasal cavity and in part foumsts the choane or posterior nares. Its nasal suriace is nearly flat, and is smooth and free, exeept behind, where it is overlapped by the pterygoid lone. The lateral surface is attached to a small extent to the pterygoid process behiml, and is free elsewhere. The sphenopalatine foramen is a long, elliptical opening, formed by a deep notch in the upper edge of the palate bone and completed by the ethmoid and splie-
noid. The edge behind this foramen articulates with the orbital wing of the sphenoid, not the frontal, as in the horse.

The pterygoid bone is wider than in the horse, and forms the greater part of the lateral boundary of the posterior nares. Its lateral surface is almost entirely united to the palatine bone and the pterygoid process, but a small part is free in the pterygopalatine fossa. The hamulus is distinctly hook-like, thin, and sharp.

The nasal bone is little more than half the length of that of the horse. It is straight in its length, but strongly curved from side to side. It does not fuse laterally with the adjacent bones, even in old age. The posterior extremity is pointed and fits into the noteh between the frontal bones. The anterior end is broader, and is divided into two parts by a deep notch. In old animals there is a small extension of the frontal sinus into this bone.

The lacrimal bone is very large. The extensive facial part is concave in its length, and bears no lacrimal tubercle. The orbital margin is marked by several notches. The orhital part bears ventrally the remarkable lacrimal bulla; this is a large and very thin-walled protuberance, which bulges backward into the lower part of the orbit, and contains an extension of the maxillary sinus. The fossa for the lacrimal sac is small, and is just behind the orbital margin.

The malar bone is relatively long. The facial surface is extensive; it bears a curved crest (Crista facialis) just below the orbital margin which is continued on the maxilla, and below this it is concave dorso-ventrally. The zygomatic process divides into two branches; of these, the frontal branch (Processus frontalis) turns upward and backward and joins the supraorbital process of the frontal bone; the temporal branch Processus temporalis) continues backward, and is overlapped by the zygomatic process of the temporal bone, completing the zygomatic arch.

The dorsal turbinate bone is less cribriform and fragile than in the horse, and is widest in its middle, small at either end. It is attached to the turbinate crest of the nazal bone, and curves downward, outward, and then upward to be applied outwardly to the frontal and lacrimal bones. It thus incloses a cavity which communicates with the middle meatus nasi. (In the macerated skull it opens into the frontal sinus, but this communication is closed by mucous membrane in the fresh state.)

The ventral turbinate bone is shorter but much broader than in the horse. It is attached to the maxilla by a basal lamella about an inch (ca. 2 to 3 cm .) wide, which slopes ventro-medially. At the inner edge of this it splits into two plates which are rolled in opposite directions, and inclose two separate cavities, subdivided by several septa. The dorsal one opens into the middle meatus, the ventral one into the ventral meatus nasi.

The vomer forms a wider and deeper groove than in the horse. Its anterior end rests in a groove formed by the ends of the palatine processes of the premaxillæ. The anterior third of its thin ventral edge fits into the nasal crest of the maxilla; behind this it is free and is separated by a considerable interval from the nasal floor.

The two halves of the mandible do not fuse completely even in advanced age, so that a symphysis mandibulie is present. The symphyseal surfaces are extremely rough and are marked by reciprocal projections and cavities. The body is shorter, wider, and flatter than in the horse, and has eight round and relatively shallow alveoli for the lower incisors. The interalveolar border is long, curved, thin, and sharp. There are no alveoli for the canine teeth, which are absent. The anterior part of the ramus is narrow. The mental foramen is further forward than in the horse, and is in the posterior end of a fossa. The rami diverge more, so that the mandibular space is mider than in the horse. They are also more strongly curved, and the angle is more pronounced. The molar part is not so high, especially in its anterior part. Its ventral border is convex in its length. Its alveolar border bears
six alveoli for the lower cheek teeth; the first is cquite small, and they inerease in size from before barkward. The vertical part is mueh smaller than in the horse and its posterior borker is relatively thin below, coneave and wider above. The mandibular foramen is about in the middle of its medial surface, and a groove for

Fig. 136.-Right Malf of Mandible of Ox; Medial View.
1, Aambibular foramen; 2, groove for lingual nerve.
the lingual nerve curves dommard and forward from it. The eondyle projeets medially further than in the horse, and is concave from sile to side. The coronoid process is extensive and curves backward.

The hyoid bone has a short tuberous lingual process. The middle cornua

Fig. 137.-IIyord Bone of Ox.
a, Body: b_{1} lingual process; c_{1} thyroid corau and cartilage, $c^{\prime} ; d$, small cornu; e, middle cornu; f, great cornu; g_{1} museular angle. (Ellenberger-Baum, Anat. d. Haustiere.) are ahmost as large as the small cornua. The great cornua are narrow, exeept at the ends. The upper cond divides into two branches, which correspond to the two angles of that of the horse. The thyroid cornua do not fuse with the body except in old age.

SKULL OF THE OX AS A WHOLE

The skull of the ox is more clearly pyramidal than that of the horse, and is shorter and relatively wider. The cramium is quadrangular and larger externally than in the horse; its large size is due mainly to the great extent of the frontal sinuses and does not affect the ranial cavity, which is smaller than in the horse.

The frontal surface (Fig. 133) is formed by the frontals, nasals, and premaxille. The frontal part is quadrilateral and very extensive, the greatest width being at the orbits. It presents a central depression on its anterior part, and on either side are the supraorbital grooves and foramina. Behind is the median frontal eminence,
and at the lateral angles the "horn cores" project in horned cattle. The nasal part is very short. The osseous nasal aperture is wide. The premaxillæ do not bend downward as in the horse; they are relatively thin and weak, and are separated by an interval which has a wide anterior part in place of the foramen incisivum.

The lateral surface (Fig. 129) is more triangular than in the horse. The temporal fossa is confined to this surface. It is deep and narrow, and its boundaries are more complete. It is limited dorsally by a crest which extends from the postero-lateral angle of the frontal bone to the supraorbital process, and is analogous to the pacietal crest of the horse. It is bounded behind by the temporal crest. It is clearly marked off from the orbit by a rounded ridge and the pterygoid crest. The zygomatic arch is short, weak, and flattened, and is formed by the temporal and malar only. Its condyle is convex and is wide from before backward. The glenoid cavity and postglenoid process are small. The orbit is encroached upon below by the lacrimal bulla, and presents the orifice of the supraorbital canal behind. The orbital margin is completed behind by the frontal process of the malar; its lower part is prominent and rough, not smooth and rounded as in the horse. The pterygopalatine fossa is much larger, deeper, and more clearly defined. It has a long narrow recess between the vertical plate of the palate bone medially and the maxilla and lacrimal bulla laterally; thus the sphenopalatine and maxillary foramina are deeply placed. The preorbital region is short but relatively high. A tuberosity and curved line correspond to the facial crest of the horse. The infraorbital foramen is situated above the first cheek tooth and is often doublc.

The basal surface (Fig. 132) is short and wide, especially in its cramial part. The occipital condyles are limited in front by transverse ridges. The basilar tubercles at the junction of the occipital and sphenoid are large. The condyloid fosse contain two foramina, the hypoglossal below and in front, and the condyloid above and behind; other inconstant ones occur. The paramastoid processes are short and convergent. The foramen lacerum is slit-like. The bulla ossea is a large, laterally compressed prominence. The muscular processes are usually long and narrow triangular plates, with one or two sharp points. The external acoustic process is directed almost straight outward. A curved plate extends ventrally from it and joins the bulla ossea medially, completing the deep cavity which receives the articular angle of the hyoid bone. The chief external opening of the temporal canal is in front of this plate, and an accessory one lies behind it. The infratemporal fossa is small, and presents the foramen ovale. The posterior nares are very narrow, and the vomer does not reach to the level of their ventral margin. The hard palate is wide, and forms about three-fifths of the entire length of the skull. A small central part only of its posterior border enters into the formation of the posterior nares; the lateral parts are notched and just above them are the posterior palatine foramina. The anterior palatine foramina are an inch or more from the posterior margin, and about the same distance apart. The palatine grooves are distinct for a short distance only: Just beyond the cheek teeth the palate narrows and becomes concave; beyond this it widens and flattens.

The nuchal surface is extensive and somewhat pentagonal in outline in the adult. About its center is the external occipital protuberance for the attachment of the ligamentum nuchæ. From this a median occipital crest extends toward the foramen magnum, and laterally two lines (Lineæ nuchæ superiores) curve outward, marking the upper limit of the area which is roughened for muscular attachment. The surface above the lines is relatively smooth, and is covered only by the skin and the thin auricular muscles in the living animal. It is separated from the frontal surface by a thick border, which forms centrally the frontal eminence, and bears at its extremities the processus cornus-except in the polled breeds. The condyles are further apart, and the articular surfaces are more clearly divided into
upper and lower parts than in the horse. The mastoid foramen is at the junction of the occipital and temporal bones; it is frequently very small.

Fig. 138.-Craniem of Jersey Cow, Nuchal View. The Greater Part of the Procesnet Cornus has been

Fig. 139.-Craniesi of Polled Anges Cow, Nuchal

内'awn Ofe.

1. Foramen magnum; 2, occipital condyle; 3, paramastoid proress; 4, bulla ossua; is, meatus arnaticus externns; i. mastoid foramen; 7, external oceipital prutuleranes; 5, median occipital crest; 9, linea nuchw superior; 10, frontal eminence.

 Thime Cheek Tooth.
2. Cartilage of sumthm nani; 2. vomer; 3, ventral meatus; 4, auterior extremity of maxillary sinus; 5, palatine sinus: 6, infraorbital canal and nerve; 7, palatine process of maxilla. Dotted lines indicate mucons membrane which closes gap in bony floor of nasal cavity.

The cranial cavity is shorter and its long axis is more oblique than in the horse, but it is relatively high and wide. The anterior fossa lies at a much higher leve\}
than the rest of the floor. The ethmoidal fosser are smaller, and the hypophyseal fossa or sella turcica is much deeper than in the horse. A deep groove leads from the petrous temporal forward over the foramen ovale to the foramen rotundum. Behind the sella there is often a distinct prominence (Dorsum sellie). The internal parietal crest is prominent anteriorly, but subsides further back. A faintly marked elevation represents the internal occipital protuberance. The petrous temporal bone projects into the cavity laterally. The ridges and digital impressions are very pronounced. The temporal canal is formed entirely in the temporal bone, and opens internally at the apex of the petrous, where it is joined by the condyloid canal. The foramen lacerum is divided into two parts (For. lacerum orale et aborale).

The nasal cavity is incompletely divided by the septum, which docs not reach

Fig. 141.-Crosa-section of Nasal Regox of Secle of Ox. Section is Cet between Fotrth sna Fifth Cheek Tooth.

1. Cartilage of septum nasi : 2, vomer: 3, ventral meatus; 4, t^{\prime}, maxittary sinuses; 5,5 , palatine sinuses; 6 , infraorbital canal and nerve; 7 , horizontal part of palatine bone; S, communication betneen maxillary and palatine sinuses, Dotted lines indicate mucous membrane which closes gap in bony flour of nasal cavity.
the floor posteriorly. The floor is relatively long, and is more concave from side to side than in the horse. In the dryskull it has a large oval opening (Hiatus maxillaris) into the palatine sinus, which is closed during life by mucous membrane. The middle meatus is divided behind into upper and lower branches by the great etlmoturbinate. The choanæ or posterior nares are narrow and oblique.

The frontal sinus is very large. It involves almost all of the frontal bone and a large part of the posterior wall of the cranium. It also extends for a variable distance into the horn processes when these are present. A complete median septum separates the right and left sinuses. The anterior limit is indicated by a transverse plane through the middle of the orbits. It extends laterally to the crest, which limits the temporal fossa above, and into the root of the supraorbital process. At the highest part of the cranial cavity and at the external occipital protuberance
the two plates of the bone come together. The cavity is very irregular and is subdivided into numerous spaces by ridges and partial septa. This multilocular character is most marked in the anterior part, and here several small spaces appear to be cut off from the main cavity. The supraorbital canal passes through the simus. Several small openings lead from the simus to the ethmoidal meatuses, and thus indirectly to the upper division of the middle meatus nasi. The commmications with the cavity of the dorsal turbinate and with the lacrimal part of the

Fig. 142.-Siktll of Ox: Dorsal V'iew,
The outer plate of bone has been removed to show the sinuses. a. Frontal sinus; a^{\prime}, cranial plate of frontal bone; $a^{\prime \prime}$, anterior part of frontal sinus, wheh is separated from remander by a septum $(b) ; c, c^{\prime}$, communications between frontal sinus and nasal cavity; d, supraorbital foramen; e, supraorhital canal; f, cavity of dorsal turbinate bone, and a, its opening into the nasal cavity; h, lacrmal sinus; i, its communication with the mavillary sinus; k, maxillary
 mal bone; 6 , malar bone; $\tilde{\sim}$, dotted line indicating course of nasolacrimal duct. (After Ellenberger, in Lcisering's Atlas.)
maxillary sinus which are seen in the macerated skull are closed in the fresh state by mutous membrane.

The maxillary sinus is excavated chiefly in the maxilla, lacrimal, and malar, and is not divided by a septum as in the horse. It extends forward as far as the facial tuberosity, or a little further in old animals. Its dorsal limit is indicated approximately ly a line drawn from the infraorbital foramen to the upper margin of the orbit. It is continued into the lacrimal bulla to a point nearly opposite to
the bifurcation of the zygomatic process of the malar. It also extends upward and backward through a large opening into a cavity formed by the lacrimal, frontal, ethmoid, and turbinal bones, at the medial side of the orbit. ${ }^{2}$ The floor of the cavity is irregular and the roots of the last three or four cheek teeth project up into it, covered by a plate of bone. The sinus communicates with the palatine sinus freely orer the infraorbital canal through an oval opening about two to three inches (ca. 5 to 7.5 cm .) long. Above this it communicates by a shorter and much narrower opening with the middle meatus nasi.

The palatine sinus is excavated in the hard palate, and is separated from that of the opposite side by a median septum. It extends from the posterior border of the palate to a plane an inch or more (2.5 to 3 cm .) in front of the first cheek tooth. As mentioned above, there is a large communication with the maxillary sinus over the infraorbital canal, so that the cavity is sometimes regarded as a part of that simus. The large defect in the bony roof of the sinus is closed by two layers of mucous

Fig. 143.-Sicle of Ox; Laternl Vien Tithot Mandible.
The maxillary, lacrimal, and turbinate sinuses have been opened, and part of tbe orbital margin removed. a, Cavity of dorsal turbinate bone; b, lacrimal sinus; c, maxillary sinus; d, communication between maxillary and palatine sinuses; ϵ, opening between maxillary and lacrimal sinuses; f, thin osseous bulla; g. lacrimal bulla; h, orbit; $1-6$, cheek tweth; \tilde{i}, nasal bone; 8, premaxilla (nasal process); 9, maxilla; 9^{\prime}, infraorbital foratmen; 10, frodtal bone; 11 , lacrimal bone: 12 , malar boue; 13 . fissure between nasal bone and maxilla; 14 . temporal bone (squamous) ; 15. external aroustic meatus; 16 , paramastoid process; 12 , occipital condyle; 18 , palate bone (perpendicular part); 19, pterygoid bone (hamulus) ; 2O, tympanic part of temporal; 20^{\prime}, muscular process of petrous temporal. (After Ellenberger, in Leisering's Atlas.)
membrane in the fresh state. The palatine canal passes obliquely through the posterior part of the sinus.

The sphenoidal sinus is almost entirely in the sphenoid bone and does not communicate with the palatine sinus. It has one or two openings into the ventral ethmoidal meatuses. There is no cavity in the perpendicular part of the palate bone.

There are several small air-cavities between the lateral mass of the ethmoid and the anterior part of the frontal sinus, which communicate separately with ethmoidal meatuses.

BONES OF THE THORACIC LIMB

The scapula is more regularly triangular than in the borse, relatively wider at the vertebral end and narrower at the distal end. The scapular index is about $1: 0.6$. The spine is more prominent and is placed further forward, so that the supraspinous fossa is narrow and does not extend to the lower part of the bone.

[^26]The spine is simuous, bent backward in its middle, forward below. Its free border is somewhat thickened in its middle, but hears no distinct tuber. Instead of subsiding below as in the horse, the spine becomes a little more prominent, and is prolonged by a pointed projection, the acromion, from which part of the teltoid muscle arises. The sulscapular fossa is shallow. The areas for the attachment of the serratus musele are not very distinct. The mutrient foramen is usually in the lower third of the posterior berder. The glemoid cavity is amost eireular and without any distinct notch. The tuberosity is small and elose to the glenoid cavity.

Fig. 144.-Tleft Scaplea of Ox; Lateral View.

1. Anterior angle; 2, posterior angle; 3, supraspinous fossa; 4, infraspmous fossa; 5, anterior border; 6, posterior border; 7 , spine; s, acromion; 9 , tuber scapulæ; 10 , glenoid cavity; 11 , nutrient foramen.

The coracoid process is short and rounded. The eartilage resembles that of the horse. The tuberosity unites with the rest of the bone at seven to ten menths.

The humerus has a shallow musculo-spiral groove. The deltoitl tuberosity is less prominent than in the hores. and the curved line rumning from it to the neck bears a well-marked tuberele on its upper part. The nutrient foramen is usually in the distal third of the posterior surface. The lateral tuberosity is very large, and rises an inch or more (ea. 3 cm .) above the level of the head. Its anterior part curves medially over the intertuberal or bicipital groove, and below it laterally there is a prominent circular rough area for the insertion of the tendon of the infraspinatus. The anterior part of the medial tuberosity has a small projection which
eurves over the groove. The groove is undivided. The distal articular surface is decidedly ohlique, and the grooves and ridge atre very well marked. The coronoid and olecranon fossex are deep and wide. The condyloid erest js represented by a rough raised area. The proximal end unites with the shaft at three and one-half to four years, and the distal at about one and one-half years.

The radius is short and relatively broad. It is somewhat oblique, the distal end being nearer the median plane than the proximal. The curvature is more pronounced below than above. The shaft is prismatic in its middle part and has

Fig. 145.-Left Humeres of $\mathrm{Ox}_{\text {; }}$; Lateral View.

1. Head; 2, neck; 3, 3', lateral tuberosity; 4, rough prominence for attachment of infraspinatus tendon; 5, deltoid tuberosity; 6, coronoid fossa; 7, lateral condyle; 8 , lateral epicondyle; 9, medial epicondyle; 10, olecranon fossa.

Fig. 146.-Left Hemerds of Ox: Anterior View.

1. Lateral tuberosity; 2, medial tuberosity; 3, intertuberal groove; 4 . rough prominence for attachment of infraspinatus tendon; 5 , deltoid tuberosity; 6 , teres tubercle; 7, musculo-spiral groove: 8 , coronoid fossa; 9, medial condyle; 10 , lateral condyle.

Fig. 147.-Left Radits and Ulia of OX; Postero-sedlal View.

1, Olecranon; 2, processus anconzus; 3, semilunar noteh; 4, proximal extremity of radius; $\overline{5}, 5$, proximal and distal interosseous spaces; 6 , shaft of radius; 7 , shaft of ulna; 8 , vascular groove; 9, styloid process of ulna.
dorsal, volar, and lateral faces. There is a marked increase in width and thickness distally. The proximal articular surface presents a synovial fossa which extends medially from the deep groove between the two glenoid cavities. The radial tuberosity is represented by a slightly elevated rough area. The facets for the ulna are larger than in the horse. The two bones commonly fuse above the proximal interosseous space and always fuse below it, except near the distal end, where there is a small distal interosseous space. A groove connects the tiwo spaces laterally. The distal extremity is large, and is thickest medially. Its articular surface is oblique in two directions, i. e., from within upward and backward. The grooves
for the extensor tendons are shallow. The proximal end unites with the shaft at one to one and one-half years, and the distal at three and one-half to four years.

Abstract

The approximation of the lower ends of the forearms and the carpi gives the "knock-kneed" appearance in cattle. The obliguity of the joint surfaces produces hateral deriation of the lower part of the limb in flexion. The facets for the radial and intermediate carpals are narower than in the horse and run obliquely dorst-laterally. The surfaed for the unater carpat is extensive and samdle-shaped; its lateral part is furnished by the ulna.

The ulna is more fully developed than in the horse. The shaft is complete, three-sided, and strongly curvect. It is fused with the radius in the adult, except at the two interosserus spaces mentioned above. Its proximal part contains a medullary cavity which extends somewhat into the proximal end. The olecranon is

Fig. 148-Hefy Carpeta and dojatent honea of 6ix: Front likw.
 uhar carpal. $r: 2+3$, fused second and third carpals; (. . 4 , fourt h earpal; $1,2,3$, grooves for extensor tendons; 4. metararpal tuberosity: 5 , vascular groove. Intermediate carpal bone (between rathal and ulnar) not marked.

Fig. 149-Left Chrpés ivd Imacent Bones of Ox: Lateral View.
R_{1} Distal end of radius; l, styloid proeess of ulna; X, distal interosseous spact; C. i, intermedate carpal; C. u., ulnar carpal; ' . a., accessory earpal; C. $2+3$, fused spcond and third carpals; $f .4$, fourth carpal; Mc. $3+4$, fused third and fourth (large) metacarpal; Mc. 5, fifth (small) metacarpal; T, metacarpal tuberosity.
large and hears a rounded tuberosity. The distal end is fused with the radius; it projects hdow the level of the latter, forming the styloid process of the ulna (Pro(esesus stytodens ulne), which furnishes part of the facet for the ulnar carpal. The summit of the olecranon and the distal end unite with the shaft at three and one-half to four ycars.

The carpus consists of six bones, four in the proximal row and two in the distal. The proximal row is oblique in conformity with the carpal articular surface of the radius. The radial and intermediate resemble in general these of the horse, but are less regutar in shape, and their long axes are direeted obliquely backward and medially. The radial is narrower than in the homse and eurves upward behind. The intemediate is constricted in its middle, and wider behind than in front. The ulnar is large and very irregular. Its proximal surface is extensive and sinuous and articulates with both radius and ulna; it has a large oval facet behind for articulation with the accessory carpal. The accessory is short, thick, and rounded; it
articulates with the ulnar earpal only. The first carpal is absent. The second and third carpals are fused to form a large quadrilateral bone. The fourth carpal is a smaller quadrilateral bone.

The metacarpus consists of a large metacarpal and a lateral small metacarpal bone. The large metaearpal bone (Mc. $3+4$) results from the fusion of the third and fourth bones of the foetus, and bears evidences of its double origin even in the adult state. The shaft is shorter than in the horse, and is relatively wider and flatter. The dorsal surface is rounded, and is marked by a vertical vaseular groove connecting two eanals whieh traverse the ends of the shaft from before backwarl. The volar surface is flat and presents a similar but mueh fainter groove. The borders are rough in the proximal third. The proximal end hears two slightly concave facets for articulation with the bones of the lower row of the carpus; the medial area is the larger, and they are separated by a ridge in front and a noteh behind. The lateral angle has a facet behind for the small metacarpal bone. The medial part of the extremity has anterior and posterior tuberosities. The distal end is divided into two parts by a sagittal notch. Each division bears an articular surface similar to that in the horse, but much smaller. The mechullary cavity is divided into two parts by a vertical septum which is usually incomplete in the adult. The small metacarpal bone ($\mathrm{Mc}_{\mathrm{c}} .5$) is a rounded rod about an ineh and a half (ca. 3.5 to 4 cm .) in length, which lies against the proximal part of the lateral border of the large bone. Its proximal end articulates with the latter, but not with the carpus. The distal end is pointed.

Four cartilaginous metacarpals are present in the early foetal state, viz., the second, third, fourth, and fifth. The second commonly either disappears or unites with the third; sometimes it develops as a small rod of bone. The third and fourth gradually unite, but can be cut apart at birth. Each has three centers of ossification; the proximal epiphysis fuses with the shaft before birth, the distal at two to two and one-half years.

Four digits are present in the ox. Of these, twothe third and fourth-are fully developed and have three phalanges and three sesamoids each. The second and fifth are vestiges and are placed behind the fetlock; each eontains one or two small bones which do not articulate with the rest of the skeleton.

The first phalanx is shorter and narrower than in the horse and is three-sided. The interdigital surface is

Fig. 150,-Left Metacarpal Bones of Ox; Front View. The Small Bone has been Moved Iateraliy.
1, Metacarpal tuberosity; 2. vascular groove; 3. 3', foramina; 4. 4^{\prime}, condyles: 5 , articular facet of fifth (small) metacarpal bone. flattened and its volar part bears a prominence for the attachment of the interdigital ligaments. The proximal extremity is relatively large, and is somewhat compressed from side to side. The articular surface is concave from before backward and is divided by a sagittal groove into two areas, of which the abaxial one is the larger and higher. Behind these are two facets for articulation with the sesamoid bones. The volar surface bears two tuberosities separated by a deep depression. The distal extremity is smaller than the proximal, especially in the dorso-volar direction. Its articular surface is divided hy a sagittal groove into two convex facets, of which the abaxial one is decidedly the larger. There are depressions on either side for ligamentous attachment. The bone consists at birth of two pieces-the distal end and the fused shaft and proximal extremity. Union oceurs at one and one-half to two years.

The second phalanx is about two-thirds of the length of the first and is dis-
tinctly three-sided. The proximal articular surface is divided by a sagittal ridge into two glenoid cavities, of which the abaxial one is much the larger. There is a central dorsal prominence and two tubereles are present on the volar face. The distal extremity is smaller than the proximal. Its articular surface encroaches considerably on the dorsal and volar surfaces, and is divided into two parts by a sagittal groove. There is a deep depression for ligamentous attachment on the interdigital side. The bone contains a small medullary canal. The distal end unites with the rest of the lone about the middle of the second year.

The third phalanges resemble in a general way one-half of the bone of the horse. Each has four surfaces. The dorsal surface is marked in its distal part hy a shatlow groove, along which there are several foramina of considerable size; the posterior one of the series is the largest, and conducts to a canal in the interior of the bone. Distal to the groove the surface is prominent, rough, and porous.

Fig. 151.-Bones of Distal Part of Fore Listb of Ox: Lateral View
1, Distal end of metacarpal bone: 2, first phalanx; 3, proximal sesamoil bone; 4 , seconl phalana: 5 , extensor protess of third phalanx; 6. dorsal surftec: 7, angle: \rangle, distal sestmoid bone.

Fig. 1j2.-Bones of Distal Part of Fore Limb op Ox; Volar View.
1, Metacarpal bone; 2, proximal sesamoid bones: 3, first phalanx; 4, second phalanx; 5, distal sesamoid bone; 6, third phalanx.

Near and on the extensor process are several relatively large foramina. The slope of the surface is very steep posteriorly, but in front it forms an angle of 25 to 30 degrees with the ground plane. The articular surface is narrow from side to side, and slopes downward and backward. It is also oblique transersely, the interdigital side being the lower. It is adapted to the distal surface of the second phadanx, with the exception of a facet behind for the distal sesamoid. The extensor process is very rough. The volar surface is narrow and slightly concave, and presents two or three formina of considerable size. It is separated from the dorsal surface by a border which is shap in front, rounded behind. There is no spmilunar erest, since the deep flexor tendon is attached to the thick posterior border of the volar surface. The interdigital surface is smooth and grooved below, rough and porous above. At the proximal angle it is perforated by a large foramen, which is equivalent to the volar foramen of the horse and leads to a cavity in the middle of the bone. The surface is separated by a rounted border from the dorsal surface, and by a sharp
edge from the volar surface. The angle is very short and blunt, and there is no cartilage.

Four proximal sesamoids are present, two for each digit. They are much smaller than in the horse. The bones of each pair articulate with the corresponding part of the distal end of the large metaearpal bone by their dorsal surfaces, with cach other and with the first phalanx by small facets.

The two distal sesamoids are short and their ends are but little narrower than the middle.

BONES OF THE PELVIC LIMB

The ilia are almost parallel to each other and are also less oblique with regard to the horizontal plane than in the horse. They are relatively small. The gluteal line is prominent and is nearly parallel to the lateral border; it joins the ischiatic spine. A rounded ridge separates the two parts of the pelvic surface. The surface

Fig. 153.-Right Os Coxe of Ox; Lateral View. 1, Gluteal line; 2, fossa acetabuli.
for articulation with the sacrum is triangular. The tuber sacrale is truneated, does not extend as high as the vertebral spines, and is separated from the opposite angle by a wider interval than in the horse. The tuber coxa is relatively large and prominent; it is not so oblique as in the horse, and is wide in the middle, smatler at either end. The shaft is short and compressed from side to side.

The ischium is large. Its long axis is directed obliquely upward and backward, forming an angle of about 45 to 50 degrees with the horizontal plane. The transverse axis is oblique downward and inward at a similar angle, so that this part of the pelvic floor is deeply concave from side to side. The middle of the rentral surface bears a rough ridge or imprint for muscular attachment. The ischiatic spine is high and thin, and bears a series of almost vertieal rough lines laterally. The tuber ischii is large and three-sided, bearing dorsal, rentral, and lateral tuberosities. The ischial areh is narrow and deep. The symphysis bears a ventral ridge, which fades out near the ischial arch.

The acetabular branch of the pubis is narrow, and is directed laterally and a
little forwark. The anterior border is marked by a transverse groove which ends helow the rough ilio-pectineal eminence. The symphyseal branch is wide and hin.

The acetabulum is smaller than in the horse. The rim is rounded and is usually marked by two notches. One of these is postero-medial and is narrow and deep; it teads to the deep acetabular fossa and is often almost ronverted into a foramen by a bar of bone. The other noteh is antero-medial, small, and sometimes replaced by a foramen or absent.

The obturator foramen is large and elliptical. Its medial border is thin and sharp.

Fusion of the three bones oceurs at seven to ten months.
The pelvic inlet is clliptical and is more oblique than in the horse. In at cow

Fig. 154.-Pelnic Bones of Cow, Viewed from in Front and Somewhat from Below.
of medium size the conjugate diameter is about nine and a half inches (ca. 23 to 24 (cm.), and the transverse diameter about seven inches (ea. 18 cm .). The anterior end of the symphysis lies in a transverse plane through the junction of the third and fourth sacral segments. The dorsal wall or roof is concare in both directions. The ventral wall or floor is depply coneave, particularly in the transrerse direction. The cavity is narrower and its axis is inclined strongly upward in the posterior part. The distance between the acetabulum and the tuber cosie is only a little (ca. 3 to 4 cm .) more than the distance between the former and the tuber ischii.

The femur has a relatively small shaft, which is cylindrical in its middle, prismatic distally. The trochanter minor has the form of a rough tuberosity, and is situated higher up than in the horse and eneroaches on the posterior surface. The trochanteric ridge (Crista intertrochanterica posterior) comects it with the tro-
ehanter major. The third troehanter is absent. The supracondyloid fossa is shallow. The proximal extremity is very wide. The head is smaller than in the horse, and the artieular surface extends ensiderably on the upper surfaee of the neek. The fovea capitis is a small depression on the middle of the head for the attachment of the round ligament. The neek is well defined except above. The troehanter major is very massive and is undivided; its lateral surface is very rough.

12
Fig. 155.-Right Fentr of Ox; Postebior View.
1, Head; 2, neck; 3, trochanter major; 4, trochanteric fossa; $\overline{5}$, trochanter minor; 6 , nutrient forsmen; 7 , vascular groove; 8 , lateral supracondyloid crest; 9, supracondyloid fossa; $10,10^{\prime}$, medial and lateral condyles; $11,11^{\prime}$, medial and lateral epicondyles; 12, intercondyloid fossa.

Fig. 156.-Right Femur of Ox; Lateral View.
Numbers around bone: 1 , Head; 2, neck; 3, trochanter major; 4, lateral horder; 5, lateral supracondyloid erest; 6 , supracondyloid fossa; 7, lateral condyle; \&, trochlea. Numbers on bone: 1 , Eminence for attachment of gluteus profuadus; 2, lateral epicondyle; 3. depression for origin of popliteus muscle; 4 , extensor fossa.

Fig. 157.-Left Tibla and Proxmal Part of Fibula of Ox; Posterior View.
Numbers around bones: $1,1^{\prime}$, Medial and lateral condyles of tibia; 2, nutrieat foramen; 3. lateral horder; 4, distal extremity; 5 , medial malleolus; 6 , sbaft of fibula. Numbers on bone: $1,1^{\prime}$, Tubercles of spine; 2 , intercondyloid fossa; 3, muscular lines. Arrow indicates groove for flexor digitalis loogus.

The trochanteric fossa is deep, but does not extend so far distally as in the lorse. The distal end presents no very striking differential features, but the ridges of the trochlea are less oblique than in the horse, and converge very slightly below. The proximal extremity unites with the shaft at about three and one-half years, the distal at three and one-half to four years.

The tibia resembles that of the horse rather elosely, but is somewhat shorter.

The shaft is distinetly curved, so that the medial side is convex. The posterior surface is not divided into two areas, and the linee musculares are fewer and extend up higher than in the horse. The articular groowes and ridge of the distal end are almost sagital in direction, and present an extensive but shallow synovial fossa. The lateral groove is separated by a sharp ribge from an outer area which is for articulation with the lateral malloolus. The anterior part of the medial malleolus is prolonged downward and has a pointed end. The groove behind it is broad and well defined. Laterally there is a deep narrow groove which soparates two prominences. The proximal extremity fuses with the shaft at three and one-half to four years, the distal at two to two and one-hadf years.

Fig. 158.-Right Tarses ano Aojacent Bones of 0x; Memal. View.

Fig. 159.-Right Tarson and . Dojacent Bones of Ox; Durso-lateral Vien.
M. m., Medial malleolus; M. 1., lateral malleolus (distal end of fibula) ; T, tibia; T. t., tibial tarsal boor; T. f., fibular tarsal bone (susteotaculum) ; $T, c_{1}+\frac{7}{4}$ fused central and fourth tarsal bones; $T, 1$, first tarsal bone; T. $2+3$, fused second and third tarsal bones: Mh. 2, small or serond metatarsal bone; MI. 3+4, large metatarsal or fused third and fourth metatarsal bones; 1 , groove for teadoo of flexor digitalis loogus; 2 , groove for deep flexor tendon.

The fibula usually consists of the two extremities only. The head is fused with the lateral condyle of the tibia and is continued by a small, blunt-pointed prolongation below. The distal end remains separate and forms the lateral malloolus (sometimes called the os malleolare). It is quadriateral in outline and compressed from side to side. The proximal surface articulates with the distal end of the tibia, and bears a small spine which fits into the groove on that bone. The distal surface rests on the fibular tarsal, and the nowlial articulates with the lateral ridge of the tibial tarsal bone. The lateral surface is rough and irregular.

The early cartilaginous fibula is complete, but later the shaft is reduced to the small prolongation notiol in speaking of the head and a fibrous ford which connects it with the distal end (lateral malleolus). In some cases, however, the upper part undergors partial ossification, forming a slender rod which is usually united with the lateral border of the tibia and is joined to the head by fibrous tissue.

The patella is long, narrow, and very thick. The free surface is strongly convex and rery rough and irregular. The articular surface is convex from side to side and nearly straight in the vertical direction. The large prominence on the medial side for the attachment of the fibro-cartilage allows prompt determination of the side to which the bone belongs. The apex is more pointed than in the horse.

The tarsus consists of five pieces; the central and fourth and the second and third tarsal bones are fused.

The tibial tarsal bone is relatively long and narrow, and is somewhat flattened from before backward. It bears a trochlea at either end. The groove and ridges of the proximal trochlea are not spiral, but almost sagittal; the lateral ridge is the wider, and articulates with both tibia and fibula. The distal trochlea consists of two condyles divided by a groove, and articulates with the combined central and fourth tarsals. The plantar surface bears a large oval facet for articulation with the fibular tarsal; this occupies most of the surface, and is convex and grooved from above downward. The lateral surface presents two facets for articulation with the fibular tarsal, and is exeavated and rough elsewhere. The medial surface bears a tuberosity at its upper part, and is flattened below.

The fibular tarsal bone is longer and more slender than in the horse. The distal part of the body is compressed laterally, and bears a projection in front which articulates with the lateral malleolus. The tuber ealcis is marked posteriorly by a wide shallow groove, which is coated with cartilage in the fresh state.

The central and fourth tarsals are fused to form a large bone (O s centrotarsale quartum, scapho-cuboid), which extends across the entire width of the tarsus and articulates with all of the other bones. The greater part of the proximal surface is molded on the distal trochlea of the tibial tarsal, and its medial part rises high above the rest posteriorly. Laterally there is a narrow, undulating surface for artieulation with the distal end of the fibular tarsal bone. The plantar surface bears two tuberosities, of which the lateral one is rounded, the medial more prominent and narrower.

The first tarsal bone is quadrilateral and small. It articulates with the central above, the metatarsus below, and the second tarsal in front.

The second and third tarsals are fused to form a rhomboid piece. The proximal surface is coneavo-convex, and articulates with the central component. The distal surface is undulating and rests on the metatarsus. The lateral surface bears a small facet in front for the fourth tarsal component, and the plantar

Fig. 160-LARGE Metataral Bone of Ox; Dorsal View.
1, Vascular groove; 2, foramen; $3,3^{\prime}$, condyles. surface a very small one for the first tarsal bone.

The large metatarsal bone is about one-seventh (ca. 3 cm .) longer than the corresponding metacarpal. Its shaft is compressed transversely and is distinetly four-sided. The groove on the dorsal surface is deep and wide. The plantar surface is marked by variable grooves. The proximal foramen on this surface does not perforate the shaft, but passes obliquety through the extremity, opening on the posterior part of its proximal surface. The medio-plantar angle of the proximal end bears a facet for articulation with the small metatarsal bone.

The small metatarsal hone is a quadrilateral dise a little less than an ineh in midth and height. - Its anterior face bears a facet for articulation with the large metatarsal bone.

The large metatarsal bone is usually regarded as consisting of the fused third and fourth metatarsal bones, and the small bone as the seecond metat arsal. The medullary cavity is subdivided like that of the large metacarpal bone. Some anatomists, however, consider that the ritges at the upper end of each border represent the second and fifth metatarsals (Rosenberg and letterer). On this basis the small bone would be the first metatarsal.

The phalanges and sesamoids resemble those of the thoracic limb so closely as to render separate description unnecessary.

SKELETON OF THE SHEEP

VERTEBRAL COLUMN

The vertebral formula may be given as $\mathrm{C}_{7} \mathrm{~T}_{13} \mathrm{~L}_{6-2} \mathrm{~S}_{4} \mathrm{Cy}_{16-15}$, but it should be noted that, except in the cervical region, variation in number is common.

It is not very rare to find twelve thoracic and seven lumbar, or an ambiguous intermediate vertcbra. Alore commonly there are seven lumbar vertebree without reduction in the thoracic region. In some cases there are fourtem thoracic and five or six lumbar vertebar, and Lesbre records a case in which twelve thoracic and seven lumbar were present. In some cases the fouth sacral vertebra remains separate, and in others the first coceygeal unites with the sacrum, although the fusion here is rarely complete, Nathusius states that the number of coecygeal tertebre varies from three to twenty-four or more.

The cervical vertebræ are relatively longer than those of the ox. The atlas differs chiefly in that the prominence on the dorsal arch is much less developed. The anterior articular eavities are often separated by a central ridge. The wings are produced to form blunt points behind. The spinotis process of the axis is not enlarged posteriorly; those of the suceeeding vertebra are less developed than in the ox; they increase in length from the third to the last. The ventral spines are rudimentary. The arches are separated dorsally by interareuate spaces.

The thoracic vertebræ are usually thirteen in number, but fourteen may he present, or, more rarely, only twelve. Their bodies are refatively wider and less constricted than those of the ox, and their extremities are not so strongly curved, especially toward the end of the series. The intervertebral foramina are larger, in corrclation with the absence of the foramina which usually oceur in the arches of these vertelrie in the ox.

The lumbar vertebræ number six or seven, the former being a little more frequent than the latter. It is not common to find the number reduced to five. In some cases there is an ambiguous vertebra at the junction of the thoracie and lumbar regions. The bodies are more flattened dorso-ventrally than those of the ox; their anterior ends are somewhat concave transversely, and the posterior ends are ahmost flat. The anterior articular processes are strongly curved and overlap the posterior ones. The transerse processes curve forward and have expanded ends.

The sacrum consists ordinarily of four segments, but the last vertebra may remain separate or undergo only partial fusion. There is no vascular groove on the pelvic surface. The spines are not fused, with the exerption of the first and second, which may be partially united. The transverse processes of the last segment are distinct and outstanding.

The coccygeal vertebræ vary in number from three (in short-tailed sheep) to twenty-four or more. The bodies have no hemal processes on the ventral surface. The transwerse processes are long and thin and project backward.

THE RIBS

The ribs usually number thirteen pairs, but the occurrence of fourteen pairs is not at all uneommon. The thirteenth rib is tloating and has a cartilage about an
inch long. The fourteenth rib, when present, is also fluating. As compared with those of the ox, they are narrower and are more strongly curved in the anterior part of the series. The lateral surface is in general smooth and rounded. The second to the eleventh form diarthroses with their cartilages.

The thirteenth rib may be more or less rudimentary on one side or both, and may be fused with the corresponding vertebra; the latter may, therefore, be ambiguous in character.

THE STERNUM

The sternum rescmbles in general that of the ox. The number of segments may he reduced to six, and the primitive division of the next to the last sternebra into two lateral halves may persist for a long time. The first segment is cylindrical, with enlarged ends; the second and third are wide and flat; the last is long and narrow.

THE SKULL

The more important differences in the skull of the sheep as compared with that of the ox are in regard to the cranium. Viewed from above, the cranium is irregularly hexagonal in outline; it is widest in the frontal region, between the posterior parts of the orbits, and narrows greatly both anteriorly and posteriorly. In profile the roof of the cranium is strongly convex; the highest part of the curve coincides with the greatest width, and the posterior part slopes at an angle of about 45 degrees with the basal plane.

The occipital bone forms all of the nuchal surface of the cranium, except a small lateral area occupied by the mastoid part of the temporal bone. A narrow part (about 1.5 cm . in width) enters into the formation of the roof of the cranium also: it joins the parietal bones at a transerse suture. The parietal and nuchal surfaces are separated by a rough transverse ridge, the central part of which is united below with the external occipital protuberance, to which the ligamentum nuchæ is attached. The mastoid foramen is situated between the lateral border and the petro-mastoid part of the temporal bone. The paramastoid process is groored laterally, has a concave anterior border, and tapers to a blunt point. The basilar part is wide; the tubercles at its junction with the sphenoid are placed laterally, and are broad and short.

The sphenoid bone resembles that of the ox. The posterior wall of the deep hypophyseal or pituitary fossa is formed by a plate (Dorsum sellæ) which is directed forward and upward, and bears a projection (Processus clinoideus posterior) at each side of its upper part. The sphenoidal sinus is commonly absent or rudimentary.

The ethmoid bone resembles that of the ox.
The parietal bone fuses soon after birth with its fellow and with the interparietal. From this union there result a central quadrilateral curved plate which forms part of the roof of the cranium, and, separated from it by a curved line, a narrower lateral part, which extends forward on either side as part of the medial wall of the temporal fossa. The frontal sinus does not extend into the parietal bone. There is no internal occipital protuberance.

The frontal bone is relatively less extensive than in the ox. The naso-frontal part is strongly curved, but varies considerably in contour in different breeds. In horned breeds the processus cornus projects from the lateral part of the external surface a little (ca. 1.5 cm.) behind a transverse plane through the posterior margin of the orbit. The process varies in size and shape, and does not contain an extension of the frontal sinus. In other cases there is a rounded tuberosity or a slight roughened elevation. The supraorbital foramen is further forward than in the ox, being just behind a transverse plane through the middle of the orbit; it is a little nearer
to the orbital margin than to the median line. The groove which leads forward from it is often rather faint. The orbital part is deeply concave. The infraorbital canal opens on the medial wall of the orbit as in the ox. The frontal simus extends backward to a transverse plane through the posterior part of the temporab condyle, and forward to one through the anterior margin of the orbit.

The temporal bone consists of distinet squamous, tympanic, and petro-mastoid parts. The squamous part in general resembles that of the ox, lyut has, like that of the horse, a notch through which the external aconstic process protrules. The root of the zygomatie process is perforated by a foramen which opens ventrally behind the postglenoid process, in front of the chief external opening of the temporal canal. The latter extends upward and buckward between the petro-mastoid and squamous parts and the parietal bone, and opens into the cranial cavity in front of the apex of the petrous. The tympanic part includes the external acoustic process, the bulla

Fig. 161.-Sktll of Sheep; Lateral View,
A, Occipital bone; B, parietal bone; C, squamous temporal bone; U, frontal bone; E, nasal bone; F, lacrimal bone; G, malar bone; $I I$, maxilla; I, premaxilla; J, nandible; K, perpendicular part of palatine bone; L, hyoid bone; 1 , occipital condyle; 2, partmastoid process; 3, mastoid process; 4, meatus acusticus externus; 5. bulla ossea; 6, 2ygomatic process of temporal bone; 7 , condyle of raandible; S, coronoid process; 9 , supraorbital process; 10 , processus cornus; 11, 11', openings of supraorbital canal; 12, ethmoidal foramen; 13, optic foramen; 14, fossa sacci lacrimalis; 15 , bulla lacrimalis; 16 , external lacrimal fossa; 17, facial tuberosity; 1s, infraorbital foramen; 19, mental foramen.
ossea, and the muscular process; the first resembles that feature in the horse, the others those of the ox, but the cavity of the bulla is undivided. The cerebral surface of the petrous part presents the floceular fossa on its upper part, and a round eminence behind the internal acoustic meatus.

The bones of the face present, aside from the difference in size, few important special features.

In regard to the maxilla it may be noted that the junction with the lacrimal and malar is less oblique than in the ox, since the facial parts of these bones are quatrilateral and not proxluced to a point anteriorly. The facial tuberosity and the infraorbital foramen are a little further back, and lie about over the second and fourth cheek tooth respertively. The palatine simus extends from a point opposite to the first cheek tooth backwarl to the transverse palatine suture. The defect (in the dry skull) in its nasal wall is quite small-in marked contrast to that of the ox-
since the basal lamella of the ventral turbinate bone curves rentro-medially, joins the palatine bone, and is separated only by a narrow hiatus from the nasal plate of the palatine process of the maxilla. The anterior palatine foramen is at the transverse palatine suture. The anterior end of the palatine process tapers to a point. The maxillary simus resembles that of the ox, but is relatively small.

The premaxilla has a narrow and pointed body. The palatine process is extremely narrow in front and is grooved laterally. The palatine fissure is long and narrows to a very acute angle behind.

The palatine bone resembles that of the ox, but there is no air-cavity in its horizontal part. The sphenopalatine foramen is large and oval.

The pterygoid bone is very bread above and narrow below, where it ends in a sharppointed hamulus.

The nasal bone tapers to a point at its anterior end, which is not notched.

The facial part of the lacrimal bone has an elongated quadrilateral outline; in front of the orbit it forms, with the arljacent part of the malar, the external lacrimal fossa (Fossia bacrimalis externa) which lodges a cutaneous cul-de-sac known as the infraorbital or lacrimal pouch. The bone here may be more or less cribriform. The lacrimal bulla is relatively small, is usually cribriform, and has a pointed posterior end; the maxillary simus extends into it. The orbital margin forms a distinct prominence, and behind the latter is the fossa for the lacrimal sac.

The facial part of the

Fig. 162.-Skull of Sheef; Dorsal View. malar bone is extensive and quadritateral. Its upper part concurs in the formation of the external lacrimal fossa; this area is limited below by a curved crest which continues backward on the zygomatic process. The latter divides into two branches, as in the ox.

The turbinates and the vomer resemble those of the ox.
The mandible differs from that of the ox chiefly in that the ventral border of the ramus, from the body to the angle, is only slightly curved.

On account chiefly of the limited extent of the frontal sinuses, the cranial cavity corresponds to the external form of the cranium more closely than is the case in the ox. It is ovoid, and is much longer relatively, but has a much shorter dorsorentral diameter than that of the ox. The parietal bone forms a distinct ridge on the lateral wall between the cerebral and cerebellar compartments, but, on the other hand, the petrous temporal projects very little into the cavity.

The nasal cavity resembles that of the ox, but is relatively narrow (especially anteriorly), and there is no large hiatus in the nasal plate of the maxilla.

BONES OF THE THORACIC LIMB

The scapula differs chiefly from that of the ox in the following points: The vertebral lorder is longer and the neek narrower. The spine is less simuous. The glenoid extremity is relatively long, since the tuber scapule is connected with the rim of the glenoid cavity. The substapular fossa is more extensive.

The humerus is relatively longer and more slender than that of the ox. The anterior part of the lateral tuberosity is blunt and less incurved, while the posterior part is smatl. The deltoid tuberosity is nearer to the proximal end and is less prominent.

The lones of the forearm are relatively longer than those of the ox. The radius is a little morr curved than that of the ox, and its dorsal surface is more regularly roundel. The shalt of the ulna is more slender, especially in its distal half; its fusion with the radius oreurs later and is usually much less extensive than in the ox.

The carpal bones resemble those of the ox exeept in size. The accessory is long and less tuberous.

The large metacarpal bone $(\triangle c \cdot 3+4)$ is long and slender. The lateral small metacarpal bone (Mc. 5) is often absent or is represented by a ridge on the large metacarpal.

The phalanges of the chief digits are relatively long and narrow. The third phalanx in particular is much flattened on its abaxial side, so as to form a prominent dorsal horder. (of the proximal sesamoids, the ahaxial ones are compressed from side to side, ant the axial ones from before backward. The flexor surface of the distal sesamoids forms a shatlow groove, not divided by a ridge. The accessory digits usually have no phalanges.

BONES OF THE PELVIC LIMB

The os coxæ differs greatly from that of the ox. The long axis of the ilium is almost in a line with that of the isehium. The gluteal line appears as a ridge which is nearly paraliol with the lateral border. The tuber coxa is only slightly thickened, and the tuber sacrale is pointed. The crest is coneave medially, convex laterally. The shalt is relatively long and is flattened laterally. The superior ischiatie spine is low and everted. The pubis resembles that of the ox, but its anterior border (pecten) is thin and sharp. The ischium slopes downward and backward, and forms a much larger angle with its fellow than in the ox. The lesser sciatie notch is very shallow. The tuber ischii is flattened and everted; it bears a long, blunt-pointed lateral process, and a very short and blunt dorsal prominence. There is a very low ventral ridge on the symphysis. The latter is not usually completely ossified, eren in old anmals. The acetabulum is further back than in the $o x$, and is relatively larger and deeper; it has a deep notch posteriorly. The pelvic inlet is very oblique, so that a vertical plane from the anterior end of the symphysis euts the first coceygeal vertebra. The brim is elliptical; the eonjugate diameter is about five inches (ca. 12 em.), and the transverse about three and a half to four inches (ea. 9.5 cm .). The floor of the pelvic eavity is wide and shallow as compared with the ox, and the pelvie axis inclines downward posteriorly.

The shaft of the femur is slightly curved, the convexity being anterior. A distinet line separates the lateral and posterior surfaces. The supracondyloid fossa is very shallow. The head has a shallow fovea and the neck is distinct. The trochanter major is little higher than the head. The ridges of the trochlea are similar and parallel, but slightly oblique.

The tibia is long and slender, but otherwise resembles that of the ox. The fibula has no shaft, and its proximal end is represented by a small prominence be-
low the lateral margin of the lateral condyle of the tibia; the distal end forms the lateral malleolus, as in the ox.

The patella is relatively longer and narrower than that of the ox.
The tarsal bones resemble those of the ox except in size.
The metatarsal and digital bones present special characters similar to those of the corresponding part of the thoracic limb.

SKELETON OF THE PIG VERTEBRAL COLUMN

The vertebral formula is $\mathrm{C}_{7} \mathrm{~T}_{14-15} \mathrm{~L}_{6-7} \mathrm{~S}_{4} \mathrm{C}_{20-23}$.

The cervical vertebræ are short and wide. The bodies are elliptical in crosssection, the long diameter being transverse. The anterior articular surfaces are slightly convex from side to side and concave dorso-ventrally; the posterior ones

Fig. 163.-Skelftos of Pig; Lateral View.
a. Cranium; b, maxilla; c, mandible; $1 H .-7 H$. , cervical vertebre: $1 R$.r.. first thoracic vertebra; 13 R.te., thir-
 K., sacrum; S., coccygeal vertebre; $1 R$., first rib; $14 R$., last rib; R.kn., costal cartilages; St., sternum; d, supraspinous fossa; d^{\prime}, infraspinotus fosss; 1 , spine of scapula; 2 , geck of scapula; e, humerus; 3, head of humerus; 4 , tuberosities of humerus; 5 , deltoid tuberosity: 6 , Jateral epicondyle of humerus; f, radius; a, ulna; 7 , olecranon; h, carpus: $15-25$, carpal bones; $i-i^{\prime \prime \prime \prime}$, metacarpus; $k-k^{\prime \prime \prime \prime}$, proximai phalanges; $l-l^{\prime \prime \prime \prime}$, middle phalanges; $m-m^{\prime \prime \prime \prime}$, distal phalanges; n, a, sessmoids; p, ilium; δ, tuber coxs; 9 , tuber sacrale; 1 , superior ischiatic spine; q, ischium: 11 , tuber ischii; r, pubis; 12, scetabulunı; s, femur; 13 , trochanter major; $1 \frac{1}{4}$, trochanter minor; 1.5 , lateral epicondyle; t. patella; u. tibia; 16, crest of tibia; 17 , lateral condyle of tibia; r, fibula; w, tarsus; $26-31$, tarsal bones; 26^{\prime}, tuber calcis. (After Ellenberger, in Leisering's Atlas).
are slightly concave. A ventral spine is not present. The arches are wide transversely, but the lamine are narrow; so that a considerable interval (spatium interarcuale) separates adjacent arches dorsally. The pedicles are perforated by a foramen in addition to the usual intervertebral foramina. The transverse processes divide into two brauches, both of which increase in size from the third to the sisth. The dorsal branch projects outward and backward; it is short and is thickened at its free end. The other branch is a quadrilateral plate directed ventrally; each overlaps the succeeding one to a small extent, and the series forms the lateral boundary of a deep and wide ventral groove. The spines increase in height from the
third to the last; the anterior ones are inclined hackward, the posterior ones forward. The last cervical is recognized ly the great length of its spine (ea. 10 cm . in the adult), the absence of the ventral plate of the transverse process, ame the flatness of the body, which hears a pair of small facets on its posterior margin for the

6

Fig. 164.-Fotrth Clrvical Vertebra wf Pig; Literal Jiew.
1, 1', Anterior and porsterior ends of body: 2, arch; 3, foratmen of arch; 4, anterior artienlar proeess; 5, spinous process; 14, ventral branch of transverse process.

Fig. 165\%.-Sixth Cervirll Vertehts qe Pig; Antemior Viek.
1, Buds: 2, transverse proress; 3. foramen transwersarium: 4. additional fortmen of arch; \bar{i}, articular process; 6, arch; 7, spinous process.

Fig. 166.-Seventh Cervical Vertebra of Pig: Lateral View.

1. 1', Anterior and posterior mads of body; 2, facet for head of firt rib; 3, areh. 4, transverse process: 5, 5', artieular processes; B, spinons process; 1 (number ou bone', foramina of arch.

Fig. 167.-Atlay of Pig; Dormal Viem:

1. Dorsal tuberositu: ?. alar foramen: 3, wing: 4, intervertchral foramen: $\overline{3}$, dorsal arch: 6 , ventral tuburcle; $\overline{\text {. }}$ suriace for dens.

Fhi. 11:-- Ithas of Pig; Anterior View.

1. Dursal tuberosity; 2, wing; 3, alar foramen; 4, antefior articular cavity; 5, ventral tubercle.
heals of the first ribs. It has formmana transwaria, and usually two formina in each side of the arch.

The dorsal tuberosity of the atlas is large. The ventral tubercle is long, compressed laterally, and projects back under the axis. The wing is flattened and beats a posterior tuberosity. The formen transversarium passes through the

Fig. 169.-Axis of Pig; Lateral View.
1, Dens; 2, 2^{\prime}, antetior and posterior articular processes; 3, posterior end of body; 4, transverse process; 5, foramen transversarium; 6, arch; 7, spinous process. Arrow indicates intervertebral foramen.

Fig. 170.-Axis of Pig; Anterior View.

1. Dens; 2, 2', anterior and posterior articular processes; 3, foramen transversarium; 4, arch; 5, spinous process.
posterior border of the wing to the fossa under the latter, and is not risible dorsally; it is sometimes very small or absent. The sides of the vertebral foramen bear two lateral projections which partially divide it into a ventral narrow part, which receives the dens, and a dorsal larger part for the spinal cord. In the fresh state the division is completed by the transverse ligament, which is attached to the projections.

The axis has a large spinous process, which is directed upward and backward. The dens is a thick eylindrical rod. The transerse process is very small and the foramen transversarium is often incomplete.

The thoracic vertebræ are commonly fourteen or fifteen in number. Their bodies are relatively long, constricted in the middle, and without rentral spines. Their extremitios are elliptical, riepressed in the middle, and prominent at the periphery. The arch is perforated by a foramen on each side and in most of the series there is also a foramen in the posterior part of the root of the transverse process which communicates with the former or with the posterior intervertelral foramen. sometimes there is a foramen in the anterior part of the process also. There are mammillary processes except on the first two; in the posterior five or six vertebre they project from the anterior articular processes. The facet for the tuberele of the rib is absent or fused with that for the head in the last five or six. The last trans-

Fig. 171.-Secont and Third Thoracic Vertebr.e of Pig; Lateral View.
Numbers around bones: 1, 1', Anterior and posterior ends of bodies; 2, cavities for heads of ribs; 3, 3', articnlar process; 4 , facet for head of rib; $\overline{5}$, spinous process. Numbers on bones: 1, 1', Foramina of arches; 2, 2', transverse processes; $3,3^{\prime}$, facets for tubercles of ribs.
verse process is lumbar in character, plate-like, and about an inch (2 cm .) long. Small accessory processes occur in the posterior part of the region. The first spinous process is broad, very high, and inclined a little forward. The others diminish very gradually in length to the tenth, heyond which they are about equal. The second to the ninth are inclined bickward, the tenth is vertioal (anticlinal), and the rest incline forward. The width decreases decidedly from the fourth to the tenth, beyond which there is a gradual increase. The summits are slightly enlarged and lie almost in a straight line.

The lumbar vertebræ are six or seven in number. The bodies are longer than in the thoracie region and bear a ventral crest. They become wider and flatter in the posterior part of the series. The arches are deeply notehed, and are separated by an increasing space dorsally. The mammillary processes project outward and hackward. The transverse processes are bent downard and incline a little forward. Their length increases to the fifth and is much diminished in the last. They form no articulation with each other or with the sacrum. The posterior edge of the root of the process is marked by a notch in the anterior part of the serics, a fora-

Fig. 172.-Fourth Lembar Vertebra of Pig; Anterior View.

1. Body; 2, trausverse process; 3, anterior articular process; 4, mammillary procass; 5 , postcrior articular process; 6, spinous process.
men in the posterior part. The spines are broad and incline forward, with the exception of the last, which is narrow and vertical.

Lesbre states that six and seven lumbar vertebras orcur with almost equal frequency. The number may be reduced to five, and the number of presacral vertebres varies from twenty-six to twenty-nine.

The sacrum consists usually of four vertebre, which fuse later and less completely than in the other domestieated animals. It is less curved than in the ox. The spines are little developed and commonly in part absent. The middle of the dorsal surface is flattened and smooth, and presents openings into the sacral canal between adjacent arches (Spatia interarenalia). On either side are the dorsal sacral foraminal, and tubercles which inclicate the fused articular processes. The wings resemble those of the ox. The anterior articular processes are very large. The pelvic surface resembles that of the ox, but is not so strongly rurved, and the transverse lines are very distinct.

The coccygeal vertebræ are specially characterized by the presence of functional articular processes on the first four or five, beyond which these processes become non-articular and smaller. The arches of the first five or six are complete. The transverse processes are broad and plate-like in the anterior part of the series
and diminish very gradually. Not rarely the first coccygeal vertebra unites with the sacrum.

Vertebral Curves.-The cervical region is practically straight. The thoracic and lumbar regions form a gentle curve, concave ventrally, the highest point of which is at the junction of the two regions. The sacral promontory is not so pronounced as in the ox, and the sacral curve is flatter.

Fig. 1í3.-Sacrty and First Coccygeal Vertebra of ${ }^{\text {PPig; Dorsal. View. }}$
I-IT', Arches of sacral vertebre; $1,2,3$, dorsal sacral foramina; 4 , similar foramen between sacrum and first cocevgeal vertebra; A, body of first sacral vertebra; B, articular process; C, wing: D, auricular surface; E, articular processes; F, first coccygeal vertebra.

Fig. 174.-Sacremand First Coccygeal Yertebra of Pig; Ventral View.
I-I 1', Sacral vertebre (bodies); 1, 2, 3, ventral sacral foramina; 4, similar foramen between sacrum and first coccygeal vertebra; A, body of first sacral vertebra; B, articular process; C, wing; D, suricular surface; E, first coccygeal vertebra.

Length. -The regional lengths of the vertebral column of a large Berkshire sow were as follows: Cervical, $24 \mathrm{~cm} . ;$ thoracic, 53.5 cm .; lumbar, 31 cm .; sacral, 17 cm .; coccygeal, 35 cm .

Variations.-The occurrence of fifteen thoracic vertebra is quite common, and the existence of sixteen or even seventcen has been recorded. Reduction to thirteen is very rare. six and seven lumbar vertebre scem to occur with about equal frequency, and reduction to five is on record. The number of coceygeal vertebre varies from twenty to twenty-six according to the records of several observers. Lesbre states that he has found twenty-three most frequently.

THE RIBS

The ribs number fourteen or fifteen pairs, of which seven are sternal and seven or eight asternal usually. They are in general strongly curved in the improved breeds, so that there is a fairly distinct angle, except toward the end of the series.

The backward slope of the posterior ribs is slight. The first rib is prismatic, has a large sternal end, and a very short eartilage. The width is greatest in the third to the sixth, and the length in the sisth and seventh usually. The tuberele fuses with the head on the last five or six. The secend

5
Fig. 175.-Eighth Rib of Pig; LitE\%UL View.
1, Hewl, 2, neek; 3, tubercle; 4, antefior border; S_{1} sternal extremity. to the fifth form diarthrodial joints with their cartilages, which are wide and plate-like.

The fifteenth rib, when present, may be fully developed and its cartilage enter into the formation of the eostal arch; but in most cases it is floating, and in some eases it is only about an inch (ca. 2-3 cm.) in length.

THE STERNUM

The sternum sonsists of six segments and resembles that of the ox in general form. The first segment (Manubrium) is long, flattenerl laterally,

11
Fig. 176.-First Rib of Pig; Iateril Vien:
1, Head; 2. neck; 3. tuberele; 4, anterior border; 5, vaseular impression: 6, sternal extremity.
and bears a blunt-pointed cartilage on its anterior end; its posterior end forms a diarthrodial joint with the body. The latter is flattened, wide in its middle, narrow at either end. The widest segments are formed of two lateral parts, which are not completely fused in the adult. The last segment has a long, narrow part which hears the xiphoid cartilage.

The thorax is long and is more larrel-shaped than in the horse or ox, since the ribs are more strongly curved and differ less in relative length.

BONES OF THE SKULL
 Cranium

The occipital bone has an extensive squamous part, which forms a very broad and prominent nuchat erest. The latter is concave, and is thick and rough above, where it forms the highest part of the skull; laterally it beeomes thinner, turns
downward, and is continuous with the temporal crest. Two divergent ridges pass upward from the foramen magnum, and the surface between them is concave and smooth. The greater part of the cerebral surface of the squamous part is united with the parietal bones, but a ventral concave area faces into the cranial cavity. The foramen magnum is almost triangular, and is narrow above, where it is flanked by two small tuberosities. The paramastoid processes are extremely long and project almost straight ventrally. The hypoglossal foramen is at the medial side of the root of the process. The basilar part is short and wide; its ventral surface

Fig. 17̄.-Sktll of Pig; Lateral View.
A, Occipital bone; B, squamous temporal bone; C, parietal bone; D, frontal bone; E, lacrimal bone; F, malar bone; (i, maxilla: H, premaxilla; I, nasal bone; J, os rostri; K, mandible; 1, occipital condyle; 2 , parsmastoid process; 3 , condyle of mandible; 4 , meatus acusticus externus; 5 , temporal fossa; 6 , parictal crest; 7 , supraorbital process; 8 , orbital part of frontal bone; 9 , fossa for origin of ventral oblique muscle of eveball; 10 , orbital opeming of supraorbital canal; 11, lacrimal foramina; 12, supraorbital foramen and groove; 13, infraorbital foramen; 14, zygomatic process of tumporal bone; 15 , temporal, and $1 \overline{5}^{\prime}$, zygomatic, process of malar bone; 16 , incisor teetb; 17 , camine teeth; $15,15^{\prime}$, premolars; 19, 19', molars; 20, mental foramina; 21, mental prominence; 22, angle of mandible.
bears a thin median ridge and two lateral imprints or tubercles which converge at the junction with the sphenoid bone.

The interparietal bone fuses before birtlı with the occipital. The internal occipital protuberance is absent.

The parietal bone is overlapped byy the occipital bone behind and concurs in the formation of the muchal crest. Its external surface is divided by the parietal crest into two parts. The medial part (Planum parietale) faces upward and forward, and is flattened and smooth. Its medial border is short and straight and unites early with the opposite bone. Its anterior border is concave and joins the frontal
bone. The lateral part (Planum temporale) faces outward and is more extensive; it is concave, forms a large part of the temporal fossa, and is overlapped ventrally by the squamous temporal. The parietal erest extends in a curve from the nuchal crest forward and outward to the supraorbital process. The cerebral surface is coneave and is marked by digital impressions. The ventral border projects into the cranial cavity and forms a crest which separates the cerebral and cerebellar compart-

Fig. 178.-Skull of Pig, Ventral View, without Mindible and Hyoid.

1. Hypoglossal foramen; 2, foramen lacerum anterius; 3, foramen lacerum posterins; 4. bulla ossea; 5, body of sphenoid: 6, pterygoid bone, and 6^{\prime}, hamulus of same; $\overline{7}$, vomer; s, horizontal, and s^{\prime}, perpendicular, part of palatine bone; 9, pterygoid proress of palatine bone; 10, pterygoid process of sphenoil bone; 11, supraorbital process; 12, orbital opening of supraorbital canal; 13, choante or posterior nares; $14,14^{\prime}$, anterior palatine foramed and groove; 15 , palatine fissure.
ments laterally. The interior is excavated and forms part of the frontal sinus in the adult. There is no temporal eanal.

The frontal bone is long. The frontal surface slopes downward and forward, the inclination varying in different subjects. The anterior part is concave and is marked by the supraorbital foramen and the groove leading forward from the foramen to the nasal bone. The supraorbital eanal opens into the orbit at the
upper part of the medial wall of the latter. The supraorbital process is short and blunt-pointed, and is not connected with the zygomatic arch. The gap in the orbital margin is closed by the orbital ligament in the fresh state. The orbital part is extensive and forms the greater part of the medial wall of the orbit. Its upper part is perforated by the orbital orifice of the supraorbital canal, in front of which is the distinct fovea trochlearis. The ethmoidal foramen is situated in the ventral part near the junction with the orbital wing of the sphenoid. The temporal part is very narrow and is separated from the orbital plate by a ridge which joins the

Fig. 179.-Sielle of Pio; Dorsal View.
pterygoid crest below. The interior of the bone is exeavated by the frontal sinus in practically its entire extent in the adult. In the young subject the cavity is confined to the anterior part and the rest of the bone is thick.

The temporal bone has a general resemblance to that of the ox. The zygomatic process is short and stout and is bent at a right angle. The dorsal border of the process is thin; traced from before backward it curves sharply upward and forms a high prominence in front of the external acoustic meatus; beyond this it drops rather abruptly and is then continued upward to the nuchal crest. The anterior part of the ventral border joins the zygomatic process of the malar, which
is deeply notched. The condyle is concave in the transverse direction. The postglenoid process is absent, but the articular surface is boumled behind and medially by a crest. There is no temporal canal. The external acoustic meatus is very long and is directed dorso-laterally. The bulla ossea is large, compressed laterally, and bears a pointed muscular process in front. A narrow space intervenes between the bulla and the basilar part of the occipital bone, so that the foramen lacerum resembles that of the horse. The small hyoid process is situated in a deep depression in front of the root of the paramastoid process, and the stylo-mastoid foramen is lateral to it. The petrous part presents no important differential features. The squamous part (including the root of the zygomatic process) contains an air-cavity, which is continuous with the sphenoidal sinus.

The sphenoid bone is short and resembles that of the ox in general. The body is narrow. The hypophyseal or pituitary fossa is very deep, and is limited behind by a prominent dorsum sellie; the dorsum bears lateral projections, the posterior clinoid processes (Processus elinoidei aborales). The foramen ovale is absent, being included in the formen lacerum anterius. The other formina are like those of the ox. The pterygoid process is broad and twisted. Its base is not perforated and its free edge is thin and sharp. It concurs with the pterygoid and palate bones in the formation of the pterygoid fossa (Fossa pterygoiclea), which opens backward and is not present in the horse or ox. The sphenoidal sinus is very large and oecupies the borly, the temporal wings, and a great part of the pterygoid processes in the adult; it is continued into the temporal bone as mentioned above.

The ethmoid bone has a relatively long perpendicular plate, which is marked ley ridges correspomding to the ethmoidal meatuses. The cribriform plate is extensive and very oblique, so that it and the crista galli are almost in line with the basi-cranial axis. A linear series of relatively large foramina is found on either side of the crista. The lateral mass consists of five endoturbinates and eighteen ectoturbinates (Paulli). The lamina lateralis concurs in the formation of the pterygo-palatine fossa. The lamina transversalis separates the fundus of the nasal cavity from the naso-pharyngeal meatus.

Face

The maxilla is extensive. Its facial surface forms a longitudinal groove, which is continued upon the premaxilla in front and the facial parts of the lacrimal and malar behind. The infraorbital foramen-sometimes double-is large and is situated above the third or fourth cheek tooth. The alveolus for the canine tooth proluces a ridge (Juga canina) at the anterior end which is very pronounced in the boar. The facial crest extends forward from the root of the zygomatic process and fades out behind the infraorbital foramen; in some specimens it is prominent and thin-edged, in others it is rounded and projerts little. The zygomatic process is short but stout and buttress-like; it is overlapped laterally by the malar. The maxillary tuberosity forms in the young subject a long bulla, which occupies most of the pterygo-palatine fossa and contains the developing permanent molars; after the eruption of the tweth the tuberosity flattens and joins the vertical part of the palate bone. The palatine process is very long and is marked in its anterior part by transverse grooves (Sulci palatini transversi) corresponding with those of the mucous membrane of the palate. The anterior palatine formen is near the junction with the palate bone; from it the palatine groove can be traced distinctly along the entire length of the process. The alveolar borker presents a large alveolus for the canine tooth at its anterior end; behind this are seven alventi for the cheek tecth, which inerease in size from first to last. The maxillary foramen and infraorbital canal are very large. The maxillary simus is small.

The borly of the premaxilla is narrow and prismatic. It presents three alveoli for the incisor teeth, which are separated by short intervals and diminish in size
from before backward. As in the ox, a narrow space separates the right and left bones and takes the place of the foramen incisivum. The palatine process is long and narrow. The nasal process is very extensive and is somewhat rhomboid in outline. Its dorsal border forms a very long suture with the nasal bone, and the ventral articulates to about the same extent with the maxilla. The palatine fissure is relatively wide.

The horizontal part of the palatine bone forms a fourth to a fifth of the length of the palate; its palatine surface is triangular. the apex being anterior; its nasal surface is deeply grooved and smooth. A pterygoid process (Processus pyramidalis of man) projects backward and downward, and its thick rounded end is received between the pterygoid process of the sphenoid and the pterygoid bone. The perpendicular part is largely overlapped laterally by the maxilla and concurs in

Fig. 180.-Sagittal Section of Skull of Pig, withott Manoible.
A, A^{\prime}, Basilar and squamous parts of oecipital bone; B, body, B^{\prime}, temporal wing, $B^{\prime \prime}$, orbital wing, of sphennid bone: C^{\prime}, parietal bone; D, D^{\prime}, internal and external plates of frontal bone; E, E^{\prime}, cribriform and perpendieular plates of ethmoid bone: F, pterygoid bone; G, G^{\prime}, perpendieular and borizontal parts of palatine bone; H. palatine process of maxilla; J, vomer; J, nasal bone; K, body of premaxilla; L, dorsal turbinate bone; M, ventral turbinate bone; $I, I I, I H$, fossa cranii; 1, hypoglossal foramen; 2, foramen lacerum posterius; 3, meatus acusticus iateraus; \pm, foramen lacerum anterius; 5 , hypophyseal or pituitary fossa; 6 , foramen orbito-rotundum; 7 , lateral erest between eerebral and cerebellar parts of cranial eavity; $\$$, optic foramen; 9 , ethmoidal foramen; 10 , frontal sinus; 11 , meatus nasopharyugeus; $12,13,14$, dorsal, middle, and ventral nasal meatuses; 15 , ineisor teeth; 16 , camine tooth; $1 \overline{1}$, premolar teeth; 14, molar teetb; 19, paramastoid proeess; 20, bulla ossea.
forming part of the palatine canal. The two plates separate dorsally and inclose an air-cavity which opens into an ethmoidal meatus. The imner plate curves inward and unites with the vomer and ethmoid to form a horizontal plate, the lamina transversalis, which divides the posterior part of the nasal cavity into a dorsal offactory part and a ventral respiratory part.

The pterygoid bone is nearly vertical in direction, and is narrow in its middle, wide at each end. The lateral surface is free helow and forms the medial wall of the pterygoid fossa. The ventral end is notched and forms a distinct hamulus.

The nasal bone is sery long and its width is almost uniform, except at the anterior endl, which is pointed and reaches almost as far forward as the premaxilla. The facial surface is flattened from side to side. In profile it is nearly straight in some subjects, variably concave in others. The lateral border is free to a small extent in front only; otherwise it is firmly connected with the premaxilla and
maxilla. In the adult the frontal sinus extends into the posterior part of the bone.

The lacrimal bone is very sharply bent. Its facial surface presents a deep depression, surmounted by a ridge or tuberede. On or close to the ortital margin are two lacrimal foramina which leal to the lacrimal cansls. The orlital surface prespnts a fossa in which the inferior oblique muscle of the eyeball arises, and its lower part bears a crest, which is crossed obliquely by a vascular furrow. The dorsal border articulates with the frontal only. The bone concurs in the formation of the maxillary sinus.

The malar bone is strongly compressed from side to side. Its facial surface is small and presents a fossa whieh is con-

Fig. 181.-Mandible of Pig; Dorsal View.
A, Body; B, B^{\prime}, horizontal and vertical parts of ramus; C, condyle; D, coronoid process; $1,2,3$, incisor tecth; 4 , canine tooth; 5, 6, 7, premolar teeth (first absent): $8,9,10$, molar tecth. timusus with the depressions of the maxilla and lacrimal. The orbital surface is still smaller and is smooth and deeply grooved. The zygomatic process is very extensive, especially in the vertical direction. Its lateral surface is convex and free, and bears a rough eminence in its middle. Its medial surface is concave; it is overlapped in front by the maxilha, and in the remainder of its extent is free and smooth. The dorsal border is thick and rounded in front, where it lorms the lower part of the orlital margin; behind this it forms an extensive noteh which receives the zygomatic process of the temporat. (It might lee regarded as dividling into frontal and temporal branches.) The ventral border is convex and hecomes thimer behind.

The turbinate bones resemble those of the ox. The dorsal turbinate is, however, relatively longer, less fragile, and more firmly attached to the nasal bone. There is no middle turbinate.

The vomer is very long. The anterior extremity reaches to the borly of the premaxilla or very close to it. The ventral border is received into a groove formed loy the nasal crest of the maxillæ and palatine bones and in front by the palatine processes of the premaxillæ. The posterior border is concave, thim, and sharp.

The os rostri (or prenasal bone) is situated in the swont between the nostrils. It has the form of a short, three-sided prism. The dorsal surface is convex and is notched at each corl. The lateral surfaces are concave, smooth, and converge below, forming a grooved ventral border. The posterior surface is triangular, notched centrally, and rough laterally. The anterior surface is deeply pitted and is surrounded ly an irregular sharp border.

The mandible is very strong, and differs very much from that of the horse or ox. The body narrows decidedly in front; the lingual surface is deeply eoncave; the mental surface is strongly convex, slopes downward and backward, and forms a distinct prominence (Tuber mentale) at the point of divergence of the rami.

Above this prominence is a pair of foramina. The alveolar border presents six alveoli for the incisor teeth, and a little further back two large cavities for the canine tecth. There are two pairs of mental foramina of considerable size and a variable number of smaller ones. The rami diverge more than in the horse or 0 x , and the upper part is somewhat incurved. The horizontal part is very thick and strong. Its lateral surface is strongly convex from above downward. The medial surface is prominent over the roots of the molar teeth and overhangs the concave lower part. The alveolar border is thin in front and widens behind; it does not follow the axis of the ramus, but runs nearly straight and produces the marked overhang noted above. There are seven alveoli for the lower cheek teeth, which increase in size from before backward. The first is small, not always present in the adult, and is separated by short spaces from the second and the canine alveolus. The vertical part is relatively wide above. The condyle is convex in both directions, wide in front, narrow and declivitous behind. The very small and thinedged coronoid process is not quite so high as the condyle, from which it is separated by a very wide notch. The mandibular foramen is large. The two halves of the bone unite soon after birth in the improved breeds.

The body of the hyoid bone is broad from before backward, short transversely, and bears on its ventral aspect a very short pointed lingual process. The thyroid cornua are wide and curved, concave and grooved dorsally; their ends are attached to the thyroid cartilage of the larynx by rather long bars of cartilage. The small cornua are short, wide, and flattened dorso-ventrally; they are attached to short bars which project from the junction of the body and thyroid cornua. The middle cornu is a little longer than the small cornu, but is relatively slender; it is largely cartilaginous in the young subject and does not ossify at either end. The great cornu is a very slender rod, slightly enlarged at either end; the dorsal extremity is attached to the hyoid process of the temporal by a rather long and wide bar of cartilage.

THE SKULL AS A WHOLE

The length and the profile vary greatly in different subjects. Primitively the skull is long-especially in its facial part-and the frontal profile is almost straight. The condition is very pronounced in wild or semi-feral pigs, and exists also-though in less degree - in the improved breeds during extreme youth. Most of the latter are decidedly brachycephalic when fully developed; the face is "dished" in a pronounced fashion. The frontal region slopes sharply upward, and the nasal region is shortened, and in some specimens even distinctly concave in profile. The supraorbital foramina are about midway between the orbital margin and the frontal suture. The supraorbital grooves extend forward from the foramina to the nasal region and turn ventro-laterally toward the infraorbital foramina over the ridges which separate the nasal and lateral regions.

The lateral surface is triangular when the mandible is included. The temporal fossa is entirely lateral and its long axis is almost vertical. It is bounded above by the nuchal crest, behind by the temporal crest, in front by the parietal crest, and is marked off from the orbital cavity by the supraorbital process and a curved crest which extends from it to the root of the pterygoid process. The zrgomatic arch is strong, high, and flattened from side to side. Its root is notched dorsally and bears a projection ventrally. It curves sharply upward behind and forms a pointed recurved projection above and in front of the external aconstic meatus. The orbit is small. Its margin is deficient behind in the dry skull, thick and rounded in front and below. The cavity is limited below by a ridge on the frontal and lacrimal bones, and is separated by a crest from the temporal fossa. The medial wall is perforated above by the orbital opening of the supraorbital canal, and below by the optic and ethmoidal foramina; on its antero-inferior part
is the fossa in which the inferior oblique muscle of the eye takes origin. Two lacrimal formina are found on or close to the anterior margin. The pterygo-palatine fossa is well defined; its upper part forms a deep groove which leads from the foramen orbito-rotumdum to the very large maxillary foramen. The preorbital region is deeply grooved in its length and is clearly marked off by a ridge from the nasal and frontal regions. The fatial erest is short, usially thin-edged, and lies above the fifth and sixth check teeth. A little ($\cdot a .2$ em.) in front of it is the infraorbital fora-

1, 2. 3, Squamous, lateral, and basilar parts of occopital bone: 4 , foratnen magnum: \%, occipital condyle: 6, paramastoid process: $\overline{6}$, sutuamous temporal bone; 8 , meatus acusticns externus; 9. temporal condyle; 10, zygomatie proctsis of maiar bone; 11, bulla ossea; 12, 12', perpendeular and horizontal parts of palatine hone; 13, 13', choanæ or posterior nares; 14, vomer; 15, pterygond process of sphenoid bone; 16, pterygond process of palatine bone; 17, condyle of mandible; 18, mandibular foramen; 19, body of mandible.
men. There is a ridged prominence over the canine alveolus. In some skulls the anterior part of the upper jaw is inclined upward.

The most striking features of the basal surface are as follows: The basioccipital is wide and flattened; it bears a median crest and two lateral tubercles. The paramastoid process is extremely long, less flattened than in the horse and ox, and nearly vertical. At the medial side of its root is the hypoglossal foramen, and in front of it are the stylo-mastoid foramen and a deep cavity in which the hyoid process is concealed. The bulla ossea is long, compressed laterally, and bears a sharp, short, muscular process. The posterior nares are small and are wider below than above. On cither side of them is the tuberosity of the palate bone, and
above this is the pterygoid fossa. The palate constitutes about two-thirds of the entire length of the skull, and is relatively narrow. It is widest between the eanines and premolars and narrow at each end. It is marked by a erest medially and by the palatine foramen and groove laterally. The anterior part bears transverse ridges. It is moderately arehed from side to side. In some speeimens it is nearly straight or slightly eoncave in its length; in others it curves upward to a variable degree in front. The posterior end always slopes upward more or less.

The nuchal surface is remarkable for its height and the breadth of the nuchal crest. The central part above the foramen magnum is smooth and concave from side to side, and is bounded laterally by ridges, which converge ventrally and end on two tubercles at the upper margin of the foramen magnum. The surface is separated from the temporal fossie by the temporal crests, which curve downward and outward and blend with the external acoustic meatus. The mastoid process has the form of a plate which overlaps the root of the paramastoid process and hears a crest on its anterior part.

The cranial cavity is small, in spite of the great size of the cranium; the discrepancy is due to the enormons development of the frontal simuses in the adult. It is relatively longer, but much lower than that of the ox. Its width is greatly dimimished between the orbits. The olfactory fosse are extensive and very oblique. The floor resembles that of the ox, but the foramen orale is absent, the dorsum selle is more developed, and the foramen lacermm is like that of the horse. Two oblique lateral crests elearly mark the limit between the cerebral and cerebellar compartments. The internal ocipital protuberanee and the temporal canal are absent.

The nasal cavity is very long. Its posterior part is divided by the lamina transsersalis into olfactory and respiratory parts. The olfactory part or fundus is dorsal, and eontains the ethonoturbinates and ethmoilal meatuses. The ventral part is continuous with the ventral meatus and leads to the pharyngeal orifice; henee it is called the naso-pharyngeal meatus. The bony roof is almost complete in front on account of the great length of the nasal bones.

The frontal sinus is a vast exeavation in the adult animal. It involves all of the roof and almost all of the sides of the cranimm, and extends forward into the roof of the nasal cavity a variable distanee-sometimes as far as a transverse plane through the infraorbital foramina. The septum between the right and left simuses is usually defleeted in an irregular manner in its middle part, but is practically median at either end. Each sinus is sublivided hy numerous septa, some of which are complete. Thus the sinus is divided into compartments, each of which communicates with an ethmoidal meatus.

In the young pig the sinus is small and is confined to the anterior part of the frontal bone. Later it extends backward, outward, and to a less extent forward. In the old subject it penetrates laterally into the supraorbital process and the root of the zygomatic process of the temporal bone, and behind almost down to the foramen magnum and the occipital condyles. It then consists of six to eight compartments usually.

The maxillary sinus is relatively small. Its anterior end is a little less than an inch (ca. 2 em.) behind the infraorbital foramen, and it extends upward into the lacrimal and backward into the malar bone. The infraorbital canal passes along its floor, and the roots of the molar teeth do not project up into it. It does not communicate with the frontal and sphenoidal simses, but with the posterior part of the middle meatus nasi by means of a eonsiderable orifiee.

The sphenoidal sinus is very large. It involves the boty; pterygoid processes, and temporal wings of the sphenoil bone, and extends into the squamous temporal. It communieates with the ventral ethmoidal meatus.

There is a small sinus in the perpendicular part of the palatine bone which communieates with an ethmoidal meatus.

BONES OF THE THORACIC LIMB

The scapula is very wide, the index being about $1: 0.7$. The spine is triangular and is rery wide in its middle, which curves backward over the infraspinous fussa and hears a large tuberosity. Its lower part bears a small projection (rudimentary acromion). The anterior border is strongly eonvex in profile, sinuous when viewed from the front, and thick and rough in its midke. The posterior horder is wide, slightly concave, and bears a rough outer lip. The vertebral border is convex, and the eartilage is not so extensive as in the horse and ox. The anterior angle is thin and bent medially a little. The posterior angle is thick and is about

Fig. 183.-Left Nicaptla of Pig; Later.al View.
2, Anterior angle; b, posterior angle; c, anterior border; d, posterior brrder; e, neck; f, glenoid cavity; g, tuber scapula; 1, spine; 2, tuber spınæ; 3, acromion; 4 , suprampinous fossa; 5 , infraspinous fossu; 6 , cartilage.
a right angle. The neck is well defined. The rim of the glenoid cavity is rounded and not notched. The tuber scapule is just above the antero-medial part of the glenoid eavity and bears no distinct coracoil process; it unites with the rest of the bone at about one year.

The humerus has an appearance in profile somewhat like an italic f mimus the cross-bar; this is due to the marked backward and forward inclination of the proximal and distat ends respectively. The shaft is decidedly compressed from side to side. The medial surface is extensive and flattened; it is separated from the anterior surface by a distinet border, and bears no teres tubercle. The musculospiral groove is shallow. The deltoid tuberosity is small, and there is a larger rounded eminence midway between it and the lateral tuberosity. The nutrient
foramen is ou the posterior surface below its middle. The head is more strongly curved and the neek better marked than in the horse or ox. The lateral tuberosity is very large and extends upon the front of the extremity. It is divided into two high prominences by a wide deep groove. There is a third eminence below and laterally for the attachment of the supraspinatus muscle. The intertuberal or bicipital groove is at the front of the medial side; it is undivided and is almost converted into a canal. The lateral groove on the distal artieular surface is so shallow as to give the appearance of two condyles of similar size. The olecranon fossa is very deep, and the plate of bone which separates it from the coronoid fossa is thin and sometimes perforated. The proximal end unites with the shaft at three and a half years, the distal at one year.

Fig. 1St.-Left Scapteh of Pig; Medhal View.
c_{7} Abterior angle; b, posterior angle; c, anterior border; d, posterior border; e, neck; f, vascular groove; g, glenoid cavity; h, tuber scapulæ; 1 , subscapular fossa; 2 , serratus area; 3 , cartilage.

The radius is short and narrow, but thick. The shaft increases in size distally. The greater part of the volar surface is in apposition with the ulna; this part is marked by a vascular furrow which runs distally from the proximal interosseous space, and has the nutrient foramen at its proximal end. The radial tuberosity is represented by a rough area. The distal end is relatively large. Its carpal surface consists of concavo-convex facets for the radial and intermediate carpal bones. There is a wide shallow groove on the middle of the front. The proximal end fuses with the shaft at one year, the distal at three and a half years.

The ulna is massive. It is much longer and considerably heavier than the radius. The shaft is corved. The dorsal surface is convex and most of it is rongh and attached to the radius by the interosseous ligament. There is a smooth area on the upper third, which concurs with the radius in forming the proximal inter-

Fig, 165.-Left Humeres of Pig; Lateral fiew.

C'urpal surface of radius
Fig. 187.-Left Radius and Ulna of Pig; Lateral View.

Fig. 186.-Left Humeres of Pig; Medial View.

Fig. 188.-Left Radius and Llna of Pig; Medial View.
osseons space, and is marked in its upper part by the nutrient foramen. From this space a vascular furrow descends to the distal part of the shaft, where there is often a distal interossous space for the passage of vessels. The medial surface is extensive, concave, and smooth. The lateral surface is slightly convex. and its proximal part is marked by an oblique rough line or ridge. The proximal extremity is large and is bent medially somewhat; its length is more than one-third of that of the entire bone. The distal extremity is relatively small: it articulates with the ulnar and accessory carpal bones, and is notched in front to accommodate the ridge

Fig. 189.-Skeletox of Distal Part of Left Thoracic Limb of Pig; Dorasal View.
R. Distal end of radius; \dot{C}, distal end (styloid process) of ulna; C. r., radial carpal; (C. i., intermediate carpal; C. u., ulnar carpal; C. 2, C. 3, C. A, second, third, and fourth carpal bones; Mc. $2-5$, metacarpal bones: Ph.1, Ph. 2, Ph. 3, first, second, and third phalanges.

Fig. 190.-Sieleton of Distal Part of Left Thoracic Limb of Pig; Volar View.
R, Distal end nf radius: l, distal end (styloid process) of ulna; C.r., C.i., C.u., C. a., radjal, intermediate, ulnar, and accessory carpal bones; C. $1-4$, first to fourth carpal bones; Mc. 2-5, metacarpal bones; Ph. 1, Ph. 2, Ph. 3, first, second, and third phalanges; S, proximal, and $s^{\prime \prime}$, distal sesamoid bones.
on the radius. The bone contains a considerable medullary canal, and is consolidated at three to three and a half years.

The carpus comprises eight bones, four in each row. The bones of the proximal row resemble those of the ox, with the exception of the accessory, which is more like that of the horse, but has no lateral groove. The first carpal is small, elongated from before backward, rounded, and articulates in front with the second carpal. The latter is high and narrow, and articulates with the second and third metacarpal bones distally. The third carpal articulates with the radial and intermediate above, the third metacarpal bone below. The fourth is the largest bone of the row; it articulates with the intermediate and uhar above, the fourth and fifth metacarpals below, and bears a tuberosity on its volar aspect.

Four metacarpal bones are present. The first is alsent, the thigl and fourth are large and carry the chicf digits, while the seeond and fifth are much smallar and lear the accessory digits. Their proximal ends articulate with each other and with the earpus as indicated above. The distal ends fuse with the shafts at about two years of age.

The third and fourth metacarpals are flattened from before backward, three-sided, and placed close together. The distal end of each bears a trochlea for articulation with the first phalanx and the sesamoids. The third is the wider of the two, and articulates with all of the distal row of the carpus except the first. The fourth articulater with the fourth carpal chiefly, but has a small facet for the third. The second and fift hactacarpals are placed further back than the ehief bones. The fiftlo is considerably the thicker of the two. The proximal ends are small and artienlate with the eorresponding carpal and metacarpal bones. The distal end is relatively large; its articular surface is condyloid in front, trochlear behind.

Each chief digit comprises three phalanges and three sesamoids. The bones of the chief digits ressmble those of the ox in form, lat there is no foramen on the intertigital side of the extensor process and the proximal sesamoids are narrow and ridged bohind. The phatanges of the accessory digits (which do not reach the ground ortinarily) are similar in form lut much smaller. Fusion of the proximal ends with the shalts takes place at about two yars for the first phalanges, at about one vatr for the second phalanges.

Fig. 191.-Left os Cone of Pig; Lateral View.

BONES OF THE PELVIC LIMB

The os coxæ is long and narrow. The ilium and ischium are almost in line with each other and nearly sagittal in direction. The wing of the ilium bends outwarl much less than in the horse or ox. The gluteal surface is divided into two fosse
by a ridge, which is continuous with the superior ischiatic spine behind. The pelvie surface presents an extensive rough area behind, which is in apposition with the wing of the sacrum. The smooth iliac area is narrow, and is bounded above by a ridge. The crest is convex, and is thick, rough, and prominent in its middle, which forms the highest point of the bone. The tuber sacrale is lower than the crest, is directed backward, and artieulates internally with the saerum. The tuber cosie is lower still and is very little thickened. The ischia in the female are somewhat divergent and flattened behind. The tubera are everted and bear three promincuces. There is a crest or tuberosity on the ventral surface. The superior ischiatic spine is like that of the cow, but is slightly incurved and the muscular

Fig. 193.-Rioht Femer of Pig; Anterior Vien.
rilges on its lateral face are more pronounced. The symphyseal part of the pubis is thick and the two bones are almost in a horizontal plane. The ilio-pectineal eminence is prominent and the psoas tubercle is well marked.

The acetabulum is placed a little further back than in the ox. The rim is thick and is cut into posteriorly by a narrow fissure, which leads into the deep fossa acetabuli. The three pieces of the os coxe are fused by the end of the first year, but the crest and the tuber ischii are partially separate till the sixth or seventh year. The symphysis does not usually undergo complete ankylosis. Interisehial bones are present.

The inlet of the pelvis is elliptical and very oblique. In a sow of full size the conjugate diameter measures five to six inches (12.5-15 em.), and the transverse
about three and a half to four inches (ca. 8.75 to 10 cm .). In the female the floor is relatively wide and flattened, specially at the outlet, where the tubera are everted; it also has a decided ventral inclination behind. The pelvie axis is therefore correspondingly oblique. The ischial arch is wide. In the boar the pulhis is much thicker and the ischia are not everted posteriorly. The inlet is smaller; the conjugate diameter is about four and a half to five inches (ca. 11-12.5 cm.), and the transverse three to three and a half inches (ca. $7.5-8.75 \mathrm{~cm}$.). The floor is concave from side to side and slopes decidedly less than in the sow. The superior ischiatic spines are more incurved, and the ischial arch is much narrower and deeper.

The femur has a relatively wide and massive shaft, on which four surfaces might be recognized. The principal nutrient foramen is situated in the proximal

Fig. 195--Right Tibia and Fibela of Pig; Antemior View.
Arrow indicates muscular noteh of proximal end of tibia.

Fig, 10h,-Right Tibla and Fiblla of Pig; Posterior View.
a, Groove on medial malleolus for tendon of flexor digitalis longus.
third of the anterior surface. The posterior surface is wide, and is limited laterally by a ridge which extends from the trochanter major to the large lateral supracontyloid erest. There is no supracondytoid fossa. The head is strongly curved, and is marked toward the medial side by a rather large fovea for the attachment of the round ligament. The neck is distinct. The trochanter major, although massive, does not extend abow the level of the head. The trochanteric ridge and fossa resemble those of the ox. The third trochanter is absent. The ridges of the trochlea are similar and almost sagittal. The extremities unite with the shaft at about three and a half years.

The shaft of the tibia is slightly eurved, consex medially. The tuberosity is grooved in front, and a narrow sulcus separates it from the lateral condyle. The facet for the filmala is on the posterior border of the latter, and is hounded
medially by an eminence. The proximal part of the erest is very prominent and curves outward. The distal end resembles in general that of the ox, but is relatively narrower transversely and thicker from before backward. The proximal end unites with the shaft at about three and a half years, the distal at about two years.

The fibula extends the entire length of the region, and is separated from the tibia by a wide interosseous space. The shaft is flattened from side to side; the proximal part is wide and deeply grooved laterally; the distal part is narrower

Fig. 197.-Skeleton of Right Pes of Pig; Dorsal View.
T. t., Tibial tarsal; T. f., fibular tarsal; $T, c_{\text {. , cen- }}$ tral tarsal; T. 3, third tarsal; T. \& , fourth tarsal; Mt. 2-5. metatarsal bones; Ph. 1, Ph. 2, Ph. 3, first, second, and third phalanges.

Fig. 199.-Skeleton of Right Pes of Pig; Plantar View.
T. t., Tibial tarsal; T. f., fibular tarsal; T. c., central tarsal; T.1. T.f. first and fourth tarsal bones; Mt. 2-5, metatarsal bones: Ph. 1. Ph. 2, Ph. 3, first, sec and, and third phalanges; S, proximal sesamoid bones; distal sesamoids shown but not marked; a, tarsal sesamoid bane.
and thicker. The proximal end is flattened, grooved laterally, and articulates medially with the lateral condyle of the tibia. The distal end forms the lateral malleolus. It is grooved laterally, and articulates with the tibia and tibial tarsal medially, with the fibular tarsal bone distally. The proximal end unites with the shaft at about three and a half years, the distal at about two and a half years.

The patella is very much compressed transversely and presents three surfaces.
The tarsus comprises seven bones. The tibial and the fibular tarsals resemble in general those of the ox. The axis of the tibial is, however, slightly oblique (ven-tro-medial), and its distal end bears a double trochlea for articulation with the cen-
tral and fourth tarsals. The tuber ealeis is deeply groeved posteriorly. The central tarsal is narrow transversely and thick. Its proximal surface is deeply coneave, and the plantar beats a large tuberele. The first tassal is high and narrow; it articulates with the eentral and second tarsals and the second metatarsal bone. The second tarsal is small and somewhat prismatic; it artieulates with the central above, the third in front, the first behind, and the seeond and third metatarsals below. The third tarsal is much larger, and is eompressed from above downward, wide in front, narrow hehincl. It artieulates with the central tarsal above, the third metatarsal helow, the seeond tarsal medially, and the fourth tarsal laterally. The fourth tarsal is large. Its lateral face is crossed by an oblique groove for the tenton of the peroneus longus. The medial surfare artienlates with the central and third tarsals. The proximal surface supports the tibial and fibular tarsal bones, and the distal surface rests on the fourth and fifth metatarsals. It ossifies from two centers. The summit of the tuber calcis fuses with the rest of the bone at two to two and a half years.

The four metatarsal bones resemble the corresponding bones of the fore limb, but are somewhat longer. The proximal ends of the third and fourth each have a considerable plantar projection; the process on the third has a facet for articulation with a discoid sesamoid bone. The second and fifth are placed more toward the plantar aspect of the large bones than is the case in the fore limb.

The first and second phalanges are a little longer and narrower than those of the fore timb.

SKELETON OF THE DOG

VERTEBRAL COLUMN

The vertebral formula is $\mathrm{C}_{7} \mathrm{~T}_{13} \mathrm{~L}_{7} \mathrm{~S}_{3} \mathrm{C}_{\mathrm{C}_{20-23}}$.
The cervical vertebræ are relatively longer than in the ox and the pig. The borlies of the typieal vertebre diminish in length from first to last and are compressed dorso-ventrally. The interior extremity is moderately convex and the posterior slightly concave; both are oblique. The median ridge and lateral grooves on the dorsal surface of the body are very well marked. The second, third, and fourth have distinct ventral spines. The spinous process of the third hats the form of a long low crest; in the remainder it is higher, blunt-pointed, and inclined forward. The transwerse processes of the third, fourth, and fifth project ventrally and backward, and divide into two branches; of these, the anterior one is thin, and the posterior is thick and tubereulate at its free end. The process of the sixth has two parts; one of these is an extensive quadrilateral plate which is directed ventro-laterally and is ridged on its medial surface; the other part is short and blunt, and is directed ontward and a little backward and upward. The seventh is readily distinguished by its shortness, the length of its spine, and the single transverse process. The posterior articular processes bear tubercles which are large on the third, fourth, and fifth.

The ventral arch of the atlas is narrow from before backward, and bears a smadl tubercle posteriorly. The dorsal surface of the dorsal areh is strongly convex and rougl centrally. The wings are wide, flattened, and almost horizontal. The dorsal surface is rough. There is an alar notch (hncisura alaris) on the anterior border instead of the alar foramen. The foramen transversarium is present.

The borty of the axis is flattened dorso-ventrally, especially in front. The dens is rounded and relatively tong, reaching almost to the occipital bone; it is inclined upward a little. The articular surfaces which flank it are condyloid in form and very oblique. The ventral surface is wide, and is divided by a median

Fig. 199.-Skeleton of Dog; Kateral View.
a, Cranium; b, face; c, maodible; $1 H-; H$, cervical vertebræ; $13 B$, last thoracic vertebra; $1 L-\gamma L$, lumbar vertebra; K, sacrum; S, coccygeal vertebre; $1 R-13 R$, ribs; R.kn., costal cartilages; St., sternum; d, scapula; d^{\prime}, supraspınous fossa; $d^{\prime \prime}$, infraspinous fossa; 1 , spine of scapula; 2 , acromion; 3 , tuberosity of scapula; 3^{\prime}, articular edd of scapula; c, bumerus; 4 , head of humerus; $\overline{5}$, lateral tuberosity of humerus; \vec{b}^{\prime}, deltoid ridge; 6, 6', epicondyles of humerus: γ, lateral coodyloid crest; γ^{\prime}, coronoid fossa; f, radius; η, ulna; δ, olecraoon; 9 , "beak" of ulna; h, carpus: i, metacarpus; k, proximal phalanges; l, middle phalanges; m, distal phalanges; n, sesamoid; p, ilium; 10 , wing of ilium; 11, shaft of ilium; 12 , crest of ilium; 13 , tuber coxx; 14 , tuber sacrale; 15 , superior ischiatic spine; q. pubis; r, ischiun; 16 , tuber ischii; 17 , acetabulum; s, femur; 18 , bead of femur; 19 , trocbanter major; 20 , trochanter minor; 21. trochanter tertius; 22,23 , condyles; 24,25 , epicondyles; 26 , trocblea; t, patella; u, tibia; 2%, tuberosity of tibia; 2s, 29, coodyles of tibia; 30 , medial malleolus; v, fibula; 31 , lateral malleolus; 32 , bead of fibula: x, tarsus; x, metatarsus; 4 , phaladges; 33, occipital bone; 34, paramastoid process; 35, parietal bone; 36, frontal bone; 37, lacrimal bone; 38 , malar bone; 39, squamous temporal; 49 , maxilla; 40^{\prime}, infraorbital foramen; 41 , premaxilla; 42 , nasal bode; 43, external acoustic meatus; 4 , eanipe tooth; 45 , masseteric fossa; 46 , aogular process of mandible. (After Ellenberger, in Leisering's Atlas.)

Fig. 200.-Third Cebtical Vertebra of Dog; Left Lateral View.

1. 2, Anterior and posterior eads of body; 3, 3, articular processes; 4 , spinous process; 5,6 , transverse process; 7 , foramen transversarium.

Fig. 201.-Foerth Cervical Vertebra of Dog: Left Latebal View.
$1,1^{\prime}$, Anterior and posterior ends of body: 2, 2', articular processes; 3, transverse process; 4 , spinous process.
crest into two fosse. The transverse processes are single, pointed, directed backward and outward, and perforated by relatively large foramina transversaria. The spinous process is thin and of moderate

Fig. 202.-Seventh Cervical Yertebra of Dog; Posterior View.
1, Body; 2, costal facet; 3, transverse process; 4, notcb; 5, 5', articular processes; 6, spinous process. height, but very long; it is prolonged forward so as to overhang the dorsal arch of the atlas, and is terminated behind by a tuberosity which is connected by two erests with the posterior articular processes. The anterior notehes are large and are never converted into foramina.

Fig. 203.-Atlas of Dog; Dgrall View.
1, Dorsal arch: 2, 2, posterior articular cavities; 3, ventral tubercle; $4,4^{\prime}$ intervertebral foramina: $5,5^{\prime}$, wings; $6,6^{\prime}$, alar notches; $7,7^{\prime}$, foramina transversaria.

The bodies of the thirteen thoracic vertebræ are wide and compressed dorsoventrally, especially at each end of the region. Their convex anterior surfaces are depressed in the middle. The posterior facets for the heads of the ribs are absent on the last three or four. The transverse processes resemble those of the horse. They bear mammillary processes except at the anterior end of the region. The facets for the tubereles of the ribs are large and emeave in the anterior part of the series, and become smaller and slightly convex further back.

Fig. 204.-Axis of Dog; Left Later\&l View.
1, Dens; 2, anterior articular process; 3, posterior end of body; 4, arch; 5, posturior notch; 1; transverse process; 7, intervertebral foramen; s, posterior articular process: 9, spinous process.

Fig. 20.̆.-Fourth Thoracic Vertebra of Dog; Left Vietw.
1, Body; 2, 2', costal facets of hody; 3, posterior notch; 4, 4', articular processes; 5, transverse process; 6, facet for tubercle of rib; 7, mammillary process; $\&$, spinous process.

The last three have accessory processes also. The first three or four spinous processes are about equal in length. Behind this they hecome gradually shorter to the tenth, and then remain equal. The backward slope is most marked in the ninth and tenth. The eleventh is practically vertical (anticlinal vertebra), and the last two incline slightly forward.

The bodies of the seven lumbar vertebræ are decidedly flattened dorso-ventraliy, and increase in width from first to last. The length increases to the sixth. The transverse processes are plate-like and are directed forward and downward. Their length increases to the fifth and sixth. They form no joints with each other or with the sacrum. Their extremitics are enlarged, with the exception of the last. The accessory processes project backward over the posterior notches of the first fire. The anterior articular processes are large, compressed laterally, and bear mammillary processes. The spinous processes are broad belot, narrower above, and with the exception of the last, incline a little forward. Their height diminishes behind the fourth.

The sacrum results from the early fusion of three vertebre. It is short,

Fig. 20i,-Fifte lumbar Vertebra of Dog; Dorsal View. 1, Anterior end of body; 2, spinous process; 3, 3^{\prime}, articular processes; 4. transverse process; 5, accessory process; 6, grouve for spinal nerve.

Fig. 207.-Sacrem of Dog; Vextral View.
$I, I I, I I I$, Bodies of vertebra; 1,2 , ventral sacral forsmina; 3 , 4 , linee transversx: 5 , anterior end of body of first sacral vertebra; $6,6^{\prime}$, anterior articular processes; 7,7 , wings; 8 , posterior end of body of last sacral vertebra; 9, 9^{\prime}, posterior articular processes: 10, sacral canal; 11, spinous jprocess; 12, 12^{\prime}, transverse processes; 13, auricular surface.
wide, and quadrangular. The spines are fused to form a median crest, which is notched, however, between the summits of the spines. On either sicle are two tubercles, vestiges of the fused articular processes. The pelvic surface is deeply concare and presents two pairs of foramina. The wings are prismatic and very high. Their lateral surfaces are extensive, face almost directly outward, and bear an auricular surface on the lower part. The anterior surface of the body of the first vertebra is extcusive, depressed in its middle, and bears a prominent lip below. The anterior articular processes are large and have extensive, slightly concave facets which face dorso-medially. The posterior articular processes are small. The transverse processes of the last sertebra project backward and may articulate or fuse with those of the first coccygeal. The sacral canal is strongly compressed dorso-ventrally.

The coccygeal vertebræ are fully developed in the anterior part of the region. The arch is complete in the first six usually. The first three or four have well developed articular processes at each end. Behind this the posterior processes quickly disappear, and the anterior ones become non-articular and gradually re-
duced in size. The transwerse processes of the first five or six are relatively large; behind this they quickly disappear. Hemal arches (or chevron bones) in the form of a V or Y occur ventrally at the intercentral junctions of the third, fourth, and fifth usually. They trammit the middle coceygeal artery, which passes between pairs of ventral tubercles further back.

Curves. A gentle curve, convex ventrally, is formed by the cervical and the anterior part of the thoracic region. The posterior thoracic and the lumbar vertedre form a second curve, concave ventrally. The sacral promontory is well marked. The sacrum and the anterior part of the cocergeal region fonstitute a third and more pronounced eurve, concave ventrally. In long-tailed dogs the sacro-cocergeal region is somewhat S-shaperl.

Variations.-Numorical variations are not common except in the coceygeal region. The number of thoracie vertebre may be twelve or fourteen, with or without compensatory change in the lumbar region. Girard recorded a case with cight lumbar and the usual number of thoracic vertebrar. Six lumbar with fourtern thoracie vertebre have been met with. The first coreygeal sometimes unites with the sacrum.

THE RIBS

Thirteen pairs of ribs are present, of which nine are stemal and four astemal. They are strongly curved, narrow, and thick. Those in the middle of the series are the longest. The first cight or nine increase in width in their lower part. The last ril) is usually floating. The eostal cartilages are long and (urve ventrally and forward; the length and curvature of the first pair are striking special features.

THE STERNUM

This is long, laterally compressed, and consists of eight sternebre, which fuse only in exceptional cases and in extreme old age. The first segment is the longest; its anterior end is blunt-pointed and bears a short conical cartilage. It widens at the point of articulation of the first pair of cartilages. The last segment is also long, thinner than its predecessors, wide in front, and narrow behind, where it bears a narrow xiphoid cartilage.

The thorax is distinctly barrel-like and is not decidedly compressed anteriorly like that of the horse and ox. The inlet is oval and is relatively wide on account of the marked curvature of the first pair of ribs and cartilages.

BONES OF THE SKULL ${ }^{1}$

Cranium

The occipital bone is similar in position to that of the horse. The nuchal crest is prominent, angular, and directed batkward. Just below the crest are two rough imprints or tubercles for muscular attachment. The surfare betow these is convex from side to side and concave dorso-rentrally. On each side, at the junction with the squamous temporat, is the mastoid foramen which opens into the cranial cavity. The condydes are somewhat flattened and are widely enparated above; at the medial side of each is a short condyloid canal, which operis into the temporal canal. The paramastoid processes are very short. The hasilar part is wide and joins the bulla ussea on either side; its ventral surface is flattened and the tubereles are at the junction with the bulla. The hypoglossal foramen is small and is close to the foramen lacerum posterius; the later is bounded in front by the bulla ossea, behind and medially by the oecipital bone.

[^27]The interparietal bone fuses with the occipital before birth. It bears the high posterior part of the parietal crest, and is wedged in between the two parietal bones. It forms the central part of the tentorium osseum, which is thin and curved, concave ventrally. Its base concurs with the occipital and parietal bones in the formation of a transverse canal which is continuous with the temporal canals.

The parietal bone is rhomboid in outline and is strongly curved. It is extensive and forms the greater part of the roof of the cranial cavity. At the junction of the right and left bones there is a prominent parietal crest which is continued upon the frontal bones. The rentral border articulates with the temporal wing of the sphenoid by its anterior part and with the squamous temporal in the remainder of its extent. The external surface enters into the formation of the temporal

Fig. 20s.-Settl of Dog; Laterae. Viewa
A, Occipital bone; B, parietal bone; C, squamous temporal bpae; D, frontal bane; E, lacrimal bone; F, malar bone; G, perpeadicular part of palatine bone; H, maxilla; I, premaxilla; J, aasal bone; K, mandible; l, parsetal crest; 2, oceipital condyle; 3, paramastoid process; 4, stylo-mastoid foramen; 5, bulla ossea; 6, meatus acusticus exteraus; \bar{T}, exteraal opeming of temporal canal: 3, postglenoid process; 9, zygomatic process of temporal booe; 10, zygotnatic process of malar bohe; 11, supraorbital process; 12, entrabce to lacrimal canal; 13, infraorbital foramen; 14, mental foramins; 15 , condyle of madible; 16 , coronoid process; 17 , mandibular noteh; 15 , angular process; 19 , masseteric fossi; i. i^{\prime}, incisor teeth c, c^{\prime}, canine teeth.
fossa. The cerebral surface is marked by digital impressions, and by grooves for the middle meningeal artery and its branches.

The external surface of the frontal bone is crossed hy a frontal crest, which extends in a curve from the parietal crest to the supraorbital process, and separates the frontal and temporal parts. The frontal parts of the two bones form a central depression and slope downward and forward. The supraorbital process is very short, so that the supraorbital margin is incomplete as in the pig. The supraorbital foramen is absent. In front there is a narrow pointed nasal part which fits in between the nasal bone and the maxilla. The orbital and temporal parts are relatively extensive. Two ethmoidal foramina are commonly present. The frontal sinus is confined to the frontal bone.

The parts of the temporal bone fuse early. The zygomatic process curves widely outward and forward. Its anterior part is beveled ventrally and articulates
extensively with the corresponding process of the malar. The articular surface for the eondyle of the mandible consists of a transverse groove which is contimued upon the front of the large postglenoid process. Behind the latter is the lower opening of the temporal eanal. There is no condyle. The mastoid part is small, but bears a distinet mastoid proeess. The external aconstic meatus is wide and very short, so that one can see into the tympanum in the dry skull. The bulla ossea is very large and is rounded and smooth; its medial side is united to the basilar part of the occipital bone. Ahove this junction and roofed in by the union of the petrous part and the basioecipital is the petro-basilar canal (Canalis petrobasilaris); this transmits a vein from the floor of the cramime to the foramen lacerm posterius. The latter opens into a narrow kepression behind the bulla ossea. It transmits the

Fig. 209.-Sktel of Dog; Doraal View.
ninth, tenth, and eleventh eranial nerves. The carotid canal branches off from the petro-basilar, passes forward lateral to it through the medial part of the bulla ossea, and opens in front at the carotid foramen; it transmits the internal carotid artery. The Eustachian opening is immediately lateral to the carotid foramen. The muscular and hyoid processes are extremely rudimentary. The petrous part projects into the cranial cavity and forms a sharp prominent petrosal crest. The medial surface presents a deep floccular fossa above the internal acoustic meatus. The anterior surface is also free. The anterior angle is perforated by a canal for the fifth cranial nerve (Canalis nervi trigemini).

The body of the sphenoid bone is flattened dorso-ventrally. The hypophyseal fossa is shallow, but the dorsum sellæ is well developed and bears posterior clinoid processes. A pair of anterior clinoid processes (Processus clinoidei orales) pro-
jeet back from the roots of the orbital wings. The latter are relatively small and are crossed laterally by a erest, which is continued forward upon the palatine bone. The temporal wings are extensive and articulate dorsally with the parietals. Perforating the roots of the wings are the following foramina, named from before backward: The optic passes through the orbital wing. The foramen orbitale is a little lower and is at the junction of the wings. The foramen rotundum opens into the alar canal, which passes through the root of the short but wide pterygoid process. The foramen ovale is near the posterior border of the temporal wing. There is no sphenoidal sinus.

The ethmoid bone is highly developed. The cribriform plate is extensive, and the olfactory fosse are very deep. The crista galli is little developed, and often ineomplete. The perpendicular plate is long. The lateral masses are greatly developed and project into the frontal sinus. There are four large endoturbinates

Fig. 210.-Cranfal ant Orbital Regions of Skull of Dog. The Zygomatic Arch Has Been Satts Mff.
A, Occipital bone; B, interparietal bone; C, parietal bone; D, squamous temporal bone; E, E^{\prime}, temporal and orbital parts of frontal bone; F, F^{\prime}. orbital and temporal wings of sphenoid bone; G. perpendicular part of palatine bone; H, pterygoid bone; I, lacrimal bone; J, maxilla; 1, parietal crest; 2, nuchal crest; 3 , occipital condyle; 4 , paramastoid process; 5 , stylo-mastoid foramen; 6, bulla ossea; 7 , meatus acusticus externus; S, articular surface for condyle of mandible: 9, section of root of zygomatic process of temporal bone; 10, alar canal; 11, foramen orbitale; 12, optic foramen; 13 , etbmoidal foramen; 14 , posterior palatine foramen; 15 , sphenopalatine foramen; 16 , entrance to lacrimal canal; 17, supraorbital process; 18, zygomatic process of malar bone (section) ; 19, maxillary foramen; 20, last molar tooth.
and six eetoturbinates. The lamina lateralis is extensive and forms the medial wall of the maxillary sinus. Its ventral border joins the palatine process of the maxilla and the horizontal part of the palate bone. A shelf-like plate extends inward from its lower part and concurs with the similarly incurved part of the palatine bone in forming the lamina transversalis, which divides the olfactory fundus of the nasal cavity from the naso-pharyngeal meatus.

Face

The maxilla is short, but very high posteriorly. The facial crest is absent. The infraorbital foramen is over the alveolus for the third premolar. The frontal process fits into a deep notch between the nasal and orbital parts of the frontal bone, and the middle part of the posterior border lies atong the orbital margin. There are more or less pronounced ridges, juga alveolaria, over the canine and molar teeth. The zygomatic process is short and thin; it is completely overlapped laterally by the malar, and is perforated by a number of foramina (Foramina
alveolaria). A mavillary tuberosity is not present in the adult, but there is a pointed projection, the pterygoid process, behind the last alveolus. The nasal surface bears a short turhinate crest on its anterior part, behind which it is deeply eoneave and forms the lateral wall of the maxillary simus. The palatine process is short, wide behind, and moderately arched from side to side. The anterior palatine

Fig. 211.-Skull 0f Dog: Ventral Vien, Withoet Mandible,
A, Basilar part of occipital bone; B, body of sphenoil bone; C, vomer; D, D^{\prime}, perpendicular and horizontal parts of palatine bone; E, pterygoid bone; 1, Eustarhan opening; 2, external carotud foramen; 3, foramen ovale; 4, 5 , posterior aud anterior openings of alar canal; 6 , foramen orbitale; 7 , postglenoid process; 8 , articular groove of temporal bone; 9 , supraorbital proress; 10, meatus naso-pharyngeus; 11, anterior palatine foramen; 12, palatine groove; 13, palatime fissure; 14, foramen incisivum.
foramen is situated at or close to the transverse palatine suture and about midway between the median suture and the alveolar border. The palatine groove is distinct. The large alveolus for the eanine tooth is completed by the premaxilla. The small alveolus for the first premolar is separated from the preceding one by a small interval. The next two consist of anterior and posterior parts for the roots of the teeth. The fourth and fifth are much larger and are divided into three
parts. The last is small and consists of three divisions. The infraorbital canal is short.

The body of the premaxilla is compressed dorso-ventrally, and contains three alveoli for the ineisor teeth, which increase in size from first to third; it also completes the medial wall of the large alveolus for the camine tooth. The foramen incisivum is very small except in large skulls. The interalveolar border is wide and very short. The nasal process is wide at its origin and tapers to a sharp point behind; the anterior part curves upward, backward, and a little inward, and forms the lateral margin of the osseous nasal aperture; the posterior part extends backward a long distance between the nasal bone and the maxilla. The palatine process turns upward and outward, forming with its fellow a wide groove for the septal cartilage; the posterior end is pointed and fits into a notch between the palatine

Fig. 212.-Sigittal Section or Skull of Dog, Withott Mandible.
A, A^{\prime}. Basilar and squamous parts of oecipital bone; B, B^{\prime}, presphenoid and postsphenoid; $C^{\prime}, C^{\prime \prime}$, perpendieular and cribriform plates of ethmoid bone; D, parietal bone; E, frontal bone; F, pterygoid bone; G, G^{\prime}, vertieal and horizontal parts of palatine bone; H, vomer; I, premaxilla; J, nasal bone; K, dorsal turbinate bone; L, ventral turbinate bone; $I, I I, I I I$, anterior, posterior and middle fosse of eramium; 1, oceipital condyle; 2, opening of condyloid canal; 3 , canal for intertransverse sinus of dura mater; 4 , internal occipital protuberance; 5 , internal opening of temporal canal: 6 , mastoid foramen; 7 , floceular fossa; 8 , meatus acusticus internus; 9 , canal for trigeminal nerve; 10 , internal earotid foramen: 11, 12, openings into petro-basilar eanal; 13, foranen bypoglossi; 14, petrosal crest; 15 , dorsum selle; 16, hypophyseal or pituitary fossa; 17, optic foramen; 18, ethmoid foramen; 19, meatus дaso-pharyngeus; 20, 21, 22, dorsal, middle, and ventral meatus nasi; 23, ineisor teeth; 24, canine tootb; 25, premolar teeth; 26, molar teetb; 27, sorotum between frontal sinuses.
processes of the maxilix, and supports the end of the vomer. The palatine fissure is short but wide.

The horizontal part of the palatine bone is extensive, forming about one-third of the hard palate. It presents a variable number of accessory palatine foramina. There is usually a pointed posterior nasal spine (Spina nasalis aboralis) at the end of the median suture. The palatine canal is sometimes formed entirely in this lone. The perpendicular part is even more extensive. Its lateral surface is ehiefly free and forms most of the medial wall of the large pterygo-palatine fossa. The maxillary formen is situated in a deep recess between this bone and the zygomatie process of the maxilla. Just ahove it there is eommonly another foramen which opens into the nasal eavity. The posterior palatine and sphenopalatine foramina are situated further back and a little lower; the former is ventral to the latter. A horizontal plate extends from the nasal surface, meets that of the opposite bone, and rompletes the lamina transversalis spoken of in the deseription of the ethmoid bone. There is no palatine sinus.

The pterygoid bones are very wide and short. They form a considerable part 13
of the lateral boumlaries of the posterior nares. The lower and posterior borders are free and at their angle of junetion there is a variable hamulus.

The nasal bones are (in most breeds) long and wider in front than behind. The facial surface is variably concave in its length and is inclined toward the median suture so as to form a central groove. The medial borders turn downwarl and form an internal nasal crest whieh becomes very prominent bethind. The posterior parts fit into a noteh formed by the frontal bones. The anterior ends form an almost semicircular nasal notch.

The lacrimal bone is very small. The facial part extends very little or not at all bevond the orbital margin. The orbital surface is small and triangular, and presents the entranee to the lacrimal canal.

The large zygomatic process comstitutes the bulk of the malar bone. It is very long and is strongly curved. The dorsal border is convex, free in front, where it forms part of the orhital margin, beveled behind for artieulation with the similar process of the temporal bone. Between these it bears an eminence, the processus frontalis, to which the orbital ligament is attached. The body of the bone may be consittered to consist of a lacrimal process direeted dorsally and fitting in between

Fig. 213.-Right Half of Mandible of Dog; Medial. View.
the facrimal and maxilla, and a maxillary process directed rentrally. The facial surface is conves.

The dorsal turbinate bone is in its anterior part a simple plate, attached by one edge to the nasal bone; it curves ventro-medially, and its free border is thickened and everted. The posterior part is wider and resembles the ethmoturbinates, with which it is comneeted.

The ventral turbinate bone is short and very complex. It is attached to the nasal surface of the maxilla hy a hasal lamina, whith divides into two secondary lamellie. The later detach nimerous tertiary lamelle, which are coiled and have thick free elges.

The vomer is not in contact with the posterior part of the floor of the nasal cavity, and does not rivide the posterior nares. The posterior end is narrow and deeply notehet. Near the posterior nares the two plates curve outward and join the palatine bones and assist in forming the lamina transersalis.

The two halves of the mandible do not fuse completely even in old age, so that there is a permanent symphysis mandibulæ. The body presents six alveoli for the incisor teeth and two for the eanines. The incisor alveoli increase in size from first to third. The canine alveoli extend deeply downward and backward. The rami diverge less than in the pig. The ventral borter of the horizontal part is convex in its length and is thick and rounded. The alveolar border is slightly concave in
its length and is a little everted, especially in its middle; it presents seven alveoli for the lower check teeth, which resemble those of the upper jaw exrept that the fourth and sixth are much smaller and the fifth is like the fourth of the upper series. The interalveolar space is very short or even absent. There are two or three mental foramina on either side. The rertical part is relatively small. Its lateral surface presents a deep masseteric fossa (Fossa masseterica) which encroaches on the coronoid process and is limited by ridges in front and below. The medial surface is convex and is marked by the usual mandibular foramen. It about the same level as the latter is the rough angular process (Processus angularis), which projects backward from the posterior border, and is equivalent to the angle of the other animals. The condyle is placed very low-not much higher than the apex of the canine tooth when the bone is resting on a flat surface. It is long transversely and the medial part of the articular surface is much the wider and extends over the posterior surface. Its long axis is a little oblique, the medial end being inclined somewhat downward and forward. The coronoid process is very extensive and is bent slightly outward and backward.

The body of the hyoid bone is a slightly curved transverse rod; it is compressed from before backward, and bears no lingual process. The thyroid cornua are permanently attached to the body by cartilage; they diverge widety, curve inward, and are compressed laterally. The small cornua are short, prismatic, and strong. The middle cornua are conmonly a little longer than the great cornua; they are compressed laterally, and are slightly cularged at the ends, which are joined by cartilage to the adjacent comua. The great cornua are bent outward and are somewhat twisted.

THE SKULL AS A WHOLE

The different breeds of dogs display great variations in the form and size of the skull. Those which have a long narrow skull (e. g., greyhound, collie) are designated dolichocephalic. Other dogs (e. g., bulldog, small spaniels, pugs) have very broad, short skulls and are termed brachycephalic. Intermediate forms (e.g., fox terrier, dachshund) are mesaticephalic.

The length is usually measured from the nuchal crest to the anterior end of the premaxillary suture, and the breadth between the summits of the zrgomatic arches. The cephalic index is the relation of the breadth to the length, assuming the latter equal 100 ; the formula is: $\frac{\text { breadth } \times 100}{\text { length }}=$ cephalic index. The index of extreme dolichocephalic breeds is about 50 , as in the greyhound, and that of brachycephalic specimens may be as high as 90 , as in the pug and some toy terriers. Among the mexaticephalic types are the fox terrier, with an index of about 70 , and the white Pomeranian, with one about -2 to 75. The cramo-facial index is the relation of the distance between the nuchal crest and the fronto-nasal suture to that between the latter and the nasal notch. It varies from $10: 3$ in extreme brachycephalic breeds to $10: 7$ in extreme dolichocephalic subjects.

The frontal surface shows the mide outward curve of the zygomatic farches and the great extent of the temporal fosse. The latter are separated by the parietal crest, which in the larger breeds is very strong and prominent, and is continued by the diverging frontal crests to the supraorbital processes. The frontal and nasal regions are centrafly depressed, and are more or less concave in profile. The nasal region is narrow and is terminated in front by a nasal notch. In the extreme brachycephalic breeds the differences are very striking. The cranium is strongly convex in both directions and is considerably longer than the face. The parietal crest is more or less effaced posteriorly and is formed by the interparietal only. The parietofrontal crests are separated by au interval behind and diverge to the supraorbital processes, so that the temporal fossæ are widely separated. The frontal region is wide, strongly convex, and has a shallow central depression. The nasal region is very short, relatively wide, and centrally depressed. In profile there is a
marked depression at the fronto-nasal junction, prolucing what is termed by fanciors the "stop" of the face.

On the lateral surface the great extent of the temporal fossa is seen. The orbit communicates freely with the fossa, the posterior part of the orbital margin being absent in the dry skull. The axis of the orbital eavity forms a muele smaller angle with the median plane than in the horse and ox. A distinet rest marks the limit betwen the orbital eavity and the extensive pterygo-palatine fossa. The preorbital region is somewhat triangular, concave in its length, and convex dorsoventrally; the infraorhital foramen is on its lower part above the third cheek tooth. In extreme brachyeephalie breeds the orbit is relatively very large and the preorbital region extremely short but high. In the bulldog the lower jaw protrudes be-

Fig. 21t,-Gkull of Dolichocephatic Dog: Dorsal View. yond the upper - a eomdition known as prognathism. The opposite condition, brachygntthism, is seen in the dachshumd.

Striking features on the basal surface of the cranium are the width and flatness of the basilar part of the oceipsital hone, the small size of the paramastoid processes, the large size and

Fig. 215.-Skell of Brachycephalic Dog; Dorsal View.
rounded shape of the bulla ossea, and the growed form of the articular surfaees for the mandible. The posterior nares are long and narrow and are not divided by the vomer. The hard palate is usually about half the length of the skull. It is commonly marked by a modian crest or rough line, and on each side are the anterior and aceessory palatine foramina and the palatine grooves. The width is greatest between the fourth pair of cheek teeth, and here there is in most skulls a pronomed depression on cither side. The length, width, and contour vary greatly in different breeds.

The angle of divergence of the rami of the mandible varies from 25 to 30 degrees; it is smallest in the greyhound, largest in extreme brachyeephalic types, e. g., bulklog, pug.

The nuchal surface is somewhat triangular, with the base ventral. The summit is formed by the nuehal erest, which projects very strongly backward in the large breeds. Below it there are two very distinct rough imprints for museular attachment. In some skulls there is a thin median orecipital erest, in others a rounded elevation. Laterally are the temporal crests and the mastoid processes.

The mastoid foramen is at the junction of the occipital and temporal bones, above the root of the paramastoid process; it opens directly into the cranial cavitr. The foramen magnum varies greatly in form; most often the transverse diameter is the greater, but in some skulls it is equaled or exceeded by the rertical diameter.

The cranial cavity (Fig. 212) corresponds in form and size with the cranium, especially in those breeds in which the various crests are more or less effaced and the frontal sinuses are small. The basi-cranial axis is almost parallel with the palate, and the floor is flattened. The anterior fossa is narrow and is only slightly higher than the middle one. The ethmoidal fosse are very deep and the crista galli is little developed. The hypophyseal fossa is variable in depth, and the dorsum sellee is relatively high and hears clinoid processes laterally. The cerebral and cerebellar compartments are well marked off laterally by the petrosal erests and dorsally by the tentorium osseum. The base of the latter is traversed by a canal which connects the two temporal canals. The anterior angle of the petrous temporal is perforated by a canal for the fifth cranial nerve.

The nasal cavity (Fig. 212) conforms to the shape of the face. Its anterior aperture is large and nearly circular in most dogs. The complex ventral turbinates occupy the anterior part of the cavity to a large extent, except near the aperture. Behind the rentral turbinate is the large opening of the maxillary sinus. Behind this the cavity is divided by the lamina transversalis into a large upper olfactory region or fundus nasi and a lower naso-pharyngeal meatus. The fundus is occupied largely by the ethmoturbinates. The posterior nares are undivided and are in general long and narrow, but vary with the shape of the skull.

The frontal sinus is of consiclerable size in the large breeds, hut is confined to the frontal bone. It is usually divided into a small anterior and a much larger posterior compartment, each of which opens into the dorsal ethmoidal meatus. The simus is very small in extreme brachycephalic types.

The maxillary sinus is small, and is in such free communication with the nasal cavity as to make it rather a recess than a true sinus. It is bounded medially by the lamina lateralis of the ethmoid, and its lateral wall is crossed obliquely by the naso-lacrimal canal. The roots of the molar teeth do not project up into it.

BONES OF THE THORACIC LIMB

The clavicle is a small, thin, irregularly triangular bony or cartilaginous plate. It is embedded in the brachiocephalicus muscle in front of the shoulder-joint and forms no articulation with the rest of the skeleton. (It is nearly an inch long in a large cat and is a slender curved rod.)

The scapula is relatively long and narrow. The spine increases gradually in height from above downward and divides the lateral surface into two nearly equal fosse. Its free edge is thick and rough above, and at the lower part is thin and bent backward. The acromion is short and blunt and is opposite the rim of the glenoid cavity. The subscapular fossa is very shallow and is marked by rough lines (Lineæ musculares). The rough area above it for the attachment of the serratus ventralis is large and quadrilateral in front, narrow and marginal behind. The anterior border is thin, strongly convex, and sinuous. The posterior border is straight and thick. The vertebral border is convex and thick and bears a band of cartilage. The anterior angle is rounded. The posterior angle is thick and square. The neck is well defined and bears a rough eminence posteriorly, from which the long head of the triceps arises. The glenoid cavity is continued forward upon the lower face of the tuber scapule, which is blunt and bears no coracoid process. The cervical angle is opposite the first thoracic spine; the dorsal angle lies above the vertebral end of the fourth rib, and the glenoid angle at a point just in front of the sternal end of the first rib in the ordinary standing position. The tuber scapulee
unites with the rest of the bone at six to eight months. The shoukler has a great range of movement on the chest wall.

The humerus is relatively very long, rather slemder, and has a slight spiral twist. The shaft is somewhat compressed laterally, expecially in its proximat twothirds; this part is curved in varying degree, conver in front. The deltoid tuberosity has the form of a low ridge, and it is contimued by a crest which runs upward and baekward and bears a tuberde on its proximal part. Another line runs from it down the anterior aspect and forms the medial boundary of the very shallow museulo-spiral groove. The nutrient foramen is about in the middle of the posterior surface. A slight elevation on the proximal third of the medial surface represents the teres tuberele. The head is long and strongly curved from before backward. The neek is better marked than in the horse. The undivided lateral tuberosity is placed well forward and extemds little above the level of the head. The medial tu-

Fig. 21fi-Left scapela of Dog: Lateral View

Fig. 217.-Right Ncaptla of Dog; Medial View.
berosity is small. The intertuberal or bieipital groove is undivided and is displaced to the medial side by the extension forward of the lateral tuberosity. The distal cod bears an ohlique trochlear articular surface for articulation with the radius and ulna, the lateral part of which is the more extensive and is faintly grooved. The epicondyles are prominent. The coronoid and olecranon fosse often commumicate through a large supratrochlear foramen. The proximal end unites with the shaft at about one year, the distal at six to eight months.

The two bones of the forearm are relatively long and articulate with each other at each end in such a manner as to allow of slight movement. A narrow interosseous space separates their shafts. The radius is flatened from before baekward and increases in size distally. The shaft forms two rurves, so that it is conrex dorsally and medially. The dorsal surface is convex in both directions and is marked in its distal half by a gronve for the oblique extensor of the carpus. The volar surface presents the nutrient foramen in its proximal third, and bears a rough
line (Crista interossea) laterally for the attachment of the interosseous ligament. The proximal end (Capitulum radii) is relatively small and is supported by a dix-tinet neek (Collum radii). It bears a concave surface (Fovea capituli) for articulation with the humerus, and a convex marginal area (Circumferentia articularis) behind for the ulna. The radial tuberosity is small. There is a large lateral tuberosity and below this a rough eminence. The distal extremity is much wider. It has an extensive concave carpal articular surface. Its medial border projects downward, forming the styloid process of the radius. Laterally there is a concave facet (Incisura ulnaris radii) for articulation with the ulna. Dorsally are three distinet grooves for the extensor tendons. The ulna is well developed, but dimin-

Fig. 21s.-Left Hemeres of Dog; Lateral View.

Fig. 219.-Left Hemerts of Dog; Medhl. View. 1, Attachment of medial ligament of elbow joint; 2, attachment of flexor muscles to medial epicondyle.
ishes in size distally. It crosses the volar surface of the radius medio-laterally: The shaft is large and three-sided in its proximal two-thirds, smaller and more rounded below. Its dorsal surface is in general rough. The nutrient foramen is near the proximal end. A vascular groove descends from it and indicates the course of the interosseous artery: The proximal end is relatively short. It is concave and smooth medially, convex and rough laterally. The olecranon is grooved and bears three prominences, of which the posterior one is large and rounded. The semilunar notch is wide below and completes the surface for articulation with the trochlea of the humerus. Below it is a concave surface (Incisura radialis), which articulates with the back of the head of the radius, and below this is a fossa, which receives a tuberosity of the radius. The distal end (Capitulum ulnæ) is small and
is produced to a blunt point (Processus styloideus ulne). It articulates with the ulnar earpal distally, and has a convex facet on its dorso-medial aspect for the radius. The proximal end of the radius unites with the shaft at six to eight months, the distal at about one and a half years of age. The olecranon and the distal end of the ulna fuse with the rest of the bone at about fifteen months.

The carpus comprises seven bones-three in the proximal row and four in the distal. The numerical reduction in the proximat row is apparently due to the fusion of the radial and intermediate, eonstituting a large bone (radio-intermediate) which artioulates with almost all of the

Fig. 220.-Left Radius and Uliva of Dog; Medial View.
a, Rough area for attarhment of biceps brachii and brachialis museles; b, gronve for tendon of extensor carpi obliquus. distal surface of the radius and with the bones of the distal row. It projects prominently on the volar surface of the carpus. The ulnar earpal is long; it articulates with the radius and uha abore and the accessory behind; below it rests on the fourth earpal and is prolonged downward to articulate with the fifth metaearpal also. The accessory is eytindrical, constricted in its middle and enfarged at each end; the anterior extremity articulates with the ulna and uhar earpal bone. The first carpal is the smallest bone of the lower row; it articulates with the second carpal laterally and the first metacarpal distally. The seend carpal is wedge-shaped, the base being posterior; its proximal surface is eonvex, and its distal is concave and rests on the second metacarpal. The third carpal is somewhat like the second; its distah surface is concave and articulates chiefly with the third metacarpal. The fourth earpal is the largest of the row; it articulates with the fourth and fifth metacarpals. Two small bones or cartilages may be found on the volar surface at the junction of the two rows, and a third smatl bone articulates with the medial side of the radio-intermediate. ${ }^{\text {. }}$

Five metacarpal bones are present. The first is much the shortest; the third and fourth are the longest, and are about one-fifth longer than the second and fifth. The fifth is the widest at the proximal end and is slightly shorter than the second. They are close together above, but diverge somewhat distally; the first is separated from the second by a considerable interosseous space. They are so arranged as to form a convex dorsal surface and a concave votar surface, which corresponds to the hollow of the palm of the hand in man. Each consists of a shaft and two extremities. The shaft is compressed from before backward. In the third and fourth it is almost four-sidecl, in the second and fifth three-sided, in the first rounded. The proximal ends (Bases) articulate with each other and with the corresponding

[^28]carpal bones. The carpal articular surface formed by them is coneave from side to side, consex from before backward. The distal ends (Capitula) have articular surfaces of the nature of a head, but bear a sagittal ridge on the volar aspect, except the first, which is grooved. Ossification is complete at five or six months of age.

The five digits have three phalanges eaeh, except the first, which has two. The third and fourth digits are the longest; the first is very short and does not come in contact with the ground in walking. The first phalanges of the chicf digits have four-sided shafts, which are slightly eurved dorsally. The proximal end of each has a concare surface for articulation with the metacarpal bone and is deeply notched behind. The distal end has a trochlea for articulation with the second phalanx, and depressions on each side for ligamentous attachment. The second phalanges are about two-thirds of the length of the first phalanges. The proximal articular surface consists of two cavities separated by a sagittal ridge. The distal extremity is wider and flatter than that of the first. The third phalanges correspond in general to the form of the claws. The base has an "articular surface adapted to the second phalanx and is encircled by a collar of bone (Crista unguicularis). The volar surface bears a wing or tuberosity, and on each side of this is a foramen. The ungual part is a curved rod with a blunt-pointed free end. It is rough and porous. Its base forms with the collar previously mentioned a deep groove, into which the proximal border of the claw is received. The two phalanges of the first digit resemble in arrangement the first and third phalanges of the other digits. Ossification is complete at five or six months.

Nine volar sesamoids are usually present. Two are found at each meta-carpo-phalangeal joint of the chief digits. They are high and narrow,

Fig. 221.-Skeleton of Distal Part of Right Thoracic Limb of Dog; Dgrsal View.
The digits are spread. I, Distal end of interosseous space; R, distal end of radius; C. r. $+i$., radio-intermediate carpal; C. u., ulaar carpal; C. a. ., accessory carpal (very small part visible); C. 1, C. 2, C.3, C. 4 , first to fourth earpal bones: Mc. I, metacarpal bone of first digit; $P .1+2$, fused first and second phalanges of same; P. 3 , third phalanx of same; Me. V, fifth metacarpal bone; P. $, P, P, P, P . S$, phalanges of fifth digit; S, dorsal sesamoid; C, C, volar sesamoids. articulate with the distal end of the metacarpal bone in front, and have a small facet on the base for the first phalanx. On this joint of the first digit there is usually a single flattened sesamoid, but exceptionally two are present. The distal volar sesamoids remain cartilaginous. A nodular dorsal sesamoid occurs in the capsule of the metacarpo-phalangeal joints, and cartilaginous nodules are found in a similar position in connection with the joints between the first and second phalanges.

BONES OF THE PELVIC LIMB

The ilium is nearly parallel with the median plane and its axis is only slightly oblique with regard to the horizontal plane. The gluteal surface is concave. The pelvic surface is almost flat. The auricular surface faces almost directly inward, and in front of it there is an extensive rough area. The ilio-pectineal line is very distinct and is minterrupted. The crest is strongly convex, thick, and rough. The tuber sacrale is represented by a thickened part which bears two eminences, homologous with the posterior superior and posterior inferior iliae spines of man. The tuher coxæ also has two prominences, which are equivalent to the two anterior spines present in man. The shaft is almost sagittal and is compressed laterally. It is smooth and rounded dorsally, and it bears a ventro-lateral crest (Linea gluta ventralis), which terminates at a tuberosity in front of the acetabulum.

The ischium has a twisted appearance, owing to the fact that its acetabular part is nearly sagittal while the posterior part is almost horizontal. The two bones

Fig. 222.-Right Os Cox.f of Dog: Lateral View,
1, Gluteal surface of ilium: 2, erest of ilium; 3, tuber sacrale; 4, tuber cosæ; 5, shaft of ilium: 6, nutrient foramen; 7 , greater sriatic notch; S, ventral gluteal line; 9 , tubercle to which rectus femoris is attarhed; 10, ilio-pectineal eminence; 11, 11', aretabular and symphyseal branches of pubas; 12 , articular surface of acetabulum; 12^{\prime}, fossa acetahuli; 13 , ubturator foramen; 14 , ischiatic spine; 15 , lesser sciatic notch; $16,16^{\prime}$, acetabular and symphyseal branches of ischium; 17, tuber ischii.
also diverge behind and the tubera are flattened and everted. The superior ischiatic spine is low and thick; its posterior part is marked by transverse grooves and has a prominent outer lip. The greater sciatic notch is elongated and very shallow. There is no lesser sciatic notch. The ischial areh is relatively small and is semi-elliptical.

The symphyseal part of the pubis is thick and fuses late with the opposite bone. There is no sulpubic groove.

The acetabulum is about twice as far from the tuber coxx as from the tuber ischii. The fossa acetabuli is deep, and is lounded medially by a flat plate of bone; its floor is so thin as to be translucent. There is a small noteh behind.

The obturator foramen resembles in outline an equilateral triangle with the angles rounded off.

Union of the three parts of the os coxe has usually taken place at six months, but the epiphyses of the ilium and ischium do not fuse with the main part of these bones till about the end of the sceond year.

The inlet of the pelvis is very oblique. It is almost circular in the female, but in the male it is elliptical and the conjugate diameter is the longer. The cavity is narrowest between the acetabula, and very wide behind. The floor is coneave and relatively narrow in front, wide and flat behind.

The femur is relatively much longer than in the horse or ox. The shaft is regularly cylindrical, except near the extremities, where it is wider and compressed from before backward. It is strongly curved in its distal two-thirds, convex in front. The posterior surface is flattened transversely, narrow in the middle, and widens toward each end. It is bounded by two rough lines (Labium laterale, mediale) which diverge toward the extremities. The third trochanter and the supracondyloid fossa are absent. There are two supracondyloid crests, the medial one being small. The nutrient foramen is in the proximal third of the posterior surface. The head is a little more than a hemisphere and has a shallow fovea belind and lateral to its center. The neck is well defined. The trochanter major does not extend as high

Fig. 223.-Pelyic Bones of Dog; Ventral View.
1, Body of first sacral vertebra; 2, wing of sacrum; 3, sacral canal; 4, median crest of sacrum; 5, pelvic surface of sacrum.
as the head; a thick ridge runs from its anterior surface to the neck. The trochanter minor has the form of a blunt tuberosity. The trochanteric fossa is round and deep. The ridges of the trochlea are practically sagittal in direction and are almost similar. The intercondyloid fossa is wide. Just above each condyle posteriorly there is a facet for articulation with the sesamoid bone which is developed in the origin of the gastrocnemius muscle. Union of shaft and extremities takes place at about one and a half years.

The tibia is about the same length as the femur. The shaft forms a double curve; the proximal part is convex medially, the distal part laterally. The proximal third is prismatic, but is compressed laterally and is long from before backward. The remainder is almost regularly cylindrical. The crest is short but very prom-
inent. The nutrient foramen is usually in the proximal third of the lateral border. The tuberosity is not grooved, but bears a distinct mark where the ligamentum patelle is attached. There is a small facet for the fibula on the postero-lateral part of the lateral condyle, and a small sesamoid bone in the tendon of origin of the popliteus is in contact with the posterior angle of the latter. The distal end is quadrangular and relatively small. The articular grooves and ridge are almost sagittal. There is a facet laterally for articulation with the fibula. There is a vertieal groove medially and a shallower one behind-both for tendons. The proximal end unites with the shaft at about eighteen months, the distal at fourteen or fifteen months.

Fig. 224.-Right Femir of Dog; Anterior View.

Fig. 22\%-Right Femur of Dog; Porterior View. 1, 2, Sesamoid bones.

The fibula extends the entire length of the region. It is slender, somewhat twisted, and enlarged at either end. The proximal part of the shaft is separated from the tibia by a considerable interosseous space, but the distal part is flattened and elosely applied to the tibia. The proximal extremity is flattened and articulates with the lateral condyle of the tibia. The distal end is somewhat thicker and forms the lateral malleolus. It artieulates medially with the tibia and the tibial tarsal bone. Laterally it bears two tubercles.

The patella is long and narrow. The free surface is convex in both directions. The articular surface is convex from side to side and slightly concave from above downward.

The tarsus comprises seven bones. The tibial tarsal consists of a body, neek, and head, like the bone in man. The body presents a proximal trochlea for articulation with the tibia and fibula. The plantar surface has three facets for artieulation with the fibular tarsal bone. The head is direeted a little inward and articulates with the eentral. The fibular tarsal has a long anterior process or "beak," but the sustentaculum is short. The tuber calcis presents a sagittal groove. The central has a concave proximal surface adapted to the head of the tibial tarsal. Its distal surface articulates with the first, second, and third tarsals. It bears two plantar tubereles. The first tarsal is flattened and irregularly quadrangular; its proximal surface articulates with the central and the distal with the first metatarsal.

Fig. 226.--Right Tibia and Fibula of Dog: Antehior View.

The second tarsal is the smallest and is wedge-shaped; it articulates distally with the second metatarsal bone. The third tarsal is also wedge-shaped, the base being in front; it articulates with the third metatarsal distally. The fourth tarsal is remarkably high, and resembles a quadrangular prism; its proximal surface articulates with the fibular tarsal, its distal with the fourth and fifth metatarsal, and the medial with the central and third tarsal hones. A groove for the tendon of the peroneus longus crosses its lateral and plantar surface, and above it are one or two tubercles. The tuber calcis fuses with the body of the bone at fourteen or fifteen months.

Five metatarsal bones are present. The first is commonly very small and has the form of a blunt cone, somewhat compressed laterally. It artieulates with the
first tarsal and furnishes insertion to the tibialis anterior muscle. In some cases it fuses with the first tarsal; when the first digit is well developel, its metatarsal may resemble the others (except in size) or be reduced in its proximal part to a fibrous band. The other metatarsals are a little longer than the corresponding metaearpals. Their proximak ends are elongated from before backward and have plantar projections, which in the case of the third and fourth usually lave facets

Fig. 20s.-Fkeleton of Distal Part of Left Pelitic Limb of Dog; Dorsal View.
$L_{\text {, }}$ I.ateral malleolus (distal end of fibula); T. t., thbial tarsal bone; T.f., fibular tarsal bone; T. c., central tarsal bone: $T .2, T, 3, T .4$, second, third, and fourth tarsal bones; $P .1+2$, fused first and second phalanges, and $P .3$, third phalanx, of first digit; Mc. $\overline{5}$, fiftl metacarpal bone; $P, 1, P, 2, P, 3$, pbalanges of fifth digit; S, dorsal sesamoid.
for articulation with two small rounded sesamoid bones. In other respects they resemble the metacarpals.

The first digit is often absent. When present, its development varies and it contains one or two phalanges. In other cases-especially in very large cogsa sixth digit is present; it does not articulate with the metatarsus, but is attached by fibrous tissue. The phalanges of the other digits resemble those of the thoracie limb.

Ossification of the metatarsal bones and phalanges is complete at five or six months.

ARTHRCLOGY

THE ARTICULATIONS OR JOINTS

An articulation or joint is formed by the union of two or more bones or cartilages by other tissue. Bone is the fundamental part of most joints; in some cases a bone and a cartilage, or two cartilages, form a joint. The uniting medium is chiefly fibrous tissue or cartilage, or a mixture of these. Union of parts of the skeleton by muscles (Synsarcosis), as in the attachment of the thoracic limb in the horse, will not be considered in this section.

Joints may be classified-(a) anatomically, according to their mode of development, the nature of the uniting medium, and the form of the joint surfaces; (b) phrsiologically, with regard to the amount and kind of movement or the absence of mobility in them; (c) by a combination of the foregoing considerations.

The classification of joints is still in a very unsatisfactory state, and unfortunately the same term is used in various senses by different authors. The two main subdivisions proposed by Hepburn are: (1) Those in which the uniting medium is coextensive with the opposed joint surfaces, and in which a direct union of these surfaces is thereby effected. (2). Those in which the uniting medium has undergone interruption in its structural continuity, and in which a cavity of greater or less extent is thus formed in the interior of the joint. This distinction is of considerable importance clinically.

Three chief subdivisions of joints are usually recognized-viz., synarthroses, diarthroses, and amphiarthroses.

SYNARTHROSES

In this group the segments are united by fibrous tissue or cartilag \notin or a mixture of the two in such a manner as practically to preclude movement; hence they are often termed fixed or immovable joints. There is no joint cavity. Most of these joints are temporary, the uniting medium being invaded by the process of ossification, with a resulting ankylosis or symostosis. The chief classes in this group of joints are as follows:
(1) Suture.-This term (sutura) is applied to those joints in the skull in which the adjacent bones are closely united by fibrous tissue-the sutural ligament. In many cases the edges of the bones have irregular interlocking margins, forming the sutura serrata, $e . g$.. the frontal suture. In others the edges are beveled and overlap, forming the sutura squamosa, e. g., the parieto-temporal suture. If the edges are plane or slightly roughened, the term sutura harmonia is applied to the joint, e. g., the nasal suture.
(2) Syndesmosis.-In these the uniting medium is white fibrous or elastic tissue or a misture. As examples are the union of the shafts of the metacarpal bones and the attachments to each other of costal cartilages.
(3) Synchondrosis.-In these the two bones are united by cartilage, e. g., the joint between the basilar part of the occipital bone and the sphenoid bone. Very few of these joints are permanent.
(4) Symphysis.-This term is usually limited to a few median joints which connect symmetrical parts of the skeleton, e. g., symphysis pelvis, symphysis mandibulx. The uniting medium is cartilage and fibrous tissue. In some cases a cleft-like rudimentary joint cavity occurs.
(5) Gomphosis.-This term is sometimes applied to the implantation of the teeth in the alveoli.

The gomphosis is not, properly considered, a joint at all, since the teeth are not parts of the skeleton.

DIARTHROSES

These joints are characterized by the presenec of a joint eavity and by their mobility. They are often called movable or true joints. A simple joint (Articulatio simplex) is one formed by two articular surfaces; a composite joint (Articulatio composita), one formed by several articular surfaces. The following structures enter into their formation:

1. The articular surfaces (Facies articulares) are in most eases smooth, and vary much in form. They are formed of speeially dense bone, which differs histologieally from ordinary compact substance. In certain cases (vide Osteology) the surface is interrupted ly non-articular cavities known as synovial fossæ.
2. The articular cartilages (Cartilagines articulares), usually hyaline in type, form a covering over the articular surfaces of the bones. They vary in thickness in different joints; they are thickest on those

Fig. 299.-Diagram of Section of Diarthrosis.
f.l., Fibrous layer, s.l., synovial layer of joiut capsule. The articular eartilages are white, bones dotted, and the joint cavity black in the figure. which are subject to the most pressure and friction. They usually tend to accentuate the curvature of the bone, i, e., on a concave surface the peripheral part is the thickest, while on a convex surface the central part is the thickest. The articular cartilages are nom-vascular, very smooth, and have a bluish tinge in the fresh state. They diminish the effects of concussion and greatly reduce friction.
3. The articular or joint capsule (Capsula articularis) is, in its simplest form, a tube, the ends of which are attached around the articulating surfaces. It consists of two layers-an external one, composed of fibrous tissue, and an internal one, the synovial layer or membrane. The fibrous layer (Stratum fibrosum), sometimes termed the capsular ligament, is attached either elose to the margins of the articular surfaces or at a variable distance from them. Its thickness varies greatly in different situations: in certain places it is extremely thick, and sometimes cartilage or bone develops in it; in other places it is practically absent, the eapsule then consisting only of the synovial membrane. Tendons which pass over a joint may partially take the phace of the fibrous layer; in these cases the deep face of the temdon is covered by the synovial layer. Parts of the capsule may undergo thickening and so form ligaments, which are not separable, exeept artificially, from the rest of the capsule. The synovial layer (stratum synoviale) lines the joint eavity except where this is bounded by the articular cartilages; it stops normally at the margin of the latter. It is a thin membrane, and is richly supplied by close networks of vessels and nerves. It frequently forms folds (Plicat synoviales) and villi (Villi synoviales), which project into the eavity of the joint. The folds commonly contain pads of fat, and there are in many places masses of fat outside of the capsule which fill up interstices and vary in form and position in various phases of movement. The synovial membrane secretes a ftuid, the synovia, which lubricates the joint; it resembles white-of-egg, but has a yellowish tinge. ${ }^{1}$ In many places the
${ }^{1}$ It is doubtful whet her the synovia is a true secretion or a transulate containing products of friction. The view given above is that which is more commonly accepted. It contains albumen, mucin, and satts, and is alkaline. In it there are commonly cells derived from the synovial membrane, portions of cells, cells which have undergone fatty degeneration, particles of articular cartilage, etc.
membrane forms extra-articular pouches, which facilitate the play of muscles and tendons.

The articular or joint cavity (Cavum articulare) is enelosed by the synovial membrane and the articular cartilages. Normally, it is, strictly speaking, only a potential cavity, which contains nothing but a small amount of synovia.

The student must guard against a false conception of the joint cavity which may result from dissections and diagrams in which an actual cavity of considerable extent appears to exist. It correct idea of the intimate apposition of the parts is best obtained from the study of frozen sections. On the other hand, it is instructive to examine joints which have been injected so as to ristend the capsule fully. It is then seen that the cavity is often of much greater potential extent that one might suppose, and that the capsule is often very irregular in form, i.e., forms a variety of sacculations.

The foregoing are constant and neecssary features in all diarthroses. Other structures which enter iuto the formation of these joints are ligaments. artieular dises or menisei, and marginal cartilages.
4. Ligaments.-These (Ligamenta) are strong bands or membranes, usually. composed of white fibrous tissue, which bind the bones together. They are pliable, but practically inelastic. In a few cases, however, e. g., the ligamentum nuche, they are composed of elastic tissue. They may be subdivided, according to position, into periarticular and intraarticular. Periartieular ligaments are frequently blended with or form part of the fibrous capsule; in other eases they are quite distinct. Those which are situated on the sides of a joint are termed collateral ligaments (Ligamenta collateralia). Strietly speaking, intra-articular ligaments, though within the fibrous eapsule, are not in the joint eavity; the synovial membrane is reflected over them. The term seems justifiable, however, on practical grounds. Those which conneet directly opposed surfaces of bones are termed interosseous ligaments. In many places muscles, tendons, and thickenings of the fascix function as ligaments and increase the security of the joint. Atmospheric pressure and cohesion play a considerable part in keeping the joint surfaces in apposition.
5. Articular discs or menisci (Disci s. menisei articulares) are plates of fibrocartilage or clense fibrous tissue placed between the articular cartilages, and divide the joint eavity partially or completely into two compartments. They render certain surfaces congruent, allow greater range or variety of movement, and diminish concussion.
6. A marginal cartilage (Labrum glenoidale) is a ring of fibro-cartilage wheh encireles the rim of an articular cavity. It enlarges the eavity and tends to prevent fracture of the margin.

Vessels and Nerves.-The arteries form anastomoses around the larger joints, and give off branches to the extremities of the bones and to the joint eapsule. The synovial membrane has a elose-meshed network of eapillaries; the latter form loops around the margins of the articular eartilages, but do not usually enter them. The veins form plexuses. The synovial membrane is also well supplied with lymphvessels. Nerve-fibers are especially numerous in and around the synovial membrane and there are special nerve-endings, e. g., Pacinian bodies and the articular end-bulbs deseribed by Krause.

Movements.-The movements of a joint are determined chiefly by the form and extent of the joint surfaces and the arrangement of the ligaments. They are usually elassified as follows:

1. Gliding.-This refers to the sliding of one practically plane surface on another, as in the joints between the articular processes of the cervical vertebræ.
2. Angular Movements.-In these eases there is movement around one or more axes. Motion which diminishes the angle included by the segments forming the joint is termed flexion, while that which tends to bring the segments into line with each other is called extension. With reference to the joints of the distal parts
of the limbs, it seems advisable to employ the terms dorsal and volar or plantar flexion, since these joints can be "overextended." Similarly the terms dorsal and ventral flexion are applied to the corresponding movements of the spinal column. The meaning of the torm lateral flexion as applied to the vertebral column is evident. These movements are all rotations aromel axes which are approximately either transverse or vertical. Depression, elevation, and transverse movement of the lower jaw fall in this category.
3. Circumduction.-This designates movements in which the distal end of the limb describes a circle or a segment of one. In man such movement is easily performed, but in quadrupeds it is possible to a limited degree only, and is to be regarded usually as an indication of disease.
4. Rotation.-Is a matter of convenience, this term is reserved to indicate rotation of one segment around the longitudinal axis of the other segment forming the joint. It is seen typically in the atlanto-axial joint.
5. Adduction and abduction designate respertively movement of a limb toward and away from the medial plane, or of a digit toward and away from the axis of the limb.

Classification.-This is based on the form of the joint surfaces and the movements which occur. The following chief classes may he recognized:

1. Arthrodia, or glicling joint. In these the surfaces are practically flat, admitting of gliding movement. Examples: carpo-motacarpal joints; joints between the articular processes of the cervical and thoracic vertelare.
2. Ginglymus, or hinge-joint. In this clas the joint surfaces consist usually of two condyles, or of a segment of a cylinder or cone, which are received by corresponding cavities. In typical cases the movements are flexion and extension, i. e., around a single transverse axis. Examples: atlanto-occipital and elbow joints.
3. Trochoid, or pivot joint. In these the movement is limited to rotation of one sfoment aromd the longitudimal axis of the other. Example: atlanto-axial joint.
4. Enarthrosis, or ball-and-socket joint. These are formed by a surface of approximately spherical curvature, received into a corresponding cavity. They are multiaxial, and allow of the greatest variety of movement, e. g., flexion, extension, rotation, abluction, adduction, circumduction. Examples: hip and shoulder joints. ${ }^{1}$

AMPHIARTHROSES

These joints, as the name inclicates, share some characters with both of the precerling gronps. In them the segments are directly united by a plate of fibrocartilage, and asually by ligaments also. The amount and kind of movement are determined by the shape of the joint surfaces and the amount and pliability of the uniting medium. ${ }^{2}$ These joints are all merlial in position, and are best illustrated by the joints between the bodies of the vertebre. There is usually no joint cavity, but in certain situations a rudimentary one exists.
${ }^{1}$ Tluis classification makes no claims to scientific accuracy, but is simply a statement of the terms in general ust. A grouping based on mechanical principles is desirable, but appears to be almost impossible on account of the great variety amd irregularity of form of the articular surfaces.
${ }^{2}$ The movements in some of these joints are more extensive and varied than in some diarthroses. To illustrate this we may compare the movements of the cervical or coceygeal vertebre with those possible in the carpo-metacarpal or the sacro-iliac joints.

THE ARTICULATIONS OF THE HORSE

Joints and Ligaments of the Vertebre

The movable vertebre form two sets of articulations, viz., those formed by the bodies, and those formed by the articular processes of adjacent vertebrat the former are termed intercentral, and the latter interneural. Associated with these are ligaments uniting the arches and processes; some of these are special, i. ℓ., confined to a single joint, while others are common, $i . e$., extend along the entire vertebral column or a considerable part of it. The joints between the atlas and axis and between the former and the skull require separate consideration.

INTERCENTRAL ARTICULATIONS

These are amphiarthroses, formed by the junction of the extremities of the bodies of adjacent vertebre. The articular surfaces in the cervical region consist of a cavity on the posterior end of the body of the anterior vertebra, and a eorresponding convexity or head of the succeeding vertebra. In the other regions the surfaces are much flattened. The uniting media are:

1. The intervertebral fibro-cartilages (Fibrocartilagines intervertebrales). Each of these is a dise which fits into the space between the bodies of two adjacent vertebre, to which it is intimately attached. The dises are thinnest in the middle of the thoracic region, thicker in the cervical and lum-

Fig. 230.-Sagittal Section of Last Two Thoracic and First Lembar Vertebrif, showing Ligaments and spinal Cord (Medtlla). (After Schmaltz, Atlas d. Anat. d. Pferdes.) bar regions, and thickest in the coccegeal region. Each consists of a peripheral fibrous ring (Annulus fibrosus) and a soft central pulpy nucleus (Nucleus pulposus).

The fibrous ring eonsists of laminæ of fibrous tissue and fibro-cartilage, which pass obliquely between the two vertebrie and alternate in direction, forming an X -shaped arrangement. The central part of the ring is largely eartilaginous, and gradually assumes the eharaeter of the pulpy eenter. The latter is very elastic and is compressed, so that it bulges considerably from the surface of sections; it consists of white and elastic fibers, connective-tissue cells, and peeuliar clear, transparent cells of various sizes. It is a remnant of the notochord. There are joint cavities in the cervical intercentral joints, and in those between the last eervical and the first thoracie, and between the last lumbar and the sacrum.
2. The ventral longitudinal ligament (Lig. longitudinale ventrale) ${ }^{1}$ lies on the ventral surface of the bodies of the vertebræ and the intervertebral fibro-cartilages, to which it is firmly attached. It begins to be distinct a little behind the middle of the thoracic region, and is at first a narrow, thin band. Further back it becomes gradually thicker and wider, and terminates on the pelvic surface of the sacrum by spreading out and blending with the periosteum. It is strongest in the lumbar region, where the tendons of the crura of the diaphragm fuse with it.
3. The dorsal longitudinal ligament (Lig. longitudinale dorsale) ${ }^{2}$ lies on the floor of the vertebral canal from the axis to the sacrum. It is narrow over the mid-

[^29]dles of the vertebral bodies, and widens over the intervertebral fibro-eartilages, to which it is very firmly attached.

This ligament is in relation with the spinal veins on either side, and in the middle of cach vertebra a transverse anastomotie vein passes under the ligament.

INTERNEURAL ARTICULATIONS

Each typical vertebra presents two pairs of articular processes, which form diarthress with the t wo atjacent vertehre. The articular surfaces are extensive, almost flat, and oval in the cervical region, small and flat in the thomeac region,

Fig. 231.-Lighmentem Nuche of Horse.

1. Scapula; I^{\prime}, cartilag of scapula; \& , lamellar part of ligamentum nuchap; x wing of atlas. Sfter EllentergerBaum, Anat, fur Kunstler.)
while in the lumbar region the anterior ones are concave and the posterior convex. The joint capsule is strong and ample in the cervical region, in conformity with the large size and greater mobility of these joints in the neek. In the thoracic and lumbar regions the capsule is small and close. These joints are arthrodia in the neck and back, trochoid in the lumbar region.

Associated with these joints are the ligamenta flava, which connect the arches of adjacent vertebre. They are membranous and consist largely of elastic tissue.

The supraspinous ligament (Iig. supraspinale) extends medially from the occipital bone to the sacrum. Behind the withers it consists of a strong cord of white fibrous tissue, attached to the summits of the vertebral spines. In the neck
and withers it is remarkably moxlified to form the ligamentum nuchar, which requires more extended notier.

The ligamentum nuchæ is a powerful elastic apparatus, the principal function of which is to assist the extensor muscles of the head and neek. It extends from the occipital bone to the withers, where it is directly continuous with the lumbor dorsal part of the supraspinons ligament. It consists of two parts-fumieular and lamellar. The funicular part (Pars oceipitalis) arises from the external oceipital protuberance and is inserted into the summits of the vertebral spines at the withers. Two bursæ are usually found unter it in the adult. The atlantal bursa lies between the ligament and the dorsal arch of the atlas. The supraspinous bursa is usually over the third and fourth thoracic spines, but may be over the second or extend to the fifth. ${ }^{1}$ Another bursa may be present at the spine of the axis; this is between the funicular part and the large digitation attached to the axis. In the neek the funicular part consists for the greater part of two bands closely applied and attached to each other. Near and at the withers it broatens greatly, forming an expansion about five to six inches (ca. 12 to 15 cm .) in width, the lateral margins of which are thin and turn down over the trapezius and rhomboideus museles. Behind the higher spines it becomes narrower and thinner, and is continued by the white fibrous lumbo-dorsal part. ${ }^{2}$ A mass of fat and elastic tissue lies upon the ligament as far back as the withers. It varies greatly in amount in different subjects, and is most developed in stallions of draft breeds, in which it forms the basis of the so-called "crest." The lamellar part (Pars cervicalis) consists of two laminte separated medially by a layer of loose comnective tissue. Each lamina is formed of digitations which arise from the second and third thoracic spines and from the funicular part, are directed downward and forward, and end on the spines of the cervical vertebre, except the first and last. The digitation which is attached to the spine of the axis is rery thick and strong. Behind this they diminish in size and strength; the last one, which is attached to the sixth cervical vertebra, is quite thin and feeble, or may be absent.

The interspinous ligaments (Ligg. interspinalia) extend between the spines of contiguous vertebre. In the cervical region they are narrow elastic bands, and in the thoracic and lumbar regions they consist of white fibers directed obliquely downward and backward.

The intertransverse ligaments (Ligg, intertranswersaria) are membranes which comect adjacent transverse processes in the lumbar region.

INTERTRANSVERSE ARTICULATIONS

These joints (peculiar to equide) are diarthroses formed by the transverse processes of the fifth and sisth lumbar vertebre and between the latter and the ale of the sacrum. A similar joint between the fourth and fifth lumbar processes is frequently present. The articular surfaces have an elongated oval form, the anterior one being concave and the posterior one convex. The capsule is tight, and is reinforced ventrally.

SACRAL AND COCCYGEAL ARTICULATIONS

In the foal the bodies of the five sacral vertebre form joints which resemble somewhat those in the posterior part of the humbar region. These joints are in-

[^30]vaded by the process of ossification carly, so that the consolidation of the sacrum is usually complete, or nearly so, at three years.

The coceygeal vertebres are united by relatively thick interverteloral fibro-cartilages, which have the form of biconeave dises. Special ligaments are not present, but there is a continuous sheath of fibrous tissuc. The movement in this region is extensive and variel. In old horses the first coceygeal vertebra is often fused with the sactum.

MOVEMENTS OF THE VERTEBRAL COLUMN

The movements of the spine, exclusive of those at the atlanto-axial joint, are dorsal, ventral, and lateral flexion, and rotation. The range of movement at a single joint is small, hut the sum of the movements is

Fig. 232.-Atlanto-occipital, and Atlanto-ixial Jonnta of 1]orse: Lohral View after hemosil uf Dorsal dren of \&thim.
a, Joint capsule of left part of atlanto-ocepipal joint; b, lateral ligament of same; c, c^{\prime}, ligament of the dens; d, at lanto-anal jont capsule: c, joint eapsule of articulation between axis and thard cervical vertebra; f interspmous ligament; 1. orcipital bone; 2 , atlas; 3 , axis; 4, third ectvical vertobra; 5 . dorsal longitudinal ligament. (Ell-nber-ger-Baum, Anat, d. Haustiore.) considerable. The movements are freest in the cervical and coccygeal regions. Rotation is extremely limited in the thoracic and lumbar regions.

ATLANTO-AXIAL ARTICULATION

This is a trochoid or pivot joint of a rather peculiar character. The articular surfaces are: (1) On the lateral masses of the atlas, two somewhat sadtle-shaped facets, which are sparated ly a wide noteh above and a narrow one below; (2) on the axis, reciprocal sadde-shaped surfaces which extend upon the dens and are confluent on its ventral aspect. It will be observed that the joint surfaces are not at all accurately alapted to each other, so that only limited areas are in contact at any time.

The joint capsule is attached around the margins of the articular surfaces. It is loose and ample enough laterally to allow extensive movement.

The dorsal atlanto-axial ligament (Lig. interarcuale) is membranous and reinfores the capsule dorsally.

The interspinous ligament (Lig. interspinale) consists of two elastic bands which extend from the dorsal arch of the atlas to the spine of the axis.

The ventral atlanto-axial ligament (Lig, ctentis externum) arises from the ventral tuberele of the atlas and is attached by two bramehes on the ventral pine of the axis.

The ligament of the dens or odontoid ligament (Lig. (lentis intermum) is short, verystrong, and somewhat fanshaped. It extends from the rough coneave dorsal surface of the dens, widens in front, and is attached to the transerese rough area on the imner surface of the ventral arch of the atlas.

Movements.-The atlas and the head rotate upon the axis; the axis of rotation passies through the center of the body of the axis.

THE ATLANTO-OCCIPITAL ARTICULATION

This joint may be classed as a ginglymus. The articular surfaces of this joint are: (1) (on the atlas, two deep oval cavities; (2) the corresponding condyles of the oecipital bone.

The joint surfaces are oblique, coming very close to the median line ventrally, but separaterl by a considerable interval dorsally. A triangular rough area cuts into the medial part of each of the atlantal articular surfaces.

There are two roomy joint capsules, which sometimes communicate ventrally, especially in old subjects.

The dorsal atlanto-occipital membrane (\embrana atlanto-oceipitalis dorsalis) extends from the dorsal arch of the atlas to the dorsal margin of the foramen magnum. It is blended with the capsules and contains many elastic fibers.

The ventral atlanto-occipital membrane (Membrana atlanto-oceipitalis ventralis) extends from the ventral areh of the atlas to the ventral margin of the foramen magnum. It is narrower and thinner than the dorsal membrane, and also fuses with the joint eapsules.

The lateral atlantal ligaments (Ligg. lateralia atlantis) are two short bands which are partially blended with the capsules. Each is attached to the borkler of the wing of the atlas near the intervertebral foramen, and to the lateral surface of the paramastoid process of the oecipital bone.

Movements.-These are chiefly flexion and extension. A small amount of lateral oblique movement is also possible.

Articulations of the Thorax COSTO-VERTEBRAL ARTICULATIONS

Each typical rib forms two joints with the vertebral column, one by its head, and one by its tuberele. They are termed respectively costo-ecntral and costotransverse joints.
I. The costo-central articulation (Articulatio eapituli) is a trochoid or rotatory joint, formed by the junction of the head of the rib with the bodies of two adjacent vertebre and the intervertebral fibro-cartilage. The two facets on the head of the rib are separated by a non-articular groove, and correspond to the two coneare facets (Foreæ costales) on the vertebral bodies. The joint capsule is rather tight, and is covered by the accessory ligaments, which are as follows: 1 . The radiate ligament (Lig. capituli costæ radiatum) extends ventrally from the neck of the rib to spread out on the vertebral bodies and the intervertebral fibro-cartilage. 2. The conjugal ligament (Lig. conjugale) -absent from the first joint-is attached to the groove on the head of the rib, passes transversely into the vertebral canal, and divides

Fig. 233.-Costo-vertebral Articelation; Anterior View. (After Schmaltz, Atlas d. Anat. d. Pferdes.) under the dorsal longitudinal ligament into two branches: one of these is attached to the body of the anterior vertebra; the other is continued across to the head of the opposite rib, and is also attached to the intervertebral fibro-cartilage. The joint eavity is divided into two compartments by the conjugal ligament. 3. The ligament of the neck of the rib (Lig. colli
costae) is a strong land which crosses the joint dorsally. It is attached on the vertebra above the eostal facet and on the neck of the rib).
II. The costo-transverse articulation (Articulatio costo-transversaria). This is formed by the facet on the tulnerele of the rib and on the transwerse process of the vertebra. They are gliding joints. The capsule is reiniored be the dorsal costo-transverse ligament (Lig. costo-transversarium dorsale), a distinct strong land which arises on the transverse proeess and emels on the non-artieular part of the tuberele. It is covered by the levator costa mustle, and begins to be guite distinet at the fifth joint.

The cavity for the head of the first rib is formed by concave faerets on the loolies of the last corvical and first thomace vertebrae. The conjugal ligament is absent, but the ligament of the neek is short and strong. The radiate higament is wry strong, and consists of two parts. In the case of the last two or three ribs the costo-central and costo-transverse joints are confluent, and the various structures are correspondingly monlified.

Movements.- The chief movement is rotation around an axis which comnects the centers ol the head and tuhorele of the ril). The movement is very limited in the anterior part of the serios of joints, but very eonsiderable in the posterior part.

In the ease of the first rib the movement is evidently extremely limited. The facet for the tuberele of the rib is derply concave, and the axis of rotation is almost transvarse, so that the movement is chiefly sagittal in direction. Further back the facets on the transverse processiss breome flat, and the axis of rotation grulually approaches a longitudinal direction. This, in comection with the mobility of the ventrub ends of the asternat ribs and the elr elasticity, allows a great increase here in the range of movement which is largely transverse, the effect being to conlarge (chiefly) the transverse diameter of the thorax.

COSTO-CHONDRAL ARTICULATIONS

The costo-chomdral junctions are syarthroses. The ril has a coneave surface which receives the convex end of the cartilage. They are united by the continuity of the strong periosteum and perichendrium.

CHONDRO-STERNAL ARTICULATIONS

These joints (Articulationes sternocostales) are diarthroses formed by the junction of the cartilages of the sternal ribs with the stemum. The articutar ends of the cartilages (exeept the first) are somewhat enlarged, and present surfaces of eylindrical curvature. The articular surfaces on the stermum for the first pair of cartilages are phaced close together on the dorsal border of the cariniform cartilage; the other seven are placed laterally at the juntions of the segments. The eapsules are strong and tight; the first pair of joints has a common capsule, and the cartilages articulate with each other medially. The ventral ends of the first pair of ribs are firmly attached to earh other by dense fibrous tissue, which is prolonged forward along the upper margin of the cariniform cartilage and is continuons behind with the stemal ligament. Each of the other capsules is reinforced forsally by the radiate costo-sternal ligament (Ligamentum sterno-custale radiatim), composed of radiating fiber: which blend with the stermal ligament. Interarticular bands may be prosent. The movement is rotation around a nearly vertical axis, except in the case of the first pair of joints.

INTERCHONDRAL LIGAMENTS

The eighth and nintly eostal cartilages are firmly united ly fibrous tissue. The chomedroxiphoid ligament attaches the ninth costal cartilage to the xiphoid cartilage. The remaining cartilages are rather loosely attached to each other by elastic tissue.

STERNAL ARTICULATIONS

In the new－horn foal the seven bony segments are united by persisting cartilage （Eynchondroses intersternales）．The last two segments coalesce within a few weeks after birth．In old subjects there is more or less ossification of the intersternebral rartilage，which may lead to fusion of adjacent segments，especially posteriorly． The internal sternal ligament（Lig．sterni proprium internum）lies on the thoracic surface of the sternum．lit arises on the first segment，and divides opposite the second chondro－sternal joint into three bands．The median band passes back－ ward and spreads out on the last segment and the xiphoid cartilage．The lateral branches－thicker and wider－lie along the lateral borders above the chondro－ sternal joints，and end at the cartilage of the eighth rib；they are covered by the transversus thoracis muscle．

The Articulations of the Skull MANDIBULAR articulation

This joint（Articulatio mandibularis）is a diarthrosis formed between the ramus of the mandible and the squamous temporal bone on either side．

The articular surfaces are dissimilar in form and size．That on the squamous temporal bone is coneavo－convex，and the long axis is directed outward and some－ what forward；it consists of a condyle in front and a glenoid cavity，which is con－ tinued upon the postglenoid process behind．The mandible presents a trans－ versely elongated condyle．

The articular disc（Discus articularis）is placed between the joint surfaces， which it renders congruent．Its surfaces are molded upon the temporal and man－ dibular surfaces respectively，and its circumference is attached to the joint capsule； thus it divides the joint cavity into upper and lower compartments，the former being the more roomy．

The joint capsule is strong and tight．It is reinforced by two ligaments．The lateral ligament（Iig．laterale）extends obliquely across the anterior part of the lateral surface of the capsule，from which it is not distinctly separable．The pos－ terior ligament（Lig．posterius）is an elastic band which is attached above to the postglenoid process，and below to a line on the posterior face of the neck of the mandible．

Movements．－The chief morements take place around a transverse axis pass－ ing through both joints．Associated with this hinge－like action is slight gliding movement，as in opening and shutting the mouth．When the mouth is shut， the condyle of the mandible lies under the glenoid cavity．When the mandible is depressed，the condyle moves forward under the articular eminence of the tem－ poral bone，carrying the dise with it．In protrusion and retraction of the lower jaw the gliding movement just described occurs without the hinge－like rotation of the condyle．These movements are similar in both joints．In the transverve movements（as usually performed in mastication）the action consists of rotation of the condyles around a rertical axis，while the dise glides forward on one side and backward on the other．

SYNARTHROSES OF THE SKULL

Most of the bones of the skull are united with the adjacent bones by sutures； a few are united by cartilage．The difference in the uniting mediun depends on the fact that most of these bones are developed in membrane，but some are pre－ formed in eartilage．Nost of these joints are temporary，and are obliterated at
various periols during development and growth. Their importance lies in the fact that so long as they persist, continuous growth is possible. They are usually designated according to the bones which enter into their formation, e. g., sphenosquamous, naso-frontal, etc.

Abstract

Detailed deseription of the sutures has not sufficient elinical value to justify much addition to the statements made in the osteology in this comection. The obliteration or closure of the sutures is, however, worthy of brief mention. The cranial sutures are usually all closed at seven years, but the apex only of the petrous temporal is fused with the oceipitat and squamous temporal. Most of the facial sutures are practically closed at ten years, alt hounh eomplete symostosis may in some be detayod for years or may not oreur at all; the nasal suture, for example, usually persists even in alvanced age, so fur as its anterior part is concerned.

The principal synchondroses are: (1) That leetween the basilar part of the occipital bone and the body of the sphenoid (synchondrosis spheno-occipitalis); (2) that between the presphenoid and postsphenoid (synehondrosis intersphenoidalis) ; (3) those between the parts of the oceipital bone (Synchondroses intraoccipitales). The first is ossified at four or five rears, the second at three years, and the oecipital bone is consolidated at two years.

The symphysis mandibulæ ossifies at one to six months.

THE HYOIDEAN ARTICULATIONS

The temporo-hyoid articulation is an amphiarthrosis, in which the articular angle of the dorsal end of the great cornu of the hyod bome is attached by a short bar of cartilage to the hyoid process of the petrous temporal bone. The cartilage (Arthrolyoid) is about half an inch (ca. 11.5 cm .) in length. The ehrief movement is hinge-like, the axis of motion passing transversely through both joints.

The intercornual articulation is an amphiarthrosis formed by the junction of the ventral extremity of the great comu with the dorsal end of the small comu of the hyoid bone. They are united by a very short piece of cartilage, in which there j.s usually a small nodule of bone in the young sulject. This nodule, the epilyoid or middle cornu, is usually fused with the great cornu in the adult. The chief movenent here is also hinge-like, the angle between the cornua being increased or diminished.

The basi-cornual articulation is a diarthrosis formed by the junction of each small cormu with the borly of the hyoul bone. The small comu has a concave facet which articulates with the convex facet on either end of the dorsal surface of the botly. The capsule is ample enough to allow considerable movement, which is chiefly hinge-like.

The movements of the hyoid bone are concerned chiefly in the acts of mastication and swallowing. In the latter the ventral parts of the hyoid bone are moved forward and upwarl, earrying the root of the tongue and the larynx with them, and then return to their former position.

The Articulations of the Thoracic Limb

In the alsence of the claviele the thoracie limb forms no articulation with the trunk, to which it is attached by museles. The movement of the shoulder on the chest-wall is chiefly rotation around a transverse axis passing through the scapula behind the upper part of the spine.

THE SHOULDER JOINT

The shoulder or seapulo-humeral joint (Articulatio seapulo-humeralis) is formed by the junction of the distal end of the sapula with the proximal end of the humerus. The articular surfaces are: (1) On the scapulat, the glenoid cavity;
(2) on the humerus, the head. Both surfaces are approximately spherical and similar in eurvature, but the humeral surface is about twice as extensive as that of the seapula.

The joint capsule is ample enough to allow the bones to be drawn apart about an inch (ea. $2-3 \mathrm{~cm}$.); but this requires a very considerable amount of foree unless air is admitted into the joint eavity. The fibrous layer is not attached to the margin of the joint surfaces, but at a distance of one to two centimeters from it. It is strengthened in front by two diverging elastie bands, which arise on the tuber scapulæ and end on the tuberosities of the humerus. A pad of fat is interposed between the capsule and the tendon of the biceps.

Ligaments are absent from this joint, bnt the museles and tendons around it afford remarkable security, so that dislocation very setdom occurs. The large extent of the head of the humerus is also of importance in this regard.

The principal museles which are atfached around the joint and act as ligaments are: laterally, the supraspinatus, infraspinatus, and teres minor; medially, the subscapularis; in front, the bieeps and supraspinatus; behind, the triceps. Fibers of the brachialis are attached to the lower edge of the posterior part of the joint eapsule, and would evidently tense the latter. In some cases the joint cavity communicates with the bicipital or intertuberal bursa.

Movements.- While it is a typical enarthrosis in structure, and capable of the various movements of the ball-and-socket joint, the chief normal movements are flexion and extension. In the position of rest the angle formed between the scapula and humerus posteriorly is about 110° to 120°; in flexion it is reduced to about 80°, and in extension it is increased to about 145°. Adduction and abduction are very restricted, the former being limited chiefly by the infraspinatus, the latter by the subscapularis and the low insertion of the superficial pectoral museles. Rotation is somewhat freer, but does not exceed 33° when all the museles are removed (Franek).

THE ELBOW JOINT

This, the cubital articulation (Articulatio cubiti), is a ginglymus formed between the distal extremity of the humerus and the proximal ends of the radius and ulna.

The articular surfaces are: (1) A trochlear surface formed by the condyles of the humerus and the ridge between them; (2) the corresponding glenoid cavities and groove on the proximal extremity of the radius, together with the semilunar noteh of the ulna.

The articular surface of the condyles does not extend upon the back of the extremity, but the groove which receives the semilunar notch of the ulna extends up into the olecranon fossi. In the fore part of the groove there is a synovial fossa. The surface on the lateral condyle is much smaller than that of the medial one, and is subdivided into two unequal parts by a shallow furrow. On the lower part of the semilunar noteh and the adjacent part of the ridge on the radius are synovial fossæ.

The joint capsule is extremely thin behind,

Fig. 234.-Left Elbow Jonst of Horse; Posterior View. The Capscle is Removed. (After Schmaltz, Atias d. Anat. d. Pferdes.) where it forms a pouch in the olecranon fossa under the anconeus muscle and a pad of fat. In front it is strengthened by oblique fibers (Lig. obliquum or anterior ligament), and on each side it fuses with the collateral ligaments. It also is adherent to the tendons of muscles which arise from the distal end of the humerus or end on the proximal end of the radius. The synovial membrane sends prolongations to the small radio-ulnar

Flei. 237.-Frontal Section of Cabpal Joints of

 tal epiphyseal line of radius is dotect.

Fig. 23i. Left Carpal Ihaxts of Hobml; Iatehal View. The
 carpal bunes; L, lateral higament; 1 , dorsal ligament comnereting interusdiate and whar carpal; 2, dorsal ligament connoeling uhar and
serond carpal; 3, dorsal ligament eonnectme second and third carpal; 1, ligament connecting third carpal and metararpal bone: 5 , proximal ggament of acecswory carpal bone; b, midde lusament of sume; ', ", growe for tendon of ulnaris lateralis; 11, interosseous metacarpal
ligament.

 Ial bone; C. S, third carpal bone: C. a., acecsory carpal bone;
IIc. II, Mc. III, metacarpal bones.
joints and also pouches downward under the origins of the flexors of the digit and the lateral flexor of the carpus. There are two collateral ligaments.

The medial ligament (Lig. collaterale radiale) is attached above to an eminence on the medial epicondyle of the humerus, and divides into two parts: the long, superficial part ends on the medial border of the radius, just below the level of the interosseous space; the deep, short part is inserted into the medial tuberosity of the radius.

The lateral ligament (Lig. collaterale ulnare) is short and strong. It is attached above to a depression on the lateral epicondyle of the humerus, and below to the lateral tuberosity of the radius, just below the margin of the articular surface.

Movements.-This joint is a typical ginglymus, the only movements being flexion and extension around an axis which passes through the proximal attachments of the collateral ligaments. In the standing position the articular angle (in front) is about 140° to 150°. The range of movement is about 55° to 60°. Complete extension is prevented chiefly by the tension of the collateral ligaments and the biceps musele. (The axis of movement is slightly oblique, so that in flexion the forearm is carried somewhat outward.)

THE RADIO-ULNAR ARTICULATION

In the foal the shaft of the ulna is attached to the rarlius above and below the interosseous space by the interosseous ligament of the forearm (Lig. interosseum antibrachii). Below the space the two bones become fused before adult age is reaehed. Above the space the ligament usually persists, but may undergo more or less ossification in extreme old age. The transverse or arciform ligament (Lig. transwersum uluare et radiale ulnæ et radii) consists of fibers which pass above the interosscous space from each border of the shaft of the ulna to the posterior surface of the radius. The proximal radio-ulnar articulation (Articulatio radio-uluaris proximalis), formed by two small convex facets on the ulna and the corresponding facets on the posterior surface of the proximal extremity of the radius, is inclosed in the capsule of the elbow-joint and does not require separate consideration. The distal extremity of the ulna fuses early with the radius, and is therefore regarded usually as a part of the latter.

Movement.-This is inappreciable, the forearm being fixed in the position of pronation.

THE CARPAL JOLNTS

These joints taken together constitute the eomposite articulatio carpi, or what is popularly termed the "knee-joint" in animals. ${ }^{1}$ This consists of three chief joints, viz., (1) The radio-carpal or antibrachio-carpal joint (Articulatio radioearpea) formed by the distal end of the radius and the proximal row of the carpus; (2) the intercarpal joint (Artieulatio interearpea), formed between the two rows of the carpus; (3) the carpo-metacarpal joint (Articulatio earpometacarpea), formed between the distal row of the carpus and the proximal ends of the metacarpal bones. The proximal and middle joints may be regarded as ginglymi, although they are not typical or pure examples of hinge-joints. The distal joint is arthrodial. In addition there are arthrodial joints formed between adjacent bones of the same row (Articulationes interosse:x). All these form a composite joint with numeroue ligaments. The articular surfaces have been described in the Osteology.

The joint capsule may be regarded, so far as the fibrous part is concerned, as being common to all three joints. It is attached close to the margin of the articu-
${ }^{1}$ The term is a very unfortunate one, since it is a distinet misapplication of the name as it is used in regard to man. It is, however, very firmly established, and appears likely to persist indefinitely in the absence of a convenient popular equivalent.
lar surface of the radius above and the metacarpus below; its deep face is also attached to a considerable extent to the carpal bones and to the small ligaments. Its anterior part, the dorsal carpal ligament, is loose, execpt during flexion, and assists in forming the fibrous canals for the extensor tendons. Its posterior part, the volar carpal ligament (Lig. earpi volare), is wery thick and dense, and is closely attached to the earpal bones. It levels up the irregularities of the skeleton here, and forms the smooth anterior wall of the earpal canal. It is contimued downward to form the subcarpal or inferior check ligament, which blends with the tendon of the deep flexor of the digit about the middle of the metacarpus, and may well be regarded as the carpal (tendinous) head of that musche.

The synovial membrane forms three sates corresponding to the three joints. The radio-carpal sac is the

Fig. 23s,-left Carpal Joints of Horae; Dorsal View, The Joint Capaule im Removen.
R, Lateral distal tuberosity of radius: M, modial ligament; L, lateral ligament; C.r., radial carpal bone; C. u., uluar carpal bone; (". S, third carpal bone; C. A, fourth carpal bone; Mc. III, Me. It, metacarpal bones; 1 , intermediate carpal bone: $2-\mathrm{t}$, dorsal ligaments. most voluminous; it includes the joints formed by the accessory earpal bone, and also those between the proximal carpal homes as far as the interosseous ligaments. The intercarpal sac sembs extensions upward and flownward between the bones of the two rows as far as the interossous ligaments; it commumicates between the third and fourth carpal bones with the carpo-metacarpal sac. The latter is very limited in extent, and is closely applied to the bones; it incloses the carpometacarpal joint, and lubri(ates also the Jower parts of the joints between the distal carpal bones and the intermetacarpal joints.

The lateral ligament (Lig. (arpi collaterale ulnare) is attached above to the lateral tuberosity of the distal end of the radius. Its long superficial part is attached below to the proximal end of the lateral small metacarpal chicfly, but some fibers end on the large metaearpal bene. I canal for the lateral extensor tendon separates a short deep band which ends on the ulnar earpal bone. Other deep fibers connect the latter with the fourth earpal bone, and the fourth earpal with the metaearpus.

The medial ligament (Lig. carpi eollaterale radiake) resembles the preceding in general, but is stronger and wider distally. It is attached above to the medial tuberosity of the distal end of the radius and ends helow on the proximal ends of the large and medial small metacarpal bones. Deep fasciculi are detached to the radial and second earpal bones. The first earpal bone, when present, is usually embedded in the posterior part of the distal end of the ligament. The posterior part of the ligament is fused with the transverse ligament of the carpus (Lig. earpi transversum), and eoncurs in the formation of a canal for the tendon of the flexor carpi ratialis.

A number of special short ligaments connect two or more adjacent bones; only the most distinct of these will be deseribed here.

The accessory carpal bone is connected with adjacent bones by three ligaments (Fig. 231). The proximal one is a short band which extends from the accessory earpal in front of the groove on its lateral face and is inserted into the distal end of the radius behind the groove for the lateral extensor tendon. A middle band connects the accessory with the ulnar carpal. The distal higament consists of two strong bands which pass from the distal margin of the accessory to the fourth carpal and the proximal end of the fourth metacarpal bone; these bands transmit the action of the museles which are inserted into the accessury carpal bone. The other bones of the proximal row are connected by two dorsal ligaments, which are transverse in direction, and two interosseous ligaments. In oblique ligament passes from an eminence on the volar surface of the radial carpal bone to a small depression on the radius medial to the facet for the accessory carpal bone.

Two ligaments connect the proximal and distal rows post criorly. The merlial one joins the radial to the second and third carpal, and the lateral one attaches the ulnar to the third and fourth carpals.

The bones of the distal row are connected by two strong transverse dorsal ligaments and two interosseous ligaments.

There are four carpo-metacarpal ligaments. Two oblique dorsal ligaments (Ligg. carpometacarpea dorsalia) connect the third carpal with the large metacarpal bone. Two interosseous ligaments pass downward from the interosseous ligaments of the distal row to end in depressions of the opposed surfaces of the proximal ends of the metacarpal bones. Volar ligaments (Ligg. carpometacarpea volaria) connect the second and third carpal bones with the metacarpus. Other short special ligaments have been described, but some of them at least are artefacts.

Movements.-Taking the joint as a whole, the chief movements are flexion and extension. In the standing position the joint is extended. When the joint is flexed, slight transverse movement and rotation can be produced by manipulation. The dorsal part of the capsule is, of course, tense during flexion, the volar part in extension.

The movement practically all occurs at the radio-carpal and intercarpal joints, the articular surfaces of which are widely separated in front during flexion, but remain in contact behind. The distal row remains in contact with the metacarpus. The inter-

Fig. 239.-Left Carpal Jonts of Horse; Volar View. Accenory Carpal and Capstle have been Resoreo.
R, Distal end of radius; M, medial ligament; L, lateral ligament; 1, 2, ligameots connecting radial carpal bone and radius; 3, ligament convecting intermediate carpal witb radius; 4 , stump of ligament connecting intermediate and accessory carpal; 5 , ligament connecting radial and secood carpal; 6, 6^{\prime}, ligaments connecting secood carpal and metacarpal bones; $7,7^{\prime}$, ligaments conneeting third carpal and metacarpal bone; s, ligameot connecting ulnar and third aud fourth carpal bones; 9, deep short part of medial collateral ligament; 10, 11, 12, radial, intermediate, aod ulnar carpal bones: 13, 14, 15, second, third, and fourth carpal bones; $16,16,17$, metacarpal booes. (Of the preceding volar ligameots, 1,3, and s are distinct from the capsule.) mediate and ulnar carpals move together as one piece, but the radial does not move so far as the intermediate, so that the dorsal and interosseous ligaments connecting these bones become tense and obliquc in direction.

INTERMETACARPAL JOINTS

The small joints formed between the proximal ends of the metacarpal bones (Articulationes intermetacarpeæ) are enclosed by the carpal joint capsule, as described above. The opposed surfaces of the shafts of the bones are closely united by an interosseous metacarpal ligament (Lig. interosseum metacarpi), which often undergoes more or less extensive ossification.

THE FETLOCK JOINT

This, the metacarpo-phalangeal articulation (Articulatio metacarpo-phalangea), is a ginglymus formed by the junction of the distal end of the large (third) metacarpal bone, the proximal end of the first phalanx, and the proximal sesamoid bones.

Articular Surfaces.-The surface on the large metacarpal bone is approximately cylindrical in curvature, but is divided into two slightly unequal parts by a sagittal ridge. This is received into a socket formed by the first phalanx helow and the two sesamoids together with the intersesamoid ligament behind. The latter is a mass of fibro-cartilage in which the sesamoid hones are largely embedfled. It extends above the level of the sesamoids, and is grooved to receive the ridge on the metacarpal bone; its volar surface forms a smooth groove for the deep Hexor tendon.

The joint capsule is attached around the margin of the artioular surfaces. It is thick and ample in front; here a bursa is interposed between it and the extensor tendons, but the temdons are atso attached to the capsule. Posteriorty it forms a thin-walled pouch which extends upward between the metacarpal bone and the suspensory ligament about as high as the point of bifurcation of the latter. ${ }^{1}$ The capsule is reinforced by two collateral ligaments.

The collateral ligaments, medial and lateral (Lig. collaterale ulnare, radiale), are partially divided into two layers: the superficial layer arises from the eminence on the side of the distal end of the large metacarpal bone, and passes straight to the rough area below the margin of the articular surface of the first phalanx; the deep layer, shorter and much stronger, arises in the depression on the side of the distal end of the metacarpal bone, and passes obliquely downward and backward to be inserted into the abaxial surface of the sesamoid and the proximal end of the first phalanx.

[^31]
THE SESAMOIDEAN LIGAMENTS

Under this head will be described a number of important ligaments which are connected with the sesamoil bones and form a sort of stay apparatus or brace.

The intersesamoidean ligament (Lig. intersesamoideum) not only fills the space between and unites the sesamoid bones, but also extends above them, entering into the formation of the articular surface of the fetlock joint. Other facts in regard to it have been given above.

The collateral sesamoidean ligaments, lateral and medial (Ligg. sesamoidea
${ }^{1}$ This pouch is in part bound down by a layer of elastic tissue which arises by two branches from the distal part of the volar surface of the shaft of the large metacarpal bone and ends on the intersesamoid ligament. It was first described by Skoda who terms it the lig. metacarpo-intersesamoideum.
ulnare et radiale), arise on the abaxial surface of each sesamoid bone, pass forward, and divide into two branches, one of which ends in the depression on the distal end of the large metacarpal bone, the other on the eminence on the proximal end of the first phalanx. They are partly covered by the branches of the suspensory or superior sesamoidean ligament.

The suspensory ligament or interosseous tendon (Tendo interosseus) ${ }^{1}$ lies in great part in the metacarpal groove, where it has the form of a wide, thick band. It is attached above to the proximal part of the posterior surface of the large

Fio. 240.-Ligaments and Tendons of Distal Part of Limb of Horse.
Me.III, Large metacarpal bone: Ph.1, first phalanx; Ph.II, second phalanx; Ph.IlI, third phalanx: 1, deep flexor tendon; 2, band from first phalanx to digital cushion. (After Schmaltz, Atlas d. Anat. d. Pferdes.)
metacarpal bone and to the distal row of carpal bones. At the distal fourth of the metacarpus it divides into two diverging branches. Each branch passes to the abaxial face of the corresponding sesamoid, on which a considerable part is attached. The remainder passes obliquely downward and forward to the dorsal surface of the first phalanx, where it joins the extensor tendon; there is a bursa between this extensor branch and the proximal end of the first phalanx. This ligament possesses
${ }^{1}$ This is also known as the superior sesamoidean ligament; it is described here in deference to custom and on account of its ligamentous function.
considerable elastieity, and is the highly modified interosseous medius musele. It consists mainly of tendinous tissue, but contains a variable amount of striped muscular tissue, especially in its deep part and in young subjects. Its principal function is to support the fetlock, i. $c_{\text {., }}$, to prevent exeessive dorsal flexion of the joint when the weight is put on the limh. The branches which join the common extensor tendon limit volar flexion of the interphalangeal joints in certain phases of movement.

The distal sesamoidean ligaments are three in number. The superficial or

Fig, 241.-Defp Dissection of Distal Part of Right Fore Limb of Horse, Showino Joints and Ligaments; Posterior View.

1. Cartilage of third phalanx: 2, flexor surface of navicular bone; 3, distal navicular ligament; 4, insertion of deep flexor tendon. Small arrows point to openings made in capsules of pastern and coffin joints. (After Schmaltz, Atlas d. Anat. d. Pferdes.)
straight sesamoidean ligament (Lig. sesamoideum rectum) is a flat band and is somewhat wider above than below. ${ }^{1}$ It is attached alove to the bases of the sesamoid bones and the intersesamoid ligament, below to the complementary fibroeartilage of the proximal end of the second phalans. The middle sesamoidean ligament is triangular, with thick, roumded margins (Ligg. sesamoidea ohliqua) and a thin central portion. ${ }^{2}$ Its base is attached to the sesamoid bones and intersesa-
${ }^{1}$ This is often called the Y -shaped ligament-a rather undesirable name, since it is not bifurcate.
" It is also ealled the V-shaped ligament.
moid ligament, and its deep face to the triangular rough area on the volar surface of the first phalanx. The deep or cruciate sesamoidean ligaments (Ligg. sesamoidea cruciata) consist of two thin layers of fibers which arise on the base of the sesamoid bones, cross each other, and end on the opposite eminence on the proximal end of the first phalanx.

The two short sesamoidean ligaments (Ligg. sesamoidea brevia) are best seen

Fig. 242.-Sagittal Section of Digit and Distal Part of Metacarpus of Horse.
A, Metacarpal bone; B, first phalanx; C, second phalanx; D, third phalanx; E, distal sesamoid bone; 1 , volar pouch of capsule of fetlock joint; 2 , intersesamoidean ligament; 3,4 , proximal end of digital synovial sheath; 5 , ring formed by superficial flexor tendon; 6 , fibrous tissue underlying ergot; 7 , ergot; $8,9,9$, branches of digital vessels; 10 , distal ligament of distal sesamoid bone; 11, suspensory ligament of distal sesamoid bone; 12, 12^{\prime}, proximal and distal ends of bursa podotrochlearis. By an oversight the superficial flexor tendon (behind 4) is not marked.
by opening the joint in front and pushing the sesamoid bones backward; they are covered by the synovial membrane. Each is a short band which extends from the anterior part of the base of the sesamoil bone outward or inward to the posterior margin of the articular surface of the first phalans.

The distal sesamoidean ligaments may be regarded as digital continuations of the suspensory ligament, the sesamoid bones being intercalated in this remarkable stay apparatus, by which the fetlock is supported and concussion diminished.

THE PASTERN JOINT

This, the proximal interphalangeal articulation (Articulatio interphalangea proximalis s. phalangis secunde), is a ginglymus formed by the junction of the distal end of the first phalanx and the proximal end of the second phalanx.

The articular surfaces are: (1) On the first phalanx, two slightly mequal convex areas with an intermediate shallow groove; (2) on the second phalanx, a corresponding surface, completed behind by a plate of fibro-cartilage.

The joint capsule is close-fitting in front and on the sides, where it blends with the extensor tendon and the collateral ligaments respectively. Behind it pouches upward a little and is reinforced by the straight sesamoidean ligament and the branches of the superficial flexor tendon.

There are two collateral and four volar ligaments.
The collateral ligaments, medial and lateral (Lig. collaterale radiale, ulnare), are very short and strong hands which are attached above on the eminence and depression on each side of the distal end of the first phalanx, and below on the eminence on each side of the proximal end of the sccond phalanx. The direction of the ligaments is about vertical and, therefore, does not correspond to the digital axis.

The volar ligaments (Ligg. volaria) consist of a central pair and lateral and medial bands which are attached below to the posterior margin of the proximal end of the second phalanx and its complementary fibro-cartilage. The lateral and medial ligaments are attached above to the middle of the borders of the first phalanx, the central pair lower down and on the margin of the triangular rough area.

These ligaments are very commonly thickened as a result of ehronic inflammation, and then are not well defined. The central ones hlend below with the branches of the superficial flexur tendon and with the straight sesumoidean ligament.

Movements.-These are very limited, and consist of flexion and extension. The axis of motion passes transversely through the distal end of the first phalanx. In the standing position the joint is extended. A small amount of volar flexion is possihle, and in this position slight lateral and medial flexion and rotation can he produced by manipulation. Dorsal flexion is prevented by the lateral, volar, and straight sesamoidean ligaments.

THE COFFIN JOINT

This joint, terhnically termed the distal interphalangeal articulation (. Irticulatio interphalangea distalis s. phalangis tertie), is a ginglymus formed by the junetion of the second and third phalanges and the distal sesamoid bone.

Articular Surfaces.-The surface on the distal end of the second phalanx is convex in the sagital direction, concave transversely. The articular surface of the third phalanx slopes sharply upward and forward; its central part is prominent, and is flanked by two glenoid cavities. It is completed behind by the articular surface of the distal sesamoid or navicular bone.

Joint Capsule.-This is attarhed around the margins of the articular surfaces. In front and on the sides it is tight, and is blended with the extensor tendon and the collateral ligaments respectively. It forms a considerahle ponch behind, which extends upward to about the middle of the seeond phalanx, where it is separated by a fibrous membrane from the digital symovial sheath. On each side small pouches project (especially during volar flexion) against the cartilages of the third phalanx just behind the collateral ligaments. ${ }^{1}$

Ligaments.-The collateral ligaments, medial and lateral (Lig, collaterale
${ }^{1}$ This should be noted in regard to resection of the cartitage or other operations in this vicinity.
ulnare, radiale), are short, strong bands which are attached above in the depressions on either side of the lower part of the second phalanx, under cover of the cartilage of the third phalanx. They widen below and end in the depressions on either side of the extensor process and on the anterior end of the cartilages.

The collateral sesamoidean or suspensory navicular ligaments, medial and lateral (Lig. sesamoideum collaterale ulnare, radiale), ${ }^{1}$ are strong, somewhat elastic bands, which form a sort of suspensory apparatus for the third sesamoid. They are attached superiorly in and above the depressions on each side of the distal end of the first phalanx and are here partly blended with the collateral ligaments of the pastern joint. They are directed obliquely downward and backward, and end chiefly on the ends and proximal border of the distal sesamoid, but detach a branch to the axial surface of each cartilage and angle of the third phalanx.

The phalango-sesamoidean or distal navicular ligament (Lig. phalangeo-sesamoideum) reinforces the capsule distally. It is a strong layer of fibers which extend from the distal border of the distal sesamoid to the flexor surface of the third phalanx.

Movements.-The chief movements are flexion ana extension. In the standing position the jomt is extended. During volar flexion a very small amount of lateral movement and rotation can be produced by manipulation. Dorsal flexion is very limited.

Dorsal flexion appears to be checked mainly by the deep flexor tendon, since in cases of rupture of the latter the toe turns up. The mobility of the posterior part of the socket for the second phalanx (formed by the distal sesamoid) diminishes concussion when the weight comes on the foot

LIGAMENTS OF THE CARTILAGES OF THE THIRD PHALANX

In addition to the bands mentioned above, which attach the cartilages to the extremities of the navicular bone, there are three ligaments on either side which attach the cartilages to the phalanges.

An ill-defined elastic band passes from the middle part of the border of the first phalanx to the upper part of the cartilage, detaching a branch to the digital cushion.

A short, strong band connects the anterior extremity of the cartilage with the rough eminence on the second phalanx in front of the attachment of the collateral ligament of the coffin joint.

The lower border of the cartilage is covered in part by fibers which attach it to the angle of the third phalans.

The Articulations of the Pelvic Limb

the sacro-iliac articulation

This joint (Articulatio sacroiliaca) is a diarthrosis formed between the auricular surfaces of the sacrum and ilium. These surfaces

Fig. 243.-Left Sacro-iliac Articulation of Horse; Anterior View. (Adapted from Schmaltz, Atlas d. Anat. d. Pferdes.) are not smooth in the adult, but are marked by reciprocal eminences and depressions, and are covered by a thin layer of cartilage. The joint cavity is a mere cleft, and is often crossed by fibrous bands.

[^32]The joint capsule is very close fitting, and is attached around the margins of the articular surfaces. It is reinforced hy the ventral sacro-iliac ligament (Lig. sacro-iliacum ventrale), whieh surrounds the joint; this is exceedingly strong above, where it oceupies the angle between the ilium and the wing of the sacrum; it consists chiefly of nearly vertical fibers. .7. - .

The movements are inappreciable in the adult-stability, not mobility, being the chief clesideratum.

LIGAMENTS OF THE PELVIC GIRDLE

The following ligaments (Ligg. cinguli extremitatis pelvinæ) may he regarded as accessory to the sacro-iliac joint, although not directly connected with it:

Fig. 244.-Pelnic Tigaventa and 1tip Joint.

1. Dorsal sacro-iliae ligament; 2, lateral suero-liau ligament; 3, sacru-scietic ligament; 4, greater sciatic foramen; 5 , lesses sciatic foramen; 6 , line of attachment of intermuscular septum between biceps femoris and semitendinosus; 7 , capsule of hip joint; 8 , eapsularis muscle; 9, lateral tendon of origin of rectus femoris; 10, tuler sacrale; 11 , tuber coxa; 12 , shaft of ilinm; 13 , superior ischiatic spme; 14 , pubis; 15 , taber ischii; 16 , trochanter major; 17 , semimembranosus; 18, fifth lumbar spine; 19, 20, first and second coccygeal vertehre.

The dorsal sacro-iliac ligament (Lig. sacro-iliacum dorsale breve) is a strong band which is attarhed to the tuler sacrale and the summits of the sacral spines.

The lateral sacro-iliac ligament (Lig. satro-iliacum dorsale longum) is a triangular, thick sheet which is attached in front to the tuber saldrale and adjacent part of the medial border of the ilimm above the great sciatic notch, and below to the lateral border of the sacrum. It blends above with the dorsal sacro-iliae ligament, below with the sacm-sciatic ligament, and behind with the coceygeal fascia.

The sacro-sciatic ligament (lig. sacroischiadicum s. sacrospinosum et tuberoxum) is an extensive quadrilateral sheet which completes the lateral pelvic wall.

Its dorsal borler is attached to the border of the sacrm and the transerse processe of the first and second cocergeal vertebre. Its ventral border is attached to the superior ischiatic spine and tuber ischii. Between these it bridges over the lateral border of the ischium and completes the lesser sciatic foramen (Foramen isehiadicum minus). The anterior border is concave, and completes the greater sciatic foramen (Foramen ischiadieum majus). The posterior border is fused with the vertebral head of the semimembranosus muscle.

The lesser sciatic foramen is closed, except where the tendon of the obturator internus and a vein pass through it, by a thin fibrous sheet given off from the sacro-sciatic ligament.

The ilio-lumbar ligament (Lig. itio-lumbale) is a triangular sheet which attaches the ends of the lumbar transverse processes to the ventral surface of the ilium below the attachment of the longissimus muscle (Fig. 273).

SYMPHYSIS PELVIS

The symphysis pelvis is formed by the junction of the two ossa coxarum at the ventral median line. In the young subject the bones are united by a layer of cartilage (Lamina fibrocartilaginea): in the actult the latter is grachually replaced by bone, the process begimning in the pubic portion and extending backward, but commonly the ischia are in part not fused. The union is strengthened by white fibrous tissue dorsally and ventrally. A transverse band also covers the anterior border of the pubis, and other fibers (Lig. arcuatum ischiadicum) extend across at the ischial areh. No appreciable movement occurs even before synostosis takes place.

OBTURATOR MEMBRANE

This Membrana obturatoria) is a thin tayer of fibrous tissue which covers the obturator foramen, leaving, however, a passage (Canalis obturatorius) for the obturator vessels and nerve.

THE HIP JOINT

This joint (Articulatio coxe) is an enarthrosis formed by the proximal end of the femur and the acetabulum.

Articular Surfaces. - The head of the femur presents an ahmost hemispherical articular surface, which is continued a short distance on the upper surface of the neck. It is more extensive than the socket which receives it. It is cut into medially by a deep notch for the attachment of the round and accessory ligaments. The acetabulum is a typical cotyloid eavity. Its articular surface is somewhat crescentic, being deeply eut into medially by the acetabular notch and fossa.

The acetabuhum is deepened by a ring of fibro-cartilage, the cotyloid ligament (Labrum glenoidale), which is attaehed to the bony margin: that part of the ligament which crosses the notch is called the transverse acetabular ligament (Lig. transversum acetabuli) (Fig. 291).

The joint capsule is roomy. It is attaehed around the margin of the acetabulum and the neek of the femur. It is thickest laterally.

The attachment on the femur is about 1 cm . from the margin of the articular surface, except above, where 2 to 3 cm , of the neck is intracapsular. A thin, oblique band corresponding in direction with the capsularis muscle reinforces the antero-lateral part of the capsule; this appears to be the feeble homologue of the very strong ilio-femoral ligament of man. The capsule is very thin under the ilio-psous, and is adherent to the muscle. Its fibrous part is perforated medially by the accessory and round ligaments and the articular vessels.

The round ligament (Lig. teres) is a short, strong band which is attached in the subpubic groove close to the acetabular notch, passes outward, and ends in the notch on the head of the femur (Fig. 581).

The accessory ligament (Lig. accessorium) ${ }^{1}$ does not occur in the domestic animals other than the equide. It is a strong band detached from the prepubie tendon of the abdominal muscles (Fig. 581). It is directed outward, backward, and upwarl, passes through the acetabular noteh dorsal to the transverse ligament, and ends behind the round ligament in the notch on the head of the femur. The origin of the pectineus muscle is perforated by the ligament, which furnishes attachment to many fibers of the musele.

The synovial membrane is reflected over the intracapsular parts of these ligaments and covers the fossa acetabuli. A pouch also extends from the acetabular notch for a variable distance along the subpubie groove above the accessory ligament.

Movements.-This joint is capable of all the movements of a ball-and-socket joint, viz., flexion, extension, abduction, adduction, rotation, and circumduction. The greatest range of movement is displayed in flexion and extension. When standing at rest, the joint is partially flexed, the articular angle (in front) being about 100° to 115°. The other movements occur to a very limited extent in normal action. Abduction appears to be whecked by tension of the round and accessory ligaments. The aecessory ligament is tensed most promptly by inward rotation of the thigh.

THE STIFLE JOINT

This joint (Articulatio genu), which corresponds to the knee-joint of man, is the largest and most elaborate of all the articulations. Taken as a whole, it may be elassed as a ginglymus, although it is not a typical example of the group. In reality it consists of two joints-the femoro-patellar and the femoro-tibial.

The femoro-patellar articulation (Artieulatio femoro-patellaris) is formed between the trochlea of the femur and the articular surface of the patella.

Articular Surfaces.-The trochlea consists of two slightly oblique ridges, with a wide and deep groove between them. The medial ridge is much the larger of the two, especially at its proximal part, which is wide and rounded. The hateral ridge is much narrower, and is more regularly curved; its proximal part lies about an inch behind a frontal plane tangent to the medial one. The articular surface of the patella is much smaller than that of the trochlea. It is completed medially by a supplementary plate of fibro-cartilage (Fibrocartilago patelle), which eurves over the medial ridge of the trochlea. A namow strip of cartilage is found along the lateral border also. The articular cartilage on the trochlea completely covers both surfaces of the medial ridge, but extends only a short distance on the lateral surface of the outer ridge.

Joint Capsule.-This is thin and is very capacious. On the patella it is attached aromd the margin of the articular surface, but on the femur the line of attachnent is at a varying distance from the articular surface. On the medial side it is an inch or mere from the articular cartilage; on the lateral side and above, about half an inch. It pouches upward under the quadriceps femoris for a distance of two or three inches, a pad of fat separating the capsule from the muscle. Below the patella it is separated from the patellar ligaments by a thick pad of fat, but inferiorly it is in contact with the femoro-tibial capsules. The joint cavity is the most extensive in the borly. It usually commmicates with the medial sac of the femoro-tihial joint eavity by a slit-like opening situated at the lowest part of the medial ridge of the trochlea. A similar, usially smatler, communication with the lateral sae of the femoro-tibial capsule is often found at the lowest part of the lateral ridge.

The medial communieation is rarely absent in adult horses, but is liable to be overlooked on account of the fact that it is covered by a valvular fold of the synovial membrane. It is about
${ }^{1}$ This is also commonly called the pubo-femoral ligament.
half an inch wide, and lies under the narrow articular area which connects the troehlea and medial condyle. The lateral communication occurs in 15 to 25 per cent. of cases, according to Baum; in rare cases it is larger than the inner one. It is instructive to distend this capsule and thus obtain an idea of its potential capacity and relations (Fig. 246).

Ligaments.-The femoro-patellar ligaments, lateral and medial (Lig. femoropatellare fibulare, tibiale), are two thin bands which reinforce the capsule on either

Fio. 245.-Left Stifle Joint of Horae: Front View. The Capstles are Removed.

1. Niddle patellar ligament: 2. stump of fascia lata; 3, stump of common tendon of extensor longus and peroneus tertius.
side. The lateral ligament is fairly distinet; it arises from the lateral epicondyle of the femur just above the lateral femoro-tibial ligament, and ends on the lateral border of the patella. The medial ligament is thinner and is not distinct from the capsule; it arises above the medial epicondyle, and ends on the patellar fibro-cartilage.

The patellar ligaments (Ligg. patellæ) ${ }^{1}$ are three very strong bands which at-
${ }^{1}$ They are also termed the straight ligaments of the patella. This term seems objectionable since they are all oblique in direction.
tach the patella to the tuberosity of the tibia. The lateral patellar ligament extends from the lateral part of the anterior surface of the patella to the lateral part of the tuberosity of the tibia. It receives a strong tendom from the biceps femoris muscle and also part of the fascia lata. The middle patellar ligament extends from the front of the apex of the patella to the distal part of the groove on the tuberosity of the tibia; a hursa is interposed between the ligament and the upper part of the groove, and a smaller one occurs between the upper part of the ligament and the apex of the patella. The medial patellar ligament is attached above to the

Fis, 24i.-Rifht Stifle Joint of IIorse; Lateral View.
The femoro-patcllar capsule was filled with plaster-of-Paris and then removed after the cast was set. The femorntibial capsule and most of the lateral patellar ligament are removed. If, Lateral meniscus.
patellar fibro-eartilage, and ends on the tuberosity of the tibia at the medial side of the groove. It is joined by the eommon aponeurosis of the gracilis and sartorins, and its proximal part furnishes insertion to fibers of the vastus medialis. These so-called ligaments are, in reality, the tentons of insertion of the quadriceps: femoris and liceps femoris museles, and transmit the action of the latter to the tibia; they also function similarly for the other museles attached to them as moted above.

It will be noticed that the proximal attachments are further apart than the distal ones, so that the ligaments converge below. The medtal ligament is especially oblique. The middle ligament is more deeply placel than the others, and therefore cannot ustally be felt so distinctly in the living animal. The lateral ligament is very largely the tenton of the anterior part of the
biceps femoris, but it also furnishes insertion to the tensor fascie lata by means of the fascia lata, which blends with it.

The femoro-tibial articulation (Articulatio femoro-tibialis) is formed between the condyles of the femur, the proximal end of the tibia, and the interposed articular menisci or semilunar cartilages.

Articular Surfaces.-The condyles of the femur are slightly oblique in direction. The articular surface of the lateral one is more strongly curved than that of the medial one; the latter is confluent below with the medial ridge of the trochlea,

Fig. 24त.-Left stifle Joint of Horse; Medial Viet. The Capscles are Removed.
while the narrow ridge which connects the lateral condyle with the trochlea is usually non-articular. The saddle-shaped surfaces of the condyles of the tibia are not adapted to the femoral condyles, and are in contact with ouly a small part of them.

The menisci, lateral and medial (Meniscus lateralis, medialis), ${ }^{1}$ are two Cshaped or crescentic plates of fibro-cartilage which produce congruence in the articular surfaces. Each has a proximal concave surface adapted to the condyle of the femur, and a distal surface which fits the corresponding condyle of the tibia.
${ }^{1}$ These are also commonly termed the semilunar cartilages, although they are not so shaped.

The lateral meniscus does not cover the lateral and posterior part of the tibial condyle, over which the temton of origin of the popliteus muscle plays. The peripheral border is thick and convex, the central one very thin and concave. The fibrous ends or ligaments are attached to the tibia in front of and behind the spine. The lateral meniscus has a third attachment by means of an oblique band (Ligamentum femorale menisci lateratis) which passes from the posterior end to the posterior part of the intercondyloid fossa of the femur.

Fig. 24S.-Left Stifle Joint of IIorse; lateral Viet. The Capstleq are Removed.

1. Stump of tendon of orign of extensor longus and peroneus tertius; 2, stump of fascia lata; 3, patellar attachment of biceps femoris and lateral patellar ligament.

The ligaments of the merlial meniseus (Ligamenta tibialia anterius et posterius menisci uedialis) are attached in front of and behind the medial eminence of the spine. The anterior ligament of the lateral meniscus (Ligamentum tibiale anterius menisei lateralis) is attached in front of the lateral eminence of the spine. The posterior one bifurcates; the lower branch (Ligamentum tibiale posterius menisci lateralis) is inserted at the popliteal notch, the upper (Ligamentum femorale menisci lateralis) in a small fossa in the extreme posterior part of the intercondyloid fossa.

The joint capsule is attached to the margin of the tibial artioular surface, but on the femur the line of attachment is for the greater part about half an inch (ca. 1 cm .) from the articular margin. It is also attached to the convex borders of the menisci and to the cruciate ligaments. It is thin in front, where it consists
practically of the synovial layer only. It is much stronger posteriorly: here it is reinforced by what might be regarded as a posterior ligament. This is a strong, flat band which arises from the femur just lateral to the origin of the medial head of the gastrocnemius, and extends down to the posterior border of the medial condyle of the tibia; it is wider below than above. There are two synovial saes, corresponding to the double nature of the artieular surfaces; they do not nsually communicate, and each is partially divided into an upper and a lower compartment by the meniscus. The medial sac pouches upward about half an inch over the con-

Fig. 249.-Left stifle Joint of Horse; Posterior View. The Capstle is Removed.

1. Femoral ligament of hateral meniscus; 2, posterior ligament of lateral meniscus; 3, anterior cruciate ligament; 4 , posterior cruciate ligament.
dyle of the femur. The lateral sac invests the tendon of origin of the popliteus muscle, and also pouches downward about three inches (ca. $\overline{7} .5 \mathrm{~cm}$.) beneath the peroncus tertius and extensor longus muscles. As stated above, the lateral sac sometimes communicates with the femoro-patellar joint cavity, and the medial sac usually does so in the adult.

Ligaments.-There are four of these - two collateral and two cruciate.
The medial ligament (Lig. collaterale tibiale) is attached above to the prominent medial epicondyle of the femur, and below to a rough area below the margin of the medial condyle of the tibia.

The lateral ligament (Lig. collaterale fibulare) is somewhat thicker; it arises from the upper depression on the lateral cpieondyle, and ends on the head of the fibuia.

Fig. 2.5.-Proximal Eno of Right Tibli with Mesisci, Etc.
1.2. Antorior and posterior cruciate ligaments; 3, posterior ligament of medial meniscus; 4, fomoral ligament of lateral meniscus; 5, 5^{\prime}, anterior ligaments of menisci; 6 , groove for poplitens tendon; 7. spine of tibia; 8,9 , medial sad latural femoro-tibial ligaments.

It covers the tendon of the origin of the popliteus musele, a bursa being interposed between the two; another bursa is present

Fig. 251.-Promimal End of Right Tibia of Horse, with Areas on Ifinmentous Attachment.
1, 2, Medial and lateral patellar ligaments: 3, 4, anterior ligaments of menisci; 5, 7, anterior and posterior cruciste ligaments; is, posterior ligament of medial meniscus. between the lower part of the ligament and the margin of the lateral condyle of the tibia.

The cruciate ligaments are two strong rounded bands situated mainly in the intercondyloid fossa of the femur, between the two synovial saes. They cross each other somewhat in the form of an X, and are named aceording to their tibial attachments. The anterior cruciate ligament (Lig. eruciatum anterius) arises in the central fossa on the tibial spine, extends upward and backward, and ends on the lateral wall of the intereondyloid fossa. The posterior cruciate ligament (Lig. cruciatum posterius) is medial to the preceding, and is somewhat larger. It is attached to an eminenee at the popliteal noteh of the tibia, is directed upward and forward, and ends in the anterior part of the intereondyloid fossa of the femur.
It may be added that these ligaments do not lie in a sagittal plane, but are somewhat twisted across each other; outward rotation of the leg untwists and slackens them.

Movements.-The !,rincipal movements of the stifle joint as a whole are
flexion and extension. In the ordinary standing position the articular angle (hehind) is about 140° to 150°. Flexion is limited only by contact of the leg with the thigh, if the hock is also flexed. Extension is incomplete, $i . e$., the femur and tilia camot be brought into the same straight line. Rotation is limited, and is freest during semiflexion. The patella glides on the femoral trochlea upward in extension, downward in flexion.

Extension is checked mainly by tension of the cruciate and collateral haments. In extreme extension, which is accompanied by shight outward rotation of the leg, the patella can be pusherd upward and inwayd so that its fibro-cartilage hooks over the upper end of the medial ridge of the trochlea, but it will not remain there unless held in position. When pressure is removerl, the base of the patella tips forward and the cartilage lies upon the most prominent part of the trochlear ridge. During flexion, which is accompanied by slight inward rotation of the leg, the condrles of the femur and the menisei glide backward on the tibia; the movement of the lateral condyle and meniscus is greater than that of the medial one. In extreme flexion the patellar and posterior cruciate ligaments are tense; the other ligaments are relaxed. The movement of the patella is gliding with coaptation, i. t.. different parts of the opposing articular surfaces come into contact successively, Only a narrow transverse strip (ra. $1.5-2 \mathrm{~cm}$. wide) of the patella is in contact with the trochlea at a time.

TIBIO-FIBULAR ARTICULATION

This joint (Articulatio tibiofibularis) is formed by the head of the fibula articulating with a crescentic facet just below the outer margin of the lateral condyle of the tibia. The joint capsule is strong and close. The shaft of the fibula is attached to the lateral border of the tibia by the interosseous membrane of the leg (Dembrana interossea cruris); this is perforated about an inch from its proximal end by an opening which transmits the anterior tibial vessels to the front of the tibia. I fibrous cord usually extends from the distal end of the shaft of the fibula to the lateral malleolus. The latter is the distal end of the fibula which has fused with the tibia. No appreciable movement occurs in this joint.

THE HOCK JOINT

This is a composite joint made up of a number of articulations (Articulationes tarsi). These are: (1) The tibio-tarsal articulation; (2) the intertarsal articulations; (3) the tarso-metatarsal articulation.

The tibio-tarsal articulation (Articulatio talocruralis) is a typical ginglymus formed by the trochlea of the tibial tarsal bone and the corresponding surface of the distal end of the tibia. The ridges and grooves of these surfaces are directed oblipuely forward and outward at an angle of about 12° to 15° with a sagittal plane. The trochlear surface is about twice as extensive as that on the tibia, and its ridges have a spiral curvature. The other articulations are arthrodia, which have joint surfaces and ligaments of such a nature as to allow only a minimal amount of gliding motion.

As in the case of the carpal joints, it is convenient to describe first the common capsule and ligaments, which are the more important practically, and then to consider very briefly the special ligaments.

The fibrous part of the joint capsule is attached around the margin of the tibial articular surface above and the metatarsal surfaces below; it is also attached in part to the surfaces of the bones which it covers, and blends with the collateral ligaments. Its dorsal part (anterior ligament) is rather thin; in distention of the capsule, as in "bog-sparin," its antero-medial part, which is not bound down by the tendons passing over the joint, forms a fluctuating swelling over the medial ridge of the trochlea. The plantar part (postcrior and tarso-metatarsal ligaments) is rery thick below, and is intimately attached to the tarsal bones. It is in part cartilaginous, and forms a smooth surface for the deep flexor tendon. The proximal part pouches upward behind the distal end of the tibia for : distance of about two
inches (ca. 5 cm .); here it is thin. It is continued downward to form the subtarsal or check ligament, which mites with the deep flexor tendon about the middle of the metatarsus.

There are four synovial sacs: 1. The tibio-tarsal sac lubricates the proximal joint, and is mueh the largest and most important. ${ }^{1}$ 2. The proximal intertarsal sac lines the joints formed by the tibial and fibular tarsal bones above, and the central and fourth tarsals below; it communieates in front with the tibio-tarsal sae. 3. The distal intertarsal sac lubricates the joints fomed between the central tarsal and the bones below and on either side. 4. The tarso-metatarsal sac lubrieates

Fig. 252.-Right Hock Joint of Horse; Medil View. The Capsele is Removeo.
1,2, Branches of short part of needial ligament; 3, tarso-metatarsal ligament; 4, proximal tuberosity of tibial tarsal bone; 5, sustentaculum; 6, groove for deep flexor tendon; Mt, II, MIt. III, metatarsal bones.
the joints formed between the tarsal and metatarsal bones, those between the proximal ends of the metatarsal hones, and those formed by the third tarsal with the bones on rither side.

Common Ligaments.-The lateral ligament (Lig. collaterale fibulare) consists of two distinct bands whieh cross each other. The long lateral ligament (Lig. collaterale laterale longmon) is superficial; it arises on the posterior part of the lateral malleolus, is directed almost straight downward, and is attached to the fibular and fourth tarsal bones and the large and lateral small metatarsal bones. It forms a eanat for the lateral extensor tendon. The short lateral ligament (Lig. collaterale
${ }^{1}$ It is this prart of the capsute which is chiefly involverl in distention by excess of fluid in the joint cavity (as in "bog-spavin").
laterale breve) is deeper: it arises on the anterior part of the lateral malleolus, is directed chiefly backward, and ends on the rough excavation on the lateral surface of the tibial tarsal and the adjacent surface of the fibular tarsal bone.

The medial ligament (Lig. collaterale tibiale) also consists of two parts which cross each other. The long medial ligament (Lig. collaterale mediale longum) is superfieial; it arises on the posterior part of the medial malleolus, becomes wider below, and is attached on the distal tuberosity of the tibial tarsal, the large and medial small metatarsal bones, and the surface of the lower tarsal bones which it

Fig. 253.-Rigrt Hock Joint of Horse; Lateral View. The Capsele is Removed.

1. Ligament connecting lateral ridge of tibial tarsal with processns cochlearis of fibular tarsal bone: 2. groove for Interal estensor tendon: T.f., lateral ridge of trochtea of tibial tarsal bone; T. C., central tarsal bone; T. 3, tbird tarsal bone: Mi. III, Mi. IV, metatarsal bones.
covers. The short medial ligament (Lig. collaterale mediale breve) lies largely under cover of the long one. It extends from the anterior part of the medial malleolus, runs backward and somewhat downward, and divides into two branches; one of these ends on the proximal tuberosity on the medial surface of the tibial tarsal bone, the other on the sustentaculum tali.

The plantar ligament (Lig. tarsi plantare) ${ }^{1}$ is a very strong, flat band which covers the outer part of the plantar surface of the tarsus. It is attached to the plantar surface of the fibular and fourth tarsal bones and the proximal end of the lattral metatarsal bone.

The dorsal ligament (Lig. tarsi dorsale) ${ }^{2}$ is a triangular sheet which is attached

[^33]${ }^{2}$ Also known as the oblique ligament.
above to the distal tuberosity on the medial face of the tibial tarsal bone, and spreads out below on the central and third tarsal bones, and the proximal ends of the large and outer small metatarsal bones, to all of which it is attached.

Special Ligaments.-A considerable number of short bands which connect adjacent bones of the tarsus and metatarsus are described by various authors; some of these are quite distinct; others are difficult to isolate. Most of them are not of sufficient importance to justify detailed description.

Fig. 2nt. - Right Hock Jont of lloraf. Viewed from the Front and Slightly Laterally After lenowing of Jonnt (Apar le a No long Collatyhal Ligaikents.
T.t., Tibial 1arsal bone (histal tuberosity) ; T. r., coutral tarsal bone; $T, 3$, ridge of third tarsal hone; T. f., fibular tarsal bont (distal end); T. á, fourth tirsth bone; .11t. III, Mt. IV, metatatsal bones. Arrow points to vascular canal.
(I) The tibial and fibular tarsal bones are united by four hands (astragalo-calcaneal higaments). The medial ligament pxtenk from the sustentaculum tali to the adjacent part of the tihial tarsal, blending with the short collateral ligament. The lateral ligament extends from the combear process of the fibular tarsal to the adjacent part of the lateral ridge of the trochlea. The proximal ligament extents from the posterior margin of the trochlea to the fibular tarsal. The interosseous ligament is deeply placed in the sinus tarsi between the two bones, and is attached in the rough areas of the ofpensed surfares.
(2) The smatler bones are attached to each ot her as follows: The central and third tarsal are united by an interosseous and an ohlique dorsal ligement (seaphoido-cunean ligaments). The central and fourth tarsal are united by an interosseous and a lateral transverse ligament (cuboidoscaphoid ligament). The third and fourth tarsals are similarly comected (cuboido-cunean ligaments). The third tarsal is joined by an interossenus (intereunean) ligament to the (fused) first and second tarsals; the latter are connected with the fourth tarsal by a plantar transverse ligament.
(3) The smaller bones are connected with the proximal row as follows: The central is
attached to the tibial by plantar and interosscous (astragalo-scaphoid) ligaments, and to the filular tarsal by a short ohlique (caleaneo-seaphoid) hand. The fourth is attached to the fibular tarsal by interosseous and plantar caleaneo-cuboid ligaments. The fused first and second tarsals are connected with the fibular tarsal by a plantar caleaneo-cunean ligament.
(4) The distal tarsal bones are connected with the metatarsus by tarso-metatarsal ligaments, which are not distinet from the common ligaments, except in the ease of the interosseous ligament between the third tarsal and metatarsal bones.

Movements.-These are flexion and extension, which take place at the tibiotarsal joint. The movements between the tarsal bones, and between the latter and the metatarsus, are so limited as to be negligible so far as the action of the joint as a whole is concerned. In the standing position the articular angle (in front)

Fig. 255.-Sagittal Section of Hoce of Horse.
The section is cut so far Laterally that the deep flexor tendon does not show.
is about 150° to 160°. Complete extension is prevented by tension of the collateral ligaments. Flexion is checked only by contact of the metatarsus mith the leg, provided the stifle joint is also flexed. Owing to the fact that the axis of motion is slightly oblique, the lower part of the limb deviates somewhat outward during flexion. The long collateral ligaments are tense in extension, the short ones in flexion, of the joint. The movements of the hock joint must correspond with those of the stifle on account of the tendinous bands in front and behind (peroneus tertius and flexor superficialis), which extend from the lower part of the femur to the tarsus and metatarsus.

The remaining joints differ in no material respect from those of the thoracic limb.

COMPARATIVE ARTHROLOGY ${ }^{1}$

Joints and Ligaments of the Vertebrex

Ox.-The ligamentum nuche is better developed than in the horse. The funicular part is cleatly divided into two lateral halves, which are round at their oceipital attachment, hat from the axis backwad become rapidly wider and flat. This wide portion is almost sagittal, lies on either side of the vertebral spines, and is covered by the trapezius and rhomboidens museles. From the highest part of the withers (third thoracie spine) it gradually diminishes in size and fades out in the humbar region. The lamellar part is thick, and consists of anterior and posterior parts. The anterior part is doulle; its fiters proceed lrom the funicular part to the second, third, and lourth cervical spines. The posterior part is single: its fibers extend from the first thoracic spine to the filth, sixth, and seventh eervieal spines.

The ventral longitudinal ligament is very strong in the lumbar region.

a, Funicular part: b, ita wide portion; c, d, landelar part, e, intersphous ligament: 1 , spinous process of first thoracio vertebra; 2, axis (Ellenberger-Baum, Inat. d. llatustwre.)

The intervertehral fibro-eartilages are thicker than in the horse.
The interspinous ligaments of the hack and loins consist largely of elastie tissur.

There are no intertransverse joints in the lumbar region.
Pig.-The ligamentum nucher is represented by a fibrous raphé and thin layers of elastic tissue which extend betwern the ervical spines.

The atlanto-onecipital and atlanto-axial joints resemble those of the dog.
The interpinous ligaments of the neek are elastic.
Dog.-The ligamentum nuchar consists of a small fibrous hand which extends from the spine of the axis to the anterior thoracic spines; it may be regareled as a mere fibrous raphe leetween the right and left muscles.

There are interspinous museles instead of ligaments in the neek.
There are thre ligaments in comnertion with the dens of the axis. The two alar ligaments (Ligg. alaria) arise on either side of the dens, diverge, and end on

[^34]either side of the foramen magnum. The transverse ligament of the atlas (Lig. transversum atlantis) stretches across the dorsal surface of the dens and binds it down on the ventral arch of the atlas, a bursa being interposed. It is attached on either side to the lateral mass of the atlas.

The two capsules of the atlanto-occipital joint communicate with each other, and usually with the capsule of the atlanto-axial joint also.

Articulations of the Thorax

Ox.-The second to the eleventh costo-chondral joints inclusive are diarthroses with close capsules, reinforced externally: (They are synchondroses in the sheep.) The upper parts of the cartilages are attached to each other by distinct elastic ligaments (Ligg. intereostalia).

The first pair of chondro-sternal joints are separate from each other; intercrossing fibers unite the costo-chondral junctions above the joints.

The first segment of the sternum forms with the body a diarthrodial intersternal joint (Articulatio intersternalis). The anterior joint surface is concave, the posterior convex. The joint is surrounded by a close capsule, and the joint surfaces are attached to each by a small inter-articular ligament. Limited lateral movement is possible. (In the sheep the joint is a synchondrosis.) Both surfaces of the sternum are covered by a layer of fibrous tissue (\Membrana sterni).

Pig.-The second to the fifth or sixth costo-chondral joints are diarthroses. The intersternal articulation and the sternal ligaments resemble those of the ox.

Dog.-The first chondro-sternal joints do not coalesce. The internal sternal ligament divides into three bauds.

TEMPORO-MANDIBULAR ARTICULATION

Ox.-The articular surfaces are of such a character as to permit more extensive transverse movement than in the horse (vide Osteolog$)^{\circ}$). The posterior ligament is absent.

Pig.--The considerable longitudinal diameter of the temporal articular surfaces and the very small size of the postglenoid process allow great freedom of protraction and retraction of the luwer jaw. Transerse movement is limited. The posterior ligament is absent.

Dog.- The articular surfaces allow extremely little transserse or gliding movement. They are cylindrical in curvature, and the interarticular dise is very thin. The posterior ligament is absent.

The other articulations of the skull are sufficiently described in the Osteology.

Articulations of the Thoracic Limb SHOULDER JOINT

Ox.-The articular angle is about 100°.
Pig and Dog.-The joint capsule communicates so freely with the bicipital bursa that the latter may well be regarded as a pouch of the capsule. There is a rudimentary marginal cartilage around the rim of the glenoid cavity. In the pig the front of the capsule is reinforced by cruciate bands. In the dog there is usually a strong band extending from the acromion to the lateral part of the capsule; another band (Ligamentum coraco-acromiale) often stretches between the scapular tuberosity and the acromion.

ELBOW JOINT

Ox.-No important tifferences exist. The upper part of the interosseous radio-ulnar ligament is commonly usified in the atult.

Pig.-There are no inportant differences. The ratlus and ulna are so firmly united by the interosseous ligament as to prevent any appreciable movement between them.

Dog. - The joint capsule is reinforced in front ly an oblique ligament which arises on the front of the lateral condyle of the humerus above the joint surface, and joins the terminal part of the bierps and brachialis below. There is a strong reinforcement of the postero-medial part of the capsule, which extents obliquely from the medial side of the olecranon fossia to the ulna, just above the processus anconeus. The lateral ligament is much stronger than the medial one. It is attaehed above to the lateral epirondyle of the humerns, and helow chiefly to the eminence distal to the neek of the radius; Lut part of it inelines backward and is attached to the ulata. The middle part of the ligament is wide and forms a sort of eap over the proximat tuberosity of the radius. From this part a hand, the annular ligament of the ravlius (Lig. annulare radii), extends aeross the front of the proxinal end of the radius and ends on the ulna; although incorporated in the joint eapsule it is easily defined. The medial ligament is more slemder. It arises irom the metial epicondyle of the bunerus and passes doeply into the proximal part of the interosseous space, ending chiefly on the posterior surface of the radius a little medial to the attachment of the lateral ligament; there is also a small attachment to the interosseous border of the ulna. This ligament is very oblique. An elastic band (Ligamentum oleerani) extends from the lateral surface of the medial epicondyle to the anterior border of the una.

There are two radio-ulnar joints. The proximal radio-ulnar joint (Articulatio radionlnaris proximalis is included in the capsule of the elbow, but is provided with an annular ligament, as deseribed above. The distal radio-ulnar joint (Artieulatio radioulnaris distalis) is formed by a concave facet on the radius and a eonvex one on the ulna, and is surrouded by a tight eapsule. The interosseous membrane unites the shafts of the two bomes; its proximal part is specially strong and is attaehed to prominenees on both bones. The movements consist of limited rotation of the radine (ea. 20°), carrying the paw with it. The ordinary position is termed pronation; outward rotation is supination. ${ }^{1}$

THE CARPAL JOINTS

These have the same general arrangement as in the horse. Numerous minor differences naturally exist, but must be exeluded from this brief aceount, which eontains only important special features.

The lateral and medial movements are freer, espectially in the dog, but flexion is not so eomplete: the anatomical explanation of these facts lies in the nature of the articular surfaces and eortain ligamentous differences. The collateral ligaments are much weaker, the long lateral one being espeeially small in the ox. Two oblique, somewhat elastie bands cross the front of the radio-carpal and intercarpal joints. The proximal one is attached to the distad end of the radius and passes downward and outward to the ulnar earpal bone; the other one comects the radial and fourth earpal bones in a similar fashion.

In the ox the short collateral ligaments are well defined; a ligament conneets the aecessory carpal with the distal end of the ulna, and strong volar bands comect

[^35]the distal bones with the metacarpus. A strong oblique ligament connects the ulnar earpal bone with the metacarpus.

The dorsal. volar, and interosseous earpal ligaments vary with the number of carpal bones present in the different species.

In the dog there are six dorsal and six volar ligaments. The interosseous ligaments are not interordinal. The accessory carpal bone is attaehed by ligaments to the ulna, the radio-intermediate, and the third, fourth, and fifth metacarpal bones. The distal carpal bones are attached to the metacarpal bones by dorsal and volar ligaments.

INTERMETACARPAI JOINTS

In the ox the small (fifth) metacarpal bone articulates with the large metacarpal, but not with the earpus. The joint carity is connected with that of the earpo-metacarpal sac. The proximal end of the small metaearpal bone is attached by a ligament to the fourth earpal, and another band extends from its distal part to the side of the large metacarpal. There is also an interosseous ligament, which is permanent and allows a small amount of movement.

The chief metacarpal bones of the pig, and the second to the fifth of the dog, articulate with each other at their proximal ends, and are connected by interosseous ligaments, which do not, however, unite them closely, as in the horse. There are feeble dorsal and volar ligaments (Ligg. basium) which unite the proximal ends of the metacarpal bones in the dog.

METACARPO-PHALANGEAL JOINTS

Ox.-There are two joints, one for each digit. The volar parts of the two joint capsules communicate. The two interdigital collateral ligaments (Ligg. collateralia interdigi-

Fig. 257.-Distal Part of Livb of Ox. Showing Ligamests and Tevoons. Une Digit and Corkesponding Ahtictlar Part of Metacirpal Bove are Removed.
a, Suspensory ligament; a^{\prime}, branch of a to superficial flezor tendon: $a^{\prime \prime}$. $a^{\prime \prime \prime}$. lateral and central branches of $a ; b$, deep flesor teddon: b^{\prime}, branch of b to digit removed: c, c, superficial flexor tendon: d, d^{\prime}, intersesamoid ligament (cut) : e, interdigital collateral ligament of fetlock joint; f, tendon of comman extensor; g. proximal interdigital ligament; h, digital annular ligament; i, posterior anmular ligameat of fetlock: k, collateral ligament of pastern joint; l, distal interdigital ligament; m, cruciate interdigital ligament (cut) $; m^{\prime}, m^{\prime \prime}$, attachments of m to second phalanx and distal sesamoid bone; n. suspensory ligament of distal sesamoid; o, dorsal elastic ligament; p, lateral volar ligament of pastern joint; 1 , metacarpus, sawn off at $1^{\prime} ; 2$, first phalanx: 8. second phalanx; 4, third phalanx. Ellenberger-Baum, Anat. d. Haustiere.) talia) result from the bifureation of a band which arises in the furrow between the divisions of the distal end of the large metacarpal bone; they spread out and end on the proximal ends of the first pha-
langes. The other collateral ligaments are arranged like those of the horse. A strong interdigital ligament (Lig. interdigitah(), consisting of short intererossing fibers, unites the midelles of the interdigital surfaces of the first phalanges of the chief digits. It prevents undue divergence of the phalanges. It is not present in the sheep.

Crueiate ligaments (Ligg. phalango-sesamoidese) comect the proximal sesamoids with the proximal end of the opposite first phatan.

The intersesamoid ligament comects all four sesamoids, and extends upward much less than in the horse.

The laterate and medial sesamoidean ligaments end chiefly on the first plalanges, lut also detach a small part to the large metacarpal bone.

The superficial or straght distal sesamoidean ligament is absent. The middle distal sesamodenm ligaments of each digit are two short, strong bands which extend from the distal margins of the proximal susamode to the proximal ends of the first phalanges. The deep distal sestmoidean ligaments are strong and distinetly aruciate.

The suspensory ligament or interosseus tendon contains more museular tissue than in the horse-indeed, in the young animal it consists almost entirely of museular tissue. It the distal third of the metacerpus it divides into three bramehes. These give rise to five suldivisions, cither by bifurcation of the lateral and meedial lranches or trifureation of the middle brancl. The two lateral and two medial hands ead on the proximal sesamoid hones and the distal end of the large metacarpal bone, and detach slips to the extensor temdons. The middle band passes through the groove betwern the two divisions of the distal end of the metaearpus, and divides into two brancles wheh join the temelons of the proper extensors of the digits; it sends fibers also to the interdigital collateral ligaments and to the eentral sesamoids. About the middle of the metacarpus the suspormory ligament detaches a band which unites lower down with the superficial flexor tendon, thus inclosing the temdon of the deep flexor of the digit; it also bends with the thiek fascia of the region. The latter gives off a hame on cither side to the aceessory digits, and a tendinous band deseends from each aceescory digit to the third phatans and distal sesamoid thone, blending with the temdon of the corresponding proper extensor.

Pig.-There are four metacarpo-phalangeal joints, cach of which has a capsule, collateral, intersesamoidean, and cruciate sesamoidean ligaments. Since distinct interosseous muscles are present, there are, of eourse, no suspensory ligaments.

Dog.-There are five metacarpo-phalangeal joints, each having its own eapsule and indistinet collateral ligaments. A small sesamoid bone oreurs in the anterior part of each capsule, over whith the corresponding extensor tendom plays. The intersesamoidean ligaments do not extend ahwe the sesamoids. The eruciate ligaments are present, as well as a fibrous layer which attaches the distal margins of the sesamoids to the posterior suface of the proximal end of the first phalanx.

INTERPHALANGEAL JOINTS

Ox.-The two proximal joints have separate eapsules, and broarl, but rather indistinet, collateral ligaments. Earh joint has also central and collateral volar ligaments. The central ligaments are largely fused to form a strong band which is attached loy two branches to the distal end of the first phalanx and to the depression on the volar surface of the proximal end of the second phalanx. The eollateral ones extend from the borders of the first phalanx to the proximal end of the second phalanx; those on the interdigital side are weak and indistinet.

The distal intemphangeal joints have, in addition to the ('apsules and collateral ligaments, hands which reinforse them on either side. The interdigital pair arise in the depresions on the distal ends of the first phatanges, receive fibers from the second phalanges, and end on the interdigital surfaces of the third phalanges at the
margin of the articular surface. The abaxial pair have a similar course, but are thinner, and end on the corresponding third sesamoid. An elastic band erosses the front of the seeond phalanx obliquely, from the distal end of the first phalanx to the extensor process of the third phalanx.

The cruciate or distal interdigital ligaments (Ligg. cruciata interdigitalia) are two strong bands which limit the separation of the digits. They are attached above to the abaxial eminenees on the proximal ends of the second phalanges (blending with the collateral ligaments), cross the deep flexor tendon obliquely, and reach the

Fig. 2йs.-Ligaments and Tendons of Digits of Pig; Volar View.

[^36]

Fig. 2.99.-Liganents and Tendons of Digits of Dog. Hind Limb; Volar V̈ietw.
a, a^{\prime}, superficial flexor tendon; b, tendon to large pad; c, lumbricalpo muscles; d, interossei muscles: ϵ, f, annular ligaments at metatarsophalangeal joints: 9 , suspensory ligament of large pad; h, digital annular ligaments; i, deep flexor tendon; k, distal sesamoid: l, suspensory ligament of k; m, suspensory ligament of digital pad; n, digital pads. (Ellenberger-Baum, Anat. d. Haustiere.)
interdigital space, where they intercross and blend. Most of the fibers end on the distal sesamoid of the opposite side, but some are attached to the interdigital aspeet of the second phalanx and the distal sesamoid of the same side. In the sheep there is, instead of the foregoing, a transwerse ligament which is attached on cither side to the interdigital surfaces of the second and third phalanges and the distal sesamoid bone. It is related below to the skin, above to a pad of fat.

Pig.-The interphalangeal joints of the chief digits resemble in general those of the ox. The distal interdigital ligament resembles, however, that of the sheep, and is intmately adherent to the skin. There is, besides, a remarkable arrange-
ment of ligaments which connect the small digits with each other and with the chief digits (Fig. 258).

Abstract

This apparatus is somenhat complex, but its chief features are as fotlows: A proximal interdigital ligament is attacheal on either side to the third phalanges of the small digits, while centrally it blends with the anmular ligaments of the flexor tendons behind the metacarpo-phalangeal joints of the chief digits. Two bands (central longitulinal interdigital ligaments) arise on the hases of the small digits, cross the fexor tembons obliquely downward and centrally, pass through the proximal interdigital ligament, ant blend below with the distal interdigital ligament. Two collateral bands (collateral longitudinal interdigital ligaments) are attachel in common with the proximal interdigital ligaments to the thirt phalanges of the small digits, and blend below with the outer part of the clistal interdigital ligament.

Dog.-Each joint has a capsule and two collateral ligaments. The distal joints have also two elastic dorsal ligaments (Ligg. dowsalia), whieh extend from the proximal end of the socond phatanx to the ridge at the base of the third phalanx. They probuce dorsal flexion of the joint, and thus raise or retract the claws when the flexor museles relax. The distal' sesamoids are represented by compiementary eartilages attached to the volar margins of the articular surfaces of the third phalanges.

Three inter ligital ligaments rest riet the spreating apart of the digits (Fig. 259). Two of these eross the volar surface of the proximal parts of the chief digits, i. e., one for the second and thirl, the other for the fourth and fifth; they blend with the annular ligaments on either side. The third ligament is attached on either side to the foregoing ligaments and the annular ligaments of the thire and fourth digits, and curves downward centrally, ending in the large pad on the paw.

Articulations of the Pelvic Limb

SACRO-IIIAC JOINT

This joint and the pelvic ligaments present no vory striking differences in the other animals except that the sucro-sciatio ligament in the dog is a narrow but strong band which extends from the posterior part of the lateral margin of the sacrum to the tuber ischii; it is the homologue of the ligamentum sacro-tuberosum of man.

HIP JOINT

Ox.-The shallowness of the acetabulum is compensated by the greater size of the marginal cartilage, which is secially large laterally. The head of the femur has a smaller radius of curvature than that of the horse, and the articular surface extends a considerable clistance outward on the upper surface of the neek. The round ligament is entirely intra-articular; it is small, and sometimes absent. The accessory ligament is absent.

There are no important differences in the other animals.

STIFLE JOINT

Ox.-There is a considerable communication between the femoro-patellar and medial femoro-tibial joint cavities; this is situated ats in the horse, but is wider. A small communication with the lateral femoro-tibial capsule sometimes oceurs. The two femoro-tibial eapsules usually communicate. The middle patellar ligament is not sunken, as there is no groove on the tuberosity of the tibia where it is attached. The lateral patellar ligament fuses completely with the tendon of insertion of the biceps femoris, and a large synovial bursa is interposed between them and the lateral condyle of the femur.

Pig.-The femoro-patellar capsule is strongly reinforced on both sides by bands
which blend with the collateral femoro-tibial ligaments. The cavity is continnous below with that of the femoro-tibial joint. A sagittal synovial fold (rudimentum septi) extends up a short distance from the anterior eruciate ligament. The suprapatellar pouch extends an inch or more (ea. $2-3 \mathrm{~cm}$.) above the trochlea; from this a peuch extends up beneath the quadrieeps femoris almost an inch and communicates through a large round opening with the joint cavity. There is a strong ligamentum patelle, which has a bursa under its distal part. The tendon of the biceps femoris takes the place of the lateral patellar ligament. A small ligamentum transversum comnects the anterior faces of the menisci.

Dog.-The joint in general resmbles that of the pig. The posterior part of the eapsule contains two sesamoid bones, which are imbedded in the origin of the gastrocnemius.

TIBIO-FIBULAR JOINTS

Ox.-The proximal end of the fibula fuses with the lateral courlyle of the tibia. The distal end remans separate, and forms an arthrosis with the distal end of the tibia; the movement here is imperceptible, as the two bones are elosely united by strong peripheral fibers.

Pig.-The proximal joint is provided with a capsule which is reinforeed in front and behind by fibrous tissuc. The interosseous ligament attaches the shaft of the fibala to the lateral border of the tibia. The distal joint is included in the capsule of the hock joint, and is strengthened by dorsal and plantar ligaments (Lig. malleoli lateralis dorsalis, plantaris), which extend almost transversely from one bone to the other. There is also an interosseous ligament.

Dog.-The arrangement is essentially the same as in the pig, but there is 110 interosscous ligament in the distal joint. Not uncommonly the distal part of the shaft of the fibula and tibia are ankylosed.

HOCK JOINT

Ox.-There is very considerable mobility at the proximal intertarsal joint, the capsule of which is correspondingly roomy. The short lateral ligament is attached distally on the tibial tarsal only. A strong tramsverse ligament attaches the lateral malleolus (distal end of the fibula) to the back of the tibial tarsal bone. The dorsal ligament is narrow and thin.

Pig.-The arrangement in general resembles that of the ox. The medial ligament consists of a thin superficial part which extends almost vertically from malleolus to metatarsus, and a very strong deep part, which rums from the malleolus backmard and downward to the sustentaculum and tihial tarsal. The lateral ligament aiso consists of two parts. The small superficial part extends from the malleolus down to the lateral face of the borly of the fibular tarsal bone. The stronger deep part arises from the anterior part of the malleolus, passes cheifly backward, widens, and ends on a ridge on the lateral surface of the fibular tarsal. A strong band extends from the lateral face of the medial malleolus to a depression on the medial surface of the proximal part of the tibial tarsal bone. An oblique dorsal baud connects the central and fourth tarsal bones.

Dog.-The long collateral ligaments are very small, and the short ones double. The plantar ligament is weak, and ends on the fourth metacarpal bone. No distinct dorsal ligament is present, unless we regard as such a ligament which extends from the neck of the tibial tarsal to the fourth tarsal and third metatarsal bones.

The remaining joints resemble those of the thoracic limb.

MYOLOGY

Myology deals with the muscles and their aceessory structures. The muscles (Museuli) are highly speciatizet organs, which are characterized by their property of contracting in a definite mamer when stimulated. They are the active organs of motion. The contractile part of the musle is the muscular tissue. Three kinds of muscular tissue are recognizal, viz.: (1) Striated or striped; (2) non-striated, unstriped or smooth; (3) cardiae, which may he regarded ats a sperialized variety of striated musele. Only the first of these will be considered in this section. The strited muscles are for the most part eomected directly or indirectly with the skeleton, upom which they act, and are hemee often dewignated as skeletal muscles (Musculi skeleti), in distinction from non-striated musele, which is often spoken of as visceral. The striated muscles cover the greater part of the skeleton, and play an important part in determining the form of the animal. They are red in color, the shade varying in different musckes and under varions conditions. some are intimately assoriated with and attached to the skin, and are catled cutaneous muscles (Museuli cutanei). The museular part of each is composed of hundles of contractile fibers surrounded by a thin sheath of comeretive tissue, the perimysium.

The deseription of the musedes may be arranged under the following heads: (1) Name; (2) shape and position; (3) attachments; (4) action; (5) structure; (6) relations; (7) blood and norve supply.
(1) The name is determined by varions considerations, e. y., the action, attachments, shape, position, direstion, etce. In most cases two or more of these are combined to produce the name, e. g., flexor earpi radialis, longus colli, obliquus externus abtominis.

A satisfactory comparative nomenclature is exceedingly difficult to work out, and much confusion exists in this respert. This is due in great part to the lack of a uniform hasis for the formation of names and the difficulty in determining homologies in various species.
(2) The shape is in may cases sufficiently definite and regular to allow the use of such terms as triangular, puadrilateral, lan-shaped, fusiform, ete. Some museles are characterized as long, hroad, short, ete. Orbicular or ring-like museles circumseribe openings; since the contraction of such a musele closes the orifice, it is often temed a sphincter. The position and direction are usually stated with reference to the region occupied and to adjacent structures which may be presumed to be atready known.
(3) The attachments are in most cases to bone, hut many muscles are attached to cartilage, ligaments, fascia, or the skim. As a matter of convenience, the term origin (Origo) is applied to the attachment whith always or more commonly remains stationary when the muscle contracts; the more movahle attachment is termed the insertion (lnsertio). Such a distinction is often quite arbitrary, and cannot always be made, as the action may be reversible or both attachments may be freely movable. With respeet to the museles of the limbs, the proximal attachment is regarded as the origin and the distal one as the insertion. In all eases the attachment is mate by fibrous tissue, the muscular tissue not coming into elireet relation with the point of attachment. But when the intermerliate fibrous tissue is not evident to the maked eye, it is customary to speak of a "fleshy attachment." The term "tentinous attachment" is applied to those cases in which the intermediate fibrous tissue-tendon or aponeurosis-is evident. A tendon (Tenclo) is a hand of
dense white fibrous tissue by means of which a muscle is attached; an aponeurosis is a broad fibrous sheet which fulfils a similar function.
(4) The action belongs rather to physiological study, but the main points are usually given in anatomical descriptions. In some cases the action is simple, in others, complex. Muscles which concur in action are termed synergists; those which have opposite actions are antagonists.
(5) The consideration of structure includes the direction of the muscular fibers, the arrangement of the tendons, the synovial membranes, and any other acceswory structures. The terms fleshy and tendinous are sometimes used to indicate the relative amounts of muscular and tendinous tissue. In the case of the long muscles of the limbs, the origin is termed the head (Caput), and when the muscle is fusiform, the large fleshy part is often called the belly (Venter) of the muscle. some muscles have two or more heads, and are hence designated as biceps, triceps, etc. A digastric muscle is one having two bellies and an intermediate tendon. In most muscles the muscle-fibers join the tendon at an acute angle, like the relation of the barbs of a feather to it s shaft; hence the term pennate is applied to such an arrangement. When the fibers are so arranged on one side of the tendon the muscle is unipennate (M. unipennatus); while one in which this arrangement exists on both sides is bipennate (M. bipenaatus). The structure may be still more complex. resulting in a multipennate muscle. The structure of many muscles is much more couplex than a superficial examination would lead one to suppose. Frequently

A

B

Fig. 260.-Dlagrams of Crostsections of Synovtal Btrea -i) And smomal Sbeath (B); T. Tendon. In both the synovial sac is represented for the sake of clearness as though somewhat distended.
they are intersected by tendinous layers or hands, known as tendinous intersections. Intersecting bands or tracts which appear on the surface-usually as zigzag lines-are termed tendinous inscriptions (Inscriptiones tendinex).
(6) The relations constitute a very important part of anatomical topography, and a knowledge of them is fundamental to further study in this respect.
(1) The blood and nerve supply are, of course, important on clinical grounds. The uerve supply is often of value in the determination of homologies. As might be expected, the muscles have a large blood supply. They are also provided with lymph-vessels. The nerves to the muscles are motor, sensory, and vasomotor in function.

The accessory structures associated with the muscles are the synovial membranes and the fascie.

The synovial membranes are thin-walied sacs, similar to the synorial membranes of the joints, and having a similar function. Two forms are recognized. A synovial bursa (Bursa symovialis) is a simple sac which is iuterposed at a point of unusual pressure between a tendon or muscle and some underlying structure. commonly a prominence of the skeleton. A synovial sheath Vagina synorialis tendinis' differs from a bursa in the fact that the sac is folded around the tendon so that two layers can be distinguished: the inner one is adherent to the tendon, while the outer one lines the canal in which the tendon lies. The two layers are continuous along a fold temed the mesotendon. The arrangement is shorm in the amexed diagrams. The synorial membranes of joints in some places form extra-articular
pouches which act as loursie. The syovial sheath is not to be confused with the fibrous sheath of a tendon (Vagina fibrosa tendinis).

The student will note in dissection that intermediate forms of these sacs occur. A synovial sleath may belong to two or more tendons in common: in such eases the synovial membrane is reflected from one tendon to the other, forming a secondary mesotendon. In the normal state these sars cannot be recognizol on external examination of the subject. It is only when they are distended that their presence is evident.

The fasciæ are sheets of connective tissue, composed mandy of homhles of white fibers, with a greater or less admixture of elastic fibers in some cases. At least two layers may usually be distinguished. The superficial fascia (Fiscia superficiatis) is subeutaneous, and is composed of loose connertive tissue which usually contains. more or less fat. The deep fascia is composed of one or more layers of dense fibrous tissue. Its deep face may be very slightly atherent to the underlying structures, but in many places it is attached to the skeleton, ligaments, and tendons. In many places lamine are given off from the deep face of the fascia, pass between museles, and are attached to bones or ligaments; such layers are termed intermuscular septa (Septa intermmeularia). The groove in which a tendon fies is converted into a canal by a hand or fascial sheet known as a vaginal or annular ligament (Lig. vaginale). Many fascise furnish origin or insertion to museles and thus act as tendons; such are tendinous in structure, so as to rember the distinction between fascia and aponeurosis in these cases arbitrary. Burse oreur in certain situations hetween the fascia and underlying structures, and wre distingulshed as subfascial bursæ. Those between the fascis and the skin are subcutaneous bursæ.

FASCIÆ AND MUSCLES OF THE HORSE

The cutaneous muscle or panniculus carnosus (Alusculus cutanens) is a thin muscular haver developed in the superficial fascia. It is intimately adherent in great part to the skin, but has sery little attachment to the skeleton. It does not cover the entire borly, and may be conveniently divided into facial, cervical, omobrachial, and abdominal parts.

The facial part, m. cutaneus faciei, consists of a thin and usually incomplete muscular layer, which extends over the mandibular pace and the masseter muscle. A distinet branch of it pasess forward to the angle of the month and blends with the orbicularis oris. This part, the m . cutaneus labiorum, retracts the angle of the mouth, and has therefore been termed the retractor anguli oris.

The cervical part, m.cutaneus colli, is situated on the ventral region of the neck. It arises from the eariniform cartilage and a median fibrous raphe. The fibers are directed forward and diverge from the raphe to the sides of the neek in pennate fashion. It is thick at its sternal origin, but thins out in front and lateratly. On the side of the neck it is attached to the cervical fascia, which acts as its aponeurosis. It is related deeply to the stemo-eephations, the brachio-cephaticus (in part) and the jugular vein. Some bundles extend upon the parotid gland, and in welldeveloped subjects it is contimuous with the facial part.

The onn-hrachial part, m. cutaneus omo-brachialis, covers the lateral surface of the shoukder and arm. Its fibers begin over the upper part of the seapula and extend to the proximal part of the forearm. Most of its fibers are vertical, but posteriorly they become oblique and are continued by the abdominal part.

The abominal part, m. cutaneus trunci, covers a large part of the borly behind the shonker and arm. Its fibers are largely longitulinal. It is continuous in front with the ono-brachial part, and a tendinous layer from it passes forward
with the posterior deep pectoral muscle to the medial tuberosity of the humerus. Posteriorly it forms a fold, which, covered by the skin, forms the fold of the flank, and ends on the fascia above the stifle. The dorsal limit of the muscle corresponds approximately with a hue dramn from the posterior angle of the scapula to the fold of the flank. Ventrally the two muscles are about a handbreadth apart in the umbilical region. Further forward they diverge, so as to overlap the posterior deep pectoral muscle only to a small extent. Here the cutaneous muscle is closely adherent to the pectoral and contains the external thoracic vein. Posteriorly they diverge to the fold of the flank.

The muscle is in general closely adherent to the skin and its contraction twitches the skin, thus getting rid of insects or other irritants.

The Fascie and Muscles of the Head

The muscles of the head (Mm. capitis) may be divided into three groups, viz.: (1) Superficial muscles, including the cutaneons muscle and those of the lips, checks, nostrils, eyelids, and external ear; (2) the orbital museles; (3) the mandibular muscles; (4) the hyoid muscles.

The superficial fascia forms an almost continuous layer, but is very scanty around the natural orifices. It contains a number of the thin superficial muscles, so that care must be excreised in removing the skin. Over the froutal and nasal bones the fascia blends with the pericsteum.

The deep fascia is of special interest in three regions. The temporal fascia (Fascia temporalis) covers the temporalis muscle, and is attached to the parietal and frontal crests medially, and to the zygomatic arch laterally. The buccal fascia (F. buccalis) covers the buccinator muscle and the free part of the outer surface of the ramus of the mandible. It is attached to the facial crest, and posteriorly it forms a band (Raphé pterygomandibulare) which stretches from the hamulus of the pterygoid bone to the mandible behind the last molar tooth. It is directly continuous with the pharyngeal fascia (F. pharyngea), which is attached to the great and thyroid cornua of the hyoid bone and the thyroid cartilage of the larynx; it covers the lateral walls of the pharynx, aud blends dorsally with the median raphe of the constrictor muscles of the latter.

Cutaneus faciei.-This has been described (p. 254).

MUSCLES OF THE LIPS AND CHEEKS

1. Orbicularis oris.-This is the sphincter muscle of the mouth; it is continuous with the other muscles which converge to the lips. It lies between the skin and the mucous membrane of the lips, and is intimately adherent to the former. Most of the fibers run parallel to the free edges of the lips and have no direct attachment to the skeleton.

Action.-It closes the lips.
Blood-supply - Palato-labial, facial, and mental arteries.
Nerve-supply.-Facial nerve.
2. Levator nasolabialis.- This thin musele lies directly under the skin, and chiefly on the lateral surface of the nasal region.

Origin.- The frontal and nasal bones.
Insertion.-(1) The upper lip and the lateral wing of the nostril; (2) the commissure of the lips.

Action.-(1) To elevate the upper lip and the commissure; (2) to dilate the nostril.

Structure.-The musele arises by a thin aponeurosis. The belly is also thin, and divides into two hranches, between which the lateral dilator of the nostril passes. The dorsal branch reaches the nostril and upper lip, blending with the lateral dilator: the ventral one is murl smaller, and blends at the lahial commissure with the orlocularis and buecmator.

Rclations.-superficially, the skin, fascia, and lateral dilator (in part); deeply,

Fig. 2fi, - Mtacler of Head of Horse: Laterat View. The M. cutanets is Removed.
a, levator labsi superioris proprius; b, levator nasolabialis; c, brachiocophalicus; d, sterno-cephalicus; d^{\prime}, teudou of $d ; \quad e$ omo-hyoideus; f, thatator naris laterals; 9, zygonaticus: h, buceinator, i, denressor labii inferioris; k, orhicularis oris: l, lateralis nasi. dorsal part: m, masseter: n, parotido-auricularis: $0, z y$ gomatico-auricularis; p, interseutularis; p^{\prime}, fronto-scutularis, pars temporalis: 4 , eprsieo-auricularis profundus major; r, ecrviec-auricularis
 2, pusterior, 3 , antorior, border of external $\cdot a r ; s, s$ sutiform cartilage; , , zygomatic arch; 10 , orbital fat; 18 , temporomanlibular articulation; 2h, facial crest; 30 , anglo of jaw; 3 , external maxilhary vein; 36 , jugular vein; 39, facial von; 40, parotid duct; 4 , transverse facial vem; 42, masseterne vein; 多, facial nerve; fá parotad gland; 45, chin; x, wing of atlas. By an oversight the superior buecal branch of the fachal uerve is shown crossiag over instead of under the zygomaticus. (.ffer Ellenberger-Baum, Auat. für Lünstler.)
the tevator labii superioris proprius, lateral dilator (in part), buccinator, branches of the facial vessels and nerve, and the infraorbital artery and nerve.

Blood-supply. Facial and palato-labial arteries.
Verre-supply.- Fucial nerve.
3. Levator labii superioris proprius.-This lies on the dorso-lateral aspect of the face, partly covered ly the precerling musele.

Origin. - The laerimal, malar, and maxillary bones at their junction.

Insertion.-The upper lip, by a common tendon with its fellow.
Action.-Acting with its fellow, to elevate the upper lip. This action, if carried to the fullest extent, results in eversion of the lip. In unilateral action the lip is drawn upward and to the side of the muscle acting.

Structure.-The muscle has a short, thiu tendon of origin. The belly is at first flattened, but becomes narrower and thicker, then tapers over the nasal diverticulum, to terminate in a tendon. The tendons of the two muscles unite over the alar cartilages of the nostrils, forming an expansion which spreads out in the substance of the upper lip. ${ }^{1}$

Relations.-superficially, the skin, the levator nasolabialis, and the angular ressels of the eye; deeply, the lateralis nasi, the transversus nasi, and the infraorhital artery and nerve.

Blood-supply.-Facial artery.
Verce-supply.-Facial nerve.
4. Zygomaticus.-This very thin muscle lies immediately under the skin of the cheek.

Origin.-The fascia covering the masseter muscle helow the facial crest.

Insertion.- The commissure of the lips, blending with the buccinator.

Action.-To retract and raise the angle of the mouth.

Structure.-Fleshy, with a thin aponeurotic origin.

Relations.-Superficially, the skin; deeply, the buccinator.

Blood-supply.-Facial artery.
Nerve-supply.-Facial nerve.
5. Incisivus superior.-This lies under the mucous membrane of the upper lip.

Origin.-The alveolar border of the premaxilla from the second incisor to the first cheek tooth.

Insertion.-The upper lip.
Action.-To depress the upper lip.
6. Incisivus inferior.-This is arranged in the lower lip like the pre-

Fig. 262.-Mtecles of Head of Horse; Dorsal View. The 31. cetanets is Removed.
a, Levator labii superioris proprius; a^{\prime}, common tendon of a with opposite musele; b, levator nasolabialis: f, dilatator naris lateralis; g. zygomaticus; l. Lateralis nasi; n, parotido-auricularis; $o^{\prime \prime}$, seutulo-auricularis superficialis superior; p, interscutularis: p^{\prime}, fronto-scutularis, pars temporalis; r, cervico-auricularis superficialis; u, corrugator supercilii; x, transtersus nasi: 2. posterior. 3, anterior, border of external ear; S, scutiform cartilage; 9, zygomatic arch; 10, supraorbital depression; 35, medial wing of nostril, containing lamina of alar cartilage: 39 , facial vein. (After Elleaberger-Baum, Anat. [ür Künstler.) ceding muscle in the upper one.

Origin.-The alveolar border of the mandible from the second incisor to a point near the first cheek tooth.
${ }^{1}$ In rare cases a branch is given off from the ventral border of the muscle. It passes forward and ends in the subcutaneous tissue at the posterior end of the diverticulum nasi.

Insertion. - The skin of the lower lip and the prominence of the chin.
Action.-To raise the lower lip. The two incisivi bring the lips together, eoncurring with the orbicularis oris in prehension of food.
7. Mentalis. ${ }^{1}$-This is situated in the prominence of the chin. Its fibers arise from each side of the borly of the mandible and are inserted into the skin of the ehin. It is mingled with fat and strands of connective tissue, in which the roots of the tactile hairs are embedded. It raises and corrugates the skin to which it is attached.
8. Depressor labii inferioris.-This musele hies on the lateral surface of the ramus of the mandible, along the ventral border of the buccinator.

Origin.-The alveolar border of the mandible near the coronoid process and the maxillary tuberosity, in eommon with the buccinator.

Inscrtion.-The lower lip.
Action.-To depress and retraet the lower lip.
Structure.-The tendon of origin and the belly are fused with the buccinator as far forward as the first cheek tooth. From this point forward the belly is distinct and rounded, terminating in a tendon which spreads out in the lower lip, blending with the orbicularis and the muscle of the opposite side.

Relations.-Superfieially, the skin, masseter, facial vessels, and parotid duct; deeply, the mandible and inferior labial artery.

Blood-supply.-Facial artery.
Ncrre-supply.-Facial nerve.
9. Buccinator.-This muscle lies in the lateral wall of the mouth, extending from the angle of the mouth to the maxillary tuberosity:

Origin.-The lateral surface of the maxilla above the interalveolar space and the molar teeth; the alveolar border of the mandible at the interalveolar space and also posteriorly where it turns upward to the coronoid process; the pterygo-mandil)ular raphé.

Insertion.-The angle of the mouth, blending with the orbieularis oris.
Action.-To flatten the cheeks, thus pressing the food between the teeth; also to retract the angle of the mouth.

Structure-Two layers may be recognized. The superficial layer (Pars bucealis) extends from the angle of the mouth to the masseter. It is incompletely pennate, having a longitudinal raphé on which most of the muscle-fibers converge. The upper fibers are directed chiefly downward and backward, the lower ones upward and baekward. The deep layer (Pars molaris) eonsists mainly of longitudinal fibers. It blends in part with the superficial layer of the orbicularis; it has a small tendinous attachment to the coronoid process behind, and is united ventrally with the depressor labii inferioris.

Relations.-superficially, the skin and fascia, the zygomaticus, levator nasolabialis, lateral dilator of the nostril, the superior buccal glands, the parotid duct, the faeial vessels, and branehes of the facial nerve; deeply, the mucous membrane of the mouth and the inferior buccal glands.

Blood-supply.-Facial and buccinator arteries.
Nerve-supply.-Facial nerve.

MUSCLES OF THE NOSTRILS

1. Levator nasolabialis.-This has been deseribed (p. 255).
2. Dilatator naris lateralis (M. eaninus).-This thin, triangular muscle lies on the lateral nasal region, and passes between the two branches of the levator nasolabialis.
[^37]Origin.-The maxilla, elose to the anterior extremity of the facial crest.
Insertion.- The lateral wing of the nostril.
Aetion.-To dilate the nostril.
Structure.-The musele has a flat tendon of origin, passes between the two branches of the levator nasolabialis, and spreads out in the lateral wing of the nostril. The lower fibers blend with the orbicularis oris.

Relations.-Superficially, the skin, fascia, and the labial branch of the levator nasolabialis; deeply, the maxilla and the nasal branch of the levator nasolabialis.

Blood-supply.-Facial artery.
Nerve-supply.-Facial nerve.
3. Transversus nasi. ${ }^{\text {-T This is an unpaired, quadrilateral muscle, which lies }}$ between the nostrils. It consists of two layers.

Fig. 263.-Nasal and Superior Labial Muscles of Horge.
a, a^{\prime}, Transversus nasi; b, levator labii superioris proprius; b^{\prime}, tendon of $b ; b^{\prime \prime}$, commoo teodon of two levatores labii superioris proprii; $c, c^{\prime}, c^{\prime \prime}, d$, veatral part of lateralis nasi; e, dorsal part of lateralis nasi; f, orbicularis oris; g, levator oasolabialis, a portion of which is removed; h, dilatator asris lateralis (the termioal part of which is removed); i, cornu of alar cartilage; k, nostril; k^{\prime}, upper commissure of oostril; l, oasal diverticulum; m, nasal booe. (After Ellenberger-Baum, Top. Anat. d. Pferdes.)

Attachments.-Superficial layer, the superficial faces of the lamina of the alar cartilages; deep layer, the convex edges of the cornua of the same.

Action.-To dilate the nostrils.
Structure.-It is composed of transverse fleshy fibers, which blend below with the orbicularis.

Relations.-Superficially, the skin, fascia, and tendinous expansion of the levator labii superioris proprius; deeply, the alar cartilages, the extremity of the septum nasi, and the palato-labial artery.

Blood-supply.-Palato-labial artery.
Nerve-supply.-Facial nerve.
Lateralis nasi.-This is situated along the margins of the naso-maxillary notch, and may be regarded as consisting of dorsal and ventral parts.

The dorsal part (Pars dorsalis m . lateralis nasi) ${ }^{2}$ is a thin layer which lies along
${ }^{1}$ Also called the dilatator naris transversus. ${ }^{2}$ Also known as the dilatator naris superior.
the dorsal borter of the naso-maxillary noteh. Its fibers arise from the masal bone and pass outward and clownward to the parietal cartilage and the adjacent part of the soft lateral wall of the nasal eavity.

The ventral part (Pars ventralis m . lateralis nasi) ${ }^{1}$ is much thicker and lies along the ventral border of the noteli. It arises from the nasal process of the premaxilla and the adjacent part of the maxilla, and its fibers curve inward to end on the cartilaginous prolongations of the turbinate bones (chiefly the ventral one) and on the lateral wall of the vestihule of the masal cavity. A few bundles pass from the cornu of the alar eartilage to the lateral wing of the nostril.

Action.- To dilate the vestibule of the masal eavity, to rotate the turbinal eartilages outward, and to assist in dilating the nostril.

Relutions.-superficially, the skin, fascia, nasal divertieulum, the levator labii superioris proprius, the levator masolabialis, and the lateral nasal artey; deeply, the nasal bone, the parietal cartilage, the maxilla, the premaxilla, the nasal mueous membrane, and the anterior nasal branch of the infraorbital nerve.

Blond-supply.- Facial and palato-lahial arteries.
Nerre-supply.-Facial nerve.
The preceding muscle does not dilate the so-called "false nostril" or nasal diverticulum, as is commonly stated. Both act on the lateral wall of the restibule of the nasal cavity so as to draw it outwarl, thus tending to constrict, rather than dilate, the nasal diverticulum. The thick part of the ventral muscle which is attached to the cartilage of the turbinate bone has a similar effect. When the nostril is fully dilated, the so-called "false nostril," i. e., the entrance to the nasal diverticulum, is closed. The newer term seems preferable.

MUSCLES OF THE EYELIDS

1. Orbicularis oculi.-This is a flat, elliptieal, sphincter musele, situated in and around the evelids, the portion in the upper lid leing muely broader than that in the lower. The chief attachment is to the skin of the lids, but some bundles are attached to the palpebral ligament at the medial canthus and to the lacrimal bone. Its action is to elose the lids.
2. Corrugator supercilii--This is a very thin, small muscle, which arises over the root of the supraorbital process and spreark out in the upper evelid, blending with the orbicularis oculi (Fig. 2tiz). Its action is to assist in raising the upper lid or, especially in pathological conditions, to wrinkle the skin.
3. Malaris.-This is a very thin muscle, which varies much in different subjeets. It extends from the faseia in front of the orbit to the lower lid. Its action is to depress the lower lid.

The foregoing muscles reeeive their blookl-supply from the facial, transverse facial, supraorhital, and infraorbital arteries; the nerve-supply is derived from the facial nerve.
4. Levator palpebræ superioris.-This slender, flat muscle is almost entirely within the orhit (Fig. 561). It arises on the pterygoid erest, passes forward above the rectus oeuli superior and below the laerimal gland, and terminates in a thin tendon in the upper lid!.

Action.-To elevate the upper lid.
Blood-supply.-Ophthalmic artery.
Nerre-supply.-Oculomotor nerve.

MANDIBULAR MUSCLES

The muscles of this group (Mm . mandibulæ) are six in number in the horse. They arise from the upper jaw and the cranium, and are all inserted into the mandible.

[^38]1. Masseter.-This muscle extends from the zygomatic arch and facial crest over the broad part of the mandibular ramus. It is semi-elliptical in outline.

Origin.-By a strong tendon from the zygomatic areh and the facial crest.
Insertion.- The lateral surface of the broad part of the ramus of the mandible.
Action.-Its action is to bring the jaws together. Acting singly, it also carries the lower jaw toward the side of the contracting muscle.
structure. -The superficial face of the muscle in its upper part is covered by a strong. glistening aponcurosis, and several tendinous intersections partially divide the muscle into layers. The fibers of the superficial layer take origin from the malar and maxilla only, and diverge somewhat to their insertion close to the thick ventral border of the lower jaw. The fibers of the deep layer arise from the entire area of origin, and pass straiglt to the border of the mandible; it will be noted that a small part, near the temporo-mandibular joint, is not covered by the superficial layer. The two layers are separable only above and behind; elsewhere they are fused.

Relations-superficially, the skin and cutaneus, the parotid gland, the transcerse facial and masseteric vessels, and the facial nerve; deeply, the ramus of the mandible, the buccinator and depressor labii infericris muscles, the superior buccal glands, the buccinator vessels and nerve, and the rena reflexa, which joins the facial vein at the anterior edge of the muscle. The facial vessels and parotid duct run along the antcrior edge of the muscle; the duct, however, bends forward about the middle of the border and leaves the muscle.

Blood-supply.-Transverse facial and masseteric arteries.
Verre-supply.-Mandibular nerve.
2. Temporalis.-This muscle occupies the temporal fossa.

Origin.-The rough part of the temporal fossa and the crests which limit it.
Insertion.-The coronoid process of the mandible, which it envelops.
Action.-Chiefly to raise the lower jaw, acting with the masseter and medial pterygoid museles.

Structure.-The surface of the muscle is covered with a glistening aponeurosis. and strong tendinous intersections are found in its substance. The medial edge of the muscle is quite thin. but as the fibers converge toward the much smaller area of insertion, the muscle becomes nearly an inch thick. It fuses partly with the masseter.

Relations.-superficially, the seutiform cartilage, the anterior muscles of the external ear. and the auricular and orbital fat; deeply. the temporal fossa and the deep temporal vessels and nerves.

Blood-supply.-superficial and deep temporal, and posterior meningeal arteries. Verve-supply.-Mandibular nerve.
3. Pterygoideus medialis (s. internus).-This muscle occupies a position on the medial surface of the ramus of the mandible similar to that of the masseter laterally.

Origin.-The crest formed by the pterygoid process of the sphenoid and the palatine bone.

Insertion.-The concave medial surface of the hroad part of the ramus of the mandible and the medial lip of the ventral horder.

Action.-Acting together, to raise the lower jaw; acting singly, to produce also lateral movement of the jaw.

Structure. - The muscle is capable of division into two parts. The principal part is superficial (medial), and its fibers are, for the most part, vertical in direction. It contains much tendinous tissue (septa). The smaller portion is lateral to the foregoing, and its fibers are directed downward and backward.

Rclations.-Laterally, the ramus of the mandible, the lateral pterygoid muscle, the inferior alveolar vessels and nerve, and the lingual and mylo-hyoid nerves;
medially, the great cornu of the hyoid home, the pharynx, the larynx, the tensor palati, myto-hyoideus, digastricus, and stylo-hyoideus muscles, the guttural poneh, the external maxillary vessels, the ninth and twelfth nerves, the manditular salivary gland, the mandibular and parotid ducts, and the mandibular and plaryngeal lymphglands.

Blood-supply.-Internal maxillary, masseteric, and inferior alveolar arteries. Nerve-supply.-Mandibular nerve.
4. Pterygoideus lateralis (s. externus).-This musele is considerably smaller than the preceding one, and is situatell lateral to its upper part.

Origin.-The lateral surface of the pterygoid process of the sphenoid lone.
Insertion.-The medial surface of the neck, the medial part of the anterior border of the eondyle of the mandible and the artieutar dise.

Action.-Acting together, to draw the lower jaw forward; acting singly, to

 Cranial Cayitien.

1. Cerebral compartment of cranial cavity; 2, ccrebellar compartment of same; 3 , tentorium osseum; 4, tentorium erehelli; $\overline{5}$, splenoidal sinus; G, hamulus of pterygoid bons-tendon of tensor palati cut off short at anterior border of hamulus; i, mylo-glossus. The olfactory mucous membrane is shaded.
mow the jaw also toward the side opposite to the muscle acting. The latter action is due to the fact that the origin is nearer to the median plane than the insertion.
structure. The muscle is almost entirely fleshy, and the fibers are almost longitudinal in rirection. Some of them are inserted ints the edge of the articular dise.

Relations.-Laterally, the temporo-mandibular articulation and the temporalis muscle; medially, the medial pterygoid and tensor palati museles. The internal maxillary artery crosses the ventral face of the musde and dips in between it and the tensor palati. The mandibular nerve hies on the ventral surface, and the buccinator nerve perforates the origin of the muscle.

Blond-supply.--Internal maxillary and inferior alveolar arteries.
Nerve-supply.-Mandilular nerve.
5. Occipito-mandibularis ${ }^{1}$ (X1. jugulomandibularis).-This is a short, fusiform

[^39]muscle extending from the paramastoid process of the occipital bone to the posterior border of the lower jaw; it is covered by the parotid gland.

Fig. 265.-Mandibtlar and Laringeal Regions of Horse, After Removal of Skin and Cutaneus.
c, Brachocephalicus: d, sterno-cephalicus: e, omorhyoideus and sterno-hyoideus; h, buccinator; 4, depressor labii inferions: m, masseter: r, occipito-mandibularis: u, mylo-hyoideus; 2. posterior, 3, anterior, border of external ear; 3 or, anzle of jaw; 36, mandibular lymph-glatads; 37 , external maxillary vein; 39, facial continustion of 37 ; i'l $^{\prime \prime}$ parotid duct; $4^{\prime \prime}$. parotid gland; 45, prominence of chin; x, wing of atlas. (After Ellenberger-Baum, Anat. fur Kūnstler.)

Origin.-The paramastoid process of the oceipital bone, in common with the posterior belly of the digastricus.

Insertion.-The posterior border of the ramus of the mandible.
Action.-To depress the lower jaw and open the mouth.
structure.-The muscle contains a good deal of tendinous tissue. It blends with the posterior belly of the digastricus.

Relutions.-superficially, the parotid gland, the tendon of the sterno-cephalicus, and the fibrous expansion which conneets it with the tendon of the brachiseephaticus; deeply, the guttural pouch, the external carotid artery, the minth amd twelfth nerves, the pharynx, and the mandibular salivary gland.

Blood-supply.-External carotid artery.
Nerve-supply.-Facial nerve.
6. Digastricus.-This muscle is composed of two fusiform, flattened bellies. united by a round tendon.
(rigin.-The paramastoid process of the oceipital lame, in common with the precerling musele.

Insertion.- The medial surface of the ventral border of the molar part of the ramus of the mandible.

Action.-It assists in tepressing the lower jaw and opening the mouth. If the mandible be fixed and both bellies contract, the hyoid bone and the base of the tongue are raised, as in the first phase of deghtition.
structure.-The posterior belly has the appearance of a branch detached from the medial surface of the oceipito-mandibularis. It passes downward and forward, and is succeeded by a small rounded tendon. The latter perforates the tendon of insertion of the stylo-hyodedes, and is provided with a synovial sheath. The anterior belly is larger and terminates by thin, temfinous bundles.

Relations. - The posterior belly has practically the same relations as the of-(ipito-mathdibularis. The intermediate tembon is in contact laterally with the medial pterygoid muscle, the mandibular gland and duet, and the extemal maxillary artery. The anterior belly lies in the mandibular spase hetween the ramus of the jaw and the mylo-hyoileus muscle; the sublingual vessels run along its dorsal border.

Blool-supply.-External carotid and sublingual arteries.
Neree-supply.-Facial and mandibular nerves.

THE HYOID MUSCLES

This group consists of eight museles (Mm. ossis lyyoilei), one of which, the hyoodens transyersus, is unpaired.

1. Mylo-hyoideus. - This muscle, together with its fellow, forms asort of sling between the rami of the mandille, in which the tongue is supported.

Origin.-The merlial surface of the alvedlar border of the mandible.
Insertion.-(1) A median fibrons raphe extending from the symphysis to the hyoid bone: (2) the lingual process, body, and thyroid cormu of the byoid bone.

Action.- lt raises the flow of the month, the tongue, and the hyoul bone.
structure.-Lacle musele consists of a thin eurved sheet, the fibers passing ventrally from their origin and then curving toward the median raphé. It is chiefly fleshy, and is thickest behind. There is a tentinoms interseetion between this muscle and the omo-hyoidens, to which both museles are attached. The anterion superficial part of the muscle is termed the myto-glossus.

Relations. On the superficial surface of the museles are the ramus, the medial pterygoid and digastrieus museles, and the mandibular lymph-glands. The deep surface is in eontact with the mueous membrane of the month, the stylo-glossus, hyo-glossus, and genio-hyoideus muscles, the sublingual gland and ressels, the mandibular duet, and the lingual and hypoglossal nerves. The sublingual vein passes through the posterior part.

Blool-supply.-Sublingual artery.

[^40]Nerve-supply.-Mylo-hyoid branch of the mandibular nerve.
2. Stylo-hyoideus.-This is a slender, fusiform muscle, having a direetion nearly parallel to that of the great cornu of the hyoid lyone (Fig. 559).

Origin.- The muscular angle of the dorsal extremity of the great cornu of the hyoid bone.

Insertion.-The anterior part of the thyroid cornu of the hyoid bone.
Action.- It draws the base of the tongue and the larynx upward and backward.
Structure-It arises by a thin, short tendon, and has a fusiform belly. The tendon of insertion is perforated for the passage of the intermediate tendon of the digastricus, and at this point there is a small synovial sheath.

Relations.-Superfieially, the medial pterygoid muscle and the parotid gland; deeply, the guttural pouch, the pharynx, the external carotid and maxillary arteries, and the hypoglossal nerve.

Blood-supply.-External carotid artery.
Nerre-supply.-Facial nerve (stylo-hyoid branch).
In rare eases an anomalous arrangement is present in which the stylo-hyoideus is not attached to the thyroil cornu but is continuous with the intermediate tendon of the digastrieus, and no fibrous ring is formed. The posterior belly of the digastrieus is inserted chiefly on the thyroid cornu, but also sends a delicate tendinous slip to the intermediate tendon.
3. Occipito-hyoideus (M. jugulo-hyoideus).-This is a small triangular muscle, which lies in the space between the paramastoid process and the great comu of the hyoud bone.

Origin.- The paramastoid process of the occipital bone.
Insertion.-The dorsal extremity and ventral edge of the great cormu of the hyoid bone.

Action.-It carries the ventral extremity of the great cornu backward.
Structure. -The muscle is somewhat triangular, its fibers being longer as the ventral border is approached. It blends with the posterior belly of the digastricus.

Relations.-Superficially, the parotid gland; deeply, the guttural pouch.
Blood-supply.-Occipital artery.
Nerce-supply.-Facial nerve.
4. Genio-hyoideus.-This is a long, spindle-shaped muscke, which lies under the tongue in contact with its fellow of the opposite side (Fig. 330).

Origin.-A small depression on the medial surface of the ramus of the mandible, close to the symphysis.

Insertion.-The extremity of the lingual process of the hyoid bone.
Action.-It draws the hroid bone and tongue forward.
Structure.-The muscle arises by a short tendon, which is succeeded by the belly, composed of long bundles of paralled fibers.

Relations.-Ventrally, the mylo-hyoideus; dorsally, the hyo-glossus, styloglossus, genio-glossus, the sublingual gland, mandibular duct, and the linguat nerve.

Blood-supply.-Sublingual artery.
Nerve-supply.-Hypogłossal nerve.
5. Kerato-hyoideus. - This small triangular muscle lies in the space between the thyroid and small cornu, under cover of the hyo-glossus (Fig. 331).

Origin.-The posterior edge of the small cornu and the adjacent part of the ventral border of the great cornu.

Insertion.- The dorsal edge of the thyroid cornu.
Action.- It raises the thyroid cornu and the larynx.
Relations.-The muscle is crossed laterally by the lingual artery.
Blood-supply.-Lingual artery.
Nerve-supply.- Glosso-pharyngeal nerve.
6. Hyoideus transversus.-This is a small, unpaired muscle, which extends transversely between the two small cornua of the hyoid bone.

Attachments. - The small cornua close to the junction with the great cornua.
Action.-When relaxed, its dorsal surface is concave; when it contracts, it elevates the root of the tongue.

Structure.-Fleshy, composed of parallel transverse bundles.
Bloorl-supply.-Lingual artery.
Nerve-supply.-Closso-plaryngeal nerve.
7. Sterno-thyro-hyoideus, and
8. Omo-hyoideus.-These are describetl with the muscles on the ventral surface of the neck (p. 268).

The Fasciry and Muscles of the Neck

It is convenient to divide the museles of the neck (Mm. colli) into ventral and lateral groups, the two lateral groups being separated from each other by the ligamentum nuche.

THE FASCIE OF THE NECK

The superficial fascia is in part two-layered, and contains the cervical cutaneous muscle. The fascie of the right and left sides are attached along the dorsal line of the reck to the ligamentum nuchoe, while along the ventral line they meet in a fibrous raphé. A deep layer is detached which passes underneath the cutaneous muscle, bridges over the jugular furrow, and crosses over the deep face of the brachioecphalicus and omo-hyoiteus to join the superficial layer. It again separates to pass under the cervical trapezius, and become attached to the ligamentum nuche. Along the ventral tine a septum is detached which separates the sterno-cephalici. Two other layers in front of the shoulder enclose the prescapular lymph-glands.

The deep fascia also forms two layers. The superficial layer is attached to the wing of the atlas and the ventral edge of the longissimus capitis et atlantis and scalenus. Passing downward it encloses the trachea, and, together with the deep layer, furnishes sheaths for the vagus and sympathetic nerves and the carotid artery. Passing upward it detaches septa between the extensor museles of the spine. Anteriorly it covers the thyroid gland, the guttural pouch, the adjacent ressels and nerves, and the larynx, and is attached to the mastoid process of the temporal bone and the thyroid eoren of the hyoid bone. Posteriorly it is attached to the first rib and the cariniform cartilage of the sternum. The deep layer (prevertebrat fascia) covers the ventral surface of the longus colli, and encloses the trachea and asophagus. Anteriorly it forms, with the corresponding layer of the opposite side, a septum between the guttural puthes; posteriorly it beeomes eontinuous with the emtothoracic fascia. A fascia propria forms a tubular sheath around the trachea, enclosing also the recurrent nerves.

VENTRAL CERVICAL MUSCLES

This group consists of twelse pairs of muscles which lie ventral and lateral to the vertebrie.

1. Cutaneus colli.-This has been deseribed (p, 254).
2. Brachiocephalicus.-This is described on p. 294.
3. Sterno-cephaticus. ${ }^{1}$ - This is a long, narrow muscle which extends along the ventral and lateral aspects of the trachea from the sternum to the angle of the jaw. It forms the ventral boundary of the jugular furrow.
${ }^{1}$ This muscle is probably the homologue of the sternal part of the sterno-cleido-mastoid of man. In account of the differences in its insertion in the various animals, it seems desirable to aulopt the name sterno-cephalicus. It is also known as the sterno-mandibularis or sternomaxillaris.

Origin. - The cariniform cartilage of the sternum.
Insertion.-The posterior border of the ramus of the mandible.
Action--Acting together, to flex the head and neck; acting singly, to incline the head and neek to the side of the musele contracting.
structure.-The two muscles are fused at their origin, which is fleshy: Near

Fig. 266 .-Antero-lateral View of Mtecles and Skeleton of Horse.
a, Trapezius; c, brachiocephalicus; d, sterno-cephalicus; f, long head of triceps; f^{\prime}, lateral head of triceps; Q. anterior superficial pectoral muscle; g^{\prime}, posterior superficial pectoral; h^{\prime}, anterior deep pectoral; τ, cutaneus colli; 2 , supraspiostus; 2.3, omo-zzi leus; 3%, steroo-thyto-hyoideus; 31, jugular veio; 22, cephalic vein; 1, scapula; I^{\prime}, carti'age of scapula; 2 , spine of scapula; 4, shaft of humerus; \neq lateral epicondyle: 5 , lateral tuberosity of humerus; 6 , celtoil tuberosit": 1 $\frac{1}{4}$, veatral border ("keel") of sternum; $1 \not \ell^{\prime}$, cariniform cartilage; 1.R., first rib. (After Ellen-berger-Baum, Anat. für liunstler.)
the middle of the neck they separate, and, becoming narrower and thinner, each muscle passes under the parotid gland and terminates by a flat tendon. The latter is connected by a thin aponeurosis with that of the brachiocephalicus.

Relations.-Superficially, the cutaneous musele; deeply, the sterno-thyrohyoideus and omo-hyoideus muscles. The dorsal edge of the muscle is related to the jugular vein, which lies in the jugular furrow. The carotid artery, the vagus,
sympathetic, and recurrent nerves also lie along the upper edge at the root of the neck. The tendon passes under the external maxillary vein and the parotid gland, having the mandibular gland and oceipito-mandibularis musele on its medial side.

Blood-supply. - Carotid artery.
Nerve-supply.- Ventral branth of the spinal aceessory nerve.
4. Sterno-thyro-hyoideus (stemo-thyrendeus et sterno-lyoidens)- This is a long, slender, digastrie muscle, applied to the ventral surface of the trachea and its fellow of the opposite side.

Origin.-The carmiform rartilage of the stermm.
Insertion.-(1) A prominence on the pesterior border of the lamina of the thyroid cartilage of the larynx at the sentral end of the oblique line; (2) the body and lingual process of the hyoid bone.

Action.-To retract and depress the hyoid lome, the base of the tongue, and the larymx, as in deglutition. It may ako fix the hyoil bone when the depressors of the tongue are acting, as in sueking.

Structure. -The origin of the muscle is fleshy, and as far as the middle of the neek, it bends with its fellow. The common belly is then interrupted by a tendon, or sometimes two tendons, from which arise three or four flesly bands. The lateral small bands (Sterno-thyroidei) diverge to reach their insertion into the thyroid cartilage by a delicate temdon; while the medial and larger bands (Stornohyoidei), closely applied to each other and hlending with the omo-hyoideus, pass straight forward to reach the ventral surface of the hyoid brone.

Relutions.- It the root of the neek the common belly is related ventrally to the sterno-cephalieus, and the carotid arteries and recurrent nerves dorsally. Further forward the trachea becomes the dorsal relation, and near the head the omo-hyodedes, skin and faveia, the ventrak one.

Blood-supply.-Carotid artery.
Nerte-supply. - Ventral hranches of the first and seeond cervical nerves.
5. Omo-hyoideus. ${ }^{1}$ - This is a thin, ribbon-like musele, almont entirely floshy, which crosses the trachea very oblicquely.

Origin. - The subscapular fascia close to the shoulder joint.
Insertion.-The hody and arljacent part of the lingual process of the hyoid bone, in common with the liyoid branch of the preceting muscle.

Action.-To retract the hyoid hone and the root of the tongue.
structure.-The muscle is composed of parallel fleshy filers, exeept at its origin, where it has a thin tendun.

Relations.- The posterior part of the musele is related laterally to the supraspinatus, anterion deep pectoral, and brachiveephaticus and the prescapular lymphglamds; and medially to the scalemus. It is intimately adherent to the brachiocephaticus. In the middle of the meck it is related superficially to the brachiocophaticus, sterno-cephaticus, and the jugular voin; desply, to the rectus capitis ventralis major, the carotid artery, the vagus, symathedic, and recurrent nerves, the trachea, and, on the left side, the orsophagus. In its anterior part the muscle blends with the stomo-hyoidens, the two covering the stemo-thyroideus, the thyroid gland in part, and the ventral face of the larynx.

Blood-supply.- Carotid and inferion corvical arteries.
Nerce-supply.- Ventral branch of the first eervical norve.
(6. Scalenus (DI. sealenus prime costex).-This musele is deeply situated on the side of the posterior half of the neek. It is composed of two parts, between which the cervical roots of the hrachial plexus of norves emerge.

Origin. - The anterior border and lateral surface of the first ril).
Insertion.-(1) The dorsal (smaller) part (M. seatenus dorsalis) is attached to the transverse process of the seventl cervical verte)ra; (2) the ventral part (M. ${ }^{1}$ Also termed the subscapulo-hyoideus.
scalenus ventralis) is attached to the transverse processes of the sixth, fifth, and fourth cervical vertebre.

Aetion.-The neck is flexed or inclined laterally, according as the muscles act together or singly. If the neck be the fixed point, the muscle may have a respiratory action by pulling forward or fixing the first rib.

Structure.-The dorsal part is composed of several small fleshy bundles. The ventral portion, which is much larger, is almost entirely fleshy, and not so divided.

Relations.-superficially, the anterior deep pectoral, brachiocephalicus, and omo-hyoideus muscles, the phrenic nerve, and branches of the brachial plexus; decply, the vertebra, the longus colli and intertransversales muscles, the œsophagus (on the left side), the trachea (on the right side), the vertebral vessels, the vagus, smpathetic, and recurrent nerves. The roots of the brachial plexus form a flat anastomosis, which lies between the two parts of the muscle. The brachial vessels: cross the ventral edge close to the first rib.

Blood-supply.-Carotid, vertebral, and inferior cervical arteries.
Nerve-supply.-Ventral branches of the cervical nerves.
7. Cervicalis ascendens. ${ }^{1}$-This muscle is the cervical continuation of the longissimus costarum, and is sometimes regarded as a part of the scalenus, with which it is partially united. It consists of three or four bundles which are attached to the transverse processes of the last three or four cervical vertelræ and the first rib.

Action.-To extend the neck or to flex it laterally.
Relations.-Superficially, the brachiocephalicus and anterior deep pectoral; deeply, the scalenus and intertransversales.

Blood-supply.-Vertebral artery.
Verte-supply.-Cervical nerves.
8. Rectus capitis ventralis major (M. longus capitis).-This is the largest of the three special flexors of the head, and lies along the ventro-lateral surface of the anterior cervical vertebræ and the base of the cranium.

Origin.-The transverse processes of the fifth, fourth. and third cervical vertebres.

Insertion.-The tubercles at the junction of the basilar part of the occipital bone with the body of the sphenoid.

Action.-Acting together, to flex the head; acting singly, to incline it to the same side also.

Structure- The origin of the muscle is by fleshy digitations. The belly increases in size by the umion of these digitations, reaching its maximum at the axis. It then diminishes, passes toward the median plane, and terminates on a rounded tendon.

Relations.-Superficially, the brachiocephalicus and omo-hyoideus, the mandibular gland, the carotid artery (which lies along the ventral border), the occipital and internal carotid arteries, and the tenth, eleventh, and sympathetic nerves; deeply, the vertebre, the longus colli, intertransversales, and the rectus capitis rentralis minor. The terminal part of the muscle lies in contact with its fellow above the pharynx and between the guttural pouches.

Blood-supply.-Carotid, vertebral, and occipital arteries.
Verve-supply.-Ventral branches of the cervical nerves.
9. Rectus capitis ventralis minor (M . rectus capitis ventralis).-This is a small muscle which lies dorsal to and under cover of the preceding one.

Origin.-The ventral arch of the atlas.
Insertion.-The basilar part of the occipital bone, close to the preceding muscle.
Action.-To flex the atlanto-occipital articulation.
strueture.-Fleshy.
${ }^{1}$ This muscle is also known as the ilio-costalis cervicis.

Relations.-Ventrally, to the preeeding musele; dorsally, to the atlas, atlantooccipital articulation, and the basilar part of the oceipital bone; laterally, to the rectus capitis lateralis and the guttural pouch.

Blood-supply.-Occipital artery.
Ncre-supply.- Ventral braneh of the first eervieal nerve.
10. Rectus capitis lateralis.-This is a still smaller musele, which lies for the most part under the obliquus capitis anterior.

Origin.-The atlas, lateral to the preceding musele.
Insertion. - The paramastoid process of the occipital bone.
Action.-The same as the preceding musele.
structure-Fleshy.
Rclations.-Superfieially, the obliquus eapitis anterior, the occipital vessels, and the ventral branch of the first cervical nerve.

Blood-supply.-Oceipital artery:
Ncrue-supply. -Ventral branch of the first cervical nerve.
11. Longus colli.-This muscle covers the ventral surfaces of the vertebres, from the sixth thoracic to the atlas, and is united with its fellow. It consists of two parts, thoracie and cervical.

Origin.-(1) Thoracic part, the bodies of the first six thoracic vertelra; (2) cervical part, the transverse processes of the cervical vertebrie.

Insertion.-(1) Thoracic part, the hodies and transverse processes of the last two cervical vertebrie; (2) eervieal part, the bodies of the cervical vertebre and the ventral tubercle of the atlas.

Action.-To Hex the neek.
Structure.-The musele is composed of a succession of bundles. The largest of these constitute the thoracie part of the muscle, which has a strong tendon inserted into the last two cervieal vertebre. A bursa is interposed between the tendon and the spine at the first costo-vertebral articulation. The cervical part consists of a mumber of smaller bundles, each of which passes from its origin on the transverse process of one vertebra forward and medially to its insertion into a vertebra further forward. The most anterior bundle is inserted by a strong tendon into the ventral tubercle of the atlas.

Rclations.-The principal relations of the two museles in the thorax are: ventrally, the pleura, and, further forward, the trachea and osophagus; dorsally, the vertebre and the costo-vertebral joints; laterally, the dorsal, deep cervical, and vertebral vessels, the sympathetie nerve, and the thoracie roots of the brachial plexus. In the neck important relations are: ventrally, the trachea and osophagus, the earotid artery, the vagus, sympathetic, and reeurrent nerves; dorsally, the vertebres and, in the middle third of the neek, the intertransversales muscles; laterally, the scalemus, the rectus capitis ventralis major, and the intertransversales (in the anterior third). The terminal part of the muscle is separated from the trachea by the œesophagus, which is here median in position.

Blood-supply.-Subcostal and vertebral arteries.
Nerve-supply.- Ventral branches of the spinal nerves.
12. Intertransversales colli (Mm . intertransversarii cervicis).-These are six fasciculi which occupy the spaces between the lateral aspects of the vertebra and the transverse and articular processes. There is thus a bundle for each intervertebral articulation except the first. Each bundle consists of a dorsal and ventral part.

Attachments.-The dorsal bundles pass from transverse process to articular process; the ventral bundles extend between adjacent transverse processes.

Action.-To flex the neck laterally.
Structure.-They contain strong tendinous intersections.
Relations.-Superficially, the brachiocephalicus, reetus capitis ventralis ma-
jor, obliquus capitis posterior, complexus, longissimus capitis et atlantis, splenius, scalenus, and longissimus dorsi et costarum muscles; deeply, the vertebra, the longus colli muscle, and the vertebral vessels. The muscles are perforated by branches of these vessels and by the primary branches of the cervical nerves.

Blood-supply.-Vertebral artery.
Nerve-supply.-The cervical nerves.

Lateral cervical muscles

This group consists of twelve pairs of museles arranged in layers.

First Layer

1. Trapezius cervicalis.-Described on p. 293.

Second Layer

2. Rhomboideus cervicalis.-Described on p. 293.
3. Serratus cervicis.-Described on p. 297.

Third Later

4. Splenius.-This is an extensive, flat, triangular muscle, partly covered by the preceding three muscles.

Origin.-The second, third, and fourth thoracic spines by means of the dorsoscapular ligament and the funicular part of the ligamentum nuchæ.

Insertion.-The nuchal crest, the mastoid process, the wing of the atlas, and the transverse processes of the third, fourth, and fifth cervical vertebre.

Action.-Acting together, to clevate the head and neck; acting singly, to incline the head and neck to the side of the muscle acting.

Structure.-The muscle arises in the withers from the anterior part of the dorso-scapular ligament, which also affords attachment to the rhomboideus, serratus dorsalis, and complexus muscles. The fibers pass upward and forward toward the head and the first cervical vertebra. The insertion on the occipital bone and the mastoid process is by means of a thin aponeurosis common to the brachiocephalicus and longissimus capitis. The atlantal insertion is by a strong, flat tendon, in common with the longissimus atlantis and the brachiocephalicus. The remaining insertions are fleshy digitations.

Relations.-superficially, the skin and fascia, the trapezius, rhomboideus cervicalis, serratus ventralis, and posterior auricular muscles. deeply the complexus and longissimus dorsi muscles.

Blood-supply.-Deep cervical and dorsal arteries.
Nerve-supply.-Dorsal branches of the last six cervical nerves.

Fourth Layer

5. Longissimus capitis et atlantis. ${ }^{1}$ - This muscle consists of two parallel, fusiform portions. It lies between the deep face of the splenius and the ventral part of the complexus.

Origin.-(1) The transverse processes of the first two thoracic vertebre; (2) the articular processes of the cervical vertebre.

Insertion.-(1) The mastoid process; (2) the wing of the atlas.
Action.-Acting together, to extend the head and neck; acting singly, to flex the head and neck laterally or to rotate the atlas.

Structure.-The origin from the thoracic vertebre is by aponcurotic slips which blend with the complexus. The succeeding fleshy part, in passing along

[^41]the neek, receives fasciculi from each of the eervical vertelrex except the first two. The clorsal division of the muscle (N. longissimus eapitis) is inserted into the mastoid process by a flat tendon which fuses with that of the splenius; the ventral division (M. longissimus atlantis) is inserted into the

wing of the atlas by a ribbon-like tendon in common with the splenius and brachiocephalicus.

Relations.-Superficially, the splenius muscle and dorsal branches of the cervical nerves; decply, the complexus, the spinalis colli, and the oblique muscles of the head. The decp cervical vessels cross the deep face of the muscle obliquely at the level of the sixth and seventh cervical vertebre.

Blood-supply.-Yertebral and deep cervical arteries.
Nerve-supply.-Dorsal branches of the last six cervical nerves.
6. Complexus (M. semispinalis capitis).-This is a large triangular muscle which lies chiefly on the ligamentum nuchæ, under cover of the splenius.

Origin.-(1) The second, third, and fourth thoracic spines, in common with the splenius and serratus dorsalis; (2) the transverse processes of the first six or seven thoracic vertebræ; (3) the articular processes of the cervical vertebræ.

Insertion.-A rough area on the occipital bone just ventral to the nuchal crest.
Action.-It is the chief extensor of the head and neck. Acting singly, the muscle inclines the head to the same side.

Structure- The origin of the muscle at the withers is aponcurotic. In the neck the bundles arising from the articular processes run obliquely upward and forward, giving the lower part of the muscle a distinct pennate character. The clorsal part of the belly is crossed obliquely by four or five tendinous intersections. The insertion is by a strong tendon.

Relations.-Superficially, the rhomboideus, serratus ventralis, splenius, and longissimus capitis et atlantis; deeply, the ligamentum nuchæ, the multifidus cervicis, longissimus dorsi, and the oblique and dorsal straight muscles of the head, the deep cervical vessels, and the dorsal cutaneous branches of the cervical nerves.

Blood-supply.-Deep cervical, vertebral, and occipital arteries.
Nerve-supply.-Dorsal branches of the last six cervical nerves.
7. Multifidus cervicis.-This muscle lies on the arches of the last five cervical vertebrex. It consists of five or six segments.

Origin.--The articular processes of the last four or five cervical and the first thoracic vertebre.

Insertion.-The spinous and articular processes of the cervical vertebre.
Action.-Acting together, to extend the neck; acting singly, to flex the neck on the side of the muscle contracting and to rotate the neck to the opposite side.

Structure.-The musele is composed of two sets of bundles. The superficial bundles are dirceted obliquely forward and inward, each passing from an articular process to the spine of the preceding vertebra. The deep bundles are shorter and run straight from an articular process to that of the preceding vertebra.

Relations.-Superficially, the complexus, longissimi, and obliquus capitis posterior; deeply, the spinalis, the ligamentum nuchæ, and the arches of the vertebræ.

Blood-supply.-Deep cervical and vertebral arteries.
Nerve-supply. - Dorsal branches of the last six cervical nerves.
8. Spinalis.-Described with the longissimus on p. 278.
9. Obliquus capitis posterior (s. caudalis).-This is a strong, quadrilateral muscle, which covers the dorso-lateral aspect of the atlas and axis.

Origin.-The side of the spine and the posterior articular process of the axis.
Insertion.-The dorsal surface of the wing of the atlas.
Action.-Chiefly to rotate the atlas, and with it the head, to the same side; also to assist in extending and fixing the atlanto-axial joint.

Structure. -The muscle is composed almost entirely of parallel fleshy fibers directed obliquely forward and outward. It is covered by a special fascia.

Relations.-Superficially, the splenius, complexus, longissimus capitis, and brachiocephalicus muscles; deeply, the arch and spine of the axis, the wing of the atlas, the atlantoaxial joint, the rectus capitis dorsalis minor, the occipital and
vertebral vessels, and the first and second cervical nerves. The terminal part of the vertebral artery joins the posterior branch of the occipital artery under cover of the muscle.

Blood-supply.-Occipital and vertebral arteries.

Nere-supply.-Dorsal branch of the second cervical nerve.
10. Obliquus capitis anterior (s. cranialis).-This short, thick, quadrilateral muscle lies on the side of the atlantoocripital articulation.

Origin.-The anterior edge and ventral surface of the wing of the atlas.
Insertion.-The paramastoid process and nuchal crest of the occipital bone and the mastoid process.

Action.-Acting together, to extend the head on the atlas; acting singly, to flex the head laterally.

Structure. -The muscle contains a good deal of teadinous tissue. The direction of its fibers is forward, upward, and inward.

Fig. 269.-Deepest Layer of Mescles of Veck of Horse.
a. Obliquus capitis anterior: b, obliquus capitis posterior; c, rectus capitis lateralis; d, rectus capitis ventralis minor; ℓ, rectus capitis ventralis major; f, longus colli; g, g^{\prime}, scalenus; h, longissimus costarum; i, longissimus dorsi; k. spinalis et semispinalis; l, multifidus dorsi; m, multifidus cervicis; n, intertransversales; o, o^{\prime}, rectus capitis dorsalis major; p, rectus capitis dorsalis minor; q, tendon of insertion of complexus; l, Iamellar part, l^{\prime}, funicular part of ligamentum nuche: 2 , nuchal crest; 3 , paramastoid process; 4. edge of wing of atlas; 5 , transverse, and 6 , articular, processes of eervical vertebre; γ, nerves of brachial plesus (cut); S, first rib. (Ellenberger-Baum, Anat. A. Haustiere.)

Relations.-Superficially, the complexus, the aponeurosis of the splenius, longus capitis, and brachiocephalicus, overlying which are the posterior auricular muscles, artery, and nerve, and the parotid gland: deeply, the clorsal straight muscles, the occipito-hyoideus, the atlanto-occipital articulation, the posterior meningeal artery, and a brauch of the occipital nerve.

Blood-supply.-Occipital artery.
Nerve-supply.-Dorsal branch of the first cervical nerve.
11. Rectus capitis dorsalis major.-This muscle extends from the axis to the occipital bone, in contact with the ligamentum nuchæ.

Origin.-The edge of the spinous process of the axis.

Insertion.-The occipital bone, below the complexus; the tendon of insertion of the complexus.

Action.-To extend the head.
Structure.-The muscle is fleshy and may be divided into two parallel parts, superfieial and deep. The former blends somewhat with the terminal part of the complexus. The deep part may be termed the rectus capitis dorsalis medius. Bundles frequently arise from the fascia over the obliquus capitis posterior.

Relations--superficially, the obliquus capitis anterior, splenius, and eomplexus; medially, the ligamentum nuehe; deeply, the atlas, the atlanto-oecipital articulation, and the rectus capitis dorsalis minor. The dorsal branch of the first cervical nerve appears between this muscle and the obliquus eapitis anterior.

Blood-supply.- Oceipital artery.
Nerve-supply.- Dorsal branch of the first cervieal nerve.
12. Rectus capitis dorsalis minor.-This small muscle lies under cover of the preceding.

Origin.- The dorsal surface of the atlas.
Insertion.-The oceipital bone beneath the preceding musele and lateral to the funicular part of the ligamentum nuchæ.

Aetion.-To assist the preceding muscle.
structure.-It is fleshy and varies a good deal in volume, being sometimes small and difficult to reeognize. ${ }^{2}$ On the other hand, it is sometimes double.

Relations.-Superficially, the precerling musele and the obliquus eapitis anterior; deeply, the atlas and the atlanto-oceipital articulation.

Blood-supply.-Oceipital artery.
Nerve-supply.- Dorsal branch of the first cervical nerve.

The Fascie and Muscles of the Back and Loins (FASCIE ET MUSCULI DORSI ET LUMBORUM)

The superficial fascia presents no special features. The lumbo-dorsal fascia (Faseia lumbo-torsalis) closely invests the museles, but is easily stripped off the longissimus. It is attached medially to the supraspinous ligament and the spinous processes of the vertebre; it divides laterally into two layers. The superfieial layer is practically the aponeurosis of the latissimus dorsi. The deep layer gives origin to the serratus dorsalis, the lumbar part of the obliquus abdominis externus, the transversus abdominis, and the retractor costæ. Its lateral edge eurves under the longissimus and is attached to the ribs and lumbar transverse processes. Posteriorly it is continuous with the gluteal fascia. At the withers it forms an important structure, the dorso-scapular ligament. This is a strong tendinous sheet, attached to the third, fourth, and fifth thoracie spines. Its upper part is very thick and gives origin by its superficial surface to the rhomboideus thoracalis, by its anterior part to the splenius. The lower part is thin and clastic, and furnishes numerous lamellex which intersect the seapular part of the serratus ventralis and are attached to the scapula. Three lamelle are detached from the ligament. The deepest of these passes between the Iongissimus and spinalis and is attached to the transverse processes of the first seven thoracie vertebree; it gives attachment to the complexus. The middle one dips in between the longissimus dorsi and longissimus enstarum. The superficial one gives origin to the serratus dorsalis. A strong faseial layer, the ilio-lumbar ligament, extends from the last rib to the tuber cosie.

There are nine pairs of museles in this region, arranged in four layers.
${ }^{1}$ This seems due to pressure produced by pathological changes in the supra-atloid bursa, which are frequently extensive in dissecting-room subjects.

First Layer

1. Trapezius thoracalis.
 2. Latissimus dorsi.

Second Layer

3. Rhomboideus thoracalis.

The foregoing are described with the other museles which attach the thoraeie limb to the trunk (p. 293).
4. Serratus dorsalis anterior (s. cranialis).-This is a thin quadrilateral musele, named from its serrated ventral border. It lies under cover of the rhomboideus, serratus ventralis, and latissimus dorsi.

Origin.-The lumbo-dorsal fascia and dorso-seapular ligament.
Insertion.-The lateral surfaces of the fifth or sixth to the eleventh or twelfth ribs inclusive.

Action.-To draw the ribs on which it is inserted forward and outward, thus assisting in inspiration.

Structure.-The muscle arises by means of a thin aponeurosis. The muselefibers pass ventrally and backward to be attached to the ribs by seven or eight digitations below the lateral edge of the longissimus costarum.

Relations.-Superficially, the rhomboideus, serratus rentralis, latissimus dorsi, and serratus dorsalis posterior; deeply, the longissmus dorsi, longissimus eostarum, external intercostal muscles, and the ribs.

Blood-supply.-Intercostal arteries.
Nerve-supply.-Thoracic nerves.
5. Serratus dorsalis posterior (s. caudalis).-This muscle resembles the preceding one, which it partly covers.

Origin.-The lumbo-dorsal faseia.
Insertion.-The lateral surfaces of the last seven or eight ribs.
Action.-To draw the ribs backward, thus assisting in expiration.
Structure--Similar to the preeeding muscle. The fibers are direeted ventrally and forward and terminate in seven or eight digitations, one or two of whieh eover the posterior teeth of the anterior muscle. The aponeurosis blends with that of the latissimus dorsi.

Relations.-Superficially, the latissimus dorsi and external oblique; deeply, the longissimus dorsi, longissimus costarum, external intercostals, serratus dorsalis anterior, and the ribs.

Blood-supply.-Intercostal and lumbar arteries.
Nerve-supply.-Thoracic nerves.

Third Layer

6. Longissimus costarum. - This long, segmental muscle extends across the series of ribs, in contact with the outer edge of the longissimus dorsi.

Origin.-(1) The deep layer of the lumbo-dorsal fascia as far baek as the third or fourth lumbar transverse process. (2) The anterior borders and lateral surface of the last fifteen ribs. ${ }^{2}$

Insertion.-The posterior borders of the ribs and the transverse proeesses of the last cervical vertebra.

Action.-Chiefly to depress and retraet the ribs and so help in expiration.

[^42]Acting together, they may assist in extending the spine, acting singly in inclining it Jaterally.

Structure.-This musele presents a distinct segmental arrangement. It is composed of a series of bundles, the fibers of whith are directed forward and a little ventro-laterally. From these are detached two sets of tendons. The superficial tendons spring from the lateral edge of the muscle. They are flat and are about lalf an inch in wifth. Each crosses two or three intercostal spaces, to be inserted on the posterior border of a rib. The deep tendons are detached from the torsal part of the deep face of the muscle. Each passes backward across one or two intercostal spaces to its origin on the anterior border or lateral surface of a rib. Small burser may be found between the ribs and

Fig. 270.-Right Portion of Cross-section of back of Horse. section 1.s Cut Throviah Sevexth Thoracte Vertebra.
a, Ligamentum nuchr: b, trapezius musCle; c, cartilage of scapula; d, latissimus dorsi; $e_{\text {, }}$ cutaneus; f. rhombeideus thoracalis; y verratus ventralis; h, serratus dorsalis; h^{\prime}, lumbodorsal fascia, which divides below into three lavers; i. longissimus costarum; k. levator costa; k^{\prime}, internal intereostal muscle; l, longissimus dorsi; m, m^{\prime}, seventh thoracic vertebra; n, head of eighth thoracic vertebra; $a_{\text {, head of eighth rib; }}$ p. seventh rib; r, intercostal artery und nerve; s, skin. The fascie are indicated by dotted lines. (After Dllenberger, in Leisering's Atlas.) tendons.

Relations.-Superficially, the dorsal and ventral serrati; tleeply, the external intercostals and the ribs. The lumbar origin is covered by the longissimus dorsi. The deep cervical and dorsal vessels eross the surface of the musele at the first and second intercostal spaces respectively, and branehes of the intercostal vessels and nerves emerge between it and the longissimus dorsi; here a fascial layer dips in between the two.

Blood-supply.-Intercostal arteries.
Nerve-supply.-Dorsal branches of the thoracie nerves.
7. Longissimus dorsi. ${ }^{1}$ - This is the largest and longest muscle in the body. It extends from the saerum and ilimm to the neck, filling up the space between the spinous processes metially and the lumbar transverse processes and the upper ends of the ribs ventrally; consequently it has the form of a three-sided prism.

Origin.-(1) The tubera, crest, and adjacent part of the ventral surface of the ilium; (2) the first three sacral spines; (3) the lumbar and thoracic spines and the supraspinous ligament.

Insertion.-(1) The lumbar transverse and articular processes; (2) the thoracic transverse processes; (3) the spinous and transverse processes of the last four cervical vertebre; (4) the lateral surfaces of the ribs, except the first.

Aetion.-Aeting with its fellow, it is the most powerful extensor of the back and loins; by its cervical attachment it assists in extentling the neck. By its costal attachment it may also assist in expiration. Acting singly, it flexes the spine laterally.

Structure.-This is quite complex. The posterior part of the muscle is greatly developed and constitutes the common mass of the loins. This is covered by a strong aponeurosis which blends with the supraspinous and saero-iliac ligaments, and is attached to the crest and saeral angle of the ilimm and the first and second sacral spines; it furnishes origin to the humbar portion of the middle gluteus. In

[^43]its course further forward the musele receives fasciculi from the lumbar and thoracic spines, but diminishes somewhat in volume. About the twelfth thoracie vertebra it divides into two parts. The dorsal division (m. spinalis et semispinalis), reinforced by bundles from the first four thoracic spines, passes forward under the complexus to be inserted into the spines of the last four cervical vertebres. The ventral division passes forward and downward underneath the serratus rentralis to be inserted into the ribs and the transverse processes of the last four cervical vertebix. Three sets of fasciculi may be distinguished, viz.: (1) spinal, which are superficial and medial: (2) transwerse, attached to the transverse and articular processes, which are medial and deep; (3) costal, which are lateral.

Relations.-Superficially, the middle gluteus, the lumbo-dorsal fascia, the latissimus dorsi. serrati dorsales, serratus ventralis, and complexus; deeply, the multifidus, intertransversales, external intercostals, levatores costarum, the ligamentum nuchæ, and its fellow of the opposite side (in the neck).

Blood-supply.-Dorsal. deep cervical. intercostal, and lumbar arteries.
Nerce-supply.-Dorsal branches of the thoracic and lumbar nerves.
8. Multifidus dorsi.-This is a long segmental muscle which lies along the sides of the spinous processes of the vertebre from the sacrum to the neck.

Origin.-(1) The lateral part of the sacrum: (2) the articular processes of the lumbar vertebre: (3) the transverse processes of the thoracic vertebre.

Insertion.-The spinous processes of the first two sacral, the lumbar, thoracic, and last cervical vertebres.

Action.- Acting with its fellow, it is an extensor of the spine; acting singly, it flexes it laterally:

Structure-It is composed of a series of bundles which are directed obliquely forward and upward. Each faseiculus passes over several vertebree to its insertion. In the posterior part of the series the bundles cross two or three vertebrex and are inserted into the summits of the spines. Auteriorly the bundles bave a more horizontal direction, cross three to five vertebre, and are inserted into the sides of the spines considerably below their summits. A further complication consists in the fusion of several bundles into a common insertion.

Relations--superficially, the longissimus dorsi; deeply, the vertebral spines.
Blood-supply.-Intercostal and lumbar arteries.
Nere-supply.- Dorsal branches of the thoracic and lumbar nerves.
9. Intertransversales lumborum.-These are very thin muscular and tendiuous strata, which occupy the spaces between the transverse processes of the lumbar vertebree except the fifth and sixth.

Action.-To assist in flexing the loins laterally or in rendering the region rigid.
Relations.-Superficially, the longissimus dorsi; deeply, the quadratus lumborum.

Blood-supply.- Lumbar arteries.
Nerce-supply.-Lumbar nerves.

The Fascia and Muscles of the Tall (FASCIA ET MUSCULI CAUDE)

The muscles of the tail are inclosed in the strong coccygeal fascia, which is continuous in front with the gluteal fascia and blends with the lateral sacro-iliac ligament. At the root of the tail it is loosely attached to the subjacent muscles, but further back it is intimately adherent to them. From its deep face are detached septa which pass between the museles to become attached to the vertebre.

1. Coccygeus. ${ }^{1}$-This is a flat, triangular muscle which lies chiefly between the sacro-sciatic ligament and the rectum.
${ }^{1}$ Also termed the ischio-coccygeus or compressor coccygis.

Origin.-The pelvic surface of the sacro-sciatic ligament near the ischiatic spine. Insertion.-The first four coccygeal vertebre and the cocergeal fascia.

Action.-Acting together, tode-

Fig. 271.-Cboss-section of Tail of lJorse.
1,2, Branches of lateral coceygeal vessels and nerve: 3 , middle coccygeal artery; 4, sacro-coccygeus doralis; 4^{\prime}, sacro-coccygens lateralis: 5,5 , intertransversales; 4 , sacro-coccygeus ventratis; 7 , recto-coccygeus; A, cocevgeal fascia; 9, fibro-cartilage between fourth aud fifth cocengeal vertebre. The veins are black. press (flex) the tail, compressing it over the perineum; acting singly, to depress and incline it to the same side.

Structure. -The origin of the muscle is aponeurotic. Becoming fleslyy, its fibers pass upward and backward and divide into two layers. The lateral layer is attached to the vertebrex, the medial to the fascia; included between the two lie the intertransversales. When the tail is raised, the ventral edges of the muscles produce a distinct ridge at either sitle of the anus.

Relations.-Laterally, the sacro-sciatic ligament and the semimembranosus; medially, the rectum and the sacro-coccygeus ventralis muscle. The intermal pudic artery crosses the origin of the muscle.
2. Sacro-coccygeus dorsalis (11. sacrococeygeus dorsalis medialis). ${ }^{1}$-This musele lies along the dorso-median aspect of the tail, in contact with its fellow.

Origin.- The last three sacral spines and some of the coccygeal spines.

Insertion.-The dorsal surface of the coccygeal vertebre.

Action.-Acting together, to elevate (extend) the tail; acting singly, to elevate and incline it laterally.

Ntructure-The muscle has a strong rounded belly. It is inserted by means of short tendons whirh fuse with those of the next muscle.

Relations.-Superficially, the cocrygeal fascia: medially, its fellow; laterally, the sacro-coceygeus lateralis; deeply, the vertebre.
3. Sacro-coccygeus lateralis (M.sacro-cocergeus dorsalis lateralis). ${ }^{2}$ - This musele lies immediately lateral to the preceding.

Origin.- The sides of the

[^44] gis.
${ }^{2}$ Also known as the curvator coccygis.

Fig. 272-Muscles of Perineum of liorse.
a, Coccygeus; b, retractor ani; c, c^{\prime}, sphincter ani externus: d, recto-coccygeus; e, sacro-coceygeus ventralis lateralis; f, retractor penis; g, bulbo-cavernosus; h, ischio-cavernosus; i, internal pudic artery; k, anus; l, penis. (After Ellenberger-Baum, Top. Anat. d. Pferdes.)
sacral spines, with the multifidus, and the transterse processes of the sacral and coccygeal vertebrie.

Insertion.-The lateral surface of the coccygeal vertebræ, except the first four.
Action.-Acting with its fellow, to assist the preceding muscle in clevating the tail; acting singly, to incline it to the same side.

Structure.-This muscle appears to be a direct continuation of the multifidus dorsi. The belly is fusiform and receives reinforcing fasciculi from the transverse processes of the sacrum. This is succeeded by bundles of tendons, as many as four lying alongside of each other.

Relations.-Superficially, the lateral sacro-iliac ligament and the coccygeal fascia; dorsally, the sacro-coccygeus dorsalis; ventrally, the intertransversales; decply, the vertebræ and a branch of the lateral coccygeal artery and accompanying rein and nerve.
4. Intertransversales caudæ (Mm . intertransversarii caudæ).-These consist of muscular bundles which lie on the lateral aspect of the tail, between the preceding muscle and the sacro-coccygeus ventralis. They begin on the lateral edge of the sacrum and occupy the spaces between the transverse processes, to which they are attached. They are, however, not arranged in a strict segmental manner.

Action.-Acting together, to fix the coccygeal vertebre; acting singly, to assist in lateral flexion.
5. Sacro-coccygeus ventralis (Mm . sacro-coccygei veutrales). ${ }^{1}$-This muscle lies on the ventral aspect of the sacrum and coccyx. It is composed of two parts, described by Bourgelat and the German anatomists as separate muscles.
(a) The lateral part (M. coccrgeus ventralis lateralis) is much the larger of the two. It arises from the lateral part of the ventral surface of the sacrum, about as far forward as the third foramen, and is inserted into the transverse processes and ventral surface of the coccygeal vertebre.
(b) The medial part (M. sacro-coceygeus ventralis medialis) arises from the ventral surface of the sacrum medial to the preceding muscle and the first eight coccrgeal vertebre, and is inserted into the ventral surfaces of the coccrgeal vertebre.

Action.-Acting together, to depress (flex) the tail; acting singly, to incline it laterally also.

Structure.-The lateral part has a somewhat compressed belly, and receives bundles from the transverse processes of the coccygeal vertebræ. The medial part is much smaller and shorter, reaching only about to the middle of the tail.

Relations.-Ventrally, the pelvic and coccygeal fasciæ; dorsally, the sacrum, coccegeal vertebræ, and the intertranswersales; laterally, the sacro-sciatic ligament, the coccygeus, and the coccygeal fascia; medially, its fellow, the rectococcygeus, and the middle coccygeal vessels. Branches of the lateral coccrgeal ressels and nerves lie between the lateral division of the muscle and the intertransrersales.

Blood-supply.-Middle and lateral coccygeal arteries.
Terre-supply--Coccygeal nerves.

The Muscles of the Thorax (MUSCULI THORACIS)

These consists of seven muscles or sets of muscles, which are attached to the thoracic vertebræ, to the ribs and their cartilages, and to the sternum. They are muscles of respiration.

1. Levatores costarum.-These constitute a series of small muscles which occupy and overlie the dorsal ends of the intercostal spaces.
${ }^{1}$ Also known as the depressor coccygis.

Origin.-The transverse processes of the thoracie vertebre.
Insertion.-The lateral surfaces of the upper ends of the ribs posterior to the vertebral origin.

Action.-To draw the rihs forward in inspiration.
Struclure-Arising by tendinous fibers, each muscle passes backward and outward and expands at its insertion. Some fibers pass over one rib and are inserted

Fig. 273.-Deep Disaection of Dorsal and Lumbar Regions of Horse; Dorsal Vtety. (After Schmaltz, Atlas d. Inat. d. I'ferdes.)
on a succecding one. At the begiming and end of the series the musele cannot be distinguished from the external intereostal, of wheh it is in reality only a specially developed part.

Relations,-superficially, the longissimus dorsi; deeply, the ribs, internal intercostal museles, and the intercostal vessels and nerves.

Blood-supply.-Intercostal arteries.

Nerve-supply.-Intercostal nerves.
2. External intercostals (Mm. intercostales externi). - Each of these occupies an intercostal space, from the levatores to the sternal extremity of the rib. They do not oceupy the intereartilaginous spaces.

Origin. - The posterior borders of the ribs.
Insertion.-The anterior borders and lateral surfaces of the sueceeding ribs. Action.-To draw the ribs forward in inspiration.
structure.-The fibers are directed downward and backward. There is a considerable admisture of tendinous tissue. The thickness of the museles gradually diminishes toward the lower ends of the spaces.

Relations.-superficially, the scrratus ventralis, latissimus dorsi, serratus dorsalis, longissimus dorsi, longissimus costarum, reetus thoracis, deep pectoral, obliquus abdominis externus, and cutaneous museles; deeply, the internal intercostals and (in the upper part of the spaces) the intereostal vessels and nerves.

Blood-supply.-Intercostal and internal thoracic arteries.
Nerve-supply.-Intereostal nerves.
3. Internal intercostals (Nm . intercostales intermi).-These extend the entire length of the intercostal spaces, including their interehondral portion.

Origin.-The anterior borders of the ribs and their cartilages.
Insertion.-The posterior borders of the preceding ribs and cartilages.
Action.-To draw the ribs backward in expiration. It seems probable, however, that the intercartilaginous portion is inspiratory. ${ }^{1}$

Structure.-The direction of the fibers is oblique downward and forward. There is a smaller amount of tendinous tissue than in the external set, and the thickness diminishes dorsally. In the upper part of the spaces fibers sometimes cross a rib in a fashion similar to the subeostals of man. A thin faseia separates the internal from the external intercostal muscle in each space.

Relations.-Superficially, the levatores costarum and the external intercostals; deeply, the endothoracie fascia and pleura, the transersus thoracis, diaphragm, transversus abdominis, and the internal thoracic and musculo-phrenic vessels. In the upper part of the intercostal spaces the intereostal vessels and nerves lie between the internal and external intercostal muscle, but below they lie chiefly on the deep face of the internal muscle.

Blood-supply.-Intercostal and internal thoracic arteries.
Vcrec-supply.-Intereostal nerves.

[^45]pectoral museles. It is directed obliquely backward and downward, and crosses the lower part of the first three intercostal spaces.

Origin.- The lateral surface of the first rib, below the sealenus.
Insertion.-The cartilage of the fourth rib. The aponcurosis usually joins the rectus abdominis. It may reach the fifth rib or the sternum.

Fig. 274. -Dissection of Floor of Thorax of Horse.
The ribs have been sawn off near their sternal ends and the diaphragm and transversus abdominis cut off close to their attachment.

1. Eighth rib; 2, 3, cartiluges of ninth and tenth ribs; 4, xiphoid cartilage; 5, apex of pericardium.

Action.-It may assist in inspiration or concur with the rectus ablominis.
Relations.-superficially, the deep pectoral muscles; deeply, the intereostal muscles and the ribs.

Blood-supply.-Internal and external thoracic arteries.
Nerve-supply.-Intercostal nerves.
6. Transversus thoracis.-This is a flat muscle situated on the thoracic surface of the sternum and the cartilages of the sternal ribs.

Origin.-The sternal ligament, meeting the opposite muscle.
Insertion.-The cartilages of the ribs, from the second to the cighth inclusive, and the adjacent part of some of the ribs.

Action.-It draws the ribs and costal cartilages inward and backward, thus assisting in expiration.

Structure.-Each muscle has the form of a scalene triangle, of which the basc is the strongly serrated lateral border. The muscle contains a good deal of tendinous tissue. The anterior bundles are directed forward and outward; the posterior, backward and outward.

Relations.-Dorsally, the endothoracic fascia and pleura; ventrally, the costal cartilages, the internal intercostal muscles, and the internal thoracic vessels.

Blood-supply.-Internal thoracic artery:
Nerre-supply.-The intercostal nerves.
7. Diaphragm.-This is a broad, unpaired muscle which forms a partition between the thoracic and abdominal cavities. ${ }^{1}$ In outline it has some resemblance to a palm-leaf fan. In form it is dome-shaped, compressed laterally. On a median section it is seen to have a general direction downward and forward from the lumbar vertebre to the xiphoid cartilage. The thoracic surface is strongly convex, and is covered by the pleura. The abdominal surface is deeply concave, and is covered for the most part by the peritoneum. The muscle consists of a fleshy rim which may be subdivided into costal and sternal parts; a lumbar part, composed of two crura: and a tendinous center.

Attachments. - (1) Costal part (Pars costalis): The cartilages of the eighth, ninth, and tenth ribs, and behind this to the ribs at an increasing distance from their sternal ends.
(2) Sternal part (Pars sternalis): The upper surface of the xiphoid cartilage.
(3) Lumbar part (Pars lumbalis): (a) The right crus (Crus dextrum) is attached to the ventral longitudinal ligament, and by this means to the first four or five lumbar vertebra. (b) The left crus (Crus sinistrum) is attached in a similar fashion to the first and second lumbar vertebre.

Action.-It is the principal muscle of inspiration and increases the longitudinal diameter of the chest. The contraction produces a general lessening of the curvature of the diaphragm. In the expiratory phase the costal part and crura lie almost entirely on the body walls, so that the bases of the lungs are in contact with the tendinous center almost exclusively. In ordinary inspiration the fleshy rim recedes from the chest-wall, so that the bases of the lungs move backward to a line about parallel with the costal arches, and about four or five inches (ca. $10-12 \mathrm{~cm}$.) therefrom.

It is stated that the inspiratory movement affects the tendinous center much less than the fleshy part, and that the foramen venæ cavæ scarcely moves at all, since the posterior vena cava is firmly attached to it. It should be noted, however, that the direction of the thoracic part of the vena cava in the expiratory phase is oblique upward and backward. Thus it would seem that there is no anatomical reason why the diaphragm should not move as a whole in ordinary inspiration at least; examination of formalin-hardened subjects in which the diaphragm appears to be fixed in the inspiratory phase indicates that such is the case.

Structure.-The costal part consists of a series of digitations which meet, or are separated by a very narrow interval from, the transversus abdominis; between the two are the musculo-phremic vessels. From the tenth rib backward the attachments to the ribs are at an increasing distance above the costo-chondral junctions. Thus at the last rib the upper limit of the attachment is four to five inches ($10-12 \mathrm{~cm}$.) from the ventral end. Anteriorly the origin extends along the eighth
${ }^{1}$ It should be noted, however, that in the embryo the diaphragm appears as a paired structure, extending from the lateral walls of the coelom to fuse with the septum transversum.
and ninth costal cartilages to the xiphoid eartilage. From these points of origin the filsers eurve inward and forward to join the tendinous center. ${ }^{1}$ The right crus is about twice as thick as the left one and is also longer. It arises by a strong temlon

Fig. 275.-Ditphragm of Horne; Abdominal Surface.
1, Ventral longitudinal ligament; 2, 2’, tundozs of crura; 3, lumbar sympathetic trunks; 4, external apermatic nerve; $5, b$, great sphanchnic nerves; β_{1} cisterna chyli (opened) $; \gamma, \gamma$, resophageal continuations of vagus nerves: S, lymph-glankl; 9 , coronary ligament of liver (cut) ; 10 , right lateral ligament of liver (cut): 11, Ieft lateral ligament of
 C.s., l-ft crus; 1, ant:1; $C a$, ceeliac artery; Oc., cesophagus; V.c., posterior vena cava; V.p., phrenic veins. (After Schmaltz, Atlas d. Inat. d. Pfordes.)
which blends with the rentral longitudinal ligament. The tendon is succeeded by a rounded belly which leaves the vertebral column at the last thoracie vertebra.
${ }^{1}$ It is interesting to note that when a ninuteenth rib is present cren when it is well developed the diaphragm has no comection with it, but ends on the eighteenth rib at a point a little more ventral than usual.

Passing downward and forward, its fibers spread out and join the tendinous center. The left crus arises by a thin tendon from the ventral longitudinal ligament at the first and second lumbar vertebre. This is succeeded by a triangular belly which joins the central tendon. Between the crura and the attachment to the last rib the edge of the muscle crosses the ventral surface of the psoas muscles without attachment, forming the so-called lumbo-costal arch (Arcus lumbocostalis); here the thoracic and abdominal cavities are separated only by the serous membranes and some areolar tissue. The tendinous center (Centrum tendineum) resembles the periphery in outline, but is more elongated. It is partially divided into right and left parts by the descent of the crura into it. It is composed largely of radiating fibers, but many interlace in various directions; this is specially evident around the foramen renæ cavæ, which is encircled by fibers. A strong tendinous layer extends across below the hiatus œescphageus.

Schmaltz and others describe the lumbar part as consisting of four crura, two medial and two lateral. On this basis the left crus of the preceding description becomes the crus laterale sinistrum, and the corresponding part of the right side is the crus laterale dextrum. The central part is dividec by the hiatus cesophageus and the slit which extends from it dorsally into a crus mediale dextrum and a crus mediale sinistrum. Both modes of division are in part artificial.

The diaphragm is pierced by three foramina. (1) The hiatus aorticus is an interval between the two crura and below the last thoracic vertebra. It contains the aorta, rena azygos, and cisterna chyli. (2) The hiatus œsophageus ${ }^{1}$ perforates the right crus near its junction with the tendinous center. It is situated a little to the left of the median plane and about a hand breadth ventral to the thirteenth and fourteenth thoracic vertebræ. It transmits the œesophagus, the vagus nerves. and the \propto sophageal branch of the gastric artery. (3) The foramen venæ cavæ ${ }^{2}$ pierces the tendinous center about an inch (ca. $2-3 \mathrm{~cm}$.) to the right of the median plane, and ahout six to eight inches (ca. $15-20 \mathrm{~cm}$.) below the eleventh and twelfth thoracic vertebræ. The vena cava is firmly attached to the margin of the opening. ${ }^{3}$

Relations.-The thoracic surface is related to the endothoracic fascia, pleure. pericardium, the bases of the lungs, and the ribs in part. The abdominal surface is in great part covered by the peritoneum, and is related chiefly to the liver, stomach, intestine, spleen, pancreas, hidners, and adrenals. The sympathetic trunk and splanchnic nerve pass between the crus and the psoas muscles on each side. The musculo-phrenic vessels perforate the edge of the muscle at the ninth costo-chondral joint.

Blood-supply.-Phrenic and musculo-phrenic arteries.
Nerte-supply.-Phrenic nerves.

The Abdominal Fascie and Muscles (FASCIE ET MUSCULI ABDOMINIS)

The superficial fascia of the abdumen is in part fused dorsally with the lumbodorsal fascia; in front it is continuous with the superficial fascia of the shoulder and arm, behind with that of the gluteal region. In the inguinal region it forms part of the fascia of the penis or of the mammary glands. At the lower part of the flank it forms a fold which is continuous with the fascia of the thigh near the stifle joint.

[^46]In this fold are the prefemoral lymph-glands. Medially it blends with the linea alba. It contains the abdominal cutaneous muscle (deseribed on p. 254).

The deep fascia is represented chiefly by the abdominal tunic (Tuniea flava abdominis). This is a slocet of elastic tissue which assists the museles in supporting the great weight of the abdominal viscera. It is practically coextensive with the obliquus externus, which it covers. Ventrally it is thick, and is intimately adherent to the aponeurosis of the musele. Laterally it becomes thinner and is more easily separated, although fibers from it dip in between the muscle-bundles. It is continued for some distance upon the intereostals and serratus ventralis. Traced forward, it passes as a thin layer beneath the posterior deep pectoral musele. Posteriorly it is attached to the tuber coxæ. In the inguinal region it forms the deep fascia of the prepuce or of the mammary glands.

The linea alba is a median fibrous raphé which extends from the xiphoid eartilage to the prepubic tendon. It is formed chiefly by the junction of the aponeuroses of the oblique and transverse museles, but partly by longitudinal fibers. A little behind its middle (about in a transverse plane tangent to the last pair of ribs) is a cicatrix, the umbilicus, which indieates the position of the umbilical opening of the fortus.

1. Obliquus abdominis externus.-This is the most extensive of the abdominal muscles. It is a broad sheet, irregularly triangular in shape, widest behind. Its fibers are directed chiefly downward and backward.

Origin.-(1) The lateral surfaces of the last fourteen ribs, and the faseia over the external intereostal muscles; (2) the lumbo-dorsal faseia.

Insertion.-(1) The linea alba and the prepubic tendon; (2) the tuber coxx and shaft of the ilium; (3) the medial femoral fascia.

Action.-(1) To compress the abtominal viscera, as in defeeation, micturition, parturition, and expiration; (2) to flex the trunk (arch the back); (3) aeting singly, to flex the trunk laterally.

Structure-The muscle is composed of a muscular part and an aponeurosis. The muscular part lies on the lateral wall of the thorax and abdomen. It arises by a series of digitations, the anterior four of which alternate with those of the serratus ventralis. The origin may be indicated by a slightly curved line (concave dorsally) drawn from the lower part of the fifth rib to the tuber coxx. The fibers are directed downward and backward and terminate on the aponeurosis, execpt in the upper part of the flank, where they are less oblique in direction and end on the tuber cosie. The line of junction is a eurve (concave dorsally) extending from the upper edge of the posterior deep pectoral muscle toward the point of the hip. The aponeurosis is intimately attached to the abdominal tunie, and its fibers are largely interwoven ventrally with those of the aponeurosis of the internal oblique. By this fusion is formed the outer sheath of the rectus abdominis, which blends at the linea alba with that of the opposite side. In the inguinal region the aponeurosis divides into two chief layers; one of these curves dorsally and backward and is inserted into the tuber coxe and the prepubic tendon. Between these points the aponeurosis is much strengthened and is called the inguinal ligament (Ligamentum inguinale). ${ }^{1}$ This curves upward and somewhat forward, becomes thin, and blends with the iliac fascia. It forms the posterior wall of the inguinal canal. About an inch (ca. 2 to 3 cm .) in front of the pubis and about two inches (ca. 4 to 5 cm .) from the median plane the aponeurosis is piercel by a slit-like opening, the subcutaneous or external inguinal ring (Annulus inguinatis subeutaneus). ${ }^{2}$ This is

[^47]the external orifice of the inguinal canal. Its long axis is directed outward, forward, and somewhat ventrally, and is four to five inches (ca. 10-12 cm.) in length.

The medial angle is rounded and is well defined by the junction of the aponeurosis with the prepubic tendon, but the lateral angle is not so sharply defined. The borders or crura are constituted by arciform fibers of the aponeurosis (Crus mediale,
laterale). The femoral lamina of the aponeurosis (Lamina femoralis) passes on to the medial surface of the thigh, where it blends with the femoral fascia. A thin iliac lamina (Lamina iliaca) passes over the lateral margin of the iliacus and is attached to the lateral border of the ilium.

Relations.-Superficially, the skin, the abdominal cutaneus, the abdominal tunie, and the posterior deep pectoral musele; deeply, the ribs and their cartilages, the intercostal museles, the obliquus abdominis internus, the contents of the inguinal canal, and the sartorius and gracilis.

Blood-supply.-Intercostal and lumbar arteries.
Nerve-supply.-Intercostal and lumbar nerves.
2. Obliquus abdominis internus.-This muscle is situated under the preceding one. Its fibers are directed downward, forwarl, and inward. It forms a triangular curved sheet with the base behind.

Origin. - The tuber coxe and the atljacent part of the inguinal ligament.
Insertion.-(1) The eartilages of the last four or five ribs; (2) the linea alba and the prepubic tendon.

Action.-Similar to that of the preceding muscle.
Structure-Like the external oblique, it is eomposed of a fleshy portion and an aponeurosis. The muscular part is fan-shaped, and is situated chiefly in the flank. At its iliac origin it is covered by a glisteuing aponeurosis. Traced medially and ventrally along the abdominal surface of the inguinal ligament, the muscular origin is found to become much thinner, and also becomes loosely attached to the ligament. This medial part of the musele forms the anterior wall of the inguinal canal. The abdominal orifice of the canal, the abdominal or internal inguinal ring ${ }^{1}$ (Annulus inguinalis abclominalis), is found here. It is normally a narrow slit, bounded in front by the edge of the internal oblique, and behind by the inguinal ligament. Near the last rib the musele divides into two parts. The small dorsal part is inserted by four or five thin tendinous strips to the medial surface of the last four or five costal cartilages. The aponeurosis of the large ventral part is to a great extent blended with that of the external oblique, heing, indeed, considerably interwoven with it ventrally. Where it covers the rectus abdominis it is attached to the tendinous inscriptions of that muscle. It may be noted that the dorsal margin of the aponcurosis varies in different subjects in the fact that it may cover the costal areh or lie ventral to it.

Relations.-superficially, the ohliquus externus; deeply, the reetus abdominis, transversus abdominis, and the peritonemm.

Blood-supply.- (ircumflex iliar, humbar, and intercostal arteries.
Nerve-supply.- Ventral branehes of the lumbar nerves.
3. Rectus abdominis.-This musde is confined to the ventral part of the abdominal wall; it extends from the stemal region to the pubis.

Origin. - The eartilages of the fourth or fifth to the ninth ribs inclusive, and the adjacent surfaee of the stermum.

Insertion.-The pubis, by means of the prepubic tendon.
Aetion.-Similar to that of the oblique museles. It is expecially atlapted to flex the lumbo-sacral joints and the lumbar and thoracic parts of the spine.
structure- The fibers of the musele are directed longitudinally. Nine to eleven transverse bands of fibrous tissue extend in an irregular manner across the
${ }^{1}$ It must be admitted that the term "ring" is rather misleading as applied to the abdominal opening of the canal, since normally it is a mere dilatable slit. The ring-like constriction which exists here in the male is constituted by the peritoneum, which descends into the canal to form the tunica vaginalis. This peritoneal ring is termed the vaginal ring (Annulus vaginalis), and must not be eonfused with the subperitoneal ring, i, ε., the abdominal or internal ingumal ring. The internal inguimal ring is six or seven inches (ea. 16 cm .) in length. Its direction corresponds approxirately to a line from the lateral margin of the prepubie tendon to the ventral part of the tuber coxie.
muscle. These are termed inscriptiones tendineæ. They strengthen the muscle and serve to prevent scparation of its fibers. The width of the muscle is greatest about its middle. The anterior part blends with the rectus thoracis.

Relations.-Superficially, the aponeuroses of the oblique muscles (which eonstitute the external rectus sheath) and the posterior deep pectoral; deeply, the transversus abdominis, intercostals, the cartilages of the ribs, and the sternum. The posterior abdominal artery runs along the lateral edge of the muscle posteriorly, and the anterior abdominal artery on or in its anterior part.

Blood-supply.-Anterior and posterior abdominal arteries.
Nerve-supply.- Intercostal and lumbar nerves.
4. Transversus abdominis. -This muscle, named from the general direction of its fibers, is a triangular curved sheet. Its lateral part is muscular, its ventral aponeurotic.

Origin.-(1) The medial surfaces of the distal ends or the cartilages of the asternal ribs, meeting the costal attachment of the diaphragm; (2) the transverse processes of the lumbar vertebre, by means of the deep layer of the lumbo-dorsal fascia.

Insertion.-The xiphoid cartilage and the linea alba.
Action.-Similar to that of the oblique museles.
Structure.-The muscular part is a sheet of parallel bundles of fibers, directed rentro-medially. It is thickest along the cartilages of the ribs, and from here it thins out greatly toward the aponeurosis and the lumbar region. The fibers of the aponeurosis directly continue those of the fleshy part. Posteriorly it becomes extremely thin and fades out without reaching the pelvis. It covers the deep face of the rectus, so forming the internal rectus sheath.

Relations.-Superficially, the oblique and straight muscles, the retractor costæ, the cartilages of the asternal ribs, and the internal intercostal muscles; deeply, the fascia transversalis and the peritoncum. The fascia transversalis is little developed in the horse, and is very thin in emaciated subjects, but in animals in good condition it contains a good deal of fat. It blends with the iliac fascia and descends into the inguinal canal. The musculo-phrenic artery runs along the interval between the origin of the transversus and the costal part of the diaphragm. The intercostal nerves pass down over the lateral surface of the muscle, to which they give branches. Branches of the first three lumbar nerves are similarly disposed further back.

Blood-supply.-Intercostal, lumbar, and musculo-phrenic arteries.
Nerie-supply.-Intercostal and lumbar nerves.
5. Cremaster externus.-This small muscle may be regarded as a detached portion of the obliquus abdominis internus, with which it blends at its origin (Figs. $370,575)$.

Origin.-The iliac fascia, near the origin of the sartorius.
Insertion.-The tunica vaginalis communis.
Action.-To raise the tunica vaginalis, and with it the testicle.
Strueture.-The muscle arises by a thin aponeurosis which is succeeded by a flat muscular belly about two inches (ca. 5 cm .) in width in the stallion. ${ }^{1}$ It passes down the inguinal canal on the postero-lateral surface of the tunica raginalis, to which it is very loosely attached. On reaching the point where the tumic is reflected on to the tail of the epididymis, the muscle is inserted into the outer surface of the tunic by short tendinous fibers.

Relations.- The muscle lies between the peritoneum and the fascia transversalis in front and the iliac fascia and inguinal ligament behind. On reaching

[^48]the abdominal ring it descends the inguinal canal on the postero-lateral surface of the tunica vaginalis communis.

Blood-supply.-External spermatic artery.
Nerve-supply.-External spermatic nerve.
The Inguinal Canal.-This term (Canalis inguinalis) is applied to an oblique passage through the posterior part of the abdominal wall. ${ }^{1}$ It begins at the abdominal inguinal ring, and extends obliquely ventro-medially, and somewhat forward, to end at the subeutaneous inguinal ring. Its anterior wall is formed by the fleshy posterior part of the internal oblique muscle, and the posterior wall ly the strong tendinous inguinal ligament. The average length of the canal, measured along the spermatic cord, is about four inches (ca. 10 cm .). The abdominal or internal inguinal ring (Annulus inguinalis abolominalis) is the internal opening of the eanal; it is bounded in front by the thin margin of the internal oblique muscle, and behind by the inguinal ligament. It is directed from the edge of the prepulic tendon approxinately toward the tuber coxe. Its langth is about six or seven inches (ca. $15-17.5 \mathrm{~cm}$.). The efge of the musele is attached to the surface of the ligament here by delicate connective tissue, exeept where structures intervene between the walls of the canal. The lateral limit of the ring is determined by the musele becoming firmly attached to the ligament, i. e., actually arising from the latter. The subcutaneous or external inguinal ring (Annulus inguinalis subcutaneus) is a well-defined slit in the aponeurosis of the external oblique muscle, lateral to the prepubic tendon. Its long axis is directed from the edge of the prepubic tendon outward, forward, and slightly ventrally, and its length is about four or five inches (ca. 10-12 cm.). The eanal contains in the male the spermatic cord, the tunica vaginalis, the external cremaster muscle, the external putic artery (and inconstantly a small satellite rein), and the inguinal lymph vessels and nerves. In the female it contains the mammary vessels and nerves; in the bitch it also lodges the round ligament of the uterus, enclosed in a tubular process of peritoneum.

[^49]The Prepubic Tendon.-The prepubic tendon (Tento preppubicus) is essentially the tendon of insertion of the two recti abdominis, but also furnishes attachment to the obliqui, the graciles, and the pertinei. It is attached to the anterior borlers of the pubic bones, incluting the ilio-pectineal eminences. It has the form of a very strong thick band, with concave lateral lorders which form the medial boundaries of the subcutancous inguinal rings. Its direction is oldique upward and backward. ${ }^{2}$ Its structure is somewhat complex. Most of the fibers of the posterior part extenul from one ilio-pertineal eminence to the other. The fibers which belong to the recti curve in to the median line. The aponeuroses of the internal oblique muscles are inserted into its ablominal surface, and the inguinal ligaments are attached to and continue across it in areiform fashion. The anterior part of the tendon of origin of the gracilis is fused with it ventrally, and many of the fibers of the pectincus arise from it. It gives off on either side a strong round band, the so-called accessory ligament, which is inserted into the forea of the head of the femur with the round

[^50]ligament (ride hip joint). A band from the ventral surface extends backward and blends with the tendon of origin of the gracilis on each side.

The Muscles of the Thoracic Limb I. THE MUSCLES OF THE SHOULDER GIRDLE (Figs. 266, 267, 268, 276)

This group (Mm. cinguli extremitatis thoracalis) consists of those muscles which connect the thoracic limb with the head, neck, and trunk. It may be regarded as consisting of two divisions-dorsal and ventral. ${ }^{1}$

A. Dorsal Division

This division consists of two layers which overlie the proper muscles of the neck and back.

First Layer

1. Trapezius.-This is a flat, triangular muscle, the base of which extends along the supraspinous ligament. It is disided by an aponeurotic portion into two parts:
(a) Trapezius cervicalis.-Origin.-The funicular part of the ligamentum nuche, from the second cervical to the third thoracic vertebra.

Insertion.-The spine of the scapula and the fascia of the shoulder and arm.
(b) Trapezius thoracalis (s. dorsalis).-Origin.-The supraspinous ligament, from the third to the tenth thoracic vertebra.

Insertion.-The tuber spine of the scapula.
Action.-Acting as a whole, to clevate the shoulder; the cervical part draws the scapula forward and upward and the thoracic part draws it backward and upward.

Structure.-The muscle arises by a narrow, thin aponeurosis. from which the filers of the flat fleshy part converge to the spine of the scapula and the aponeurosis which separates the two portions. The cervical fascia joins the ventral edge of the cervical portion to the brachiocephalicus, or the two muscles may unite or overlap herc.

Relations.-superficially, the skin and fascia; deeply, the rhomboideus, latissimus dorsi, supraspinatus, infraspinatus, deltoid, splenius, serratus ventralis, and anterior deep pectorat muscles, and the cartilage of the scapula.

Blood-supply.-Deep cervical and intercostal arteries.
Nerve-supply.-spinal accessory nerve.

Second Layer

This consists of two muscles-the rhomboideus and latissimus dorsi.
2. Rhomboideus.-This consists of two parts:
(a) Rhomboideus cervicalis.-Origin.-The funicular part of the ligamentum nuche, from the second cervical to the second thoracic vertebra.

Insertion.- The medial surface of the cartilage of the scapula.
b) Rhomboideus thoracalis (s. dorsalis).-Origin.-The spinous processes of the second to the seventh thoracic vertebra by means of the dorso-scapular ligament.

Insertion.-The medial surface of the cartilage of the scapula.
Action.-To draw the scapula upward and forward. When the limb is fixed the cervical part will elevate the neck.
${ }^{1}$ The terms dorsal and rentral are here used in the topographic and not in the morphological sense; all the muscles of the group are ventral in the latter sense.

Structure. - The cervical part is narrow, pointed at its anterior extremity, and lies along the funicular part of the ligamentum nuchse, to which it is attached by short tendon bundles. The fibers are directed for the most part longitudinally. The thoracie part is quadrilateral in shape, and its fibers are nearly vertical. Its (leep) face is intimately attached to the dorso-seapular ligament.

Relations.-Superficially, the skin and faseia (over a small area in front), the trapezius, and the cartilage of the scapula; deeply, the dorso-scapular ligament, the splemius, complexus, longissimus dorsi, and serratus dorsalis.

Blood-supply.-Dorsal and deep cervical arteries.
Nerve-supply.-Sixth and seventh cervical nerves.
3. Latissimus dorsi.-This is a wide musele which has the form of a rightangled triangle. It lies for the most part under the skin and cutaneous muscle, on the lateral wall of the thorax, from the spine to the arm.

Origin.-The lumbo-dorsal fascia-and by this means from the fumbar and thoracic spines as far forward as the highest point of the withers.

Insertion.-The teres tuberde of the humerus, in common with the teres major.

Action.-To draw the humerus upward and backward and flex the shoulderjoint. If the limb is advanced and fixed, it draws the trunk forward.

Strueture.-The muscle arises hy a wide aponeurosis, which fuses with that of the serratus dorsalis and with the lumbo-dorsal fascia. The muscular part is at first rather thin, but by the convergence of its fibers becomes thicker as it approaches the arm. The anterior fibers pass almost vertically downward over the dorsal angle of the scapula and its cartilage. The posterior fibers are directed downward and forward. The thick belly formed by the convergence of these passes under the triceps to end on the flat tendon of inscrtion, which is common to this muscle and the teres major. The tendon of insertion furnishes origin to the anterior part of the tensor fascize antibrachii.

Relations.-superficially, the superficial fascia, skin, cutancus, trapezius, and triceps; deeply; the cartilage of the sapula, the rhomboideus, the serrati, the external intercostals, and the lumbo-dorsal fascia.

Blood-supply.-Sulscapular, intereostal, and lumbar arteries.
Nerve-supply.-Thoraco-Iorsal nerve.

B. Ventral Division

1. Brachiocephalicus. - This musde extends along the side of the neek from the head to the arm. It is incompletely divisible inte two portions.

Origin.-(1) The mastoid process of the temporal bone and the nuchal crest; (2) the wing of the atlas and the transverse processes of the second, third, and fourth cervical vertebree.

Insertion. - The deltoid tuberosity, the curved rough line which extends from this almost to the distal extremity of the humerus, and the fascia of the shoulder and arm.

Action.-When the head and neck are fixed, to draw the limb forward, extending the shoulder joint. When the limb is fixed, to extend the head and neck, if the museles act together; acting separately, to incline the head and neek to the same side. By means of its attachment to the strong fascia which extends from the deltoid tuberosity to the onter face of the elbow the muscle also acts as ani extensor of the elbow joint (e. g., in standing).

Structure. As already mentioned, the muscle is capable of incomplete division into two parts, the line of division being indicated by the emergence of superficial branches of the ventral divisions of the cervical nerves. The mastoid part
${ }^{1}$ This musele is also callen the mastoido-humeralis, humero-mastoideus, dero-brachialis and levator humeri.
(M. cleido-mastoideus) partly overlaps the other (M. cleido-transversarius), which lies dorsal to it. The former is attached to the mastoid process and the occipital bone by a broad tendon which fuses at its terminal part with that of the splenius and longissimus capitis et atlantis; it is also attached to the tenton of insertion of the sterno-cephalicus by aponeurosis. The dorsal part is attached to the transverse processes by four fleshy digitations. The belly of the muscle is adherent superficially to the cervical fascia and the cutaneous muscle, and deeply to the omohyoidens. In front of the shoulder its deep face may present a tendinous intersection of variable development. ${ }^{1}$ Here the muscle becomes wider, covers the shoulder joint, passes between the brachialis and biceps, and is inserted by means of a wide tendon which it shares with the superfieial pectoral muscle.

Relations.-Superficially, the skin, cervical fascia, the parotid gland, the cutaneus, the brachialis, and branches of the cervical nerves; deeply, the splenius, longissimus capitis et atlantis, rectus capitis ventralis major, omo-hyoideus, serratus ventratis, anterior deep pectoral and biceps muscles, the inferior cervical artery, the prescapular hymph glands, and branches of the cervical nerves. The ventral edge of the muscle forms the dorsal boundary of the jugular furrow. The dorsal border may be in contact with the cervical trapezius, or be separated from it by a variable interval.

Blood-supply.-Inferior cervical, carotid, and vertebral arteries.
Nerre-supply.-Spinal accessory, cervical, and axillary nerves.
The pectoral fascia is a thin membrane covering the surface of the pectoral muscles, to which it is, for the most part, closely attached. It detaches a layer which passes between the superficial and deep pectorals. At the posterior edge of the triceps another layer is given off, which passes on the lateral surface of this muscle to blend with the scapular fascia; the deeper layer becomes continuous with the subscapular and cervical fasciæ.

The pectoral muscles form a large fleshy mass which occupies the space between the ventral part of the chest-wall and the shoulder and arm. They are clearly divisible into a superficial and a deep layer. The superficial layer may be subdivided into two parts by careful clissection; the deep layer is clearly made up of two muscles.
2. Superficial pectoral muscle (M. pectoralis superficialis).
(a) Anterior superficial pectoral muscle (pars descendens).2-This is a short, thick, somewhat rounded muscle, which extends from the manubrium sterni to the front of the arm. It forms a distinct prominence on the front of the breast, which is easily recognized in the living animal.

Origin.-The cariniform cartilage of the sternum.
Insertion.-(1) The curved line of the humerus with the brachiocephalicus; (2) the fascia of the arm.

Action.-To arlduct and advance the limb.
Structure.-The belly of the muscle is convex on its superficial face, but deeply it is flattened where it overlaps the posterior superficial pectoral. Here the two muscles are usually closely attached to each other, and care must be exercised in making the separation. The tendon of insertion blends with that of the brachiocephalicus and with the fascia of the arm. At the middle line of the breast a furrow occurs between the two muscles; laterally, another furrow, containing the cephalic rein, lies between the muscle and the brachiocephalicus.

Relations.-Superficially, the skin, fascia, and panniculus; deeply, the pos-
${ }^{1}$ This is regarded as a vestige of the clavicle. On this basis the portion of the muscle from the restige to the arm represents the clavicular part of the deltoid and perhaps the clavicular part of the pectoralis major of man.
${ }^{2}$ Also termed the pectoralis anticus or pars clavicularis.
terior division, the deep pectoral, and the biceps. The cephatic vein hes in the groove between this muscle and the brachiocephalicus.
(b) Posterior superficial pectoral muscle (pars transversa). ${ }^{1}$ - This is a wide muscular sheet which extends from the ventral edge of the sternum to the medial surface of the ellow.

Origin.-(1) The ventral edge of the sternum as far back as the sixth cartilage; (2) a fibrous raphe common to the two museles.

Insertion.-(1) The fascia on the proximal third of the forearm; (2) the curved lime of the humerus with the preceding muscle.

Action.-To adduct the limb and to tense the fascia of the forearm.
Structure.-It is thin and pale, and mixed with a good deal of fibrous tissue. The right and left muscles fuse at a median fibrous raphé. The tendon of insertion unites with the fascia on the medial side of the forearm for the most part: only a small part in front, about an inch in width, is attached to the humerns.

Relations.-Superficially, the skin, fascia, and the preceding muscle; deeply, the deep pectoral, the hiceps, and the brachialis; at the elbow, the median vessels and nerve, and the medial and middle flexors of the carpus.
3. Deep pectoral muscle (M . pertorthis profundus).-This muscle is much thicker and more extensive in the horse than the superficial pectoral. It consists of two distinct parts.
(a) Anterior deep pectoral muscle (pars scapularis). ${ }^{2}$ - This is prismatic and extends from the anterior part of the lateral surface of the sternum to the cervical angle of the scaputa.

Origin.-The anterior half of the lateral surface of the sternum and the cartilages of the first four ribs.

Insertion.-The aponeurosis which covers the supraspinatus at its dorsal end, and the scapular fascia.

Action.-To adduct and retract the limb; when the limb is adranced and fixed, to draw the trunk forward.

Structure.- The musele is almost entirely fleshy. It deseribes a curve (convex anteriorly), passing at first forward, then upward over the front of the shoulder, a little to its medial side, and finally inclines somewhat hackwarl along the anterior border of the supraspinatus. It is loosely attached to the latter musele, and terminates in a pointed end which becomes more firmly attached near the cervical angle of the scapula.

Relations.-superficially, the skin and fascia, the cutaneus, superficial pectoral, trapezins, and hrachiocephalicus muscles, the cephalic rein, and the inforior cervical artery; deeply, the posterior deep pectoral, biceps, supraspinatus, omo-hyoideus, and serratus ventrahis muscles, the brachial vessels, and the branches of the brachial plexus of nerves.
(b) Posterior deep pectoral muscle (pars humeralis s. ancendens). ${ }^{3}$-This is much the largest of the pectoral group in the horse. It is somewhat triangular or fon-shaped.

Origin.-(1) The abdominal tunic; (2) the xiphoid cartilage and ventral aspect of the sternum; (3) the cartilages of the fourth to the ninth ribs.

Insertion.-(1) The posterior part of the medial tuberosity of the humerus; (2) the anterior part of the lateral tuberosity of the humerus; (3) the tendon of origin of the coraco-brachialis.

Action.-To adduet and retract the limb; if the limb is advanced and fixed, to draw the trunk forward.

Structure.-This musele is almost entirely fleshy. Its posterior part is wide

[^51]and thin, but as the muscle is traced forward, it beeomes narrower and much thicker. It passes forward and slightly upward in a gentle curve to its insertion. The humeral insertion is just below that of the medial division of the supraspinatus. Part of the fibers are inserted by means of a tendinous band which binds down the tendon of the biceps and is attached to the lateral lip of the intertuberal or bicipital groove, and a small part is attached to the tendou of origin of the coraco-brachialis.

Relations.-Superficially, the skin, cutaneus, and superficial pectoral; deeply, the abdominal tunic, the external oblique, the rectus abdominis et thoracis, the brachial vessels, and branches of the brachial plexus of nerves. The external thoracic vein lies along the lateral border.

Blood-supply.-Internal and external thoracic, inferior cervical, anterior circumflex, and intercostal arteries.

Nerve-supply. Pectoral nerves, from the brachial plexus.
3. Serratus ventralis ${ }^{1}$ (Figs. 267, 268).-This is a large, fan-shaped muscle, situated on the lateral surface of the neck and thorax. It derives its name from the serrated ventral edge of its thoracic portion. It consists of cervical and tho racic parts.
(a) Serratus cervicis.

Origin.-The transverse processes of the last four or five cervical vertebrie.
Insertion.- The anterior triangular area on the costal surface of the scapula (facies serrata) and the adjacent part of the eartilage.
(b) Serratus thoracis.

Origin.-The lateral surfaces of the first eight or nine ribs.
Insertion.-The posterior triangular area on the costal surface of the scapula (facies serrata) and the adjacent part of the cartilage.

Iction.-The two muscles form an elastic support, which suspends the trunk between the two scapulie. ${ }^{2}$ Contracting together, they raise the thorax; contracting singly, the weight is shifted to the limb on the side of the muscle acting. The two parts can act separately and are antagonistic in their effect on the scapula. The cervical part draws the base of the scapula toward the neck, while the thoracic part has the opposite action; these effects concur in the backward and forward swing of the limb respectively. With the limb fixed, the cervical part extends (raises) the neck or inclines it laterally. The thoracic part may act as a muscle of forced inspiration.

Structure.-In the domesticated animals there is no such clear division of the muscle as is found in man and the apes. On account of the difference in action. however, it seems desirable to distinguish the two portions. The serratus cervicis is thick and almost entirely fleshy. The serratus thoracis has on its superficial face a thick, tendinous layer which may sustain the weight of the trunk when the muscle substance relases. The ventral edge presents distinet digitations, the last four of which alternate with those of the obliquus externus abdominis, and are covered by the abdominal tumic. The fourth and fifth digitations extend nearly to the sternal ends of the ribs. The ninth digitation is small and may be absent. Exceptionally additional digitations may be attached to the tenth or eleventh rib or to the fascia over the intereostal muscles. The fibers converge to the insertion, which is thick and is intersected by elastic lamellæe derived from the dorso-seapular ligament.

Rclations.-Superficially, the brachiocephalicus, trapezius, deep pectoral, subscapularis, teres major, latissimus dorsi, cutaneus, the abdominal tunic, the brachial vessels, and the long thoracic nerve; deeply, the splenius, complexus,

[^52]serratus dorsalis, longissimi, the ribs and external intercostal muscles, and branches of the deep corvical and dorsal arteries.

Blood-supply.-Derp cervical, dorsal, vertebral, and intereostal arteries.
Nerre-supply.-Fifth to eighth cervical nerves.

II. THE MUSCLES OF THE SHOULDER

The muscles of this group (Mm . omi) arise on the scapula and end on the arm; they may be divided into two groups-one covering the lateral, the other the costal, surface of the scapula.

The superficial fascia of the shoukler and arm contains the cutaneous muscle of this region (wide p. 254), and may be considered to be continued on the medial side of the limb by the subscapular fascia.

The deep fascia of the shoulder and arm (Fascia omobrachialis) is strong and tendinous, and is intimately adherent to the museles on the lateral surface of the scapula, between which it detaches intermuscular septa, which are attached to the spine and borders of the scapula. The brachial portion is, for the most part, only loosely attached to the underlying museles, for which it forms sheaths; it is attached to the proximal and deltoid tuberosities of the humerus. A specially strong part extends from the deltoid tuberosity to the lateral surface of the elbow; it furnishes insertion to part of the brachiocephalicus and gives origin to fibers of the lateral head of the triceps and of the extensor carpi radialis. The fascia blends distally with the tendon of insertion of the biceps, and is continued by the antibrachial fascia.

A. Lateral Group (Figs. 267, 268)

1. Deltoideus.-This lies partly on the triceps in the angle between the scapula and humerus, partly on the infraspinatus and teres minor.

Origin.-(1) The upper part of the posterior border of the scapula: (2) the spine of the scapula, by means of the strong aponeurosis which covers the infraspinatus.

Insertion.-The deltoil tuberosity of the humerus.
Action.--To flex the shoulder joint and abduct the arm.
Structure.-The origin of the muscle is partly aponeurotic, partly fleshy. The aponeurosis fuses with that which covers the infraspinatus; the posterior part is attached to the scapula immediately in front of the origin of the long head of the triceps. The belly of the musele lies for the most part in a cavity formed in the triceps. It is widest about its middle.

Relations.-Superficially, the skin, fascia, cutaneus, and brachiocephalicus; deeply, the infraspinatus, teres minor, triceps, and brachialis muscles, and branches of the posterior circumflex artery and axillary nerve.

Bloor-supply.-Subscapular artery (chiefly through the posterior circumflex).
Nerre-supply.-Axillary nerve.
2. Supraspinatus.-This muscle occupies the supraspinous fossa, which it fills, and heyond which it extends, thus coming in contact with the subscapularis.

Origin.-The supraspinous fossa, the spine, and the lower part of the cartilage of the scapula.

Insertion.-The anterior parts of the proximal tuberosities of the humerus.
Action.-To extend the shoulder joint. It also assists in preventing dislocation.

Structure.-The surface of the muscle is covered by a strong aponeurosis, from the deep face of which many fibers arise. The musele is thin at its origin from the cartilage, but becomes considerably thicker distally. It the neek of the scapula it divides into two branches, between which the tendon of origin of the
biceps emerges. These branches, fleshy superficially, tendinous deeply, are united by a fibrous membrane already mentioned in connection with the deep pectoral muscle; some fibers are attached to this membrane and the capsule of the shoulder joint. A bursa is often present under the muscle at the tuber scapule.

Relations:-Superficially, the skin, fascia, cutaneus, trapezius, and brachiocophalicus; deeply, the scapula and its cartilage, the subscapularis muscle, and the suprascapular vessels and nerve; in front, the anterior deep pectoral musele; behind, the spine of the scapula and infraspinatus muscle.

Blood-supply.-suprascapular and posterior circumflex arteries.
Nerre-supply.-Suprascapular nerse.
3. Infraspinatus.-This muscle occupies the greater part of the infraspinous fossa and extends beyond it posteriorty.

Origin.-The infraspinous fossa and the scapular cartilage.
Insertion.-(1) The lateral tuberosity of the humerus, distal to the lateral insertion of the supraspinatus; (2) the posterior eminence of the lateral tuberosity.

Action.-To abduct the arm and rotate it outward. ${ }^{1}$ It also acts as a lateral ligament.

Structure.-This muscte is also covered by a strong aponeurosis, from which many fibers arise, and by means of which the deltoid is attached to the spine of the scapula. A thick tendinous layer partialiy divides the muscle into two strata, and, coming to the surface at the shoulder joint, constitutes the chief means of insertion. This tendon, an inch or more (3 cm .) in width, passes over the posterior eminence of the lateral tuberosity of the humerus; it is bound down by a fibrous sheet, and a synovial bursa is interposed between the tendon and the bone. The portion of the tendon which crosses the lateral tuberosity is in part cartilaginous. When the long insertion is cut and reflected, the short insertion, partly tendinous, partly fleshy, is exposed.

Relations.-Superficially, the skin, fascia, cutaneus, trapezius, and deltoid; decply, the scapula and its cartilage, the shoulder joint and capsule, the long head of the triceps, the teres minor, and branches of the posterior circumflex artery of the scapula.

Blood-supply.-Subscapular artery:
Nerce-supply.-suprascaputar nerve.
4. Teres minor.-This is a much smaller muscte than the foregoing. It lies chiefly on the triceps, under cover of the delitoid and infraspinatus.

Origin.-(1) The rough lines on the distal and posterior part of the infraspinous fossa; (2) a small part of the posterior border of the scapula, about its middle; (3) a tubercle near the rim of the glenoid cavity.

Insertion.-The deltoid tuberosity and a small area just above it.
Action.-To flex the shoulder joint and to abduct the arm; also to assist in outward rotation.

Structure.-The muscle is not rounded, but flat and triangular in the horse. Its origin from the posterior border of the scapula is by means of a fascicular aponeurosis which also gives origin to fibers of the infraspinatus and triceps. The short, deep part of the muscle which lies on the joint capsule behind the lateral tuberosity of the humerus is covered at its origin by the distal edge of the tendon of origin of the long head of the triceps. A bursa is commonly found between the terminal part of the muscle and the capsule of the shoulder joint, and is often continuous with that of the infraspinatus.

Relations.-Superficially, the deltoid and infraspinatus muscles; deeply, the scapula, the shoulder joint, and the triceps muscle.

Blood-supply.-Subscapular artery.
Nerve-supply.-Axillary nerve.
${ }^{1}$ Günther states that this muscle assists in extension or flexion according to the position of the head of the humerus relative to the glenoid cavity.

B. Medial Group

1. Subscapularis.-This muscle occupies the subscapular fossa, beyond which, however, it extends both before and behind.

Origin.-The subscapular fossa.
Insertion.-The posterior eminence of the medial tuberosity of the humerus.
Action.-To adduct the humerus.
structurc.- The muscle is flat and triangular. The base is thin and interdigitates with the seapular attachments of the serratus ventralis. Distally the belly thickens and becomes narrower. It is covered by an aponeurosis, and contains a considerable amount of tendinous tissue. The tendon of insertion is crossed by the tendon of origin of the coraco-hrachialis: it is intimately adherent to the capsule of the shoulder joint, and may be regarded as replacing the medial ligament of the latter. A small bursa usually is present between the tendon and the tuberosity of the humerus.

Relations,-superficially, the scapula and shoulder joint, the supraspinatus, triceps, and teres major muscles; decply, the serratus ventralis muscle, the brachial ressels, and the chief branches of the brachial plexus. The subscapular vessels run along or near the positrior edge of the muscle.

Blood-supply.-subscapular artery.
Nerre-supply.-Suhscapular nerves.
2. Teres major.-This muscle is flat, widest about its middle, and lies chiefly on the medial face of the triceps.

Origin.- The dorsal angle and the adjacent part of the posterior border of the seapula.

Insertion. - The teres tuberele of the humerus, in common with the latissimus dorsi.

Action.- To flex the shoulder joint and adduet the arm.
Structure.-It is for the most part fleshy, but the origin consists of an aponcurosis which blents with that of the tensor fascia antibrachii. The insertion is by a flat tendon which fuses with that of the latissimus dorsi.

Relations.-Laterally, the triceps; medially, the serratus ventralis. The subscapular ressels lie in a groove between the anterior edge of this muscle and the posterior border of the subscapularis: near the shoulder joint the posterior circumflex artery and the axillary nerve emerge between the two muscles. The medial face of the musele is erossed by the thoraric branches of the brachial plexus. and by the artery which supplies the latissimus dorsi.

Blood-supply.-subscapular arters:
Nere-supply.-Axillary nerve.
3. Coraco-brachialis. ${ }^{1-}$ This muscle lies on the medial surface of the shoukter joint and the arm.

Origin.-The coracoid process of the scapula.
Insertion.- (1) A small area above the teres tuberele of the humerus; (2) the middle thind of the anterior surface of the humerus.

Action.-To adduct the arm and to flex the shoulder joint.
Structure- The long tendon of origin emerges hetween the subscapularis and the metial branch of the supraspinatus. It passes over the terminal part of the sulseapularis and is provided with a synovial sheath. The belly spreads out and divides into two parts. The small, short part is inserted into the proximal third of the medial surface of the shaft of the humerus; the large, long part is imserted into the middle third of the humerus, in front of the teres tubercle and the medial head of the triceps.

[^53]Relations.-Laterally, the subseapularis, the brachialis, the tendon of insertion of the latissimus dorsi, and the humerus; medially, the deep pectoral; in front, the biceps brachii. The anterior circumflex artery and the nerve to the biceps pas-s between the two parts, or between the musele and the bone, and the brachial vessels lie along the posterior border of the muscle.

Fig. 277.-Mtscles of Shoulder and Arm of Horse; Medial View.
1, Long head of triceps brachiii; 2, medial head of triceps; 3, distal edd of humerus.

Blood-supply.-Anterior circumflex artery.
Nerve-supply.-Musculo-cutaneous nerve.
4. Capsularis. ${ }^{1}$-This is a very small muscle, which lies on the flexion surface of the eapsule of the shoulder joint.
${ }^{1}$ Also known as the scapulo-humeralis posticus s. gracilis.

Origin.-The scapula, close to the rim of the glenoid carity.
Insertion.-The posterior surface of the shaft of the hamerus, a short distance below the head.

Action.-It has been held that it tenses the eapsule of the shoulder joint and prevents its being pinched during flexion, but there does not appear to be any attachment of the muscle to the joint capsule.
structure.-It is fleshy and usually ahout the breadth of a finger. It may, however, consist of only a few bundles of fibers; sometimes it is double. It passes through the brachialis muscle to reach its insertion.

Relations.-Lateralty, the teres minor and triceps muscles; medially, the teres major and subseapularis muscles, and the eapsule of the joint.

Blood-supply. - Posterior circumflex artery.
Nerce-supply.-Axillary nerve.

III. THE MUSCLES OF THE ARM

This group consists of five museles (Mn. brachii) which are grouped around the humerus. They arise from the scapula and the humerus, and are inserted into the forearm. They act on the ellow joint and the fascia of the forearm.

1. Biceps brachii. ${ }^{1}$ - This is a strong fusiform muscle, which lies on the anterior surface of the humerus (Fig. 277).

Origin.-The tuber scapule.
Insertion.-(1) The radial tuberosity; (2) the medial ligament of the elbow joint ; (3) the fascia of the forearm and the tenton of the extensor carpi ratialis.

Action.-To flex the elbow joint; to fix the shoukler, ehrow, and carpus in standing; to assist the extensor earpi radialis, and to tense the fascia of the forearm.

Structure.-The muscle is inclosed in a double sheath of fascia, which is attached to the tuberosities and the deltoid ridge of the humerus. The tendon of origin is molded on the intertuberal or bicipital groove; it is very strong and dense and is partly cartilaginous. Its play over the groove is facilitated by the large intertuberal or bicipital bursa (Bursa intertubercularis). ${ }^{2}$ The synovial membrane eovers not only the deep face of the tendon, but extends somewhat around the edges to the superficial face. A well-marked tendinous intersection runs through the belly of the muscle and divides distally into two portions. Of these, the short, thick one is inserted into the radial tuberosity and tetaches fibers to the medial collateral ligament of the elbow joint. The long tendon (Lacertus fibrosus) is thimer, blends with the faseia of the forearm, and ends by fusing with the tendon of the extensor earpi radialis; thus the action is continned to the metacarpus.

Relations.-Laterally, the brachiocephalicus and brachialis muscles; medially, the posterior deep pectoral and the smperficial pectoral muscles; in front, the anterior deep pectoral muscle; behime, the humerus, the coraco-hrachialis musele. the anterior circumflex and anterior radial vessels, and the musculo-cutaneous nerve.

Blood-suphly.-Branches of the hrachial and anterior radial arteries.
Serresupply. - Musculo-cutaneous nerve.
2. Brachialis. ${ }^{3}$ - This muscle ofcupies the museulo-spiral groove of the humerus. Origin.-The proximal third of the posterior surface of the humerus.
Insertion.-The medial surface of the neek of the radius (under cover of the long eollateral ligament) and the transverse radio-ulnar ligament.

Action.- To flex the chlow joint.

[^54]Structure- The peculiar spiral course of this muscle gave rise to the name often applied to it-humeralis obliquus. Beginning on the posterior surface of the shaft, close to the head of the humerus, it winds over the lateral surface, erosses the biceps very obliqucly, and finally reaches the medial side of the forearm by passing between the biceps and the extensor carpi. It is entirely fleshy, with the exception of its relatively slender tendon of insertion. Some fibers at the proximal end are attached to the capsule of the shoulder joint, which may thereby be tensed during flexion.

Relations.-Laterally, the skin and fascia, the teres minor, deltoid, triceps (lateral head), and brachiocephalieus muscles. Deeply, the teres major, the biceps, and the humerus. The anterior radial artery crosses the deep face of the musele in its distal third, and the radial nerve accompanies the musele in the distal half of the musculo-spiral groove.

Blood-supply.-Brachial artery.
Nerec-supply.-Musculo-cutancous nerve; frequently radial nerve also.
3. Tensor fasciæ antibrachii (Fig. 277). ${ }^{2}$ This is a thin muscle which lies chicfly on the medial surface of the triceps.

Origin.-The tendon of insertion of the latissimus dorsi and the posterior border of the scapula.

Insertion.-(1) The deep fascia of the forearm; (2) the olecranon.
Action.-(1) To tense the fascia of the forearm and to extend the elbow joint.
Structure.-The origin consists of a very thin aponeurosis which blends with those of the caput longum and the latissimus dorsi. In most cases there is a distinct division into anterior and posterior heads. The muscular portion is thin in its anterior part, somewhat thicker behind, and is narrower than the aponcurotic origin. It is succeeded by an aponcurotic insertion, which ends chiefly by blending with the fascia of the forearm a little below the elbow. There is, however, a small but constant tendinous attachment to the olecranon.

Relations.-Laterally, the cutancus, triceps (long and medial heads), the medial and middle flexors of the carpus, and the ulnar vessels and nerve; medially, the latissimus dorsi, serratus ventralis, and posterior pectoral muscles.

Blood-supply.-subscapular, ulnar, and deep brachial arteries.
Nerve-supply.-Radial nerve.
4. Triceps brachii (Figs. 267, 268, 277). -This, together with the preceding muscle, constitutes the large muscular mass which fills the angle between the posterior border of the scapula and the humerus. It is clearly divisible into three heads.
(a) Long head (Caput longum tricipitis). ${ }^{2}$ - This, the largest and longest of the three heads, is a powerful, thick, triangular musele, which extends from the posterior border of the scapula to the olecranon.

Origin. - The posterior border of the scapula.
Insertion.-The lateral and posterior part of the snmmit of the olecranon.
Action.-(1) To extend the elbow joint: (2) to flex the shoulder joint.
Structure.-The muscle arises by a wide, strong aponeurosis from the posterior border of the scapula. From this the bundles of the fleshy portion converge to the short, strong tendon of insertion. A careful examination will show that the muscle is penetrated by a tendinous intersection from which many fibers take origin obliquely. The snperficial face is covered by an aponeurosis which is specially developed at its distal part. A small bursa occurs under the tendon of insertion.

[^55]${ }^{2}$ Also known as the anconæus longus or caput magnum.

Relations.-Laterally, the cutaneus, deltoid, infraspinatus, teres minor, and the lateral lead; medially, the tensor faseix antibrachii, teres major, latissimus dorsi and posterior deep pectoral muscles, and the subscapular vessels; in front, the brachialis and the medial head, the deep brachial and posterior circumflex vessels, and the axillary and radial nerves; behind, the skim and fascia.

Blood-supply.-Subscapular and deep brachial arteries.
Nere-supply.-Radial nerve.
(b) Lateral head (C'aput laterale tricipitis). ${ }^{1}$ - This is a strong, quadrilateral muscle, which lies on the lateral surface of the ams. Its proximal third is covered by the deltoid and teres minor muscles, the remainder only by the thin cutaneous muscle and the skin.

Origin.-(1) The deltoid tuberosity and the curved rough line which extends from it to the neck of the lumerns; (2) the strong fascia which extends from the deltoid tuberosity to the lateral surface of the ellow joint.

Insertion.-(1) A small prominent area on the lateral surface of the olecranon; (2) the temolon of the long head.

A ction.-To extend the ellow joint.
structure.-The origin consists of short tendinous fibers. The belly is thick, and is composed of paralled bundles which are directed ohliquely downward and hackward. Thes are inserted partly into the tendon of the long head and partly into the olecramon below and in front of that tendon.

Relutions.-Laterally, the deltoill, teres minor, and cutaneus museles; medially, the long and medial heads and the lorachialis muscle. Branches of the circumflex vessels and axillary nerve emerge botwen the posterior edge of the musele and the long head. The deep face of the muscle is related to the branches of the deep brachial artery and of the radial nerve.

Blood-supply--Posterior circumflex and deep brachial arteries.
Neme-supply.-Radial nerve.
(c) Medial head (Caput mediale tricipitis) (Fig. 277).2-This is much the smallest of the three heads. It is situated on the medial surface of the arm, and extends from the middle third of the humerus to the oleeranon.

Origin.-The middle third of the medial surface of the shaft of the humerus, behind and below the teres tubercle.

Insertion.-The medial and anterior part of the summit of the olecranon, between the insertion of the long head and the origin of the ulnar head of the deep digital flexor.

Action.-To extend the ellow joint.
structure. -The muscle is flesly except at its insertion, where it has a flat tendon, under which a small bursa may be found.

Relations.-Laterally, the humerus, brachialis, anconeus, and the lateral head; medially, the posterion deep pectoral, eoraeo-brachialis, teres major, latissimus dorsi, and tensor fascias antibrachii museles, the brachial and deep brachial vessels, and the median and ulnar nerves; behind, the long head, branches of the deep brachial vessels, and the radial nerve.

Blood-supply. - Deep brachial and ulnar arteries.
Nerce-supply.-Radial nerve.
5. Anconeus.-This is a small musele which covers the olecranon fossa and is covered by the triceps. It is somewhat difficult to separate from the lateral head. Origin. - The distal third of the posterior surface of the humerus.
Insertion. - The lateral surface of the olecranon.
detion.-To extend the elbow joint, and to raise the capsule of the joint and prevent its leing pinched during extension.

[^56]Structure.-It is almost entirely fleshy. The deep face is adherent to the joint capsule.

Relations.-Superficially, the triceps muscle; deeply, the humerus and the elbow joint.

Blood-supply.-Deep brachial artery.
Nerve-supply.-Radial nerve.

IV. FASCIE AND MUSCLES OF THE FOREARM AND MANUS (FASCIE ET MUSCULI ANTIBRACHII ET MANUS)

The forearm is covered on three sides by the muscles of this group, leaving the medial surface of the radius for the most part subcutancous. The extensors of the carpus and digit lie ou the dorsal and lateral parts of the region, while the flexors occupy the volar surface.

The fascia of the forearm (Fascia antibrachii) forms a very strong and complete investment for all the muscles of the region. The superficial fascia is thin, and blends at the carpus with the deep fascia; it furnishes insertion to the posterior superficial pectoral muscle. The deep fascia is very strong and tendinous in character. It furnishes insertion at its proximal and medial part to the tensor fasciæ antibrachii muscle; at its proximal anterior and lateral part to the brachiocephalicus and biceps. It is attached at the elbow to the lateral tuberosities of the humerus and radius, to the ulna, and to the collateral ligaments. On the medial surface of the forearm it blends with the periosteum

Fig. 278.-Digit of Horse; Volar View.
14. Deep flexor tendon; 15, superficial flexor tendon; 16, volar annular ligament of fetlock; 17, proximal digital annular or vaginal ligament; 11, cartilage of third phalanx; 24, digital cushion. (After Ellen-berger-Baum, Anat. für Künstler.) on the subcutaneous surface of the radius. It is closely adherent to the surface of the extensor museles, but is rather loosely attached to the flexors; near the carpus it blends with the tendons attached to the accessory carpal bone. From its decp face are detached intermuscular septa, which form sheaths for the muscles and are attached to the underlying bones. The principal septa are: (a) One which passes between the common digital extensor and the lateral extensor and ulnaris lateralis; (b) one between the common extensor and the extensor carpi radialis; (c) one between the medial and middle flexors of the carpus.

The carpal fascia (Fascia carpi) is a direct continuation of that of the forearm. It is attached chiefly to the tuberosities at the distal end of the radius, to the accessory carpal bone, and to the carpal collateral ligaments. In front it forms the so-called dorsal annular ligament of the carpus (Lig. carpi florsale), bridging over
the grooves and binding down the extensor tendons and their synovial sheaths. Behind it is greatly thickened and forms the volar annular or transverse ligament of the carpus (Lig, earpi transversnm). This stretches across from the aceessory car1al bone to the medial collateral ligament and the proximal extremity of the medial metacarpal bone. It thus completes the carpal canal (Canalis carpi), in which lie the flexor tendons, the carpal synovial sheath, the common digital artery, and the medial volar nerve.

The superficial fascia of the metacarpus and digit presents no special features, but the deep fascia (Fascia metacarpea et digitalis) is complicated by the existence of several annular ligaments. In the metacarpus it is hardly distinguishable from the periosteum in front. (on the proximal part of the volar surfaee it forms a strong and close sheath for the flexor tendons, and is attached to the metacarpal bone on each side. Lower down and between the amular ligaments it is thin. On the flexion surface of the fetlock joint it is much thickened by fibers passing transversely from one sesamoid bone to the other, forming the volar annular ligament of the fetloek, which binds down the flexor tendons in the sesanoid groove and converts the latter into a canal. Distal to this is a second thick quadrilateral shect, the proximal digital annular ligament (Lig. vaginale), which covers and is adherent to the tenton of the superfieial flexor. It is attached on either side by two bands to the ends of the borders of the first phalanx, thus firmty linding down the flexor tendons. A little further down a creseentie fibro-dastic sheet, the distal digital annular ligament, covers the terminal expansion of the deep flexor tendon. It is attached on either side by a strong band to the side of the first phalanx about its middle; its superficial face is largely covered by the digital cushion and its deep surface is in great part adherent to the deep flexor tendon. It is also connected with the socalked tendon or ligament of the ergot (Fig. 572). This is a thin and narrow fibrous band, which hegins in the fibrous basis of the ergot, as the mass of horn at the fetlock is ealled. It deseends to the side of the pastern joint, crossing over the digital artery and nerve; here it widens out and blends with the fibro-elastie sheet just described.

A. Extensor Division

1. Extensor carpi radialis (M. radialis dorsalis). ${ }^{1}$ - This is the largest muscle of the extensor division, and lies on the dorsal surface of the radius.

Origin.-(1) The lateral condyloid crest of the humerus; (2) the coronoid fossa; (3) the deep fascia of the arm and forearm and the intermuseular septum between this musele and the common extensor.

Insertion.-The metacarpal tuberosity.
Action.-To extend and fix the earpal joint and to flex the elbow joint.
Structure.-The tendon of origin hends with that of the common extensor and is adherent to the capsule of the ellow joint. The belly of the musele is rounded and runs out to a point at the distal third of the forearm. The tendon, which runs nearly the whole length of the fleshy portion, appears on the surface of the latter about its middle; here the muscle shows a distinctly pennate arrangement. The tendon passes through the middle groove at the distal extremity of the radius and over the eapsule of the carpal joint, hound down by the dorsal ammur ligament and invested with a synovial sheath. The latter begins three to four inches (ea. 810 cm .) above the carpus and extends to the middle of the carpus. Distal to this the tendon is attached to the joint capsule, but there is usually a small bursa at the level of the third carpal bone. In the distal half of the forearm the deep fascia blends with the tendom, and here the latter is joined by the long tendon of the biceps.

Relations.-superficially, the skin, fascia, and the oblique extensor; deeply, the capsule of the ellow joint, the short biceps tendon, the radius, the earpal joint

[^57]capsule, the anterior radial artery, and the radial nerve; laterally, the common extensor; medially, at the elbow, the brachialis and biceps.

Blood-supply.-Anterior radial artery:
Nerte-supply.-Radial nerve.
2. Common digital extensor (M. extensor digitalis communis). ${ }^{1}$ - This muscle lies lateral to the foregoing. which it resembles in general form, although less bulky.

Origin.-(1) The front of the distal extremity of the humerus, in and lateral to the coronoid fossa; (2) the lateral tuberosity on the proximal extremity of the radius, the lateral ligament of the elbow, and the lateral borde: of the radius at the junction of its proximal and middle thirds; (3) the lateral surface of the shaft of the ulna; (4) the fascia of the forearm.

Insertion.-(1) The extensor process of the third phalanx; (2) the dorsal surface of the proximal extremities of the first and second phalanges.

Action.-To extend the digital and carpal joints, and to flex the elbow joint.
Structure.-The muscle is a compound one, representing the common extensor, together with vestiges of the proper extensors of the digits. Usually at least two heads may be distinguished, although the division is always more or less artificial so far as the muscular part is concerned. The humeral head (Caput humerale), Thich constitutes the buik of the muscle, arises from the front of the lateral epicondyle of the humerus in common with the extensor carpi; the tendon of origin is adherent to the capsule of the elbow joint. Its belly is fusiform, and terminates in a point near the distal third of the radius. The tendon appears on the surface of the muscle about the middle of the belly, the arrangement being pennate. The tendon passes downward through the outer of the two large grooves on the front of the distal end of the radins, and over the capsule of the carpal joint. Passing down over the front of the metacarpus, it gradually inclines medially, reaching the middle line of the limb near the fetlock. A little below the middle of the first phalanx it is joined by the branches of the suspensory ligament, and the tendon thus becomes much wider. Two synovial membranes facilitate the play of the tendon. The proximal one is a synovial sheath which begins about three inches (ca. $7-8 \mathrm{~cm}$.) abore the carpus, and terminates at the proximal end of the metacarpus. At the fetlock a bursa occurs between the tendon and the joint capsule, but otherwise the two are adhereut. The smaller head, arising chiefly from the radius and ulna, is often divisible into two parts (Fig. 568). The larger of these is the radial head (Caput radiale); ${ }^{2}$ it arises from the lateral tuberosity and border of the radius, and from the lateral ligament of the elbow joint. The flat belly is succeeded by a delicate tendon, which accompanies the principal tendon over the carpus (included in the same sheath), and then passes outward to fuse with the tendon of the lateral extensor, or it may continue downward between the common and lateral extensor tendons to the fetlock. Usually a slip is detached which is inserted on the proximal extremity of the first phalanx, or ends in the fascia here. The sumaller and deeper division is the ulnar head (Caput ulnare); ${ }^{3}$ it is usually somewhat difficult to isolate. It arises from the ulna close to the interosseous space. It has a small rounded belly and is provided with a delicate tendon which may fuse with the principal tendon or may be inserted into the joint capsule and the fascia in front of the fetlock joint.

Relations.-The chief relations of the belly of the muscle are: superficially, the skin and fascia; deeply, the elbow joint, the radius and ulna, the extensor carpi obliquus, and the anterior radial ressels and radial nerve; in front and medially,

[^58]the extensor carpi radialis; behind, the lateral extensor and the interosseous vessels.

Blood-supply.-Radial and interosseous arteries.
Nerce-supply.-Radial nerve.
Lesbre reports that he has found in one case a brachioradialis muscle in the horse. It was a delicate fleshy bundle, superposed on the medial border of the common extensor, and extended from the lateral condyloid crest to the distal part of the medial border of the radius.

Fig. 279-Muscles of Left Thoracic Limb of Morge ftom Elbow Downtard; Lateral View. a. Extensor carpi radialis; g, brachialis; g^{\prime}, anterior superficial pretoral; c, common digital extensor; c, ulnaris lateralis. After Ellenberger-Baum, \&nat. (ür Künstler.)
3. Lateral digital extensor (M. extensor digitalis lateralis s. digiti quinti proprius). ${ }^{1}$ - This muscle is mueh smaller than the preceding, behind which it is situated.

Origin.-The lateral tuberosity of the radius and the lateral ligament of the
${ }^{1}$ Also known as the lateral extensor of the phalanges.
elbow joint, the shaft of the ulna, the lateral border of the radius, and the intermuscular septum.

Insertion.-An eminence on the front of the proximal extremity of the first phalanx.

Action.-To extend the digit and carpus.
Structure.-The muscle is pennate, and is enclosed in a sheath formed by the deep fascia, from which many fibers arise. The belly is thin and fusiform and terminates at the distal third of the forearm. From here the tendon (at first small and round) passes downward through the groove on the lateral tuberosity of the distal end of the radius, then over the carpus, and, gradually inclining toward

Fig. 250 - Cross-section of Left Foreary of Horse.
Section is cut a little above middle of region and the figure is a proximal view.
1, Median artery and satellite veins; 2, 3, branches of deep brachial and anterior radial vessels; 4, dorsal interosseous ressels.
the front, but not reaching the middle line of the limb, it passes over the metacarpus and fetlock to its insertion. Two synovial membranes occur in connection with the tendon. A synovial sheath envelops the tendon, beginning about three inches (ca. $6-8 \mathrm{~cm}$.) above the carpus, and reaching to the proximal end of the metacarpus. At the fetlock a small bursa lies between the tendon and the joint capsule, but otherwise the tendon is adherent to the capsule. The tendon becomes flat and much larger below the carpus, having received the tendon of the radial head of the common extensor and a strong band from the accessory carpal bone.

Relations.-Superficially, the skin and fascia; deeply, the lateral face of the radius and ulna; in front, the common extensor, the oblique extensor, and the
interosseous artery; behind, the lateral flexor of the carpus and the deep flexor of the digit.

Blood-supply.-Interosseous artery.
Nerre-supply.-Radial nerve.
4. Extensor carpi obliquus (M. abduetor pollieis longus et extensor pollicis brevis).-This is a small muscle which eurves obliquely over the distal half of the radius and the carpus.

Origin.-The lateral border and adjacent part of the dorsa! surface of the radius (the attachment area begiming at a point above the middle of the bone and extending down to its distal fourth).

Insertion.-The head of the medial (second) metaearpal bone.
Action.- To extend the earpal joint.
Structure.-The muscle is pennate and has a flat belly which curves downward, forward, and medially over the clistal part of the radius. The tendon continues the direction of the musele, and passes over the tendon of the extensor earpi radialis; it then occupies the oblique groove at the distal end of the radius, and crosses the medial face of the carpus. It is provided with a synovial sheath.

Relutions.-superficially, the skin and fascia, the lateral extensor, and the common extensor; deeply, the radius, the extensor carpi radialis, the earpal joint eapsule, and the medial ligament of the carpus.

Blood-supply.-Interosseous and anterior radial arteries.
Nerve-supply.-Radial nerve.

B. Flexor Division

1. Flexor carpi radialis (or medial flexor of the carpus). ${ }^{2}$ - This muscle lies on the medial surface of the forearm, behind the border of the ratlius.

Origin.-The medial epicondyle of the humerus, below and behind the collateral ligament.

Insertion.-The proximal end of the medial (second) metacarpal bone.
Action.-To flex the earpal joint and to extend the ellow.
Structure.-The muscle has a short tendon of origin, which is succeeded by a somewhat flattened, fusiform belly. The tendon of insertion begins near the distal fourth of the radius and desernds in a canal in the transverse carpal ligament. It is provided with a synovial sheath which hegins two or three inches (ea. $5-8 \mathrm{~cm}$.) above the earpus and cxtends ahnost to the insertion of the tendon.

Relations.-superfieially, the skin and fascia, the posterior superficial pectoral, and the tensor fascis antibraclii; deeply, the ellow joint, the radius, the deep flexor, the flexor carpi ulnaris, the median vessels, and the median nerve. At the elbow the artery and nerve lie in front of the musele, but below they dip beneath it.

Blood-supply.-Median artery.
Nerre-supply.-Median nerve.
On removing the deep fascia on the merlial surface of the elhow the student may notice a small musele lying along the collateral ligament. This is the pronator teres, which is usually not present or a mere vestige in the horse. It arises by a small, flat tendon from the medial epicondyle of the humerus, and is inserted into the medial ligament of the ellow. On account of its small size and the fact that the forearm is fixed in the position of pronation, the muscle can have no appreciable function. It is usually represented ly a tendinous band.
2. Flexor carpi ulnaris (or middle flexor of the earpus). ${ }^{3}$-This muscle lies on the medial and posterior asject of the forearm, partly under, partly behind, the preceding muscle. It arises by two heads-humeral and ulnar.

[^59]Origin.-(1) The medial epicondyle of the humerus just hehind the preceding muscle; (2) the medial surface and posterior border of the olecranon.

Fig. 2f1- Mtscles of Left Thoracic Limb of Horse from Elsow Dowxward; Medial View.
The fascia and the ular bead of the flexor carpi ulnaris have been removed, 1 , Distal end of humerus; 2 , median vessels and nerve.

Insertion.-The proximal edge of the accessory carpal hone.
Action.-To flex the carpal joint and to extend the elbow.

Structure.-The humeral head is much the larger, eonstituting, in fact, the bulk of the muscle. It is flattened, curved, and tapers at both ends. The uhar head, much smaller and very thin, is covered by an aponeurosis from which many of its fibers arise. It joins the large head a little above the middle of the forearm.

Fig. 2S2.- Mifacles of Left Thoracic Limb of Horse, from Elbow Downward; Medial View. Purts of superficial muscles have been removed, carpal canal opned up, and flexor tendons drawn backward.

The temdon of insertion is short and strong; it blends with the posterior annular ligament of the carpus.

Relations.-Superficially, the tensor fascia antibraehii, superficial peetoral. and flexor carpi radialis, the skin and fascia, and cutaneous branches of the ulnar nerve; deeply, the superficial and deep flexors of the digit. In the distal half of
the forearm the ulnar vessels and nerve lie between the lateral edge of this muscle and the lateral flexor of the carpus.

Blood-supply.-Ulnar and median arteries.
Nerve-supply.-Ulnar and median nerves.
3. Ulnaris lateralis (or lateral flexor of the carpus). ${ }^{1}$ - This muscle lies on the lateral face of the forearm, behind the lateral extensor of the digit.

Origin.-The lateral epicondyle of the humerus, behind and below the lateral ligament.

Insertion.-(1) The lateral surface and proximal border of the accessory carpal bone; (2) the proximal extremity of the lateral (fourth) metaearpal bone.

Action.-To flex the carpal joint and to extend the elbow.
Structure.-The belly of the muscle is flattened and is intersected by a good deal of tendinous tissue. There are two tendons of insertion. The short tendon is inserted into the accessory carpal bone. The long tendon is detached just above the carpus; it is smaller and rounded; it passes downward and a little forward through a groove on the lateral surface of the aceessory carpal bone, enveloped by a synovial sheath, to reach its insertion on the lateral metacarpal bone. A synovial poueh lies under the origin of the musele at the elbow joint, with the eavity of which it communicates.

Relations.-Superficially, the skin, fascia, and cutaneous branches of the ulnar nerve; decply, the eibow joint, the ulna, and the flexors of the digit; in front, the lateral extensor of the digit; behind, the middle flexor of the carpus, the ulnar head of the deep flexor, and the ulnar vessels and nerve.

Blood-supply.-Interosseous, ulnar, and median arteries.
Nerce-supply.-Radial nerve.
4. Superficial digital flexor² (M. flexor digitalis superfieialis).-This musele is situated in the middle of the flexor group, chiefly under cover of the middle flexor of the carpus.

Origin.- (1) The medial epicondyle of the humerus; (2) a ridge on the posterior surface of the radius, below its middle and near the medial border.

Insertion.-(1) The eminences on the proximal extremity of the second phalanx, behind the collateral ligaments; (2) the distal extremity of the first phalanx, also behind the collateral ligaments.

Action.-To flex the digit and earpus and to extend the elbow.
Structure.-The fleshy part of the muscle is the humeral head (Caput humerale); it takes origin from the humerus. The radial head (Caput tendineum) consists of a strong fibrous band, usually termed the radial or superior check ligament, which fuses with the tendon near the carpus. The belly of the musele is intersected by tendinous strands, and fuses more or less with that of the deep flexor, from which it is therefore somewhat difficult to separate. Near the carpus it is succeeded by a strong, thick tendon which passes down through the carpal canal and is enveloped by a synovial sheath, in common with the deep flexor. This, the carpal sheath (Vagina carpea), begins three or four inches ($8-10 \mathrm{em}$.) above the earpus, and extends downward nearly to the middle of the metacarpus. Below the carpus the tendon becomes flattened and broader and at the fetloek it widens greatly. Near the fetlock it forms a ring through which the tendon of the deep flexor passes (Fig. 286). Here the tro tendons are bound down in the sesamoid groove by the volar annular ligament, which fuses nore or less with the superfieial flexor tendon. At the distal end of the first phalanx the tendon divides into two branches which diverge to reach their points of insertion, and between these branches the tendon of

[^60]the deep flexor emerges (Fig. 278). A second synovial membrane, the digital synovial sheath (Vagina digitalis), begins at the distal fourth of the metacarpus,

Fig. 283.-sivnovial Sheaths and Bubs.e of Distal Part of Right Fore Limb of llorme; Medial View.

Fig. 28t.-synovial Sheatha and Burane of Dietal part of Right Fofe Limb of Horne; Latehil Vien.

The synovial sheaths (colored yellow) and the joint eapsules (colored pink) are injected.
a, slowath of extensor carpi obliquus; b, sleath of flexor carpi radialis; c, carpal sheath; $d, d^{\prime}, d^{\prime \prime}, d^{\prime \prime \prime}$, digital sheath; e, bursa under common extensor tendon; f. capsule of fetlock joint; 1 , extensor carpi radialis; 2, tendon of extensor carpi oblíqus; 3, flexor carpi radialis; 4, flexor earpi ulnaris; 5 , superficial flexor tendor; 6 , deep flexor tendon; 7 , suspensory ligament; δ, small metacarpal bone; 9 , large metacarpal bone; 10. volar annular ligament of fetlock; 11, proximal digital anmular ligament; 12 , ratlins; 13 , radiocarpal joint; 14, fetlock joint; $1 \overline{5}$, cartilage of third phalanx; 16, band from first phalanx to cartilage. (After Ellenberger, in Leisering's Atlas.)
a, Sheath of extensor carpi radalis: b, sheath of common extensor; c_{1} sheath of lateral extensor; d_{4} sheath of outer temion of ulnaris lateralis: e, e^{\prime}, carpal sheath; $f, f^{\prime}, f^{\prime \prime}$, digital sheath; g, bursa under common extensor tendan; h, bursa under lateral extensor tendon; i, capsule of fetlock joint; 1 , extensor carpi radialis; 2, common digital extensor; 3 , lateral digital
 superficial flexor tendon; B, deep flexor tendon; $\tilde{}$ suspensory ligament; s, lateral metacarpal bone: Ω. large metacarpal bone; 10 , volar annular ligament of fetlork; 11, digital annular ligament: 12 , fetlock joint; 13 , cartilage of third phalanx; $1 \neq$ band from first phalanx to cartilage. (After Elleaberger, in Leisering's Atlas.)
two or three inches (ca. $5-8 \mathrm{~cm}$.) above the fetlock, and extends to the middle of the second phalanx.

Relations.- The belly of the muscle is related superficially to the ulnar head of the deep flexor, the flexor carpi ulnaris, and, at its origin, to the ulnar vessels
and nerve; deeply, to the humeral head of the deep flexor. The tendon is related superficially to the shin and fascia; deeply, to the deep flexor tendon.

Blood-supply.-Median artery.
Verve-supply.- Clnar and median nerves.
5. Deep digital flexor ${ }^{1}$ (МI. flexor digitalis profundus). -The fleshy part of this muscle lies on the posterior surface of the radius, and is almost entirely under cover of the preceding muscles. It is the largest muscle of the flexor group.

Origin.-(1) The medial epicondyle of the humerus; (2) the medial surface of the olecranon; (3) the middle of the posterior surface of the radius and a small adjacent area of the ulna.

Insertion.-The semilunar crest and the adjacent surface of the cartilage of the third phalanx.

Action.-To flex the digit and carpus and to extend the elbow.
Structure-This muscle consists of three heads. The humeral head (Caput humerale) constitutes the bulk of the muscle. It is marked by tendinous intersections, and is separable into three secondary heads. A synovial pouch from the elbow joint descends under its origin about two inches. The ulnar head (Caput ulnare) is much smaller, and is at first superficially situated between the lateral and middle flexors of the carpus. The radial head (Caput radiale) is the smallest, and is not always present; it is situated on the distal twothirds of the posterior surface of the radius, under the humeral head. Each of these heads is provided with a tendon. The principal tendon-that of the humeral head-begins about three or four inches ($\delta-10$ cm.) above the carpus and is joined at the carpus by the tendons of the other two heads. The conjoined tendon passes

Fig. 235.-Cross-section of Distal Part of Left Metacarpes of Horse, Jest Abote Seshyoids. downward through the carpal canal, being included in the carpal synovial sheath with the superficial flexor tendon, as previously described. The tendon is at first broad and three-sided, but becomes narrower and rounded below. Continuing downward, it is joined about the middle of the metacarpus by a strong fibrous band, the so-called inferior or subcarpal check ligament (Caput carpale s. tendineum). ${ }^{2}$ This is a direct continuation of the posterior ligament of the carpus. Below this the tendon passes through the ring formed by the superficial flexor tendon, then in succession over the sesamoid groove, the distal sesamoidean ligaments, and the flexor surface of the distal sesamoid, to its insertion (Figs. 241 and 242). At the fetlock it widens considerably, narrows again in the middle of the digital region, again widens at the pulley

[^61]of the sccond phalanx, and forms a terminal fan-like expansion. At the pulleys of the digit the tendon contains cartilage and is thickened. From the distal fourth of the metacarpus to the distal end of the second phalanx it is inclosed in the digital synovial sheath described in connection with the superficial flexor. The bursa podotrochlearis or navicular bursa is found between the tendon and the distal sesamoid or navicular bone. The terminal part of the tendon is bound down by the distal digital annular ligament described with the fascia.

Relations.-The belly of the muscle is related posteriorly to the superficial

Fig. 2sg.-Ligamenta and Tendons of Distal Part of Limb of Horise.
Mc. 111, Large metacarpal bone; Ph. 1, first phalanx; Ph. If, second phalanx; Ph. III, third phalanx; 1, deep flezor tendon; 2, band from first phalanx to digitui cushor. (After Schmaltz, Atlas d. Anat. d. Pferdes.)
flexor and to the midfle flexor of the carpus; medially, to the flexor carpi radialis, the radial check ligament, and the median vessels and nerve; laterally, to the ulnaris lateralis; anteriorly, to the radius and wha and branches of the median artery and nerve. Below the carpus the tendon is aceompanied by the vessels and nerves of the digit. It may also be noted that the muscle is not entirely covered by the other flexors; it comes in contact with the skin and fascia on the posterolateral aspect of the proximal half of the forearm, and also on the lateral aspect of the distal fourth.

Blood-supply.-Median and ulnar arteries.

Nerve-supply.-Median and ulnar nerves.
The five muscles of the metacarpus and digit are either reduced to vestiges or modified greatly in structure.

1, 2. Lumbricales (medialis et lateralis).-These are two very slender fusiform muscles which lie on either side of the flexor tendons above the fetlock. They arise from the deep flexor tendon, and end in the fibrous tissue which lies under the nodule of horn at the fetlock which is known as the ergot (Fig. 572). Their action is inappreciable. The size of these muscles is subject to much variation. Often very little muscular tissue can be found, but the small tendon is constantly present.

Blood-supply.- Volar metacarpal arteries.
Nerce-supply.-Median and ulnar nerves.
3, 4, 5. Interossei.-These are three in number in the horse, and are situated chiefly in the metacarpal groove. Two, the medialis and lateralis, are very small muscles, each of which arises from the corresponding small metacarpal bone near its proximal extremity, and is provided with a delicate tendon which is usually lost in the fascia at the fetlock (Fig. 240). They have no appreciable action. Their blood- and nerve-supply is the same as that of the preceding muscles.

The interosseus medius is so much modified that it is usually termed the suspensory or superior sesamoidean ligament. It contains little muscular tissue, being transformed very largely into a strong tendinous band (Tendo interosseus), bifurcate below, and having for its chief function the supporting of the fetlock. It has been described, in deference to common usage, with the ligaments.

Fascie and Muscles of the Pelvic Limb The Fascife

The iliac fascia (Fascia iliaca) covers the ventral surface of the iliacus and psoas muscles, over which it is tightly stretched (Fig. 575). It is attached medially to the tendon of the psoas minor; laterally it is attached to the tuber coxe and blends with the deep layer of the lumbo-dorsal fascia. Its anterior part is thin. Posteriorly it is continuous with the inguinal ligament and the pelvic fascia. It furnishes surfaces of origin for the sartorius, cremaster externus, and transversus abdominis muscles.

The pelvic fascia (Fascia pelvis) lines the cavity as the parietal layer and at the pelvic outlet is reflected on the viscera to form the visceral layer. Laminæ are detached from it to strengthen the various peritoneal folds.

The superficial fascia of the gluteal region is thin and is closely adherent to the deep fascia. A subcutaneous bursa may be found on the tuber coxæ. The gluteal fascia (Fascia glutea) covers the superficial muscles of the region, and detaches intermuscular septa, which pass between the muscles. It is attached to the sacral spines, the dorsal sacro-iliac ligament, and the tubera of the ilium, and is continuous in front with the lumbo-dorsal fascia, behind with the coccygeal fascia. Its deep face gives origin to fibers of the superficial and middle glutei, the biceps femoris, and the semitendinosus, so that care is necessary in dissecting it off these muscles. The chief intermuscular septa are: (1) One which passes between the superficial gluteus and the biceps femoris; (2) one between the biceps and semitendinosus, from which a lamella is detached which passes between the middle and posterior parts of the biceps and is attached to the tuber ischii; (3) one between the semitendinosus and semimembranosus, which is attached to the sacro-sciatic ligament and tuber ischii; it furnishes origin for fibers of the long head of the semimembranosus.

The superficial fascia of the thigh presents no exceptional features, but the deep
fascia is very thick and strong on the front and lateral surface. This part, the fascia lata (Fig. 267), is continuous with the gluteal fascia; it is tenclinous in character, and easily separable from the underlying muscles. It furnishes insertion to the tensor fascise late and to the biceps femoris (in part), by both of which it is tensed. At the stifle it is attached to the patella and the lateral and medial patellar ligaments. Medially it is continuous with the medial femoral fascia. It furnishes the following intermuscular septa: (1) One which passes between the vastus lateratis and biceps femoris to be attached to the third trochanter of the femur; (2) two which pass between the three branches of the bieeps femoris; (3) a fourth between the biceps femoris and semitendinosus. The medial femoral fascia (Fascia femoralis medialis) covers the superficial muscles on the medial surface of the thigh. At its upper part it is joined by the femoral lamina of the aponeurosis of the external ohlique muscle (Fig. 575). The posterior part is thin. It is contimuous with the fascia lata in front and the fascia cruris below. At the stifle it fuses with the tendons of the sartorius and gracilis.

The fascia cruris, or fascia of the leg, consists of three layers. Two of these invest the entire region and may, therefore, be termed the common fasciæ. The superficial layer is a continuation of that of the thigh, while the second layer may be regarded chiefly as a continuation of the tendons of the superficial muscles of the hip and thigh (liceps femoris, semitendinosus, tensor fascie late, sartorius, and gracilis). The two layers frequently fuse, and are attached chiefly to the medial and lateral patellar ligaments and the crest and medial surface of the tibia. About the middle of the leg the two layers unite behind the deep flexor of the digit and form a strong band which passes downward in front of the tendons of the gastrocnemius and superficial flexor, to be attached with the latter to the anterior and medial part of the tuber calcis. This constitutes a tarsal tendon of insertion of the biceps femoris and semitendinosus. A strong band, about two inches in width, arises from the lateral supracondyloid crest, descends over the lateral head of the gastrocnemius, and bends with the foregoing and the superficial flexor tendon. The third layer forms shaths for the muscles, furnishing origin in part to their fibers. Two important intermuscular septa are detached, viz.: (1) One which passes between the long and lateral digital extensors to be attached to the fibula and the lateral border of the tibia; (2) one between the lateral digital extensor and the deep digital flexor.

The tarsal fascia (Fascia tarsi) fuses with the ligaments and bony prominences of the region. It is strong and tendinons in front, and joins the tendon of the long extensor below the joint. On the sides it is thin and fuses with the ligaments. Posteriorly it is very thick and strong, forming an amular ligament which stretehes from the medial ligament to the fibular tarsal bone and the plantar ligament. This converts the groove at the back of the hock into a canal, in which are the deep flexor tendon with its synovial sheath and the plantar vessels and nerves. In this vicinity there are three annular ligaments (Ligamenta transversa). The proximal one binds down the tendons of the long extensor, peroneus tertius, and tibialis anterior on the distal end of the shaft of the tibia. The middle one stretches from the fibular tarsal bone to the lateral tendon of the peroncus tertius, forming a loop around the tendon of the long extensor. The distal band stretches across the proximal extremity of the large metatarsal bone and incloses the tendons (and sheaths) of the two extensors of the digit.

The metatarsal and digital fasciæ do not differ materially from those of the corresponding regions of the thoracic limb.

The Muscles ${ }^{1}$

I. THE SUBLUMBAR MUSCLES (Figs. 287, 575)

The muscles of this group are not confined to the sublumbar region, but extend berond it both before and behind. Their ehief function is to flex the hip joint. Two, however,--the psoas minor and the quadratus lumborum,-have not this action.

1. Psoas minor--This is a fusiform, flattened, pennate muscle, which lies along the ventro-lateral aspect of the bodies of the last three thoracie and the lumbar vertebræ.

Origin.-The bodies of the last three thoracie and first four or five lumbar vertebrex, and the vertebral ends of the sixteenth and seventeenth ribs.

Insertion.-The psoas tuberele on the shaft of the ilium.
Iction.-To flex the pelvis on the loins, or to incline it laterally.
struchure.-The musele arises by a series of digitations which pass backward and outward to join the tendon at an acute angle. The latter lies along the lateral border of the fleshy portion and is flattened. It appears on the surface of the muscle at the third lumbar process and increases gradually in width until it reaches the pelvic inlet, where it becomes narrower.

Relations.-The ventral surface of the thoracic part of the musele is related to the pleura, erura of the diaphragm, and sympathetic and splanchnic nerves. In the abdomen the chief ventral relations are the peritoneum, the vena cava (right side), the aorta and left kidney (left side), the sympathetie nerves, and the ureters. Dorsally, the chief relations are the vertebre, the psoas major, and lumbar nerves. The lumbar arteries pass through the medial edge. Near its insertion the tendon is crossed medially by the external iliac artery, and laterally by the femoral nerve.

Blood-supply.-Intereostal and lumbar arteries.
Nerve-supply.-Lumbar nerves.
2. Psoas major.-This is much larger than the preceding muscle, by which it is partly eovered. It is triangular, with the base anterior.

Origin.-The ventral surfaces of the transverse processes of the lumbar ver-* tebre and the last two ribs.

Inscrtion.-The trochanter minor of the femur, by a common tendon with the iliacus.

Action.-To flex the hip joint and to rotate the thigh outward.
structure. - The origin of the musele is fleshy, the belly being in general flattened, thick in its middle, thin at its edges. The thoracie part is small, the abdominal part much thicker and wider, extending laterally beyond the extremities of the lumbar transverse processes. From the lumbo-saeral artieulation it lies in a deep groove formed in the iliacus (with which it is partly united), becomes smaller and rounded, and passes downward and backward to terminate by a strong tendon common to it and the iliacus. On account of the intimate union between the psoas major and iliacus they are frequently eonsidered a single muscle, to which the name ilio-psoas is applied; some anatomists inelude the psoas minor also under this term.

Relations.-Dorsally, the last two ribs and thoracic vertebre, the lumbar vertebre, the internal intercostals, quadratus lumborum, longissimus dorsi, and iliacus, and the lumbar vessels and nerves; ventrally, the pleura and peritoneum, the iliae fascia, inguinal ligament, the diaphragm, psoas minor and sartorius, and the circumftex iliae vessels.
${ }^{1}$ On account of the very slight mobility of the sacro-iliac articulation, the muscles of the pelvic girdle are much reduced, and almost all of those which might be included in this group extend to the femur or even to the leg. It seems undesirable, therefore, to attempt a morphological grouping.

Blood-supply.-Lumbar and circumflex iliac arteries.
Nerce-supply.-Lumbar and femoral nerves.
3. Iliacus.-This muscle covers the ventral surface of the ilium lateral to the sacro-iliae articulation, and extends beyond the lateral borter of the bone, underneath the middle glutens.

Origin. - The ventral surface of the ilium lateral to the ilio-pectineal line, the ventral sacro-iliac ligament, the wing of the sacrum, and the tendon of the psoas minor.

Insertion.-The trochanter minor of the femur, by a common tenton with the psoas major.

Action.-To flex the hip joint and to rotate the thigh out ward.
Strueture.-The belly of the musele is so deeply grooved for the psoas major as to give the appearance of being completely divided into medial and lateral parts. When the psoas is removed, it is seen, however, that the two heads are not entirely separated. The lateral, larger head arises from the wing of the ilium chiefly; the medial, smatler head arises chiefly from a small area on the shaft of the ilium, between the psoas tubercle and the depression for the medial tendon of the rectus femoris, and from the tendon of the psoas minor. The two parts inclose the psoas major in front of the hip joint.

Relations.-Dorsally, the ilium, saerum, saero-iliae articulation, the gluteus medius, the ilio-lumbar and external circumflex vessels; ventrally, the iliac fascia, inguinal ligament, the psoas major, sartorius, and abdominal museles. At the level of the hip joint the chief relations are: medially, the femoral vessels, the femoral nerve, and the sartorius muscle; laterally, the rectus femoris and tensor fasciæ latex; in front, the abdominal museles; behind, the hip joint.

Blood-supply.-Lumbar, cireumflex iliae, and deep femoral arteries.
Nerce-supply.-Lumbar and femoral nerves.
4. Quadratus lumborum.-This thin muscle lies on the lateral part of the ventral surfaces of the lumbar transverse processes.

Origin.-The ventral surface of the upper part of the last two ribs and the lumbar transverse processes.

Insertion.-The ventral surface of the wing of the sacrum and the ventral sacro-iliac ligament.

Action.- Acting together, to fix the last two ribs and the Jumbar vertebre; acting singly, to produce lateral flexion of the loins.

Structure.-The muscle is pemmate, and is curved with the convexity lateral. It is thin, largely mixed with tenclinous fibers, and is, in general, little developed in the horse in comparison with some of the other amimals (e.g., (log, sheep).

Relations.-Ventrally, the psoas major and the last thoracie and first three lumbar nerves; clorsally, the last two ribs, the lumbar transverse processes, and the lateral branches of the lumbar arteries.

Blood-supply.-Lumbar arteries.
Nerce-supply.-Lumbar nerves.
5. Intertransversales lumborum.-(Sce p. 279.)

II. THE LATERAL MUSCLES OF THE HIP AND THIGH

Under this head the museles of the lateral surface of the pelvis and thigh, and those which form the posterior contour of the latter, will be described.

1. Tensor fasciæ latæ (Fig. 267). Whis is the most anterior muscle of the superficial layer. It is triangular in form, with its apex at the tuber coxe.

Origin.-The tuber coxie.
Insertion.-The fascia lata and thus indireetly to the patella, the lateral patellar ligament, and the crest of the tibia.

Action.- To tense the fascia lata, flex the hip joint, and extend the stifle joint.
Structure.-The musele arises by a rather small head, about two inches (ea. 5 cm .) wide, on the antero-inferior eminence of the tuber coxa. Below this the belly spreads out and terminates in the aponeurosis about midway between the point of the hip and the stifle. Many fibers arise from an intermuseular septum between this musele and the superficial gluteus; this septum is attached to the lateral border of the ilium. The aponeurosis fuses with the fascia lata, which may be regarded practically as the temdon of insertion; it detaches a lamina which passes with the tendon of insertion of the superficial gluteus to the lateral border of the femur.

Relutions.-Laterally, the skin and fascia; medially, the obliquus abdominis extermus, the iliacus, superficial gluteus, rectus femoris, and vastus lateralis, branches of the circumflex iliae, ilio-lumbar, and iliaeo-femoral arteries, and the anterior gluteal nerve; anteriorly, the prefemoral lymph-glands. A considerable quantity of connective tissue is found between the deep face of the muscle and the abdominal wall.

Blood-supply.-Circumflex iliac, ilio-lumbar, and iliaco-femoral arteries. Nerce-supply.-Anterior gluteal nerve.
2. Gluteus superficialis (Fig. 267).-This musele lies behind and partly underneath the tensor fasciæ latie. It is triangular and consists of an anterior and a posterior head united by the gluteal fascia.

Origin.-(1) The tuber coxs and the adjacent part of the lateral border of the ilium; (2) the gluteal faseia.

Insertion.-The third trochanter of the femur.
Action.-To abduct the limb, flex the hip joint, and tense the gluteal faseia.
Structurc.-The anterior head of the muscle is not completely separable (exeept artifieially) from the tensor fascix latæ, since both muscles are attached to an intermuscular septum. The attachment to the border of the ilium is by means of an intermuseular septum, which passes beneath the thick lateral border of the gluteus medius and furnishes origin to fibers of both museles. The posterior head arises from the deep face of the gluteal fascia, and so indirectly from the dorsal sacro-iliac ligament. The two heads unite and terminate on a strong flat tendon, which is inserted into the edge of the third trochanter of the femur, under cover of the biceps femoris.

Relations.-Superficially, the skin, fascia, and biceps femoris; deeply, the gluteus medius, iliacus, rectus femoris, and branches of the iliaeo-femoral vessels; in front, the tensor fasciee latæ; behind, the biecps femoris.

Blood-supply.-Gluteal and iliaco-femoral arteries.
Nerve-supply.-Anterior gluteal nerve.
3. Gluteus medius (Figs. 268, 580).-This is a very large muscle which eovers the gluteal surface of the ilium and the greater part of the lateral wall of the pelvis, and extends forward also on the lumbar part of the longissimus dorsi.

Origin.-(1) The aponeurosis of the longissimus dorsi, as far forward as the first lumbar vertebra; (2) the gluteal surfaee and tubera of the ilium; (3) the dorsal and lateral sacro-iliac and saero-sciatic ligaments, and the gluteal fascia.

Insertion.- (1) The summit of the trochanter major of the femur; (2) the crest below the trochanter; (3) the lateral aspeet of the trochanteric ridge.

Action.-To extend the hip joint and abduet the limb. By its connection with the longissimus a museular mass is formed which is one of the chief factors in rearing, kicking, and propulsion.

Structure.-The anterior extremity of the muscle is narrow and thin, and lies in a depression on the surface of the longissimus, from the strong aponeurosis of which the fibers take origin. The pelvie portion of the musele is very voluminous, and forms the bulk of the muscular mass which gives the haunch its rounded con-
tour. This part of the mussle is intersected by several tendinous sheets. One of these is particularly distinct, and is attached to the gluteal line on the ilium. This divides the muscle incompletely into superficial and deep strata. The superficial part is inserted by a strong tendon into the summit of the great trochanter, and by a pointed fleshy mass with a tendinous border into the lateral surface of the trochanteric ridge. The deep part is termed the gluteus accessorius; it is smaller, and arises entirely from the ilium between the gluteal line and the tuber coxe (Fig. $58(0)$. It has a strong flat tendon which passes over the anterior part or convexity of the trochanter to be inserted into the crest below it. The trochanter is covered here with cartilage, and the trochanteric bursa (Bursa trochantericia) is interposed between the tendon and the cartilage. ${ }^{1}$

Relutions.-Superficially, the skin, lumbo-dorsal and gluteal faseix, the tensor fascie late, gluteus superficialis, and biceps femoris; deeply, the longissimus, the ilium, sacro-iliae and sacro-sciatie ligaments, the gluteus profundus, iliaeus and rectus femoris, the iliaco-femoral vessels, the gluteal and internal pudic vessels and nerves, and the great sciatie nerve.

Blood-supply.- Cluteal, ilio-lumbar, lumbar, and iliaco-femoral arteries.
Nerce-supply.-Gluteal nerves.
4. Gluteus profundus. ${ }^{2}$ - This much smaller quadrilateral muscle lies under the posterior part of the preceding muscle, and extends over the hip joint, from the superior ischiatic spine to the anterior part of the trochanter major (Fig. 580).

Origin.-The superior ischiatic spine and the adjacent part of the shaft of the ilium.

Insertion.-The edge of the anterior part or convexity of the trochanter major of the femur.

Action.-To abduct the thigh and to rotate it inward.
Structure. - The muscle is short and thick and contains numerous tendinous intersections. The fibers are directed almost transversely outward over the capsule of the hip joint and converge at the convexity of the trochanter.

Relations.-superficially, the glutens medius and branches of the gluteal vessels and nerves; deeply, the shaft of the ilium, the hip joint, and the rectus femoris and capsularis.

Blood-supply.-Gluteal artery.
Nerre-supply.-Anterior gluteal nerve.
5. Biceps femoris. ${ }^{3}$-This large muscle lies behind and in part upon the superficial and middle glutei. It extends in a curved direction from the sacral and coceygeal spines to the lateral surface of the stifle and leg (Figs. 267, 292, 580).

Origin.-(1) The dorsal and lateral sacro-iliac ligaments, the gluteal and coccygeal fascise, and the intermuscular septum between this muscle and the semitendinosus; (2) the tuler ischii.

Insertion.-(1) A rough eminence on the posterior surface of the femur near the trochanter tertius; (2) the free (anterior) surface of the patella and the lateral patellar ligament; (3) the tibial crest; (4) the crural fascia and the tuber ealcis.

Action.-The action is somewhat complex, hecause the musele is composed of three parts, has several points of insertion, and acts on all the joints of the limb except those of the digit. The general action is to extend the limb, as in propelling the body, rearing or kicking, and to abeluct it. The anterior part, by its attachment to the posterior surface of the femur and to the patella, would extend

[^62]the stifle and hip joints and abduct the limb. The middle part, being inserted chiefly on the tibial crest and the lateral patellar ligament, would extend the hip, and may, with the semitendinosus, flex the stifle. The posterior part, by virtue of its attachment to the tuber calcis, assists in extending the hock. It is to be noted, however, that extension of the hock joint can occur only when the stifle is also extended, and vice versâ.
structure.-The muscle has two heads of origin. The long or vertebral head arises chicfly from the dorsal and lateral sacro-iliac ligaments, the coccygeal fascia, and the intermuscular septum. There is often a large bursa between this head and the trochanter major. The short or ischiatic head arises by a strong tendon from the rentral spine on the tuber ischii, which also furnishes origin to part of the semitendinosus. They unite, and a short tendon, detached from the deep face of the muscle, is inserted into the posterior surface of the femur near the third trochanter; here a bursa is interposed between the tendon and the bone. The musple then divides into three parts, which terminate on a strong aponeurosis over the junction of the thigh and leg. The anterior part is directed toward the patella, the middle one toward the tibial crest, while the posterior one assists in the formation of the posterior contour of the limb. The aponeurosis blends with the deep layer of the fascia cruris, as already described. A synovial bursa occurs under the patellar insertion, and in some cases there is also one between the muscle and the third trochanter.

Relations.-Superficially, the skin and fascia; deeply, the sacro-iliac and sacrosciatic ligaments, the coccygeal fascia, the femur, the gluteus medius, obturator, gemellus, quadratus femoris, adductor, semimembranosus, vastus lateralis, and gastrocnemius muscles, branches of the lateral sacral, gluteal, obturator, femoral and deep femoral vessels, the great sciatic, tibial, peroncal, and posterior gluteal nerves; in frout, the superficial and middle glutei; behind and medially, the semitendinosus.

Blood-supply.-Gluteal, obturator, and pusterior femoral arteries.
Nerve-supply.-Posterior gluteal and great sciatic nerves.
6. Semitendinosus.-This is a long muscle which extends from the first two coccygeal vertebre to the proximal third of the medial surface of the tibia. It lies at first behind the biceps, then passes downward on the back of the thigh, between that muscle and the semimembranosus (Figs. 268, 288, 580). It has two heads of origin.

Origin.-(1) The transverse processes of the first and second coccygeal vertebre, the coccygeal fascia, and the intermuscular septum between this muscle and the biceps femoris; (2) the ventral surface of the tuber ischii.

Insertion.-(1) The tibial crest ; (2) the crural fascia and the tuber calcis.
Action.-To extend the hip and hock joints, acting with the biceps and semimembranosus in propulsion of the trunk, rearing, etc.; also to flex the stifle and rotate the leg inward. ${ }^{\text {t }}$

Structure.-The long or vertebral head is small at its origin, but becomes larger by the accession of fibers arising on the intermuscular septum. Below the tuber ischii it unites with the short head, which arises partly by fleshy fibers, partly by a common tendon with the biceps. The muscle then passes downward on the back of the thigh, and terminates on a wide tendon on the medial surface of the proximal third of the leg. A distinct band passes forward to be inserted on the tibial crest. (a bursa lying between the tendon and the tibia), part fuses with the fascia of the leg, while the remainder joins the biceps tendon and concurs in the formation of the tendinous band, which, as before described, terminates on the tuber calcis (Fig. j53). A bursa may occur under the long head where it passes over the tuber ischii.
${ }^{1}$ It should be remembered, however, that the stiffe can be flexed only when the hock is also flexed and vice versâ.

Relations.-Laterally, the skin and fascia, the bieeps, and the medial head of the gastromemius; medially, the rocergeal fascia, the sacro-sciatic ligament, the semimembranosus; anteriorly, the hiceps femoris, branches of the femoral artery, and the great sciatic nerve.

Blood-supply.-Posterior ghteal, ohturator, and posterior femoral arteries.
Nerfe supply.-Pusterior gluteal and great sciatic nerves.

Fig. 2s7.-Muscles of Pelvis and Thigh of Young Horse, Right Side: Medial View.

1. Psoas minor, and 1^{\prime}, its insertion; 2, psoas major; 3, 3', heads of obturator internus; 4, sacro-coceygeus ventralis; 5, coerygeus; 6, retractor ani (cut); 7. sacro-sciatic ligament; \&, lesser sciatic foramen; 9, semimembranosuy; 10, lumbo-sacral plexus; 11, obturator nerve and vessuls (cut); 12, femoral vessels (origin); 13, pubis; 14, prepubic tendon; 15 , deep inguinal lymph glands; 16, opening for external pudic vein. Vertebræ are numbered by regians.
2. Semimembranosus ${ }^{1}$ (Figs. 276, 287, 288, 576),-This very large, threesided muscle lies on the medial surface of the preceding muscle and the gastrocnemius, and has two heads of origin.
origin.-(1) The posterior border of the sacro-sciatic ligament; (2) the ventral surface of the tuber ischii.
[^63]Insertion.-The medial epicondyle of the femur, behind the collateral ligament. Action.-To extend the hip joint and to adduct the limb.
Strueture.-The long head, small and pointed above, extends toward the root of the tail, fusing with the sacro-sciatic ligament. Passing downward, it becomes larger and covers in part the posterior aspect of the tuber ischii. A bursa may be found here. Below this it joins the short head, which is larger. The large belly so formed passes downward and forward, covered in great part by the gracilis, and terminates on a short, flat tendon of insertion at the distal end of the femur.

Relations.-The upper part of the muscle concurs with the sacro-sciatic ligament in forming the lateral boundary of the pelvic outlet. It is related posteriorly and laterally to the skin and fascia and the semitendinosus; medially, to the anus and its muscles, the vulva in the female, and the internal pudic artery and nerve (Figs. 577, 578). Below the pelvis the chief relations are: laterally, the semitendinosus, biceps, and gastrocnemius, branches of the obturator, femoral, and posterior femoral arteries, and the great sciatic nerve and its chief branches; medially, the crus penis and ischio-cavernosus muscle (in the male) and the gracilis; in front, the adductor and the femoral vessels; behind, the skin and fascia.

Blood-supply.-Obturator and femoral arteries.
Nerve-supply.-Great sciatic nerve.

III. THE MEDIAL MUSCLES OF THE THIGH

The muscles of this group are arranged in three layer:-

First Layer

1. Sartorius (Figs. 287, 2S8, 576).-This long and rather narrow muscle is the most anterior one of the first layer. It extends from the posterior part of the sublumbar region to the lower and medial part of the stifle, and is directed downward and somewhat backward.

Origin.-The iliac fascia and the tendon of the psoas minor.
Insertion.-The medial patellar ligament and the tuberosity of the tibia.
Action.-To flex the hip joint and adduct the limb.
Structure.-The muscle is thin at its origin, but becomes thicker, narrower, and three sided distally. It terminates near the stifle joint on an aponeurosis which blends with that of the gracilis and with the fascia of the leg.

Relations.-Medially, the inguinal ligament, the abdominal muscles, the skin and fascia; laterally, the ilio-psoas, quadriceps femoris, and femoral nerve. It forms the anterior boundary of the femoral canal, in which the femoral artery and vein and the deep inguinal lymph glands are situated (Fig. 576).

Blood-supply.-Femoral artery.
Nerve-supply.-Saphenous nerve.
A rare variation is the existence of a small accessory head which arises from the anterior border of the pubis or from the prepubic tendon and joins the normal muscle near the middle of the thigh.
2. Gracilis (Figs. 276, 257, 575).-This is a wide, quadrilateral muscle, which is situated behind the sartorius, and covers the greater part of the medial surface of the thigh.

Origin. - The middle third of the pelvic symphysis, the prepubic tendon and accessory ligament, and the ventral surface of the pubis behind the prepubic tendon.

Insertion.-The medial patellar ligament, the medial surface of the tibia in front of the medial femoro-tibial ligament, and the crural fascia.

Action.-To adduct the limb.
Structure.-The muscle arises by a strong tendon, chiefly in common with the
opposite muscle. Its clireet attachment to the ventral surface of the pelvis is not so extensive as a superfieial inspection would suggest. The tendon of origin presents anteriorly a foramen for the passage of the external pudie rein. The belly is composed of parallel bundles, and is marked by a superficial furrow which, however, does not indicate a muscular division. It terminates on the medial surface of the stifle on a thin wide tendon which blends in front with that of the sartorius, below with the crural fascia.

Relations,-superficially, the skin and fascia, the penis or mammary gland, and the saphenous vessels and nerve; derply, the pectineus, adductor, semimembranosus and semitendinosus, and, at the middle of the femur, the femoral vessels; anteriorly, the sartorius. In the proximal third of the thigh the sartorius and graeili are separated by a triangular interval (femoral triangle), in whiel lie the deep inguinal lymph glands and the femoral vessels.

Blood-supply.-Femoral and deep femoral arteries.
Nerre-supply.-Obturator nerve.

Second Layer

1. Pectineus (Figs, 276, 288, 576).-This muscle is fusiform and extends from the anterior forder of the pubis to the middle of the medial border of the femur.

Origin.-The prepubic tendon, the acecssory ligament, and the anterior border of the pubis.

Insertion.-The middle of the medial border of the femur, near the nutrient foramen.

Action.-To adduct the limb and flex the hip joint.
Structure.-The belly is eylindrieal and contains little fibrous tissue. Its origin is perforated by the accessory ligament-from which many fibers ariseand is thus divided into two unequal parts. The large upper part arises largely from the prepubic tendon-only a small part gaining direct attachment to the pulis. The small lower part does not reach the bone. The insertion is pointed and tendinous.

Relations.-Medially, the graeilis; laterally, the femur, the vastus medialis, the terminal part of the psoas major and iliacts, and the deep femoral artery; anteriorly; the sartorins, the femoral vessels, the saphenous nerve, and the deep inguinal lymph glands; posteriorly, the adductor and obturator externus, and the obturator nerve (anterior division).

Blood-supply.-Femoral and deep femoral arteries.
Nerre-supply.-Obturator nerve.
The femoral canal is exposed in the dissection of the preceding muscles (Figs. 288, 290). It is bounded anteriorly hy the sartorius, posteriorly by the pectineus, and laterally by the ilin-psots and vastus medialis. Its medial wall is formed by the femoral fascia and the gracilis. Its upper or abtominal opening, the femoral ring (Lacuna vasorum), lies behind the medial part of the internal inguinal ring and is bounded anteriorly by the inguinal ligament, posteriorly by the anterior border of the pubis, and laterally be the tendon of the pooas minor. The canal terminates below at the insertion of the peetineus. It eontains the deep inguinal lymph glands, the femoral artery and vein, and the saphenous nerve.
2. Adductor ${ }^{1}$ (Figs. 276, 288, 576).-This fle hy, prismatic muscle lies behind the pectineus and vastus medialis. It extends downward and forward from the ventral surface of the pelvis to the medial epicondyle of the femur.

Origin.-The ventral surface of the pubis and ischium and the tendon of origin of the gracilis.
${ }^{1}$ It has heen customary to describe two adductors-a parrus or brevis, and a longus or magnus. This division is partly artificial, and has been abandoned in the new nomenclaturea return to the views of Bourgelat and Girard.

Insertion.-(1) The posterior surface of the femur from the level of the third trochanter to the groove for the femoral vessels; (2) the medial epicondyle of the femur and the medial ligament of the stiffe joint.

Action.-To adduct the limb and extend the hip joint. It also rotates the femur inward.

Structure.-It is almost entirely fleshy, and is composed of parallel bundles

Fig. 28s.-Mtscles of Pelvis and Thigh of IIorse, Right Side; Medial Vietf. Figure represents deeper dissection of specimen shown in preceding figure

1. Tendon of insertion of psoas minor; 2, lumbo-sacral plexus; 3, 3', heads of obturator internus; 4, sacro-coccygeus ventralis; 5 , coccygeus; 6 , retractor ani (origin); 7, sacro-sciatic ligament; S, lesser sciatic foramen; 9 , femoral nerve: 10, femoral ressels; 11, 11, pectineus; 12, accessory ligament; 13, external pudic vein; 14, pubis; 15, femoropatellar joint capsule; 16 , distal end of femur; 17, medial meniscus; 18 , medial ligament of stifle joint; 19, medial femoro-patellar ligament.
united rather loosely. It is usually possible to separate from the principal mass a small anterior short part, ${ }^{1}$ which is inserted into the femur behind the pectineus. The prineipal mass ${ }^{2}$ is perforated just below the insertion of the peetineus by an opening for the femoral vessels (hiatus adductorius), and is thus divided into two

[^64]branches. The lateral branch is inseded into the bate of the femur with the short portion, while the medial branch is attached to the medial epicondyle and collateral ligament. There is often a superficial slip which ends partly on the femoropatellar joint eapsule and may reach the accessory cartilage or medial ligament of the patella. some fibers pass under the collateral ligament and end on the tendon of the seminembranosus.

Relations.-Medially, the gracilis, and branches of the femoral artery and of the obturator nerve; laterally, the femur, the obturator externus, quadratus femoris, biceps femoris, and the femoral, deep femoral, and obturator arteries; anteriorly, the pectineus, vastus metialis, and a large branch of the obturator nerve; posteriorly, the semimembranosus and the great seiatic nerve.

Blood-supply.-Femoral, deep femoral, and obturator arteries.
Nerve-supply.-Obturator nerve.
3. Semimembranosus.-Described on p, 324.

Third Layer

1. Quadratus femoris. - This is a narrow, three-sided musele, which lies under cover of the upper part of the adductor (Fig. 5si).

Origin.- The ventral surface of the ischium, just in front of the semimembranosus.

Insertion.-An oblique line on the posterior surface of the femur, near the lower part of the trochanter minor.

Action.-To extend the hip joint and to adduct the thigh.
Structure-It is composed of parallel bundles of fibers direeted downward, forward, and outward.

Relations.-Postero-medially, the adductor, semimembranosus, and the obturator vessels; antero-laterally, the obturator externus and biceps femoris, the deep femoral vessels, and the great sciatic nerve.

Blood-supply.-Deep femoral and obturator arteries.
Nerve-supply.-Creat sciatic nerve.
2. Obturator externus (Fig. 581). -This is a pyramidal musele which extends across the back of the hip joint from the ventral surface of the pelvis around the obturator foramen to the troelanteric fossa.

Origin.-The ventral surface of the pubis and ischium, and the margin of the obturator foramen.

Insertion.-The trochanteric fossa.
Action.-To adduct the thigh and to rotate it outward.
Structure.-It is almost entirely fleshy, the musele-bundles being rather loosely connected. The insertion is pointed, flattened, and partly tendinous. The origin is perforated by the obturator vessels and nerve.

Relations.-Medially, the adductor and quadratus femoris and the deep femoral vessels; laterally, the gemellus, the temion of the ohturator internus, the bieeps femoris, and the great seiatic nerve; anteriorly, the hip joint, the pectineus, and the external pudic vein.

Blood-supply.- Deep femoral and obturator arteries.
Nerve-supply.- (obturator nerve.
3. Obturator internus (Fig. 288).-This arises within the pelvic eavity by two leads, the temun ennerging through the lesser seiatie foramen.

Origin.-(1) The pelvie surface of the pubis and ischium around the obturator foramen; (2) the pelvic surface of the shaft of the ilium and the wing of the sacrum.

Insertion. - The trochanterie fossa.
Action.-To rotate the femur outward.

[^65]Structure.-The ischio-pubic head lies on the pelvic floor and covers the obturator foramen. It is thin and fan-shaped. The iliac head extends along the lateral wall of the pelvis, and is pennate, with a central tendon throughout. Both terninate on a flat tendon which passes outward through the lesser sciatic foramen to be inserted into the trochanteric fossa. The tendon furnishes insertion to fibers of the gemellus. A synovial bursa facilitates the play of the tendon over the lateral border of the ischium. ${ }^{1}$

Relations.-The pelvic surface is covered by the pelvic fascia and in part by the peritoneum. The obturator vessels and nerve lie between the two heads, and the internal pudic vessels and nerve lie along the dorsal edge of the iliac head. The tendon is crossed by the great sciatic nerve.

Blood-supply.-Obturator and internal pudic arteries.
Nerve-supply.-Great sciatic nerve.
4. Gemellus ${ }^{2}$ (Fig. 580).-This is a thin, triangular muscle, which extends from the lateral border of the ischium to the trochanteric fossa and ridge.

Origin.-The lateral border of the ischium near the ischiatic spine.
Insertion.-The trochanteric fossa and ridge.
Action.- To rotate the femur outward.
structure.-The thin tendon of origin is attached to a line on the lateral border of the ischium, which begins just below the posterior end of the superior ischiatic spine. Nany superficial fibers are inserted into the tendon of the obturator internus.

Relations.-Superficially, the biceps femoris, the tendon of the obturator internus, the gluteus medius, and the great sciatic nerve; deeply, the obturator externus and the hip joint.

Blood-supply.-Obturator artery.
Nerve-supply.-Great sciatic nerve.

IV. ANTERIOR MUSCLES OF THE THIGH

This group consists of the sartorius, quadriceps femoris, and capsularis.

1. Sartorius.-This is described on p. 325.
2. Quadriceps femoris (Figs. 268, 289, 291).-This constitutes the large muscular mass which covers the front and sides of the femur. It has four heads, one of which, the rectus, arises from the ilium; the other three arise from the femur. All are inserted into the patella.
(1) Rectus femoris.-This is fusiform and rounded. It arises by two tendons.

Origin.-Two depressions on the shaft of the ilium above and in front of the acetabulum.

Insertion.-The base and anterior surface of the patella.
Action.-To extend the stifle joint and to flex the hip joint.
Structure.-It has two short strong tendons of origin; beneath the lateral one is a bursa. The belly is rounded and rests in a groove formed by the other portions of the quadriceps. Its sides are covered by a strong tendinous layer which fur-

[^66]nishes insertion to fibers of the vasti. The tendon of insertion is formed by the union of these tendinous layers on the lower part of the muscle. The lower portion of the muscle is pennate, the fibers on either side converging on the tendon at an acute angle.

Relutions.-Medially, the iliacus, sartorius, and vastus medialis; laterally, the tensor fascie late, glutei, and vastus lateralis; posteriorly, the hip joint and the vastus intermedhus; anteriorly, the faseia lata and the skin. The anterior femoral artery and branches of the femoral nerve descend into the interspace be-

Fig. 2s9.- Mescles of Right Thigh of Hibrse, Deep Dissection. The Preparation is Viewed from in Front and somewhat Medally.

1. Aecessory ligament of hip joint; 2, transverse ligament of same; 3, had of femur; 4, patella; 5, trochlea of femur; 6,7 , middle and medial patellar ligaments.
tween the upper part of the rectus and the vastus medialis; similarly, the iliacofemoral artery dips in between the rectus femoris and vastus lateralis.

Blood-supply.-Femoral and iliaco-femoral arteries.
Nerve-supply.-Femoral nerve.
(2) Vastus lateralis.-This lies on the lateral surface of the femur, extending from the great trochanter to the patella. It is wide in its middle, smaller at each end.

Origin. - The lateral border and surface of the femur, from the trochanter major to the supracondyloid fossa.

Insertion.-(1) The lateral part of the anterior surface of the patella; (2) the tendon of the reetus femoris.

Action.-To extend the stiffe joint.
Structure.-The fibers are directed downward and forward, many being inserted into the tendinous sheet which covers the side of the rectus. A bursa is usually present between the distal end and the patella.

Relations.-Laterally, the fascia lata and skin, tensor fascix latæ, superficial

Fig. 230.-Cross-section of Middle of Right Thigh of Horse.
gluteus, and bieeps femoris; medially, the femur and femoro-patellar joint capsule, the rectus femoris, vastus intermedius, and the iliaco-femoral artery.

Blood-supply.-Iliaeo-femoral artery.
Nerre-supply.-Femoral nerve.
(3) Vastus medialis. -This resembles the preceding muscle, and lies in a similar position on the medial side of the femur.

Origin.-The medial surface of the femur, from the neck to the distal third.
Insertion.-(1) Thénedial bogder of the patella and its cartilage, and the
proximal part of the medial patellar ligament. (2) The tendon of the rectus femoris.

Aclion.-To extend the stifle joint.
Structure- This is very similar to that of the vastus lateralis. It is, however, more difficult to separate from the intermedius, because many fibers of the latter arise on the tendinous sheet which covers the contact surface of the medial

Fig. 291.-Mescles of Rioht Thigh of Horse; Deff Dinsection.
The preparation is viewed from the front and somewhat medially. Most of rectus femoris and vastus lateralis has been removed. 1. stump of ongin of rectus fomoris; 2, capsularis; 3, accessory ligament; 4, cotylond ligament; 5 , head of femur; 6, trochlea of femur.
vastus. Its insertion into the patella is chiefly by means of a broad, strong tendon. From the deep face fleshy fibers are inserted also into the femoro-patellar joint capsule.

Relations.-Merlially, the skin and fascia, the iliarus, sartorius, pectineus, and adductor, the femoral vessels, and saphenous nerve; laterally, the femur, femoropatellar joint capsule, rectus femoris, and vastus intermedius, the anterior femoral artery, and branches of the femoral nerve.

Blood-supply.-Femoral and anterior femoral arteries.
Nerve-supply.-Femoral nerve.
(4) Vastus intermedius.-This muscle is decply situated on the anterior face of the femur, and is entirely covered by the preceding heads.

Origin.-(1) The anterior surface of the femur, from the proximal to the distal fourth; (2) the tendinous covering of the vastus medialis.

Insertion.-(1) The base of the patella; (2) the femoro-patellar joint capsule.
Action.-(1) To extend the stifle joint; (2) to tense (raise) the femoro-patellar capsule during extension of the joint.

Structure.-The muscle is usually quite difficult to isolate from the other vasti, so that many since Günther have declared it an artefact. ${ }^{1}$ It is entirely fleshy, and is small at its proximal end, but when traced downward increases in bulk by the accession of fibers arising on the femur and the tendinous covering of the vastus medialis. The terminal part is intimately adherent to the femoro-patellar joint capsule, where the latter bulges above the Ievel of the patella.

Relations.-Medially, the vastus medialis; laterally, the vastus lateralis; anteriorly, the rectus; posteriorly, the femur and femoro-patellar capsule.

Blood-supply.-Iliaco-femoral and anterior femoral arteries.
Nerve-supply.-Femoral nerve.
The patcllar ligaments are to be regarded as tendons of the quadriceps which communicate the action of the latter to the tibia, the patella being intercalated as a sesamoid bone.
3. Capsularis (Fig. 291).2-This is a small fusiform muscle (scarcely as large as one's finger), which arises by a thin tendon on the ilium immediately above the outer tendon of the rectus femoris. Its delicate tendon of insertion dips in between the vastus intermedius and lateralis and is attached to the proximal third of the anterior surface of the femur. It passes over the outer side of the hip joint, to the capsule of which some fibers are attached. Sometimes the muscle has two distinct heads, in which case the additional head arises between the two tendons of origin of the rectus femoris. Its action may be to raise the capsule during flexion of the joint. It is related laterally to the gluteus profundus and vastus lateralis, medially to the rectus femoris and vastus intermedius and the hip joint.

V. THE MUSCLES OF THE LEG AND FOOT

The muscles of this region cover almost all of the tibia except its medial face, which is largely subcutaneous. As in the forearm, the muscles fall into two groups, a dorso-lateral and a plantar. The muscles of the first group are extensors of the digit and flexors of the hock, those of the second have the opposite action.

A. Dorso-lateral Groutp

1. Long digital extensor (M. extensor digitalis longus). ${ }^{3}$ - This muscle is situated superficially on the dorso-lateral aspect of the leg, and is provided with a long tendon which passes down over the front of the tarsus, metatarsus, and digit.

Origin.-The extensor fossa of the femur.
Insertion.-(1) The extensor process of the third phalanx; (2) the dorsal surface of the proximal extremities of the first and second phalanges.

Action.-To extend the digit and flex the hock. It also assists in fixing the stifle joint.
${ }^{1}$ While it is true that the separation of the intermedius is never entirely a natural one in the horse, it varies in individual cases, and is usually clear on cross-sections. In some subjects it is possible to separate another slip which may represent the articularis genu of man.
? Also known as the rectus parvus.
${ }^{3}$ Also termed the extensor pedis or the anterior extensor of the phalanges.

Structure--The origin is by means of a strong tendon in common with the peroneus tertius, on which also many fibers arise. The common tendon passes downward in the groove between the lateral condyle and the tuberosity of the tibia,

Fig. 292.- Nitscles of Lower Part of Teigh, Leg, and Foot of Horse; Lateral View.
d. Fancia lata; $q, q^{\prime}, q^{\prime \prime}$, biceps femoris; r, semitendinosus; 21^{\prime}, lateral condyle of tibia. The extensor brevis is visible in the angle between the long and lateral extensor tendons, but by an oversight it is not marked. (After Ellen-
berger-Baum, Anat. für liünstler.)
where a pouch from the femoro-tibial capsule descends three or four inches (ea. 7.5 to 10 cm .) beneath the tendon. The belly is fusiform and somewhat flattened. The long tendon of insertion begins in the belly about its middle, and is clear of the
fleshy part near the tarsus. It passes downward over the front of the hoek, bound domn by the three annular ligaments already deseribed (sce tarsal faseia), and enveloped by a synovial sheath which begins a little above the level of the lateral malleolus, and extents nearly to the junction with the lateral extensor tendon. This union occurs usually about a hand's breadth below the tarsus. In the angle of union the extensor brevis also joins the principal tendon. Beyond this point the arrangement is the same as in the fore limb.

Relations.-superficially, the skin and fascia; deeply, the femoro-tibial joint, peroneus tertius, and tibialis anterior; behind, the lateral extensor and the superficial and deep peroneal nerves. In front of the tarsus the anterior tibial artery crosses the deep face of the tendon (Fig. 585).

Blood-supply.-Anterior tibial artery.
Serve-supply.-Peroneal nerve.
2. Lateral digital extensor (M. extensor digitalis lateralis). ${ }^{1}$ - This musele lies on the lateral surface of the leg, behiud the preceding one.

Origin.- The lateral liganent of the stifle joint, the fibula, the lateral border of the tibia, and the interosseous ligament.

Insertion.-The tendon of the long extensor, about a third of the way down the metatarsus.

Action.-To assist the long extensor.
Structure.-The belly is fusiform, flattened, and pennate. The tendon runs through the entire length of the belly and becomes free from it at the distal fourth of the tibia. It deseends through the groove on the lateral malleolus, bound down by an annular ligament, and, imelining formard, blends (usually) with the tendon of the long extensor. It is provided with a synovial sheath, which begins about an inch (ca. 2 to 3 cm .) above the lateral malleolus and ends about one and onehalf inches (ca. 3 to 4 cm .) above the junction. Sometimes the fusion does not occur; the teudon then descends alongside of that of the long extensor, and is inserted into the first phalanx like the corresponding musele of the thoracic limb.

Relations.-Laterally, the skin and fascia and the superficial peroneal nerve; medially, the tibia and fibula; anteriorly, the intermuscular septum, the long extensor, and the tibialis anterior; posteriorly, the deep digital flexor and the soleus.

Blood-supply.-Anterior tibial artery.
Nerce-supply.-Peroneal nerve.
3. Peroneus tertius (Tendo femoro-metatarseus). ${ }^{2}$-This consists in the horse of a strong tendon which hies between the long extensor and the tibialis anterior.

Origin.-The extensor fossa (between the lateral condyle and the trochlea of the femur), in common with the long extensor.

Insertion.-(1) The proximal extremity of the large (third) metatarsal bone and the third tarsal bone; (2) the fibular and fourth tarsal bones.

Action.-Mechanically to flex the hock when the stifle joint is flexed.
Structure.-It is entirely tendinous. The proximal end and the underlying prolongation of the synotial membrane of the femoro-tibial joint have been mentioned in the description of the long extensor. The superficial face gives origin to fibers of the long extensor in the upper part of the leg, and the deep face is fused with the tibialis anterior except at either end of the region. At the distal end of the tibia the tendon is perforated for the emergence of the tendon of the tibialis anterior and divides into two branches. The anterior branch is attached to the third tarsal ard third metatarsal bones, while the lateral one curves outward, bifureates, and

[^67]is inserted into the fibular and fourth tarsal bones. The lateral tendon gives off a braneh whieh forms a loop around the long extensor tendon (Fig. 293).

Relations.-superfieially, the long extensor; deeply, the tibialis anterior. The anterior tilial vessels cross the deep face of the outer branch.

Fig. 293.-Muycles of Right Leg of Horse; Front View.
The greater part of the long extensor has been removed. $\quad, 2,3$, stumps of patellar ligaments: 4 , tuberosity of tibia.
4. Tibialis anterior ${ }^{\text {1- }}$ - This lies on the dorso-lateral face of the tibia; it is wide and flattened above, pointed below.

Origin.-The lateral eondyle and border of the tibia and a small area on the lateral surface of the tuberosity.
${ }^{1}$ This is also known as the muscular part of the flexor metatarsi.

Insertion.-(1) The ridge on the front of the proximal end of the large metatarsal bone; (2) the first and second tarsal bones.

Action.-To flex the hock joint.
Structure.-The origin is fleshy, and forms a groove in which lie the common tendon of the long extensor and peroneus tertins and a synovial pouch which deseends from the femoro-tibial joint. Many superficial fibers arise from the deep fascia at the proximal part of the leg and thus from the tibial crest. Passing downward on the tibia, the belly is united by tendinous and fleshy fibers with the peroneus tertius, and terminates close to the tarsus in a point on the tendon of inser-

Fig. 294.-Injected synovial Bheaths and Bursee of Tarsal Region of Horse; Medial View.
a, Synovial sheath of peroneus tertius and tibialis anterior; h, bursa under medial (cunean) tendon of tibialis anterior; c, synovial sheath of flexor longus; d, tarsal sheath of deep flexor: e, e^{\prime}, bursa under superficial flexor tendon; f, f^{\prime}, tibio-tarsal joint capsule; 1 , long extensor; 2, tibialis anterior; 2^{\prime}, medisl (cunean) tendon of 2 ; 3, flexor longus; 4, deep digital flexor; 5 , superficial flexor tendon; 6 , gastrocnemius tendon; 7 , tibia; S, tarsus; 9 , tuber calcis; 10 , large metatarsal bone; 11, medial small metatarsal bone; $1 ?, 12^{\prime}$, fsscial bsads. (After Ellenberger, in Leisering's Atlas.)

lig. 295.-Injected Synomil Sheathe and Bersee of Tarsal Region of Horse; Lateral View.
a, Synovisl shesth of long digital exteosor; b, synovial sheath of lateral digital extensor; c, c^{\prime}, bursa under superficial flexor tendon; d, capsule of bock joint; 1, long extensor; 2, lateral extensor; $3, S, 3$, annular ligaments; f^{\prime} deep digital flexor; $\overline{5}$, tendon of gastrocnemius; 6 , superficial flexor tendon; γ, tibia; s, tarsus; 9. tuber eslcis; 10, metatarsus. (After Ellenberger, in Leisering's Atlas.)
tion. The latter emerges between the branches of the peroneus tertius and bifureates, the anterior branch being inserted into the large metatarsal bone, the medial one into the first tarsal bone. The tendon is provided with a synovial sheath at its emergence, and a bursa is interposed between the medial branch and the medial higament of the hock. ${ }^{1}$

Relations.-Superficially, the long and lateral extensors, the peroneus tertius. and the deep peroneal nerve; deeply, the tibia, the deep flexor, and the anterior tibial vessels.

[^68]Blood-supply.- Anterior tibial artery.
Nerve-supply.-Peroneal nerve.

B. Plantar Grour

1. Gastrocnemius (Figs. 268, 292, 296).-This muscle extends from the distal third of the femur to the point of the hock. It arises hy two heads.

Origin.- (1) Lateral head,

Fig, 296.-Muscles of Right lefg of Morie; Posterior View. from the lateral supracondyloid crest (margin of the supracomplyloid fossa); (2) medial head, from the medial supracondyloid crest.

Insertion.-The posterior part of the tuber calcis.

Action.-To extend the hoek and to flex the stifle joint; these two artions, however, eamot occur simultaneously.

Structure.-The two bellies are thick, fusiform, and somewhat flattened. They are covered by a strong aponeurosis and contain tendinous intersections. They terminate toward the midklt of the leg on a common tenelon, which at first lies posterior to that of the superficial flexor, but, by a twist in both, comes to lie in front of the latter. The deep fascia blends with the tendon throughout its length, and the soleus muselo is inserted into its anterior edge. A small bursa (Bursa tendinis m, gastrocnemii) lies in front of the insertion on the tuber calcis, and a large bursa (calcanea subtendinea) is interposed between the two tendons from the twist downward to the middle of the hock. The superficial digital flexor lies between the two heals and is adherent to the lateral one (Fig. 584). The term tendo calcaneus or tendo Achillis is a convenient designation for the aggregated tendons in the distal part of the leg which are attached to the tuber calcis.
Relations. Anteriorly, the stifle joint, the superficial digital flexor, popliteus, deep digital flexor, popliteal vessels, and tibial nerve; medially (above), the semi-
tendinosus, semimembranosus, and adductor, (below) the faseia and skin; laterally (above), the biceps femoris and peroneal nerve, (below) the fascia and skin. The popliteal lymph lands lie on the upper part of the musele.

Blood-supply.-Popliteal artery.
Nerre-supply.-Tibial nerve.
2. Soleus (Fig. 296).-This musele is very small in the horse. It lies along the lateral border of the gastrocnemius under the common deep fascia, on the proximal half of the lateral surface of the leg.

Origin.-The head of the fibula.
Insertion.-The tendon of the gastrocnemins, about the middle of the leg.
Action.-To assist the gastrocnemius.
Structure.-It is a thin, fleshy band, nsually about an inch (ca. 2 to 3 cm .) in width, and terminates on a thin tendon which fuses with that of the gastroenemius. ${ }^{1}$

Relations.-superficially, the skin, fascia, and peroneal nerve; deeply, the lateral extensor and deep flexor.

Blood-supply.-Posterior tibial artery.
Nerve-supply.-Tibial nerve.
3. Superficial digital flexor (M. flexor digitalis pedis superficialis) (Figs. 292, 296, 297).2-The proximal part of this muscle lies between and under cover of the two heads of the gastrocnemius. It consists almost entirely of a strong tendon, the belly being very little developed.

Origin.-The supracondyloid fossa of the femur.
Insertion.-(1) The tuber calcis; (2) the eminences on each side of the proximal extremity of the second phalans, and the distal extremity of the first phalanx behind the collateral ligaments of the pastern joint.

Action.-To flex the digit and extend the hock joint. On account of the exceedingly small amount of museular tissue the action is to be regarded chiefly as a mechanieal effect which results from the action of other muscles on the stifle joint.

Structure.-The origin is by means of a strong round teadon which is incompletely covered with fleshy fibers as far as the upper third of the leg. Here it is intimately attached to the gastrocnemius, especially to the lateral head. At the distal third of the tibia it winds around the medial surface of the gastroenemius tendon, and then occupies a position behind the latter. At the point of the hock it widens out, forming a sort of cap over the tuber caleis, and detaches on either side a strong band which is inserted into the tuber calcis with the tarsal tendons of the bieeps and semitendinosus. It then passes downward over the plantar ligament, becomes narrower, and is arranged distally as in the thoracic limb. A large synovial bursa (B. caleanea subtendinea) lies under the tendon from the distal fourth of the tibia to the middle of the tarsus. A subcutaneous bursa (B. calcanea subcutanea) is sometimes present on the wide part of the tendon at the point of the boek.

Relations.-Posteriorly, the gastrocnemius, faseia, and skin; anteriorly, the femoro-patellar capsule, the popliteus, the deep flexor, and the popliteal vessels; medially, the tibial nerve.

Blood-supply.-Posterior femoral artery.
Nerce-supply.-Tibial nerve.
4. Deep digital flexor (M. flexor digitalis pedis profundus) (Figs. 292, 298).3The belly of this musele lies on the posterior surface of the tibia, and is divisible into three heads, which, however, finally unite on a common tendon of insertion.

Origin.-(1) The posterior edge of the lateral condyle of the tibia; (2) the border of the lateral condyle of the tibia, just behind the facet for the fibula; (3)

[^69]the middte third of the posterior surface and the upper part of the lateral border of the tilia, the posterior border of the fibula, and the interosseous ligament.

Insertion.- The semihuar erest and the adjacent surface of the cartilage of the third phatanx.

Action.-To flex the digit and to extend the hock joint.
Structure.-(1) The medial head is termed the long digital flexor (M, flexor digitalis longus s. flexor accessorius); it is easily isolated (l'igs. 298, 584). It has a fusiform belly, which crosses the lag oldiquely and lies in a groove formed by the

Fig. 297.-Crosw-actition of Left Leg of liorse.
The sertion is eut about the junction of the jroximal and midhe thirds of the region. 1, Anterior tibial vesuds; 2, deep peroneal nerve; 3, fibula; 4, posterior tibial vessels; 5, recurreat tibial vessels. I cutaneous branch of the saphenous nerve is shown melial to the popliteus, but is not marked.
other heads and the popliteus. This terminates near the lower third of the tibia on a round tendon which deseends in a canal in the medial higanent of the hoek, and joins the common tendon about a third of the way down the metatarsus. In its eourse over the medial surface of the hoek the tendon is provided with a synovial sheath which extends from the distal fourth of the tibia to the junction with the principal tenton. (2) The superficial heart is the tibialis posterior (M. tibialis posterior) ; it is only partially separable from the deep heal. It has a flattened belly, terminating near the distal third of the tilia on a flat tendon whieh soon fuses
with the principal tendon. (3) The deep head, the flexor hallucis (M. flexor hatlueis longus), is much the largest. It lies on the posterior surface of the tibia, from the popliteal line outward and downward. The belly contains much tendinous tissue, and terminates behind the distal end of the tibia on a strong round ten-

Fig. 298.-Mtscles of Rigat Leg of Horse, Deep Dissection; Pozterior View.
don. The latter receives the tendon of the tibiatis posterior, descends in the tarsal groove, bound down by the strong plantar amular ligament (Ligamentum laciniatum) and enveloped in a synovial sheath, receives the tendon of the medial head below the hock, and, a little further down, the so-called check ligament (Caput tendineum). The tendon is partly cartilaginous where it plays over the fibular
tarsal bone. The tarsal sheath (Vagina tarsea) begins two to three inches (ea. 5 to 7.5 cm .) above the level of the medial malleolus, and extends about one-fourth of the way down the metatarsus. The check ligament resembles that of the fore limb, except that it is longer and very much weaker; it may be absent. ${ }^{1}$ The remainder of the tendon is arranged like that of the thoracie limb.

Fig. 299.-Ahgittal Rection of Right Hock of Horse.
The section passes through thr middle of the groove of the trochlea of the tibial tarsal bone. 1, 2, Proximal ends of cavity of hock joint; 3, thick part of joint eapsule over which deep flexor tendon plays; 4, fibular tarsal bone (sustentaculum). A large vein crosses the upper part of the joint capsule (in front of 1).

Relations.-Anteriorly, the tibia and fibula, the popliteus, lateral extensor, tibialis anterior, and the tibial vessels; posteriorly, the gastrocnemius, superficial flexor, and the tibial nerve; laterally, the fascia, skin, and the soleus; medially, the fascia and skin.
${ }^{1}$ This might well be ealled the tarsal (tendinous) head of the deep flexor.

Blood-supply.-Posterior tibial artery.
Ncrre-supply.-Tibial nerve.
5. Popliteus (Fig. 298).-This thick, triangular muscle lies on the posterior surface of the tibia above the popliteal line.

Origin.-A small depression on the lateral epicondyle of the femur, close to the articular surface and under the lateral ligament.

Insertion.-A triangular area on the posterior surface of the tibia, prosimal and medial to the popliteal line; also the proximal half of the medial border and a narrow adjacent part of the medial surface of the tibia.

Action.-To flex the femoro-tibial joint and to rotate the leg inward.
Structure. -The strong tendon of origin lies at first under the lateral ligament, end curves backward and inward over the lateral condyle of the tibia in contact with the lateral meniscus; it is invested by a reflection of the synovial membrane of the joint (Fig. 584). The tendon is succeeded by a thick triangular belly, the fibers of which are directed medially in the proximal part, but incline downward below.

Relations.-Superficially, the fascia and skin, semitendinosus. gastrocnemius, superficial flexor; deeply, the femoro-tibial joint, the tibia, the popliteal vessels and their divisions. The saphenous vessels and nerve lie along the medial border of the muscle, separated from it, however, by the deep fascia.

Blood-supply.-Popliteal and posterior tibial arteries.
Nerre-supply.-Tibial nerve.

MUSCLES OF THE METATARSUS AND DIGIT

Extensor digitalis brevis.-This small muscle lies in the angle of union of the tendons of the long and lateral extensors of the digit. (Fig. 293.)

Origin.- The lateral tendon of the peroneus tertius, the middle annular ligament, and the lateral ligament of the hock.

Insertion.-The tendon of the long extensor.
Action.-To assist the long extensor.
Structure- - It is principally fleshy, having a superficial origin from the annular ligament, and a deep one (by a thin tendon) from the lateral tendon of the peroneus tertius. The insertion is by a thin tendon.

Relations.-Superficially, the skin and fascia and the tendons of the long and lateral extensors: deeply, the tarsal joint capsule, the great metatarsal artery, and the deep peroneal nerve.

Blood-supply.-Great metatarsal artery.
Verce-supply.-Deep peroneal nerve.
The interossei and lumbricales are arranged like those of the thoracic limb, the only noticeable difference being the greater development of the lumbricales in the pelvic himb.

THE MUSCLES OF THE OX
 Muscles of the face

The cutaneus is much more developed than in the horse, presenting as a special feature the extensive frontalis muscle, which covers the frontal and nasal regions.

The orbicularis oris does not form a complete ring, the defect being in the middle of the upper lip.

The levator nasolabialis is extensive, thin, and not very distinct from the
frontalis; it divides into two layers, between which the levator labii superioris proprius and the lateral dilator of the nostril pass. The superficial layer ends in the nostril and upper lip, the deep layer on the accessory (lateral) nasal cartilages and on the nasal process of the premaxilla.

The levator labii superioris proprius arises on and before the facial tuberosity and terminates by several tendons in the muzzle. It passes between the two layers of the preceding musele, blending in part with the deep layer.

The zygomaticus is much stronger than in the horse. It arises on the masseterie fascia, and ends chiefly in the upper lip.

Tig. 300.- Mtacles of IIEun of (IX: lateral View.
a. Levator labii superioris proprius; b, levator nasolabialis; c, trapezius; c^{\prime}, brachiocephalicus; d, d^{\prime}, stemocephalicus; c, omo-hyoidens; f, dilatator naris lateralis; g, zygomaticus; g^{\prime}, malaris; h, buceinator; i, depressor habif iuferioris; k, orbicularis oris; m, masseter; n, parotidu-auricularis; o^{\prime}, zygomatico-auricularis and scutulo-auricularis superficialis inforior; $o^{\prime \prime}$, scutulo-auricularis superficialis superior; $o^{\prime \prime \prime}$, scutulo-auricularis superficialis accessorius; p, p^{\prime}, scutularis; u, frontalis; u, mylo-hyoideus; 1 , concha; 2,3 , posterior and anterior borders of 1 ; s, seutiform cartilage; 9 , zygomatic arch; 28^{\prime}, ramus of mandible; 3%, external maxillary vein; 38 , jugular vein; 39 , facial vein: ff, parotid gland: $50,51^{\prime}$, mandibular gland; dotted line at 50 iudicates position of atlantal lymph gland, end the parotid lymph gland lies partly under parotid gland, just in frout of 4 ; 53 , medial palpebral ligament; 59, laryngeal prominence. (After Ellenberger-Baum, Anat. für Kunstler.)

The depressor labii superioris arises just in front of the facial tuberosity, and divides usually into two branches, which terminate in a number of tendons that form a network in the muzzle and upper lip.

The incisivus inferior is a small, rounded musele, which arises on the body of the mandible below the second and third incisors, and ends in the lower lip, blending with the orbicularis.

The depressor labii inferioris is thin, and does not extend as far backward as in the horse; only the anterior end is distinct from the buecinator.

The buccinator shows no marked variation, but its superficial layer is well developed.

The dilatator naris lateralis arises in front of the facial tuberosity, passes forward between the branches of the levator nasolabialis, and teminates in the laterab wing of the nostril.

The dilatator naris apicalis is situated in the muzzle and joins its fellow at a median raphé. It arises on the border and upper surface of the body of the pre-

Fig. 301. Mracler of Head of Ox; Dorsal Viem.
a, a^{\prime}, Levator labii supcrioris proprius; b, levator nasolabialis; f, dilatator oaris lateralis; σ^{\prime}, malaris; o, zygo-matico-auricularis and scutulo-auricularis superficialis inferior; $a^{\prime \prime}$, scutulo-auricularis superficialis superior; $o^{\prime \prime \prime}$, scutulo-auricularis superficialis accessorius; p, scutularis; $u_{\text {}}$ frontalis; z, orbicularis oculi; l, concave surface of concha; 3, 2, aoterior and posterior borders of concha; 8 , scutiform cartilage; 34, parietal cartilage; 30, facial vein; $\ddagger 9$, muzzle; $5 S$, medial palpebral ligameot. (Nfter Ellenberger-Baum, Anat, für Künstler.)
maxilla, the fibers passing obliquely upward and outward to the medial wing of the nostril.

The dorsal part of the lateralis nasi arises from the alar cartilage of the nostril and ends in the medial wing of the nostril.

The ventral part of the lateralis nasi consists of two layers which arise on the nasal process of the premaxilla and the lateral nasal cartilage and end in the lateral wing of the nostrit.

The orbicularis oculi is well developed.
The corrugator supercilii is not present as a separate muscle, its place and function being taken by the frontalis.

The malaris is hroad, and spreads out below on the fascia over the buccinator and masseter; it is divided into two parts.

MANDIBULAR MUSCLES

The masseter is not so large as in the horse; a considerable part of it arises on the facial tuberosity and is directed obliquely backward and downward, so that it woukd draw the lower jaw forward as well as upward.

The temporalis conforms to the temporal fossa, and is therefore longer and entirely lateral in position.

The pterygoideus medialis arises from the lateral surface of the perpendieular part of the palatine bone and from the pterygoid process. Since the origin is nearer

Fic. 302.-Muscles of Head of Ox; Ventral View.
d, d^{\prime}, Sterno-cephalicus; c, omo-hyoideus; q, zygomaticus; h, buccinator; i, depressor labii inferioris; k, orbicularis oris; m, masseter; n, parotido-auricularis; o^{\prime}, zygomatico-auricularis; u. mylo-hyoideus; 1 , concha, convex surface; 2 . anterior border of concha; 30^{\prime}, angle of jaw; 39, facial vein; 44 , parotid gland; 45 , lawer lip: $4 S$, angle of mouth; $50, \delta U^{\prime}$, mandibular gland; 59, larynx; \times, wing of atlas. (After Ellenberger-Baum, Anat. für Künstler.)
the median plane and the insertion further from it than in the horse, the musele produces more marked lateral movement of the mandible.

The pterygoideus lateralis is flattened transwersely, wide and thin in front, narrower and thicker hehind. It has an extensive origin in the pterygo-palatine fossa, where it is partly covered by the pterygoideus medialis.

The occipito-mandibularis is absent.
The digastricus has a tendinous origin on the paramastoid process of the oceipital bone; its bellies are short and thick. The intermediate tendon is round and thick; it does not perforate the stylo-hyoideus. The anterior hellies are connected heneath the root of the tongue by a layer of transverse muscle-fibers termed the transversus mandibuke.

HYOID MUSCLES

The mylo-hyoideus is thicker and more extensive than in the horse.
The stylo-hyoideus las a long, slender tendon of origin which is attached to the muscular angle of the great eornu of the hyoid bone. The insertion is fleshy and is not perforated by the digastricus.

The genio-hyoideus is much more developed than in the horse.
The kerato-hyoideus has an additional attachment on the middle eornu of the hyoid bone.

The hyoideus transversus is bifid.
The sterno-thyro-hyoideus has no intermediate tendon and is thicker.
The omo-hyoideus arises as a thin band from the fascia over the third and fourth cervical vertebres. It blends here with the rectus capitis ventralis major.

The occipito-hyoideus is thick. Its large lateral part entirely covers the paramastoid process (from which it arises) and is inserted into the muscular angle of the great cornu. The smaller medial part arises from the ventral end of the paramastoid process and ends on the medial face of the great comu below the dorsal end.

Muscles of the Neck

A. VENTRAL GROUP

The cervical cutaneus is absent.
The sterno-cephalicus consists of two museles. They arise from the manubrium stermi and first rib. The superfieial musele is the sterno-mandibularis; it is inserted on the anterior border of the masseter, the ramus of the mandible, and the buecal fascia. The deep musele is the sterno-mastoideus; it erosses under the preceding and ends on the mastoid processes, the mandible, and, in common with the reetus eapitis ventralis major, on the basilar part of the oceipital bone.

There are two scaleni. The scalenus ventralis (s. primæ costæ) arises from the transverse processes of the third to the seventh cervieal vertebre and ends on the first rib. It is traversed by the roots of the brachial plexus, which divide it into bundles. The emerging brachial artery separates a narrow part below from the main mass. The scalenus dorsalis (s. supraeostalis) arises usuatly on the transverse processes of the fourth, fifth, and sixth cervical vertebre. Its wide posterior part lies on the ventral part of the serratus thoracis; it is attached to the third rib and to the serratus thoracis.

The rectus capitis ventralis major arises on the third to the sixth cervical transverse proeesses, and blends at its insertion with the sterno-mastoideus and the eleido-mastoideus.

The rectus capitis ventralis minor is larger than in the horse.
The rectus capitis lateralis and longus colli resemble those of the horse.
The intertransversales are large. From the sixth cervical vertebra forward they form a museular mass (M. intertransversarius longus) which is inserted into the wing of the atlas.

B. LATERAL GROUP

The splenius is thin. It arises directly from the first three or four thoracic spines, and ends by a thin tendon on the oecipital bone, the wing of the atlas, and the transverse process of the axis, blending with the brachiocephalicus, longissimus capitis, and omo-transversarius. The remaining muscles present no very marked differential features.

Muscles of the Thorax

The levatores costarum number ten or eleven pairs.
The external intercostal museles are thick; they terminate at the eostochondral junctions. The internal intercostals are specially thick in relation to the cartilages of the sternal ribs; here there exist bundles (conuparable to the levatores rostarum) which are attached in front to the sternum, behind to a costal cartilage. The interosseous part thins toward the upper end of the spaces.

The diaphragm presents several important differential features. Its slope is much steeper and its width is greater than in the horse. The upper limit of the costal attachment extends ahmost in a straight line from the last rib) about a handbreadth above its middle to the junction of the eighth rib with its cartilage, and along the latter to the sternum. The mitline slopes from the twelfth thoracic vertebra obliquely as far as the foramen vene cavae, beyond which it is almost vertical. The right crus divides into two branches, which eircumscribe the hiatus osophageus, unite below, and then spread out in the tendinous center. The left erus is small. The hiatus osophageus is situated about four to five inehes (10 to 12 cm .) below the eighth thoracie vertebra, a little to the left of the median plane. The foramen vens cave is a little more ventral and almost in the median plane. ${ }^{1}$

In the sheep the costal attachment differs from that of the ox. The upper limit of the attachment extends in a gentle curve (convex rentrally) from the last rib) about the junction of its middle and ventral thirds to the ventral end of the ninth rib.

Muscles of the Back and Loins

The serratus dorsalis anterior is very thin. It is inserted on the fifth to the eighth ribs when fully developed, but it may be reduced to two or three digitations or may be absent. The serratus dorsalis posterior is inserted on the last three or four ribs.

The longissimus costarum has a distinct humbar portion which is attached to the lumbar transverse processes and the tuber coxie.

The longissimus dorsi resembles that of the horse, but it is more fleshy anteriorly, and the spinalis dorsi is elearly distinguishable from the common mass. In the lumbar region the tendons meet across the summits of the spines.

Intertransversales are present in the back, and interspinales in the back and loins.

Muscles of the Tall

These resmble in general those of the horse; the cocevgeus is, however. much more developed.

Abdominal Muscles

The obliquus abdominis externus is somewhat thinner and has a less extensive origin, which hegins at the lower part of the fifth intercostal space and ends on the last rib ahove its middle. The direction of the fibers in the flank is horizontal, and they do not reach to the tuber cose, nor as high as the lumbar transwerse processes. (In this region the abdominal tunic has a strong attachment to the point

[^70]of the hip and the lumbo-dorsal fascia.) The aponcurosis is intimately united with the abdominal tunic, and does not detacla a femoral lamina.

The obliquus abdominis internus is more developed and has an additional origin from the lumbo-dorsal fascia. The aponeurosis blends with that of the external oblique near the linea alba, and detaches a layer which assists in the formation of the internal sheath of the rectus.

The rectus abdominis arises on the lateral border of the sternum as far forward as the third costal eartilage. The two muscles are separated, except near the pelvis, hy an interval varying from two to four inches (ea. 5 to 10 cm .), so that this part of the abdominal wall is entirely fibrous. (The umbilicus is in a transverse plane through the third humbar vertebra.) There are five tendinous inseriptions, at the third of wheh is a foramen for the passage of the subcutaneous abdominal vein. The prepubic tenton has, in addition to lateral branches inserted

Fig. 304.-Deeper Mcscles of Neck, Shovlder, and Thorax of Ox.
c^{\prime}. Cleido-occipitalis muscle: d, steroo-cephalicus; f, f^{\prime}, long and lateral heads of triceps; g, superficial pectoral muscle; h, h^{\prime}, deep pectoral muscle; $2, i^{\prime}$, serratus veutrahs; k_{1} lathssionus dorsi; l, obliquus abdominis externus; v^{\prime}, brepps hrachii; u, splenus; x, rhombodeus; y, loggissimus captos et athantis; z, supraspinatus; z^{\prime}, infraspinatus; $z^{\prime \prime}$, temfon of insertion of $z^{\prime} ; I^{\prime}$, cartilage of scapula; 2, tuberosity of spint of scapula; 3 , acromion; 5 , lateral tuberosity of humerus; 6, deltuid tuberosity; 8 , olecranon; 26, transverse processes of cervical vertebræ; 27, posterior auricular muscles \times, wiag of athas. (After Elhenberger-Baum, Aoat. fur Kïnstler.)
into the ihio-pectineal eminences, a strong attachment to the median common tendon of the adductors of the thigh, so that the abdominal wall is strongly retracted and ahmost vertical at its junction with the pubis.

The transversus abdominis presents no striking differential features. The transversalis fascia is strong and distinct except over the diaphragm.

Muscles of the Thoracic Limb I. MUSCLES OF THE SHOULDER GIRDLE

The trapezius is much thicker and broader than in the horse, and is undivided. It arises on the ligamentum nuehe and supraspinous ligament, from the atlas to the twelfth thoracic vertehra.

The omo-transversarius arises on the wing of the atlas, and, inconstantly, the transwerse process of the axis, and is inserted into the scapular spine and faselia.

The rhomboideus is clearly divided into cervical and thoracic parts, the latter extending further than in the horse.

The latissimus dorsi has a broad tendon of origin, which hends with the lumbo-dorsal fascia; it is also attached to the eleventh and twelfth ribs and the fascia over the external intercostal and oblique abdominal muscles. The anterior fibers end on the tendon of the teres major, the middle part on an aponcurosis on the metial surface of the caput longum, and the posterior part on a tendon which is common to this muscle and the deep peetoral.

The brachiocephalicus has two distinct parts. The dorsal division, the cleidooccipitalis, arises on the oceipital bone and the ligamentum nuchee. The rentral part, the cleido-mastoideus, is smaller and arises by a round tendon on the mastoid process and the rcetus capitis ventralis major, and by a thin tendon on the mandible.

The superficial pectoral musele is thinner than in the horse and its two parts are not so clearly scparable.

The deep pectoral muscle arises as far forward as the second rib and is undivided. However, the scapular portion may be considered to be represented by a small brach which arises from the anterior part of the sternum and the first rib and passes upward to end on the deep face of the brachiocephalieus in front of the shoulder joint. ${ }^{1}$ A tendon detached from the dorsal edge blends with the latissimus dorsi and coraco-brachialis.

The serratus ventralis is elearly divided into cervical and thoracic parts. The former is large and extends from the third (or second) cervical vertebra to the fifth rib, being overlapped behind by the thoracie part. It is inserted on a large triangular area on the antero-superior part of the costal surface of the scapula. The thoracic part is relatively thin and is covered by a very strong aponeurosis; it is attached to the fourth to the ninth ribs by six digitations, and is inserted by a flat tendon which insinuates itself between the middle and posterior parts of the subscapularis to end on a rough line equivalent to the posterior serratus area of the horse - and also on the eartilage of the seapula in continuity with this line.

II. MUSCLES OF THE SHOULDER

The deltoid is clearly divided into acromial and scapular parts. The former (Pars acromiatis) arises on the acromion, the latter (Pars scapularis) on the posterior border of the scapula and the aponeurotic covering of the infraspinatus. The scapular part of the muscle is largely inserted into the fascial covering the triceps.

The supraspinatus, infraspinatus, and teres minor do not differ materially from those of the horse.

The subscapularis consists of three parts with a common tendon of insertion.
The teres major and coraco-brachialis resemble those of the horsc.
The capsularis is absent.

III. MUSCLES OF THE ARM

The biceps is smaller and less tendinous, and is situated more medially than in the horse. The tendon of origin is flat, and is bound down in the intertuberal or bieipital groove by a fibrous band. The tendon to the extensor earpi radialis is less distinct than in the horse. (In the sheep the tendon of origin is round and is invested by the synovial membrane of the shoulder joint. The tendon of insertion bifureates; one branch ends on the tuberosity of the radius, the other on the ulna.)
${ }^{1}$ According to Meckel and Lesbre, this is the homologuc of the subclavius of man.

The medial head of the triceps is more developed than in the horse, and extends up to the neck of the humerus.

The tensor fasciæ antibrachii is a slender musele which lies along the posterior border of the triceps and is not conneeted with the latissimus dorsi.

Fig. 3日. .-Mtractes of AntibraCHITM ANB MaNes of OX; Lateril View.
a, Exturusor catpi radialis: b, extensor digati tertii; ε, extensor digitalis communis; d, extensor digiti quarti; t. ulnaris lateralıs; f, extensor carpi obliquus; f^{\prime}, ulnar head of flexor carpi ulnaris; g, brachialis; h, interosseus medius or suspensory ligament; i, flexor tandons; i^{\prime}, branch of h, to superficial flewor tenton; s, olectanon; 11, accessory carpal bonc; 12^{\prime}, metacarpal tuberosity. (After Ettenberger-Bunm, Anat. für Kïnstler.)

Fifi, 306.-Muacles of AntiBRACHICM AND MANEM OF Ux; Medral View.
a, Extensor carpi radialis; b, tendon of extensor digiti tertii; f, tendon of extensor carpi obliquus; g, brachialis; h, interosseus medius or suspensory ligament; i, flexor tenctons; z^{\prime}, branch of h; h, flexor carpi radialis; l, flexor carpi ulnaris; m. superficial digital flexor. (.1ftor Elleuberger-Baum, Anat. fur Künstler.)

IV. MUSCLES OF THE FOREARM AND MANUS

A. Extensor Division

The extensor carpi radialis is like that of the horse. There is sometimes a small musele lying along its medial border, which may represent the extensores pollicis.

There are three digital extensors: 1. The common digital extensor (M. extensor digitalis (communis) arises by two heads from the lateral epicondyle of the humerus and from the ulna. The heads fuse about the middle of the forearm, and terminate soon on a tendon which passes over the carpus and metaearpus, gradually inclining forward. At the fetlock joint it divides into, two branches, earh of whieh is inserted into the extensor process of the corresponding third phalanx. 2. The medial digital extensor (M. extensor digiti tertii propmes) arises on the lateral rpiemulyte, and is inserted by two branches into the seeond and third phadanges of the medial digit. The tendon receives two reinforeing slips from the suspensory ligament. 3. The lateral digital extensor (M. extensor digitalis lateralis s. digiti quarti proprius) is stronger than that of the horse; it arimes from the lateral ligament of the elbow joint, the lateral tuberosity of the radius, and the ulna. The temdon terminates like that of the preceding muscle. ${ }^{1}$
The extensor carpi obliquus resembles that of the horse.

[^71]The extensor tendons are bound down at the carpus by an annular ligament, and are furnished with synovial sheaths (Figs. 307, 30s).

B. Flexor Division

The three flexors of the carpus are like those of the horse, but the long tendon of the lateral flexor ends on the large metacarpal bone, not on the small one. The tendon of the medial flexor naturally ends on the medial part of the large metacarpal bone.

The superficial digital flexor is somewhat blended at its origin with the middle flexor of the carpus. It divides into two bellies, superficial and deep, terminating

Fig. 30\%.-Right Carpes of Ox with Bersee and synovlal sheaths Injecteo; Lateral View.

Fig. 30s.-Right Carpes of Ox wite Burse and Synovlal Sheaths Injected; Medhal Vient.

1. Extensor carpi radialis, with synovial sheath (1') a ad bursa ($1^{\prime \prime}$); 2, extensor carpi obliquus, with synovial sheath (z^{\prime}) and bursa ($z^{\prime \prime}$); 3 , extensor digiti tertü proprius; 4 , extensor digitalis coamunis; 3^{\prime}, common synovial sbeath of 3 and $4 ; 5$, estensor digiti quarti proprius, with synovial sheath $\left(5^{\prime}\right) ; 6,6^{\prime}$, uloaris lateralis, with bursa $\left\langle 6^{\prime \prime}\right) ; 7$, flexor carpi radialis, with synovial sheath; S, deep digital flexor, with syoovial sheath $\left(\delta^{\prime}\right) ; 9$, flexor carpi ulnaris; 10. superficial digital flexor, with synovial shearh, 10 ; a, radius; b, carpus; c, metacarpus; d, cut edge of annular ligament. (After schmidteben.)
on tendons at the distal part of the forearm. The superficial tendon passes orer the posterior annular ligament (Lig. carpi transversum), perforates the metacarpal fascia, and joins the deep tendon about the middle of the metacarpus. The deep belly is connected with the deep flexor by a strong fibrous band. Its tendon passes under the annular ligament of the carpus in a groove on the deep flexor, from which it receives fibers. The conjoined tendon soon bifurcates, each branch receiving a reinforcing band from the suspensory ligament, and forming near the fetlock a ring for the corresponding branch of the deep flexor tendon. Passing under two digital annular ligaments, they are inserted into the volar surfaces of the second phalanges by three slips.

The deep digital flexor has the same heads as in the horse, the humeral head, as before mentioned, being comneeted with the deep part of the superficial flexor. The tendon, which is not reinforeed by a cheek ligament as in the horse, divides near the distal end of the metacarpus into two branches which are inserted into the volar surfaces of the third phalanges.

The synovial sheaths at the carpus present the following special features: One is found in connection with the temlon of the superficial part of the superficial flexor of the digits. There is a common sheath for the tendons of the common extensor and the merlial extensor.

Burse may occur muder the tendons of the proper extensors of the digits at the fetlock; they are constant only in old animals (schmidtehen). The branches of the tendon of the common extensor wre provided with synovial sheaths from their origin to the middle of the second phalanx. There are two digital synovial sheaths for the flexor tendons; they may communicate at their upper part, and they extend from the distal third of the metacarpas nearly to the distal sesamoids. Burss occur between the latter and the branches of the deep flexor tendon.

A feeble pronator teres is present on the medial surface of the elbow along the medial collateral ligament.

The fascia on the volar face of the metacarpus and digit is very thick. It is contimuous above with the ligamentum earpi transversum, and is attached on either side to the metacarpal bone. At the fetlock it forms the filbrous basis for the small claws, and below this it detaches two strong bands which diverge to be inserted into the second and third phalanges, blending with the collateral ligaments.

The lumbricales are absent, unless we regard as such the muscular bundles which arise on the deep flexor and are inserted into the superficial flexor tendon at the earpus.

The interosseus medius, or su*pensory ligament, is somewhat more museular than in the horse; indeed, in the young subject it may be ahmost entirely fleshy: lts arrangement is somewhat complex. Single at its origin, it detaches about the middle of the metacarpus a band which joins the tendon of the superficial flexor and concurs near the fetloek in the formation of the ring for the deep flexor tendon. ${ }^{1}$ A little lower down it divides into three and then into five branches. The abaxial branches (two pairs) are attached to the corresponding sesamoids and tendons of the proper extensors, while the miditle branch passes through the sulcus at the distal end of the metacurpus and bifurcates, each division fusing with the tendon of the corresponding proper extensor.

The Muscles of the Pelvic Limb

I. THE SUBLUMBAR MUSCLES

The psoas minor begins at the dise between the twelfth and thirteenth thoracic vertebrie.

The psoas major has a fleshy origin on the posterior border of the last rib, and a thin tendon attached to the twelfth rib; it is relatively narrower than in the horse and does not entirely cover the quadratus lumborum.

The iliacus begins under the boty of the sisth lumbar vertebra, and is more closely united with the proas major than in the horse.

The quadratus lumborum extends as far forward as the body of the tenth or deventh thoracie vertebra. It is wider than in the horse and extends beyond the lateral border of the psoas major.
${ }^{1}$ Lesbre regards this band as the subcarpal check ligament, which on this basis is blended with the suspensory ligament above.

II. LATERAL MUSCLES OF THE HIP AND THIGH (Figs. 303, 309)

The tensor fasciæ latæ is large, and the fleslyy part extends further down than in the horse.

The gluteus superficialis is not present as such; apparently its anterior part has fused with the tensor fascie late and its posterior part with the biceps femoris.

The gluteus medius is small, the lumbar part being insignifieant and extending forward only to the fourth lumbar vertebra. Its deep portion gluteus accessorius) is easily separable, and its strong tendon is inserted into the femur below the trochanter major, under cover of the upper part of the vastus lateralis.

The gluteus profundus is thin, but extensive, arising as far forward as the tuber coxe, and from the lower part of the sacro-sciatic ligament. The fibers converge on a broad, strong temton which passes under the upper part of the vastus lateralis, and is inserted into a tuberele a short distance below the great trochanter.

The biceps femoris is very wide at its upper part, having apparently absorbed the posterior part of the superfieial gluteus. It arises from the saeral spines, sacro-sciatie ligament, and tuber isehii. It is divided by a fibro-elastic septum in the thigh into two portions, which end in front and below on a wide aponeurosis; the latter is attached to the patella and its lateral ligament and blends with the fascia cruris and fascia lata. There is no femoral attachment. A large bursa oceurs between the muscle and the great trochanter in the adult. The part of the tendon which fuses with the lateral patellar ligament presents a fibro-eartilaginous thickening, and an extensive bursa is interposed between it and the lateral condyle of the femur.

A layer derived from the fascia lata is intimately adherent to the deep face of the muscle, and cases occur in which this fascia is ruptured by the trochanter major, thus fixing the muscle behind the trochanter.

The semitendinosus and semimembranosus arise on the ischium only. The latter is very large and has a branch attached to the medial condyte of the tibia.

II. ANTERIOR MUSCLES OF THE THIGH

The quadriceps femoris resembles that of the horse; but the vasti (and especially the medial one) are not so thiek, and the vastus intermedius is more elearly separable, and consists of two parts. Burse occur under the insertions of the medial and lateral vasti, and often under the end of the reetus in the adult.

The articularis genu is a small musele which lies under the distal part of the vastus intermedius, and is partly inserted on the suprapatellar cul-cle-sac of the synovial membrane of the stifle joint.

The capsularis is absent.

IV. MEDIAL MUSCLES OF THE THIGH

The sartorius arises by two hearls, one from the tendon of the psoas minor and the iliae fascia, the other from the shaft of the ilium. The femoral vessels pass between them.

The gracilis is more extensively united with its fellow at its origin than in the horse.

The pectineus is large, and arises ly a single head from the pubis and prepubic tendon. It divides into two branches, one of which is inserted as in the horse, while the other extends to the medial epicondyle of the femur.

The adductor resmbles that of the horse, but does not reach to the medial condyle of the femur.

The quadratus femoris and obturator externus resemble those of the horse.
The obturator internus has no iliae head, and its tendon passes through the obturator foramen.

The gemellus is large; some of its fibers of origin join the obturator internus through the lesser seiatic foramen.

v. MUSCLES OF THE LEG AND FOOT

A. Dorso-lateral Grolp

There are four digital extensors, two of which are fused with each other and the peroneus tertius in the upper third of the leg.

1. The long digital extensor (11. extensor digitalis longus) arises in common with the peroneus tertius and the medial extensor in the extensor fossa of the femur, and separates from the other muscles near the middle of the leg. It the distal end of the tibia it terminates on a tendon which passes flown over the hoek (bound down by two annular ligaments) and ends like that of the thoraeic limb.
2. The medial digital extensor (M. extensor eligiti tertii proprius) arises in common with the preceding muscle and the peroneus tertius, and is covered by them to the distal third of the tibia. Its tendon passes under the annular ligaments between those of its cogeners and ends on the second phalanx of the medial digit.
3. The lateral digital extensor (M. extensen digitalis lateralis s. digiti quarti proprius) ${ }^{1}$ arises on the lateral ligament of the stifle joint and the lateral condyle of the tibia. Its tenton passes over the lateral surface of the hoek, and terminates on the dorsal surface of the second phalanx of the lateral digit.

The reinforeing bands from the suspensory ligament are arranged as in the forelimb.
4. The short digital extensor (AI. extensor digitalis brevis) resembles that of the horse; it is inserted on the tenthon of the long extensor.

The peroneus longus (not present in the horse) is situated in front of the lateral extensor. It arises on the lateral condyle of the tibia and the fibrous band which represents the shaft of the fibula. Its tendon passes downward and backward over the lateral surface of the hoek, crosses ower that of the lateral extensor and under the lateral ligament, and ents on the first tarsal bone and the proximal end of the large metatarsal bone. It is enveloped by a synovial sheath. It would apparently act as an inward rotator at the hock joint.

The peroneus tertius is a well-developed muscle which arises on the common tendon with the long and medial extensors. It has a large, fusiform helly, which is superficially situated on the front of the leg. Close to the tarsus it conds on a flat tendon, which is perforated by that of the tibialis anterior, ant ends on the proximal end of the large metatarsal and second and third (fused) tarsal bones.
${ }^{1}$ Lesbre regards this muscle as the homologue of the peroneus brevis of man and other pentadactyls.

The tibialis anterior is smaller, and arises by two heads. The larger head springs from the lateral surface of the tuberosity and crest of the tibia; the lateral, smaller one (M. extensor hallucis longus), arises from the upper part of the lateral

Fig. 310.-Mcsclea of Left Leg and Foot of Ox; Anterior View.
a, Peroneus tertius; a^{\prime}, tibialis anterior: b, long digital extensor; b^{\prime}, extensor digiti tertii; c, peroneus longus; d, extensor digiti quarti; i, i, annular ligaments; k, lateral ligament of hock joint; l, branch of suspensory ligament; 20 , patella; 21^{\prime}, lateral condyle of tibia; 28, tuberosity of tibia. (After EllenbergerBaum, Anst. für Künstler.)

Fig. 311.-Mescles of Left Leg ano Foot of Ox; Lateral View.
a, Peroneus tertius; a^{\prime}, tibialis anterior; b, long digital extensor; b^{\prime}, tendon of b; c, peroneus longus; d, extensor digiti quarti; e, deep digital flexor; ϵ^{\prime}, tendon of $e ; e^{\prime \prime}$, branch of interosseus medius or suspensory ligament; f, gastrocnemius (the soleus lies just in front of $\cap ; f^{\prime}$, tendon of superficial digital flexor; h, interosseus medius or suspensory ligament; i, i, annular ligaments; 20, patella; $2 t^{\prime}$, lateral condyle of tibia; $2 S$, tuberosity of tibia. (After Ellenberger-Baum, Anat. fur Jünstler.)
border of the tibia and the fibrous band which replaces the shaft of the fibula. The tendon perforates that of the preceding musele, passes to the medial face of the hock, and ends on the metatarsal and second and third tarsal bones.

B. Plantar Groly

The gastrocnemius and soleus resemble those of the horse.
The superficial flexor is more fleshy than in the horse. Its tendon terminates as in the forelimb.

The deep flexor in general resembles that of the horse, but the tibialis posterior (superfieial head) is distinct and is larger than in the horse. The flexor digitalis longus (medial head) is also larger, while the flexor hallucis longus (deep head) is smaller. The common tendon ends like that on the forelimb.

The synovial sheaths and burse of the muscles of the leg and foot are shown in Figs. 312-315.

THE MUSCLES OF THE PIG

Muscles of the Face

The facial cutaneus is pale, thin, and difficult to separate from the skin.
The orbicularis oris is little developed.
The levator nasolabialis is thin and pale, and is undivided.
The levator labii superioris proprius may well be termed the levator rostri. It has a large pennate belly, which arises in the preorbital fossa. The tendon ends on the anterior part of the os rostri. A muscular slip connects it with the premaxilla.

The zygomaticus arises on the fascia over the masseter and ends at the angle of the mouth.

The depressor labii inferioris separates from the buccinator only near the angle of the mouth; it ends by a number of tendinous branches in the lower lip.

The dilatator naris lateralis is well developed. It arises under the levator rostri and ends by a tendinous network around the nostril.

The transversus nasi is represented only by a few fibers which cross over the os rostri.

The depressor rostri arises on the facial crest. It has a long strong tendon which passes below the nostril and turns dorso-medially to meet the tendon of the opposite side and end in the skin of the snout. It depresses the snout and contracts the nostril.

The malaris is absent, and the other palpebral muscles present no special features.

MANDIBULAR MIUSCLES

The masseter is thick.
The pterygoideus medialis is wide at its insertion.
The pterygoideus lateralis is large and distinct.
The digastricus has only one belly and has no connection with the hyoid bone. It ends on the medial and lower surface of the mandible, in front of the groove for the facial vessels.

HYOID MUSCLES

The mylo-hyoideus consists of two more or less distinct layers, the superficial one being the transversus mandibulæ.

The occipito-hyoideus and kerato-hyoideus are small.
The hyoideus transversus is absent.
The omo-hyoideus and sterno-hyoideus are referred to in connection with the muscles of the neck.

Muscles of the Neck

The cutaneus consists of two layers which cross each other obliquely. The fibers of the superficial layer are directed nearly vertieally, those of the deep layer toward the face, on which they are continued to form the facial portion.

The brachiocephalicus is deseribed with the other muscles of the shoulder girdle.
The sterno-cephalicus arises on the sternum and is inserted by a long round tendon on the mastoid proeess.

The thyroid part of the stemo-thyro-hyoideus has a peculiar arrangement. It arises (separately from the opposite musele) on the mambrium sterni. thont the middle of the neek it has an oblique temdinous interscetion, beyond whieh it

Fig. 316.-Superfichal Mtscles of Pio, After Remotal of M. Cttanets.
a, Levator nasolabialis; b, levator labii superioris proprius; b, fleshy slip of b which comes from premaxilla; c, dilatator naris lateralis; d, depressor rostri; e, orbicularis oris; f, depressor labii inferioris; g, zsgomaticus; h, masscter; $i^{\prime} i^{\prime}, i^{\prime \prime}$, brachiocephalicus (cleido-ocripitalis, ckedo-ruastordeus, pars clavicularis deltoidci); k, sterno-cephalicus; l, sterno-hyoideus; m, omo-transversarius; n, n^{\prime}, trapezius; o, anterior deep pectoral; p, latissinus dorsi; q, lumbodorsal fascia; r, obliquus abdominis externus; r^{\prime}, aponeurosis of r; s, serratus dorsalis; t, serratus ventralis; u, posterior deep pectoral; x, supraspinatus; w, w^{\prime}, deltoideus; x, long head of triceps; y, lateral head of triceps; z, tensor fascize antibrachii; 1, brachialis; 2, extensor carpi radialis; 8, extensor digiti quarti: 4. extensor digiti quinti; 5, extensor earpi ularis; 6 , ulnar head of deep flexor: $\tilde{7}$, gluteus medius; 5 , tensor fascie lata; $9,10,10$, biceps femoris; 11 , semitendinosus: 12 , semimembranosus; 13, caudal rauscles: 1午, pantriculus adiposus in section. (After Ellenberger, in Leisering's Atlas.)
divides into two branches: one of these is inserted in the usual fashion, the other ends on the laryngeal prominence. The hyoid part is well developed.

The omo-hyoideus is thin. It arises as in the horse, but has no connection with the brachiocephaliens nor with the opposite musele.

The omo-transversarius arises on the first or second cervical vertebra (under cover of the brachocephalicus), and is inserted into the lower part of the seapular spine.

There are two scaleni. The scalenus ventralis (s. prime custae) resembles that of the ox, is attaeleed to the last four cervical vertebre, and is perforated by the nerves of the brachial plexus. The scalenus dorsalis (s. supracostalis) arises on the transverse processes of the third to the sixth cervieal vertebra, and ends on the third rib.

The ventral muscles of the head present no special features.
The longus colli is soparated from the opposite muscle, so that part of the borlies of the cervical vertebre is exposed as in mam.

The intertransversales resemble those of the ox.
The splenius is thick and extensive. It ends in three parts on the oecipital, the temporal, and the wing of the atlas (inconstant).

The longissimus capitis et atlantis is small, and its atlantal part is blended with the longissimus cervicis.

The complexus is large, and is elearly divided into two parts: the dorsal part (Biventer cervieis) is marked by several tendinous intersections; the ventral part is the eomplexus proper.

The obliquus capitis posterior is relatively thim.
The recti capitis dorsales are thick and more or less fused.

Muscles of the Thorax

The levatores costarum and rectus thoracis present no special features.
The external intercostal museles are absent under the serratus dorsalis and the digitations of the external oblique.

The internal intercostals are thick between the eartiłages of the sternal ribs.
The retractor costæ and the transversus thoracis resemble those of the horse; the latter extends back to the eighth eartilage and fuses with the transversus abdominis.

The diaphragm has seven costal digitations on each side, the posterior ones being attached to the ribs at some distance (ea. one-third to one-fourth of rib)length) from the eosto-ehondral junction. ${ }^{1}$ The line of attachment reaches the latter at the tenth rib, and passes along the eighth eartilage to the xiphoid process. The tendinous center is more rounded than in the horse. The crura are well developed. The right erus is very large, and is perforated by the extensive slitlike hiatus œesophageus, which is median in position, and lies about two and onehalf to three inches (ca. 6 to $\$ \mathrm{~cm}$.) below the twelfth thoracic vertebra. The hiatus aorticus is between the crura.

Abdominal Muscles

The abdominal tunic is little developed.
The obliquus abdominis externus has an extensive fleshy portion and a correspondingly narrow aponeurosis; the latter does not detach a femoral lamina, but is reflected in toto to form the inguinal ligament.

The obliquus abdominis internus resembles that of the ox; a small fusiform muscle, which erosses the inguinal canal obliquely and is attached on the abdominal surface of the inguinal ligament, is apparently a detached slip of the internal oblique.

The rectus abdominis is extensive and thiek. It has seven to ten inseriptions. Its tendon of insertion fuses largely with the common tendon of the graciles, and does not give off an aceessory band to the head of the femur.

The flesby part of the transversus abdominis is well developed. It blends in front with the transversus thoracis.

The cremaster externus is present in the female as well as in the male.

Muscles of the Back and Loins

The serratus dorsalis anterior is inserted into the fifth to the eighth ribs inclusive, the serratus dorsalis posterior into the last four or five ribs. There are usually no digitations attached to the ninth and tenth ribs.
${ }^{1}$ It is interesting to note that the diaphragm has no attachment to the fifteenth rib, which is often present and well developed.

The longissimus costarum extends to the wing of the atlas.
The spinalis et semispinalis can be separated without much diffieulty from the longissimus dorsi, the division from the common mass of the loins begiming about the first lumbar vertebra.

The multifidus rescmbles that of the horse.
Interspinales are present, as well as distinct intertransversales of the back and loins.

Muscles of the Tall

The dorsal and lateral sacro-coccygei arise as far forward as the last lumbar vertebra. Gurlt explains the twist of the tail as being due to the spiral arrangement of the insertions of the tendons.

Muscles of the Thoracic Limb MUSCLES OF THE SHOULDER GIRDLE

The trapezius is very wide, its line of origin extending from the oceipital bone to the tenth thoracic vertebra. There is no clear division between its two parts, whel are both inserted into the scapular spine.

The omo-transversarius resembles that of the ox.
The rhomboideus eonsists of three parts. The cervical part (Rhomboideus cerviealis) is greatly developed, its origin extenting from the second cervical to the sixth thoracic vertebra. The cephalic part (Rhomboideus eapitis) arises with the splenius on the oceipital bone, and is inserted with the cervical part. The thoracic part (Rhomboideus thoracalis) extends as far back as the ninth or tenth thoracic vertehra.

The latissimus dorsi is attached to the four ribs preceding the last. It is inserted into the medial tubrrosity of the humerns.

The brachiocephalicus divides into two parts, the cleido-mastoideus and cleido-occipitalis, which arise on the mastoid process and nuchal erest respectively, and unite at the fibrous vestige of the clavicle.

The anterior superficial pectoral muscle is thin. The posterior superficial pectoral musele is divided into two parts, one of which ends on the humerus, the other on the fascia of the forearm. The anterior deep pectoral muscle resembles that of the horse, lint its origin does not extend behind the first two chondro-sternal joints. The posterior deep pectoral muscle is very long.

The cervical part of the serratus ventralis is greatly developed, its origin extending from the wing of the atlas to the upper part of the fifth rib, and passing under the thoracie part; the latter resembles that of the ox.

MUSCLES OF THE SHOULDER

The deltoid is undivided; it arises from the aponeurosis covering the infraspinatus, and it ends largely on the deltoid ridge, but partly on the fascia of the arm.

The supraspinatus is large; it has a small attachment to the medial tuberosity and ends ehiefly on the lateral tuberosity of the humerus. There is a bursa between the tendon and the anterior part of the lateral tuberosity.

The infraspinatus is wide; it is inserted into a depression below the posterior division of the lateral tuberosity. There is a bursa between the tendon and the tuberosity.

The teres minor is large and rounded; it ends on a tubercle between the lateral and deltoid tuberosities of the humerus.

The subscapularis is very broad at its upper part. It extends posteriorly up to the dorsal angle of the scapula, but anteriorly only about two-thirds of the way up to the vertcbral border.

The teres major presents nothing remarkable.
The coraco-brachialis is short, wide, and undivided. There is a bursa between its broad tendon of origin and the tendon of insertion of the subscapularis.

The capsularis is variable; it may be half an inch wide or very small and is frequently absent.

MUSCLES OF THE ARM

The biceps brachii is fusiform and not greatly developed. Its tendon of origin is rounded and the underlying bursa communicates so freely with the shoulder joint as to be regarded as an evagination of the synovial membrane of the latter. A small band binds down the tendon in the bicipital groove. The tendon of insertion divides into two branches. One branch passes back aeross the medial surface of the neck of the radius to end on the proximal extremity of the ulna. The other is attached to the radius under cover of the brachialis tendon.

The brachialis is large. Its tendon of insertion divides. The small braneh is inserted into the medial border of the radius distal to the biceps tendon. The large branch crosses the medial border of the radius and ends on the medial surface of the ulna distal to the biceps tendon; there is a bursa under this tendon.

The tensor fasciæ antibrachii resembles that of the horse, but is very wide and bends around the posterior border of the triceps.

The long head of the triceps is inserted into the summit of the olecranon by two tendons, between which there is a synovial bursa. The lateral head is inserted into a crest on the lateral surface of the olecranon by a thin tendon, under whiels there is a bursa. The medial head arises from the proximal third of the medial surface of the humerus; it is inserted into the medial surface of the olecranon by a short tendon, under which there is a small bursa.

There are two anconei.

MUSCLES OF THE FOREARM AND MANUS

The extensor carpi radialis is a strong, fleshy musele, the tendon of which is inserted into the proximal end of the third metacarpal bone. It may be divided into two parts (M. extensor earpi radialis longus, brevis).

The extensor carpi obliquus is well developed; it arises from the distal two-thirds of the lateral surface of the radius and ulna and ends on the second metacarpal bone.

The common digital extensor (X . extensor digitalis communis) arises on the lateral epicoudyle of the humerus and the lateral ligament of the elbow, and divides into three parts. The tendon of the medial head ends chiefly on the third digit, but commonly sends a small branch to the second. The tendon of the middle head divides lower down into two branches for the third and fourth (chief) digits; above this bifureation it detaches a small branch to the seeond digit, which usually unites with the tendon of the extensor digiti secundi. The tendon of the deep head divides into two branches, the medial one joining the tendon of the middle head, while the lateral one ends on the fifth digit.

The extensor of the second digit (M. extensor digiti secundi proprius) is covered by the preceding muscle, with which it is partially fused. It arises on the ulna. Its delicate tendon usually umites with the tendon of the middle head of the common extensor which goes to the second digit.

The lateral digital extensor (M. extensor digitalis lateralis) consists of two distinct parts: (1) The large dorsal muscle is the extensor digiti quarti proprius; it has a long tendon which ends on the fourth digit, and often sends a slip to the fifth
digit. (2) The small volar muscle is the extensor ligiti quinti proprius; it ends by a long tenden on the lateral aspect of the fifth digit.

The supinator, when present, is a pale, thin muscular slip which arises on the lateral border of the radins just above the interosseous space, extends mediatly and downwarel accoss the dorsal surface of the bone to its medial

Fig. 317.-Miescles of Antibrachicm and Manca of Pig; Dobso-laterill View.
a. a^{\prime}, Extensor carpi radialis: b, extensor carpi obliquus (s. abductor pollicis longus): c, d, f, common digital "xtensor; $c^{\prime}, c^{\prime \prime}$, teadons of insertion of c; $d^{\prime}, d^{\prime \prime}$, tendons of $d_{;} e^{\prime}, e^{\prime \prime}$, tendons of $r ; f$, tendun of "xtensor digiti secundi; g, extensor digiti quart ;
 tendon of h : i, tendinous, and k_{2} fleshy: part of ulnaris lateralis; k^{\prime}, tenton of $k ; l$, ulnar herat of deep digital flexor; m, superfieial digital flexor: H, brachiahs. (After Elleuberger, in Leisering's Atlas.) border, where it blends with the ravlial hean of the deep Hexor.

The pronator teres is a delicate. fusiform musele which lies along the medial surface of the ellow and proximal part of the forearm. It arises from the medial epicondyle and collateral ligament of the ellow and is inserted by a thin tendon to the medial horder of the radius alsout its middle.

The flexor carpi radialis is well developerl. It arises on the medial epicondyle of the humerus, and is inserted into the third metacarpal bone.

The flexor carpi ulnaris is narrow and has no ulnar head. It runs obliquely down the back of the forearm in the furrow between the superficial and deep flexors of the digit. It arises from the medial epicondyle of the lmmerus and ents on the accessory carpal lrone.

The ulnaris lateralis (MI. extensor carpi ulnaris) is covered by a tenclinous band, which is a thickened part of the fascia of the forearm and extends from the lateral epicondyle to the accessory carpal bone and lateral aspect of the carpus. The belly of the musele is round: its tendon of inscrtion perforates this band in the distal part of the forearm and ends on the proximal end of the fifth metacarpal bone.

The superficial digital flexor arises from the medial epicondyle of the humerus and consists of two parts. The tendon of the superficial head passes down behind the posterior amnular ligament of the carpus (bound down by a special annular ligament), forms a ring at the fetloek for a tendon of the deep flexor, and ends by two branches on the second phalanx of the fourth digit. It receives a small band from the accessory earpal bone. The tendon of the deep head, after detaching a strong branch to the tendon of the deep flexor, passes down with the latter (for which it forms a ring), and ends on the third digit.

The deep digital flexor has three heads-humeral, ulnar, and radial. The humeral head is very large and forms the greater part of the contour of the volar face of the forearm. It censists of two parts-a large superficial part, and a much smaller deep part which arises with the superficial tlexor. Each ends at the distal part of the forearm on a short tembon. These unite and receive the tendons of the ratiad and ulnar heads and a branch from the superficial flexor temton. The ulnar head has a short, thick, prismatic belly which arises from the medial surface of the proximal part of the ulna. Its long, thin tendon passes down on the humeral head and joins the tenclon of the latter at the level of the accessery earpal bone. The radial head is small. It arises from the upper part of the medial border of the rarlius and from the deep fascia, and its tenton joins that of the humeral head at the distal end of the forearm. The common tendon divides into four branches,
the larger central pair ending on the third phalanges of the principal digits, the smaller abaxial pair on the accessory digits. The latter are bound down by a peculiar spiral band. There is no subearpal check ligament. The earpal sheath envelops the tendon of the deep flexor and that of the deep part of the superficial flexor. It extends from the distal third of the forearm to the distal third of the metaearpus. At the proximal part of the metacarpus a small muscular band extends from the deep flexor tendon to the tendon of the deep part of the superficial flexor. Another museular bundle passes from the deep flexor tendon to the second digit.

The lumbricales are represented by bundles which extend from the deep flexor tendon to the tendon of the deep head of the superficial flexor.

The third and fourth interossei are present. Each sends two slips to the corresponding sesamoid bones and extensor tendon.

There are flexors, adductors, and abductors of the second and fifth digits.

Muscles of the Pelvic Limb SUBLUMBAR MUSCLES

The psoas minor is intimately united with the psoas major in front, and has a long small tendon which ends on the psoas tuberele. It has no thoracie part.

The psoas major is large and rounded. It begins at the last rib.
The quadratus lumborum is well developed, and extends to the last three or four thoraeie vertebre.

MUSCLES OF THE HIP AND THIGH

The tensor fasciæ latæ is broad, and its fleshy part reaches almost to the patella.
The gluteus superficialis has a sacral head only; it blends with the biceps femoris.

The gluteus medius has a small lumbar part which does not extend so far formard as in the horse. The deep part (Glutens accessorius) is pretty clearly marked.

The gluteus profundus is extensive, reaching nearly to the tuber coxx.
The biceps femoris has a narrow origin from the saero-seiatic ligament and tuber ischii. It ends below like that of the $o x$.

The semitendinosus has two heads like that of the horse.
The semimembranosus arises from the tuber ischii and has two insertions as in the ox.

The sartorius has two heads of origin, between which the external iliae ressels are situated. The medial one arises from the tendon of the psoas minor, the lateral one from the iliac fascia.

The graciles are united at their origin even more than in the ox.
The pectineus is well developed and is flattened from before baekward.
The adductor shows no division and is partially fused with the gracilis. It ends on the femur just above the origin of the gastroenemius.

The quadratus femoris is large.
The obturator externus resembles that of the horse.
The obturator internus is extensive and strong; its tendon emerges through the obturator foramen.

The gemellus is fused in part with the obturator internos.
The quadriceps femoris is more clearly divided than in the horse, and its action is transmitted by a single patellar ligament.

The capsularis is absent.

MUSCLES OF THE LEG AND FOOT

The peroneus tertius is a well-developed muscle which is in great part superficially situated on the front of the leg. It cowers the long digital extensor, with which it is united except in the distal third of the leg. It arises from the extensor fossa of the femur by a common tendon with that muscle,

Fig. 318.- Murcles of Leg and Foot of Pig; DorsoLiteral Viet.
a, Tibialis anterior: a^{\prime}. tendon of preceding: b, peroneus tertius; b^{\prime}, tendon of b; c, long digutal extensor; d, f, f. $f^{\prime}, f^{\prime \prime}$, tentons of c; g, peroncus longus; y^{\prime}, tenton of $g ; h$, extensor digiti quarti; h^{\prime}, tradon of h, which receives $h^{\prime \prime}$ from the interosseus medius: i, uxtensor digiti quinti: k, derep digital flexor; l, solens; m, gastrocnemius; n, extensor digitalis brevis. (After Ellenberger, in Leisering's Athas.) a synovial pouch from the femoro-tibial joint extending down under the origin.

This sac is an inth and a half or more (ea. 3 to 4 cm .) in length in large subjects and exten'ls around the lateral edge of the tendon to its superficial face, so as to make a partal sheath and underlie the origin of the peroneus longus ako.

The muscle is continued at the distal end of the leg by a strong tendon which passes over the flexion surface of the hock, between the tendon of the long extensor (lateral) and that of the tibialis anterior (medial), all three being bound down by a strong anmular ligament which extends across from one malleolus to the other. It ends by two or more branches on the first and seeond tarsal and third metatarsal bones. Not rardy there is a thin tendon inserted into the fourth metatarsal bone. The tendon usually receives a small branch from that of the tibialis anterior at the amular ligament.

The tibialis anterior is smaller than the preceding. It arises from the lateral surface of the tuberosity and lateral condyle of the tibia. At the distal end of the leg the tendon passes under the annular ligament mentioned above (where it detaches a small branch to the peroneus tertius), and ends on the second tarsal and the proximal end of the second metatarsal bone. The terminal part passes under a superficial layer of the medial ligament of the hock, and is provided with a bursa.

The peroneus longus descends in front of the fibula and the laterad extensor. It arises chiefly from the lateral condyle of the tibia. The tendon of insertion descends through a groose on the lateral malleolus, crosses over the tendons of the lateral extensor, then under the lateral ligament to the plantar surface of the hock, to end on the first tarsal bone. There is a bursa under the tendon where it lies in the groove on the fourth tarsal. The muscle is a flexor of the hock.

The long digital extensor arises in common with the peroneus tertius, hy which it is largely covered and with which it is united to the distal third of the leg. Three tendons appear at the proximal ammlar ligament and extend downward and a little medially over the flexion surface of the hock. Here they are bound down by an ammular ligament given off from the tenton of the peroneus tertius and attached laterally to the distal end of the fibular tarsal bone. The tendons gradually diverge as they descend the metatarsus. The central one divides at the distal end of the metatarsus into two branches which end on the third phalanges of the chief (third and fourth) digits. This tendon is joined before bifureating by the tendon of the extensor digitalis brevis. The mediat tendon ends on the second and third phalanges of the mediat chief (third) digit. It receives a branch from the inter-
osseus at the distal end of the first phalanx, and may detach a tendon to the second digit. The lateral tendon is smaller. Its branches end on the third phalanges of the accessory (second and fifth) digits and on the lateral chief (fourth digit); there may be a branch to the third digit, and the branch for the fourth may go to the corresponding branch of the central tendon. Other variations occur.

The synorial sheatly for the tendons of the extensor longus and peroneus tertius at the hoek extends nearly half an inch (ca. 1 cm .) above the proximal annular ligament and an inch or more (ca. 2 to 3 cm .) below the distal annular ligament in a large adult.

The lateral digital extensor lies on the lateral face of the leg, behind the peroneus longus. It arises from the lateral surface of the fibula, the lateral femorotibial ligament, and the intermuscular septum between this muscle and the deep digital flexor. It consists of two parts. The larger anterior muscle (extensor digiti quarti) has a tendon which appears a little distal to the middle of the leg. descends on the grooved lateral surface of the fibula, inclines forward, crossing under the tendon of the peroneus longus, and ends on the extensor process of the third phalanx of the lateral chief (fourth) digit. It receives an interosseus tendon at the first phalanx. The tendon of the posterior muscle (extensor digiti quinti) accompanies that of the anterior one to the tarsus and descends to the lateral accessory (fifth) digit.

The two tendons are bound down at the lateral malleolus by an annular ligament. The anterior tendon may receive a branch of the long extensor tendon and send a tendon to the fifth digit. The posterior tendon may send a reinforeing branch to the tendon of the long extensor for the fifth digit. There may be a third small head which arises from the middle of the fibula and sends a delieate tendon to join that of the posterior head.

The extensor hallucis longus is a small, fusiform muscle which is covered by the extensor longus and peroneus longus. It arises from the proximal end of the fibula and its delicate tendon descends at first under that of the peroneus tertius, inclines medially at the hock, and ends on the medial accessory (second) digit.

The extensor digitalis brevis is a well-developed muscle which lies on the dorsal face of the distal part of the tarsus and on the chief metatarsal bones. It arises from the neck of the tibial tarsal and the body of the fibular tarsal bone, and is partially divided into three parts. The tendon of the superficial part joins that of the long extensor for the chief digits. The deep part has two tendons which join those of the long extensor for the accessory digits.

The gastrocnemius has short but wide and thick heads. The lateral one is the larger and is united with the superficial digital flexor to the distal third of the leg. The tendon forms a groove for the superficial flexor tendon above the hock and is inserted chiefly into the prominences on each side of the notch of the tuber calcis.

The soleus is thick and wide and blends with the lateral head of the gastrocnemius. It arises from the lateral epicondyle of the femur and the deep fascia at the stifle. Its tendon joins that of the gastrocnemius.

The popliteus presents nothing remarkable.
The superficial digital flexor has a belly of considerable size. It arises with the lateral head of the gastrocnemius, with which it is fused to the distal third of the leg. The tendon is almost eutirely enclosed by the twist of the gastrocuemius in the lower part of the leg. At the tuber calcis it is thick and largely cartilaginous, and is molded on the groove and ridges of the bone. It is attached by a strong band to each side of the tuber calcis. A large bursa under the tendon extends upward in the groove formed by the gastroencmius almost to the muscular part and downward to the middle of the fibular tarsal bone. The tendon divides distallyinto two branches which go to the chief digits. It also detaches from its plantar surface two bands which join the fascia of the accessory digits.

The deep digital flexor presents three distinct heads: (1) The tibialis pos-
terior is the smallest. It has a fusiform belly in the proximal half of the leg and arises from the groover plantar surface of the fibula. The tendon joins that of the flexor hallucis at the distal ent of the leg. (2) The flexor digitalis longus is much larger and has a fusiform, pennate belly which extends olliquely aeross the proximal two-thirds of the leg. It arises from the proximal end of the fibula, the popliteal line, the middte third of the medial part of the plantar surface of the tibia, and the intermuscular septum between this muscle and the flexor hallucis. The tendon (whieh has a synoviat sheath) descends in a groove behind the medial malleolus, bound down by an annular ligament, inclines laterally on the joint capsule, and joins the tendon of the flexor lallucis. (3) The flexor hallucis has a large fusiform belly which extends almost to the distal end of the leg. It arises from the greater part of the plantar surface of the tibia, the medial surface and plantar border of the filula, and the interossenus membrane. The tendon deseends in the tarsal canal, receiving the tendons of the other heads, and ends like the corresponding ome of the forelimh). The tarsal synovial sheath begins at the distal ent of the museular part and extends to the middle of the metatarsus.

The lumbricales are absent, but there are four interossei. Rudimentary adductors of the second and fifth digits may be found.

THE MUSCLES OF THE DOG Muscles of the Face

The cutaneus of the face is well developerd. Nost of it is a continuation of the cervieal cutaneus; the bundles extent forward over the lower part of the lateral surface of the face to the angle of the mouth and the upper lip. Other bundes extemel upward; some of these spread out on the eheek and lateral nasal region, and a thin layer passes toward the lower eyelid, blending with the orbicularis ondi and constituting a malaris musele. Another stratum is attached to the seutifom cartilage and spreads out on the masseter.

The orbicularis oris is peorly developed. In the upper lip it is divided centrally, and in the lower lip it is distinct only near the angles of the mouth.

The levator nasolabialis is wide and umdivited. It has an extensive origin on the frontal and nasal bones. The fibers run downward and forward to the lateral wing of the nostrit and the upper lip.

The levator labii superioris proprius arises behind the infraorlital foramen, runs forward under the preceding musele, and ends in mumerous small tendons which are in part inserted around the nostril, in part blend with those of the opposite side.

The zygomaticus is narrow and very long; it arises on the seutiform cartilage, and enils at the angle of the mouth.

The depressor labii inferioris is absent.
There are no sperial nasal muscles. The homologue of the laterat dilator is triangular; it is small at its origin just ventral to the levator labii superioris proprius, and ends almost entirely in the upper lip.

The buccinator is wide and very thim, and the two planes of fibers cross cach other.

The palpebral muscles present no very noteworthy special characters. Two small muscles act on the upper eyelid. One of these, the eorrugator supercilii, arises from the fascia on the frontal bone and ends near the medial canthus. The other arises from the zygomatic arch and ends near the lateral canthus.

Fig. 319.-Mesries of Head of Dog.
o, Scutularis; b, c, anterior auricular muscles; d, helicis; e, antitragicus; $f, f, z y g o m a t i c u s$, out of which a portion is cut; q. stump of cutameu* attached to scutiform cartilage; h, parotido-auricularis; i, masseter; k, malaris; l, levator nasolabialis; m. levator labü superioris proprius; n, disatator naris lateralis; o, p, bucciaator (buccalis, molaris); q, retractor adgulioris (from cutaneus); r, occipito-mandibularis; s, mylo-hyoideus; 1 , base of concha: 2 , parotid gland: 2'. parotid duct: 3, mandibular gland: f, mandibular lymph glands; 5 , buccal glands; 6 , zygomatic arch; \%, maxilla; S, dorsum nasi; 9, parotid lymph glaad. (Ellenberger-Baum, Anat. d. Iundea.)

Fig. 320.-Stperficlal Mescles of Dog, After Revoral of M. cetanees.

1. Levator nasolabialis; 2, levator labii superioris proprius; 3, dilatator naris lateralis; 4. 4, buccinator; 5, retractor anguli oris; 6, 2ygomaticus; 7 , malaris; 8 , msseter; 9 , occipito-mandibularis, 10, scutularis; 11, other auriculsr muscles; 12, parotido-auricularis; 13 , mylo-byoideus; 14, sterno-hyoideus; 15, sterno-thyroideus; 16, splenius; 17, lumbodorsal fascia; 18 , rectus abdominis: 19 , obliquus abdominis externus; 19 , aponeurosis of preceding; 20 , intercostal muscle; 21. sacro-coccygeus accessorius; 22, sacro-coccygeus dorsalis; 23, sacro-coccygeus veatralis: 24. great trochanter; 2.5, jugular vein; a, b, c, brachiocephalicus; d, clavicle: e, f, trapezius; g, serratus cervicis; h, omotransversarius; i, latissimus dorsi; k, posterior deep pectoral; l, supraspinatus; m, m^{\prime}, deltoid; n, infraspioatus: o, trictps, long head; o^{\prime}, triceos, lateral head; p, brachialis; q, extensor carpi radialis; r, gluteus medius; s, gluteus superficialis; t, t^{\prime}, teasor fasciæ latæ; u, sartorius; r, biceps femoris; τ^{*}, fascia lata; u, sernitendinosus; x, semimembranosus: y, sartorius; z, gracilis; 26, pronator terea; 27 , flexor carpi radialis; 28, flesor carpi ulnaris: 29, tibialis anterior: 30 , popliteus; $31,3 i^{\prime}$, deep digital flexor; 32 , superficial digital flexor: 33 , gastrocnemius; 34 , spine of scapula: a. parorid gland, with α^{\prime}, its duct: β, mandibular gland: δ, mandibular lymph glands; η, parotid lymph gland; ऽ. inferior buccal glands. (After Ellenberger, in Leisering's Atlas.)

MUSCLES OF THE MANDIBLE

The masseter is thick and its superficial face is strongly convex. It arises from the zygomatic areh, and extends beyond the branch of the jaw below and behind. Three partly separate strata may be recognized in its structure.

The temporalis is very large and

Fig. 321. -Vevtral Méarleq of Itead, Neck, and Thorax of Dog.
a, MyIr-hyoideus; b, ocryito-mandibulatis: c, sternohyondens; c^{\prime}, sterno-thyroidens; d, sterno-cephalicus; ϵ, brachiocephalicus; f, subseapularis: g, superticial pecteral; h, deep pectoral: i, rectus abdominis: k, obliquus abdominis externus; l, long head of triceps; m, medial head of triecps; u, biceps brachiii; 0 , brachialis; $1,1^{\prime}, 1^{\prime \prime}$, mandibular $1 y^{\prime} \mathrm{mph}$ glands; 2 , thyroid gland; 3, external jugular vein. (Ellenberger-Baura, Anat. d. Hundes.) strong, and contains much tendinous tissue. It arises from the temporal fossa and the orbital ligament and ends on the coronoid process of the mandible. It blends in part with the masseter.

The pterygoideus lateralis is not distinct from the medialis.

The digastricus is absent.
The occipito-mandibularis is a strong, round, fleshy muscle, which arises on the paramastoid process and is inserted into the border and medial surface of the ramus of the mandible at the level of the last molar teeth: it sometimes has a tendimous intersection.

HYOID MUSCLES

The mylo-hyoideus is well developed.

The stylo-hyoideus is very slender, and is inserted into the body of the hyoid bone.

The hyoideus transversus and omo-hyoideus are absent.

The sterno-thyro-hyoideus is large and arises chiefly on the first eostal cartilage. It is clearly divided into sterno-thyroideus and sterno-hyoideus.

Muscles of the Thoracic Limb

The trapezius is thin, and is divided into cervical and thoracic portions by a narrow aponeurotic part. Its line of origin extends from about the middle of the dorsal border of the neck to the ninth or tenth thoracic spine, the right and left muscles meeting (except at their posterior part) on a median fibrous raphé. It is inserted into the entire length of the spine of the seapula.

The omo-transversarius arises by a tenton on the lower part of the spine of the serapula (where it is often partially blended with the 'trapezius), and is inserted into the wing of the atlas.

The rhomboideus consists of three parts. The rhomboideus thoracalis is small; it arises from the fourth to the sixth or seventh thoracic spine, and is inserted into the medial surface (chiefly) of the dorsal angle of the scapula. The rhomboideus cervicalis arises from the ligamentum nuchae as far forward as the second or third cervical vertebra, and is inserted into the medial surface of the cervical angle of the scapula. The rhomboideus capitis is a narrow band which is given off !aterally from the preceding; it is inserted into the nuchal crest.

The latissimus dorsi is extensive; it has an attachment to the last two ribs and also to the upper part of the spine of the scapula in addition to the origin from the lumbo-dorsal fascia. Its lower edge blends near the shoulder with the cutaneus.

The brachiocephalicus contains in front of the shoulder a tendinous intersecion and a fibrous mass in which the clavicle is embedded. Anterior to this it separates into two diverging parts. The dorsal part is the cleido-cervicalis, which widens above and is attached to the median rapbe of theneck and to the occipital bone. The ventral part is the cleido-mastoideus; it is narrow and is attached to the mastoid process. The common mass posterior to the claricle and the fibrous intersection, which is attached to the humerus, is homologous with the clavicular part of the deltoid of man.

The superficial pectoral muscle is small. It arises on the sternum from the manubrium as far back as the third costal cartilage, and is inserted into the humerus at the border between the medial and anterior surfaces. A superficial slip detached from it is inserted into the fascia of the forearm. The deep pectoral has no scapular part. It arises on the sternum and costal cartilages from the second costal to the xiphoid cartilage, and from the aponeurosis of the obliquus abdominis externus. It is inserted chiefly into the medial tuberosity of the humerus, but also by small slips into the lateral tuberosity and the fascia of the arm.

The serratus ventralis shows no clear division into cervical and thoracic parts. It arises from the last five cervical vertebree and the first eight ribs, and is inserted into the upper part of the costal surface of the scapula.

The deltoid is clearly divided into scapular and acromial parts. The scapular part is triangular and arises from almost the entire length of the spine of the scapula; it is iuserted largely into the fascia on the lateral surface of the arm. The acromial part is short, thick, and fusiform; it arises from the lower edge of the acromion, and ends on the deltoid tuberosity:

The supraspinatus is large; it ends chiefly on the lateral tuberosity of the humerus, but has a small attachment to the medial tuberosity also.

The infraspinatus is bipennate. The tendon of insertion passes in a groove on the lateral tuberosity of the humerus, to end on a well-defined mark on the same; a large bursa lies uuder the tendon.

The teres minor is short and fusiform; it arises on a tubercle on the posterior border of the scapula, just above the glenoid cavity, aud is inserted into a tubercle on the upper part of the deltoid ridge.

The subscapularis is wide and is multipennate in structure, being intersected by fibrous septa which are attached to the rough lines on the costal surface of the scapula. It is inserted into the medial tuberosity of the humerus.

The teres major is thick. It arises on the upper part of the posterior border of the scapula and on the subscapularis, and is inserted into an eminence (tuberositas teres) on the proximal third of the medial surface of the humerus by a common tendon with the latissimus dorsi.

The coraco-brachialis has a short and undivided belly. It arises from a small depression on the medial surface of the tuber scapule, and ends on the proximal third of the humerus, just medial to the brachialis. The tendon of origin has a synorial sheath.

The capsularis is absent.

The biceps brachii lies almost entirely on the medial surface of the humerus. It is long and fusiform. The tendon of origin is round, and is bound down in the intertuberal groove by an amular ligament. It is enveloped by an extension of the synovial membrane of the shoulder joint. The temdon of insertion is hifud;

Fig. 322.-Muscles of Thoracic Limb of Dog; Medtal View, (Ellenberger-Baum, Anat, des 11undes.)
one branch is attached to a rough mark on the lateral surface of the ulna, just below the semilunar notch; the other branch ends on a distinct mark on the posteromedial aspect of the proximal part of the shaft of the radius, one to two inches below the head.

The brachialis is very little curved. Its tendon of insertion passes over the medial ligament of the elbow and under the ulnar tendon of the biceps and ends just proximal to the latter. The tendon of the biceps forms a partial sheath for that of the brachialis.

The tensor fasciæ antibrachii is thin and narrow. It arises on the tendon and lateral surface of the latissimus dorsi, and ends on the olecranon and the fascia of the forearm.

The triceps has an additional deep head (Caput accessorium), which arises just below the head of the humerus. The medial head is very long; it arises from a mark on the proximal fourth of the medial surface of the humerus, just behind the insertion of the teres major and latissimus dorsi. A bursa lies on the olecranon in front of the common tendon of insertion.

The brachioradialis is a long, narrow, delicate muscle, situated superficially on the dorsal surface of the forearm. It arises with the extensor carpi on the crest above the lateral epicondyle of the humerus, and is inserted into the distal part of the medial border of the radius. It is often much reduced, and is sometimes absent. It rotates the forearm and paw outward.

The extensor carpi radialis arises on the lateral condyloid crest and divides into two parts. The larger lateral part, the extensor carpi radialis brevis, ends on the proximal end of the third metacarpal bone. The medial and more superficial part, the extensor carpi radialis longus, ends on the second metacarpal bone. (A tendon to the fourth metacarpal may occur.)

The extensor carpi obliquus or abductor pollicis longus arises from the lateral border and dorsal surface of the ulna, the interosseous ligament, and the proximal part of the lateral border of the radius. It is inserted into the first metacarpal bone by a tendon which contains a small sesamoid bone. It abducts the first digit.

There are three (or four) extensors of the digits.

1. The common digital extensor (M. extensor digitalis communis) arises on the lateral epicondyle of the humerus and the lateral ligament of the elbow joint. It has four bellies, each of which has a tendon of insertion. These end on the third phalanges of the second, third, fourth, and fifth digits.
2. The extensor of the first and second digits (M. extensor pollicis longus et extensor indicis proprius) is small, and is covered by the common and lateral extensors. It arises on the proximal half of the ulna. Its tendon lescends with that of the conmmon extensor and divides into two branches. The delicate medial branch ends on the first digit, while the larger lateral one ends with the tendon of the common extensor for the second

Fig. 323.- Iltzcleps of Antibrachick and MaNes of Dog; Lateral View.
a. Triceps brachii: b, brachialis: c, extensor carpi radialis; $d_{\text {. }}$ common digital extensor; $d^{\prime}, d^{\prime \prime}$. $d^{\prime \prime \prime}, d^{\prime \prime \prime \prime}$, tendons of precediag: e_{0} lateral digital extensor; e^{\prime}, f, tendons of preceding: g. uloaris lateralis; h, ulnar head, h^{\prime}, humeral head of flexor carpi ulnaris; i, extensor carpi obliquus (s. abductor pollicis longus): k, interossei; l, branches from preceding to extensor teodons: 1 , olecranon; 2, radius; 3, lateral epicondyle of humerus. (After Ellenberger, in Leisering's Atlas.) digit.
3. The lateral digital extensor (M. extensor digitalis lateralis) consists of two muscles which are not rarely fused. They arise on the lateral epicondyle of the humerus and the lateral ligament of the elbow joint. The larger superficial muscle is the extensor of the third and fourth digits (M. extensor digiti tertii et quarti);
its tendon divides at or near the carpus into two branches, which are inserted into the third phalanges of the third and fourth digits, bending with the corresponding tendons of the common extensor. The posterior musele is the extensor of the fifth digit (M. extensor digiti quinti) ; its tendon fuses with that of the eommon extensor for the fifth digit.

The ulnaris lateralis or extensor carpi ulnaris is a large flat muscle which lies on the lateral surface of the una. It arises on the lateral epiondyle of the humerus, and is inserted into the proximal end of the filth metacarpal and the accessory carpal bone. It is chiefly an abductor of the paw.

The flexor carpi ulnaris consists of two quite distinct heads. The larger humeral head arises on the medial epicondyle, while the smatler,

Fig. 324.-Volar Mtiscleabof Iemt ForePaw of Dug.
(a, Abluctor prollicis brevis et opponens pollicis: b, flexor pullicis brevis; c, adhluctor pollicis; d, athuctor digiti secundi; c, ath ductor digiti quinti; f, flexor digiti quinti brevis; y, abductor digit! quinti; h, interossel; 1. accessory carpal bone; 2. first digit. $3-f$, sesamoids of metacarpo-phalangeal joints, Ellen-berger-bauna, . Inat. d, Huntes.) superficial ulnar head arises on the posterior border of the ulna. The tendons of the two end on the accessory carpal bone and have a bursa between them.

The flexor carpi radialis arises on the metlial epicondyle of the humerus and is inserted by a bifid tendon into the second and third metacarpal bones.

The tendons of the foregoing eight muscles are provided with synovial sheaths at the carpus.

The pronator teres is a fusiform musele, which is situated superficially on the proximal part of the medial border of the radius. It arises on the metial epicondyle of the humerus, and is inserted into the dorsal surface and medial border of the radius almost half way to the carpus. It is related deeply to the radial vessels, the median nerve, and the tendon of the biceps. Its action is to flex the elbow and rotate the forearm inward (pronation).

The superficial digital flexor is situated superficially on the medio-volar surface of the forearm. It arises on the medial epicondyle of the humerus and terminates near the carpus on a tendon which passes downward outside of the carpal canal and receives below the carpus two reinforcing bands, one from the accessory carpal, the other from the sesamoid bone at the medial side of the carpus. It divides distally into four branches, which are inserted into the second phalanges of the second, third, fourth, and fifth digits.

The deep digital flexor has humeral, ulnar, and radial heads; the radial head arises from the medial border of the radius. They unite on a common tendon which passes down through the carpal canal, gives off a branch to the first digit, and divides into four branches. These perforate the tendons of the superficial flexor and are inserted into the third phalanges of the second to the fifth digits. The tendons are provided with synovial sheaths from the middle of the metacarpus downward, and are hed in place by three digital annular ligaments.
The palmaris longus ${ }^{1}$ is a small muscde which arises from the deep digital flexor below the midde of the forearm, and ends by two tendons which unite with those of the superficial flexor for the third and fourth digits.

The supinator is a short, flat, fusiform muscle which arises from the front of the lateral epieondyle of the humerus with the lateral ligament, and from the lateral prominenes of the head of the radius, and is inserted into the proximal fourth of the
${ }^{1}$ The homology here is doubtful. Sussdorf regards the ulnar head of the deep digital flexor as the homologue of the palmaris longus of man, while Alexais considers that the latter is represented by the superficial digital flexor.
dorsal surface and the medial border of the radius. (A pouch of the capsule of the elbow joint lies under the tendon of origin.) Its action is to rotate the forearm outward (supination).

The pronator quadratus consists of a thin layer of fibers which cross the volar surface of the radius and the interosseous ligament of the forearm, except at the two extremities of the latter. The fibers extend from the medial border of the radius backward and outward to the interosseous border of the ulna. It rotates the forearm inward (pronation).

The palmaris brevis (?) is a very small muscle, which arises on the tendon of the superficial digital flexor at the carpus, and is inserted at the fifth metacarpophalangeal joint into the sheath and annular ligament of the deep flexor.

The lumbricales are three rery delicate muscles, which arise on the volar surface of the tendons of the deep flexor, and are inserted into the first phalanges of the third, fourth, and fifth digits.

The abductor pollicis brevis et opponens pollicis, a very small pale muscle, arises on the fibrous band which connects the superficial flexor tendon with the medial carpal sesamoid, and ends on the distal end of the first metacarpal bone and the first phalanx of the first digit. It abducts the first digit. ${ }^{1}$

The flexor pollicis brevis arises on the volar carpal ligament over the second metacarpal bone, and ends on the volar sesamoid of the first digit.

The adductor pollicis, situated lateral to the preceding, is the largest of the thumb muscles. It arises between the preceding and the second interosseous muscle, and is inserted into the first phalanx of the first digit.

The adductor digiti secundi is situated between the second interosseous muscle and the adductor digiti quinti. It arises on the volar carpal ligament, and ends on the first phalanx of the second digit.

The adductor digiti quinti arises close to the preceding muscle, and passes outrrard to end on the first phalanx of the fifth digit.

The flexor digiti quinti arises on the ligament connecting the accessory carpal to the third and fourth metacarpal bones. crosses the corresponding interosseous muscle, and ends on the fifth digit with the next muscle.

The abductor digiti quinti is larger than the two preceding muscles; it arises on the accessory carpal bone, and ends on the lateral sesamoid of the fifth digit and on the lateral ligament.

There are four interossei which lie on the volar surface of the metacarpus. They are well developed and fleshy. They arise on the distal row of the carpus and on the proximal ends of the metacarpals. Each divides distally into two branches, which are inserted by small tendons on the corresponding sesamoid bones, and detach slips to the extensor_tendons.

The chief facts with regard to the synovial membranes in connection with the muscles of the forearm and manus are as follows: The tendons of the extensor carpi radialis frequently have a ssnovial sheath at the distal part of the forearm, and there may be one or two bursa at the carpus. The tendons of the extensor digitalis communis have a synovial sheath which extends from the distal part of the forearm to the carpus or to the proximal part of the metacarpus. The tendons of the extensor digitalis lateralis have in about half of the cases a synovial sheath at the distal part of the forearm and at the carpus. The tendon of insertion of the extensor carpi obliquus has a synovial sheath. The tendon of insertion of the ulnaris lateralis sometimes has a bursa betreen it and the styloid process of the ulna. The tendon of insertion of the flexor carpi radialis has a synorial sheath. There is a bursa between the two tendons of the flexor carpi ulnaris at their insertion; it usually communicates with a subfascial bursa which lies on the accessory carpal bone. The superficial digital flexor has a bursa under its origin; this communicates with another bursa which lies between the deep digital flexor and the flexor carpi ulnaris. The tendons of the digital flexors for the second to the fifth digits have a common sheath for each digit which begins at the distal part of the metacarpus. The tendon of the deep flexor for the first digit has a synoxial sheath.

[^72]
Muscles of the Neck

The cervical cutaneus eonsists of two strata. One of these is composed of thin bundles which curve across the ventral region of the neck and fade out laterally. The other layer is thicker and more extensive. Its bundles begin at the dorsal margin of the neck, are directed oblicpuely over the sides, and are for the most part continued by the facial part as previously described.

The sterno-cephalicus is well dewloped. It arises on the manuhrium sterni, diverges from its fetlow, and embs on the mastoid process, hending with the edeidocerviealis. It may be termed the sterno-mastoidens. It is crossed superficially hy the external jugular vein.

The scalenus ventralis (s. prime costie) arises on the last four cervical transverse processes, and is inserted into the first rib).

The scalenus dorsalis (s. supracostalis) is large. It blends with the preceding muscle in front, and divides into two parts posteriorly. The dorsal part is inserted on the third and fourth ribs, the ventral part by a long, thin tendon on the seventh or (ighth rib).

The longus colli resmbles that of the horse.
The rectus capitis ventralis major arises on the transverse processes of the seeond to the sixth cerviral vertebrae and ends as in the horse. The rectus capitis ventralis minor and rectus capitis lateralis resemble those of the horse.

The intertransversales resemble those of the ox.
The splenius is strong and dxtensive. It arises on the first four or five thoracic spines and the median raphe of the neck, and is inserted into the nuchal crest and mastoill process.

The complexus is composed of dorsal and ventral parts-the biventer eervicis and the complexus major. The biventer cervicis arises from the transverse processes of the fifth and sixth, and the spines of the second to the fifth (or sixth) thoracic vertebree, from the ligamentum mucher, and the median raphé. It has four ohlique tendinous intersections. The complexus major arises on the transverse proeesses of the first three or four thoracie vertebree and the articular processes of the last five cervical. Both end on a strong common tendon which is inserted into the nuchal crest and the depression below it.

The longissimus capitis et atlantis consists of two unequal parts. The large florsal part, the longissimus capitis, arises from the transverse processes of the first four thoracie and the articular process of the last three or four eervieal vertebre, and ents with the splenius on the mastoid process of the temporal bone. The small ventral part, the longissimus atlantis, arises from the articular processes of the thirl, fourth, and fifth cervical vertebree, and ends on the wing of the atlas.

The other museles present no striking differential features, but it may be noted that distinct interspinales are present. There are also small muscular bundles which lie beneath the multifidus in the back. These extend from the transterse process of one vertebra to the spine of the preceding one, and are appropriately termed the submultifidus.

Muscles of the Thorax

There are twelve pairs of levatores costarum.
The external intercostal muscles do not occupy the spaces between the costal cartilages.

The diaphragm is very strongly curved, and hats a small tentinons eenter. The hiatus cesophageus is between the erura and is ventral to the twelfth thoracie vertebra. The costal part is attached to the lower (horizontal) part of the ninth
costal cartilage, to the tenth and eleventh cartilages a little (ca. 1 to 2 cm .) below the junction with the rib, to the twelfth rib at its rentral end and to the last rib below its middle. The cupola is very unsymmetrical; on the left side it is opposite the sixth rib, while on the right it is an intercostal space further back.

Muscies of the Back and Loins

The serratus dorsalis anterior arises from the median raphe of the neck and the first six or seven thoracic spines, and is inserted into the second to the ninth ribs. It is well developed. The serratus dorsalis posterior-much weaker-arises from the lumbo-dorsal fascia, and is inserted into the last three or four ribs. Thus one or two ribs intervene between the two.

The longissimus costarum is well developed, and extends from the ilium to the sixth, fifth, or fourth cervical vertebra.

The longissimus dorsi resembles that of the other animals. but the spinalis et semispinalis separates clearly from the longissimus proper at the sixth or seventh thoracic vertebra. It is inserted into the articular and spinous processes of the last six cervical vertebre. It has no depression in the lumbar region for the gluteus medius.

The intertransversales are fleshy; as in the ox.

The interspinales are distinct and are most developed in the lumbar region.

Muscles of the Tall

These present the same general arrangement as in the horse. The sacrococcygei, however, arise on the lumbar vertebræ also, and the coccygeus on the ischiatic spine. There is a sacro-coccygeus accessorius, which arises on the medial border of the ilium. the edge of the sacrum, and

Fig. 325.-Mescles of Tail, Ants, and Gevital Organs of Dog.

1. Ilium: 2, femur; 3, tuber ischii: 4, sacro-sctatic ligament; 5 , sacral region: 6 , tail; 7 , penis; s, anus; 9 , rectum: a, sacro-coccygeus dorsalis: b, sacro-coccygeus accessorius: c,coccygeus; d, sacro-coccygeus ventralis; ε, retractor ani: f, f^{\prime}, sphincter ani externus; g. retractor penis; h, bulbocavernosus: i, transversus perinei ($(?): k, m$, ischio-urethrales; l, ischiocavernosus: n. tendon of obturator internus: 0 . 'gemellus, p, urethral muscle. (After Ellenherger, in Leisering's Atlas.) the transverse processes of the first coccygeal vertebræ, and is inserted between the dorsal and lateral sacrococcygei. It is homologous with the intertransversales.

Muscles of the Abdomen

The abdominal tunic is practically absent.
The obliquus abdominis externus has an extensive fleshy part. It arises from the last eight or nine ribs and the lumbo-dorsal fascia.

The obliquus abdominis internus arises from the tuber coxæ and the lumbodorsal fascia. The fibers have an almost vertical direction, and there is a fleshy at-
tachment to the last rib. The antcrior part of the aponcurosis divides into two layers, which concur in the formation of the internal and external sheaths of the rectus.

The rectus abdominis is attached by a long tendon on the first five or six costal cartilages, and by fleshy fibers on the xiphoid cartilage. It usually has five tendinous inscriptions. The two recti diverge very gradually in front, so that they are about half an inch (ca. 1 cm .) apart in the xiphoid region.

The transversus abdominis presents no special features except that the posterior part of its aponeurosis splits into two layers which include the rectus between them.

Muscles of the Pelvic Limb

The psoas minor arises from the borlies of the last three or four thoracic and first three or four lumbar vertebra, and is inserted into the iliopectineal line. Its anterior part blends with the quadratus lumborum.

The psoas major is relatively small and short; it arises from the last three or four lumbar vertebre.

The lateral head of the iliacus is small, while the medial head is large and fuses with the psoas major to constitute an ilio-psoas.

The quadratus lumborum is well developed, and extends lateraty beyond the edge of the ilio-psots. It arises from the last three or four thoracic vertebrat in common with the proas minor, and from the last rib and the lumbar transverse processes, and ends on the pelvic surface of the wing of the ilium.

The tensor fasciæ latæ arises from the lateral border of the ilium and the gluteus medius; it consists of two parts. The anterior part is long and rounded; the posterior is shorter and fan-like.

The gluteus superficialis is small. It arises from the gluteal fascia, the lateral part of the sacrum, first coceygeal vertebra, and sacro-sciatic ligament. It is inserted below and hehind the trochanter major of the femur, on the lateral branch of the linea aspera. In some cases there is a bursa between the tendon and the trochanter major.

The gluteus medius has no lumbar portion. It is inserted into the trochanter major by a strong temfon. There is a bursa under the tendon of insertion which also extends under the gluteus profundus.

The gluteus profundus is broad and fan-shaped. It arises on the superior ischiatic spine and on the ilium as far forward as the gluteal line, and is inserted into the trochanter major below the medius. ${ }^{1}$

The piriformis is not blended with the gluteus medius. It arises from the borter and ventral surface of the sacrum and from the sacro-sciatic ligament, and ends on the trochanter major with or close to the gluteus medius.

The obturators, gemellus, and quadratus femoris resemble in arrangement those of the horse, and present no notahle special features. There is a large bursa under the tendon of the obturator internus.

The biceps femoris has two heats of origin which soon fuse. The larger head arises from the sacro-sciatie ligament and tuber ischii, the smaller one from the tuber ischii. The aponeurosis of insertion ends on the patella, the patellar ligament, the fascia lata, and the tibial crest. There is also a tendinous band, which comes from thr deep face of the muscle and terminates at the tarsus, as in the horse. There is usually a bursa between the muscle and the trochanter major.

The abductor cruris posterior may be regarded as an accessory head of the hiceps femoris. It is a thin muscular band which arises from the sacro-siatic
${ }^{1}$ Lesbre maintains that this is the scansorius, and that the ghteus profundus is so intimately united with the medius as to have been regarded by anatomists as part of the latter.
ligament, passes downward between the biceps and semimembranosus, and ends by blending with the former.

The semitendinosus arises from the tuber ischii only. It ends on the crest and medial surface of the tibia.

The semimembranosus is large and arises from the ischium only. It divides into two parts: the anterior part ends on the tendon of the peetineus, on the femur above the medial condyle, and on the medial sesamoid bone; the posterior part

ends on the medial condyle of the tibia, the tendon passing under the medial ligament of the stifle joint.

It is not possible clearly to separate the quadriceps femoris into four heads. The vastus lateralis is so much larger than the vastus medialis as to indicate that the vastus intermedius is incorporated with the former. The rectus femoris has only one tendon of origin. There is a bursa under the muscle at the distal third of the femur. The single patellar ligament acts as the tendon of insertion of the quadriceps.

The capsularis is usually present, but is small and pale.
The sartorius consists of two parts. The anterior part arises from the tuber cose and its flat tendon ends on the patella. The posterior part arises from the lateral border of the ilium and ends on the medial surface of the tilia, its tendon blending with that of the gracilis. The anterior part is superficial in front of the tensor fasciee late and forms here the anterior contour of the thigh.

The graciles are not so much fused at their origin as in the other animals. Its anterior part is thin. Its broad tendon is inserted into the tibial crest, and blends with those of the sartorius and semitendinosus.

The pectineus is long and slender. It arises from the ilio-pectineal eminence and ends on the medial branch of the linea aspera above the distal end of the femur.

The adductor femoris is a large muscle which arises on the ventral surface of the pubis and ischium; it ends on the linea aspera of the femur and the medial surface of the stifle. It is commonly separable into two parts.

The peroneus tertius is represented by a tentinous band which arises on the medial surface of the tibia below the crest. It passes on the medial surface of the tibialis anterior, blends with the annular ligament above the tarsus, and is attached to the joint capsule and the proximal end of the third metatarsal bone.

Arloing and Lesbre say: "The thirl peroneus is a proper extensor of the fifth digit; it is a very feeble, fleshy band, situated behind the peroneus brevis, which it partially covers. It is attached to the upper part of the fibula, and is continued by a long, delicate tendon which passes in the same malleolar groove with the musele mentioned; it then erosses behind the tendon of the peroneus longus and extends to the phalanges of the outer digit, where it joins one of the branches of the common extensor."

The tibialis anterior is large and superficial. It arises on the lateral condyle and erest of the tibia, and is inserted into the first metatarsal bone, or into the first tarsal and second metatarsal.

There are four extensors of the digits.

1. The long digital extensor (M. extensor digitalis longus) is fusiform, and lies largely under the preceding musele. It arises from the extensor fossa of the femur. The tendon is bound down he two amular ligaments: the proximal one, at the distal end of the tibia, encloses alst, the tendon of the tibialis anterior; the distal one is at the lower part of the tarsus. The tomdon divides at the tarsus into four branches, which end on the distal phalanges of the digits (seeond to fifth).
2. The lateral digital extensor (XI. extensor digitalis pedis lateralis s. digiti guinti) has a small, mipennate belly which is covered by the peroneus longus and the teep digital flexor. It arises on the fibula below the head. The tendon descends behind that of the peroneus longus, inclines forward under the lateral ligament of the tarsus and the peroneus tenton, and joins the branch of the tendon of the long extensor for the fifth digit.
3. The extensor hallucis longus is a very thin muscle which arises from the fibula under the long extensor. Its delieate tendon accompanies that of the tibialis anterior to the first metatarsal bone, or becomes lost in the fascia.
4. The extensor digitalis brevis has three divisions. It arises on the fibular tarsal bone and the adjacent ligaments. The three tendons are inserted into the second, third, and fourth digits, blending with the interossei. (Nometimes there is a tendon for the rudimentary first digit, which may represent the extensor hallucis brevis. There may be a fourth belly for the tendon to the second digit.)

The peroneus longus arises on the lateral condyle of the tibia, the head of the fibula, and the lateral ligament. The belly does not extend to the middle of the leg, and the long tendon passes down the leg parallel to the fibula. It is bound down in the groove of the lateral malleolus by an annular ligament, erosses the plantar surface of the tarsus transversely, and ends on the first metatarsal bone.

The peroneus brevis is unipemate and arises from the distal half or more
of the lateral face of the tibia and the fibula. Its tendon accompanies that of the lateral extensor over the lateral malleolus, and ends on the proximal end of the fifth metatarsal bone.

The soleus is absent. (It is present and large in the cat.)
The gastrocnemius arises from the rough lines above the condyles of the femur. The origin of each head contains a sesamoid bone about the size of a pea (Os sesamoideum m . gastromemii), which articulates with the corresponding condyle of the femur. The tendon comports itself as in the horse.

The superficial digital flexor has a large round belly. It arises in common with the lateral head of the gastroenemius from the lateral rough line and sesamoid bone, and from the aponeurosis of the vastus lateralis. The tendon winds around that of the gastromemius, passes over the tuber ealeis (where it is arranged as in the horse), and divides below the tarsus into two branches. Each of these divides into two branches which end as in the forelimb. The lateral and medial branches detach slips to the suspensory ligaments of the large digital pad. Muscle-fibers often oceur in the tendon in the metatarsal region.

The deep digital flexor has two heads. The large lateral head, the flexor hallucis longus, arises from the posterior surface of the tibia and fibula, filling the interosseons space. The small medial head, flexor digitalis pedis longus, also arises from the tibia and fibula; its tendon passes through the groove on the medial malleolus, inclines baekward in its descent over the tarsus, and joins that of the large head helow the tarsus. The common tendon detaches a branch to the large digital pad and terminates as in the forelimb.

The tibialis posterior is a very small but distinet muscle, which arises on the proximal part of the fibula. The delicate tendon accompanies that of the flexor longus and ends on the medial ligament of the tarsus.

The tendon of origin of the popliteus contains a small sesamoid bone.

The adductors of the second and fifth digits, the lumbricales, and the interossei are arranged as in the thoracic limb.

The quadratus plantæ arises on the lateral surface of the distal end of the fibular tarsal bone and on the lateral tarsal ligament, passes downward and inward, and terminates on a thin tendon which fuses with that of the deep flexor.

The abductor digiti quinti is a very small musele which consists of two parts. One of these is a tendinous slip which extends from the plantar surface of the proximal part of the fibular tarsal bone to the head of

Fig. 327 .- Mtecles of Leg and Foot of Dog; Lateral View.
a, Quadriceps femoris; b, gastrocnemius, lateral head; c, superficial digital flexor: d, deep digital flexor; e, peroneus longus; f, tendon of lateral extensor; a. peroneus brevis; h, long digital extensor: h^{\prime}, $h^{\prime \prime}, h^{\prime \prime \prime}$, tendons of preceding; $i_{\text {, }}$ tibialis anterior; k, extensor brevis; l, slips from interossei (m) ; 1 , lateral condyle of femur; 2 , patella; 3 , tibia; 4 , tuber calcis; 5,6 , annular ligaments. (After Ellenberger, is Leisering's Atlas.) the fifth metatarsal bone; the other part arises from the medial surface of the fibular tarsal bone (or from the tendinous part) and ends on the first phalanx of the fifth digit.

In ease the skeleton of the first digit is well developed, there are three museles
which are homologous with those of the same digit in the forelimb. These are the abductor hallucis, adductor hallucis, and flexor hallucis brevis.

The principal bursse and synovial sheaths of the muscles of the ley and foot are as follows: The tibialis anterior has a bursa under its tendon at the tarsus. A pouch of the synovial membrane of the stifle joint underlies the tendon of origin of the extensor digitalis longus, and is partially reflected upon the superfieial face of the tendon; the tendons of insertion are provided with a synovial sheath which begins at the end of the muscular part and axtends to the proximal part of the metatarsus. The tendons of the lateral digital extensor and peroneus brevis have a eommon synovial sheath at the distal end of the leg and proximal part of the tarsus. The tendon of the peroneus longus has a synovial sheath which hegins an inch or more above the lateral malleolus (in a good-sized dog) and extends about to the midile of the tarsus; another sheath envelops the tendon to the point where it hends round to the plantar surface of the hork; a bursa hies between the tendon and the joint eapsule and fourth tarsal bone, and communicates with the joint eavity. A bursa underlies the terminal part of the tendon of the peroneus brevis. There is a bursa in front of the distal part of the tendon of the gastrocnemius; it extents an ineh or more (in large (logs) above the tuber ealeis. A bursa underlies the superticial flexor tendon at the tarsus; in large dogs it extends about an ineh above and below the tuber ealcis. The tendon of the tibialis posterior has a synovial sheath at the distal end of the leg. The tendon of the flexor digitalis longus has a synovial sheath which begins a littlc above the medial malleolus and extends to the junetion with the tendon of the flexor halluris. The tarsal sheath of the flexor hallueis begins (in large dogs) about an inch and a half above the level of the medial malleolus and extends to the distal end of the tarsus; it communicates with the tilho-tarsal joint cavity. The synovial apparatus in the distal part of the limb resembles that of the forelimb.

SPLANCHNOLOGY

This branch deals with the viscera of the digestive, respiratory, and urogenital systems. ${ }^{1}$ Each of these systems consists fundamentally of a tube or tract which is lined with mucous membrane (Tunica mucosa) and communicates with the exterior at one end or both. Thus the epithelium of the mucous membranes is continuous with the epidermis at the various natural openings. In addition to this fundamental part there are to be considered aggregations of secreting cells known as glands, muscular tissue, fibrous membranes, serous membranes, vessels and nerves.

Mucous Membranes.-These vary much in thickness, color, and other characters. In many places they form folds (Plieæ mucosx) which may be temporary or permanent. In other places they form ridges (Ruge). With certain exceptions they are moistened by a viscid secretion, termed mucus, which is derived from glands or goblet cells of the epithelium. The membrane consists of two distinct parts: the epithelium, which forms the free surface and is protective and secretory; and the lamina propria, a layer of eonnective tissue which contains and supports the peripheral ramifications of the vessels and nerves. The mucous membrane is connected with surrounding structures by areolar submucous tissue (Tela submucosa). In many places there is a layer of unstriped muscle, the muscularis mucosæ, in the deepest part of the mucous membrane. In many situations the tumica propria presents numerous elevations, known as papillæ. When small (microscopic), the papillæ do not modify the surface of the mucous membrane, since the epithelium levels up the depressions between them, but when large (macroscopic), they are conspicuous surface features, and are named according to their shape as conical, foliate, etc.

Glands.-The term gland (Clandula) is usually understood to mean an aggregation of epithelial cells, the secretion of which is extruded on the free surface of the membrane, or is conveyed away in the blood or lymph stream. ${ }^{2}$ Clands are divided according to their form into two chief classes, tubular and alveolar, each of which may be simple or compound; many, however, combine the characters of hoth types and are termed tubulo-alveolar or alveolo-tubular. A simple tubular gland is a cylindrical depression lined by epithelium whieh is continuous with that of the surrounding mucous membrane, from which it developed originally as an outgrowth. The deeper part of such a gland is termed the fundus, and here the epithelium is differentiated and has taken on secretory function. The more superficial part which conveys the sccretion to the surface is called the duct; in it the epithelium resembles more or less closely that of the surrounding surface. Many glands are microseopic, while others are large organs. The larger ones are composed of subdivisions known as lobules (Lobuli), which are held together by areolar interlobular tissue; each lobule has its duct and by the union of these ducts there is formed an excretory duct (Ductus excretorius), through which the secretion is conveyed. Some glands

[^73]fonsist of divisions of a larger order which are known as lobes (Lobi) ; these may be separated by layers of connective tissue (Lepta interlobares) or hy fissures (1ncisure interlobares).

There is no correspondence between the size of a gland and the number of its excretory ducts. Thus the largest glanel in the body, the liver, has a single exaretory duct. while some small glands have many:

Muscular Tissue.-Mfost of the hollow organs are provided with a muscular coat (Tunie: museularis) outside of the mucous membrane. This is in great part composed of strata of unstriped musele, but in certain places-and especially in the vieinity of the natural apertures-it comsists of striped muscle. Some of the solid organs contain muscula tiswe in their capsule or stroma.

Fibrous Membranes.-Many viscera are enclosed by a fibrous coat (Tunicat fibrosal). In the ease of glands such an enveloping membane is usually called the capsule. Other membranes of a like character are known as a tumica abluginea or tumica adventitis; the former consist mainly of dense white fibrous tissue, while the latere usually contain many elastic fibers and are lowser in texture.

Serous Membranes.-These are thin membranes which line the berly-eavities and cover more or less the external surface of the viseera contained therein. ${ }^{\text {P }}$ They include the peritoneum in the abiomen, and the pleura and the deep layer of the pericardium in the thorax. Their fres surface is formed by a mesothelium of flat colls; it is smooth and glistening and is moistened ly a film of serum, thus reducing friction to a minimum. The external surface is in most places connected with the strueture covered by areolar subserous tissue (Teha sulserosa) which offen contains fat. The part which lines the wall of a cavity is termed the parietal layer (Lamina parietalis), while the visceral layer (Lamina viseralis) is that which forms the serous coat (Tuniea serosa) of the visera. Double layers wheln eomect viseera with the wall or with each other are in general called serous folds (Plicee serose) or serous ligaments (Ligamentaserosa), but many special terms are in use and will be referred to later.
${ }^{1}$ The serous mombranes form closed sans, except in the fomale, in which case the uterine thas: open into the pritoneal cavity and also communceate indirectly with the exterior.

THE DIGESTIVE SYSTEM

This apparatus (Apparatus digestorius) consists of the organs directly concerned in the reception and digestion of the food. its passage through the body, and the expulsion of the unabsorbed portion. These organs are conveniently grouped under two heads, viz.: (1) the alimentary canal; (2) the accessory organs.

The alimentary canal (Tractus alimentarius) is a tube which extends from the lips to the anus. It has a complete lining of mucous membrane, external to which is au almost continuous muscular coat. The abdominal portion of the tube is largely covered with a serous membrane - the tisceral peritoneum. The canal consists of the following consecutive segments: (1) The mouth; (2) the pharyns; (3) the œsophagus; (4) the stomach; (5) the small intestine; (6) the large intestine.

The accessory organs are the tecth, tongue, salivary glands, liver, and pancreas.

DIGESTIVE SYSTEM OF THE HORSE

THE MOUTH

The mouth ${ }^{1}$ (Cavum oris) is the first part of the alimentary canal. It is bounded laterally by the cheeks; dorsally, ly the palate; ventrally, by the body of the mandible and the mylo-hyoid muscles: behind, by the soft palate. In the horse it is a long, eylindrieal cavity. and when closed, it is almost entirely filled up by the contained structires: a small space remains between the root of the tongue, the soft palate, and the epiglottis; this may be termed the glosso-epiglottic space. The entrance to the mouth (Rima oris) is elosed by the lips.

The carity of the mouth is subdivided into two parts by the teeth and alveolar processes. The space external to these and inclosed by the lips and cheeks is termed the sestibule of the mouth (Testibulum oris). In the resting state of the parts the walls of this carity are in contact, and the space is practically olliterated. Its existence becomes rery evident in facial paralysis, when the food tends to collect in it laterally, pouching out the cheeks. The space within the teeth and alveolar processes is termed the mouth cavity proper (Carum oris proprium). When the teeth are in contact, it communicates with the restibule only by the interdental spaces and the intervals behind the last molar teeth. Posteriorly it communicates with the pharymx through the isthmus faucium.

The mucous membrane of the mouth (Tunica mucosa oris) is continuous at the margin of the lips with the common integument, and behind with the mucous lining of the pharyns. During life it is chiefly of a pink color, but may be more or less pigmented.

The lips (Labia oris) are two musculo-membranous folds which surround the orifice of the mouth. Their angles of union (Anguli oris s. commissure labiorum) are situated near the first cheek tooth and are rounded. Each lip presents two surfaces and two borders. The exterual surface is covered by the skin, which presents long tactile hairs in addition to the ordinary fine hair. The upper lip has a shallow median furrow (Philtrum), the lower a rounded prominence, the chin

[^74]

[^75](Mentum). The internal surface is covered with mucous membrane which is commonly more or less pigmented. The small papille on the surface show on their summits the openings of the ducts of the labial glands. small folds of mucous membrane which pass from the lip to the gum form the frænula labii (superioris, inferioris). The free border of the lip is dense and bears short, very stiff hairs. The attached border is continuous with the surrounding structures.

Structure.-The lips are cosered externally by the skin. and are lined by mucons membrane; between these are muscular tissue, glands, vessels, and nerves. The skin lies directly on the muscles, many fiber of which are inserted into it. The muscles have been described (p. 255). The labial glands (Glandula labiales) form a compact mass at the commissures; they are numerous in the upper lip, fewer in the lower. The mucous membrane is often pigmented, and is reflected upon the bones of the jaws to form the gums.

Vessels and Nerves.-The arteries are derived from the superior and inferior labial and palato-labial arteries. The veins go chiefly to the external maxillary vein. The lymph vessels go to the mandibular lymph glands. The sensory nerves come from the trigeminus, and the motor nerves from the facial nerve.

The cheeks (Bucce) form the sides of the mouth, and are continuous in front with the lips. They are attached to the alveolar borders of the bones of the jaws.

Structure.-This comprises: (1) The skin; (2) the muscular and glandular layer: (3) the mueous membrane. The skin offers nothing in particular to notice. The nuscular tissue is formed mainly by the buccinator, but also by parts of the cutaneus, zygomaticus, dilatator naris latcralis, levator nasolabialis, and depressor labii inferioris. The buccal glands (Glandule buceales) are arranged in two rows. The superior buccal glands lie on the outer surface of the buccinator muscle, near its upper border. The anterior part of the row consists of scattered lobules: the posterior part, which lies under cover of the masseter muscle, is more developed and compact. The inferior buccal glands, less voluminous than the upper, are sitnated in the submucous tissue at the lower border of the buccinator muscle. The mucous membrane is reflected above and below upon the gums, and is continuous behind with that of the soft palate. It is reddish in color and frequently shows pigmented areas. The parotid duct opens opposite the third upper cheek tooth on a papilla (Papilla salivalis). Linear series of small papilla above and below indicate the orifices of the small ducts of the buecal glands.

Vessels and Nerves.-The blood-supply is derived from the facial and buceinator arteries, and the blood is carried away by veins of the same name. The lymph vessels go to the mandibular lymph glands. The sensory nerves come from the trigeminus and the motor nerves from the facial nerve.

The gums (Gingivae) are composed of a dense fibrous tissue which is intimately united with the periostcum of the alveolar processes, and blends at the edges of the alveoli with the alvcolar periosteum; the latter fixes the teeth in their cavities. They are covered by a smooth mucous membrane, destitute of glands, and of a low degree of sensibility:

The hard palate (Palatum durum) is bounded in front and on the sides be the alveolar arches, and is continuous with the soft palate behind. Its osseous basis is formed by the premaxilla, maxilla, and palatine bones. The mucous membrane is smooth, and is attached to the bones by a submucosa which contains in its anterior part an exceedingly rich venous plexus, constituting an erectile tissue. A central raphé (Raphé palati) divides the surface into two equal portions. Each of these presents about eighteen transverse curved ridges (Rugæ palatini) which have their concavity and their free edges directed backward. They are further apart and more prominent anteriorly. The central prominence just behind the first pair of incisors is the papilla incisiva; it is margined by a fissure on each side. There are no glands in the submucosa. The ductus incisivus (s. ductus nasopa-
latinus) is a small tube of mucous membrane which extends very ohliquely through the palatine fissure. Its ventral or palatine end is blind and lies in the submucous tisule of the palate. The dorsal or nasal end commmicates with the nasal cavity (in common with the vomero-nasal organ) by a slit-like opening in the anterior part of the ventral nasal meatus.

Vessels and Nerves.- The blood-supply is derived chiefly from the palatine arteries and the veins go to the vena re-

Fig. 329.-Hard Palate and Adjacent Part of hoft Palate of Hohse.
1, Raph ${ }^{6}$ of palate; 2, ridges of palate; 3, soft palate; I. $1, I$. 2, first and second incisor; $D i, .$, deciduous third incisor; P. 1-4, premolars; M. 1-3, molars. flexa. The nerves come from the trigeminus.

The soft palate (Palatum molle) is a musculo-membranons curtain which separates the cavity of the mouth from that of the pharyons, except during swallowing. It slopes downward and hackward from its junction with the hard palate. The oral surface faces ventrally and somewhat forward, and is covered with a mucous membrane continuous with that of the hard palate. It presents a rounded, median ridge, flanked usually by a sagittal fold on either side. Numerous sniall ducts of the palatine glands open on this surface. On each side a short, thick fold passes to the lateral border of the tongue; this is the anterior pillar of the soft palate (Areus glossopalatinus). The pharyngeal surface faces dorsally and a little backward and is povered by a mucous membrane continuous with that of the natsal cavity: The free border (Arcus palatinus) is concave and thim; it is in contact lexcept during deglutition) with the epiglottis. It is continued hy a fold of the mucous membrane, which passes on each side along the lower part of the lateral wall of the pharynx and unites with the opposite fold over the begimning of the ossophagus; this fold is termed the posterior pillar of the soft palate (Areus pharyngepalatimus). The space between the diverging anterior and posterior pillats (simus tonsillaris) is oceupied by the tonsil (Tonsilla palatina). In the horse, however, there is not a compact tomsil, as in man, log, ete., but a series of masses of lymphoid tissue and mucons: glands which extend backward from the root of the tongue on either side a distance of about four inches (ea. 10 cm .). These cause devations of the surface, on which there are depressions (erypts) in which the gland ducts open. The soft palate is greatly developed in equide, its average length, measured medially, being about six inches (15 cm .). Its length and contact with the epiglottis may account for the fact that in these animals mouth-
breathing does not oceur under normal conditions, and that in vomiting the ejected matter escapes usually through the nasal cavity. ${ }^{1}$

Structure.-The soft palate consists of: (1) The oral mucous membrane, continuous with that of the hard palate, which it resembles: it covers also a narrow marginal area of the pharyngeal surface along the free border; (2) the palatine glands (Glandulee palatinae), which form a layer about half an inch in thickness; (3) the aponeurotic and muscular layer; (t) the pharyngeal mucous membrane, continuous with that of the masal cavity, which it resembles.

Fig. 330-Crozs-section of Head of Horse at Anterior End of Fachal Crest.

1. Cavity of donsal turbinate- 2 , cavity of ventral turbinate; 3 , canum oris; 4 , 4 , genio-glusi; .5 . a, genio-hyoidei; 6 , fyo-glossus; $\tilde{\gamma}$, upper, \vec{r}^{\prime}, lower, fourth cheek tooth. Line to facial artery crosses zygomaticus.

The muscles proper to the soft palate are the palatinus, the levator palati, and the tensor palati.

The palatinus (MI. palatinus) consists of two small maseular bundles which lie together at the median line. It is attached through the medium of the palatine aponeurosis to the palatine bones, and terminates near the free edge of the soft palate. Usually a bundle from it is continued a short distance into the posterior pillar. Its action is to shorten the soft palate.

The levator palati (M. levator veli palatini) arises from the muscular process
${ }^{1}$ The epiglottis may be either in front of or behind the soft palate; most often it is in front (prevelar, as shown in Fig. 349.
of the petrous temporal bone and from the lateral lamina of the Eustachian tube, and passes at first forwarl, lateral to the latter; it then inclines ventrally across the deep face of the anterior pharyngeal museles and turns mediaily into the soft palate, in which it spreads out above the glandular layer. It raises the soft palate, thus elosing the posterior nares during deglutition.

The tensor palati (M. tensor veli palatini) is larger than the levator, and is fusiform and flattenecl. It arises from the museular process of the petrous temporal bone, the pterygoid bone, and the lateral lamina of the Eustachiam tube, and passes forward, lateral to the levator, across the medial surface of the origin of the ptergoideus medialis. Its tendon is then reflected around the hamulus of the pterygoid bone, where it is held in position by a fibrous band and lubricated by a bursa, turns inward and expands in the aponeurosis of the soft palate. It telises the soft palate.

Vessels and Nerves.-The blood-supply of the soft palate is derived from the internal and external maxillary arteries and the blood is carried away by the corresponding veins. The lymph vessels go to the pharyngeal lymph glands. The nerves come from the trigeminus, vagus, and glosio-pharyngeal nerves.

The floor of the mouth in its anterior part is free and is formed by the body of the mandible, covered by mucous membrane. The remainder is oceupied by the attached portion of the tongue in the undisturbed state of the parts. The following features are exposed by raising the tongue and drawing it to one side. About opposite the eanine tooth on each side is a papilla, the caruncula sublingualis, through which the duct of the mandibular gland opens. Just behind these papillæ is a median fold of mucous membrane which passes to the ventral surface of the tougue, constituting the frenum linguæ. On either side is the sublingual fold (Pliea sublinguatis) which extends from the fromum to the level of the fourth cheek tooth. The fold indicates the position of the underlying sublingual gland, and presents numerous small papilke, through which the ducts open. Behind the last tooth a vertical fold of the mucous membrane passes from upper to lower jaw. This is termed the plica pterygomandibularis; it contains a ligament of like name.

The isthmus faucium is the orifice of communication between the mouth and the pharynx. It is bounded ahove by the soft palate, below hy the root of the tongue, and laterally by the anterior pillars of the soft palate. It is relatively small and not very dilatable in the horse, and is closed by the soft palate under normal conditions, except during deglutition.

THE TONGUE

The tongue (Lingua) is situated on the floor of the mouth, hetween the rami of the mandible, and is supported mainly in a sort of sling formed by the mylo-hyoid muscles. Its posterior part, the root (Radix lingur), is attached to the hyoid bone, soft palate, and pharynx. Only the upper surface of this part is free, and slopes downward and backward. The middtle part, the body (Corpus linguæ), has three free surfaees. The dorsal surface is slightly rounded. The lateral surfaces are nearly flat for the most part, but anteriorly become rounded and narrower. The ventral surface is attached to the mandible. The apex or tip (Apex lingu:e) is free, spatula-shaped, and presents upper and lower surfaces and a rounded border. The term dorsum linguæ is applied to the dorsal surface; it is free throughout, and in the resting state of the parts is in contact with the palate except at the glossoepiglottic space.

Structure.-The tongue consists of: (1) The mucous membrane; (2) the glands; (3) the muscles; (4) vessels and nerves.

The mucous membrane (Tumica mucosa lingur) atheres intimately to the subjacent tissue, except on the lower part of the lateral surfaces of the body and
the ventral surface of the tip. It varies considerably in thickness. On the dorsum it is very thiek and dense; underneath this part there is a dense fibrous cord, which extends medially a distance of five or six inches forward from the vallate papille. On the sides and ventral surface of the tongue the membrane is mueh thinner and smooth, and ean more readily be dissected off the muscular tissue. ${ }^{1}$ From the lower surface of the free part of the tongue a fold of the mucous membrane passes to the floor of the mouth, forming the frenum linguæ. Posteriorly a fold passes on each side from the edge of the dorsum to join the soft palate, forming the anterior pillars of the latter. A thick central glosso-epiglottic fold (Plica glossoepiglottiea) passes from the root to the base of the epiglottis; this encloses the hyoepiglottic muscle. The mucous membrane presents numerous papillæ, which are of four kinds-filiform, fungiform, vallate, and foliate. The filiform papillæ (Papillæ filiformes) are fine, thread-like projections which stud the dorsum and the sides of the tip; they are absent on the root. On the anterior part they are so small as to be scarcely visible, but on the posterior part they are much larger and give the surface a distinct pile. .. The fungiform papillæ (Papillæ fungiformes) are larger and easily seen; they are rounded at the free end, whieh is supported by a neek. They oceur principally on the lateral part of the tongue, but are also found seattered over the dorsum. The vallate papillæ (Papillæ vallat:e) are usually two or three in number. The two constant ones are a quarter of an inch or more (ea. 6 to 7 mm .) in diameter, and are found on the posterior part of the dorsum, one on each side of the median plane, about an inch (ea. 3 cm .) apart. The third, when present, is behind these, is centrally situated, and is always smaller. Rarely a fourth may be found. They are rounded, broader at their exposed than at their attached surfaces, and are sunk in a depression which is bounded

Fig. 331.-Tongee, Larynx, and Part of Trachea of Horse; Dorsal View. by an annular wall. Their free surface is tuberculate, i. e., bears small, round secondary papillæ. The foliate papillæ (Papillæ foliatæ) are situated just in front of the anterior pillars of the soft palate, where they form a rounded eminence about an inch (ea. 2 to 3 cm .) in length, marked by transverse fissures. The last three varieties are covered with microscopic secondary papillæ and are furnished with taste-buds. The mucous membrane of the root of the tongue presents numerous folds and rounded elevations.
${ }^{1}$ The murous membrane is thick and closely adherent where food naturally comes in contact with the tongue.

The latter are marked ly crypts and consist essentially of a mass of lymphoid tissue; they are known as lingual follicles (Folliculi linguales), and taken together form what is sometimes called the lingual tonsil. The lingual glands Chandule linguales) constitute a thick layer in the loose submucous tissue and also lie between the muscle bundles. Mucous glands are found also in part of the dorsum and sides of the tongue.

The lingual muscles (Am . lingua) may be divided into intrinsic and extrinsic. The intrinsic musculature consists, not of distinet museles, but rather of systems of fibers which run longitudinally, vertically, and transversely, blending with the extrinsic museles, which are now to be deseribed. ${ }^{1}$

inferioris
Frg. 332 Mustles of Tongle, hyodd Bone, Pharyinx, etc., of IIorse.
T. p., Tensor ralati; L. p. levator palati; Pt. p.. pterygo-pharyngeus: P. p., palato-pharyngeus; S. p., stylopharyngeus: Th, p, thyro-pharymgens; r^{T}. p, wrico-pharymgers; Th, h., thyro-hyouleus; IIyo. gl., hyo-glossus; (i. p., guttural ponch; F. p., foliato papilla; A. $z_{\text {. , facial artery and vein. Most of the left ramus of the mandible is removed. }}$ The concealed parts of the hyoid bone are indicated by dotted lines.

1. Stylo-glossus.- This is a long, thin muscle, which lies along the lateral part of the tongue. It arises by a thin tendion from the lateral surface of the great comu of the hyoid bone, near the articulation with the small cormu. It terminates near the tip of the tongue by blemling with ite fellow of the opposite side and with the intrinsic musculature. The action is to retract the tongue. Inilateral contraction would ako draw the tongue toward the side of the muscle acting.

[^76]ceding. It lies in the lateral part of the root and body of the tongue, partly under cover of the preceding muscle. Its deep face is related to the genio-glossus. It

Fig. 333.-Muscles of Tongee, Pharynx, Laryix, etc.; Deep Dissection.
T. p., Tensor palati; L. p., levator palati, concealed part indicated by dotted line; Pl. p., prerygo-pharyngeus; P. p., palato-pharyngeus: st. p., stylo-pharyngeus; r. a., crico-arytenoideus dorsalis; C. th., crico-tbyroideus; $T h . c$. thyroid cartilage (lamina): Th. h., thyro-hyoideus; K. h., kerato-byoideus: Th. c., thyroid cornu; S. c., small cornu; L. p., lingual process; F. p., foliate papilla; Fu. p., fungiform papills. Part of great cornu is removed and indicated by dotted lines.
arises from the lateral aspect of the hyoid bone, from the lingual process to the oral extremity of the great cornu, and from the thyroid cornu. The fibers pass obliquely
forward and upward, and for the most part turn toward the median plane of the dorsum of the tongue. Its action is to retract and depress the tongue. ${ }^{1}$
3. Genio-glossus.- This is a fan-shaped muscle, which lies parallel to the median plane of the tongue. It is separated from the musele of the opposite side by a layer of fat and areolar tissue. It arises from the medial surface of the ramus of the mandible just belind the symphysis. From the tendon the fibers pass in a radiating mamer, some emring forward to the tip, others pass toward the dorsum, and others toward the root of the tongue; some fibers pass from the posterior end of the temdon to the body and stizall comm of the hyoid bone. The musele as a whole is a depressor of the tongue, and especially of its middle portion; when both muscles act, a median groove is formed on the dorsum. The posterior fibers protrude the tongue, the middle fibers depress the tongue, and the anterior fibers retract the tip of the tongue.

In some cases there is a small anomalous musde which arises by a delicate tomdon with the genio-glussus and is atiached behind with the genio-hyoideus.

Vessels and Nerves.-The arteries of the tongue are the lingual and sublingual branches of the external maxilary artery. The veins go to the internal and external maxillary vins. The lymph vessels go ehiefly to the pharyngeal lymph glands. The sensory merves are the lingual and glosso-pharyngeal, and the muscles are imervated by the hypoglossal nerve.

THE TEETH IN GENERAL

The teeth are hard white or yellowish-white strurtures implanted in the alveoli of the bones of the jaws. Morphologically they are large calcified papilte. Funetionally they are organs of prehemsion and mastication, and may serve as weapons. The domesticated mammals have two sets of teeth. The teeth of the first set appear during carly life and are known as deciduous or temporary teeth (Dentes decidui), ${ }^{2}$ sime they are replaced during the period of growth by the permanent teeth (Dentes permanentes). They are classified arcording to form and position as follows:

1. The incisor teeth (Dentes incisivi) are situated in front and are implanted in the premaxilla and mantible.
2. The canine teeth (Dentes canini) are situated a little further back, and interrupt the interalvedar space.
3. The premolar and molar teeth (Dentes premolares et molares) form the sides of the dental areh. The premolars form the anterior part of the series; they appear in both sets. The molars appear only in the permanent dentition. The term cheek teeth is used to include loth premolars and molars.

The intersal leetween the ineisors and premolars is the interalveolar or interdental space.

As the teeth of the two sides of the jaw are alike in number and character (in normal eases), the complete dentition may be briefly indicated by a dental formula such as the following:

$$
2\left(1 \frac{2}{2} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{2}{2} \mathrm{M} \frac{3}{3}\right)=32 .
$$

In this formula the letters indicate the kinds of teeth, and the figures above and below the lines give the number of teeth of one side in the upper and lower jaw respectively in man.

[^77]The individual teeth of each group are designated numerically, the startingpoint being the middle line; thus the incisor on either side of the middle line is the first incisor, and may be conveniently indicated by the notation I^{1}. The deciduous teeth may be designated in a similar manner, prefixing D (for deciduous) to the letter indicating the kind of tooth. In addition to the above systematic method of notation other terms have received the sanction of popular usage. Thus the first incisors are commonly called middle incisors, "pinchers," or "nippers"; the second, intermediate; and the third, corner teeth. The canines, when highly developed, may be termed tusks or fangs. The vestigial and inconstant first premolar of the horse is popularly termed the "wolf tooth."

Each tooth presents for description a part coated with enamel, termed the crown (Corona dentis), and a part covered with cement, termed the root (Radix dentis). The line of union of these parts is the neck (Collum dentis). ${ }^{1}$ In many teeth the neck is distinct and is embraced by the gum, e. g., the teeth of the dog and the temporary incisors of the horse. In other teeth no constriction is present, e. g., the permanent incisors of the horse. Between these extremes are the molars of the horse, in which the neck is seen only in advanced age.

The surface of a tooth directed toward the lips is termed labial; that toward the cheek, buccal; and that toward the tongue, lingual (Facies labialis, buccalis, lingualis). The surface opposed to a neighboring tooth of the same dental arch is termed the contact surface (Facies contactus). The masticatory surface (Facies masticatoria) is that which comes in contact with a tooth or teeth of the opposite jaw. ${ }^{2}$

Structure.-Teeth are composed of four tissues, which are considered here from within outward. The pulp of the tooth (Pulpa dentis) is a soft, gelatinous tissue, which occupies a space in the central part of the tooth termed the pulp cavity (Carum dentis). The pulp is well supplied with blood-vessels and nerves. It occupies a relatively large space in young growing teeth, but later the dentine deposited ou its surface gradually encroaches on it until, in advanced age, the cavity is much reduced or obliterated. The dentine (Substantia eburnea) forms the bulk of most teeth, covering the surface of the pulp. It is hard, and is yellowish-white in color. The enamel (Substantia adamantina), the hardest tissue of the body, constitutes a layer of varying thickness covering the dentine of the crown of the tooth. It is easily distinguished by its clear, bluish-white appearance and its extreme density. The cement (Substantia ossea) is the outermost tooth substance. In simple teeth it forms usually a thin layer on the surface of the root only, but in complex teeth it exists in considerable quantity, tending to fill in the spaces between the enamel folds of the crown also. Its structure is practically the same as that of bone without Haversiau canals, and even these occur where the cement forms a thick layer. The embedded part of the tooth is attached to the alveolus by a vascular layer of connective tissue, the alveolar periosteum (Periosteum alveolare); this is the periosteum of the alveolus and performs a like function with regard to the embedded part of the tooth. The name pericementum has also been applied to it.
${ }^{1}$ It will be noted that this definition of crown and root does not agree exactly with the popular view that the crown is the free part and the root the embedded part. The objection to the latter statement lies in the fact that it is not capable of general application. Thus the morphological crown of the permanent molars in the horse is extremely long, and is, for the most part, embedded in the bone in the young animal. The root proper begins to form at four or five years of age, and continues its growth for about eight years. As the exposed part of the crown wears down, the embedded part erupts, thus preventing deficiener of length. On the old basis We should have to say that successive portions of the root become crown, while in point of fact it is only in very extreme age that the true root comes into wear. This difficulty does not arise in cases in which the eruption of the teeth is completed rapidly, e.g., man, dog. In such brachydont forms the short crown is clearly marked off from the root or roots by a neck. which is embraced by the gum. The opposite extreme is seen in the incisors of typical rolents, which grow continuously and have no roots.
${ }^{2}$ This is popularly termed the grinding surface or "table" of the tooth.

The blood-supply to the pulp is derived from the atreolar branches of the internal maxillary artery; the nerve-supply comes from branches of the trigeminus.

The Teeth of the Horse ${ }^{1}$

The Permanent Teeth
The formula of the permanent teeth of the horse is:

$$
2\left(\mathrm{I} \frac{3}{3}\left(\frac{1}{1} \mathrm{P}, \frac{3 \text { or } 4}{3} \text { M } \frac{3}{3}\right)=40 \text { or } 42\right.
$$

Fig. 334.-Lpper Teeth of Iorse, About Four and One-hatf Iears (llo.
I^{5}, I^{\prime}, I^{3}, Incisors: C^{\prime}, canine: $I^{\prime}, P^{2}, P^{3}, I^{3}$, premolars; M1, Mz,
M^{3}, molars. The eruption of the thirl iucisor is not complete and the taoth is unwora.

Fig. 335 -Lower Teeth of Horse, fove legrs of dae.

1, I^{2}, First and second permanent incisurn: $D]^{2}$, third deciduous incisor. The whenk weth are numbered according to popular asage
${ }^{1}$ Other figures ilhnstrating the teeth are to be foumd in the description of the skull.

In the mare the canines usually are very small and do not erupt, reducing the number to 36 or $35 .{ }^{1}$

Incisor Teeth.-These are twelve in number. The six in each jaw are placed close together, so that their labial edges form almo-t a semieirele in the young horse. They have the peculiarity (not found in existing mammals other than the equida) of presenting, instead of the simple cap of enamel on the crown. a deep invagination, the infundibulum, which becomes partly filled up with rement. Hence as the tooth wears, the masticatory surface (or "table") has a central ring of enamel surrounding this cavity in addition to the peripheral enamel. The cavity becomes darkened by deposits from the food, and is commonly termed the "cup" or "mark." Each tooth is curved so that the labial surface is convex

Fig. 33f.-Upper lncisor Teeth of Horse.

Fig. 337.-Lomer Incisor Teeth of Horse.

The labial surfaces of the teeth have been exposed by removal of the bone. subject was five vears old.
and the embedded parts converge. The average total length of an incisor at five or six years of age is about two and a half to three inches (ca. 7 cm .). They taper regularly from exposed crown to apex. without any constriction, and in such a manner that in young horses the masticatory surface is broad transversely; toward the middle the two diameters of a cross-section are about equal; near the apex the antero-posterior diameter is considerably greater than the transverse.

This fact is of value in the determination of age by the teeth, since the masticatory surfaces at different ages represent a series of cros-sections. As the exposed crown wears down, the embedded part (reserve crown) emerges from the

[^78]alveolus, so that the mastieatory surfaces of the first and second tower incisors are at first oval, with the long diameter transverse;

Infurulibutum

Fig. 3ism-Loncatcuinsl spetios of Loxela Intzon Tooth wf liorae.
C. Pulp cavity. Cement is shown in the ufundibulum, but is not marked. later-at about fourteen years usually for the first lower incisors-they are triangular, witls the base at the labial edge. At the same time the infundibnhum or "cup" becomes smaller, approaches the lingual horder, and finally disappears; it remains longer on the upper incisors, as it is deeper in them. Another marked feature in old age is the progressive approach to a horizontal direction as soen in profile; at the same time the exposed crowns of the teetly become parallel and finally convergent.

Canine Teeth.-These are four in number in the male; in the mare they are usually alsent or rudimentary. ${ }^{1}$ They interrupt the interdental space, dividing it into uncqual parts. The upper canine

Fig. 339-Crosm-section of Lower Incjsor Tooth of Horse. I. Itamelibulum.
is situated at the junction of the premaxilla and the maxilla: the lower camine is nearer the corner incisor. The eanines are simple teeth, smaller than the incisors,

Fig, 340.-Lower Incisor and Canine Teeth of liorse, Five Years Olv.

Fig. 341.-Upper Inctsor and Canine Teeth of Horse, liye ilars Old.

The lingual border of the third opper incisor is unworn.
I^{1}, I^{2}, I^{2}, Incisor; (', canine.
and are curved with the concavity directed backward. The exposed crown in the
${ }^{1}$ It is interesting to notice that vestigial canines are not at all uncommon in mares, specially in the lower jaw. They are very small, and do not usually crupt; their presence is indicated in the latter case ly a prominenee of the gum. This is in conformity with the fact that they were present in both sexes in Eorene and Morene ancestors of existing equide.
young subject is compressed, convex and smooth laterally; concave mith a median ridge medially; its edge is sharp in the unworn tonth. The emberded part (usually called the root) is round and the pulp cavity is large, persisting to advanced

twenty-four-twelve in each jaw. Quite commonly, however, the number is increased by the presence in the upper jaw of the so-called "wolf-tonth." This tooth, the first premolar, is usually situated just in front of the first well-developed tooth; it is a much-reduced restige, not often more than one-half or three-fourths of an inch (ca. 1 to $2(\mathrm{~m}$.) in length. (It is interesting as being the remnant of a tooth which was well developed in the Eocenc ancestors of the horse.) It may erupt during the first six months, and is ofton shed about the same time as the milk-tonth behind it, lut may remain indefinitely. The oceurrence of a similar tooth in the lower jaw-which rarely erupts-increases the dental formula to 44 , which is considered the typical muminer for mammals. ${ }^{\text {. }}$ The cheek teeth are very large, prismatic in form, and (quadrilateral in cross-section, exeept the first and

Root canal
Fig. 34:-Frontal section of Tpper Cheek Tuoth of Horse.
(, C, Pulp cavities. Infunhbuhum filled with cement. fast of the sories, which are three-sided. The crown is remarkably long, most of it being embedded in the lome or projecting into the maxillary simus in the young horse. As the exposed part wears away the emberded part crupts to replace it, no that a functional crown of about four-fifthe of an inch (ma .2 cm .) is maintainet. ${ }^{2}$ The root hegins to grow at alront five years of age, and is complete at twelve to fourtem, although the deposition of cement may continue indefinitely.

The maxillary or upper cheek teeth are embedted in the alveotar processes of the max-

$$
[5]
$$

Iig. 34.-C'ross-section of Trpper Cheek Tooth of Horse,
Bueral (latural) surfare to left. I. Interior. I', posterior infundibulum, both almost filled up with cenent.
illa. The exposed parts of the crowns are nomally in close contact, forming a continuous row which is slightly curved, with the convexity toward the cheek. The embedded parts diverge in the manner shown in the amexed figures (Figs. 312, 347). Thus the lomg axis of the first is directed upward and a little forward, that of the second is almost rertical, whik in the remainder it is curved hackward in an increasing degree; the last tooth in partieular is strongly curved in the adult. The average length at six yars of age is a little more than three inches (ea. 8 cm .). The buccal surface presents a central ridge rmming lengthwise, and separating two grooves; the first tooth hats, in addition, a lase prominent ridge in front of the primary one. The lingual surface is marked by a wide, rounded ridge, the accessory pillar or colum, which separates two very shallow grooves. The masticatory
${ }^{1}$ The question to which set these teeth belong is an open ons.
${ }^{2}$ For teeth of this kind it is convenient to employ the terms functional crown and reserve crown.
surface presents two infundibula, anterior and posterior. It slopes obliquely downward and outward, so that the buceal edge is prominent and sharp. Its average wilth, except at each end of the series, is ahout an inch (ca. 2.5 cm .). The first and last teeth hare three roots, the remainder four or three.

As may he seen in Fig. 342, the individual teeth of the series vary in length. In the speeimen from which the photograph was taken the lengths of the upper tecth in eentimeters enumerated from before backward were: $6.3,7.7,8.5,8.0,5.5,5.2$. The distance between the two rows was 6.6 cm . at the anterior end and 5.6 cm . at the posterior end.

The position of the embedded crowns and roots of the last four varies at different ages and in different subjects. Two factors in this variation may be noted. All of these teeth are developed in the posterior part of the body of the maxilla. As growth proceeds the teeth move forward, so that commonly only the last three, but sometimes also the third, project into

Fig. 34j.-Frontal section of
Lower Cheek Tooth of Horse.
C. Pulp cavity. Infundibulum filled with cement. the maxillary sinus. The second cause of variation is the fact that the anterior limit of the maxillary simus may be at the extremity of the facial crest, or about an inch heyond it. In the latter case the third tooth projects into the sinus. ${ }^{1}$

The mandibular or lower cheek teeth are implanted in the rami of the mandible, forming two straight rows which diverge behind. The space between the rows is considerably less than that separating the upper teeth, especially in the middle of the series. The length of the lower teeth is about the same as that of the upper set. Their clirection is

Fig 346.-Cross-section of Lower Cheer Tooth of Horse. Buecal surface to left.
also similar, but the embedded portions diverge even more, with the exception of the first and second. The long axis of the first is vertical; the remainder project downward and backward in a gradually increasing obliquity. The buccal surface has a longitudinal furrow; the last molar has a secondary shallower furrow in addition. The lingual surface is uneven, but the grooves are not regular; there are usually three on the first and last tooth. The masticatory surface is oblique, sloping upward and inward in correspondence with the opposing tooth; thns the lingual edge is prominent. Its awerage width (except at cach end of the series) is somewhat less than three-fourths of an inch (ca. 1.8 cm .).

[^79]The first five have two roots, while the sixth commonly has three. The width of the lower molars is a little more than half that of the upper.

The structure is quite complex. Two infundibula run vertically through the

entire length of the crown; these beeome filled with eement. In the upper teeth there are five main divisions of the pulp-eavity and five enamel folds, four of which are arranged symmetrically, while the fifth is an outgrowth from the antero-medial fokl. In the lower teeth the infundibula are open along the lingual surface until
closed by deposit of cement. The pulp-cavity has two main divisions (anterior and posterior) and three or four secondary diverticula. The enamel folds correspond, forming a pattern even more complicated than on the upper teeth. On the exposed crown of the unworn tooth the enamel folds form rounded ridges covered with a thin layer of cement. After the tooth comes into wear the enamel on the masticatory surface stands out in the form of sharp, prominent ridges. ${ }^{1}$ Progressive cementation of the periphery of the tooth takes place, thus leveling up the irregularitics of surface to a considerable extent.

The lengths of the lower teeth shomn in Fig. 342 were in centimeters: 5.7, 7.9, $90, \mathrm{~s} .5,8.2$ 7.6. The distance between the two rows was 4.7 cm . at the anterior end and 7 cm . at the posterior end.

The Deciduous Teeth

The deciduous teeth are smaller and fewer than those of the permauent set. The formula is:

$$
2\left(\begin{array}{ccc}
\mathrm{Di}^{3}-\mathrm{Dc}-\frac{1}{-D p} & -3 \\
3 & 0 & 3
\end{array}\right)=24
$$

The deciduous incisors are much smaller than the permanent ones. They have a distinct neck at the junction of the crown and root. The crown is short, white in color, and its labial surface is smooth. The infundibulum is shallow: The root is flattened; it undergoes absorption as the permanent tooth develops behind it.

The deciduous canines are quite vestigial. They occur in both sexes as slender spiculæ about a quarter of an inch in length, but do not erupt. The lower one develops close to the corner incisor. They are not usually included in the formula, as they are never functional.

The deciduous premolars differ from the permanent set chiefly in that they have much shorter crowns than the latter. The roots form early, so that a distinct neck occurs.

Vessels and Nerves.-The blood supply of the teeth is derived from the infraorbital and alveolar branches of the internal maxillary artery. The lymph ressels go to the mandibular and pharyngeal lymph glands. The nerves come from the trigeminus.

Eruption of the Teeth

The subjoined table indicates the average periods of the eruption of the teeth:
A. Deciduous Teth

1st incisor	Di 1\%	Birth or first week.
2nd ${ }^{\text {a }}$	Di ${ }^{1}$	4 - 6 weeks.
3rd	Di 3)	6-9 months.
Canine	De)	
1st. premolar	Dp 2)	
2nd	Dp 3)	two weeks.
3 rd	Dp 4)	

B. Permaneut:

lst incisor	(11)	21 2́ years.
and	(12)	31.
3rd -*	(I3)	4^{12} y years.
Canine	(C)	$4-5$ years.
1st premolar (or wolf-tooth)	(P1)	$5-6$ months.
2nd is	(P2)	$2{ }^{1} 2$ years.
3rd .	13)	3 years.
4th "	(P4)	4 years.
1st molar	(MII	10-12 months.
2nd	(M2)	\because years.
3rd	(133)	$3{ }^{1} 2-4$ years.

(The periods given for P 3 and 4 refer to the upper teeth; the lower ones may erupt about six months earlier.)
${ }^{1}$ It is estimated that the enamel ridges of an upper cheek tooth of a young adult horse, if straightened out, would form a line more than a foot long. The extent diminishes with age.

THE SALIVARY GLANDS

This term is usually restricted to the three pairs of large glands situated on the sides of the face and the adjacent part of the neek-the parotid, mandibular, and sublingual. Their ducts open into the mouth.

The parotid gland (Cllandula parotis) (Fig. 560)-so named from its proximity to the ear - is the largest of the salivary glands in the horse. It is situated chiefly in the space between the ramus of the mandible and the wing of the atlas. It is some what triangular in shape, the apex partially embracing the base of the external ear. Its length is about eight to ten inches (ca. 20) to 2.5 cm .), and its average thickness nearly an inch (ca. 2 cm .). Its arerage weight is about seven ounces (ca. 200 to 225 g .). It presents for description two surfaces, two horders, a base, and an apex. The lateral (or superficial) surface is covered by the parotid fascia and the cutaneus and parotido-anricularis muscles. It is rossed obliquely by the jugular vein, which is largely embedded in the gland. It jesko related to the great auricular vein, the corvital hranh of the facial nerve, and hranches of the second cervical nerve. The medial (or derp) surface in very uneven, and has numerous important relations. Fome of these are: the guttural pouch and the great cormu of the hyoid bone; the masseter. oceipito-mandibularis, digastricus, and oceipito-hyoideus muscles; the tendons of the bracho-cephatiens and sterno-cephaticus (which sparate the parotid from the umberlying mandibular gland); the external carotid artery and some of its branches; the facial nerve; the pharyngeal lymph glands. The anterior or facial border is closely attached to the ramms of the mandible and the masseter muscle; it overlaps the latter to a varying extent. ${ }^{1}$ The posterior or cervical border is concave, and is loosely attached to the underlying museles. The base or ventral border is related to the external maxillary vein. The apex is attached to the base of the external ear, which it partially embraces. The gland has a yellowisth-gray color and is distinetly lobulated. It is inclosed in a capsule formed by the fascia. The parotid duct (Ductus parotidens) ${ }^{2}$ is fomed at the ventral part of the gland, near the facial edge, hy the union of three or four radieles. It leaves the gland about an inch (1 a .2 to 3 cm .) above the external maxillary rein, crosses the tendon of the sterno-cpphaticus, and gains the medial face of the pterygoidens medialis. It then runs forward in the mandibular space below the external maxillary vein and winds around the ventral horder of the mandible behind the rein, passes upward between the vein and the masseter musel for about two inches (ea. 5 cm .), turns forward underneath the facial vessels, and perforates the cheek obliculely opposite the third upper cheek tooth. Before piereing the cheek it is somewhat dilated, hut its termination is small, and is surrounded by a cireular mucous fold (Papilla salivalis). The gland belongs to the compound alveolar glands of the serous type.

Blood-supply.-Branches of the carotid and maxillary arteries.
Nerve-supply.-Trigeminal, facial, and sympathetic nerves.
The mandibular or submaxillary gland (Clandula mandibularis s. submaxillaris) ${ }^{3}$ is mueh smaller than the parotid. It is long, narrow, and eurred, the dorsal edge being coneave. It extends from the fossa atlantis to the body of the hyoid bone, so that it is covered partly by the parotid gland, partly by the lower jaw (Fig. 646). Its length is eight to ten inches (ca. 20 to 25 cm .), its width an mech to an inch and a half (ca. 2.5 to 3 cm .), and its thickness about half an ineh (cat. 1 cm .). It weighs about one and a half to two ounces (ca. 45 to 60 g .). It is often

[^80]divasible into two parts. It presents for description two surfaces, two horders, and two extremities. The lateral surface is covered by the parotid gland, the occipitomandibularis, digastricus, and pterygoideus medialis museles. The tendon of the sterno-cephalicus crosses this surface, and, together with the aponcurosis connecting it with that of the brachiocephalicus, is a useful guide in separating the paroticl gland from it. The medial surface is related to the rectus capitis rentralis major, the guttural ponch, the larynx, the division of the carotid artery, and the tenth, eleventh, and sympathetic nerves. The dorsal border is concave and thin. It is related to the guttural pouch and the duct of the gland. The ventral border is convex and thicker. It is related to the external maxillary rein and often to the thyroid gland. The posterior extremity is loosely attached in the fossa atlantis. The anterior extremity lies at the side of the root of the tongue. and is cro-sed laterally by the external maxillary artery. The mandibular or submaxillary duct (Ductus mandibularis s. submaxillaris) ${ }^{1}$ is formed by the union of small radicles which emerge along the concave edge. It runs forward along this border, and, after leaving the anterior extremity, crosses the intermediate tendon of the diga-tricus, passes between the hyo-glossus and mylo-hyoideus, and gains the medial surface of the sublingual gland. Its terminal part lies on the body of the mandible, under the mucous membranc, which it pierces opposite the canine tooth. The orifice is at the end of a flattened papilla, the caruncula sublingualis. The gland differs in finer structure from the parotid in possessing serous, mucous, and mised alveoli.

Blood-supply.- Dceipital, external carotid, and external maxillary arteries.
Nerve-supply.-Chorda tympani and smpathetic nerves.
The sublingual gland (Cilamilula sublingualis) (Figs. 330, 561) is situated beneath the mucous membrane of the mouth, between the body of the tongue and the ramus of the mandible. It extends from the symphysis to the third or fourth lower cheek tooth. Its length is about five or six inches (ca. 12 to 15 cm .) and its weight about half an ounce (ca. 1.5 to 16 g .). It is flattened laterally, and has a thin dorsal border which underlies the sublingual fold of the mucous membrane of the floor of the mouth. The lateral surface is related to the mylo-hyoideus muscle, and the medial surface to the genio-glossus and stylo-glossus, the mandibular duct, and branches of the lingual nerve. The ventral border is related to the geniohyoid muscle. The sublingual ducts (Ductus sublinguales), about thirty in number, are small, short, and twisted; they open on small papillæ on the sublingual fold. The gland hats mixed alveoli.

Blood-supply.-sublingual artery.
Nerve-supply.-Trigeminal and sympathetic nerves.

THE PHARYNX

The pharynx is a musculo-membranous sac which belongs to the digestive and respiratory tracts in common. It is somewhat funnel-shaped, the large anterior part joining the mouth and nasal cavity, while the small end is continued by the asophagus. Its long axis is directed obliquely downward and backward, and has a length of about six inches (ca. 15 cm .). The pharynx is attached by its museles to the palatine, pterygoid, and hyoid bones, and to the cricoid and thyroid cartilages of the larynx.

Its principal relations are: dorsally, the base of the cranium and the guttural pouches; ventrally, the larynx; laterally, the medial pteryoid muscle, the great cormu of the hyoid bone, the external carotid and external maxillary arteries, the

[^81]glosso-pharyngeat, anterior laryngeal, and hypoglossal nerves, the mandibular salivary gland, and the parapharyngeal lymph glands.

The eavity of the pharynx (Cavum pharyngis) presents seven openings. Through the posterior nares or choanæ it communicates dorsilly with the nasal cavity. The pharyngeal orifices of the two Eustachian tubes (Ostia pharyngea

Fig. 34.-Cross-setthon of Head of Ilorse.
The section passes through the anterior part of the temporo-mandibular articulation, but is slightly oblique, passing a few millimeters further forward on left side than on right. I. Corpus callosum; 2 , lateral ventricle of brain; 3 , caudate nucleus; \neq internal capsule ; $\overline{3}$, lenticular nuleus; t, optic chiasma; γ, middle cerebral artery: s, sphenoidal sinuses; 4, caycrnous sinus; 10, Eustachian tube, medial lamina: 11, 11, guttural pouches; 12 , soft palate; 13 , epiglottis; 14, hyo-epiglottic muscle; 15 , thyro-hyoid musele. The tensor palati (not marked) lies medial to the pterygoidens lateralis, and medial to the tensor is the Ievator palati, which blends above with the outer lamina of the Eustachian tube.
tube auditive) are situated on the lateral wall behind the posterior nares and below the level of the ventral nasal meatus. They are slit-like openings, direeted olliguely downard and backward, and are a little more than an inch (ca. 3 cm .) in length. They are bounded medially by a fold which eneloses the expanded extremity of the cartilaginous Eustachian tube. The isthmus faucium is the oral opening; it is closed ly the soft palate exeept during swallowing. The aditus
laryngis occupies the greater part of the ventral wall or floor of the pharynx; it is open except during deglutition. Behind this is the aditus œesophagi, the entrance to the œesophagus.

The wall of the pharynx comprises, from without inward, the muscles, the pharyngeal aponeurosis, and the mucous membrane.

The muscles of the pharynx (Mm. pharyngis) (Figs. 332, 333) are covered by the pharyngeal fascia, which is attached to the base of the skull, the great cornu of the hyoid bone, and the thyroid cartilage of the laryn. They are as follows:

1. The stylo-pharyngeus arises from the medial surface of the dorsal thirel of the great cornu of the hyoid bone, passes rentro-medially, and enters the wall of the pharynx by passing between the pterygo-pharyngeus and palato-pharyngens. Its fibers radiate, many bundles passing forward, others inward or backward beneath the hyo-pharyngens. It raises and dilates the pharynx to receive the bolus in swallowing.
2. The palato-pharyngeus arises chicfly by means of the aponeurosis of the soft palate from the palatine and pterygoid bou's; some fibers are attached to the anterior wide part of the Eustachian tube. Its fibers pass backward on the lateral wall of the pharynx, and are inserted in part into the upper edge of the thyroid cartilage, in part turn inward to end at the median fibrous raphé. Its action is to shorten the pharynx, and to draw the larynx and œesophagus toward the root of the tongue in swallowing. ${ }^{1}$
3. The pterygo-pharyngeus is flat and triangular. It lies on the anterior part of the lateral wall of the pharynx. It arises from the pterygoid bone above the preceding muscle,-from which it is not distinctly separated,-crosses the levator palati, and is inserted into the median raphé. Its action is similar to the preceding.
4. The hyo-pharyngeus may consist of two parts:
(a) The kerato-pharyngeus is a small and inconstant muscle which arises from the medial surface of the great comu of the hyoid bone near its rentral end. It passes upward and backward on the lateral face of the palato-pharyngeus, turns toward the raphé, and spreads out under the next muscle.
(b) The chondro-pharyngeus, broad and fleshy, arises from the thyroid cornu of the hyoid bone and by a thin fasciculus from the lamina of the thyroid cartilage. The bundles spread out and end at the median raphé. The posterior part clips under the thyro-pharyngeus, while the anterior part overlies the pterygo- and palato-pharyngeus.
5. The thyro-pharyngeus arises from the lateral surface of the lamina of the thyroid cartilage on and behind its oblique line. Its fibers pass forward and medially to the median raphé.
6. The crico-pharyngeus arises from the lateral part of the arch of the cricoid cartilage and ends at the raphé. The fibers are directed upward, forward, and inward; they blend behind with the longitudinal fibers of the œesophagus.

The last three muscles are constrictors of the pharynx.
The pharyngeal aponeurosis is attached to the base of the cranium. It is well developed on the medial face of the palato-pharyngeus muscle and forms a median raphé pharyngis dorsally, which is wide in its posterior part.

The mucous membrane of the pharynx is contiuuous with that of the several carities which open into it. It is thin and closely adherent to the base of the skull in the vicinity of the posterior nares, where the muscular wall is absent. Behind the Eustachian openings there is a median cul-de-sac, the pharyngeal recess (Recessus pharyngeus). The recess is somewhat variable. but is usually about an inch in depth and will admit the end of the finger. In the ass and mule it is much deeper. Here also the muscular wall is absent and the mucous membrane lies against the
${ }^{1}$ Vermeulen states that the pharyngeal orifice of the Eustachian tube is opened by the contraction of that part of the muscle which is attached to the tube.
guttural pouches. From the Eustachian opening a fold of the mucous membrane (Plica salpingo-pharyngea) passes toward but does not reach the aditus laryngis. A horizontal fold, the posterior pillar of the soft palate (Arcus pharyngo-palatinus), passes along the ventral part of the hateral wall and unites with its fellow over the entrance to the exophagus. The dorsal part of the cavity (Pars respiratoria) is lined with a ciliated pithelium, while the ventral part (Pars digestoria) has a stratified squamons epithelium. The communication between the two is oval

Fig. 349.-Poneferlor Part of a sumttal Section of He.d and Pabt of Nece of Horse, Cut aboet 1 cm. to the Left of the Meolan Plase.
1, Posterior nares; 2, pharyngeal orifice of Eustachian tohe; 3, aditus laryngis; 4, aditus cesophagi; i, posterior pillar of soft palate: J^{\prime}, junction of J mith its fellow over entrance to cesophagus; 6 , epiglottis; 7, budy of thyroid eartilage; δ, arytenvid cartilagn; 9,9 , cricoid cartilage; 10 , true vocal cord; 11 , false vocal cord; 12 , lateral ventricle of laryas; 13, crico-arytenordeus dorsalis; 14, (esophagus; 15 , external carotid artery; 16, hypoglossal nerve; $1 \hat{1}$. glosso-phary ngeal nerve; 18 , great cornn of hyoid bone; 19, Eustachian tube; 20, body of hyoid bone; 21, hyoideus transversus; 22 , ridges of hard palate; 22^{\prime}, soft palate; 23 , septum between frontal sinuses; 24, olfactory macons
 2s, pituitary body; 29, chitsma opticum; 30, corpora quadrigemina; 31, thalamus; 82, arachnoid; 33, odontoid ligament; 34, posterior auricnlar mascles.
and is bounded by the free edge of the soft palate and its posterior pillars; it is termed the pharyngeal isthmus. On either side of the aditus laryngis is a narrow deep depression, the piriform recess (Reenssus piriformis).

The submucous tissue contains numerous mucous glands (Cflandutæ pharyngeee). In the young subject the lymph follieles are numerous and form a collection dorsally and between the Eustachian openings, known as the pharyngeal tonsil (Tonsilla pharyngeaz).

Vessels and Nerves.-The arteries are derived from the common carotid, external carotid, and external maxillary arteries. The lymph vessels pass to the pharyngeal and anterior cervical lymph glands. The nerves are derived from the trigeminus, glosso-pharyngeus, and vagus.

THE © ESOPHAGUS

The esophagus is a musculo-membranous tube, about 50 to 60 inches (ca. 125 to 150 cm .) in length, which extends from the pharynx to the stomach. In its course it shows several changes of direction. It begins in the median plane above the anterior border of the cricoid cartilage of the larynx. At the fourth cervical vertebra it has passed to the left side of the trachea, and continues this relation as far as the third thoracic vertebra. Here it again gains the dorsal surlace of the trachea, and, passing backward, crosses the aortic arch, by which it is pushed over to the right of the median plane. It continues in the mediastinum between the lungs, backward and a little dorsally, inclining gradually to the left, and reaches the hiatus oesophageus of the diaphragm. lassing through this it terminates at once at the cardiac orifice of the stomach, a little to the left of the median plane, and about four or five inches (ca. 10 to 12 cm .) ventral to the vertebral end of the fourtcenth rib. ${ }^{1}$

Viewed with reference to the horizontal plane, its course is downward and backward till it enters the thorax and passes upward to gain the dorsal face of the trachea. Then for a short distance (i.e., to the root of the lung) its direction is ahnost horizontal; behind this it passes somewhat upward to its termination. The cervical part (Pars cervicalis) of the tube is about four to six inches (10 to 15 cm.) longer than the thoracic part (Pars thoracalis), while the so-called abdominal part (Pars abdominalis) is about an inch (2 to 3 cm .) long. ${ }^{2}$

The principal reiations of the osophagus at its origin are: to the cricoid cartilage and dorsal crico-arytenoid muscles ventrally; to the guttural pouches and the ventral straight muscles dorsally; and to the carotid arteries laterally. In the middle of the neck the relations are: to the left longus colli musele dorsally; to the trachea medially; to the left carotil artery, vagus, sympathetic, and recurrent nerves laterally. Near the thoracic inlet the oesophagus is usually in contact with the left jugular vein for a short distance. At its entrance into the thorax it has the trachea on its medial side; the first rib, the roots of the brachial plexu:of nerves, and the left posterior cervical ganglion laterally. After gaining the dorsal surface of the trachea, it has the aorta on its left and the vena azygos and right vagus nerve on its right side. In its course through the posterior mediastinum the oesophageal trunks of the vagus nerves lic above and below it, and the asophageal artery is dorsal to it.

Structure.-The wall is composed of four coats: (1) A fibrous sheath termed the tunica adventitia; (2) the muscular coat; (3) a submucous layer; (4) the mucous membrane. The muscular coat is of the striped variety as far as the base of the heart, where it rapidly changes to the unstriped type. In addition to this change, the muscular coat becomes much thicker and firmer, while the lumen is diminished. Except at each end of the tube the muscular coat consists chicfly of
${ }^{1}$ The distance between the terminal part of the osophagus and the vertebra varies. In formalin-hardened subjeets it is most commonly as given above, but in soft specimens or in those which have been frozen without previous fixation it is usually nearer the spine.
${ }^{2}$ Carefut observations (especially on frozen subjects and those in which the organs have heen hardened in situ) show that there is no abdominal part of the cesophagus in the strict sense of the term. The stomach here lies direetly on the diaphragm, so that the last inch or so of the esophagus is placed obliquely in the hiatus cesophageus, and is covered on the right and ventrally by the pleura, but not by peritoneum. In soft subjects the weight of the stomach, or traction on it, draws part of the osophagus into the abdomen, inclosed in a collar of peritoneum.
two layers of fibers arranged spirally or elliptically, which intereross dorsally and ventrally. At the origin two bundles nearly an inch (ea. 2 em.) wide arise from the wide posterior part of the pharyngeal raphé and from a tendon common to the erico-pharyngeus and thyro-pharyngens. These bundles, which bend and decussate at their origin, diverge and pass to each side of the cesophagus. In the angle between them a deeper layer of circular fibers is visible. Two small ventral bundles emerge from the depression between the lamina of the cricoid eartilage and the arytenoid cartilages. These curve around to the side of the cesophagus and blend nith the dorsal bundles before described. In the terminal part there is an external longitudinal layer and an internal cireular layer, the latter being extremely thick. The mucous membrane is pale, and is covered with squamous stratified epithelium. It is loosely attached to the museular coat by an abundant sulmucosa, and lies in longitudinal folds which obliterate the lumen except during deglutition. ${ }^{1}$

Blood-supply.-Carotid, broncho-asophageal, and gastric arteries.
Nerve-supply.-V'agus, glosso-pharyngeal, and sympathetic nerves.

THE ABDOMINAL CAVITY

The abclominal cavity (Carum abdominis) is the largest of the body cavitics. It is separated from the thoracic eavity by the diaphragn and is continuous behind with the pelvic cavity. The line of demareation between the abdominal and pelvic cavities is known as the terminal line, or luim of the pelvis; it is formed by the base of the sacrum dorsally, the ilen-pectineal lines laterally, and the anterior borders of the pubic bones ventrally.

The cavity is oroid in form, but is somerwat compressed laterally. Its long axis extends obliquely from the center of the pelvic inlet to the sternal part of the diaphragm. Its dorso-ventral diameter is greatest at the first lumbar vertebra, while its greatest transterse diameter is a little nearer the pelvis.

The dorsal wall or roof is formed by the lumbar vertebrex, the lumbar museles, and the lumbar part of the diaphragm.

The lateral walls are formed by the ohlique and transerse abdominal museles, the abdominal tunic, the anterior parts of the ilia with the iliacus muscles, the cartilages of the asternal ribs, and the parts of the posterior ribs which are below the attachment of the eliaphragm.

The ventral wall or floor consists of the two recti, the aponeuroses of the oblique and transverse muscles, the abdominal tunic, and the xiphoid cartilage.

The anterior wall is formed by the diaphragm, which is deeply concave, thus greatly increasing the size of the abdomen at the expense of the thorax.

It should be noted that the diaphragm also concurs practically in the formation of a considerable part of the lateral walls, since its costal part even during ordinary inspiration hes directly on the ribs over a width of four or five inches (ca. 10 to 12 cm.) ; in expiration this area of contact includes about all of the costal part. This fact is of elinical importance, with reference to auscultation and percussion and penetrating wounds. The mpola of the diaphragm extends as far forward as a plane through the sixth rib to the right of the heart.

The muscular walls are lined by a layer of fascia, distinguished in different parts as: (1) The diaphragmatic fascia; (2) the transversalis fascia; (3) the iliae fascia; (t) the deep layer of the humbo-dorsal fascia.

The subserous tissue (Tela subserosa) unites the fascia and peritoneum.
${ }^{3}$ The potontial lumen is difficult to determine at all accurately. When distended, its average diameter (according to IRubeli) is a little more than 6 cm . The thickness of the wall varies (inversely as the lumen) from 0. $\frac{1}{}$ to 1.2 cm . or more. The change in type of the muscular tissue is gradual, and lecgins in the deep part; bundles of striped muscle are present even after the apparent change to unstriped musele, and may extend to the stomach. In the posterior part of the tube many bundles intereross in an irregular plexiform manner.

It is areolar tissue, and is more or less loaded with fat according to the condition of the subject, except over the diaphragm. It sends lamine into the various peritoneal folds.

The peritoneun, the scrous membrane which lines the cavity, will be described later.

The abdominal walls are pierced in the adult ly five apertures. These are the three foramina of the diaphragm and the inguinal canals, which have been described. In the foctus there is the umbilical opening also. Thistransmits the urachus, a tube which connects the bladder with the allantois; the two umbilical arteries, which carry blood from the foetus to the placenta; and the umbilical vein, which returns blood from the placenta to the liver of the foctus. After birth the orifice is closed by fibrous tissue, leaving a sear, the umbilicus, which is more or less distinctly visible in the median ventral line in a transverse plane about tangent to the ventral end of the last rib).

The cavity contains the greater part of the digestive and urinary organs, part of the internal genital organs, numerons nerves, blood vessels, lymph vessels and glands, duetless glands (spleen and adrenal bodies), and eertain foetal remains.

For topographic purposes the abdomen is divided into nine regions by imaginary planes. ${ }^{1}$ Two of these planes are sagittal and two are transverse. The sagittal planes cut the middles of the inguinal ligaments; the transwerse planes pass through the last thoracie and fifth lumbar vertebre, or the ventral end of the fifteenth rib and the tuber cosæ respectively. The transverse planes divide the abdomen into three zones, one behind the other, viz., epigastric, mesogastric, and hypogastric: these are subdivided by the sagittal planes as indicated in the subjoined table:

Left parachondrias	Xiphoil. Right parachondriac
Left lumbar	Umbilical Right lumbar
Left iliac	Prepubic Right iliac

Other useful regional terms are: sublumbar, diaphragmatic, inguinal. The first two require no explanation. The inguinal regions (right and left) lie in front of the inguinal ligament. The flank is that part of the lateral wall which is formed only of soft structures. The triangular depression on its upper part is termed the paralumbar fossa; this is bounded dorsally by the lateral border of the longissimus, ventrally by the upper border of the obliquus abdominis iuteruus, and in front by the last rib.

THE PERITONEUM ${ }^{2}$

The peritoneum is the thin serous membrane which lines the abdominal cavity and the pelvic cavity (in part), and covers to a greater or less extent the viscera contained therein. In the male it is a completely closed sac, but in the female there are two small openings in it; these are the abdominal orifices of the uterine or Fallopian tubes, which at their other ends commumieate with the uterus, and so indirectly with the exterior. The peritoneal cavity (Cavum peritonæi) is only a potential one, since its opposing walls are normally separated only by the thin film of serous fluid (secreted by the membrane) which acts as a lubricant. ${ }^{3}$

The free surface of the membrane has a glistening appearance and is very smooth. This is due to the fact that this surface is formed by a layer of flat mes-

[^82]othelial eells, and is moistened ly the peritoneal fluid. Friction is thus reduced to a minimum during the movements of the visera. The outer surface of the peritoneum is related to the sulserous tissue, which attachers it to the abominal wall or the viscera.

In order to understand the general disposition of the peritoneum, we may imagine the abdominal cavity to be empty and lined ly a simple layer of peritoneum, termed the parietal layer (Lamina parietalis). Wie may further imagine the organs as begiming to develop in the subserous tissue, enlarging, and migrating into the abdominal cavity to a varying extent. In doing so they eary the peritoneum before them, producing introversion of the simple sae, and forming folds which eonneet them with the wall or with each other. The viseera thus receive a complete or partial covering of peritoneum, termed the visceral layer (Lamina visecralis). The comecting folds are termed omenta, mesenteries, ligaments, etc. They contain a varying quantity of conneetive tissue, fat, and lymph glands, and furnish a path for the vessels and nerves of

Tu show arrangement of peritonetum when reducel to itse simplast form. The external blark line indieates the borly-wall. 1, Organ (e.g., kidnew) in contact with wall; 2 , organ (e, $9 .$, small intestine) at a distanee from wall; 3, parietal peritonetam; 4, 4, viseral peritoneum; 5 , mesentery; in, perrtoneal cavity. the visera. Some contain unstriped muscular tisisue. In omentum is a fold which passes from the stomach to other viscera. There are three of these, namely: (1) Thelesser omentum (Omentum minus), ${ }^{1}$ which passes from the lesser curvature of the stomach to the liver; (2) the gastro-splenic omentum (Ligamentum gastrolicnale), which extends from the greater eurvature of the stomach to the spleen; (3) the greater omentum (0mentum majus), ${ }^{2}$ which passes from the greater curvature of the stomach and from the spleen to the terminal part of the great colon and the origin of the small colon. It dow not pass directly from one organ to the other, hut forms an extensire looser sate (F ign, 377,375). I mesentery (Nesenterium) is a fold which attathes the intestine to the dorsal wall of the abdomen. There are two mesenteries in the horse: (1) The great mesentery connects the greater part of the small intestine with the dorsal abdominal wall; (2) the colic mesentery attaches the small colon to the dorsal abdeminal wall. Ligaments are folds which pass between viseera other than parts of the digestive tube, or connect them with the abdominal wall. The torm is atso applied to folds which attach parts of the digestive tract to the abdominal wall, but do not eontain their hooed-ressels and nerves. some (e. (y., the lateral and coronary ligaments of the liver) are strengthened by fibrous tissur: others (e. y., the hroad ligaments of the uteru*) contain also unstriped muscular tissue.

THE PELVIC CAVITY

The pelvis is the posterior part of the trunk. It incloses the pelvic eavity (Cavum pelvis), which communicates in front with the abdominal cavity, the line of demareation being the terminal line or pelvie brim.

The dorsal wall or roof is formed by the sacrum and first three coceygeal vertebre. The lateral walls are formed by the parts of the ilia behind the ilou-

[^83]pectineal lines and the sacro-sciatic ligaments. The ventral wall or floor is formed by the pubic and ischial bones. The boundary of the outlet is formed by the third coccygeal vertebra dorsally, the ischial arch ventrally, and the posterior edges of the sacro-sciatic ligaments and the semimembranosu* muscles laterally: The outlet is closed by the perineal fascia; this consists of superficial and deep lavers which are attached around the margin of the outlet and centrally to the organs at the outletthe anns and its museles, the vulva (in the female), and the root of the penis (in the male).

The cavity contains the rectum, parts of the internal genital and urinary organs, some foetal remmants, muscles, vessels, and nerves. It is lined by the fascia pelvis, and in part hy the peritoneum.

The pelvic peritoneum is continuous in front with that of the abdomen. It lines the cavity for a variable distance backward, and

Fig. 351.-Diagkam of Sagittal Section of Male Pelvis to show Disposition of Peritoneua.
a. Sacro-rectal pouch, continuous laterally with b, recto-genital pouch; c, vesico-genital pouch; d, vesico-pubic pouch. The lateral line of reflection of the peritoneum is dotted. is then reflected on to the riscera, and from one organ to another. We may therefore distinguish an anterior, peritoneal, and a posterior, retroperitoneal, part of the cavity. Along the mid-forsal line it forms a continuation of the colic mesentery, the mesorectum, which attaches the first or peritoneal part of the rectun to the roof. In animals in fair condition a consider-

Fig. 3.52--Zchematic Cbos-section to show ArRangevent of Pelitc Peritonecy in the Male:

Fig. 353.-Schematic Cross-section to Show Abravgement of Pelitc Peritonetm in the Female.
a. b. Recto-genital pouch; c, c, vesico-genital pouch: d. d. vesico-pubic pouch; 1, mesorectum; 2, 2, genital folds in male, broad ligaments of uterus in female; 3,3 , lateral ligaments of bladder; 4 , middle ligament of bladder; r.d., ductus deferentes; u.m., uterus masculinus.
able quantity of subserous and retroperitoneal fat is found on the walls and in the various interstices.

In the male the general disposition of the peritoneum here is as follows. If traced along the dorsal wall, it is reflected from the sacrum on to the rectum,
forming the visceral peritoneum for the first part of that tube. ${ }^{1}$ Laterally it is reflected in a similar fashion. If the rectum he raised, it will be seen that the peritoneum passes from its ventral surface and forms a transwerse fold which lies on the dorsal surface of the bladder (Fig. 370). This is the genital fold (Pliea genitalis). Its concave free part passes on either side into the inguinal camal. The ventral layer of this lold is reflected on to the dorsal surface of the bladder. Thus there is formed a ponch between the reetum and bladder - the recto-vesical pouch (Excavatio recto-vesiealis), which is partially sulelivided by the genital fold into reetorgenital and vesico-genital eavities. The fold contains the ductus deferentes, part of the vesiculie seminales, and the uterus masculimus (a fortal remuant). If the bladder is now raised, it is seen that the peritoneum passes

Fig. 354.-Stomach of Horse; Parietal Surface.
The organ was fixed in situ when well filled. The lesser curvature has been openel up slightly and the peritonetu, etc., in this vicinty removed. The larger brancles of the anterior gastric artery and vein are visible.
from its ventral surface on to the pelvic floor, forming centrally the median umbilical fold or middle ligament of the bladder (Plica umbilicalis media). It also passes from each side of the bladder to the lateral pelvic wall and forms thus the lateral umbilical fold or ligament of the bladder (Plica mbilicalis lateralis); this contains in its edge the so-ealled round ligament of the bladder (Liganentum teres resicar)- the partially occluded umbilical artery, which is a large vessel in the fertus. ${ }^{2}$

In the female the arrangement is modified by the presence of the uterus;
${ }^{1}$ The point at which the reflection takes place is quite variable, and apparently depends chiefly on the amount of feces in the rectam. When the bowel is very full the reflection may be little behind the promontory; when it is empty, the reflection may be at the posterior end of the sacrum.
${ }^{2}$ In the fotus and new-horn foal these three folds extend to the umbilicus in conformity with the abdominal position of the bladder. When the latter becomes a pelvic organ, the lateral folds conform to the change and end at the vertex of the bladder. The median fold may still be traceable to the umbilieus.
the genital fold is enlarged, so as to inclose the uterus and a small part of the ragina. It forms two extensive folds, the broad ligaments of the uterus (ligamenta lata uteri), which attach that organ to the sides of the pelvic cavity and the lumbar part of the abdominal wall (Fig. 530). It thus divides the recto-vesical pouch completely into dorsal and ventral compartments-the recto-genital pouch (Excavatio recto-uterina) and the vesico-genital pouch (Excavatio resico-uterina).

Further details will be given in the description of the pelvic riscera.

THE STOMACH

The stomach (Ventriculus) is the large dilatation of the alimentary canal behind the diaphragm; it intervenes between the œesophagus and the small intestine. It is a sharply curved, U-shaped sac, the right part being, however, much shorter

Fig. 355.-Stomach of Horse; Visceral Scrface, with First Part of Deodentus.
Fixed in situ when full but not distended. The posterior gastric artery and its larger branches with two satellite veins are shown.
than the left one. The convexity is directed ventrally. When moderately distended, there may be a slight constriction which indicates the division into right and left sacs. It is relatively small, and is situated in the dorsal part of the abdominal cavity, behind the diaphragm and liver, mainly to the left of the median plane.

It presents for description two surfaces, two curvatures, and two extremities. The parietal surface (Facies parietalis) is convex and is directed forward, upward, and toward the left; it lies against the diaphragm and liver. The visceral surface (Facies risceralis), also convex, faces in the opposite direction; it is related to the terminal part of the large colon, the pancreas, the small colon, the small intes-
tine, and the greater omentum. The borters between these surfaces are temed the curvatures. The lesser curvature (Curvatura ventriculi minor) is very short, extending from the termimation of the asophagus to the junetion with the small intestine. When the stomach is in situ, it.s walls are here in comtact, and the cardia and pylorus clowe together. ${ }^{1}$ The greater curvature (Curvatura vontriculi major) is very extensive. From the cardia it is first directed dorsally and curves ower the left extremity; it then descends, passes to the right, erosses the median plane, and eurves upward to end at the pylorus. Its left part is rełated to the spleen, while its ventral portion rests on the left parts of the great colon. The left extremity (Extremitas simistra) has the form of a romaled eul-de-sac termed the saccus cæcus; it lies ventral to the left erus of the diaphragm, and so beneath the dorsal part of the sisteenth and seventeenth ribs. It is related to the pancreas and the termination of the great colon behind and the base of the spleon laterally. The right or pyloric extremity (Extremitas dextra) is much smaller and is continuous with

Fig. 35t.-Fyerted Stomach af Horse from which the Mlfoé Membrave has beea Removed.
(), (Esophagus; D, duodenum; b, eireular layer: f^{\prime} internal obliqtio fibers: $c^{\prime \prime \prime}$, loop around carcha; $c^{\prime \prime \prime}$, transition of internal to "xternal nhlique fibers; d, fibers connecting the two branches of the earelar lowp; p_{0} antral sphincter; p^{\prime}, pyloric sphactur. Willenbergerbaam, Inat. A Haustiore.)
romeling viscera and by the exophagus. it with the adjacent parts: the duolenum, the junction being indicated by a marked constriction. It lies just to the right of the median plame, and about two mehes (eat. 5 cm .) lower than the carlia; it is in contaet with the visceral surface of the liver. Alrout two or three inches (ea. 5 to 8 (m.) from the pylorus there is a constriction which marks off the antrum pyloricum from the rest of the right sace. The exsophageal orifice is termed the cardia; it is situated at the left end of the lesser curvature, but about eight to ten inches (ca. 20 to 25 cm .) from the left extremity. ${ }^{2}$ The cosophagus joins the stomach very obliquely. The opening is elosed by the sphineter cardie and numerous folds of mucous membrane. The pylorus is the opening into the intestine. Its position is indieated externally by a distinct constriction. Internally it presents a circular ridge caused by a ring of museular tissue-the sphincter pylori.

The stomach is held in position mainly by the pressure of the surThe following peritoneal folds conneet

1. The gastro-phrenic ligament (Lig. gastrophrenicum) eomeets the greater curvature, from the eardia to the left extremity, with the erura of the diaphragm. This leaves a narrow area uncovered with peritoneum, and here the stomach is attached to the diaphragm by areolar tissue.
${ }^{1}$ The more expressite term "incisura angularis" has been suggested and is worthy of adoption.
[^84]The use of the term ligament in regard to the arrangement here is somewhat misleading, since the stomach is attached to the crus of the cliaphragm by areolar tissue; the peritoneum passes from the diaphragm to the stomach on each side of the area of adhesion. In soft material there is the appearance of a ligament composed of two layers of peritoneum, but this is an artefact.
2. The lesser omentum (Omentum minus) comects the lesser curvature and the first part of the duodenum with the liver below the œesophageal notch and the portal fissure.

The part of the omentum whieh extends from the liver to the stomach is designated the lig. hepato-gastricum, and the remainder which goes to the duodenum as the lig. hepato-duodenale.
3. The gastro-splenic omentum (Lig. gastrolicnale) passes from the left part of the greater curvature to the hilus of the spleen; it is continuous ventrally with the greater omentum.
4. The greater omentum (Omentum majus) connects the ventral part of the greater curvature and the first curve of the dnodenum with the terminal part of the great colon and the initial part of the small colon. It does not pass directly between these parts but forms a large sac, which will be described later.
5. The gastro-pancreatic fold (Plica gastropancreatica) extends from the left sac above the cardia to the duodenum. It is attached dorsally to the liver and vena cava, ventrally to the pancreas.

The stomach of the equide is relatively small, its capacity varying from two to four gallous (ca. 8 to 15 liters).

The size, form, and position of the stomach are subject to considerable variation. When the stomaeh is nearly empty, the saceus creus contains only gas and is strongly contraeted; the middle part (physiologieal fundus) contains the ingesta and preserves its rounded character, while the pylorie part is contracted. In this state coils of small intestine usually lie ventral to the stomach and may separate it entirely from the colon. In exeeptional cases, when the organ is empty and contraeted, even the pyloric end is to the left of the median plane. When distended, the middle part settles down some four or five inches, pushing baek coils of the small intestine which may lie between the greater curvature and the large colon, and also pushing to one side the left dorsal part of the great colon; the spleen, small colon, and small intestine are pushed back by the distention of the left sac. When the stomach is moderately full, its most ventral part lies opposite to the ninth intereostal space and tenth rib, about a handbreadth above the level of the left costal arch.

Structure.-The wail is composed of four coats-serous, muscular, submicous, and mucous. The serous coat (Tunica serosa) covers the greater part of the organ and is closely adherent to the muscular coat except at the curvatures. It partially bridges over the lesser curvature, and covers here elastic tissue which assists in retaining the bent form of the stomach. The peritoneal folds have been described. The muscular coat (Tunica muscularis) consists of three incomplete layers, an external of longitudinal, a middle of circular, and an internal of oblique fibers. The layer of longitudinal fibers (stratum longitudinale) is very thin and exists only along the curvatures and at the antrum. It is not present on the saccus cæcus, and about the middle of the greater curvature it is almost entirely replaced by elastic fibers to the antrum pylori. It the lesser curvature it is continuous with the longitudinal fibers of the cesophagus. On the antrum pylori it forms a well-developed complete layer which is separate from that of the curvatures. The layer of circular fibers (Stratum circulare) exists only on the glandular part. At the pyloric orifice it forms a thick ring-the pyloric sphincter (Sphincter pylori). Another ring, the antral sphincter, is found at the left end of the antrum pylori. The oblique fibers (Fibre obliquæ) are arranged in coarse bundles in two layers. The external stratum covers the left sac and is largely a continuation of the longitudinal fibers of the esophagus. The internal stratum is found also on the left sac; it is continuous with the circular fibers of the oesophagus and stomach and exchanges fibers with the external oblique layer. It forms a remarkable loop around the cardiac orifice, constituting a powerful cardiac sphincter (Sphincter cardix). The submucous coat (Tela submucosa) is a layer of loose connective

Fig. 35t.-Frontal, Section of Stomach and First Part of Duodencm of Horse. C, Cardiac orifice Photograph of specimen fixed in satu.
tissue which comects the musenlar and murous conts; in it the vessels and nerves ramify before entering the mucosa. The mucous coat (Tunica mucosa) is clearly divided into two parts. That which

Fig. 35.-Diagrim of Zonen of Mucots Membrane OF STOMLEH OF HORYE. lines the greater part of the keft sac resembles the arophageal mucous membrime, and is termed the œsophageal part (Pars nesophagea). It is white in color, destitute of glands, and rovered with a thick, squamous, stratified epithelium. It the eardiac orifice it presents numerous folds which sechade the opering. ${ }^{1}$ It terminates alruptly, forming an irregular, sinuous, raised edge, termed the margo plicatus (or cuticular ridge). Below and to the right of this line the murous membrame has a totally different character, being soft and velvety to the touch, and rovered by a mucoid secretiom. It contains the gastric glands (illandulie gastricte), and is therefore termed the glandular part (Pars ghandularis). It is subdivided into three zones according to the types of glands which it contains, but no distinct lines of demar-

[^85]cation exist. A narrow zone next to the margo plicatus has a yellowish-gray color. and contains short tubular cardiac glands (cardiac gland region). Next to this is a large area which has a mottled, reddish-brown color, and contains fundus glands (fundus gland region); these glands have two distinct types of cells. This part of the mucous membrane is thick and rery vascular, and corresponds to the fundus of the stomach in man and the dog. The remainder of the mucous membrane is thinner, has a reddish-gray or yellowish-gray color. and contains pyloric glands, which have a single type of cells corresponding to the chief cells of the fundus glands: (pyloric gland region); it corresponds to the prloric portion of man and the dog. The folding of the stomach wall at the lesser curvature produces a prominent ridge which projects into the cavity of the stomach. The circular fold which covers the pyloric sphincter is termed the pyloric valve (Yalsula pylori).

The cesophageal part constitutes one third to two-fifths of the mucous membrane. The cardiacgland region is extremely narrow ca. 0.5 to 1 mm . at the greater curvature, but becomes about an inch mide toward the pyloric part. since the majority of the glands here are not typical cardiac glands, like those of the pig and other animals, but are intermediate in type between these and pyloric glands, the term intermediate zone might well be used.

Vessels and Nerves.-The stomach receives blood from all the branches of the cœliac artery. The gastric veins drain into the portal vein. The lymph vessels go chiefly to the gastric lymph glands, thence to the cisterna chyli. The nerves are derived from the ragus and impathetic nerves.

THE SMALL INTESTINE

The small intestine (Intestinum tenuc) is the tube which connects the stomach with the large intestine. It begins at the pylorus and terminates at the lesser curvature of the cecum. Its arerage length is about seventy feet (ca. 20 meters), and when distended its diameter varies from three to four inches (7.5 to 10 cm .). Its eapacity is about twelve gallons (40 to 50 liters).

It is clearly divisible into a fixed and a mesenteric part. The fixed part is termed the duodenum, while the mesenteric part (Intestinum tenue mesenteriale) is arbitrarily divided into parts termed the jejunum and ileum. ${ }^{1}$

The duodenum is about three to four feet (ca. 1 m .) long. Its shape is somerhat like a horseshoe, the convexity being directed toward the right. The first part (Pars prima duodeni) is directed to the right and forms an $\boldsymbol{\sim}$-shaped curve. The convexity of the first part of the curve is dorsal, of the second, ventral. It is in contact with the middle and right lobes of the liver, and presents two ampulle with a constriction between them. The duodenal angle (or head) of the pancreas is attached to the concarity of the second curve, and here, five to six inches (ca. 12 to 15 cm .) from the pylorns, the pancreatic duct and the bile duct pierce the bowel wall. The second part (Pars secunda duodeni) passes upward and backward on the right dorsal part of the colon and rentral to the right lobe of the liver, and, on reaching the right kidney and the hase of the cecum, it curves toward the median plane, opposite the last rib. The third part (Pars tertia duodeni) passes from right to left behind the attachment of the base of the cecum, crosses the median plane hehind the root of the great mesentery, and turns forward to become continuous with the mesenteric part under the left kidney.? The sacculations of the first part have a diameter of three to four inches (ca. 7.5 to 10 cm .). It is attached by a short peritoneal fold termed the mesoduodenum. This fixes

[^86]the first part of the duodenum closely to the liver and the right dorsal part of the colon; the remainder is somewhat less closely attached by it to the base of the cecum and right kidney, the subhumbar museles, and (more elosely) to the terminal part of the great colon and the first part of the small colon. ${ }^{1}$

The mesenteric part, or jejuno-ileum, has been conventionally subdivided into the jejunum and ileum, but no distinct point exists at which to make the demareation. With the exception of the origin and the last two or three feet, the mesenterie part of the intestine varies so much in position that only a general statement can be made. It lies in mumerous coils, mingled with those of the small colon, cheefly in the dorsal part of the left half of the abdomen, from the visectal surface of the stomach to the pelvis. It may insimuate itself between the left parts of the colon and the ableminal wall; aloo beetween the wentral parts of the colon, reaching

Fig. 3s9.-Topograpay of V'tscera of Mare; Left Viets.
1.R.. First thoracic vertebra; 1.L., first lumbar vertebrat; 2.K., second sactal spine; S., scapula; A., humerus, N.., sternum; B., slium; ()., femur; L., lung in complete expiration; l., dotted hase indicating contour of lung in ur sparatun; H., perieardium; Z., costal part of diaphragm; Z^{\prime}., tundinous center of diaphragm; l..Y.. left kadney; l.x.f., left ventral colon; थ.Q., sternal flexure of edon; d.Q., dimphragmatic flexure of colon; D., small intestine; M., small colon; M^{\prime}, rectum; a, cocesgeus muscle; b, retractor am; c, c, sphineter ani externus; d, eonstrictor vulva; e, sacrococeggens ventralis; f, anternor gluteal artery; g, internal pudic artery; h, sbdominal wall in section. (After Ellenberger, in Letsering's Atlas, reduccd.)
the floor of the ablomen. In some cases coils of it lie against the right flank when the cecum contains little material. The terminal part of the intestine (ileum) passes to the medial (left) surface of the cepcum and joins the lesser eurvature of its hase. The average diameter of the jejuno-ileum is about two and a half to three inches (ca. 6 to 7 cm .). In the cadaver one often finds much of the tube presenting irregular constricted and dilated parts which are not to be regareled as permanent conditions. The last three or four feet (ca. 1 m .) are usually tightly contracted, resimbling somewhat the terminal part of the oesophagus. This part may be termed the ileum.

The mesenterie part is connected with the dorsal abdominal wall by the great mesentery. This is a wide, fan-shaped fold, consisting of two layers of peritoneum,

[^87]between which the vessels and nerves reach the bowel; it also contains the mesenteric lymph glands and some fat. The visceral border of the mesentery contains the intestine, while the parietal border or root of the mesentery (Radix mesenterii) is attached to a small area around the great mesenteric trunk under the first and second lumbar vertebre. The root is thick, as it contains a large number of vesels and nerves placed close together. The mesentery is short at first, but soon reaches a length of one and a half to two feet (ca. 50 cm .) -sufficient to allow roils of the intestine to reach the abdominal floor, the pelvic cavity, or even to descend into the scrotum through the inguinal canal. Near its termination the intestine leaves the border of the mesentery, so that the latter has a free edge which passes to the cecum. Thus there is formed the ileo-cæcal fold (Plica ileoc:ecalis), which attaches the ileum to the lesser curvature of the ceecum.

Structure.-The wall consists of four coats-serous, matucular, submucous, amd mucous. The serous coat is complete except at the mesenterie edge, where the ressels and nerves reach the howel. The muscular coat consists of an external longitudinal and an internal circular layer, the latter leeing the thicker. In the last few feet of the intestine the muscular coat is very thick, and being usually firmly contracted in the dead subject, gives the impression that this part of the howel is of smaller caliber; such, however, is not the ease during life. The submucous coat is a layer of areolar tissue in which the vessels and nerves ramify. It contains also the duodemal glands and the hases of the solitary and aggregated lymph nodules. The mucous membrane is soft and relvety. It has a grayish or yellowishred color and is very vascular. About five or six inches from the pylorus it forms a pouch, the diverticulum duodeni, in which the pancreatic and hepatie ducts open. On a small papilla nearly opposite this is the termination of the accessory pancratic duet. At the ileo-ceral opening the mucous

Fig. 360.-Diagram of Section of Divertictlem deodexi of Horse.
Solit line indicates mucous membrane; muscular and serous layers are not shown. membrane projects slightly into the cavity of the cæcum, forming the ileo-cæcal valve. The free surface is thickly beset with villi, small projections of the mucous membrane which can le seen well by placing a piece of the membrane in water. They are relatively short and thick in the horse. Each contains a central lymph-vessel (lacteal), and around this a plexus of eapillaries, lymphoid tissue, and unstriped musele-fibers. They are important agents in absorption from the contents of the intestine. The epithelium is columnar, with many goblet cells. Underneath the basement membrane is a layer of unstriped muscle-fibers, the muscularis mucosæ. The glands of the smatl intestine are of two kinds; their secretion is termed the succus entericus.

1. The intestinal glands (Clandule intestinales) are present throughout. They are simple tubular glands which open between the villi.
2. The duodenal glands (Glandulse duodenales. ${ }^{1}$ are present in the first twenty feet or more (ca. 6 to 7 m .) of the bowel. They are branched tubuloalveolar glands, and are situated in the submucosa, so that their ducts perforate the muscularis mucosx and the mucous membrane.
${ }^{1}$ These were formerly known as Brunner's glands, but in the B. N. A. are termed glandule duodenales. On account of their extension beyond the duodenum and their submucous position, Ellenberger has suggested the name ghandulx submucose.

Lymphoil tissue occurs in the form of distinct noclules (Norluli lymphatici), which are either seattered or in groups. In the former ease they are termed solitary nodules (Nocluli lymphatici solitarii), in the latter aggregated nodules or Peyer's patches (Nortuli tymphatici aggregati). The solitary nodules are ahent the size of a millet-seded or a small sago grain. The patehes are situated chicfly along the surface omposite to the mesenteric attachment and begin alout three or four feet from the pylorus. They number one to two humdred, and are usually one to two inchos (2 to 5 cm .) long and a quarter of an inch to one-half ineh (ea. 2 to 14 mm .) wide. Larger ones oceur in the terminal part, where one pateh may have a length of seren to fifteen inches (ea. 17 to 38 em .) :and a width of half an ineh to one inch (cal. is to 2.5 mm .) in young horses (Ellenbergerl). They vary much in mumber, size, and distribution in different individuals, and untergo atrophy in old subjects.

Vessels and Nerves.-The arteries of the small intestine come from the fortiac and anterior mesenteric arteries. The veins go to the portal vein. The lymph-vessels are numerous and go to the mesenteric lymph glands, thenee to the

cisterna chyli. The nerves are deriver from the vagus and sympathetie through the cerliac plexus.

THE LARGE INTESTINE

The large intesthe (Intestimum crassum) extends from the termination of the ileum to the anus. It is about twenty-five fere (ea. 7.5 to 8 m .) in length. It differs from the small intestine in its greater size, in being sacculated for the most part, posisessing longitudinal hands, and having a more fixed position. It is divided into ceecum, great colon, small colon, and rectim.

The Cecum

The cæcum (Intestimm ceecum) is a great cul-ck-sae interealated between the small intestine and the colon. It hate a remarkable size, shape, and position in the horse. Its arrage bength is about four feet (ea. 1.25 m .), and its eapacity ahout soven to eight gallons (ea, 2.) to 30 liters). ${ }^{1}$ It is conical in form, and is curved
${ }^{1}$ The length given here is measured from end to end atong the side and midway between the curvatures.
somewhat like a comma. It is situated chiefly to the right of the median plane, extending from the right iliae and sublumbar regions to the abdominal floor behind the siphoid eartilage. Both extremities are blind, and the two orifices are placed elose together on the concave curvature. It presents for deseription a base, a body, and an apex. The base (Basis cxei s. Saccus cecus) extends forward on the right side as far as the fourteenth or fifteenth rib, about a handbreadth below its middle, and backward to the tuber coxe. ${ }^{1}$ It is strongly curved, the greater curvature being dorsal, the lesser rentral; connected with the latter are the termination of the ileum and the origin of the colon. The rounded thind end is directed ventrally. The body (Corpus creci) extends downward and forward from the base and rests largely on the ventral wall of the abdomen. Its lesser curvature is about parallel

Fig. 362.-Cecun of Horse; Left View.
B. c., Base: C. c., body; A. c., spex: I, ileurn; 1, 2, longitudinal bands; 3 , ileo-cercal fold. The ceecal vessels and lymph glands bave been removed to expose tbe medial band (1).
with the costal areh and some five to six inches (10 to 15 cm .) rentral to it. The apex (Apex cæci) lies on the abdominal floor, usually to the right of the median plane, and about a hand's length behind the xiphoid cartilage.

The right or parietal surface of the c:ecum is related chiefly to the right abdominal wall, the diaphragm, duodenum, and liver. The left or viseeral surface lies against the left and terminal parts of the colon, the root of the great mesentery, and the small intestine.

The base is attached dorsally by connective tissue and peritoneum on the rentral surface of the pancreas and right kidney, and a small area of the abdominal wall behind these; it is attached medially to the terminal part of the great colon, and rentrally to the origin of the great colon. The body is attached dorso-laterally

[^88]to the first part of the colon by the cæco-colic fold. The apex is free, and consequently may vary in position.

The cecum has four longitudinal bands (Tamix ceci), situated on the dorsal, rentral, light, and left surfaces; these cause four rows of sacculations (Haustra).

The ventral band is almost entirely exposed or free (Tenia libera); it begins on the highest part of the base, extends along the medial side of the greater curvature, ant joins the medial band near the apex. It is roneeded only at its origin where the bowel is attacherl to the wall. The dorsal band extends along the lesser curvature from the termination of the ilemm to the apex. The medial band extenes along the merlial part of the lesser curvature of the base, inclines ventrally further formard, and ends hy joining the ventral band. It is covered at its origin ly the adthesion to the right dorsal part of the great colon and beyond this by the cascal vessels and lymph glands. Medial to the termination of the ileum it projects from the wall of the howel as a faleiform band which ean be felt distinetly although rovered by vessels and fat. The lateral band is contimons with that of the right vontral part of the colon. It is coveref by yessels, lymph glands and fat, but can be felt in its posterior part, where it forms a concave projecting edge. It inclines ventrally in front and may extend to the tipex or fade out without reaching it.

1. Leu-cæend onfice: 2 , ceeo-colic orifice; 3, intervening fold.

The ileo-cæcal orifice (Ostimm ileocerale) is situated in the lesere eurvature of the base, about two or three inches (ca. 5 to 7.5 cm .) to the right of the median plame, and in a transverse plane through the first or seeond hmbar vertebra. The end of the ilemm is partially telescoped into the careum, so that the orifice is surrommed hy a fold of mucous membrane which encloses a thick circular muscular layer, the sphincter ilei.

The cæco-colic orifice (Ostium ctecocolicum) is lateral to the preceding ons; the interval between them is only about two inches (ca. 5 cm .), and they are separated loy a large fold which projects into the interior of the caerum. The orifice is small in relation to the size of the ceecum and colon. It is slit-like, or has a narrow oval outline, and is about two inclues (('a. 5 cm .) long. It has a thick valvular fold (Valvula coecocolica) at its ventral margin and is encircled hy a muscular ring, the sphincter cecei. ${ }^{1}$ Large creseentic or semilumar folds (Plece caeci) projeet into the ("avity of the bowd, and between these are large ponches (Cellulae capei).

[^89]It is somewhat difficult to get a correct idea of the cæcal orifices. The cæcum is sharply curved here and a large fold projects into its interior, somewhat like a shelf, and separates the two orifices. The ileo-cacal orifice faces chiefly dorsally, while the caco-colic orifice faces forward into the ceecum.

The Great Colon

The great colon (Colon crassum) begins at the ceco-colic orifice, and terminates by joining the small colon behind the saccus ceecus of the stomach. It is ten to twelve feet (ca. 3 to 3.7 m .) long, and its average diameter (exclusive of its narrowest part) is about eight to ten inches (ca. 20 to 25 cm .). Its capacity is more than double that of the cæcum. When removed from the abdomen, it consists of two parallel parts, which are connected by peritoneum and partially by areolar and muscular tissue also. In situ it is folded so that it consists of four parts, which are designated according to their position or numerically. The three bent connecting parts are termed the flexures. The first part, the right ventral colon (Colon ventrale dextrum), begins at the lesser curvature of the base of the cæcum, about opposite the ventral part of the last rib or intercostal space. ${ }^{1}$ It forms an initial curve, the

Fig. 364.-Dlagrais of Cecem and Large Colon of Horse.
convexity of which is directed upward and backward: this part is in contact with the upper part of the right flank. It then passes downward and forward along the right costal arch and then along the floor of the abdomen. ${ }^{1}$ Over the xiphoid cartilage it bends sharply to the left and backward, forming the sternal flexure (Flexura sternalis s. diaphragmatica ventralis). The second part, the left ventral colon (Colon rentrale sinistrum), passes backward on the abdominal floor, to the left of the first part and the ceccum and, on reaching the pelvic inlet, bends sharply dorsally and forward, forming the pelvic flexure (Flexura pelvina). This is continued by the third part, the left dorsal colon (Colon dorsale sinistrum), which passes forward dorsal or lateral to the left ventral part, and on reaching the stomach, diaphragm, and left lobe of the liver. turns to the right. forming the diaphragmatic flexure (Flexura diaphragmatica dorsalis). The fourth part, the right dorsal colon (Colon dorsale dextrum), passes backward dorsal to the first part, and on reaching

[^90]

Fig. 365.-Topografhy of Viscera of Horse; Right View.
 St., sternum: B., ihum; O., fenur; L., right lung: H., pericatdium; Z., diaphragm (pars costalis); r.v. ('., right ventral rolon; r.Q.. sternal flexure of rolon; $d . Q$. , diaphragmatio flexure of colon; r^{\prime}., body, $C^{\prime \prime}$., base, $C^{\prime \prime \prime}$., apex, of caenm; L., small intestine: F.. pelvic flexure of colon; $M_{.,}$rectnm; $a .$, abdoninal wall in section; b. duodenum; c, coceygeus muscle: d, relractor ani; $e, ~ e$, sphincter ani externus: f, anterior gluteal arters; θ, internal pudic artery; h, xiphoid cartilage. The origin of the colon would be above the blind ead of the base of the cacurn marked C^{\prime}. (After Ellenberger, in Leisering's Atlas.)

Fig. 30G.-Topooraphy of Viscera of Horse; Right Side, Deeper View,
1.R., First thoracic vertebra; 1.L., first lumbar vertebra; $2 . K_{\text {., second sacral spine: S., scapnta; A., humerus; }}$
 ("., base, $C^{\prime \prime}$., apex of caecum; $7.2 . C$., right ventral colon; v.(.., sternal flexure of colon; d.Q., diapbragmatic flexure of colon; r.d.C, right dorsal colon; F., pelvic flexure of colon; $D_{.,}$small intestine; $H_{\text {. }}$ urinary bladder; M., reetum; a, left ventricle; a^{\prime}, ngbt ventricle; b, b^{\prime}, nght coronary artery; c, left atrium; c^{\prime}, right atrium; d, left coronary artery; cremuflex branch; t, vena azygos; f, anterior vena cava; 9 , posterior vena eava; h, sinus venosns; i, right phrenic nerve; k, right vagus, with its corsal ($k^{\prime \prime}$) and ventral $\left(k^{\prime \prime}\right)$ divistons; $l_{\text {, aorta; }} m$, osophagus; n, trachea; o, diaphragm (median rection) ; p, right lateral ligament of liver; q, duodennm; r, dotted line indicating position in median section of dhaphragm in inspiratory phase; s, recto-coceygeus muscle; t, suspensory ligament of rectum; u, sphiacter ani; τ, vesicula seminalis; u, prostate; x, bulbo-urethral gland; y, urethra; z_{1}, abdominal wall; z^{\prime}, xipboid cartilage. (After Ellenberger, in Leisering's Atlas, rednced.)
the medial surface of the base of the cecum it turns dorsally and to the left behind the left sac of the stomach; here it becomes constricted, and joins the small colon below the left kidney:

The sternal flexure extends forward to a point opposite to the rentral part of the seventh rib, and the diaphragmatic flexure as far as the sixth intercostal space on the right of the median plane.

The caliber of the great colon varies greatly at different points. At its origin

Fig. 36 万.-Abpominal Viscera of Horse: Ventral View.
The ventral wall and part of the lateral walls of the abdomen are removed. C., Cæcum; r.z.C., right ventral part of colon; c.Q., sternal flexure of colon; l.r. C., left ventral part of colon; d.Q., diapbragmatic flexure of colon; D., small intestine; M_{n}, small colon; a, ventral free band of cæcum; b, medial band of cecum; c, lateral band of ventral part of colon d, ventral band of ventral part of colon; e, point of elbow; f, anterior end of sternal region; g, siphoid eartilage; h, teats. (After Ellenberger-Baum, Top. Anat. d. Pferdes.)
it is only about two to three inches (ca. 5 to 7.5 cm .) in diameter. ${ }^{1}$ This soon increases to ahout eight to ten inches (ca. 20 to 2.5 cm .) for the rentral parts. Berond the pelvic flexure the diameter is reduced to about three or four inehes (ca. 8 to 9 cm .). Toward the diaphragmatic flexure the caliber rapidly increases, and reaches its maximum in the last part, where it forms a large sacculation, which may
${ }^{1}$ ['sually there is a sacculation of considerable size which succeeds the constricted origin.
hetre a diameter of about twenty inches (50 cm .). This is succeeded hy a fumelshaped terminal contraction.

The right ventral part of the great colon is attached to the lesser curvature of the execum by two layers of peritoneum which form the cæco-colic fold (Plic:a eacoenlica). The right parts are united by peritoneum on cither side and ako hys areolar tissur and museular fibers, the surface of contact being ahout four or five inches (ea. 10 to 12 cm .) wide; the left parts are attached to each other in a similar fashion near the anterior flexures, but further hack the connection is a peritoneal fold which gradually becomes wide enough to allow them to be drawn apart about six inches (eal. 15 cm .) near the pelvic

Fig. 3han,-Dusterior Portion of left Parta of Colon of Hofise; Doralal View.
1, left dorsal part; 22, left ventral part; 3. pelvic flexure. flexure. The termimal part of the colon is attached ly peritoneum and areolar tissue to the ventral surface of the pancreas dorsally and to the hase of the ceccum laterally: It is connected indirectly with the diaphragm and liver by means of a fold derived from the right lateral ligament of the liver.

The relations are complex. but the more important facts are as follow: The ventral parts have extemsive contact with the abdominal wall rentrally and laterally. On the right side the colon is almost entirely exeluded from contact with the flank by the cocem; on the left side it has no contact with the upper part of the flank, being excluded here by coils of the small colon and small intestine. Dorsally the ehief relations are to the stomach, durdenum, liver, pancreas, small colon, small intestine, aorta, posterior vena cava, and portal vein. Since there are no transverse attachments of the right and left parts, and the latter have no attachment to the wall, they are subject to considerable displacement. ${ }^{1}$ The jelvie flexure is variable in position, hut usually it is direeted against the posterior part of the right tlank or lies in the right inguinal region. ${ }^{2}$

The longitudinal bands (Tieniar coli) vary in number on the different parts. The ventral parts have four bands. The pelvic flexure has a band along its lesser curvature. The left dorsal colon has at first only one band, which is a continuation of the preceding one; further forward two other bands appear, and

[^91]the three are continued on the right dorsal part. The ventral parts have alternate constrictions and sacculations (Haustra coli).

On the right ventral colon two bands are dorsal, and extend along the medial and lateral sides of the attachment to the right dorsal colon. The medial one is covered by the colie vessels, etc., and the lateral one is concealed entirely or almost entirely by the attachment to the right dorsal part. A lateral band comes from the lesser curvature of the execum and becomes ventral at the sternal flexure; it is free. The ventral band is also iree. On the left ventral colon also two bands are dorsal. Of these, the medial one is covered by the vessels and lymph glands and in the anterior part also by the adhesion to the left dorsal part. Al the pelvic flexure it is continued along the coneare face of the bowel to the left dorsal part; it is important elinically as being the only distinct band on the flexure and may be felt per reetum. The dorso-lateral band is largely free, hut is covered in front by the attachment to the left dorsal part. It fades out at the pelvic flexure. The ventro-medial and ventro-lateral bands are free and fade out at the pelvic flexure. The left dorsal colon has at first only one band, which is the continuation of the one along the lesser curvature of the pelvic flexure; it extends along the ventral surface and is continued on the right dorsal colon. Beyond the middle of the left dorsal colon two dorsal bands begin, diverge very gradually, and are continued on the right dorsal colon; both are free and broaden at the diaphragmatie flexure. On the right dorsal colon the rentral l)and is conceated by the attachment to the right ventral colon and by the ressels and lymph glands. The two dorsal bands are free except at the parietal attachment of the bowel; the lateral one is very wide and somewhat indistinet; the medial one is narrower and more distinct, and is continued along the mesenterie border of the small colon.

The Small Colon

The small colon (Colon tenue) begins at the termination of the great colon, hehind the saccus ceeus of the stomach and rentral to the left kidney, and is continned by the reetum at the pelvic inlet. ${ }^{1}$ Its length is about ten to twelve feet (ca. 3.5 m .), and its diameter three to four inches (ca. 7.5 to 10 cm .).

Its coils he chiefly in the space between the stomach and the pelvic inlet, dorsal to the left parts of the great colon. They are mingled with those of the small intestine, from which they are easily distinguished by the bands and sacculation.

It is attached to the sublumbar region by the colic mesentery, and to the termination of the duodenum by the narrow duodeno-colic fold of peritoneam (Lig. duodeno-colicum). The greater omentum is also attached to the initial part of the bowel. The colie mesentery is narrow at its origin, but soon reaches a width of about three feet (ca. 80 to 90 cm .). Its parietal border is attached along a line extending from the ventral surface of the left kidney to the sacral promontory; it is continuous in front with the root of the great mesentery, and behind with the mesorectum.

There are two longitudinal bands and two rows of sacculations. One of the bands is free, the other is concealed by the mesenters: When the bowel is hardened in situ its lumen between the pouches is reduced to a narrow slit.

The Rectum

The rectum (Intestinum rectum) is the terminal part of the bowel; it extends from the pelvic inlet to the anus. ${ }^{2}$ Its length is about one foot (ca. 30 cm .). Its direction may be straight or oblique. The first or peritoneal part of the rectum is like the small colon, and is attached by a continuation of the colic mesentery termed the mesorectum. The second or retroperitoneal part forms a flask-shaped dilatation termed the ampulla recti ; it is attached to the surrounding structures by connective tissue and muscular bands.

The first part of the rectum commonly lies along the left wall of the pelvic carity, but may be about median or (more rarely) deflected to the right. It is related to coils of the small colon and (inconstantly) to the left parts or pelvic

[^92]flexure of the great colon; ventrally to the badder (when full) or to the uterns. The second part of the rectum is relited dorsally and laterally to the pelvic wall. Ventrally the relations differ in the two sexes. In the male they are the bladler, the terminal parts of the cluctus deferentes, the resicule seminales, the prostate, the lullo-urethral glands and the urethra. In the female they are the uterns, vagina, and vulva. ${ }^{1}$

Structure of the Large Intestine

The serous coat eovers the different parts in varying degree. It does not cover (1) the opposed surfaces of the cecum and colon which are betwern the layers

Fig. 369.-Topograpyy of Viseera of Mare; Left Deep View.
1R., First thoracic wortubra: 1 L., first hmbar vertebra; 3 h., second sucral spine; S., scapula: A., humerus; B., ilium: F., femur: Sch., pubss; Si., ischium; L., liver (left lobe); Wa., stomach, the posterior contour of which is indicated lyy dotted line x; M ., splen; l.J., left kidney, concealed part indicated by dotted line; M., small rolon: D., small intestme, parts of which have been removed; l.d.C'. left dorsal colon; l.v.r., left ventral colon; r.Q., sternal flexure; d.Q., diaphragmatic flexure; O., left ovnry; ℓ^{\prime}., hore of uterus; L.l., broad ligament of uterus; M'., rectum; l., vagina; 17 ., hludder; a, lift ventricle; a^{\prime}, right ventricle; b, left coronary artery with descending (b^{\prime}) and circumflex ($b^{\prime \prime}$) branches; c, left auricle; d, pulmonary artery (cut); c, aorta: f, liganent um arteriosum; g, brachiocephalic trunk (anterios tworta) ; h, trachea; i, osophagus; k, left phrenic nerve; l, diaphragm in median section; m, uterine tub; ; n, bursa ovarica; o, urithra: p, cut edge of broad ligament; q, line of reflection of pelvic peritonetm; r, recto-corevgeus; s, sustensory ligament of rectum ; t, sphincter ani internus; u, saero-coceygeus ventralis; v, abdoninal wall in section; w, xiphoid cartilage. (After Ellenberger, in Leiscring's Atlas.)
of the ceeco-colie fold and mesocolon; (b) the areas of parietal attaenment of the ceecum and colon; (c) the retroperitoneal part of the rectum.

The muscular coat consists of longitutimal and circular fibers. The bulk of the former is in the bands of the ceram and eolon. It is to be noted, however, that the bands of the carom and the ventral parts of the great colon are largely composed of elastic tissue. The bands of the dorsal parts of the colon are kargely museular, and those of the small eolon are almost entirely muscular. Some of the circular fibers pasis from one part of the colon to another, where they are attached to each ot her, forming the filare transerse eoli. The muscular coat of the ampulla of the rectum presents sperial features. The longitudinal layer of fibers is very

[^93]
thick and consists of large bundles which are rather loosely united. A large bani, the recto-coccygeus, is detached from it on either side, and passes upwarel and backward to be inserted into the fourth and fifth cocergeal vertebres.

The submucous tissue is abundant in the wall of the rectum, so that the mucous membrane is loosely attached to the muscular coat, and forms numerous folds when the bowel is empty.

The mucous membrane of the large intestine is thicker and darker in color than that of the small intestine. It forms large crescentic or semilunar folds

Fig. 370.-Peltc Inlet and Postertor Part of Abdominal Wall of Horse, Viemed from the Froxt.
The left inguinal canal is partially opened. The peritoneum is retained except over a part of the left cremaster muscle. The sublumbar region is greatly foreshortened in this view. a, a^{\prime}, Kidneys; $a^{\prime \prime}$, adrenal; b., ureter; c, renal artery; d, sorts; e, stump of colliac artery; f, stump of anterior mesenteric artery; g, posterior mesenteric attery; h, circumflex iliac artery; i, external iliac artery; k, internal ilisc artery; l, spermatic artery in peritoneal fold (plica rasculosa), m : n, ductus deferens, enclosed in gemital fold, $a ; p$, urinary bladder; q, round ligament of bladdrer; r, middle ligament of bladder; s, rectum; t, margin of vaginal ring; u, posterinr abdominal artery; ε, external pudic artery; u, rectus abdominis muscle; x, transversus and obliquus internus abdominis; y, y^{\prime}, cremaster enternus; z, posterior vena cara (cut). (After Ellenberger-Baum, Top. Anat. d. Pferdes.)
(Plica semilunares), corresponding to the external constrictions. It has no villi nor duodenal glands. The intestinal glands are large and numerous. Solitary nodules are numerous, and there are aggregated lymph nodules at the apex of the cæcum and in the pelvic flexure and the adjacent portion of the left dorsal part of the colon.

Vessels and Nerves.-The arteries come from the anterior and posterior mesenteric and internal pudic arteries. The veins go to the portal and internal pudic veins. The lymph vessels of the cæcum and colon go to the cæcal and colic

iliac and lumbar glands. The nerves are derived from the mesenteric and pelvic plexuses of the sympathetic.

The Anus

The anus is the terminal part of the alimentary canal. It is situated below the root of the tail, where it forms a round projection, with a central depression when contracted. It is eovered externally by an integument which is thin, hairless, and provided with mumerous sebaceous and sweat glands. Its lumen, the anal canal (Pirs analis recti), is about two inches (ea. 5 cm .) long; exeept during defeeation it is closed by the contraction of the splancter muscles and folds of the mucous lining. The muenus membrane is pale, glandless, and covered with a thick, squamous, stratified epithelinm.

There are three museles of the anns.

1. The sphincter ani internus is the temmal thickening of the circular coat of the bowel.
2. The sphincter ani externus is a broad ring of striped musclo-fibers outside the internal sphincter. some fibers are attached to the cocergeal fascia above, others to the perineal fascia below. Its action is to close the anus.
3. The retractor ani is a flat musele whieh lies between the rectum and the sacro-sciatic ligament; its fibers are direeted backwarl and somewhat upward. It arises from the superior ischiatic spime and the saero-sciatic ligament, and ends under the sphincter ani extermus. Its action is to retuce the partial prolapse which the anus undergoes during defecation.

The suspensory ligament of the anus (Lig. suspensorium ani) is a band of unstriped musele which arises from the first eoecyeal vertebra, passes downward under cover of the retractor ani, and unites with its fellow below the anus. In the male it is largely continued by the retractor penis muscle; in the female it blends with the constrictor vulvie. It may aet as an accessory sphineter of the anus.

Vessels and Nerves.-The blood-supply eomes from the internal pudic arteries, and the veins go to the internal pudie vein. The lymph vessels go to the anal lymph glands. The nerves come from the pudie nerve.

THE PANCREAS

The pancreas is situated transversely on the dorsal wall of the abdomen, the greater part heing to the right of the median plane. Its central part lies under the sixteenth and seventeenth thoracic vertebrie. When fresh, it has a reddish eream color, but if left in the mpreserved cadaver, it rapidly decomposes and becomes dark. It resembles the salivary glands in appearance, but is softer, and its lobules are more loosely united. Its average weight is about twelve ounces (ca. 350 g .). When hardened in situ its shape is very irregular. It is triangular in outline, and presents for description two surfaces, three borders, and three angles. ${ }^{1}$

The dorsal surface (Facies dorsalis) faces dorsally and forward. It is partially covered by peritoneum. It is related chiefly to the ventral surface of the right kidney and adrenal, the posterior vena cava, the portal vein, the coliac artery and its divisions, the gastro-phrenic ligament, and the saceus ciecus of the stomach, the right and caudate lobes of the liver, and the gastro-pancreatic fold. There are grooves for the divisions of the eoliae artery and a large one for the splenic vein.

The ventral surface (Facies ventralis) faces ventrally and backward; it is in general concave. It presents two impressions, separated by an oblique ridge. The smaller of these (Impressio) caecalis) lies to the right, and is caused by the pressure of the hase of the eacum; the larger one (Impressio colica) indicates the area of
${ }^{1}$ A deseriptive methor based on that in use in human anatomy eannot be applied with elearness to the organ in the horse.
contact with the terminal part of the great colon and its junction with the small colon. It has usually no peritoneal covering except over a small area at the anterior angle.

The right border is nearly straight; it is related to the second part of the duodenum.

The left border is slightly eoneave, and is related to the first part of the chuodenum, the left sac of the stomach, and the splenie ressels.

The posterior border presents a deep notch (Incisura panereatis) where the root of the great mesentery is in contact with the gland. To the right the portal vein lies in the notch, and passes through the gland very obliquely; there is a thin

Fig. 371. -Pancreas of Horse with Chief Relathons; Ventral View.
The pancreatic duct and its two chief radicles are indicated by dotted lines, since they are in the substance of the gland.
bridge of gland tissue dorsal to the vein, thus forming the portal ring (Annulus portæ).

The anterior or duodenal angle (Angulus eranialis) ${ }^{1}$ is the most ventral part of the gland; it is attached to the concavity of the secont curve of the duodenum and the adjacent part of the right lobe of the liver. The ducts leave at this extremity.

The left or splenic angle (Angulus sinister) ${ }^{2}$ fits into the space between the saccus cæcus of the stomach in front, the left kidney behind, the base of the spleen dorsally, and the termination of the great colon ventrally.

The right angle (Angulus dexter) is rounded, and lies on the ventral surface of the right kidney and adrenal body.

[^94]${ }^{2}$ This corresponds to the tail of the pancreas of man.

The pmereas is attached dorsally hy comective tissue to the kidneys and adrenal lowlies, the gastro-phrenic ligament, the suspensory ligament of the spleen, the posterior vena cava, the portal fissure, and the gastro-pancreatic fold. The rentral surface is mainly attached by areolar tissue to the base of the execum and the terminal part of the great colon.

There are almost invariably two ducts. The large one is termet the pancreatic duct (Ductus pancreaticus). ${ }^{1}$ It is formed by the union of two radickes which come from the right and left extremities, and passes through the duodenal angle to end at the duodenal diverticulum alongside of the bile-duct. The duct is nearty half an ineh (ea. 1 cm .) wide, and is sery thin walled. It is situated in the substance of the gland near its elorsal surface: none of it is fres. The accessory pancreatic duct (1)uetus pancreaticus acessorius) ${ }^{2}$ arises either from the chief thut or its left radiele, and cmds on a papilla in the duodenum opposite the chief duct.

Structure. - The pancreas belongs to the class of tubulo-atreolar glands, the alveoli being long, like those of the duodenal glands; in other respecte it resembles the werou salivary ghands very closely. It has no proper capsule and the lobules are rather loosely united.

Vessels and Nerves.-The arteries of the pancreas come from the branches of the eclite and anterior mesenteric arterics. The veins go to the portal vein. The nerves are derived from the cotiac and mesenteric plexuses of the sympathetie.

THE LIVER

The liver (Hfepar) is the largest gland in the loody. It is situated obliquely on the aldominal surface of the diaphragm. Its highest point is at the level of the right kidney, its lowest on the keft sike, usually abont three or four inehes (al. A to 10 cm .) from the abdominal floor, opposite the ventral end of the seventh or eighth rib. The greater part of it lies to the right of the median plame.

It is red-l)rom in color and is rather friable. Its average weight is about ten tor twelve pounds (ca. 5 kg .), but in a large draft horse it weighs about twenty pounds. When in the hoty, or if hardened in situ, it is strongly curved and accurately adapted to the abdominal surfaee of the diaphragm. When removed in the soft state, it flattens out into a cake-like form quite different from its natural configuration. It presents for description two surfaces, and a circumference whieh may be divided into four borters.

The parietal surface (Facies diaphragmatica) is strongly convex, and lies against the diaphragm. It faces chiefly dorsally and forward. Its most anterior part is oppesite the rentral third of the sixth intereostal space or seventh rib. It presents, just to the right of the mediam plane, a sagittal groore for the posterior vena cava (Fossat renar eave), which is partially embedked in the substance of the gland.

The visceral surface (Facit's visceralis) faces in general ventrally and backward; it is concave and irregutar, being molded on the organs whiek lie against it. It presents the following features: (1) The portal fissure (Porta hepatis) is a depression ahove the middle of the surface and a little to the right of the median plane; through it the portal vein, hepatic artery, ant hepatic plexus of nerves enter, and the hepatie chect and lymph ressels leave the liver. The hepatie lymph glands are ako found here. The pancreas is attachect at and to the right of the fissure, and the lesser omentum around it. Above the fiswure is the caudate lobe (Lobus caudatus), which is continued to the right by the pointed caudate process (Processus caudatus). (2) The gastric impression (Impressio gastrica) is an extensive con-

[^95]cave area which is the surface of eontact with the stomach. (3) Leading from this to the right of the portal fissure and dorsally is the duodenal impression (Impressio duodenalis). (4) The colic impression (Impressio coliea) is situated ventrally and to the right of the gastric and duodenal impressions, from whieh it is separated by a ridge; it corresponds to the extensive contact of the diaphragmatic flexure and right dorsal part of the colon. (5) A cæcal impression (Impressio caealis) may he found dorsal to the preceding; it corresponds to the :mterior part of the base of the ceccum.' Coils of the small intestine may also lie on this surface, and the apex of the spleen may reach to it when the stomach is empty.

The dorsal border (Margo dorsalis s. ohtusus) is thiek for the most part. It presents from right to left: (1) The attachment of the right lateral ligament; (2) a depresion for the right kidney (Impressio renalis); (3) a notch, which is the

Fig. 372.-Liver of Young Horse, Hardened in situ: Parietal Strface.
dorsal end of the fossa venæ eavæ; (4) the deep œsophageal notch (Impressio œesophagea), which is oceupied partly by the end of the esophagus, but mainly by the thick margin of the hiatus cesophageus: (5) the attachment of the left lateral ligament.

The ventral border (Margo ventralis) is thin, and is marked by two deep interlobar fissures or incisures (Incisure interlobares), which partially divide the organ into three prineipal lobes-right, middle, and left. The right lobe is the largest, except in old subjects, in which it is frequently mueh atrophied. The middle lobe is the smallest. It is marked by several small fissures and by the umbilical fissure (Incisura umbilicalis); the latter eontains the umbilieal vein in the foetus, whieh is transformed into the round ligament after birth.

[^96]The right border (Margo dexter) is thin and long; it extends backward usually to the sixteenth rib, a little below its middle. ${ }^{1}$

The left border (Margo sinister) is thin and convex. It begins at the left side of the cesophageal notch, about a handbreadth ventral to the fourteenth thoracie vertebra. It curves downward, outward, and somewhat forward to a point opposite

Fig. 373.-Livert of llorse; Visceral Surface.
Specimen from middle-aged subject, hardened in sttu. The fissure between the left and midule lobes is shown but not marked.
the rentral end of the ninth rib, and then runs forward about parallel with the costal arch as far as the ventral end of the seventh rib. The ventral and lateral borlers together constitute the margo acutus.

The liver is held in position largely by the pressure of the other viscera and by its close application and attachment to the diaphragm. It has six ligaments.
${ }^{1}$ The right horder varies much in subjects in the dissecting room, since in old subjects the right lobe is often greatly atrophicd. Atrophy of the left lobe is extremely rare.

1. The coronary ligament (Lig. coronarium hepatis) attaches it elosely to the diaphragm. It consists of two strong laminæ. The right one is attached to the right of the fossa venæ eavæ; the left one begins to the left of the vena eava and passes dorsally and laterally, becoming continuous with the left lateral ligament at the left margin of the osophageal notch; it detaches a middle fold which extends to the œesophageal noteh and is continuous with the lesser omentum. The two laminæ unite below the vena eava to form the next ligament.
2. The falciform ligament (Lig. faleiforme hepatis) is a erescentic fold which attaches the middle lobe to the sternal part of the diaphragm and to the abdominal floor for a variable distance.
3. The round ligament (Lig. teres hepatis) is a fibrous cord in the coneave

Fig. 374.-Ltver of Net-born Foal, Hardened in situ; Visceral Strface.
The differences, when compared with the organ in the adult, are very striking.
edge of the faleiform higament which extends from the umbilieal fissure to the umbilicus; it is the vestige of the umbilical vein, which in the foetus earries the blood from the placenta to the liver. ${ }^{1}$
4. The right lateral ligament (Lig. triangulare dextrum) attaehes the dorsal border of the right lobe elosely to the costal part of the diaphragm.
5. The left lateral ligament (Lig. triangulare sinistrum) is a triangular fold which attaehes the dorsal edge of the left lobe to the tendinous center of the diaphragm.
6. The hepato-renal or caudate ligament (Lig. hepatorenale) attaches the eaudate process to the right kidney and the base of the excum.

The lesser omentum and the first part of the mesoduodenum are formed by the
${ }^{1}$ It is to be noted that a remnant of the lumen of the vein is usually present, but has no endothelial lining.
peritoneum leaving the visceral surface at the portal fissure and along a curved line which extends from the fissure to the asophageal noteh. They pass to the lesser curvature of the stomach and the first part of the duodenum.

As stated above, the liver is divided hy fissures into three prineipal lobes right, middle, and left. The right lobe (Lohus dexter) is the largest in the young subjeet and is irregularly quadrilateral in form. On its dorsal part is the caudate lobe (Lohus caludatus), which ents in a pointed caudate process directed outward and assists in forming the cavity for the right kidney. The central or middle lobe (Lolus centralis) is normally much the smallest. The left lobe (Lobus sinister) is oval in outline and thiekest centrally: In old or middle-aged subjects it commonly exceets the right one in size, and in many caves eomstitutes the bulk of the gland. In some eases the atrophy of the right lobe is so extreme that the middle lobe may exereel it in size. ${ }^{1}$

The hepatic duct (Ductus hepaticus) is formed at the sentral part of the portal fissure by the umion of right and left chief lobar ducts. It is about two inches (ca. 5 cm .) long and about half an inch (ca. 1 to 1.5 cm .) wide. It passes between the two layers of the mesoluodenum, and pierces the wall of the thodenum five or six inches (ca. 12 to 15 cm.) from the pylorus, alongside of the pancreatic duct. The ducts pass obliquely through the wall of the duodenum for about half an ineh (ca. 1 cm .) lefore opening into the divertieulum duodeni. The arrangement forms a valve, which prevents regurgitation from the intestine. There is no gall-bladder.

In the new-born foal the liver presents striking differences when compared with the gland oi the adult. It is relatively large and weighs $\boldsymbol{2}^{2} 2$ to 3 poumls (ea. 1.25 kg .). It is thick and is strongly: curved, and a considerable part of the parietal surface is in contact with the floor of the alwlomm. The umbilical fissure is large and contains the umbilical vein. The latter is a very large vessel which carries blood from the placenta and joins the portal win in the substanee of the liver; it is in the edge of the falciform ligament, which at this time extends to the umbilicus. The risceral surface is deeply concave and is in contact chiefly with the stomach and duodenum.

Structure.-The liver is covered by an external serous, and an internal fibrous, coat. The serous coat (Tunica serosa) eovers the gland exeept at the attachment of the pancreas and at the portal fissure; it is reffeeted from it to form the ligaments and the lesser omentum. The fibrous capsule (Capsula fibrosa) is in general thin; it semels lamine into the ligaments, and also trabeeuke into the gland. It the portal fissure it is abundant and surrounds the vessels and ducts, whieh it accompanies in the portal camals of the gland substance.

The glank substance is composed of the parenehymat and the interstitial tissue. The parenchyma is made up of polygonal lobules (Lolouli hepatis), about 1.5 mm . in diameter, which are hell together by a small amount of interlobular connective tiswae. On areount of the wery small amount of the latter, the lobulation of the horse's liver is not usually at all distinct; for the same reason the organ is also quite friahle. The lobules are emposed of the polyhedral liver cells, a telicate retieulum, the bite capillaries, a plexus of hlood capillaries, and a central vein.

Vessels and Nerves.-The portal vein onters at the portal fissure. It conveys llood from the digestive tract and the splem. which contains various products of digestion and numerous white hlood-eflls. The hepatic artery ako enters at the portal fissure; it may be termed the nutrient vessel. All the hloot is returned from the liver to the posterior vena eava by the hepatic veins. The portal vein and the hepatic artery both divide into interlobular branches, which run together in the

[^97]portal canals of the interlobular tissue. The branches of the portal vein (Vene interlobulares) give off intralobular branches which form plexuses of capillaries in the lobules and give rise to a contral vein (Vena centralis). The interlobular branches of the hepatic artery (Rami arteriosi interlobulares) are of relatively small size. They supply mainly (if not exclusively) the interlobular tissue, the capsule, and the walls of the vessels and ducts. The hepatic veins ${ }^{1}$ (Vene hepaticxe) empty into the posterior vena cava as it lies in the fossa of the gland. Their ultimate radieles are the central lobular veins (Vene centrales), which ennerge from the bases of the lobules and join the sublobular veins (Vense sub)lobulares) ; the latter unite to form the hepatie veins. The largest hepatio reins, three or four in number, join the posterior vena cava just before it leaves the liver to pass through the diaphragm.

The nerves come from the hepatic plexus, which is composed of branches from the ragus and sympathetic nerves.

THE SPLEEN

The spleen (Lien) is the largest of the heterogeneous group of organs which are usually designated ductless glands. ${ }^{2}$ It is situated chicfly in the left parachondriac region, in close relation to the left part of the great curvature of the stomach, to which its long axis corresponds. Its size and weight vary greatly in different subjects, and also in the same subject under different conditions, depending chiefly on the great variability of the amount of blood contained in it. The average weight is alsout 35 to 40 ounces (ea. 1 kg .), its length about 20 inches (ca. 50 cm .), and its greatest width about 8 to 10

Fig. 375.-Spleen of Horse; Parietal Strface
a, Dorsal extremity or base: b, c, anterior and pusterior basal angles; d, anterior border; e, ventral extremity or apex; 1, 2, 3, impressions of last three ribs. inches (ea. 20 to 25 cm .). It is usually bluish-red or somewhat purple in color. In the matural state it is soft and yielding, but not friable.

The weight, which is extremely variable, appears to range ordinarily from about one to eight pounds, although the latter figure even may be exceeded without any apparent evidence of disease.

[^98]The author recently observed in a horse, which weighed about 1200 pounds, a spleen which weighed 1014 pounds, and measured 26 inches in length and 11 inches in width the the bes. 'The ventral end was situated opposite the lower part of the seventh intereostat space. In the new-born foal the weight is about 10 to 12 ounces (ca. 300 gm .). There does not seem to be any constant relation to the body-weight. For example, the splen of a colt of medium size about ten months old weighed three and a half pounds, while it often weighs less than two pounds in horses weighing 1000 to 1200 pounds. The chief variation in outline consists of increase of width, especially of the dorsal part.

It extends obliquely in a curved direction, corresponding to the left part of the greater curvature of the stomach, from the left crus of the diaphragm to the ventral third of the tenth or eleventh rib. It

Fig. 376.-Spleen of Horse, Mardened in situ; Vis'eral strate.
a, Dorsal extrematy or base; b, c, anterior and posterior basal angles; d, anteriur border; e, cut edge of suspensory ligament; f, θ, splenic urtery and vein in hilus. The area marked intestinal impression is related to the first coil of the small colon. The area enclosed by the suspensory ligament is non-peritoneal. presents for deseription two surfaces, two borders, and two extremities.

The parietal or lateral surface (Facies parietalis) is convex, and lies chiefly against the diaphragm, but is in contact with the ctorsal parts of the last two ribs and usually to a small extent with the flank at the lumbo-costal angle.

The visceral or medial surface (Faeies visecralis) is in general concave. It is divided into two uncquat parts by a longitudinal ridge; on this is a groove, the hilus, in which the vessels and nerves are situated. The area in front of the ridge (Facies gastrica) is molded on the greater curvature of the stomach; it is about two inches (ca. 5 cm .) wide. The area bohind the ridge (Facies intestinalis) is much more extensive; it is related to the small colon, the left parts of the great colon, the small intestine, and the great omentum. It may be marked by one or two fissures.

The anterior border (Mlargo cranialis) is coneave and thin, being wedged in between the diaphragm and the greater curvature of the stomach.

The posterior border (Margo caudalis) is convex and thin.

The dorsal extremity or base (Extremitas dorsalis) is heveled, and fits into the interval hetween the left crus of the diaphragm and sublumbar museles above, and the saceus cocus of the stomath and the left kidney below. When hardened in situ, it shows an impression (Facies renalis) where it lies against the kidney. The left extremity of the pancreas touehes it also. The anterior basal angle fits in between the stcecus cecus of the stomach and the left kidney at the seventeenth thoracic vertebra; the posterior basal angle usually lies against the upper part of the left flank, just behind the last rib. ${ }^{1}$

The ventral extremity or apex (Extremitas ventratis) is small and varies in position. It is commonly found opposite the tenth or eleventh rils, a handbreadth or more above the costal arch, hut may be further forward and higher.
${ }^{1}$ It is uncommon to find the spleen extending more than two or three inches behind the last rib; on the other hand, the posterior basal angle may lie just at the last rib.

The position of the ventral part depends largely upon two factors-the degree of fulness of the stomach and the size of the spleen. When the stomach is empty or nearly so and the spleen small (contracted), the latter is strongly curvel, and its ventral end may be between the left lobe of the liver and the left dorsal part of the great colon. When the stomach is full, it pushes the spleen backward, affecting most the ventral part of the latter. Of course the spleen is affected by the respiratory movements, as may be readily observed by examination per rectum of the living subject.

The spleen is attached by two peritoneal folds, the suspensory ligament and the gastro--plenic omentum. The suspensory ligament of the spleen (Lig. suspensorium lienis) attaches the dorsal end to the left crus of the diaphragm and the left kidney; it contains a quantity of elastic tissue. The dorsal layer of the ligament, which passes to the diaphragm, is the ligamentum phrenico-lienale, and blends with the gastro-phreuic ligament; the ventral part, which goes to the kidney, is termed the ligamentum renolienale. The gastro-splenic omentum (Lig. gastrolienale) passes from the hilus to the left part of the greater curvature of the stomach. It is narrow dorsally, where it joins the suspensory ligament; ventrally it becomes much wider and is continuous with the great omentum.

Small globular or lenticular masses of splenic tissue may be found in the gastro-splenic omentum. They are termed accessory spleens Lienes accessorii).

Structure.-The spleen has an almost complete serous coat (Tunica serosa). subjacent to this and intimately united with it is a capsule of fibrous tissue (Tunica albuginea), which contains many clastic fibers and some unstriped muscular tissue. Numerous trabeculæ (Trabeculæ lienis) are given off from the deep face of the capsule and ramify in the substance of the organ to form a supporting network. In the interstices of this framework is the spleen pulp (Pulpa lienis), a dark red, soft, grumous material. This is supported by a delicate reticulum, and contains numerous leukocytes, the large splenic cells, red blood-corpuscles, and pigment. The pulp is richly supplied with blood. The branches of the splenic artery enter at the hilus and pass along the trabeculæ. The arteries which enter the pulp have a sheath of lymphoid tissue, which collects on the ressel wall at certain points, forming small splenic lymph nodules (Noduli lymphatici lienales). ${ }^{1}$ These are risible to the naked eve as white spots, about as large as the head of a pin. The blood passes into carernous spaces lined by endothelium which is continuous with the cells of the reticulum of the pulp. From these the reins arise. The splenic vein runs in the hilus in company with the artery and nerves, and joins the posterior gastric vein to form a large radicle of the portal vein.

Vessels and Nerves.-The arteries are derived from the splenic artery, which is the largest branch of the coliac artery. The splenic vein lies behind the artery in the hilus: it goes to the portal vein. The lymph vessels go to the splenic lymph glands. The nerves, derived from the cœliac plexus of the sympathetic, accompany the ressels.

THE PERITONEUM

The general disposition of the peritoneum has been described. and other facts in regard to it were mentioned incidentally in the description of the viscera. It is now desirable to study it as a continuous whole² (Figs. 351, 352, 353. 377, 37-).

We may consider the peritoneum as consisting of two sacs-a greater and a lesser. The greater sac lines the greater part of the abdominal cavity, and covers most of the riscera which have a peritoneal investment. The lesser sac is an introversion or invagination of the greater sac, formed during the development of the riscera. The two sacs communicate by a relatively narrow passage, termed

${ }^{1}$ These are also known as Malpighian corpuscles.

${ }^{2}$ The student is strongly recommended to study the peritoneum of a foal or other small subject when the opportunity occurs, as in these the viscera are easily handled, and the course of the peritoneum can be followed without difficulty.
the epiploic foramen (Foramen epiploicum). ${ }^{1}$ This opening is situated on the viseeral surface of the liver dorsal to the portal fissure. It ean be enterell hy passing the finger along the caudate lobe of the liver toward its root. Its dorsal wall is formed by the caulate lobe and the posterior vena cava. Its ventral wall consists of the pancreas, the gastro-pancreatio fold, and the portal vein. The walls are normally in contact, and the pasage merely a potential one. It is usually about four inches (ea. 10 cm .) in length. It is narrowest at the lateral extremity, where it is about an inch (ea. 2.5 to 3 cm .) wide. ${ }^{2}$ If the finger is passed into the foramen from right to left, it enters the cavity of the lesser sac. If now an opening is made in the great omentum and the other hand introduced through it, the fingers of the two hands ean touch each other over the lesser curvature of the stomach. The formation ant boundaries of the lesser sate should now be examined by spreading out the great omentum. It will be found that the latter now encloses a considerable cavity behind the stomach; this is termed the omental cavity (Bursa omentalis). Passing forwart over the lesser curvature of the stomach, we enter another space, the vestibule of the omental cavity (Vestibulum burse omentalis). This space is

Fig. 37t.-Diagram of General Arfangement of Peritoneum (of Mare) in Sagittal Tracing.
a, Nacto-rectal pouch, continuous with b, recto-genital pouch; c, vesico-genital pouch: d, pubo-vesical pouch; f, leser omentum; Int., small intestine. The arrow points to the epiploic foramen.
elosed on the leit hy the gastro-phrenic ligament, wentrally and on the right by the lesser omentum, and dorsally hy the gastro-pancreatic fold, which is attached to the dorsal horder of the liver and to the posterior vena cava. Above the oesophageal noteh there is a recess, into which the fingers can be passed around the horder of the liver and the vena cava till the coronary ligament is encountered. Thus the vestibule is elosed exeept-(1) on the right, where it communicates with the cavity of the greater sac by the epiploie foramen; and (2) behind, where it communieates with the eavity of the omentum.

The general arrangement of the greater omentum has already been indicated. We may now trace its line of attachment, which woukd correspond to the mouth of the sac. Beginning at the ventral part of the greater curvature of the stomach, it passes to the ventral face of the pylorus, then crosses obliquely the first part of the duodenum to the point where the pancreas is adherent to it. Here it pasece to the anterior face of the terminal part of the great colon, runs along this transversely (from right to left), and contimues for some ten or twelve inches (ea. 2.

[^99]to 30 cm .) on the small colon. It then forms an acute angle, passes medially and forward along the small colon to the dorsal part of the hilus of the spleen, where it blends with the suspensory ligament of the latter, and forms a recess (Recessus lienalis) behind the saccus cecus of the stomach. It now passes along the hilus of the spleen, and is continued to the greater curvature of the stomach by the gastro-splenic omentum. It is convenient to regarel the spleen as being intercalated in the left part of the greater omentum; on this basis the gastro-splenic omentum would be that part of the greater omentum which connects the hilus of the spleen with the greater curvature of the stomach. The greater omentum is relatively small in the horse, and is usually not visible when the abdomen is opened. It is generally folded up in the space between the visceral surface of the stomach and the intestine. ${ }^{1}$

The lesser sac furnishes the peritoneal covering for: (1) the visceral surface of the stomach and a small area of the first curve of the duodenum; (2) a large part of the dorsal surface of the pancreas and portal vein; (3) a small part of the visceral surface of the liver above the attachroent of the lesser omentum and the portal fissure; (\ddagger the posterior yena cava, from the level of the epiploic foramen to its passage through the diaphragm (in so far as it is not embedded); (5) the part of the parietal surface of the hiver between the right and middle divisions of the coronary ligament; (6) the corresponding part of the diaphragm, and the right part of the right erus of the same; (5) part of the anterior surface of the terminal part of the great colon, and the origin of the small colon; (s the left extremity of the pancreas (inconstant; ; (9) the spleen.

We may now trace the peritoneum in a longitudinal direction, beginning in front. It is reflected from the ventral abdominal wall and the diaphragm upon the liver, forming the ligaments and serous coat of the gland. It leaves the visceral surface of the liver as lesser omentum, and

Fig. 3-s-Dlagran of abdominal Peritonety in Frontal (or Horizontal) Tractng.
D, Duodenum; 1, falciform ligament; 2, lesser omentum; 3 , gastro-splenic omentum; \ddagger, greater omenturn; 5, carity of omentun; 6, mesoduodenum; 7. general peritoneal cavity. Arrow indicates epiploic foramen. By an oversight the pancreas, in front of the colon, is not marked. the crura of the diaphragm as the gastrophrenie ligament, reaches the saccus ceecus and lesser curvature of the stomach and the first curve of the duodenum, covers these organs, and is continued by the greater omentum.

On the left it passes from the left crus of the diaphragm and the left kidney to form the suspensory ligament of the spleen, clothes that organ, and leares it to be continued by the greater and gastro--plenic omenta.

On the right it passes from the right crus of the diaphragm and the dorsal border of the liver to the concave border of the dundenum. forming the gastropancreatic fold (second part of the mesoduodenum), and covering part of the dorsal surface of the pancreas. From the nargin of the pancreas. the right kidney, and a small area of the sublumbar region behind the latter, it passes on to the base of

[^100]the cacum and the terminal part of the great colon. From these it passes on the right to the thodenum, forming the third part of the mesodnodenum. On the left it covers part of the ventral sufface and the lateral border of the left kidney, from which it passes to the base of the spleen, forming the ventral layer of the suspensory ligament of the latter. Behind the terminal part of the great colon it is reflected from the abdominal wall around the great mesenteric artery to form the great mesentery. Behind this it is reflected almost transwersely from the roof of the eavity and from the origin of the small colon on to the duodenum, forming the terminal part of the mesorluodenum. The line of origin of the colic mesentery begins on the medial part of the ventral surface of the left kidney, and extends to the sacral promontory, where the mesorectum begins. It the termination of the latter the peritoneum is refleeted from the rectum on to the clorsal and laterat walls of the pelvic cavity. Below the rectum it forms the genital fold, and passes on to the dorsal surface of the hadder, covers its anterior part, and is reflected on to the body-wall laterally and ventrally, forming the lateral and midelle ligaments of the bladder. In the female the broad ligaments of the uterus replace the genital fold, with which they are homologous.

In the new-born foal certain folds are specially large. The falciform ligament of the liver extends to the umbilical opening, and contains in its free elge the large umbilical vein. The bladder-at this time an abdominal organ-has a ventral median fold (Plica umbilicalis media), which connects it and the urachus with the abdominal thoor. This is flanked on either side by a fokd (Pliea umbilicalis lateralis), which also extends to the umbilicus, and contains the large umbilical artery.

DIGESTIVE SYSTEM OF THE OX

THE MOUTH

The cavity of the mouth is shorter and wider than that of the horse, and the vestibule is more capacious (Figs. 381, 386).

The lips are thick, wide, and comparatively immobile. The middle part of the upper lip and the surface between the nos-

Fig. 379.-Lips and Mez7le of fix.
1, Muzzle: 2, nostril; 3, 1, wings of nostril; 5, 6, commissures of nostril; 7, 8, upper and lower lip. trils is bare, and is termed the muzzle (Planum nasolabiale). It is smooth, and (in health) is kept cool and moist by a clear fluid secreted by the naso-labial glands (Clandulee nasolahiales): they form a subeutaneous layer about half an inch (ca. 1.5 cm .) thick. It shows irregular lines, mapping out small polygonal areas on which the orifices of the gland duets are risible. There is also a narrow bare strip along the edge of the lower lip. The remainder of the integument is provided with ordinary and tactile hairs. The free edge and the adjacent part of the lining nembrane bear short, blunt. horny papillæ; toward the angles the papillæ become longer and sharp-pointed. The labial glands occur only near the angles, where they form compact masses (Fig. 385).

The cheeks are more capacious than in the horse. The mucous membrane presents
large pointed conical papillæ (Papillæ conicæ), which are directed toward the isthmus faucium and are covered with a horny epithelium. The largest of these have a length of about half an inch (ca. 1 to 1.5 cm .) and are situated around the angle of the mouth and parallel with the cheek teeth. The orifice of the parotid duct is opposite the fifth upper cheek tooth. The buccal glands (Fig. 385) are very well developed, and are arranged in three parts. The dorsal part extends from the angle of the mouth to the maxillary tuberosity"; its lobules are of a light yellow color. The ventral part consists of a compact brownish mass which reaches from the angle of the mouth a short distance under the masseter muscle. The middle part consists of loosely arranged yellow lobules. The small ducts of these glands open between the papillæ of the cheek.

A linear series of large papillæ exists on the floor of the mouth on each side of the frenum linguæ. Near these are found the openings of the small ducts of the sublingual gland. The caruncula sublingualis, the papilla on which the sub-maxillary duct opens, is wide, hard, and has a serrated edge (Fig. 38.3).

The hard palate is wide, and is usually more or less pigmented. The body of the premaxilla is covered with a thick layer of dense connective tissue, which has a thick, horny epithelial cov-ering-forming the so-called dental plate or pad. The palatine ridges extend from this backward about two-thirds of the length of the hard palate; they number 15 to 19 . They are nearly straight, and, with the

Fig. 3s0- Hard Palate of Ox.
1, Dental pad or plate; 2, placed on papilla incisiva with lines to orifices of ductus incisivi; 3 , ridge of palate; 4 , raphé oi palate; 5 , smooth part of palate showing orifices of palatine glands; 6 . upper lip; $\overline{7}$, conical papillæ of cheek. exception of a few at the posterior end of the series, are serrated on the free edge. A median raphé extends between the ridges. The posterior third of the palate is smooth. Between the dental plate and the first ridge is the triangular papilla incisiva; on either side of this is a deep furrow, in which is the oral opening of the ductus incisivus. ${ }^{1}$ The duct is two inches or more (ca. 5 to 6 cm .) in length and opens on the floor of the nasal cavity; it also communicates by a slit-like opening with the vomeronasal organ.
${ }^{1}$ This is also known as the naso-palatine canal.

The soft palate is somewhat shorter than that of the horse, but is long enough to dose the isthmus faucium. The posterior pillars do not extend to the origin of the cesophagus. The palatinus musele is much better developed than in the horse. The fibrous aponeurosis is for the most part replaced by muscular tissue.

Fig. 3s1.-Cross-sect tov of, Heind of (Ix.
The section passes through the medial canthi. L. a., langual arteries. The arrow indicates the communication between the maxillary and palatue simuses.

The isthmus faucium is wide and dilatalle. On either side, behind the anterior pillar of the soft palate, there is a deep depression, the tonsillar sinus simus tonsillaris) ; lateral to this is the compact, bean-shaped tonsil, whieli is about one to one and a haalf inches (ca. 3 to 4 cm .) in length. The tonsil does not project into the isthmus faucium, but outward instead: hence it does not oceupy the tonsillar sinus, and is not visible internally, as is the case most mimals.

THE TONGUE

The tongue of the ox is often variably pigmented. The root and body are wider than that of the horse, but the free part is more pointed. The posterior part of the dorsum forms a remarkable elliptical prominence, which is sharply defined in front by a transverse depression. In front of this promimence there are large and horny conical papillæ (Papillæ conic:e), with sharp points directed backward;

Fig. 382.-Tongee and Fauces of On; Dorsal Vieht.
The plarynx and soft palate are cut dorsally and reflected. a, Vallate papillæ; b, prominence of dorsum with broad, flattened papillæ; c, fungiform papilı; d, conical papillæ of tip; I, glosso-epiglottic space; 2 , tonsillar sinus; 3 , cut surface of soft palate; 4 , pharynx; 5, posterior pillar of soft palate; 6, epiglottis; 7, aditus laryngis.
they impart to the tongue its rasp-like roughness. The papillæ on the prominence are large, broad, and horny; some have a blunt, conical form, others are rounded or flattened and are termed lenticular papillæ (Papillie lenticulares). Behind the prominence, the papille are long and soft, i. e., not horny. The fungiform papillæ are numerous and distinet; they are seattered over the dorsum and edges of the free part. The vallate papille number 8 to 17 on each side; they are smaller than those of the horse, and form a long, narrow group on either side of the posterior part of the prominence of the dorsum. The foliate papille and the lingual fibrous cord are absent. There are lingual follicles in the posterior part of the root and on
each side of the glosso-epiglottic fold. The muscles are well developed, and resemble in general those of the horse; the hyo-glosens arises by additional portions from the great and middle cornua of the hyoid bone. The tongue is highly protractile and is the chief organ of prehesion.

THE TEETH ${ }^{\text {t }}$

The formula of the permanent teeth of the ox is:

$$
2\left(\begin{array}{cccc}
0 & 0 & 3 & 3 \\
\mathrm{I}-\mathrm{C} & -\mathrm{P}-\mathrm{M} & \frac{3}{4} & 0
\end{array}\right)=32
$$

The incisors are absent from the upper jaw. There are eight incisors in the lower jaw, arranged in a somewhat fan-like manner. They are simple teeth, without infundibulum. The crown is white, short, and shovel-shaped. The root is rommed, and is embeded in the jaw in such a manner as to allow a small amomet of movement. There is a distinet neck. In addition to the simple numerical designation, the following terms are commonly applied to the individual teeth:

Fig. 383.-Incisor Teeth of Ox; Lingual Aspect. C. s., Caruncula sublingualis.
central, first intermetiate, second intermediate, and corner incisors. It is probable that the latter are much modified canines. The incisors of the adult ox do not undergo continued cruption, as is the ease in the horse; in old age, however, the gum retracts so that the roots are partly exposed and may come into wear. ${ }^{2}$ The deciduous incisors differ from the permanent set chiefly in being much smaller. The crowns are narrower and diverge more.

The canines are absent (unless the fourth incisors be considered to represent them in the lower jaw). ${ }^{3}$

The cheek teeth (Figs. 134, 384) resemble those of the horse in number and general arrangement. They are, however, smaller, and also differ in the fact that they progressively increase in size from before backward. This feature is so marked that the first tooth is quite small, and the space oecupied by the first three (i. e., the premolars) is only about one-half of that required for the posterior three (i.e., the molars). The enamel folds stand ont even more prominently in relief on the mastieatory surface than in the horse. The oceurrence of wolf-teeth is rare.
${ }^{1}$ Other figures which show the teeth are to be found in the description of the skull.
2 The reader will note here the difference between the structure and behavior of the bracnydont (short-crowned) incisors of the ox and the hypsodont (long-crowned) type of the horse.
${ }^{3}$ According to A . Hoffman, the anlagen of the upper canines are present in the foetus. but soon disappear.

The formula of the deciduons teeth is:

$$
2\left(\begin{array}{ccc}
0 & 0 & 3 \\
\mathrm{Di}-\mathrm{D} \cdot-\mathrm{DP} & - \\
4 & 0 & 3
\end{array}\right)=20
$$

Table of average perions of erlption of the teeth in the of Teeth

Ereption

1. Tompenary:

First incisor (I)i 1)
Seront incisor Di ${ }^{\text {G }}$
Third incisor (Di3).
Fourth incisor (Di t)
First cheek tooth (1)p 1
seeond cheek tooth DP:-
Third cheok tonth I_{p} ?
B. Permanent:

J'irst incisor (11) 11_{2} to 2 years.
Scront incisor I2
Third insisor (1 3)
Fourth incisor (I 4
Jirst eheek tooth P 1
Fiecond ehrek tooth P P 2
Thirel cheok tooth (P 3)
Fourth eherek tooth IX 1
Fifth cherk torth M ?
Sixth rheek troth (MI 3)

Wirth to 3 wreks.
Birth to 3 weeks.
birth to few days.
$\because \mathrm{t}$ () $2^{1}{ }^{2}$ years.
3 years.
$33^{1}{ }_{2}$ to 4 years.
2 10. 212 years.
112 to 212 years.
21.2 to 3 years.
i) 106 months.
1101_{2} years.
$2102^{1} 2$ yaurs.

The eruption of the permanent treth is subject to great variation. The above figures are the average of observations of improved breeds under favorable conditions.

Fig. 3s5.- Salivary Glands of Ox.
a, Parotid gland; b, mandibular gland; c, ventral, d, muldle, and c, dorsal buccal glands; f, labial glands; g, bucenator nerve: h, buecmator vein; 1, maxseter (cut); 2, ramus of mandible; 3, zygomaticus musele; \& conical papille of lip; 5, buccinator muscle. (After Ellenberger, in Leisering's Atlas.)

THE SALIVARY GLANDS

The parotid gland is smaller and denser in texture than that of the horse, and is light red-brown in color; its average weight is about four ounces (ca. 115 g .). It has somewhat the form of a very narrow long triangle, and lies chiefly on the posterior part of the masseter muscle. The dorsal part is wide and thick; its anterior border partly covers a large parotid lymph gland. The small ventral end is bent forward and fits into the angle of union of the jugular and external maxillary veins; it lies on the mandibular gland. The parotid duct leaves the ventral part of the deep face; in its course it rescmbles that of the horsc, but it pierces the cheek opposite the fifth upper cheek tooth.

The mandibular gland is larger than the parotid, and is pale yellow in color; its average weight is about five ounces (ca. 140 g .). It is covered to a small extent by the parotid. Its general form resembles that of the horse, but its ventral end is large and rounded, and is separated by a small interval only from the gland of the other side (Fig. 302). This part can be distinctly felt in the living animal, and is related laterally to a large lymph gland. The duct leaves the middle of the concave border of the gland, crosses the stylohyoideus and the intermediate tendon of the digastricus, and is then disposed as in the horse.

The sublingual gland consists of two parts. The dorsal part (Glandula sublingualis parvicanalaris) is long, thin, and pale yellow in color. It extends from the anterior pillar of the soft palate about to the symphysis of the mandible. It has numerous small tortuous ducts (Ductus sublinguales minores), which open between the papillie under the side of the tongue. The ventral part (Clandula sublingualis grandicanalaris) is shorter and thicker, and lies ventral to the anterior portion of the dorsal part; it is salmon pink in color. It has a single duct (Ductus sublingualis major), which either opens alongside of or joins the mandibular duct.

THE PHARYNX (Figs. 386, 476, 478)

The pharynx is short and wide. The vault (Fornix pharyngis) is divided into two culs-de-sac by a median fold of mucous membrane (septum nasi membranaceum), which is a continuation of that of the septum nasi; on the lateral wall of each is the relatively sinall opening of the Eustachian tube, which is covered by a simple fold of mucous membrane. The posterior nares are small. The entrance to the cesophagus is large.

On the dorsal wall of the pharynx there are two large suprapharyngeal lymph glands, which, when enlarged, cause difficulty in swallowing and breathing (Fig. $3 \checkmark 6$).

THE EESOPHAGUS

This is much shorter, wider, and more dilatable than that of the horse. Its average diameter (when moderately inflated) is about two inches (ca. 5 cm .), and its length in an animal of medium size is about three to three and a half feet (ca. 90 to 105 cm .). The wall is relatively thin, and the muscular tissue is striped throughout. The latter consists, in the greater part of the tube, of two strata of spiral fibers, except near the stomach, where they are longitudinal and circular. Fibers are eontinued into the wall of the stomach for some distance. The mucous membrane forms a prominence at the ventral side of the pharyngeal end of the tube which contains glands; elsewhere it is non-glandular. There is no terminal dilatation, and no part in the abdominal cavity.

A very large mediastinal lymph gland lies above the posterior part of the œsophagus and mav, if enlarged, obstruct it (Fig. 359).

THE ABDOMINAL CAVITY

The abdominal cavity of the ox is very capacious, both absolutely and relatively, as compared with that of the horse. This is due to several factors. The lumbar part of the spine is about one-fourth longer than that of the horse. The transwerse diameter between the last ribs is greater. The costal attaehment of the diaphragm is almost vertical in direction from the ventral part of the ninth rib to

Fig. 3sb,-Sagittal section of IIead of Cow, Cut a Little to the Right of the Medlav Plane.
7. Cerebral hemisphere; 2, corpus striatum; 3 , hippocampus; 4 , offactory bulb; 3 , corpora quadragemiat optie nerve; \tilde{f}, pons; s, medulla oblongata; 4 , spinal eord; 10 , pirutary boiy; 11 , sphenoulal subus; 12, lateral mass of ethnoid: 13 , ventral straught musrles; 14. suprapharyngeal lyinph gland; 15. longus colli; 16; soft palate; 17 , vallate papillæ; 18, tonsillar sinus; 19, conical papillit of check; 20, hyo-ppelotticus muscle; 21, epiglottis; 22, hyoglossus muscle; C1, ('2, atlas, axis, subject was hardened with mouth open.
the dorsal end of the thirteenth. Thus the abdomen is inereased at the expense of the thorax, and the last three or four ribs enter more largely into the formation of the abdominal wall than in the horse. The flank is also much more extensive. The ilia, on the other hand, do not extend forward beyond a transwerse plane through the middle of the last lumbar vertebra. The epigastric and mesogastric regions would be separated by a plane through the ventral end of the tenth pair of
ribs, or through the last thoracic vertebra. The chief differential features in the arrangement of the peritoneum will be described with the viscera. The sul)peritoneal tisue is more abundant than in the horse, and in general contains a much larger amount of fat.

THE PELVIC CAVITY

The pelvic cavity is relatively long and narrow. The inlet is more oblique than that of the horse; it is elliptical in outline, and the transverse diameter is smaller than that of the horse. The pubic part of the floor is about horizontal, but the ischiatic part slopes dorsally to a marked degree; this part is also deeply concave transversely. The roof is concare in both directions. The peritoneum extends backward as far as the first coccygeal vertebra, so that the retroperitoneal part of the cavity is short.

THE STOMACH

General Arrangement.-The stomach of the ox is very large, and occupies nearly threc-fourths of the aldominal cavity. It fills the left half of the cavity (with the exception of the small space occupied by the spleen) and extends considerably over the median plane into the right half.

It is compound, and consists of four divisions, viz., rumen, reticulum, omasum, and abomasum. ${ }^{1}$ The division is clearly indicated externally by furroms or constrictions. The first three divisions are often regarded as proventriculi or cesophageal sacculations, the fourth being the stomach proper (in the narrower sense of the term). The asophagus opens into the stomach on a sort of dome, the atrium ventriculi, and is continued through the reticulum by the asophageal groove. From the ventral end of the latter a groove traverses the ventral wall of the omasum, thus giving a direct path from the reticulum to the abomasum for fincly divided food or fluid. The abomasum joins the small intestine.

Capacity.-The capacity of the stomach varies greatly, depending on the age and size of the animal. In cattle of medium size it holds 30 to 40 gallons, in large animals 40 to 60 , in small, 25 to 35 . The relative sizes of the four parts vary with age, in correlation with the nature of the food. In the new-born calf the rumen and reticulum together are about half as large as the abomasum; in ten or twelve weeks this ratio is reversed. During this period the omasum appears to be contracted and functionless. At four months the rumen and reticulum together are about four times as large as the omasum and abomasum together. At about one and onehalf years the omasum equals or approaches closely the abomasum in capacity. The four divisions have now reached their definitive relative capacities, the rumen constituting about 80 per cent., the reticulum 5 per cent., the omasum 7 or $\$$ per cent., and the abomasum 8 or 7 per cent. of the total amount.

Exterior and Relations

The rumen occupies ahmost all of the left half of the abdominal cavity, and extends considerably over the metian plane ventrally and in its middle. It is somewhat compressed from side to side and may be described as haring two surfaces, two curvatures or borders, and two extremities. The parietal (or left) surface (Facies parietalis) is convex and is related to the diaphragm, left wall of the abdomen, and spleen. It extends from the ventral part of the seventh intercostal space almost to the pelvis. The visceral (or right) surface (Facies visceralis) is somewhat irregular, and is related chiefly to the omasum and abomasum, the
${ }^{1}$ In popular language these are regarded as so many stomachs, and are often designated numerically. Other names are in common use, e. g., paunch, honeycomb, manifold or manyplies, and rennet or true stomach.
intestine, the liver, pancreas, kidness, the uterus in the female, and the posterior aorta and vena cava. The dorsal curvature (Curvatura (lorsatis) is eonvex. following the curse formed hy the diaphragm and sublumbar muscles. It is firmly attached to the left portion of the erura of the diaphragm and the sublumbar muscles by peritoneum and comective tissue. The ventral curvature (Curvatura rentralis) is also convex and lies on the floor of the abdomen. The surfaces are marked by the right and left longitudinal grooves (Suleus longitudinalis dexter, sinister), which imdicate externally the division of the rumen into dorsal and ventral sacs. ${ }^{1}$ The reticular (or anterior) extremity (Extremitas reticularis) is divided ventrally hy a transerse anterior groove (Sulcus ruminis cranialis) into two sacs. The dorsal sac is the longer of the two, and curves ventrally over the round, blind

Fig. 387.-Stomach and Spleen of Ox; Left View.

1. ह. it longitudinal groove of rumen: 2, rummeseretcular groove not so dintmet dorsally as shown here), 3, anterior gronsu of rumen; 4, posterior greove of rumen; 5,6, coronary grooves; 7,8 , anterior, 9,10 , posterior, blind saes of runuen.
end of the ventral sac. The former is contimous with the reticulum, the external line of demarcation being the rumino-reticular groove (sulcus rumino-reticularis). The groove is deep ventrally and is distinct on part of the lateral surface, but dorsally no natural separation exists, the rumen and retioulum together forming a domelike restilule (Atrium wentriculi) on whiels the arophagus terminates. The pelvic (or posterior) extremity (Extremitas pelvina), extends nearly to the pubis; it is related to the intestine and hadder, and to the uterus in the cow. It is divided into dorsal ant ventral blind sacs (suceus cecous eaudalis dorsalis, ventralis) by a keep transwerse posterior groove (Sulcus ruminis caudalis), which connects the longitutinal grooves. The bint sacs are marked off from the remainder of the

[^101]rumen by the dorsal and ventral coronary grooves (Sulcus coronarius dorsalis, rentralis).

The left longitudinal groove (Sulcus longitudinalis sinister) begins at the anterior transverse groove, passes somewhat dorsally and backward and divides into two grooves. The ventral one is the chief groove, and passes backward to terminate in the angle of union of the posterior blind sacs. The dorsal (accessory) groove curves dorsally and then backward to terminate in the dorsal coronary sulcus. On the right surface there are two longitudinal grooves. The dorsal onc is the chicf suleus (Sulcus longitudinalis dexter). It extends in a curved direction (the conyesity being dorsal), and is continuous with the left longitudinal groove by means of the grooves between the dorsal and ventral blind saes at each end. The ventral groove (suleus accessorius) curves somerhat ventrally and backward and joins the chief suleus between the posterior blind sics.

The reticulum is the most anterior and the smallest of the four divisions; it is opposite to the ribs from the sixth to the seventh or eighth. It lies against the

Fig. 395.-Stomach of Ox; Right View.
Ors.. Esophagus; 1, right longitudinal groove of rumen; 2, posterior groove of rumen; 3, 4, coronary grooves; 5, 6, posterior blind sacs of rumen; 7, pylorus.
diaphragm and liver in such a position that the median plane divides it into two nearly equal portions. It is somewhat piriform, but compressed from before backward. The parietal or diaphragmatic surface (Facies diaphragmatica) faces forward; it is convex and lies against the diaphragm and liver. ${ }^{1}$ The visceral or ruminal surface (Facies ruminalis) faces backward; it is flattened by the pressure of the other three compartments; it ends dorsally by joining the wall of the rumen, the concare line of junction corresponding to a ridge in the interior of the stomach which forms the lower margin of the large rumino-reticular orifice. The lesser curvature faces to the right and dorsally, and is connected with the
${ }^{1}$ It is important to notice that the reticulum is separated from the pericardium by an interval of only an inch or less (ca. 2 cm .), since foreign bodies which are often swallowed by cattle lodge in the reticulum, and not rarely (if sharp) perforate the reticulum and diaphragm. When the reticulum is full, its visceral surface is opposite to the cighth rib.
omasum. The greater curvature faces to the left and ventrally; it lies against the diaphragm, opposite the sixth and seventh ribs. The ventral extremity forms a rounded cul-de-sac, which is in contact with the sternal part of the diaphragm, the liver, omasum, and abomasum: it may be termed the fundus reticuli.

The omasum is ellipsoidal in form and somewhat compressed laterally. It is very clearly marked off from the other divisions. It is situated almost entirely. to the right of the median plane, opposite the seventh to the eleventh ribs. The parietal (right) surface (Facies dexter) lies against the diaphagm, liver, and lateral wall of the abdomen. The contact with the latter extends over a small area only (ventral part of eighth, ninth, and tenth ribs usually). The visceral (left) surface (Facies sinistra) is in contact with the rumen and reticulum. The greater curvature is directed dorsally and somewhat hackward; it is conves, and is related to the diaphragm, liver, and intestine. The ventral (lesser) curvature is concave, and faces ventrally and somewhat forward; it is in contact with the abomasum chiefly, the junction with the latter appearing as a constriction near the middle of the curvature; at its anterior part there is a neck (Collum omasi) which is the connection with the reticulum. ${ }^{1}$

The abomasum is an elongated, piriform sac, which lies for the most part on the abdominal floor, to the right of the retieutum and the ventral sac of the rumen. Its narrow posterior part is strongly curved, the concavity being dorsal. The parietal (right) surface lies against the abdominal wall from a point opposite to the seventh or eighth rib as far back as the elerenth or twelfth costal cartilage. The visceral (left) surface is related chiefly to the ventral sae of the rumen. The lesser curvature is dorsal, amd is in contact with the omasum; the junction of the two saes is indicated by a constriction about four or fise inches (ea. 10 to 12 cm .) from the anterior extremity of the abomasum. The greater curvature is ventral, and rests on the abominal wall from the xiphoid cartilage to the ventral part of the last (right) intercostal space; its direction is approximately paralled to the right costal arch. ${ }^{2}$ The fundus or anterior extremity forms a rounded blind sac which lies against the reticulum. The pyloric or posterior extremity is much smaller and bends upward and forward to join the duodenum. The intermediate part is sometimes termed the body. About six to cight inches (ca. 15 to 20 cm .) from the pylorus there is a constriction which marks off the pyloric part from the body and fundus.

The rumen is attached by peritoneum and connective tissue to the crura of the diaphragm and left proas muscles, from the hiatus cesophagus backward to the fourth or fifth lumbar vertenna.

A small area of the anterior part of the right face of the rumen is adherent to the adjacent surface of the ahomasum. The greater part of the ventral curvature of the omasum is attached by conneetive tissue to the dorsal face of the abomasum. ${ }^{3}$

The lesser omentum attaches the right face of the omasum and the proric part of the abomasum to the viseeral surface of the liver.

INTERIOR

The cavity of the rumen is partially divided into dorsal and ventral sacs by the pillars (Pilse ruminis) ; these are folds of the wall, strengthened by additional muscular fibers, and correspond with the grooves on the outside. The two ex-

[^102]tensive ehief pillars project like shelves into the anterior and posterior ends of the cavity, forming the blind sacs at either extremity. The anterior pillar (Pila cranialis) projects obliquely backward and upward from the ventral wall, and has a thick, concave free edge which is opposite to the tenth and eleventh rils. Its width from the middle of the free edge to its attached border is about eight to ten inches (ea. 20 to 25 cm .). It is continued on either side by the relatively narrow longitudinal pillars (Pila dexter, sinister), which eonnect it with the posterior pillar. The posterior pillar (Pila eaudalis) is more nearly horizontal than the anterior one, and separates the large dorsal and ventral posterior blind saes. Its coneave free horder is about a hand's breadth in front of a transverse plane through the tuber coxa. From it are detached three accessory pillars on either side; of these, two pass around the blind sacs to meet the corresponding pillars of the opposite side. They thus

Fig. 389.-Thoracic and Anterior Abdominal Viscera of Ox; Deep Dissection.
Most of the rumen has been removed and the left wall of the reticulum cut away. A., Left pulmonary artery; B., left bronchus; I. I. I., puhmonary veins; b.b., bronchial lymph glands; L. g., posterior mediastinal lymph gland; D., termination of duodemum; F, rumino-reticular fold.
mark off the posterior blind sacs from the general cavity, and are termed the coronary pillars (Pila coronaria dorsalis, ventralis). It will be noticed that the ventral coronary pillar is complete, while the dorsal one is not. The other accessory pillars join the right and left longitudinal pillars. The right longitudinal pillar is in part double; its ventral division fades out about the middle of the surface, while the dorsal one joins the posterior pillar. The distance between the middles of the anterior and posterior pillars is only about sixteen to eighteen inches (ea. 40 to to cm .) in a cow of medium size. In this space the dorsal and ventral sacs communicate freely:

The anterior end of the dorsal sac of the rumen is separated ventrally from the reticulum by an almost vertical fold formed by the apposition of the walls of the two compartments. This rumino-reticular fold (Pila rumino-retieularis) is opposite to the seventh or eighth rib. ${ }^{1}$ Its free dorsal edge is coneave and forms the

[^103]rentral and lateral margin of the large, oval rumino-reticular orifice (Ostium rumino-reticulare). The medial margin of the fold, if continued, would end about at the cardia, but there is in this region no demareation between rumen and reticulum; henee it is termed the atrium ventriculi.

The lateral border of the rumino-reticular fold ends ahove the level of and behind the plane of the cardia, the medial one just hehind the arsophageal groove and about four to five inches lower down. Undoubtedly food or water swallowed with even a small degree of force passes first into the rumen. Forcign bodies (which are commonly swallowed by eattle) are, however, found in the reticulum.

The cardia is opposite the seventh intereostal space or eighth rib, a little to the feft of the median pline, and about a handbreadth (ea. $10-12 \mathrm{~cm}$.) ventral to the vertelral column; it is not fumnel-shapet.

The mucons membrane of the rumen is brown in color, exeept on the margins

Fig. 390--Retictlem of Ax, from Photograph.
The specimen was cut along the greater curvature and laid open by reflectiug the auterior wall. C is the cardia. The arrow ponts to the retreulo-omasal orifice. The spiral twist of the oesophageal groove was of necessity partly undone by reflecung the wall; its lips are drawn apart, showing some of the peculiar birdelaw-like papille in the ventral part.
of the pillars, where it is pale. It is for the most part thickly studded with large papillie, many of which are nearly half an inch (ca. 1 cm .) long. The edges of the chief pillars and a large part of the watl of the middle of the dorsal sac are, hewever, not papillated. The papillary arrangement is most developed in the blind sacs. The papille vary much in size and form; the largest are foliate, many are narrow or filiform, and others are conical or chub-shaped. The mucous membrane on the medial wall of the atrium is finely wrinkled and non-papillated, while chorsally and laterally it is papillated. The papillary arrangement also extends over the eflge of the rumino-retieular fold an ineh or two (ea. 2 to 5 cm .).

The œesophageal groove (sulcus (esophagus) begins at the eardia and patises
rentrally on the right wall of the atrium and reticulum to end at the reticuloonasal orifice. ${ }^{1}$ It is about seren or eight inches (ca. 18-20 cm.) in length. Its axial direction is chiefly dorso-ventral, but it inelines forward to a variable extent and somewhat medially in it ventral part; the ventral end, which is at the reticuloomasal orifice, is about an inch (ca. 2.5 cm .) in front of the plane of the cardia and to the right of the median plane. The groove is twisted in a spiral fashion, so that its thickened edges or lips projeet first backward, then to the left, and finally forward. The twist involves chiefly the left lip, and the relative position of the lips is resersed at the rentral end. The mucous membrane on the lips of the asophageal groove is brown and wrinkled, like that of the atrium; in the bottom of the

Fig. 391.-Omastay of Ox, Sagrttar Section; Right View.

1. 2, 3, 4, Lamine of various orders: 5, muscular pillar; 6, neck connecting with reticulum; 7, connection with abomasum.
groove it is pale, like that of the csophagus, marked by longitudinal folds, and presents pointed, horny papillie on its ventral part.

In the reticulum the mucous membrane is raised into folds about half an ineh high, which cnclose four-, five-, or six-sided spaces or cells (Cellulæ retieuli); this peculiar arrangement suggested the scientific name and also the popular term "honey-comb." These cells are subdivided by smaller folds, and the bottoms are studded with pointed. horny papille. The cells grow smaller and gradually disappear near the oesophageal groove and the edge of the rumino-reticular fold; an inch or two from the latter the mucous membrane has the papillary arrangement of the rumen. At the reticulo-omasal orifice there are peculiar horny papillie, which are curved and resemble the claws of a small bird; hence they are termed unguliform (Papille unguliformes). The reticulo-omasal orifice (Ostium reticulo-
${ }^{1}$ It might better be termed the sulcus reticuli.
omasicum) is situated in the medial wall of the retieulum, about five or six inches above the bottom of the latter. It is rounded, and is limited below and laterally hy the junction of the lips of the esophageal groove.

The eavity of the omasum is oceupied to a considerable extent by about a hundred longitudinal folds, the laminæ omasi, which spring from the dorsal watl and the sides. The largest of thesi-a dozen or more in number-have a convex attached edge, and a ventral, concave free edge, which rewhes to within a short distance of the rentral wall of the sac. If these are drawn apart or a erosssection is made (Fig. 392), it will he seen that there is a seeond order of shorter lamine, and a third and fourth still shorter; finally there is a series of very low folds or lines. The foorl is pressed into thin layers in the narow spares between the lamine (Recessus interlaminares), and redured to al fine state of division by being ground down ley the numerons rounded, homy papilte whieh stud the surfaces of the folls. The ventral wall of the omam forms a groove, the sulcus omasi, whieh connects the reticulo-

Fig. 392.-CRost-section Of Omanem of fix.
1-5, Lamina of various orders: if, necis eonnecting with reticulum omasal opening with the omaso-abomasal opening; it is about three inehes (ca. 7-s ('m.) long, and is directed lackward and downward. It is free from laminee, but presents usually slight folds and small papille; it may function as a direet path from the retieulum to the abomasum for fluid and finely divided ford. In the neck of the omasum there are thick folds, and a number of the peculiar papillse already mentioned as oceurring in the lower part of the exophageal groore. The omaso-abomasal orifice (0)stium omasu-abomasicmm) is oval, and is about four inches (cat. 10 cm .) long. It is loounded in front by a thick muscular pillar, the fibers of which spread out alowe in the sides of the omasum. The mucous membrane forms an extensiwe fold on eath side of the opening; these folds may act as valves (Valvulat terminales), which probably prevent regurgitation of the contents of the abomasum.

The catvity of the ahomasum is slivided lyy a constriction into two areas. The first of these (fundus gland region) is lined with a soft glandular mucous membrane, which forms a dozen or more extensive spiral folds (Plicae spirales). The seeond part (pyloric region) is much marrower and resembles in appearance the corresponting region of the horse's stomach. A small cardiae gland zone surrounds the omaso-alomasal orifice. The pylorie oriliee is small and round.

Structure. - The serous coat invests all of the free surface of the stomach. The surface of the rumen whieh is attached to the dorsal abdominal wall is, of course, uneovered, as well as the adjaeent area to whieh the spleen is attached. The furrows are bridged over ly the peritonem and superficial musele-fibers, and contain fat and (in most cases) branches of the gastric arteries.

The lesser omentum passes from the visceral surface of the liver to the right
(parictal) face of the omasum and the pyoric part of the abomasum and the first part of the duodenum. What might be regarded as a comection between the omenta is a fold between the ventral curvature of the omasum and the dorsal curvature of the abomasum.

The greater omentum conceals the greater part of the intestine on the right side, with the exception of the duodenum, and covers the rentral sac of the rumen almost entirely: It is not lace-like, as in the horse, and contains a large amount of fat in animals in good condition. It may be described as consisting of two parts, each of which is composed of two layers of peritoneum; the two serous layers enclose a rariable amount of fat. The superficial part extends from the left groove of the rumeu ventrally around the ventral sac and ascends on the right side, covering the deep part. It ends along the retrograde part of the duodenum and the greater curvature of the abomasum. The deep part is attached along the risceral right) surface of the rumen ventral to the right groove, and curves around the intestinal mass to the right side, where it is covered by the superficial part. It

Fig. 393.-Interior oe Abomastm of Ox.
F, Fundus gland recion with large spiral folds; P. pyloric region; D. duodeaum; 1, pylorus; 2, torus pyloricus.
ends chiefly by blending with the medial layer of the mesoduodenum, but anteriorly is attached on the first bend of the colon and the risceral surface of the liver along the rentral border of the pancreas. The tro parts are continuous at the posterior groove of the rumeu. They also join at the iliac flexure of the duodenum and at the origin of the colon. The epiploic foramen is almost sagittal in direction.

The muscular coat of the rumen consists of two layers. The fibers of the external layer are in general longitudinal; those of the thicker internal layer are largely circular in direction. The latter forms the bulk of the chief pillars, where it is about one-half to one inch (ca. 1 to 2 cm .) thick. Scattered bundles of striped muscle-fibers radiate from the cardia in the wall of the atrium and extend also along the oesophageal groove.

[^104]much thicker and its fibers have the same direction as the pillars. Thus the museular tissue of the pillars is sem on cross-section to consist of two thick layers of longitudinal fibers, whith are separated (exeept at the free margin of the pillar) by a thin axial layer of fibers disposed at right angles to the preceding.

The muscular coat of the reticulum consists of two chief layers which begin and end at the cesophageal groove; they pass in a circular or oblique fashion around the sat, the fibers of the two layers crossing each other at varying angles. The walls of the cells contain at central muscular layer. The lips of the osophageal groove consist chiefly of a thick layer of longitudinal fibers, which are largely contimons at, or cross cach other helow, the reticulo-omasal orifice. The bottom of

Fig. 394.-Mractéature of Gliophageme Groove and Idjacent Part of stomsch of ()X, seen from wethin after Removal of Mucous Membrane.
a, Gisophagus; b, inner muscular laver oi atrium; n, reticulo-omasal orifice; $\epsilon, \epsilon^{\prime}$, muscle of lips of groove; g, lower end of musele of larger lip, which curves around the reticuloomasal onfice in part and spresuds out in the inner muscular layer of the retieulum in part: h, lower end of musele of smaller lip, which in part curves around the reticulo-omasal orifice and is in part contimuous with the inner muscular layer of the omasal groove and the omasum; i, inner museular laver of reticulum. (1:llenbergerBaum, Inat. d. Haustiere.)
 AFter pewnus of the groowe has two layers of oblique, unstriped musele-fibers, with a variable outer layru of striped muscle continuous with that of the oxophagus.

The external muscular hayer of the osophagus is in part continued down along the asophageal groove (i. e^{\prime}, atong the lesser "urvature of the reticuhme), but in greater part spreats out on the wall of the rumen and retieulmo. The internal innsenbar laver of the ersophagus forms a loop over the cardia and is largely fontinued in the lips of the cesophageal groove; part of it is continuous with the muscular layer of the bottom of the groove.

The muscular coat of the omasum consists of a thin extermal longitulinal layer and a thick internal cireular layer. At the omasal groove there is an incomplete imer layer of oblique fibers. The larger lamine contain three muscular strata. The fibers of the eentral layer extend from the attached cdge toward the free edge, but do not reach the latter;

here there is a marginal band of longitudinal fibers. The central layer is continnous with the imer circular layer of the wall. On either side there is a layer of longitudina! fibers, which are continuous at the attached border with the muscularis mucose.

The muscular coat of the abomasum consists of longitudinal and circular layers; the latter forms a well-developed pylorie sphincter.

The mucous membrane of the first three divisions is destitute of glands, and is covered with a thick, stratified, squamous epithelium; the superficial part of
the latter is horny, and is shed in large patehes in the rumen and omasum. The tuniea propria is papillated. The mueous membrane of the abomasum is glandular, and corresponds to that of the right sac of the stomach of the horse. The fundus glands (which are relatively short) occur in that part which presents the large folds, while the long pyloric glands are found in the remainder, exeept about the omasoabomasal orifice, where cardiac glands oceur. The mucosa of the fundus gland region is very thin as compared with that of the horse; toward the pylorus there is an inerease in thickness. There is a round prominence (Torus pytoricus) on the upper part of the pyloric valve.

Vessels and Nerves.-The blood supply is derived from the coliac artery, and the veins go to the portal vein. The nerves come from the vagus and sympathetic. Numerous ganglia are present in the submucous and intermuscular tissue, especially in the reticulum and asophageal groove.

THE INTESTINE

The intestine of the ox is about twenty times the length of the body. It lies almost entirely to the right of the median plane, ehiefly in contact with the right face of the rumen. It is attached to the sublumbar region by a common mesentery.

The small intestine has an average length of about 130 feet (ca. 40 m .) and a diameter of about two inehes (ca. .) to 6 em .). The duodenum is abont three or four feet (ca. 1 m .) in length. Begiming at the pylorus (usually at the ventral end of the eleventh rib or intereostal space), it passes dorsally and forward to the visceral surface of the liver; here it forms, ventral to the right kidney, an S-shaped curve (Ansa sigmoidea). Thence it runs backward almost to the tuber coxx, where it turns on itself, passes forward alongside of the terminal part of the colon, and joins the mesenteric part (jejunum) under the right kidney. It is attached to the liver by the lesser omentum; the remainder of the mesoduodenum is a narrow fold which is largely derived from the right layer of the common mesentery, but at the iliac flexure it comes

Fig. 396.-I.ARGE AND SuAlf JGGREGiAtED Follicles or Peter's Patches or Sxall intemtine of Ox (about $1 / \sqrt{3}$ zatural size). directly from the sublumbar region. The bile duct opens in the ventral part of the S-shaped eurve. The pancreatic duct opens about a foot (ca. 30 cm .) further back.

The remainder of the small intestine is arranged in numerons very close coils, which form a sort of festoon at the edge of the mesentery. It lies chiefly in the space bounded medially by the right face of the ventral sac of the rumen, laterally and ventrally by the abdominal wall, dorsally by the large intestine, and anteriorly by the omasum and abomasum. It is not suljeet to much variation in position, but a few coils may find their way behind the blind saes of the rumen to the left side. The terminal part leaves the edge of the mesentery and runs forward be-
tween the ceeum and colon, to both of which it is artherent. The orifices of the pancreatie duct and the bile duct are on papille or thick folds, no diverticulum being present. There are permanent transerse folds of the mueous membrane (Plice circulares). Duorlenal glands oecur in the first twelve to fifteen fect (4 to 4.5

Fig. 397, Projection of Viseert of Bult on Body-wall; Rizht Sine.
P.. I’slorus; G.b., pall-bladder; R. Ki, right kibney; L.K., left kidnes; P. (above duodemum), pancreas; Bl., armary bladder: T.*. vesioula seminalis; B. 2. . bulbo-urethral (Cowper's) pland. Costal attachmont and median in* of diaphragm ar* indicated by dotted lines.

Figi, 3!八.-Prosection of Viscera of Cow on Rodr-wall, Leit kide:
Oes, (Esophagus Ret., reticulum; b. s., anterior blidd sac; b. $s^{\prime \prime}$, posterior blind sacs of rumen; O, ovary. The left kitnes, coucealed by the worsal sac of the rumen, is indicated by dotted line. The median line of the diaphragm is dotted.
m.), intestinal glands throughout. The aggregated follicles or Peyer's patches are larger and more prominent and distinct than in the howse, and vary greatly in size and number; in adult cattle there are eighteen to forty; in calves twenty to fiftyeight have been counted. They usually have the form of narrow hands. There is a pateh close to the ileo-ceecal valve.

The large intestine is much smaller in caliber than that of the horse, has no bands, and is not sacculated. Most of it is situated between the layers of the common mesentery in the right dorsal part of the abdominal cavity. It is related on the right to the lateral abdominal wall, from which, however, it is almost completely separated by the greater omentum. On the left it is chiefly related to the rumen. The average length of the cæcum is about thirty inches (ca. 75 cm .), and the diameter is about five inches (ca. 12 cm .). It is directly continnous in front with the colon, the conventional demareation being the junction of the ileum with the large intestine. ${ }^{3}$ From this junction, which is on the medial side and usually near the ventral end of the last rib, the cæcum extends backward and upward along the right flank (from which it is separated by the greater omentum), and its rounded blind end commonly lies at the right side of the pelvie inlet. The ceecum is attached along its medial side to the mesputery: except the posterior third, which is free and variable in position. The terminal part of the ileum runs forward along the medial surface of the cæcum and is attached to the latter. The dorsal surface is attached by areolar tissue and peritoneum to the colon. The colon is about thirty-five feet (ca. 10 m .) in average length. Its diameter is at first the same as that of the ceccum, but diminishes to about two inches (ca. 5 cm .). The greater part of it is arranged in double elliptical coils between the layers of the mesentery; the coils are attached to each other by areolar tissue. It begins as the direct continuation of the ceecum, runs forward a short distance, and turns dorsally and backward opposite to the ventral part of the last two ribs. It continues backward, in relation to the right flank laterally and the cæcum ventrally, to the posterior part of the sublumbar region. Here it turns forward and runs parallel with the retrograde part as far forward as the second lumbar vertebra, turns backward, and is continued by the spiral part (Ansa spiralis). The coils of this are alternately centripetal and centrifugal (Gyri centripetales et centrifugales); they are best seen from the left side. The bowel gradually diminishes in caliber, and the terminal part (Ansa distalis) leaves the spiral mass, passes forward to the great mesenteric artery, and runs backward dorsal to the terminal part of the duodenum. It inclines to the right in relation to the ventral surface of the right kidney, forms an S-shaped curve near the pelvic inlet, and joins the rectum; this part is attached to the sublumbar region by a narrow mesentery, and is also attached to the recurrent part of the duodenum.

The rectum is somewhat shorter than that of the horse, and is usually covered with peritoneum as far back as the first coccygeal vertebra. The retroperitoneal part is surrounded by a quantity of fat. The anus is not prominent.

The serous coat is of course ahsent on the adherent surfaces of the spiral part of the eolon. There is a large amount of fat in the mesentery. The longitudinal fibers of the muscular coat are evenly distributed, consequently there is no sacculation of the bowel. There is a valvular mucous fold at the ileo-cæcal orifice. A Peyer's patch occurs in the beginning of the caecum and one in the first part of the colon.

THE LIVER

The liver lies almost entirely to the right of the median plane. Its long axis is directed obliquely downward and forward, about parallel with the median plane, and corresponds to the curvature of the right portion of the diaphragm. It is less extensive, but thicker than that of the horse. Its average weight is about 10 to 12 pounds (ca. 4.5 to 5.5 kg .).

[^105]In small subjects the weight (aceording to schmaltz) varies from $6 \frac{1}{2}$ to 10 pounds (ea. 3 to 4.5 kg .), in large subjects from 11 to 13 pounds (ea. 5 to 6 kg). Secording to sehneider, the average weight is about 13 pounds (ca. 6 kg .) - a hittle over 1 per eent of the live weight and about 2 per cent, of the dressed carrass.

When hardened in situ, it is seen to he adapted accurately to the structures with which it is in contact.

The parietal surface is convex and is for the most part applied to the right part of the diaphragm, but a small part of it is in direct contact with the hast two or three ribs and with the flank at the lumbocostal angle. It faces dorsally, forward, and to the right.

The curvature of the parietal surface is not quite regular. It is marked, exept in its ventral part, by a blunt ohlique rifge which divides the surface into two areas. Of these, the lateral one

Fig. 399.-Liver of Ox, Pabletal Surface; Ilardened in situ.
is directed ontward, is only slighty sonvex, and often shows impressions of the last three ribs; it is in contart in part direetly with the right abdominal wall, in part with the costat part of the diaphragm which is in contact ordinarily with the lateral wall. The medial area presents a depression produeed by the right crus of the diaphragin, and otherwise is regularly eonvex and adapted to the tendinous center and sternal part of the diaphragm. The fadciform ligament is attaehed to the surfare from the cesophageal noteh to the umbilical fissure. There is a triangular area of considerable size on the dorso-medial part of the surface which is without a peritoneal covering, sinee it is adherent to the diaphragm.

The visceral surface is coneave and very irregular; it presents impressions of the chief organs which are in contact with it-the omasum and reticulum. It is also related to the pancreas and duodenum.

The following markings are quite distinet on the visceral surface of well-hardened specimens: (1) The omasal impression (Impressio omasieti) is a decp central eavity below the portal
fissure. (2) The reticular impression (Impressio reticularis) is a smaller marginal depression below the asophageal notch and the medial part of the preceding, from which it is separated by a rounderd ridge. (3) The abomasal impression (Impressio abomasica), present only in the young subject

Fig. 400.-Liver of Heifer, Visceral Surface; Hardened in situ.
The abomaval impression is shown to the right of the reticular impression, but by an oversight is not marked.

Fig. 401.-Liver of Ox, Left Marginal View; Hardened in situ.
usually, corresponds to the fundus of the abomasum. It lies along the ventral part of the surface and is separated by ridges from the preceding impressions. It usually disappears as the omasum and reticulum increase in size and displace the abomasum from contact with the liver. (4) Shallow
grooves for the S-shaped portion of the duodemm Impressio duodenalis may be found dorsad and lateral to the portal fissure. (5) The fossa of the gall-bladder fossit vesicx fellea) is distinct when that organ is full. In the calf the omasal impression is small, amb the abomasal one large in correspondence with the relative sizes of these two sales.

The portal fissure is a well-defined rounded depression, situated clorsal to the omasal impression. It contams, berides the vessels and duct, several large hepatic lymph glands. borsal and lateral to it a part of the pancreas is attached.

The dorsal border is short and thick; it usually extends backward a short distane lexomel the upper part of the last rib. It presents the large, thick, quadrilateral caudate lobe, and a deep elepression for the right kidney and adrenal.

The ventral border is short and thin and has no interlobar incisures.
The right (or lateral) border is marked by the umbilical fissure, in which the ligamentum teres is attached in the young subject.

The left border presents the cesophageal noteh below its midelle; the noteh is much shallower than in the horse. Above this it is practically median in position, and lodges the posterior vena cava, which is partally embedded in the gland. Below the noteh the horder extemed an inch or two (ea. 2.5 to . \mathbf{j} cm.) to the left of the median plane, oppowite the rentral third of the sixth rib or intercostal space.

The right lateral ligament attaches the dorsal border to the anterior part of the sublumbar region. The ligament of the caudate lobe passes to the ventral surface of the right kidney. There is no left lateral ligament. The falciform ligament is generally present, but the ligamentum teres is usually found only in young subjerts. The lesser omentum leaves the liver along a line extending from the essophageal moteh to the portal fissure. The only distinct lobes in the adult are the caudate and papillary. The latter is best seen in the soft specimen; it is a tongue-like mase which partly overlaps the portal rein and fissure. ${ }^{1}$

A gall-bladder (Vusca fellea) is present. This is a pear-shaped sac, four to six inches (ca. 10 to 15 cm .) long, which lies partly in contact with the visceral surface of the liver (to which it is attached), but largely against the abdominal wall at the ventral part of the tenth or cleventh intercostal space. It may be regarded as a diverticulum of the bile-duct, enlarged to form a reservoir for the bile. Its neck is eontinued hy the cystic duct (Ductus cystieus), which joins the hepatic duct at an acute angle just outside of the portal fissure, to form with it the bileduct (Ductus cholelochus). The latter is short and enters the second bend of the S-shaped curve of the duodenum, i. e., about two feet (ea. 60 cm .) from the pylorns. The opening of the duct is at the end of a papilla or ridge-like fold. Several small ducts (Ductus hepatocystici) open directly into the gall-bladder.

The wall of the gall-blader consists of serons, muscular, aml mucous coats. The muscular tissue consists of unstriped fibers which run in varions directions; externally many are longitudinal, whie internally (and especially at the neck) they are chiefly circular. The mieous membrane is covered by a eylintrical epithelium and contains numerous groups of branehed tubular glands. The cystic and bile ducts have a similar structure.

In the new-horn calf the liver is relatively mueh larger than in the adult. The visceral surface presents, below the portal fissure, a rounded eminence, which is eaused by the presence in the underlying gland substanee of a large venous sinus into which the umbilieal and portal vens empty. A large vessel, the ductus venosus, leads from this sinus direetly to the posterior vena cava. The umbilieal fissure is deep and partially divides the gland into two chief lobes.

THE PANCREAS

The pancreas of the ox is irregularly quadrilateral in form, and lies almost entirely to the right of the median plane. Its weight is about the same as that of the horse. Its dorsal surface is related to the liver, right kidney, crura of the diaphragm, posterior vena cava, and coliae and anterior mesenteric arteries; it is

[^106]covered to a large extent by peritoneum. It is attaehed to the liver at and lateral to the portal fissure, and to the erura of the diaphragm. Between these adhesions it is free and forms the rentral wall of the epiploie foramen. On the right side it extends baekward beyond the eaudate lobe of the liver between the layers of the mesoduodenum; here it is in contact with the upper part of the flank at the lumbocostal angle, and is related dorsally to the right kidney and by its ventro-lateral

Fig. 402 - Pancreas and Related Structeres of Ox.

1. Left extremity of pancreas; 2, posterior venia cava; 3, portal vein; 4, gastro-splenic vein: 3. probe in epiploic foramen; 6 , bile duct; $\overline{2}$, eystic duct; s, pancreatico-intestinal lymph gland: 3 , cut edge of lesser omentum; 10 , omasal impression of liver. Intraglandular part of pancreatic duct and its chief radicles are shown by dotted lines. Concealed parts of bile duct, cystic duct, and neck of gall-bladder are similarly indieated.
border to the retrograde part of the duodenum. The ventral or gastro-intestinal surface is in contaet with the dorsal eurvature of the rumen and the intestine. There is a deep noteh (Incisura panereatis) for the portal vein and hepatie artery, and several lymph glands are present here. The left extremity is small and quadrilateral: it is related dorally to the erus of the diaphragm, left adrenal, and the coeliae and anterior mesenterie arteries, and is adherent ventrally to the rumen.

The right or posterior part is wide and thin and is often divided into two branches. The duct leaves the posterior part of the ventro-lateral (or right) border and enters the duodenum about twelve inches (ca. 30 cm .) further baek than the bile-duct.

THE SPLEEN

The spleen has an elongaterl, whiptieal outline, both extremities leing thin, rounded, and similar in size.

Its awerage weight is about two pomms (ea. 900 gm .), or about ${ }^{1} 6$ per cent, of the berly-weight. Its average length is about 20 inches (ca. 50 cm .), its width about (5 inches (ea. 1.5 cm .) and in the

Fig. 403.-Spleen of ux: Vimeral surface.

1. Area of attachment to rumen (non-peritone:al): 2, postrior border; 8 , line of peritoneal reflectoon. midele its thickness is about an inch (ca. 2 to 3 cm .).

The dorsal extremity ties imder the dorsal ends of the last two ribs, and may extend back as far as the first lumbar transerse process. The ventral extremity is usually opposite the eighth or ninth rib, about a handbreadth above its junction with the cartilage. The parietal surface is convex, and is related to the diaphragm. The visceral surface is coneave, and is related chindly to the left face of the rumen, hut also usually to a narrow adjacent area of the retienlum. The dorsal part is attacled to the left crus of the diaphragm and the left surface of the rumen by peritoneum and connective tissue; the ventral part is free. The hilus is situated on the dorsal third of the visceral surface, near the anterior border.

Ahout one-half of the viseeral surface of the spleen is attarhed chrectly to the stomach and is therefore not covered by peritoneum; the lime of riflection of the atter crosses the surface obliquely, from the upper part of the posterior border io the anterior border below its middle. Similarly there is a narrow uncovered area on the upper part of the parietal surface along the anterior borter. The hilus is not a groove, but a simple depression. When hardened in situ, the organ is seen to le somewhat twisted, so that the upper part of the parietal surface faees dorsally and forward, while below it is directed laterally: In some eases the spleen is considerably longer than is stated above, and mas extemi to the ventral ench of the eighth rib). Not uncommonly there are pathological adhesions of the ventral part of the spleen to aljacent struetures.

DIGESTIVE SYSTEM OF THE SHEEP

The lips are thin and molile; the upper one is marked by a very distinet philtrum, and otherwise is not bare.

The anterior part of the hard palate is prominent and smooth, forming the so-called dental pad or plate. On the posterior part of this area there are two
narrow depressions in the form of a V and separated by the central papilla incisiva, at the deep anterior ends of which the incisive or naso-palatine ducts open. The ridges of the palate, some fourteen in number, are irregular and their edges are -mooth; most of them alternate with those of the opposite side, from which they are separated by the median raphé palati. The posterior third or rather more is not ridged and presents numerous orifices of duct. of the palatine glands. The mucous membrane is often more or less pigmented. The soft palate resembles that of the ox.

The mucous membrane of the cheeks is covered with large papille, many of which are long and sharppointed, while others are short and blunt. There is also a series of conieal papille on the floor of the mouth, under the lateral part of the tongue.

The tongue resembles that of the ox in form, but the tip is comparatively smooth; the papillæ here are very numerous, but short and blunt. This difference is in conformity with the dissimilarity in the mode of prehension of the two species. The prominence of the dursum is commonly not so pronounced nor so sharply marked off in front as in the ox. The root is smooth. The mucous membrane of the dorsum is often pigmented in spots.

The dental formula is the same as that of the ox. ${ }^{1}$ The incisor teeth form a narrow and strongly curved arch. The crowns are long and narrow; their labial surfaces are strongly convex and end at a sharp edge which is used in cropping the grass. The roots are more firmly embedded than in the ox. The cheek teeth resemble those of the ox. but have a thinner layer of cement, which is often blackened by deposits from the foorl. The average periods of eruption of the teeth are indicated in the subjoined table:

Fig. 404.-Pilate of seeer.
1, Dental pad: 2, papilla incisiva; 3,3 , opening: of incizive canals; 1, raphé palati; 3. philtrum; 6, conical papillæ of cheek; 7, tonsils: S, palatine arch.

Teeth	Temporary
I,	. At birth or first week
I_{2}	First or second week.
13.	Second or third week
I_{4}	Third or fourth week
P_{1}	
P_{2}	2 to 6 weeks
P_{3}	
11	
M_{2}.	
M_{3}	

[^107]The salivary glands resemble those of the ox in general. The parotid gland is darker in color and more compact in texture than the mandibular. It is rounded in outline, but has a pointed cervical angle at which the external jugular vein emerges. The duct leaves the lower part of the anterior border of the gland and runs forward over the masseter muscle, about an inch and a half (ca. 3.4 cm .) above the rentral border of the ramus; it opens opposite the third or fourth cheek tooth.

The tonsil is bean-shaped and about half an inch (ca. 12 mm .) in length. It ${ }^{1}$ A lateral view of the teeth is given in the description of the skull.
does not project into the isthmus faucium. The mueous membrane of the latter presents two decp and very narrow tonsillar simuses on either side.

The fornix of the pharynx presents a median plicated fold which is a continuation of the septum nasi. The pharyngeal orifice of the Eustachian tube has the form of a ereseentie slit, placed about on a level with the ventral nasal meatus. There are two large bymph glands and a number of hemolymph glands above the pharynx.

The œesophagus has a lumen of alsout an inch (ea. 2.5 em .) when moderately distented; otherwise it resembles that of the ox.

The stomach is like that of the ox in its general arrangement. Its average (apacity is about four gallons (ea. 15 liters). The cardia is opposite the eighth intereostal space; it is just to the left of the median plane, and about two inches

Fig. for- Stomach of sheef; left View.
From photograph of specimen hardened in satu. The reticulum is somewhat contracted.
(eat. 5 cm.) below the vertehral column. The dorsal sac of the rumen is a little longer than the ventral sac and extends considerably (ea. 7.8 cm .) further forward than the latter. The wentral sace is relatively larger and extends further to the right of the median plane tham in the ox; its posterior blind sae extends further (ea. 68 sm .) back than that of the dorsal sac. The parietal attachment of the dorsal sac extends back to the seeond lumbar vertebra. The left longitudinal groove extends upward and backward for a short distance only, and therefore does not comect with the posterior groove. There are two longitulinal grooves on the right side which join at each rod, thus enelosing a long, narrow prominent area; the dorsal one contains the right ruminal artery, and the ventral one corresponds to
the pillar. The left coronary grooves do not extend to the curvatures. There is no dorsal coronary groove on the right side, but the ventral one is very distinct and extends to the curvature. The arrangement of the pillars corresponds to these external features. The papille of the rumen are relatively large and somewhat tongue-like; the largest are about a fourth of an inch (ca. 6 mm .) in length. The dorsal part is papillated, not glabrous, as in the ox. The lateral part of the ruminoreticular fold ends half an inch or more (ca. 1.5 cm .) behind the cardia. The reticulum is relatively larger than in the ox. Its ventral part eurves more backward and less to the right than in the ox. The parietal surface extends forward as

Fig. 406.-Stomach of Sheep; Right View.
From photograph of specimen hardened in stu. Dotted hne indicutes position of spleen.
far as the sixth rib or intercostal space, and is related to the diaphragm and liver. The fundus lies on the sternal part of the diaphragm and is in contact behind with the abomasum. The œsophageal groove is disposed in general like that of the ox, and is about four to five inches (ca. S to 10 cm .) long.

There are, however, several marked differences in the arrangement of the groove. Its ventral part curves backward, so that the reticulo-omasal orifice is directed dorsally and lies in a transverse plane about an inch (ea. 2-3 cm.) behind one passing through the cardia. These differences are correlated with the small size of the omasum and the large size of the reticulum. Tubulo-alveolar glands have been found by Thanhofer and others; they occur chiefly in the submucous tissue at the angle of junction of the lips and bottom of the groove.

The folds surrounding the cells of the reticulum are only $2-3 \mathrm{~mm}$. in height,
and have serrated edges. The dorsal part of this sac has, in the vicinity of the rumino-reticular orifice, a papillated mueous membrane just like that of the rumen. The omasum is much smaller than the reticulum, its eapacity being only about one pint. It is oval and compressed laterally. It is situated almost entirely to the right of the median plane, opposite to the ninth and tenth ribs,

Fig. 407.-Crosa-section of Sheep, throngh Ninth Thoracic Vertebra: Interior View.

1. Cardia; 2, cesophageal groove; 3. rumino-reticular onfice; 4, ruminu-retucular fold; 5 , dorsal sae of rumen; 6. body of ninth thoracie vertebra; $\tilde{\sim}$, vena hemazygos; 8 , uorta: 2 , posterior medastanal lymph gland; 10 , 10 , crura of chaphragm; 11, posterior vena cava: 12 , portal vein; R.l., right lung; L.l., left lung; S, spleen; L, liver; R, reticulum (posterior wall). Arrow points to reticulo-omasal orifice. The spleen is cut so obliquely as to appear much thicker than it really is.
higher than in the ox. and has no contact with the abdominal wall. It is related on the right to the liver and gall-bladder, on the left to the rumen, and ventrally to the abomasum. The lamine are less numerous than in the ox; in the neck which connects the omasum with the reticulum they have the form of low, thick ridges, and bear long, pointed, horny papille. The abomasum is relatively
larger and longer than in the ox. Its capacity is about twice that of the reticulum and averages about two quarts (ca. 1.55 to 2 liters). The blind anterior cnd lies almost centrally in the xiphoid region, in relation to the liver and reticulum. Its body extends hackward a little ventral to and almost parallel with the right costal arch. The pylorus is usually opposite the ventral end of the cleventh or twelfth intereostal space. At the reticulo-omasal opening and on the adjacent part of the lamine of the omasum are large, pointed, homy papille.

The general arrangement of the intestine is like that of the ox. The small

Fig, 408.-Abdominal Viscera of Sheep; Superficial Ventral View.
intestine is about S 0 feet (ca. 24 to 25 m .) long; its average diameter is about an inch (ca. 2 to 3 cm .), the caliber increasing in its terminal part, where a very extensive Peyer's patch is found. Duodenal glands occur for a distance of two feet or more (ca. $60-70 \mathrm{~cm}$.) beyond the pylorus. The cæcum is about 10 mehes (ca. 25 cm .) long, 2 inches (ca. 5 cm .) wide, and has a capacity of about a quart (ca. 1 liter); only about two inches (ca. 5 cm .) of it is free. The colon is about 15 feet (ca. 4 to 5 m .) long. Its caliber is at first about the same as that of the cecum, but diminishes to about the width of the small intestine.

The liver weighs about 20 to 25 ounces (ca. 550 to 700 gm .). It lies entircly
to the right of the median plane. The parietal surface is related almost exelusively to the right part of the diaphragm. The viseral surface presents extensive retieular and abomasal impressions, and a small omasal impression medial to the portal fissure. The umbilical fissure is deep and partially divides the gland into two chief lobes, dorsal and ventral. The caulate lobe is prismatic and blunt-pointed. The osophageal notch is represented by a slight impression. The gall-hadder is long and narrow. The bile-duct joins the pancreatie duct to form a common bileduct (Duetus choledochus eommunis), which opens into the drodenum about one foot (cal. 30 cm .) from the pyloms.

The pancreas is arranged as in the ox. Its duct unites with the bileduct.

The spleen (Fig. 405) is approximately triangular, with the angles rounded off;

Fit. 409-Liver of Mhefr, Visceral Strfate: Hardened in silu.
the wider end or hase is dorsal. It weighs ahout there or four ounces (cat. 100 grams). Its length is about five to six inches (eat. 12 to 1.5 (m.). and its greatest width three to four inches (ea. $7 . \overline{0}-10 \mathrm{~cm}$.). The long axis is ohlique, and eorresponds to a line drawn from the vertebral end of the last ril) to about the middle of the tenth intercostal space. The parietal surface is convex and is related to the diaphragm, to which rather more than the anterior third is adherent; when harkened in situ, it ofton shows impressions of the upper parts of the last three ribs. The viseeral stuface is concave, and its anterior half is attached to the dorsal curvature of the rumen. The borders are thin, the posterior one often being erenated. The dorsal end or base is attached to the left erus of the eliaphragm under the last two ribs;

Fig. 410.-Liver of Sheep. Parietal Strface; Hardened situ.

1. Posterior vena cava: 2, falciform ligament; 3, gall-bladder; \&, umbilical fissure.
it usually extends about an inch (ca. 3 cm .) behind the last rib. The hilus is on the risceral surface, close to the anterior basal angle: it is a round depression. not a groove. The ventral end is narrower and thinner than the base; it is usually situated opposite the tenth intercostal space or eleventh rib, a little above its middle.

DIGESTIVE SYSTEM OF THE PIG

THE MOUTH

The rima oris is extensive, the angles of the mouth being situated far back. The upper lip is thick and short, and is blended with the snout; the lower lip is small and pointed. The labial gland are few and small.

The mucous membrane of the cheeks is smooth. The buccal glands are compactly arranged in two rows opposite the cheek teeth. The parotid duct opens opposite the fourth or fifth cheek tooth.

The hard palate is long and narrow; it is marked by a median furrow, on each side of which are twenty or more ridges. On its anterior part there is a long narrow prominence, the incisive papilla, at the posterior part of which the incisive or nasopalatine ducts open. There is a round prominence in front of the first pair of incisors.

The soft palate is very thick; its length in an animal of medium size is about two and a half inches (ca. 5 cm .). Its direction ahmost continues that of the hard
palate, $i . e$., it is nearly horizontal. It extends to the midelle of the oral surface of the epigluttis. It has in many cases a small median prolongation termed the uvula. The oral surface presents a median furrow, on either side of which is an oval raised area, marked by numerous crypts; these elevations are the tonsils. Tonsillar tissue also oerurs in the lateral walls of the isthmus faucium and the root of the tongue.

The tongue is long and narrow and the apex is thin. Two or three vallate

Fig. 111.-llard Palate of Youg Pio.

1. Papilla iacisiva; 2, openings of ductus incisivi; 3 , raphé of palate; a, incisor teeth; b, canine tooth; c, premolar teeth; d, molar teeth.

Fig. 412.-Tongite of Pig.
1, Apex; 2, darsum; 3, root; a, oritices of ducts of lingual glands; b, papllie of root; c, vallate papilla (not really so distinet as in figure); d, foliate papilia; e, fungiform papillæ; f, epiglottis (pulled back); g, median glossoepigluttic fold. (Ellenberger-Baum, Anat, d, Hausticre.)
papilla are present. The fungiform papillae are small and are most numerous laterally. The filiform papille are soft and very small. On the root there are soft, long, pointed papillæ, lirected backward. Foliate papilke are also present.

There is a well-marked median glosso-epiglottic fold, on cither side of which is a depression (Vallecula epiglottica). The fremum lingux is double.

The dental formula ${ }^{1}$ of the pig is:

$$
2\left(\begin{array}{ccccc}
1_{3}^{3} & 1 & P_{4}^{4} & -3 & 3 \\
3 & 1 & 4 & \frac{3}{3}
\end{array}\right)=44
$$

${ }^{1}$ Several figures in the osteology also illustrate the teeth.

The formula for the temporary teeth is:

$$
2\left(\begin{array}{ccc}
\mathrm{Di} \frac{3}{3} \mathrm{Dc} & \frac{1}{-D p} & \frac{4}{4}
\end{array}\right)=32
$$

The upper incisors are small; they are separated from each other by spaces, and from the carines by a larger interval. The first incisors are the largest; they are flattened and strongly curved, and the crowns are convergent; they have no

Fig. 413.-Sctle of Pig abotta Iear And a Half Old, Sctlptcred to Show the Embedded Parts of the Teetb. $I t-3$, Incisors; C, canines; $P 1-\not-4$ premolars; M $1-3$, molars. The third molar has not erupted and its roots are not yet formed.
distinct neck. The convex labial surface has an extensive covering of enamel, but the latter covers only a small marginal area on the lingual surface. The second are much shorter and are only slightly curved; ther have a short flattened crown and a rounded root. The third incisors are much smaller, are flattened laterally, and have three small eminences on the crown. The lower incisors are almost horizontal and are convergent and close together. The first and second are about equal in size, are rod-like, very slightly curved, and deeply implanted in the jaw. The labial surface is slightly convex, the lingual concave and marked near its extremity by a ridge. The third incisor is much shorter and is somewhat flattened; it has a short narrow crown and a distinct neck.

Cement Enamel Dentine

Fig. 414.-Crosz-section of Lower Canine Tooth of Pig. c. Pulp cavity:

The canine teeth or tusks of the male are greatly developed and project out of the mouth. The upper canine of the boar may be three or four inches (ca. 8 to 10 cm .) long. The crown is conical and is curred somewhat backward and outward; the embedded part is curved and has a large pulp
cavity. The lower eanine may reach a length of ejght inches or more (ca. 20 cm .) ; the crown is prismatic and is eurved backward and outward in front of the upper one, so that the frietion between the two keeps a sharp edge on the lower tooth. In the sow they are much smaller. ${ }^{1}$

The cheek teeth increase in size from before backward. They lave (with (ertain exeeptions noted below) complex tuberculate crowns; the term bumodont is applied to this condition, as distinguished from the lophodont and selenodont strueture in horses and eattle, in which there are prominent ridges of enamel.

Fig. 415.-Siperfictal Glands of Head of Pig.
a. Parotid gland; $a^{\prime}, a^{\prime \prime}$, cervical and mandibular angles of $a ; b, c$, ventral and dorsal buccal glands; d, labial glands; e, masseter muscle; $f_{1} f^{\prime}$, lymph glands; g, dotted line indicating outline of mandibular gland, which is concealed. (Ellenbenger-Baum, Anat. d. Haustiere.)

They are short-rrowned teath with a distinct neck and round, pointed roots. The first tooth in each jaw is small, simple, and appears only once; in the lower jaw it is near the canine; in the upper, near the second cheek tooth. ${ }^{2}$ The next two teeth are larger, laterally compressed, and sectoriat. The fourth tooth betow is larger, but otherwise like the preceding ones, while the upper one is mueh wider and is tubereulate. The first premolar has two roots, the others three or four. The molars have four roots, but the anterior pair may be largely fused.

[^108]

Fig. 416.-Dissection of Notty and Phartygeal Region of Pig.

1. Hard palate; 2 , tongue showing distinctly fungiform papillx; 3 , foliate papilla; 4, lymph nodules of soit palate: 5. stylo-glossus muscle, out of which a portion has been cut; 6, hyo-glossus: 7 , gedio-glossus; 3, genio-hyoideus: 9 , mylo-byoideus (reflected) ; 10, stylo-hyoideus; 11, great cornu of hyoid bone; 12, tensor palati: 13, levator palati; 14. pterygo- et palato-pharyngeus; 15 , stylo-pharyngeus; 16 , cervico-hyoideus; 17 , sterno- et omo-hyoideus; 18 , supraphnryngeal lymph glands; a, bullia ossea; b, paramastoid process. (Ellenberger-Baum, Anat. d. Haustiere.)

The average periods of eruption of the teeth are given in the subjoined table:
Toutr

тоотв
$I_{1} \quad 2$ to Ercpitos
I_{2}.. upper 2 to 3 months
lower $1 \frac{1}{2}$ to 2 months
$I_{3} \ldots$ Before birth
C Before birth
$\mathrm{P}_{1} \ldots$. ${ }^{\text {months }}$
$\mathrm{P}_{2} \ldots 5$ to 7 weeks
$\mathrm{P}_{3} \ldots$ upper 4 to \rightarrow days
lower 2 to 4 weeks
$\mathrm{P}_{4} \ldots$ upper 4 to S days.
$\mathrm{M}_{1} \ldots+$ to 6 months
$\mathrm{M}_{2} \ldots$. S to 12 months
$\mathrm{M}_{3} \ldots$ is to 20 months

Chesge
12 months
16 to 20 months
S to 10 months
9 to 10 months

12 to 15 months

The parotid gland is large and distinetly triangular. It extemds very little on to the masseter muscle, and its upper angle does not quite reach the base of the car. It is pale in color, and is embedded in fat in animals in good condition. Ont its deep face are several large sulparotid lymph glands, some of which are only partially covered by the parotid. The parotid duct arises on the deep face, has a course similar to that of the ox, and perforates the check opposite the fourth or fifth upper check tooth. Small accessory parotid glands (Clandulæ parotidee accessorix) may be found along the course of the duet.

The mandibular or submaxillary gland is smatl, reddish in color, and oval in outline; it is covered by the parotid. Its superficial face is convex, and is marked by rounded prominences. From its deep face a narrow process extends forward about two or three inches (ca. 5 to 7.5 cm .) beneath the my-hyoideus musele along with the duct. The latter opens near the frenum linguse, but there is no papilla.

The sublingual gland has an arrangement similar to that of the ox. The posterior part (Clandula sublingualis grandicemataris) is reddish-yellow in color, and is about two inches (ca. 5 scm .) long and half an inch wide; its posterior end is in relation to the mandibular gland and its duct. The anterior part (Gl. sublingualis parvicanalaris) is much larger, being two or three inches (ca, 5 to 7 cm .) long and about twice the width and thickness of the posterior part. All or most of the ducts from the posterior part unite to form the ductus sublingualis major, which opens near the ductus mandibularis. Eight or ten ductus sublinguales minores convey the secretion from the anterior part through the floor of the mouth.

Fig. 417.-sigittal Section of Pharyngeal Region of Pig, Partly Schematic.
1 , Palatine bone; 2, sphenoll bone; 2^{\prime}, sphenoidal smus; $2^{\prime \prime}$, oceipital bone; 3 , epiglottis; 4, arytenoid cartilage; δ, thyrord cartilage; t, root of tongue; γ, mouth eavity; 8 , isthmos fancium; 9, bard palate; 10 , septum nasi; 11 . ventral muscles of head; a, sott palate; a^{\prime}, free edge of $a ; b$, dorsal wall of pharynu; c, formix of pharyux; d, cavity of larynx; e, g, naso-pharynx; f, oro-pharynx; h, posterior pillar of soft palate; i, dotted line indicating lateral boundary between nasal cavity and pharynx; k, adhtus laryngis; l, aditus cesophagi; m, Eustachan orifice; n, pharyugeal recess; o, posterior naris. (After Ellenberger, in Leisentg's Atlas.)

THE PHARYNX

The pharynx presents in its posterior part a median cul-de-sac about an inch and a half (ea. 3 to 4 cm.) long, which is situated between the ventral straight muscles of the head and the origin of the cesophagus; this is termed the diverticulum pharyngeum. Its ventral margin is formed by the junction of the posterior pillars of the soft palate, which contain muscular tissue derived from the palatinus and palato-pharyngeus. The formix of the pharynx is divided by a median fold of mucous membrane which is a direct continuation of the septum nasi. On either side of this is an infundibulum in which the Eustachian tube opens.

THE ESOPHAGUS

The œesophagus is short and nearly straight. It has (according to Rubeli) a potential caliber in the adult of nearly 3 inches (ca. 7 cm .) at either end, and about $1 \frac{7}{10}$ inches (ca. 4.2 cm .) in its middle part. ${ }^{1}$ The muscular coat is striated, except near the cardia, where the deep part is unstriped. There are numerous tubuloalveolar glands in the anterior half of the tube; further back they occur in decreasing numbers. Many lymph nodules and much lymphoid tissue are present.

THE STOMACH

The stomach is large; its average capacity is about $11 / 2$ to 2 gallons (ca. 5.7 to S liters). When full, its long axis is transverse and its greater curvature extends backward on the floor of the abdomen a little further than a point midway

Fig. 41 s .-Stomach of Pig: Parietal Strface.
The organ contained a rather small amount of ingesta and hence is somewhat contracted.

Fig. 419.-Stomach of Pig; Visceral Serface. Organ was fixed in situ and is somewhat contracted.
between the xiphoid cartilage and the umbilicus. The left part is large and rounded, while the right part (Pars pylorica) is small, and bends sharply upward to join the small intestine. The parietal surface faces chiefly forward, and is related to the liver and diaphragm. The visceral surface faces chiefly backward, and is related to the intestine, greater omentum. mesentery, and pancreas. The greater curvature is related to the diaphragm, spleen, liver, and abdominal floor. The pyloric end lies against the right lateral lobe of the liver, about opposite to the middle of the next to the last intercostal space. The left extremity is opposite to the last intercostal space or preceding rib, and is related to the dorsal end of the spleen and the left extremity of the pancreas; it presents a flattened conical blind pouch, the diverticulum ventriculi, the apex of which projects backward. The asophagus joins the stomach very obliquely, almost in the median plane, and about three or four inches (ca. 8 to 10 cm .) ventral to the twelfth thoracic vertebra. The cardiac

[^109]opening is slit-like and is bounded above and to the left by a fold which contains a thickening of the internal oblique layer of the muscular coat. The opening into the diverticulum is situated above and a little to the left of the cardia; it is trans-

Fif: 420.-Visceril Surface of Stumach of Pig, frodi which the seroug (oat has been ReMOVED.

Fig. 421.- Fverted Stomach of Pig, from whe: the Mccoes Membrane has hees liemoved.
O. Wiophagus; D, duok mum: Di, diverticulum; $a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime}$, longitudinal fibers; b, erocular fibers; c, extesnal oblique fibers; " internal oblique fibers; $t^{\prime \prime}$, cardiac Loop; d, fibers which conneet branches of curdiac loop: f, fold :at entrance to diverticulam: p_{1} pyloric sphincter: p^{\prime}, pyloric prominence. (Ellenberger-Baum, Anat. d. Hanstiero.)
versely oval, and is bounded (exerept lateratly) by a thick fokl which contains spirally arranged museuker fibers. The bucous membrane may be divided into four reqions (Fig, 122). Over a quadrilateral area around the cardia (about one

Fig. 422.-Diagram of Zones of Mecoes Alembrane of stomace of Pig.
inch on the right and two or three inches on the left side of the orifice) it is (esophageal in character, and presents a number of folds. A sharp line of demarcation separates this from the rest of the mucous membrane, which is soft and glandular. The eardiac gland region is pale gray in color and thin (ca. 0.5 to 1 mm .) ; it extends
about to the middle of the stomach. The fundus gland region is readily distinguished by its thickness (ca. 3 mm .) and its. brownish-rech, mottled appearance. ${ }^{1}$ The fourth or pyloric region is pale, thinner than the preceding, and presents a number of irregular folds. ${ }^{2}$ At the pylorus a remarkable prominence (Torms pyloricus) projects from the wall of the lesser curvature and diminishes considerably the size of the orifice. It is about an inch and a half (ca. . 3 to 4 cm .) long and

Fig. 423.-Abdominal Viscera of Pig; Ventral Tiet.
The greater omentum has been removed. B, urinary bladder; G, gall-bladder; I, xipboid cartilage. Arrows indicate course of coils of colon. The spleen was contracted.
nearly half an inch (ca. 1 cm .) high. Sometimes it is a grooved ridge: in other cases it has the form of a rounded eminence attached by a pedicle to the wall. It consists largely of fat, but fibers from the circular muscular coat extend into it. The arrangement of the muscular coat is shown in Figs. $420,421$.
${ }^{1}$ It will be noted that the fundus gland region does not extend up to the lesser curvature; here the cardiac gland region joins the pyloric.
${ }^{2}$ Microscopic examination shows that these regions are not sharply marked off from each other; insiond, there are intermediate zones in which glands of both the adjacent regions are present, and aiso glands of intermediate histological character.

THE INTESTINE

The intestine is about fifteen times the length of the horly'.
The small intestine is 50 to 65 feet (ea. 15 to 20 m .) long. The mesentery of about the first two feet (ca. 60 cm .) is two to two and a half inches (ea. 5 to 6 em.)

Fig. 424 - Diaoram of Cectem and Colon of Pig.
Coils of colon have been pulled apart.
long; this part may be termed duodenum. The duodenum turns sharply medially on the visceral surface of the liver to the right of the portal fissure. It then passes backward, in relation to the medial part of the right kidney dorsally and the colon ventrally, and about the middle of the sublumbar region turns across the median

Fig. 425.-Ileo-cecal Opening of Pig. 1. lleo-cæcal opening; 2, 2, frenulum ilei.

Fig. 42ti, -Solitary Nodeles of Large Intestine af Pro. (Elleaberger-Baum, Anat. d. Haustiere.)
plane and runs forward to be continued by the mesenterie part. The right end of the panereas is attached to the first part, and here the pancreatie duet opens into the bowel. The remainder of the bowel (Jejuno-ileum) has a mesentery about six to eight inehes (ca. 15 to 20 cm .) long, which is thick and contains a quantity of fat,
and numerous large lymph glands at its root; the root is attached in the sublumbar region behind the stomach and blends here with the mesentery of the large intestine. The mesenteric part is arranged in close coils and lies mainly above the colon and cecum, from the stomach to the pelvis; many coils lie against the right flank and on the posterior part of the floor of the abdomen. The opening of the bile duct is about one or two inches (ca. 2.5 to 5 cm .) from the pylorus, and that of the pancreatic duct about six inches (ca. 15 cm .) beyond it. Aggregated lymph nodules or Peyer's patches and solitary nodules are numerous and very distinet. The patches are usually band-like and prominent; their number has been found to vary from 16 to 38 . They begin 8 to 20 inches (ca. $20-50 \mathrm{~cm}$.) from the pylorus. The last long one is continued a variable distance in the ceecum. The solitary nodules

Fig. 427.-Cecem and Colon of Pig; Left Ventral View.
1, Apex of spiral coil of colon; 2, apex of cæcum.
are distinct (except in the duodenum), but are only about a millimeter high. The duodenal glands extend some 10 to 16 feet (ca. $3-5 \mathrm{~m}$.) from the pylorus.

The large intestine is about 12 to 15 feet (ca. 4 to 4.5 meters) in length, and is for the most part much wider than the small intestine; it is connected by a mesentery with the dorsal abdominal wall between the kidneys. The cæcum is cylindrical, about 8 to 12 inches (ca. 20 to 30 cm .) long, and 3 to 4 inches (ca. 8 to 10 cm .) wide. It lies against the upper and anterior part of the left flank, and extends ventrally, backward, and medially behind the coiled part of the colon, so that its ventral blind end nsually lies on the floor of the abdomen, near the median plane, and at a variable point between the umbilicus and the pelvic inlet (Fig. 123). Its dorsal end is directly continued by the colon, the line of demareation being indicated by the termination of the small intestinc. The ileum joins the cecum
obliquely and projects considerably into the latter. A fold of mucous membrane (Frenulum ilei) passes from each side of the ileo-cecal opening. The colon has at first about the same caliber as the ececum, but beromes gradually smaller. It lies rhiefly to the left of the median plane, behime the stomath. Most of it is arranged in three close, double spiral coils in the mesentery, in relation with the flow of the abdomen ventrally, the stomad and liver in front, the catem and small intestine behind, and the small intestine on the right. On emerging from this spiral labyrinth it passes at first forward in the sublumbar region to the right of the median plane, and, on reacthing the stomach and right end of the pancreas, furns to the left. It then passes latekward, on the ventral surface of the pancreas, ame in relation to the medial part of the left kidney, inclines medially, and is continued at the pelvie inket by the rectum. This terminal part is closely attached by a short mesentery to the subhumbr region. The rectum is usuatly surrounded by a quantity of fat. The eacem has three longitudinal muscudar bands and three rows of saceulations, which are eontimed a shert distance on the eolon. The spiral colon has two bands and two series of sacculations, which, however, gradually disappear in the centrifugal part. The solitary nodules are numerous, and appear as round prominences, 2.3 mm . in diametor, often with a crater-like depression. The last Peyer's patch of the small intestine is continued a variable distance in the cacem, and there are often patches in the first part of the colon.

THE LIVER

The liver is relatively large, its average weight in the adult being about four pounds (ea. $1.5-2 \mathrm{~kg}$.). It is thick centrally, hut the circumference is thin. It is divided by three deep interlohar incisures into four principal lobes-right lateral, right central, left central, left lateral; the last of these is usually considerably the largest. On the upper part of the right lateral lobe, is the caudate lobe, which is dearly marked off by a fissure and is often partially subdivided by a secondary fissure. That part of the right central lobe which lies below the portal fissure and to the left of the gall-hadder and cystic duct is homologous with the quadrate lobe of man. Much the greater part is to the right of the median plane. The parietal surface is extremely convex in conformity with the curvature of the diaphragm, to which it is chiefly related. ${ }^{1}$ A small part of the surface is in contact with the abdominal floor in the xiphesid region and ventral to the right costal arch. Its most anterior part reaches to a transwere plane through the ventral part of the sixth rib, or intercostal space. The visceral surface is deeply concave; most of it is related to the stomach, for which there is a correspondingly large and deep gastric impression. There may be a dumbenal impression on the upper part of the right lateral lobe, but no renal impression exists, as the right kidney does not touch the liver. The fossa for the gall-hatder (Fossa vesices fellear) is mainly on the right wentral lobe, hut aksoin part on the adjacent surface of thelelt central lobe. The posterior venacavan enters the dorsal border of the catulate lobe and soon becomes entirely embedded in the gland substance, emerging only at its passage through the diaphragm. The asophageal uotch is large and is occupiod mainly ly the large right crus of the diaphragm. The right lateral border extend backward to the upper part of the last intercostal space. The left lateral border is opposite the ninth intercostal space and eighth rib. The ventral border lies on the abdominal floor a short distance (ca. 3-5 em.) behind the xiphoid eartilage.

The coronary ligament resembles that of the horse. The falciform ligament is very short or absent in the adult, and is attached to the diaphragm just below the
${ }^{1}$ The description here given is based on the appearance of the organ as hardened in situ, which differs radically from that of the soft organ. It also differs much in shape in young and adult subjects.

cturl; 2, bilo-rluet; 3, tymplighatels.
foramen venæ cave. The round ligament is present in the young subject. Neither lateral nor caudate ligaments are present.

The gall-bladder is attached in the fossa vesices fellex; its fundus dors not

Fig. 430.-Projection of Viscera of Pig on Bodt-wall; Left Side.
D. Costal Ine of diarhragm; C, ureter; V. S., vesıcula semmalis; B. g. bulbo-urethral gland; P. penis.
reach to the ventral border. The eystic duct joins the hepatie duct at an acute angle immediately after the emergence of the latter from the portal fissure. The bile duct (Ductus choledoehus) opens at the papilla duodeni about one or two inches (ca. 2.5 to 5 cm .) from the pylorus; an ampulla may he formed.

Fig. +31.-Projection of Viscera of Pig on Body-wall; Right Mide.
D, Costal line of daphragm; (), ovary. The pancreas and duodenum are not in contact with the flank, as would aaturally be inferred from this figure, but are stuated more medrally aud are covered laterally by small intestine.
()wing to the large amount of interlobular tiscue, the lobules are mapped out sharply; they are polyhedral in form, and are 1 to 2.5 mm . in diameter. For the same reason the gland is much less friable than that of the other animats, from which it is easily distinguished.

THE PANCREAS

The pancreas extends across the dorsal wall of the abdominal carity behind the stomach. It is triradiate or triangular. The right extremity is attached to the first curve (Flexura portalis) of the duodenum, and here the duct passes to the bowel. The left extremity is related to the left extremity of the stomach, the dorsal end of the spleen, and the anterior pole of the left kidncy. The middle or posterior extremity or lobe is practically median and is related to the portal rein and the root of the mesentery. The pancreatic duct passes from the right extremity directly through the duodenal wall, opening about four or five inches (ca. $10-12 \mathrm{~cm}$.) from the pylorus. The interlobular tissue usually contains a good deal of fat.

THE SPLEEN

The spleen is long and narrow. Its long axis is nearly dorso-ventral in direction, and is curved to conform to the left part of the greater curvature of the stomach. The dorsal end lies under the vertebral ends of the last three ribs; it is related to the stomach in front, the left kidney behind, and the left extremity of the pancreas medially. The visceral surface has a longitudinal ridge on which the hilus is situated; this divides the surface into nearly cqual gastric and intestinal areas, which are in contact with the stomach and colon respectively. The parietal surface is convex and is related to the left lateral and ventral wall of the abdomen. The ventral end is smaller than the dorsal one; it lies on the abdominal floor, nsually in the umbilical region. The spleen is attached so loosely to the stomach that it may be regarded as being intercalated in the great omentam. In large subjects it may reach a length of about 25 inches (ca. 60 cm .) and a width of 3 to 4 inches (ca. S to 10 cm .), and a weight of $10-15$ ounces (ca. 350 gm .).

The position of the spleen varies according to the fulness of the stomach and its own size. The dorsal end varies little. But the rentral end has a wide range, as might be expected; it may be in contact with the left lobe of the liver or may be centrally situated just in front of the umbilicus. As in other animals, the size of the spleen is extremely variable. Even in a large adult it may be only a little more than a foot (ca. 35 cm .) long, two and a half inches wide, and weigh six or seven ounces (ca. 200 gm .).

DIGESTIVE SYSTEM OF THE DOG

THE MOUTH

The size and form of the mouth vary greatly in different breeds, the cavity being in some long and narrow, in others short and wide. The rima oris is very extensive, so that the labial commissure is opposite the third or fourth cheek tooth. The lips are thin and mobile, and present numerous tactile hairs. The upper lip
has a small, central, bare area which forms part of the muzzle, and is marked by a central growe, the pliltrum, or (as in the buli-tog) a fissure, giving the appearance of harelip. The lateral borders of the lower lip are flaced and denticulated. The mucous membrane is usually pigmented and forms distinct frena lahiorum. The labial glands are small and scanty,

The cheeks are loose and capacious, and their murous lining is smooth and more or less pigmented. The parotid duct opens usually opposite the third upper deeck tooth. Near the last tooth are the opemings of the four or five chucts from the zygomatic gland. This gland may be regarted as the homolugue of the dorsal

Fig. 133.-Palate of Dog.
The lower jaw and related structures have been removed by sawng through the rami of the mandible and cuttizg the suft structures horizontally:

1, R:ophe of palate; 2. rudges of palate; 3, papilla incisiva; 4, soft palate; 5, tonsil: 6, meatus naso-pharyngeus; 7 . dorsal wall of pharyax; os parotid gland; 3, mandibular gland; 10, pharyngeal lymph gland; 11, m, oceipitomandibularis (cut) : 12, m. masseter (eut) ; 13, cheek (eut) : 14, tamus of mandible (section); 15, parotid lymph gland; 16, carotid artery; I, incisor tecth; C, canine tooth; P, premolar theth; M, molar tecth.
bureal glands of the other animals; it will be deseribed later. The ventral buecal glands are upposite the cheek teeth and in serios with the inferior lahial glands.

The hard palate is wirlest hetwern the fourth pair of cheek teeth. It has eight to tom eurved ridges on either side of the median raphé; the latter may be indistinct or scareely recognizable. Behind the first pair of inetsor teeth is the romoded or triangular papilla incisiva, at which the incisive or naso-palatine duets open. The muenus membrane is usually pigmented.

The soft palate (Figs. 433, 485) is thiek, except at its margins. In the resting state of the parts it comes in contact with the epiglottis. ${ }^{1}$ Between its anterior and
${ }^{1}$ It is usually stated that it is in contact with the oral surface of the epiglottis, but the epigiottis may be ventral to the soft palate (Fig. 48 S).
posterior pillars on either side is a marked tonsillar sinus, in which an elongated, fusiform tonsil is situated; this is reeldish in eolor, about an inch long, and is largely or completely concealed bet ween two folds of nrucous membrane. The posterior pillar is double; the upper fold passes to the dorsal wall of the pharrnx, where it subsides; the lower fold goes to the side of the epiglottis.

The tongue is wide and thin in front, thicker posteriorly; it is rery mobile. It is not pigmented, but has a bright red color. The dorsum is marked by a median groore (suleus medianus linguse), and is thickly beset with short, pointed, filiform papillie. the free ends of which are directed backward. On the root there are long conical papillix which are soft, and point baekward: similar papillæ occur on the lateral walls of the isthmus faucium. The fungiform papille are small, and are scattered over the dorsum and sides of the tongue, but are absent (1) the posterior part of the dorsum and on the root, where the conical papille occur. There are usually two or three vallate papille on cither side on the posterior part of the dorsum, where the conical papillæ begin. Small foliate papillae are alio present just in front of the anterior pillars of the soft palate; they are oval and are crossed by about half a dozen fine fissures. In the inferior part of the tip of the tongue is the lyssa, a fusiform cord, composed of fibrous tissue. muscular tissue, and fat. In large dogs it is about two inches (ea. 4 to $\overline{5} \mathrm{~cm}$.) long. The lingual museles present no remarkable special eharacters.

THE TEETH

The formula of the permanent teeth is:

$$
2\left(\begin{array}{cccc}
3 & 1 & \frac{4}{2} & \frac{2}{2} \\
3 & 1 & 4 & \frac{1}{3}
\end{array}\right)=42
$$

All of the teeth have short crowns and distinct necks; they erupt rapidly. The croms are white, being destitute of cement. ${ }^{1}$

The incisors are placed almost tertically and close together in the jaw bones. They do not correspond to an opposing tooth, but rather to parts of two teeth of the other jaw. They increase in size from the first to the third. The crowns are trituberculate. the central projection being the largest. The labial surface is convex; the lingual surface is slightly concave, and is marked off from the neck by a V-shaped ridge, the cingulum. The

Fig. 434.-Tongee, Pharynx, Laryin, etc., of Dog; Dorsal Vien.
The pharynx and soft palate bave been cut medially and reflected, and the cesophagus cut off.

1, Median groove of tongue; 2, loog conical papille of root of tongue: 3, vallate papille: 4, tonsil (drawn out of tonsillar sinus; 5 , floor of pharynx (promineoce here caused by cricoid cartilage and m. erico-arytenoideus dorsalis): 7 . vestibule of laryns; 8, epiglottis; 9, arytenoid cartilage: 10, trachea (membranous part): 11, 11, lateral lobes of thyroid gland; 12, 12', anterior and posterior thyroid vessels. roots are narrow transversely. The lower incisors are smaller than the upper ones. One or two supernumerary teeth may be present.

The canine teeth are large, conical, and curved. The upper canine is separated
${ }^{1}$ Other figures which illustrate the teeth are to be found in the description of the skull.
from the corner incisor by an interval into which the lower canine is received when the jaws are closed. ${ }^{1}$ The lower canine is close to the corner incisor. The root is about an inelı (ea. 2 to 3 cm .) long and is flattened laterally.

The cheek teeth are typically $\frac{6}{7}$, but in brachycephalic breeds they are commonly reduced to $\frac{5}{7}$, and in extreme cases even to $\frac{4}{5}$. The reduction oceurs at either end or at both ends of the series.? The first tooth appears only once. The fourth tooth of the upper row and the fifth of the lower row are muth larger than the rest, and are termed sectorial or carnassial teeth. From these the teeth diminish in size both forward and backward. The upper and lower teeth do not correspond, but rather dovetail. The teeth behind the sectorial ones are tubereulate, i. e., have

Fio. 435.-Skull of Adult St. Bernard Dog, Sculptered to Show the Embedded Parts of the Teete. I1-S. Incisors; (', canmes; Pl-4, premolars; M1-3, molars.
rounded eminences on the masticatory surface. The others are all sectorial in character, i. e., have sharp-edged, peinted projections, the middle one being the most prominent. The premolars are laterally compressed, and are separated by intervals from the eanines and from each other, except in the brachycephatic breeds. The upper molars have wide, somewhat quadrangular crowns, and three roots. The crown of the upper fourth premolar (Dens sectorius) is divided into two pointed lobes and has an antero-medial tuberele; it has three roots. The
${ }^{1}$ In the bull-(log, which is very prognathic ("undershot"), the lower canines are opposite to or slightly in front of the plane of the upper incisors, and the upper canines are about opposite to the first lower cheek teeth. In the epignathic ("overshot") dachshund the lower canines are under or slightly behind the upper ones.
${ }^{2}$ Increase in number also occurs, the supernumerary teeth being at either end of the serits. The occurrence of a third upper molar is not rare.
crown of the first lower molar (Dens sectorius) is compressed laterally and has two pointed, sharp-edged lobes, behind which are one or two tubercles; it has two roots.

The average periods of eruption are given below.

Tooth	Eription	Change
	4 to 5 weeks	
I_{2}	4 to 5 weeks.	4 to 5 months
	4 weeks	
	3 to 4 weeks	4 to 5 months
	4 to 5 months	
	4 to 5 weeks.	5 to 6 months
P_{3}.	3 to 4 weeks	
P_{4}.	3 to 4 weeks	
	4 months	
	upper 5 to 6 months lower $4^{1 / 2}$ to 5 months	
	6 to 7 months	

Fig. 436,-Base of Skull of Cocker Spaniel.
I1-3, Incisors; C, canine: P1-4, premolars; M1-2, molars. Note the crowding of the canines and premolars on account of the shortness of the jaw.

THE SALIVARY GLANDS

The parotid gland is small and is irregularly triangular. Its dorsal end is wide and is divided into two parts by a deep notch into which the base of the ear is received. The ventral end is small and overlaps the mandibular gland. The parotid duct leaves the gland at the lower part of the anterior border, crosses the masseter muscle, and opens into the mouth opposite the third upper cheek tooth.

Small afcessory parotid glands (Clandule parotideæ accessoria) are sometimes found along the course of the duct.

The mandibular gland is usnally larger than the parotid. In large dogs it is ahout two inches (ca. 5 cm .) long and an inch or more (ea. 3 cm.) wide. It is rounded in outline, pale yellow in color, and is enclosed in a fibrous capsule. Its upper part is eovered hy the parotid, but it is otherwise superficial, and is palpable in the angle of junction of the jugular and external maxillary veins. The mandibular duct leaves the fleep face of the gland, passes along the surface of the occipito-mandibuarjs and stylo-glossus, and opens into the mouth on a very inclistinct papilla near the frenum linguas.

The sublingual gland is jink in color and is divided into two parts. The posterior part (Glandula sublingualis grandicanalaris) lies on the orecipito-man-

Fig. 43\%.-Disaection of Head of Dog, Showing Salivary Glands, etc.
a. Ocular muscles; h, pterygonleus medralis (cut); c, stylo-glossus; d, occıpito-mandibularis (cut); e, geuio-glossus; fo grono-hyondeus; g, hyo-glossus; h, thyro-pharyngeus: i, crico-pharyngeus; k, thyro-byondeus; l, zygomatic process of temporal (sawn off); 1, parotid gland; 2, mandibular gland. \therefore, posterior part of sublingual gland; 3', anterior part
 larrinal sland. (Ducts colored red.) (After Ellenberger, in Leisenng's Atlas.)
dibularis muscle in intimate relation with the mandibular gland, but is elearly separable from it after removal of the common filrous capsule. It has a pointed anterior procest. Its duct (Ductus sublingualis major) aecompamies the mandibular duct, and either opens beside it or joins it. The anterior part (Glandula sub) ingualis parvicanalaris) is long and narow; it lies between the mucous membrane of the month and the mylo-lyyoideus, dorsal to the stylo-glossus muscle. It has a number (s to 12) of small ducts (Ductus sublinguales minores), some of which open directly into the mouth, while others join the large duet.

The zygomatic gland (Glamiula zygomatica) ${ }^{1}$ (Fig. 437) is situated in the anterior part of the pterygo-palatine fossa. It is related superficially to the zygomatic arch and the masseter and temporal muscles. Its deep faee is in eontact with the periorbita, the pterygoid muscle, the internal maxillary artery, and the

[^110]maxillary nerve. It las four or five ducts which open near the last upper cheek tooth; one of them (Ductus glandule zygomatice major) is almost as large as the parotid duet; the others (Ductus glandule zygomatife minores) are small.

THE PHARYNX (Fig. 434)

The fornix is narrow. The pharyngeal orifices of the auditive or Eustachian tubes are small and slit-like; the end of the tube canses a rounded projection of the mucous membrane (Torus tubarius). The asophageal aditus is relatively small and is well defined by a transerse fold of the mucous membrane. The museles present no marked differential features, but the hyo-pharyngeus muscle is clearly divided into a kerato-pharyngeus and a chondro-pharyngeus.

THE © E SOPHAGUS

The œsophagus is relatively wide and dilatable exeept at its origin, where there is a constriction termed the isthmus œsophagi. This initial narrowness of the lumen is caused by a prominence of the ventral part of the mueous membrane, underlying which is a thick layer of mucous glands (Fig. 490). The cervical part is at first median and is dorsal to the trachea, hut in the posterior part of the neek it lies to the left of the trachea. The thoracic part continues in this position and ventral to the left longus colli to the base of the heart; here it inelines medially, having the aortic areh on its left, and passes back over the bifureation of the trachea. Continuing hackward between the lungs it usually inclines slightly to the left, passes through the hiatus osophageus, and joins the stomach just to the left of the median plane and ventral to the eleventh or twelfth thoracie vertebra. The muscular tissue is striated and consists mainly of two layers of spiral fibers which cross each other; near the cardia, however, the fibers are longitudinal and circular. There are tubulo-alveolar glands (Cll. œesophage) in the submucosa throughout.

THE STOMACH

The stomach is relatively large. Its capacity in a dog weighing about 40 pounds is about six to seren pints.

Colin estimates the average capacity at about 3 liters (ca. $61 / 2$ pints), with a range hetween 0.6 and s liters (ca. $1 \frac{1}{3}$ to 11^{1} p pints). Neumayer gives the capeaity as 100 to 250 c.e. per kilogram of body-wcight (ca. 2.7 ounces per pound). The average capacity of the human stomach is estimated at 1.2 liters ($2 \frac{1}{2}$ pints)-not much more than a third of that of a dog of medium size.

When full, it is irregularly piriform. The left or cardiae part (Fundus et corpus ventriculi) is large and rounded, while the right or pyloric part (Pars pylorica) is small and eylindrical. When empty, or nearly so, the left sac is strongly contracted; the pylorie part is much less affected by variations in the amount of ingesta.

The parietal surface of the full stomach is very extensive, strongly convex, and faces partly forward, but largely ventrally and to the left. It is related to the liver, the left part of the diaphragm, and the left and ventral abdominal wall as far back as a transverse plane through the second or third lumbar vertebra. The visceral surface is much less extensive and is considerably flattencd; it faces chiefly dorsally and to the right, and is related to the intestine, panereas, and left kidney.

The upper part of the lesser curvature is nearly straight and vertical, but the lower part forms a deep, narrow angle (Incisura angularis), due to the fact that the pyloric part is directed sharply forward and upward. The greater curvature is nearly four times as long as the lesser curvature. In the full stomach it extends considerably behind the left costal areh; ventrally it lies on the abdominal wall about midway between the xiphoid cartilage and the pubis.

The left extremity or fundus is large and rounded; it is the most dorsal part of the organ, and lies under the vertebral ends of the eleventh and twelfth ribs. The pylorie extremity is small

Fig. 438.-Stomach of Digg; Parietal Strface. Organ fixed in stu when well filled. and is directet forward and dorsally; it lies usually opposite to the ventral part of the ninth or tenth intercostal space, and about an inch (ea. 2-3 cm.) to the right of the median plane. It is related to the portal fissure of the liver and to the panereas. The cardia is situated about two to three inches (ea. 5 to 7 cm .) from the left extremity, and is oval; it lies just to the left of the median plane, rentral to the eleventh or twelfth thoracic vertebra.

When empty, or nearly so, the stomach is separated from the ventral abdominal wall by the liver and intestine, and the greater curvature extends back on the left side to the eleventh
or twelfth rib. In this state there is not rarely a marked constrietion between the right and left parts.

The preceding topographic statements are based on observations made on a considerable number of formatin-hardened subjeets, and are to be regarded as average findings in diogs of

Fig. 139.-Stomach of Dog; Visceral Strfate. Organ fixed in situ when it contained small amount of ingesta.
medium size. The cardiac and pyloric ends vary least in position, but the former varies the length of one vertebra and the latter as much as two intercostal spaces. This variation appears to be due, not only to the amount of ingesta in the stomach, but also to the phase in which the diaphragm is fixed.

The serous coat is almost complete. Along the eurvatures it leaves the stomach to form the omenta. The longitudinal muscular fibers are chiefly along the curvatures and on the pyloric part; they are continnous with the external layer of the cesophagus. The oblique fibers are arranged in two layers: the external layer is largely a continuation of the longitudinal fibers of the cesophagus to the body and fundus. The circular layer covers the whole stomach except the fundus, and forms a pyloric sphincter and an antral sphincter. The internal oblique layer is arranged as in the horse, and forms a similar loop-like, cardiac sphineter. Three regions of the mucous membrane exist. Cardiac glands are found in a very narrow pale zone around the cardiac opening, and also scattered along the lesser curva-

Fig. 440.-Stonach of Dag; Fhontal Section

1. Fundus gland region; 2, pyloric part; 3, lesser curvature; 4, cardia; 5, pylorus; 6, oesophagus; 7, duodenum.
ture. The fundus gland region has a thick, reddish-hrown mucous membrane, which lines about two-thirds of the organ. The pyloric mucous membrane is thinner and pale; in the dead subject it is often stained by regurgitated bile.

The greater omentum is very extensive, and in tell-nourished subjects it contains much fat arranged in interlacing strands. Viewed ventrally it covers the entire intestinal mass, extending from the greater curvature of the stomach to the pelvic inlet. It is attached to the greater curvature of the stonach, the left part of the colon, the left branch of the pancreas, and the hilus of the spleen.

The lesser omentum extends from the lesser curvature of the stomach to the portal fissure; to reach the latter it passes in great part between the papillary and left lateral lobes of the liver.

THE INTESTINE

The intestine is short-only about five times the length of the body.
The small intestine has an average length of about thirteen feet (ca. 4 meters). It orcupies most of the alrtominal eavity behind the liver and stomach. The duoclenum begins at the pylorus and passes backward and somewhat dorsally, at first

Fig. 4 41 .- Aboomicial Visfera of Dog.
Ventral view after removal of greater omentum. The stomach is full. a. Cartilage of last rib; b, duenlenum; x, xiphoid cartilage.
on the visecral surface of the liver, then in eontact with the right flank. Near the pelvis it turns mediatly and passes forward along the medial side of the left part of the colon and the left kidney, bends ventrally, and joins the jejunum to the left of the root of the mesentery ${ }^{1}$ The mesoluodenum is given off from the right side of the
${ }^{1}$ The duodenum might be regarded as consisting of a right or retrograde part, an iliae flexure, and a left or recurrent part; the terminal bend is the duodeno-jejunal flexure.
common mesentery; it is a relatively wide fold. The left part of the duodenum is conneeted with the mesocolon by a peritoneal fold; this fold has a free posterior border which is clearly seen when the posterior flexure of the duodenum is drawn away from the sublumbar region. The first part of the mesoluodenum contains the right branch of the pancreas. Its root is blended with the mesocolon to form a common meseutery. The remainder of the small intestine forms numerous coils, and is attached by a wide mesentery to the sublumbar region. The terminal part (ileum) passes forward in the sublumbar region along the medial surface of the crecum and opens into the beginning of the colon at the ileo-colic orifice (Ostium

Fig, 442,-Deer Dissection of Abdominal Viscera of Doe (Female).
Bl., Bladder; B, body, $C_{1} C^{\prime}$, cornua of uterus; O, O^{\prime}, ovaries; L. K., left kidney. The concealed part of the colon is indicated by dotted lines. The spleen is drawn backward and outward.
ileocolicum). The bile duct and smaller panereatic duct open into the duodenum about two or three inches (ea. 5 to 8 cm .) from the pylorus; the larger pancreatic duct opens an inch or two (ca. 2.5 to 5 mm .) further back. The mucous membrane has rery long, thin villi. The duodenal glands occur only close to the pylorus. Aggregated lymph nodules or Peyer's patches are numerous (about twenty in young subjects), and begin in the duodenum. They are usually elliptical in outline, but the last one is band-like, reaches to the end of the ileum, and is four to sixteen inches (ca. 10 to 40 cm .) long in young dogs (Ellenberger). There is an ileocolic valve. ${ }^{1}$ The muscular coat is relatively thick.
${ }^{1}$ The valve does not seem always to be efficient, since experience shows that rectal injections can be made to pass beyond it. This may be partly due also to the fact that the terminal part of the ileum runs horizontally forward, and its orifice faces forward into the beginning of the colon.

The large intestine is two to two and a half feet (ea. 60 to 75 cm .) long in average. Its ealiber is about the same as that of the small intestine, and it has neither longitudinal bands nor sacculations.

The cæcum arerages about five or six inches (ea. $12.5-15 \mathrm{~cm}$.) in length, and is flexuous (Fig. 442). The flexures are maintained by the peritoneum, which attaches it also to the ileum. It is situated usually about midway between the right flank and the median plane, ventrat to the duokenum and the right branch of the pancreas. ${ }^{1}$ Its anterior end opens into the origin of the colon, lateral to the ileo-eolic orifice. The other emel is pointed and blimed.

The colon is attached to the sublumbar region by a mesentery-the mesocolon. It presents three parts, which correspond to the aseending, transverse, and deseending colon of man. The first or right part (Colon

Fig. 443--Sectional View of Ileum, Cerem, and Colon of Dou.

1. Heo-colic orifice: 2 , ceeco-colic orifice; 3, apex of cecum. dextrum s. aseombens) is very short. It passes forward along the metial surface of the first part of the duodenum and the right branth of the panereas till it reaches the pylorie part of the stomach; here it turns to the left and crosses the median plane, forming the transverse part (Colon transversum). The third or left part (Colon sinistrum s. descendens) passes backward in the sublumbar region along the medial borter or ventral surface of the left kidney; it then inclines toward the median plane and is continued by the rectum. The caliber of the colon is about the same thronghout. It has no bands nor sacculations. The mesentery of the colon is termed the mesocolon; it is giren off from the left side of the common mesentery. ${ }^{2}$

The mucous membrane of the cecom contains numerous solitary lymph norlules which are circular, with a central depression; some are present also in the first part of the eolon.

The rectum is almost completely eovered with peritonerm, the tine of peritoneal reflection being muler the secomd or third coccygeal vertebra. At the junction of the rectum and anus the mucous membrane hats a stratified squamous epithelium, and contains the anal glands. A small opening on rither side leads into two lateral anal sacs (Sinus paranales); these are usually about the size of a hazel-mut, and contain a dirty gray, fatty substance, which has a peculiar and very umpleasant odor. The skin which lines these pouches eontains eoil-glands. Further back the skin contains large sebeteous glands and peculiar circumanal glands.

The retractor ani muscle is extensive. It arises from the shaft of the ilium, the pubis, and the symphysis pelvis, and passes upward and hackward to end on the

[^111]first coccygeal vertebræ and the sphincter ani externus. The retractors, together with the coccygei, form a sort of pelvic diaphragm, analogous to that of man.

THE LIVER

The liver is relatively large, weighing usually about 3 per cent. of the bodyweight. It is divided into five chief lobes by fissures which converge at the portal fissure. When the gland is ex-
amined in the soft condition the lobes may be spread out so a- to be all visible (Fig. 44), but when the organ is hardened in situ the lobes overlap to a considerable extent (Figs. $445,446)$.

The left lateral lobe is the largest, and is oval in outline. The left central lobe is smaller and is prismatic. The right central lobe is second in size, and presents a somewhat tongue-shaped quadrate lobe, marked off by the deep fossa in which the gall-bladder lies.

Fig. 44.-Liter of Dog. Soft specimen sketched with lobes drawn apart. The right lateral lobe is third in size, and is oval in outline. On its visceral surface is the large caudate lobe; this consists of two parts-on the right, the caudate proeess, on the left, the papillary process, both often being subdivided by secondary fissures.

Fig. 445.-Liver of Dog; Parietal Scrface. 1, Hepatic veins opening into posterior vena cava; 2, coronary ligament; 3, falciform ligament.

When hardened in situ, the gland presents the following characters: The parictal surface is strongly convex in conformity with the curvature of the diaphragm and the adjacent part of the ventral wall of the abdomen, with which it is in contact.

The visceral surface is in general concave, hut is irregular in adaptation to the viscera in contact with it. The largest of these is the stomach, and the eonfiguration of the liver varies greatly in accordance with the degree of fulness of that viseus. When the stomach is well filled, there is a ridge on the liver which eorresponds to the lesser eurvature. To the left of this is a large coneavity adapted to the body and fundus of the stomach; and on the right is a smaller impression of the pyloric part of the stomach, the first part of the duodenum, and the anterior part of the

Fig. 446--Liyer of Dog, Visceral Strface; Hardened in situ.
Left central lube, gall-bladder, and great part of right central lobe not visible,
right branch of the pancreas. Dorsal to the favity for the pyloric part of the stomach is a deep depression, and at the bottom of this is the portal fissure. To see the latter the papillary and caudate lobes must be drawn apart. The hepatic artery enters the liver at the clorsal part of the fissure, the portal wein enters centrally, and the hepatie duct emerges at the ventral part. The gall-btadeder is usually not visible till the right lateral and central lobes are drawn apart.

When the stomach is empty and contracted, the visceral surface of the liver is strikingly different. There is then a shallow impression for the left part of the stomach on the left lobe and a large convex area, redated to the small intestine and a mass of omentum. The pyloric and duorlenal impressions are not much changed.

The dorsal border presents a deep renal impression on its right part. The posterior vena cava passes ventrally and forward, at first in a derp groove on the caudate lobe, then largely embedded in the parietal surface of the right lateral lobe; it receives two or three large hepatic veins just before piercing the diaphragm.

The cosophageal notch is large, and is occupied on the right by the thiek margin of the hiatus α sophagus. The remainder of the cireumference is thim, and is cut into by deep fissures which separate the lobes. The ventral border lies on the abdominal wall, a variable distance behind the xiphoid eartilage. The left border is also variable, but usually extends back ventrally as far as the tenth intereostal space or eleventh rib. The right border corresponds more or less closely in direction with the costal arch; the end of the caudate process is ventral to the right kidney, opposite to, or a little behind, the last rib.

The gall-bladder lies in the fossa vesica fellea, between the two parts of the right eentral lobe; it does not reach to the

Fig. 447.-Spleen of Dog; Pabtetal Surface. yentral border of the liver. The eystic duct joins the hepatic duct at the ventral part of the portal fissure, forming with it the lile duct (Ductus choledorhus); the latter passes to the right and opens into the duodenum, about two or three inches (ca. $\overline{5}$ to 8 cm .) from the pyiorus.

Of the ligaments, the coronary and right

Fig. 48. Spleen of Dog; Visceral. Strface.
Fig. 447 is from subject in which the stomach was full, while the organ shown in Fig. 44 s was fixed in situ when the stomach contained little food.
lateral are well developed, but the left lateral and falciform are small; a ligament extends from the candate process to the right kidney.

THE PANCREAS

The pancreas is V-shaped, consisting of two long narrow branches, which meet at an acute angle behind the pylorus. The right branch extends backward above the first part of the duodenum, below the caudate lobe of the liser and the right kidney, and ends usually a short distance behind the latter; it is enclosed by the mesoduodenum. The left branch passes to the left and backward between the
visceral surface of the stomach and the transverse colon, and ends at the anterior pole of the left kidney. There are usually two pancreatic ducts. The smaller one upens into the duodenum with the bile duct or close to it; the larger one opens into the bowel an inch or two (ca. 3-5 cm.) further back.

THE SPLEEN

The spleen is bright red in color in the fresh state. It is somewhat falciform, long, and narrow; the ventral part is the widest. Its weight in a dog of medium

Fig. 149.-Prosentios of Fihcers of Dug (Male) on Body Wi ill; left Side.
A. C, D, Apical, cardiac, and diaphragmatic lobes of lang; P, pericardium; $P^{\prime} r$, prostate. Costal attachment and meduan line of diaphragm are dutted.

Fig. 4.50.-Projection of Viacera of Dog (Fevale) on Booy Wall; Right Sioe.
A. C. D, Apical, cardias, and diaphragmatic lobes of right lung: P, pericardium; K, right kidney; Pan., nght branch of panereas; O. ovary: ℓ, corpu of uterus. Costal attachmeot and median line of diaphragn are dotted; also posterior contour of storach.
size is $1^{1} 2^{2}$ - ounces (ta. 50 gm .). It is freely movable, and, with the exception of its dorsal end, varies much in position and shape. The dorsal end is ventral to
the vertebral end of the last rib and the first lumbar transverse process; it fits into the interval between the left crus of the diaphragm, the left end of the stomach, and the left kidney. When the stomach is full, the long axis of the spleen corresponds to the direction of the last rib. Its parietal surface is convex and lies largely against the left flank. The visceral surface is concave in its length, and is marked by a longitudinal ridge, on which the vessels and nerves are situated, and to which the greater omentum is attached. The spleen is so loosely attached by the omentum as to be regarded as an appendage of the latter.

The dorsal end of the spleen does not vary in position, but the rest of the organ is very varable. When the stomach is full, the part of the viseeral surfare of the spleen in front of thie hilus is usually in apposition with the left part of the greater curvature of the stomach (as in the horse). It may have a similar position when the stomach is not full, and may be in contact with the latter only to a small extent dorsally. It is not rare to find the spleen lying along the dorsal part of the left flank, with its long axis almost longitulinal; this is liable to be the ease when the stomach is empty and contracted. In this condition the spleen shuts the left kidney entirely off from contact with the flank.

THE RESPIRATORY SYSTEM

The respiratory apparatus (Apparatus respiratorius) comprises the nasal eavity, ${ }^{1}$ the pharymx, the larynx, the trachea, the bronehi, and the lungs. The lungs are the central organs in which the exchange of gases between the blood and the air takes place; the other parts of the system are passages by which the air passes to and from the lungs. The nasal cavity opens externally at the nostrils, and communicates behind with the pharynx through the choane or posterior nares; it contains the peripheral part of the offactory apparatus, which mediates the sense of smell. The pharyx is a common pasiage for the air and food-a remnant of the primitive ambryonic arrangement; it has been deseribed with the digestive tube. The larynx is a complex valvular apparatus which regulates the volume of air passing through the tract; it is also the chief organ of voice. The trachea and the bronchi formed by its bifureation are permanently open conducting tubes. The thorax, the pleural sacs which it comtains, and the muscles which inerease or diminish the size of the cavity are also parts of the system. The bones, joints, and museles of the thorax have already been described.

For topographic reasons two duptless glands, the thyroid and the thymus, are usually deseribed in this section, although they are in no sense a part of the respiratory system.

RESPIRATORY SYSTEM OF THE HORSE THE NASAL CAVITY

The nasal cavity (Camum nasi), the first segment of the respiratory tract, is a long, somewhat cylindrical passage, onclosed by all the facial bones except the mandible and hyoid. It is separated from the month ventrally by the palate. It opens externally at the nostrils, and communicates posteriorly with the pharynx through the posterior nares or chomse.

The nostrils (Nares) are somewhat oval in outline, and are placed obliquely, so that they are closer together below than above. They are bounded by two alæ or wings (Alee nasi), which meet above and below, forming the commissures. The lateral ala is concave; the medial one is eonvex above, coneave helow. The prominenee of the medial ala is caused by the lamina of the alar eartilage; this prominence, together with the alar fotl whieh extends baekward from it, partially divides the nostril into a large lower part and a small upper part, which are popularly distinguished as the "true" and "false" nostril. ${ }^{2}$ The superior commisture is narrow, the inferior one wide and rounded. If the finger is passed into the nostril at the upper commissure, it entors a blind eutameous pouch. This cul-de-sac, the diverticulum nasi, extends backward to the angle of junetion of the nasal bone and the nasal process of the premaxilla. In order to enter the nasal eavity the finger should be introluced at the inferior commissure and directed toward the septum nasi. The naso-lacrimal orifice (Ostium nasolacrimale), the external opening of

[^112]the naso-lacrimal duct, is seen when the nostril is dilated; it is situated on the floor of the vestibule, anout two inches (ca. 5 cm .) from the lower commissure, perforating the skin close to its junction with the mucous membrane. (It is not rare to find one or two accessory orifices further back.)

Structure.-The skin around the nostrils presents long tactile hairs as well as the ordinary ones. It is continued around the ale and lines the vestibule. The skin of the diverticulum is thin and usually black, and is covered with very fine hairs; it is provided with numerous sehaceons glands. The medhal wing is supported by the alar cartilage (Cartilago alaris), which is

Fig 451.-Cast of Left Nostril, Nasal Divertictlem, anu Naxal Veatialle of Horse; Dorsal Fiew.
N, Nostril; D, diverticulum; 1, superior commissure of nostril; 2, inferior commissure: 3. space ocrupied by alar fold; 4, groove occupied by dorsal turbinate fold; 3 , dorsal meatus.
shaped somewhat like a comma, the convex margin being medial (Fig. 453). The cartilages are attached by fibrous tissue to the extremity of the

Fig. 452.-Cross-section of Nasal Region of Horse.
The section is eut about two inches (5 cm .) behind the nostrils and a little more than hslf an inch behind the labial commissure.
a, Dorsal meatus; b, middle meatus; c, ventral meatus; d, diverticulum nasi; e, dorsal turbinate fold; f, ventral turbinate fold: g, prominence caused by venous plexus which extends back on lower part. of ventral turbinate; 1, nasal bone; 2, cartilage of septum nasi; 3, 4, palatine and nasal processes of palatine bones; 5, maxilla; 6 , tendon of levator labii superioris proprius: 7, part of lateralis nasi muscle which goes to eartilage of ventral turbinate; x, s^{\prime}, levator nasolabialis; 9 , dilator naris lateralis; 10, buccinator; 11, vomero-nasal organ; 12, nasolacrimal duct (wide part) ; 13, lateral nasal artery; 14, 14', branches of superior labial artery; 15, palatine artery; 16, labial branches of infraorbital nerve; 17 , external nasal nerve; 18 , hard palate: 19, cheek; 20 , superior labial vein. The veins (black) are filled by a natural injection. septal cartilage. Each consists of an upper, quadrilateral curved plate, the lamina, and a narrow cornu which curves ventro-laterally, supporting the medial wing and the inferior commissure, but not entering into the formation of the lateral wing. The lamina causes the projection of the upper part of the medial wing, from which the thick alar fold (Plica alaris) passes backward along the lateral wall of the nasal cavity to join the mucous foll which
encloses the cartilaginous prolongation of the ventral turbinate bone. ${ }^{1}$ The extremity of the cornu usually eanses a slight projection of the skin a short distance behind and below the inferior commissure.

The museles of the nostrils have been described (p. 258).
Vessels and Nerves.- The arteries are branches of the palato-labial, superior labial, and lateral nasal arteries, and the bood is conveyed away by corresponding vins. The lymph vessels go to the mandibular lymph glands. The nerves are derived from the infraorbital nerve (sensory) and from the facial nerve (motor).

The masal cavity is divided into two symmetrical halves by the median septum nasi (Figs. 452, 455, 456). The osseous septum (Septum nasi osseum) is formed behind by the perpendieular plate of the ethmoid and ventrally by the vomer. A few ridges on the former correspond to the etlmoidal meatuses. The major part of it, however, is formed by the

Fig, 4.33.-Nisil Cartilages of IIorse; Dorsal View. 1. Interior extremity of cartilage of septum nasi; 2, foramen incisivum. cartilage of the septum nasi (Cartilago septi nasi). The surfaces of the cartilage are marked by faint grooves for the vessels and nerves which course over it. The dorsal border is attached atong the frontal and nasal sutures, and extends heyond the apices of the nasal lones about two inches (ca. 5 cm .). From this border a thin, narrow plate, the parietal cartilage (Cartilago parictalis) curves outward for a short distance on either side. Near the nostrils these plates are somewhat wider, partially making good the defect (naso-maxillary notch) in the bony wall of the ravity in this situation. The ventral border is thick and rounded; it lies in the groove of the vomer and the palatine processes of the premaxille; its anterior part occupies the space between the premaxillary bones. A proeess from it extends into the palatine fissure, which it almost completely fills; the palatime end of the process lies in the submucous tissue of the hard palate, and the padatine artery turns medially hetween the cartilage and the bone. The posterior border is continuous with the perpendieular plate of the ethmod bone. ${ }^{2}$ The alar cartilages are attached to the anterior extremity by fibrous tissue in such a manner as to allow very free movement-in fact an actual joint may be present. The ventral part of the cartilage is about half an inch (ea. 1 cmi .), the middle part about one-tenth of an inch (ea. 2.5 mm.), and the dorsal part about a rquarter to a third of an inch (ca. 6 to 8 mm .) in thickness.
${ }^{1}$ When the nostril is fully dilated it is circular in outline, and the so-called false nostril is effaced by the lamina of the atar cartilage being brought in contact with the superior commissure.
${ }^{2}$ The cartilage is to be regardest as an mossified part of the mesethmoid. It will be noted that the line of demareation between the bone and the cartilage is irregular and varies with age: extensive ossification (or calcifieation) of the cartilage is commonly found in old animals. The process often results in the formation of calcareous islands in the cartilage.

The two turbinate bones project from the lateral wall, and divide the outer part of the cavity into three meatuses-dorsal, middle, and ventral (Figs. 454, 455, 456).

The dorsal nasal meatus (Meatus nasi dorsalis) is a narrow passage, bounded dorsally by the roof of the cavity, and ventrally by the dorsal turbinate bone; it = posterior end is elosed by the junction of the inner plate of the frontal bone with the eribriform plate and lateral mass of the ethmoid. It transmits air to the olfactory region.

The middle nasal meatus (Meatus nasi medius) is between the two turbinate bones. It is somewhat larger than the dorsal meatus, and does not extend back so far; it ends near the great ethmoturbinate and the ethmoidal meatuses. In its posterior part is the extremely narrow, slit-like interval by which the maxillary sinus communicates with the nasal cavity-the naso-maxillary opening (Aditus naso-maxillaris). The opening, which is normally a mere fissure, is not visible from the nasal side, being concealed by the overhanging dorsal turbinate. A fine flexible probe, passed outward and somewhat backward between the turbinate

Fig. 454. Nasal Cavity of Horse; Sagittal Section with Septcu Removeo.

1. Dorsal turbinate fold; 2, alar fold, containing cartilaginous prolongation of ventral turbinate; 3 , arrow pointing to naso-maxillary openiog, which is coocesled by dorsal turbinate bone; 4 , cranial cavity: 5 , sphenoidal sinus; 6 , hamulus of pterygoid bone. The olfactory mucous membrage is shaded. Dotted lines indicate anterior limit of uncoiled parts of turbioate booes, which ioclose parts of frootal aod maxillary sinuses.
bones, enters the maxillary sinus; if introduced a little further in the same direction, it usually passes through the orifice of communieation between the maxillary sinus and the frontal sinus and enters the latter. A small part of the fissure usually brings the anterior division of the maxillary sinus into communication with the nasal carity. The spaces enelosed by the coiled parts of the turbinates also open into the middle meatus. This passage may be characterized as the sinus-meatus, but it also conduets air to the olfactory region.

The ventral nasal meatus (Meatus nasi ventralis) is situated between the ventral turbinate and the floor of the eavity. It is much larger than the other two, and is the direet passage between the nostrils and the pharynx. The small, slitlike orifice of the vomero-nasal organ and the ineisive or naso-palatine duet is situated in the floor of the anterior end of the meatus.

The common nasal meatus (Meatus nasi communis) is situated between the septum and the turbinates, and is continuous laterally with the other meatuses. It is very narrow dorsally, but widens ventrally.

The lateral masses of the ethmoid bone project forward into the pesterior part (fundus) of the nasal cavity. Between the ethmoturbinates, of which each
mass in composed, there are three principal and numerous small passages, the ethmoidal meatuses (Meatus ethmoidales).

The choanæ or posterior nares are two elliptical orifices by which the nasal cavity and pharynx communicate. They are in the same plane as the flow of the

Fig. 45, Chush-section of Hean of Morse.
The section is cut midway between the medial cantlus and the anterior ent of the facial crest and is a front view.

1. Aeptutn nasi; 2, 3, 4, dorsal, middle, and ventral meatus nasi; 5, common meatus nasi; 6. cavity of dorsa' turhanate bone w. r., turbinate part of frontal sinus) : 7 , cavity of vontral turbinate bone (i, \ldots, turbinate part of maxillary simus); 勺, maxillary sums; 9, commomeation betwen 7 and sover infraorbital canal; 10, nuso-lacrimal duet; 11, infraorbatal nerve and canal; 12, m. levator labii superioris proprius; 13, month cavity; 14, palatine artery; 15 , fifth opper cheek tooth (posterior part): 16, sixth lower check tooth (anterior part): 17, m. buerinator; 14, hard palate: 19. vena reflexat ; 20, superior buccal giands; 21, buccinator vessels and nerve; 22, slveolar vessofs and nerve of mandible; 23, lingual artery; 24, mm. genio-glossi; 25, m, hyo-glussus (number placed hetween two radicles of lingual vein); 2f; m. stylo-glossus; 27, m. mydo-hyoidens; 2h. m, genio-byoideus; 29, lingual nerve; 30, hypoglossal nerve; 31. sublimgal artery: 32, m. digastricus (anterior belly). The mandhbular duet is shown in the fat lateral to the genio-hyoideus but is not marked.
nasal cavity, and are separated from sath othor by the vomer. They are, taken together, alout two inches (eat. 5 cme.) wide and three to four inches (eat. S to 10 (mn.) long.

The nasal mucous membrane (Membrana mucosa nasi) is thick, highly vascular, and is, in gencral, firmly attarhed to the underlying periosteum and peri-
chondrium. It is continuous in front with the skin which lines the nostrils, and behind with the mucous membrane of the pharynx. It is also continuous at the naso-maxillary opening with the very thin and much less vascular mucous membrane which lines the paranasal sinuses. In the anterior part of the cavity it forms prominent thick folds on the lateral wall, which extend from the turbinate bones to the nostril. There are usually two dorsal turbinate folds which unite anteriorly.

Fig. 4.jg. Crosi-semtion of Heqo of Horse. The Section Passes Throtgh the Meolal Canthi ano is Tiewed from Behino.

[^113]The upper one cncloses a thin plate of cartilage which is continuous with the dorsal turbinate bone. The ventral turbinate fold is curved, and encloses an \sim shaped cartilaginous plate which prolongs the ventral turbinate bone; this fold is continuous with the alar fold of the nostril, and forms with it the upper margin of the entrance from the nostril to the nasal cavity. Below this there is a roundled ridge produced by the nasal process of the premaxilla. The mucous membrane of the
greater part of the carity (Regio reppiratoria) is red in color, and is covered with a stratified ciliated epithelium. It contains numerous tubulo-alveolar nasal glands (G]andute nasales). The sulmucosa contains rich venous plexuses which form in certain situations a sort of cavernous tissue (Plexus cavernosus nasalis), composed of several strata of fredy anastomosing veins, between which there are unstriped muscle-fibers. This arrangement is most marked in the turbinate folds, on the lower part of the rentral turbinate lone, and the lower part of the septum. The mucous membrame of the vestibule presents numerous small depresions (openings of gland ducts), and is covered with stratified squamous epithelium. On the posterior part of the lateral masses of the ethmoid and the adjacent part of the dorsal turbimate and the septum (Regio olfactoria) the mucous membrane is hrown-ish-yellow in color and thicker; it eontains the olfactory nerve-emelings in a special non-riliatedepithelium. In it are numerous olfactory glands (Cilandule olfactoriac); these are long, tubular, and often branched.

The vomero-nasal organ (trganon vomeronasale) is situated on the floor of the nasal cavity, on cither side of the ventral loorder of the septum (Fig. 452). It consists of a tubular cartilage (Cartilago vomeronasalis) lined with mucous membrane (Ductus vomeronasalis), to which fibers of the olfactory nerve may be traced. Its anterior part communicates with the nasal cavity ly a slit-like orifice in common with the incisive or naso-palatine duct. The posterior hlind end is in a transwerse plane through the second or third cheek tooth. The average length of the organ is about five inches (ca. 12 (cm.).

The ductus incisivus (or maso-palatine duet) is a small mucous tube, an inch or more (cal. $2.5-3 \mathrm{~cm}$.) in length, which extends oblipuely through the palatine fissure. Its masal end commumicates with the nasal cavity through a slit-like opening in common with the vomero-nasal organ. The palatine extremity ends bindly in the submucous tissue of the hard palate.

The paranasal sinuses are described in the osteology:
Vessels and Nerves.-The arteries are branches of the ethmoidal, sphemopalatine, palatine, superior labial, and lateral nasal arteries. The lhool is carried away by corresponding veins. The lymph vessets go to the mandibular and pharyogeal lymph glands. The nerves come from the olfactory and trigeminal nerves.

THE LARYNX

The larynx is a short tuhe which comects the pharymx and trachea. It is a complex valvular apparatus, which regulates the volume of air in respiration, pretents aspiration of foreign bodies, aml is the chicf organ of voice.

It is situated partly lootween the medial pterygoid muscles, partly in the neck between the parotid glands. ${ }^{2}$ Its long axis is practically horizontal in the ordinary position of the head and neck. It is related dorsally to the pharyns and the origin of the osophagus. Ventrally it is covered hy the skin, fascia and sterno-hyoid and omo-hyoid muscles. Laterally it is related to the parotid and mandibular glands and to the meelial pterygoid, occipito-mandibularis, digastricus, stylo-hyoil. and pharyngeal constrictor muscles. It is attached to the body and thyroid cornua of the hyoid bone, and thus indirectly to the base of the cramium. Its cavity communicates dorsally with the pharymx, posteriorly with the trachea. The skeleton of the larynx consists of a framework of cartilages, which are connected by joints and ligaments or membranes, and moved by extrinsic and intrinsic muscles. It is lined with mucous membrane.

[^114]${ }^{2}$ In the ordinary position of the head and neck, and while the parts are at rest, ahout half of the larynx lies between the hranches of the mandible; when the head and neek are extendel, proportionately more of the larynx lies behind a plase through the posterior borders of the rami.

Cartilages of the Larynx

There are three single cartilages and one pair; the single cartilages are the cricoid, thyroid, and epiglottic; the arytenoid cartilages are paired.

The cricoid cartilage (Cartilago cricoidea) is shaped like a signet ring. The dorsal part is a broad, thick, quadrilateral plate termed the lamina; the external (dorsal) surface of this is marked by a median ridge (Crista mediana) separating two shallow cavities, from which the dorsal erico-arytenoid muscles arise. On either side of these depressions are two articular facets. The anterior facet (Facies articularis arytenoidea) is at the anterior horder, is oval and convex, and articulates with the arytenoid cartilage. The posterior facet (Facies articularis thyreoidea) is situated on the front of a ridge, a short distance from the posterior border; it is concave, and articulates with the posterior cornu of the thyroid cartilage. The ventral and lateral parts of the ring are formed by a eurved band, called the arch (Areus), which is narrowest ventrally. The lateral surfaces of the arch are grooved

Fig. 45t.-Laryngeal Cartilages and Part of Trachea of Hohse; Right Viem.
For "thyroid midg" read "thyroid lamina."
for the crico-thyroid muscle. The anterior border of the lamina is thiek and slightly concave; the posterior border is thin and irregular. The anterior border of the arch is concave ventrally and gives attachment to the crico-thyroid membrane; laterally it is thicker and gives attachment to the crico-arytenodeus lateralis muscle. The posterior border of the cartilage is attached to the first ring of the trachea by the crico-tracheal membranc. The internal surface is smooth and is covered with mucous membrane.

The thyroid cartilage (Cartilago thyreoidea) consists of a median thickered portion, termed the body, and two lateral laminse. The body forms ventrally a slight prominence (Prominentia laryngea), which can be felt, but is not visible in the living subject; it is related dorsally to the base of the epiglottis, which is attached to it by an elastic ligament. The laminæ or wings spring from the body on either side and form a large part of the lateral wall of the larym. Each is a rhomboid plate, presenting a slightly convex lateral surface, which is divided into two areas by an oblique line (Linea obliqua), on which the thyro-hyoid and thyropharyngeus museles meet. The dorsal horder is nearly straight; it gives attachment to the pharyngeal fascia and the palato-pharyngeus muscle, and bears a cornu at each end. The anterior cornu (Cornn orale) articulates with the cartilage of the
thyrefid comu of the hyoid bone; below it is a notch (Fissura thyreoidea), whith is converted into a foramen (Foramen thyreodeum) by a fibrous banel, and transmits the anterior laryngeal nerse to the interior of the larym. The posterior cornu (Cornu aborale) articulates with the cricoid cartilage. The ventral border joins the body in front, and behind tiverges from its fellow to incluse a triangular space, the thyroid noteh (Incisura thyreoidea aboralis), which is oecupied ly the crico-thyroid membrane. The anter-

Fig. his-- (ricoid Cartilage of Morse; Left Antlerolateril. Vien.

Fig. 4o! Thy Thoid Cartilage of llohse; Vextral Vien.
ior border is slightiy conves, and is attached to the hyoid bone by the thyre-hyoit mombrane. The posterior lowder werlaps the areh of the crieod cartilage, and

gives attachment to the erico-thyroid muscle. The medial surface is concave, and is partly cosered by mucous membrane.

The epiglottic cartilage (Cartilago epiglottica), usually called the epiglottis for the sake of brevity, is situated above the body of the thyroid cartilage and eurves
toward the root of the tongue. It is shaped somewhat like a pointed ovate leaf, and presents two surfaces, two borders, a base, and an apex. The oral (or anterior) surface is concave in its length, convex transversely; the pharyngeal (or posterior) surface has the reverse configuration. The borders are thin, irregular, and somewhat everted. The base is thiek, and is attached to the dorsal surface of the body of the thyroid cartilage by elastic tissue. From each side of it a cartilaginous bar projects upward and backward; these are the cuneiform processes (Processus. (cuneiformes) and correspond to the cuneiform cartilages of man. The apex is pointed and curved ventrally. Nearly all of the epiglottic eartilage is covered with mucous membrane. It usually projects into the isthmus faucium, but is often on the pharyngeal side of the soft palate.

The arytenoid cartilages (Cartilagines arytenoideæ) are situated on either side, in front of the cricoid, and partly medial to the laminæ of the thyroid cartilage. They are somewhat pyramidal in form, and may be deseribed as having three surfaces, three borders, a base, and an apex. The medial surface is concavoconvex, but very slightly curved, and is smooth and covered by mucous membrane. The lateral surface is concave and is separated from the lamina of the thyroid cartilage by the crico-arytenoideus lateralis and vocalis muscles, and the laryngeal saccule. The dorsal surface is also concave, and is covered by the arytenoideus muscle, which is attached to it. The dorsal and lateral surfaces are separated (except in front) by a ridge which increases in size toward the lateral angle of the base, where it forms a rounded prominence, the muscular process (Processus muscularis). The anterior and posterior borders are convex; they converge ventrally to a thin, wide angle, the vocal process (Processus vocatis). The process is so named because it furnishes attachment to the vocal ligament. The dorsal border forms a deep notch with the apex. The base is coneave and faces chiefly backward; it presents laterally an oval coneave facet (Facies articularis) for articulation with the anterior border of the lamina of the cricoid cartilage. The medial angle of the base is attached to its fellow by the transverse arytenoid ligament. The apex (Cartilago corniculata) curves upward and backward, forming with its fellow the pitcher-shaped lip from which the cartilages derive their name.

The ericoid and thyroid cartilages and the greater part of the arytenoid cartilages are hyaline. The apices and vocal processes of the arytenoid and the epiglottis (including the cuneiform processes) consist of elastic cartilage; they show no tendency toward ossification at any age. The thyroid and rricoid cartilages regularly undergo considerable ossification; the process hegins in the body of the thyroid, and often involves the greater part of the cartilage. ${ }^{1}$

Joints, Ligaments, and Membranes of the Larynx

The crico-thyroid joints (Articulationes erico-thyreoidese) are diarthroses formed by the apposition of the convex facets on the ends of the posterior cornua of the thyroid eartilage with corresponding facets on the sides of the cricoid cartilage. The capsule is thin, but is strengthened by aceessory bands dorsally, laterally, and medially. The movements are chicfly rotation around a transverse axis passing through the centers of the two joints.

The crico-arytenoid joints (Articulationes crico-arytænoidea) are also diarthrodial. They are formed by the apposition of the convex facets on the anterior border of the cricoid cartilages with the concave facets on the bases of the arytenoid cartilages. Each has a very thin, loose capsule, strengthened by accessory bundles

[^115]dorsally and medially. The most important movement is rotation of the arytenoid cartilage about a longitudinal axis so that the socal process swings outward (ab)duction) or inward (adduction), carrying the vocal cord with it. Another movement here is rotation about a transverse axis, in which the apical part of the cartilage is raised or lowered. The arytenoid is alse capable of slight inward or outward gliding movement.

The thyro-hyoid joints (Articulationes hyo-thyrenideæ) are formed by the anterior cornua of the thyrod cartilage and the cartilaginous extremitios of the thyroid comua of the hyoid lone. They are diarthroses and the joint capsule is reinforced by a relatively strong thyro-hyoid ligament. The thyroisl cormu has here a cartilaginous prolongation about a quarter of an inch (ca. 6 mm .) in length. The chief movement is rotation around a transverse axis passing through the two joints.

The crico-thyroid membrane (Alembrana crico-thyreoidea) occupies the thyroid moteh and "xtends backward to the areh of the ericoid cartilage. It is triangular in form, and is attached by its base to the anterior border of the arch of the cricoid cartilage, while its borders are attached to the margins of the thyroid noteh. It is strong, tightly stretched, and composed hargely of elastic tissue. It is reinforeed ventrally ly longitudinal fibers, dorsally by fibers which stretch across the thyroid noteh.

The thyro-hyoid membrane (Membrana hyo-thyreoidea) comnects the body and anterior borders of the thyroid eartilage with the booly and thyrod cornua of the hyoid bone.

The hyo-epiglottic ligament (Lig. hyo-epiglotticum) attaches the lower part of the oral surface of the epiglottis to the body of the hyoid bone. It forms an dastic sheath for the hyo-epiglottic musele. Ventrally it blends with the thyrohyoid membrane, and dorsally it is not woll defined.

The thyro-epiglottic ligament (Lig. thyreo-epigloticum) is strong and thick; it is composed ehiefly of elastic tissue. It comnects the lase of the epiglottis with the bedy and the adjaeent medial surfaces of the lamine of the thyroid eartilage. Other fibers attach the cuneiform processes somewhat loosely to the thyroid lamina.

The transverse arytenoid ligament (lig. arytenoideum transversum) is a slender band which comects the medial angles of the bases of the arytenoid cartilages.

The vocal (or posterior thyro-arytenord) ligament (Lig. vocate) underlies and is intimately adherent to the mucous membrane of the true vocal cord. It is thin and elastic and is attached ventrally to the body of the thyroid cartilage and the erico-thyroid menbrane close to its follow of the opposite side, and ends dorsally on the processus vocalis of the arytenoid cartilage.

The ventricular (or anterior thyro-arytenoid) ligament (Lig. ventriculare) is included in the false vocal cort. It consists of loosely arranged bundles which arise chiefly from the euneiform process and end on the lateral surface of the proressus vocalis and adjacent part of the arytenoid cartilage.

The crico-tracheal membrane (Nembrana arico-trachealis) connects the ericoid cartilage with the first ring of the trachea.

Muscles of the Larynx

A. Extminsic Muscles

The sterno-thyro-hyoideus is deseribed on p. 268.
The thyro-hyoideus (N1. hyo-thyreoideus) is a flat, quadrilateral muscle, which lies on the lateral surfare of the thyrod lamina and the lateral part of the thyrohyoid membrane. It arises from the boty and thyroind cornu of the hyoid bone (almost meeting the opposite muscle), and ends on the oblique line on the lamina
of the thyroid cartilage. Its action is to draw the laryns toward the root of the tongue. It is related laterally to the external maxillary vein and the anterior part of the mandibular gland.

The hyo-epiglotticus (M. hyo-epiglotticus) is a feeble muscle which occupies a median position above the central part of the thyro-hyoid membrane, enclosed by an elastic sheath, the hyo-epiglottic ligament. It arises from the body of the hyoid bone by two branches which unite and are inserted into the front of the base of the epiglottis. Its action is to draw the epiglottis toward the root of the tongue.

B. Intrinsic Muscles

The crico-thyroideus (M. crico-thyreoideus) is a short muscle which fills the groove on the lateral surface of the cricoid cartilage; its fibers are directed dorsally and somewhat forward. It arises from the ventral part of the lateral surface and posterior edge of the cricoid cartilage, and is inserted into the posterior border and

Fig. 462.-Lary ngeal Mescles of Horse, Seen from leet Stoe After Removal of Manor Part of Layina of Thyroid Cartilage.
a Kerato-hyoideus; b, thyro-hyoideus; c, crico-thyroideus; d, sterno-thyroideus; e, ventricularis; f, vocalis; g, crico-arytenoideus lateralis; h, crico-arytenoideus dorsalis: i, arytenoideus traosversus; 1 , lingual process; 2 , small cornu. 3 , thyroid cornu, of hyoid bone: 4 , thyroid cartilage; 5 , cricoid cartilage; 6 , epiglottis: τ, apex of arytenoid cartilage: 8 . trachea: 9 , muscular process of arytenoid; 10, lateral lobe of thyroid glaod- 10 , isthmus of thyroid gland; 11, laryogeal saccule. The saccule is larger than it is represented in this figure, aod extends almost to the vocal process. (Elleoberger-Baum, Aoat. d. Haustiere.)
adjacent part of the lateral surface of the lamina of the thyroid cartilage. Its action is to draw the thyroid cartilage and the ventral part of the cricoid cartilage together. In this action the cricoid cartilage is probably rotated about a transverse axis through the crico-thyroid joints, carrying the bases of the arytenoid cartilages with it and thus tensing the vocal cords.

The crico-arytenoideus dorsalis (11. crico-arytænoideus dorsalis) ${ }^{1}$ is a strong, somewhat fan-shaped muscle, which, with its fellow, covers the dorsal surface of the lamina of the cricoid cartilage. It is partially divisible into two layers. It has a broad origin on half of the lamina of the cricoid cartilage, including the median ridge, and its fibers converge to be inserted into the processus muscularis of the arytenoid cartilage. Its action is to dilate the rima glottidis by rotating the arytenoid cartilage so as to carry the vocal process and cord outward (abduction).

The crico-arytenoideus lateralis (A. crico-arytænoideus lateralis) lies on the merlial face of the thyroid lamina. It arises from the anterior border of the lateral part of the arch of the cricoid cartilage. The fibers pass in a dorsal direction and converge on the processus muscularis of the arytenoid cartilage. It closes the rima glottidis by rotating the arytenoid cartilage inward (adduction).
${ }^{1}$ Also known as the crico-arytenoideus posterior s. posticus.

The arytenoideous transversus (M. arytanoideus transwersus) is an umpaired muscle which stretches across the concave dorsal surface of the arytenoid cartilages. Its fibers are attached on cither side to the processus muscularis and the ridge which extends forward from it. The right and left parts of the muscle meet at a filbrous raphé, which is comected with the transverse arytenoid ligament. Fibers of the ventricularis muscle overlap its anterior part. It narrows the rima by drawing the arytenoid cartilages together (adeluction).

The ventricularis ${ }^{1}$ lies in the lateral wall of the larynx, eovered by the lamina of the thyroid cartilage. It arises from the anterior part of the crico-thyroid membrame and the ventral border of the thyrod lamina. Its fibers pass upward and hackward

Fig. 463.-- Iditts Latwgis of Lorse, Exposed by Opening Phabynx and Beginving of (Eaophigits Ilong Median Dornal Line.
1, False vocal cord; 2^{2}, lateral ventracle; 3, true vocal cords; $-\frac{1}{2}$, rima hothdis.
to end partly on the processus muscularis, partly on the arytenoideus transversus, meeting its fellow.

The vocalis ${ }^{1}$ is also medial to the lamina of the thyrod cartilage, and is in part separated from the preceding muscle by the laryngeal saceule. It has an extensive origin on the erico-thyroid mombrane. Its direction corresponds with that of the true vocal eord. It is inserted into the lateral surface of the arytenoid eartilage below the processus muscularis.

The two preceding museles close the rima glotidis and slacken the vocal cords. With the arytenoideus transversus and crico-arytenoideus lateralis they form a sphincter which closes the entrance to the laryn.
${ }^{1}$ These two muscles were formerly taken together as parts of the thyro-arytenoideus muscle.

The yentricularis rotates the arytenoid so as to bring the apical part of the cartiage downward and forward.

In some cases there is a small thyro-arytenoideus externus muscle which arises from the medial face of the lamina of the thyroid cartilage near the dorsal border, passes upward and backward, and blends with the arytenoideus transversus.

Cavity of the Larynx

The cavity of the larynx (Carum laryngis) is smaller than one would naturally expect from its external appearance. (1n looking into it through the pharyngeal end two folds are seen projecting from each lateral wall. These are termed the

Fig. 464.-Part of Sagittal Section of Head of Horse.
Section is cut just to left of median plane.

1. Epiglottis: 2, body of thyroid cartilage; 3, arytenoid cartilage; 4, 4', lamina and arch of cricoid cartilage; 5 , ary epiglottic fold; 6 , vocal cord (labium vocale); 7 , ventricular fold or false vocal cord (plica ventricularis); s, lateral ventricle of larynx; s^{\prime}, dotted line indicating contour of laryngeal saccule; 9, middle ventricle of larymx; 10, un. cricoarytenoideus dorsalis; 11, asophagus; 12, septum of areolar tissue between guttural pouches: 13, m. rectus capitis ventralis; 14 , body of sphenoid bone; 15 , pharyngeal recess; 16 , arrow points into nasal cavity; 17, pharynzeal opening of auditive or Eustachisn tube; 1s, posterior pillars of soft palate united over aditus asophagi: 19, arrow points into vestibule of larynx; 20, soft palate; 21, tonsil; 22, rout of tongle; 23, nu. hyoeepiglotsicus; 24, hyoid bone; 25, mandibular lymph glands; $26, \mathrm{~mm}$, omo-hy oideus add sterno-hyoideus; A, vestibule of larynx; B, gluttis; C, postglottic part of larynx; D, trachea; E, pharynx, F, isthmus faucium.
vocal cords, and the narrow part of the cavity between them is the rima glottidis. Thus it is convenient to recognize three divisions of the eavity.

The aditus laryngis, or pharyngeal aperture, is a large, oblique, oval opening, which faces into the ventral part of the pharym. It is bounded in front by the epiglottis, behind by the arytenoid cartilages, and laterally by the aryteno-epiglottic folds of mucous membrane (Plice aryepiglottica), which stretch between the edges of the epiglottis and the arytenoid cartilages.

The vestibule of the larynx (Vestibulum laryngis) is that part of the cavity which extends from the aditus to the vocal cords. On its lateral walls are the false vocal cords (Plice ventriculares), each of which consists of a fold of mucous membrane covering the ventricular ligament and the cunciform process. Between the false and true vocal cord there is a poeket-like depression termed the lateral ventricle of the larynx (Ventriculus lateralis laryngis). This is the entrance to the laryngeal saccule (Sacculus laryngis), a cul-de-sac of the mueous membrane which is an inch or more (ea. 2.5 to 3 cm .) long and extends upward and hackward on the medial surface of the thyroid lamina. There is a small middle ventricle (Ventriculut laryugis medianus) at the base of the epiglottis.

The term "laryngeal saccule" seems decidedly preforable to the "appendix rentriculi laryngis" of the B. N. A. The saceule is in relation with the rentricular and voeal museles, and

Fig. 4fis.-.iectiov of Larynx of Hubae,
The sretion cut is parallel with the vocal rords.

Ftg. 466.-Cast of Riget Lateral Ventricle And Saceule of Horae; Medial View:

1. Ventricle; 2, saccule. Figure is a little less than three-fourths of natural size.

Fig. 4 G 4 .-Cant of Left Lateral V"entricle and Saccele ge Larysix of Horse; Lateral View.
1, Ventricle; 2, succule; 3, impression of ventricularis muscle; 4 , impression of vocalis muscle.

When the latter are atrophic (as in hemiplegia laryngis or "roaring"), the pouch is considerably larger on the affecteri side, having occupied the spare vamated by the museles. The blind end of the sacecule lies just below the level of the museular process of the arytenoid rartilage. It is loosely attached to the contiguous structures. The arerage capacity of the staceule is about 5 to 6 e.c.

The midelle, narrow part of the eavity is termed the glottis or rima glottidis. It is hounded on either side ley the true voral cord and the medial surface of the arytenoid (artilage. The true vocal cords (Labia vocales) are situated behind the false cords and the lateral ventricles. They extend from the angle of junction of the body and lamina of the thyroid cartilage to the voeal processes of the arytenoid cartilages. They are prismatic in cross-section, and their free edges look forward and somewhat upwarel. The mucous membrane of the cord (Plica vocalis) is very thin and smooth, and is intimately attached to the underlying vocal ligament. In
ordinary breathing the rima is somerrhat lanceolate in form (Fig. 465); when dilated, it is diamond-shaped, the widest part being between the vocal processes. The narrow part of the glottis between the rocal cords is termed the glottis vocalis (Pars intermembranacca), while the wider part between the arytenoid cartilages is the glottis respiratoria (Pars intercartilaginea).

In the revised nomenclature the terms "true" and "false" socal cords have been replaced by "labium vocale" and "plica ventricularis." The labium yocale consists of the plica vocalis, lig. vocale, and m . vocalis; the last forms the bulk of the projection.

The posterior compartment of the laryngeal cavity is directly continuous with the trachea. It is enclosed by the cricoid cartilage and the crico-thyroid membrane. It is clearly marked off laterally by the rocal cord and the projection caused by the posterior border of the arytenoid cartilage. It is oval in form, the transverse diameter being an inch and a half to two inches (ca. 4 to 5 cm .), and the dorsorentral diameter two to two and a half inches (ca. 5 to 6 cm .).

The mucous membrane of the larmax (Tumica mucosa laryngis) is reflected around the margin of the aditus to become continuous with that of the pharynx, and is continuons behind with that which lines the trachea. It is closely attached to the epiglottis, except at the base, but elsewhere in the aditus and restibule it is loosely attached by submucous tissue which contains many elastic fibers. It is thin and very clowely adherent over the vocal cords and the medial surfaces of the arytenoid cartilages. The epithelium is of the stratified squamous type from the aditus to the glottis, beyond which it is columnar ciliated in character. There are numerous mucous laryngeal glands (Cilandulie larygexe), except in the glottis and the pharyngeal surface of the epiglottis, in which situations they are scanty. Lymph nodules (Noduli lymphatici laryngei) are also present, especially at the lateral ventricle.

Vessels and Nerves. - The arteries are derived from the laryngeal and ascending pharyngeal arteries. The veins correspond to the arteries. The lymphvessels go to the anterior cervical and pharyngeal lymph glands. The nerves come from the vagus. The recurrent or posterior laryngeal is the motor nerve to the muscles with the exception of the crico-thyroidens. The anterior laryngeal is the sensory nerve; it commonly supplies the nerve to the crico-thyroideus.

THE TRACHEA

The trachea extends from the larymx to the roots of the lungs, where it divides into the right and left bronchi. It is kept permanently open by a series of fifty to sixty incomplete cartilaginous rings embedded in its wall. It occupies a median position, except near its termination, where it is pushed a little to the right by the arch of the aorta. It is approximately eylindrical, but its cervical part is for the most part depressed dorso-ventrally by contact with the longus colli muscle, so that the dorsal surface is flattened. Its average length is about 30 to 32 inches (ea. 75 to 80 cm .). The arerage caliber is about two to two and one-half inches (ca. 5 to 6 cm .), but in the greater part of the neck the transverse diameter is greater and the dorso-ventral smaller. ${ }^{1}$ It is enclosed be a fascia propria.

In its cervical part (Pars cervicalis) the trachea is related dorsally to the风esophagus for a short distance, but chiefly to the longus colli muscles. It is related laterally to the lateral lobes of the thyroid gland, the carotid artery, the jugular rein, the ragus, sympathetic, and recurrent larygeal nerves, and the tracheal

[^116]lymph duets and cervical lymph glands. The asophagus lies on its left face from the third eervical vertebra backward. The sterno-cephaticus museles cross it very obliquely, passing from the yentral surface forward over its sides, and diverging to reach the angles of the jaw. The omo-hyoidei also cross it very obliquely, passing over the lateral surfaces of the tube, and converging vontrally in the laryongal region. The sterno-thyto-byoidens lies on the ventral surlate. The seateni lie on either side near the entrance to the thorax.

The thoracic part (Pars thoracelis) of the trachea (Figs. 553, 554) passes hark-

Fig. 4hs. Cross-section of Ventral Part of Neck of llorse.
This section is cut ut right angles to the long axis of the neek, passing through the junction of the second and third rervical vertubræ, S.c., Spinal curd; ぶ, v, spinal win: T. $2 .$, T. π_{-}, vertebral vein and artery; T.p., transverse process (tip) ; F, intervertebral fibro-eartilage; T, atlantal tendon conmon to brachiocephalicus, splenius, and longissimus atlantis; M, digitation of brachiowephalicus inserted by T.
ward bet ween the pleural sars and divides into two bronehiower the left atrium of the heart. It is related dorsally to the longus colli for a short distance, and beyond this to the oxsophagus. Its left faee is crossed by the aortie areh, the left brachial artery, and the thoraric duct. Its right face is crossed by the vena azygos, the dorso-cervical and vertebral vessels, and the right vagus nerve. Ventrally it is related to the anterior vena cava, the brachiocephalic and common carotid tromks, and the cardiac and left recurrent nerves.
${ }^{1}$ The arrangement of the muscles shoukd he noted, sinee the space enelosed by the divergence of the sterno-cephalici and the convergence of the omo-hyoidei is the area of election for the operation of tracheotomy.

The bifurcation of the trachea (Bifurcatio tracheæ) is situated opposite to the fiftle rib) or intereostal space, and about four or five inches (ca. 10 to 12 cm.) ventral to the vertebral column.

The trachea is composed of-(1) the cartilaginous rings; (2) a fibro-elastic membrane which encloses and connects the rings; (3) a muscular layer; (4) the mucous membrane. The elastic membrane is intimately attached to the perichondrium of the rings. In the intervals between the latter it constitutes the tracheal annular ligaments (Ligamenta annularia trachealia). The rings of the trachea ('artilagines tracheales) are composed of hyaline cartilage. They are incomplete dorsally, and when their free ends are drawn apart, resemble somewhat the letter C. In the cervical part the free ends overlap, while in the thoracic part they do not meet: here the deficiency is made up by thin plates of variable size and form, embedded in a membrana transversa. Ventrally the rings are about one-half inch (ca. 1.5 cm .) wide, while dorsally they are wider and thinner. The first ring is attached to the cricoid cartilage by the crico-tracheal membrane, and is often fused dorsally with the second ring. Various irregularities, such as partial hifurcation or partial or complete fusion of adjacent rings, are common. The arrangement in the terminal part is very irregular. The trachealis muscle (MI. trachealis) consists of unstriped fibers which stretch across the dorsal part of the tube. It is separated from the ends of the rings and the membrana transversa by a quantity of areolar tissue. When it contracts the caliber of the tube is diminished. The mucous membrane is pale normally, and presents numerous fine longitudinal folds, in which are bundles of elastic fibers. The epithelium is stratified columnar ciliated. Numerous tracheal glands (Clandulæ tracheales) are present; they are tubulo-alveolar and mixed in type.

Vessels and Nerves. The arteries are derived chiefly from the common carotid arteries, and the veins go mainly to the jugular veins. The lymph-vessels go to the cervical and mediastinal lymph glands. The nerves come from the ragus and sympathetic.

THE BRONCHI

The two bronchi, right and left (Bronchus dexter, sinister), are formed by the bifurcation of the trachea. Each passes backward and outward to the hilus of the corresponding lung. The right bronchus is a little larger and less oblique in direction than the left. They are related ventrally to the divisions of the pulmonary artery, and dorsally to the branches of the bronchial artery and the bronehial lymph glands. Their structure is similar to that of the trachea, but the cartilaginous framework consists ehiefly of plates instead of rings.

THE THORACIC CAVITY

The thoracic cavity (Cavum thoracis) is the second in point of size of the body cavities. In form it is somewhat like a truncated cone, much compressed laterally in its anterior part, and with the base cut off very obliquely. The dorsal wall or roof is formed by the thoracic vertebre and the ligaments and museles connected mith them. The lateral walls are formed by the ribs and the intercostal muscles. The ventral wall or floor is formed by the sternum, the cartilages of the sternal ribs, and the muscles in connection therewith. It is about one-half as long as the dorsal wall. The posterior wall, formed by the diaphragm, is very oblique and is strongly convex. The anterior aperture or inlet (Apertura thoracis cranialis) is relatively small, and of narrow, oval form. It is bounded dorsally by the first thoracic vertebra and laterally by the first pair of ribs. It is occupied by the longus colli museles, the trachea, œesophagus, vessels, nerves, and lymph glands.

A longitudinal septum, termed the mediastinum thoracis (Septum medias-
tinale), extends from the aorsal wall to the ventral and posterior walls, and divides the eavity into two lateral chambers. Each of these chambers is lined by a serous membrane called the pleura, and is termed a pleural cavity (C'avum pleure). The mediastinum is, for the most part, not median in position, as might be inferred from its name; this is chiefly due to the fact that the largest organ contained in it, the heart, is placed more on the left side than on the right; consequently the right phoural eavity and lung are larger than the left. Practically all of the organs in the thorax are in the mediastinal space, with the exception of the lungs, the posterior vena eava, and the right phrenic nerve. The part in whith the heart and the pericardium are situated, together with that dorsal to it, is usually called the middle mediastinal space (Cayum mediastinale medium); the parts before and behind this are termed respectiwly the anterior and posterior mediastinal spaces (Cavum mediastinale cramiale, caudate).

THE PLEURE

The pleuræ are two serous membranes, right and left, which enclose on "uch side a pleural cavity (Cavum pleure). They line the walls of the thorax, form the lateral lamine of the mediastinum, and are reflected from the latter upon the lungs. We therefore distinguish parietal, mediastinal, and pulmonary or visceral partis of the pleura.

The parietal pleura (Pleura parietalis) is attached to the thorarie wall by the endothoracie fascia. On the lateral thoracic wall it is adherent to the ribs and intereostal muscles and is termed the costal pleura (Pleura costalis). Behind it is closely attached to the diaphragm, forming the diaphragmatic pleura (Pletra diaphragmatica).

The mediastinal pleura (Pleura mediastinalis) covers the organs in the mediastinal space and is in part in apposition with the opposite sae. Where this layer is adherent to the pericardimm, it is distinguished as pericardiac pleura (Pleura pericardiaca). ${ }^{1}$

From the mediastimum each pleura is reflected upon the corresponding lung, which it eovers, eonstituting the pulmonary or visceral pleura (Pleura pulmonatis). The reflection oceurs around and behind the hilus of the lung, and is in great part direct, so that a portion of the mediastinal surface of each lung has no pleural covering. Behind the hilus of the lung a considerable triangular area is not covered by the pleura, the two lungs being attached to each other by a thin layer of connective tissue in this situation. ${ }^{2}$ Posteriorly the reflection is not direct, so that there is a fold formed by the reflection of the pleura from the mediastinum and the diaphragm to the lung, behime the triangular area of adhesion just mentioned; it is seen when the base of the lung is drawn outward. This is the pulmonary ligament (Lig. pulmonale); it consists of two layers of pleura, between which there is elastic tissue, aspecially abundant in its posterior part.

The right pleura forms a special sagittal fold about a nandbreantn to the right of the median plane, which encloses the posterior vena eava in its upper edge; it is therefore eathed the fold of the vena cava (Pliea vense eave). It gives off a small accessory foll for the right phrenic nerve. The fold arises from the thoracic floor and from the diaphragm below the foramen venæ cave, and intervenes between the intermediate lobe and the body of the right lung. It is delieate and lace-like.

The posterior mediastinum is very delicate ventral to the cesophagus, and

[^117]

Fig. 469 -section of Tborax of Horse.
The section is cut in an oblique direction corresponding with the spine of the scapula. It passes through the fourth thoracic vertebra and a little more than an inch behind the shoulder joint. The pleural cavities, indicated by wide black lines, are exaggerated for the sake of clearness.

1. Pleural cavities (number is placed in mediastinuza) : 2, 2', lungs; 3, cesopbaguz: 4, trachea: 5, brachiocuphalic trunk; 6 , anterior vena cava: 7 , thoracic duct: s, s^{\prime}, vagi; 9 , left recurrent nerve: $10,10^{\prime}$, phrenic nerves; 11 , internal thoracic vessels: 12, sympatbetic trunk; 13, subcostal vessels; 14 , external thoracic vessels: 15 , brachial vein; 16 , brarhial artery; 12, radial nerve; 18, ulnar nerve; 19, musculo-cutaneous nerve; 20, median nerve: 21, subscapular vessels; $a, \mathrm{~m}$. longus colli; b, m . rectus thoracis: $c, \mathrm{~m}$. transversus thoracis; $d, \mathrm{~m}$. intercostalis internus; s. sternum; H, bumerus, Ventral to the trachea there are shown, but not marked on account of lack of space, two cardiac nerves and a mediastinal lymph gland.

Fig. 4;0.-section of Thurax of Horse,
The section is cut in an oblique diremion corresponding with the spine of the scapula. It cuts the body of the seventh thoravic vertebra and the seventh rib dorsally and the fourth rib and its cartilage ventrally: The pleural and pericardine eavitios, represented by widu black lines, are exaggerated for the sake of chearness.
$L_{1} L^{\prime}$, lunes; 1, aorta; 2, esophagus; 3. thoracic duct; $\frac{1}{}$, vena azygos; 5,5 , bronchi; 6 , bifureation of pulmonary artery; $7,7^{\prime}$, right and left atria; 8 , right ventricle: 9 , tricuspid valve; 10 , origin of aorta; 11 , right coronary artery; 12, left coronary artery (circumflex branch) and satellite vein; 13, internal thoraric vessels; 14, external thoracle vessols; S, sternum; U, ulna. The following structures are shown, but not marked on acconnt of lack of space: The right vagus is on the cesophagus and ventral to the vena azygos. The phrenie nerves are on the upper part of the pericardium on each side. The sympathetic trunks are on each side of the body of the vertebra. The number 10 is placed on the ventricular septum. Bronchial lymph-glands are shown ventral to the cesuphagns and the left bronchus.

Fig. 471.-Cross-sectios of Bony of Horse.
The section is cut through the eighth thoracic vertehra and the anterior part of the xiphoid cartilage. It cuta the vertebral eud of the eighth rib add a little more than half of the seventh ribs. The flexures of the great colon and a small part of the liver, which lay in the concavity of the diaphragm, have been removed. The dotted lines indicate the contour of the bases of the lungs and the apex of the heart, which are concealed by the diaphragm. The pleural cavitiea, indicated by wide black lines, are exaggerated for the sake of clearness.

1, 1' Lungs: 2, aorta; 3, cesophagus; 4, 4^{\prime} stem bronchi; 5.5^{\prime}, pulmonary arteries: $6,6^{\prime}$, large pulmonary veins; 7, posterior vena cava; S, S^{\prime}, phrenic nerves; 9, vena azygos; 10 , falciform and round ligaments of liver; 11, position of apex of heart: 12 (placed on cut surface of sternal part of diaphragm), xiphoid cartilage. The sympathetic trunks (not marked) are shown on each side of the body of the vertebra. The cesophageal trunks of the vagi (not marked) are shown in relation to the cesophagus. The thoracic duct is ventral to the veda azygos.
usually appears fenestrated; when these apertures are present, the two pleural cavities communicate with each other. ${ }^{1}$

The pleural sales contain a elear serous fluid, the liquor pleura; in health there is only a sufficient amount to moisten the surface, lut it aceumulates rapidly after death.

It should be lorne in mind that the pleural eavity is nornolly a eapillary space between the parietal and viseeral parts of the pleura, and contains a film of serous fluid. In illustrations it is necessary, for the sake of clearness, to exaggerate the spare.

The pleura resembles the peritoneum in structure and appearance. It is attached to the structures which it covers lysubserous tissue, which is elastic and in some situations contains fat, In the case of the parietal pleura the subserous tissule is termed the endothoracic fascia. This lines the thoracie walls, but is practically absent over the tendinoms center of the diaphragm. A strong later descends from it in the mediastinum and hends with the fibrons part of the pericartium. The subserous tisule of the pulmonary pleura is contimuous with the interlobular tissue of the lung.

The pleura receives an abundant hook supply which is derived chiefly from the intercostal, intemal thoracic, and bronchial artories. Lymph vessels are very numerous in the pleura and subserous tissue; they go chiefly to the intereostal and mediastinal glands.

The parietal pleura is reflected along three lines which are known as the lines of pleural reflection; these may be termed wertebral, sternal, and diaphragmatic. The vertebral line of pleural reflection is that aleng which the costal pleura tums ventrally to form the mediastinal pleura; it extends along the longus colli and the bodics of the thoracic vertebrex to the vertebral end of the last intervostal space, where it joins the line of cliaphragmatic reflection. The sternal line of pleural reflection is that along which the costal pleura is reflerted dorsally to beeome the mediastinal pleura. Anteriorly the two lines are close together along the middle of the floor of the thoras, but further lack they diverge to each side of the sternal attachment of the pericardium. The reflection is at an acute angle and the narrow angular recess of the pleural cavity here is termed the costo-mediastinal sinus (Sinus costomediastinalis). The diaphragmatic line of pleural reflection is that along whiel the costal pleura pasises from the lateral wall to the diaphragm. This line is important elinically, since it is, from the standpoint of physical diagnosis, the demareation between the thoracic and ahdominal cavitics. It extends along the eighth and ninth eostal cartilages, erosses the stemal end of the ninth rib, and passes backward and upward in a gentle curve and at a gradually increasing distane from the stemal ends of the rits, so that its most posterior part is about the middlle of the anterior lorder of the last rib; this is the posterior limit of the pleural cavity. Here it turns medially and a little forward and conds at the vertebral end of the liat intercostal space. This reffection is also at an aente angle and the costal and diaphragmatic pleura are in contact over an area of variable width along this line. The narrow angular recess of the pleural cavity here is termed the phrenico-costal sinus (Simus phrenicrecostalis).

The apex of each pleural sae (Cupula pleura) lies at the anterior apmerture of the thorax. On the right side it forms two culs-le-sar: one of these may extend forward more than an inch (ca. 3 cm .) beyond the first ril) in contact with the derp face of the sealemas; the other is wentral to the anterior vena eava and may extend ahout an inch (ea. 2.5 em.) beyond the first rib). The apex of the left pleura usually does not extend beyond the plane of the first ribl.

THE LUNGS

The lungs, right and left (Pulmo dexter, sinister), oceupy much the greater part of the thoracic cavity. They are arcurately athated to the walls of the eavity and the other organs contained therein. The two lungs are not alike in form or size, the right one being considerably larger than the left; the difference is chiefly in witth, in conformity with the projection of the heart to the left. The lung is soft, spongy, and highly elastic. It crepitates when pressed between the finger and thumb, and floats in water. When the thozacic cavity of the unpreserved subjeet is opened, the lung collapses immediately to about one-

[^118]third of its original size, and loses its proper form; this is clue to its highly elastic character and the fact that the tension of the lung tissue caused by the air pressure in its cavities has been relieved by the extemal air pressure. ${ }^{1}$ The color varies according to the amount of blood contained in the lung. During life the lung has a pink color, but in subjects which have been bled for dissection it is light gray or faintly tinged with red. In umbled subjects it is dark red; the depth of color varies, and is often locally accentuated by gravitation of blood to the most dependent parts (hypostasis). The fœtal lung, since it contains no air and has a relatively small blood-supply, differs from that of an amal which has breathed in the following respects: (1) It is much smaller: (2) it is firmer and does not crepitate: (3) it sinks in water; (4) it is pale gray in color. In form the lungs are like casts of the cavities in which they are situated. When well hardened in situ, their surfaces present

Fig. 472.-Right Lexg of Horse; Costal Surface.
specimen hardened in situ.
impressions and elevations corresponding exactly to the structures with which they are in contact. Each lung presents two surfaces, two borders, a base, and an apex.

The costal surface (Facies costalis) is convex, and lies against the lateral thoracic wall, to which it is accurately adapted.

The mediastinal surface (Facies mediastinalis) is much less extensive than the costal surface. It is molded on the mediastimm and its contents. It presents a large cavity adapted to the pericardium and heart; this is termed the cardiac impression (Inpressio cardiaca), and is larger and deeper on the left lung than on the right. Above and behind this is the hilus of the lung (Hilus pulmonis), at which the bronchus, vessels, and nerves enter the lung; the bronchial lymph glands are also found here. Behind this the two lungs are adherent to each other over a triangular area. Above this there is a groove for the œesophagus, which is deepest on the left lung. A groove for the aorta (Sulcus aortie) curves upward and backward over the hilus, and passes backward near the dorsal border of the lung; the

[^119]
curved part of the groove for the aortic arch is absent on the right lung, on which there is al groove for the vena azygos. Anterionly there are grooves for the trachea, the brachiocephalic trunk, the anterior vena cava, and other vessels.

Fig. 473.-Lhft Lung of Horse; Costal Surface.
Specimen bardeaed in sith.

Fig. fitt.-Right Ifeng of Morae; Medlastinal and Diaphragmatic Sicrfares.
Organ hardened in stu. c. d, Grooves for deepcervical and dorsal veins. Arrows indicate canal for posterior venu cava between intermelate lobe and main part of Inng. By an oversight the impression of the trachea is unmarked; it is dorsal to the groove for the vena cava.

The dorsal border (Atargo dorsalis) is long, thick, and rounded; it lies in the groove alongside of the bodies of the thoracic rettebre. ${ }^{1}$
${ }^{1}$ In some cases this border is cut into by a fissure which partly marks off the apex from the body of the lung.

The ventral border (Margo ventratis) is thin and short; it orenpies the angular space between the mediastinum and the ventral parts of the sternal ribs (Recessus costo-mediastinalis). It presents, opposite to the heart, the cardiac notch (Incisura cardiaca). On the left lung this noteh is opposite to the ribs from the third to the sixth, so that a considerable area of the pericardium here lies in direct contact with the chest-wall. On the right lung the notch is much smaller, and extembs from the third rib to the fourth intercostal space.

The left cardiac notch is usually quadrilateral; its highest part is about four to five inches (ea. 10-12 cm.) above the sternal ends of the fourth and hifth ribs. The right noteh is usually triangular; its apex is about three inches (ca. $7-8 \mathrm{~cm}$.) above the level of the sternal end of the ribs at the third intercostal space. In some eases a tissure partially marks off the apex from the borly of the lung.

The base of the lung (Basis pulmonis) is oval in outline; its surface (Facies

Fig. 475.-Left Leng of Horse; Mediastinal and Diafhragmatic Surfaces.
Organ hardened in situ. Vascular impression for common dorso-cervico-vertebral vein.
diaphragmatica) is deeply concase in adaptation to the thoracic surface of the diaphragm. Lateratly and dorsally it is limited by a thin convex basal border (Margo basalis) which fits into the narrow recess (Sinus phrenico-costalis) between the diaphragm and the lateral chest-wall. The position of this border, of course, varies during respiration. In the deepest inspiration it may reach the bottom of this recess.

In dissecting-room subjects the distance between the border and the diaphragmatic line of reflection of the pleura increases from about two inches (ca. 5 cm .) at the seventh rib to about six or seven inches (ca. $16-18 \mathrm{~cm}$.) at the fifteenth, and then derreases. The dorsat end of the base is usually at the vertebral end of the sixteenth intercostal space or seventeenth rib. ${ }^{1}$

The apex of the lung (Apex pulmonis) is prismatic, narrow, and flattened transversely. It is partially marked off from the rest of the lung by the cardiac

[^120]notel. It curves downward, and is related deeply to the anterior mediastimum and the anterior part of the pericardium.

The lungs of the horse are not divided into lohes by deep fissures, as is the case in most mammats. The left hung may be regarded as consisting of a chief part, the body of the lung (Corpus pulmonis), and the apex (Aprx pulmonis). But the right hang has in addition an intermediate lobe (Lolsus intermedius), ${ }^{1}$ which is separated from the body of the lung by a fissure which forms in its dorsal part a canal for the posterior vena rava and the right phrenic nerve, enclosed in a special fold of the right pleura. ${ }^{2}$

The root of the lung (Ratix pulmonis) is composed of the structures which enter or leave the lung at the hilus on the mediastinal surface. These are: (1) The bronchus; (2) the pulmonary artery; (3) the pulmonary veins; (4) the bronchial artery; (5) the pulmonary nerves; (6) the lymph vessels, which go to the bronchial lymph glands. The bronchus is situated dorsally, with the bronchial artery on its upper surface and the pulmonary artery immediately below it. The pulmonary wins lie chiefly below and behind the artery.

The lobulation of the lungs is not very evident on account of the small amount of interlobulay tiswe. The lobules appear on the surface or on sections as irregular polygomal areas of "fifferent sizes. ${ }^{3}$

Bronchial Branches. - Each hronchus at its strance into the lung gives off a branch to the apex of the hong (Bronchus apicalis). It is then contimued backward as the main stem bronclus, parallel with the dorsal horder of the lomg, giving off branches (Rami bronchates) in monoporlic fastion; these branch similarly and reach all parts of the long. The right bronchus gives off a special branch to the intermediate lobe. The apical hrometme of the right lomg is larger than that of the left lung. A large ventral bronchail hanch is given of from each stem bronchus to the part of the lung which is homologous with the cardiae lobe of other amimals.

The structure of the larger bronchial tubes is, in general, similar to that of the trachea. Their walls contain irregular plates of cartilage instead of rings. There is a continuous layer of unstriped musele, composed of circularly arranged bundles. The muobs membrane presents numerous lomgitudinal folds; it contans many elantic fibers, mucous glands, and lymph notules, and is lined by ciliated columnar epithelium. As the tubes diminish in size the coats become thimer and the cartilages smaller; in tubes about 1 mm . in diameter the cartilages and mucous glands are absent.

By repeated branching the interlobular bronchi are formed, and from these arise the lobular broncholes. The latter enter a lobule and branch within it, forming the respiratory bronchioles (Bromehioli respiratorii) ; these give off the alveolar ducts (1)uctuli alveolares), the walls of which are pouched out to form hemisplerieal diverticula, the alveoti or air-cerls.

A pulmonary lobule (Lohulus pulmonis), the unit of lung structure, is made up of a lobular bronchiole with its branches, and their air-cells, blood- and lymphvisels, aml nerves. Between the lobules is the interlobular tissue, which forms the supporting framework of the lung.

Vessels and Nerves.-The branches of the pulmonary artery carry venous blood to the lungs. They accompany the bronchi, and form rieh capillary plexuses
${ }^{1}$ This is also commonly called the modiastinat lohe.
${ }^{2}$ fome anthors consider each hang to be divided into anterior and postorior bobes by the carliae noteh, so that the right lung would have three lobes and the left lung two lobes. Not rarely a fissure or notch in the dorsal horder partially marks off the apex from the body of the lumg, and in some cases there is a corremponting fiswure in the ventral border.
${ }^{3}$ In foctal hung the lobulation is much more distinct. Pagmentation of the lung is sometimes seen in horscs, and in such cases the pigment is deposited mainly in the interlobular tissue, thus mapping out the lobules.
on the walls of the alveoli. Here the blood is arterialized, and is returned to the heart by the pulmonary veins. The bronchial arteries are relatively small vessels which carry arterial blood for the nutrition of the lungs. The branches of these arteries accompany the bronchial ramifications as far as the alveolar ducts, but do not extend to the alveoli. The œsophageal branches of the broncho-œsophageal and gastric arteries also supply pulmonary branches (in the horse) which reach the lung by way of the ligament of the latter. These branches vary much in size, and ramify chiefly in the subpleural tissue of the basal part of the lungs. ${ }^{1}$. The lymph vessels are numerous, and are arranged in two sets. The superficial set forms close networks in and under the pleura, while the deep set accompanies the bronchi and pulmonary vessels. Most of them converge to the root of the lung and enter the bronchial lymph glands, but some go to the mediastinal lymph glands. The pulmonary nerves come from the vagus and sympathetic nerves. They enter at the hiltus and supply branches to the bronchial arteries and the air-tubes.

THE THYROID GLAND

The thyroid gland (Glandula thyreoidea) is situated on the anterior part of the trachea, to which it is loosely attached. It is a very vascular ductless gland, and is firm in texture and dark red-brown in color. It consists of two lateral lobes and a very narrow connecting isthmus (Figs. 332, 649).

The lateral lobes (Lobus dexter, sinister) are situated on each side of the trachea near to or in contact with the laryn. Their position is indicated approximately by the angle of junction of the jugular and external maxillary veins. Each is oval in outline and is about as large as a plum of medium size. The superficial surface is convex and is covered by the cervical angle of the parotid gland and the sternocephalicus and omo-hyoideus. The deep surface is adapted to the trachea. About the lobe are the anterior cervical lymph glands. The anterior pole is large and rounded, while the posterior is smaller and often tapers to a tail-like process which is continuous with the isthmus.

The isthmus (Isthmus gl. thyreoideæ) extends across the rentral face of the trachea, connecting the two lobes. It is usually extremely narrow in the adult horse and is often reduced in great part to a small strand of fibrous tissue.

The lateral lobes are very variable in size and position, and are usually unsymmetrical. The average length is about two inches (ca .5 cm .). The greatest height averages a little more than an inch (ca. 2.7 cm.), and the greatest width a little less than an inch (ca. $1.5-2 \mathrm{~cm}$.). The average weight is about half an ounce (ca. 15 gm .). The right lobe is commonly in contact with the cricopharmgeus or crico-thyroideus, but nay be about a finger's breadth from the larynx. The left lobe may be an inch or more (ca. 4 cm .) from the larynx, but in some cases is in contact with it. The position varies considerably in the dorso-ventral direction also, irrespective of the ventral displacement noted in enlargement of the gland. The most comnon form is oval, with a smaller pmsterior pole which tapers to the isthmus. But the isthmus is sometimes connected with the middle of the ventral border of one lobe or both, so that the two poles are about alike. Nany irregularities may be observel. Cases occur in which a variable posterior process is conncted with the body of the gland by a sort of neck. A complete glandular isthmus is not rare, although it is usually very narrow and may easily escape notice; in quite exceptional cases it may be 6- mm. in width. Its connection with the lateral lobes and crossing of the trachea are quite variable. Mlost often it is connected with the posterior poles and passes almost directly between the two. But it may run backward and cross much further back; in one case (personal observation) the crossing was at the spare between the ninth and tenth tracheal rings. In the foal the isthmus is relatively large and entirely glandular. In the ass and mule there is almost always a well-leveloped istlimus. Extending from it there is sometimes a narrow band of thyroid tissue which reaches to the body of the hyoil bone; this is the lobus pyramidalis.

Structure.-The gland is enveloped by a thin fibro-elastic capsule, from which trabecule pass into the substance of the organ. The gland tissue is compact and

[^121]consists of lobules (Lobuli gl. thyreoideæ), which are embedded in a stroma of strands of fibrous tissue. The stroma contains numerous vessels. The lobules consist of non-communicating alveoli or follicles of varying form and size. The alveoli are lined by cubical or columnar epithelium, and contain a viseid colloid suhstance.

Vessels and Nerves.-The arteries are relatively very large; there are usually two thyroid arteries, which arise from the carotid; their branches enter the gland chiefly at or near the mols and the dorsal border. The veins are also large; they go to the jugular vin; the largest one leaves the gland at its posterior pole. The lymph vessels go to the cervical lymph glands. The nerves are derived from the sympathetic system.

Nodules of thyroid tissue of variable size, sometimes as large as a pea, may be found near the anterior extremity of the lateral lobes, on the course of the anterior thyroid artery or on the trachea, even at a eonsiderable distance from the thyroid region. They are termed accessory thyroids (ilandule thyreoidere atcessorixe).

The parathyroids are small glandular bodies found in the thyroid region. They are paler and not so clense ats the thyroid tissur, hut often eamot be differentiated by their naked-ey appearance. In the howe there is u*ually only one on each side in the comestive tisulue orer the dorsal border or anterior extremity of the lateral lobe of the thyroid. One may he embodded in the deep face of the lateral lobe of the thyroid. 'They resemble in structure embryonic thyroid tissue.

THE THYMUS GLAND

The thymus is a ductless gland which has a close resemblanee to the lymphoid tissues. It is well developed only in late fortal life and for a few months after birth. After this it undergoes rapid atrophy, fatty infiltration, and amyloid degeneration, so that in the arlult it is usually represented ly a thim remnant in the ventral part of the anterior mediastinum or has entirely disappeared. In the new-born foal it is of a grayish-pink color, and consists of right and left lobes (Lobus dexter, sinister). The greater part of the gland is situated in the anterior mediastinum ventral to the trachea and large vessels, lut the two lobes are continued into the neek hy a chain of lobnles which lie on the trachea along the course of the earotid artery, extending sometimes as far as the thyroid gland. ${ }^{1}$

Structure.-The thymus is enclosed in a thin and loose fibro-elastic capsule, and consists of secondary lobules (Lobuli thymi), of varying shape and size, held together by areolar tissue and fat, and connected with a strand of connective tissue termed the tractus centralis. These lobules are subulivided into polyhedral primary lobules, which are composed of lymphoid tissue, and present a dark, vaseular cortex, and a lighter medulla that contains small masses of coneentrically arranged, flattened cells; these are known as coneentric corpuscles.

Vessels and Nerves.-The arteries are derived from the intemal thoracic and common earoticl. The nerves come from the sympathetic and vagus.

[^122]
RESPIRATORY SYSTEM OF THE OX

THE NASAL CAVITY

The nostrils (Fig. 379), situated on either side of the muzzle, are relatively small, and are much less dilatable than those of the horse. The alee are thiek and firm. The superior commissure is narrow. There is no diverticulum nasi. The skin is smooth, bare, and moist, and there is no clear line of demareation between it and the nasal mucosa. The opening of the naso-lacrimal duct is not visible, as

Fig. 476.-Sagittal Section of Head of Cow.

1. Cerebral hemisphere: 2. lateral ventricle; 3, thalamus, 4 , corpora quadrigemina; .5. optic chiasma: 6 . pituitary body; $\tilde{\gamma}$. pons: S, medulla oblongata; 9 , cerebellum: 10, spinal cord: 11, ventral straight muscles; 12, pharyngeal lymph gland; 13. arytenoid cartilage; 14, epiglottis; 12 , cricoid cartilage; 16 , vocal cord; 12 , palatine sinus; 18 , soft palate; 19 , Eustachian opening; ('1, C2, C'3, first, second, and third cervical vertebra; B.o., basioccipital; Sp., presphenoid.
it is on the lateral wall of the nostril, and is concealed by the cartilaginous prolongation of the rentral turbinate. There are two parietal cartilages on either side, united by fibrous tissue. The dorsal cartilages are thin laminae which carve ventro-laterally from the dorsal margin of the septal cartilage; they are prolongations of the nasal bones, and carry the alar cartilages on their anterior extremities. The ventral pair are lateral continuations of the hasal lamellæ of the ventral turbinates. They lie along the nasal processes of the premaxillæ; anteriorly they become thicker, turn a little upward, and each blends with the cartilaginous prolongation of the upper coil of the ventral turbinate. The alar cartilages are of
peculiar form. The lamina is ollong, and eurves ventro-laterally from the anterior extremity of the dorsal parietal cartilage, with which it is eomected. 'The cornu springs from the lateral part of the lamina and eurves dorso-laterally into the outer wing of the nostrii; it carries on its extremity a small transverse bar, thus having some resemblance to the fluke of an anchor.

The nasal cavity is short, wide anterionly, narrow behind. It is not completely divided by the septum, which in its posterior third is soparated from the floor of the cavity by an interval that increases from before backward (Figs. 140, 141). The middle meatus is very narrow, and divides posteriorly into two branehes; the upper division leats to the ethmoidal meatuses, and commumicates with the frontal sinus and the cavity of the dorsal turbinate. Anterior to the division are eommumications with the upper cavity of the ventral turbmate and the maxillary sinus. The main facts in regard to the sinuses were stated in the Osteology.

THE LARYNX

The larynx is more compact than in the horse, and presents numerous differential features. The cricoid cartilage is empressed laterally. The lamina is not distinctly marked off from the arch; it slopes downward and backward and has a

Fig. 47 - Carthlates of Larynx and Paht of Tricheiof (ox ; Left View.
Outline of thyroid gland andicated by dotted line

1. Abterior cornu of thyroid eartilage; 2 , thyroid foramen; 3 , ligament converting notch into foramen; 4 , posterior
cornu of thyroid cartilage; 5 , capsule of thyro-arytenoid joint.
large median ridge. The thyroid cartilage is eomplete ventrally, i, c_{0}, the lamine are unitod to form a bong plate which is notehed in frout and behind; the laryngeal prominence is small and is situated posteriorly. The height and thickness of the cartilage increase from before backward. The posterior cornua are curved and are about an inchlong; they form syudesmoses with the ericoid cartilage. The short anterior cornua unite simitarty with the hyoid bome; near them there is a foramen or a noteh on each side for the passage of the anterior laryngeal nerve. The epiglottis is short, oval in outline, and its apex is rounded; its hase rests on the thyrohyoid membrane, to whictz it is rather loosely attached. The cumeiform eartilages are absent. The arytenoid cartilages present only slight differences. The museular
process is well developed, and the rocal process is narrow and long. The vocal cords are short and project very little from the wall, so that the rima glottidis is wide; the rocal ligament is attached ventrally to the crico-thyroid membrane, it has the form of a half tube, open behind. The lateral ventricle is represented by a very shallow depression, and the saccule is absent. The thyro-arytenoideus musele

Fig. 47s.-Aditus Larysgis and Abjacent Strecteres of Ox.
The pharynx, soft palate, and origin of cesophagus have been cut along the dorsal median line and reflected.

1. Epiglottis; 2, aditus laryngis; 3, 3', apices of arytenoid cartilages; 4, posterior pillar of soft palate; 5 , cut surface of soft palate; 6, pharynx; 7, limen œesophagi; s, oesophagus; 9, trachea; 10, glosso-epiglottic space; 11, tonsillar sinus; 12 , root of tongue; 13 , vallate papillæ; 14 , dorsum linguæ.
is equivalent to the rocalis and rentricularis of the horse: it is fan-shaped, thick, and narrow dorsally; it is attached ventrally to the base of the epiglottis, the angle of the union of the thyroid laminæ, and the crico-thyroid membrane. The hyoepiglotticus muscle is large and bifid: it arises from the small cornua and at their articulation with the body of the hyoid bone and thus may take the place of the hyoideus transversus in its action on the small cornua.

THE TRACHEA

The trachea is shorter than that of the horse, the average length being about 26 inches (ca. 65 cm. .). Its caliber is relatively small, the width leing about an inch and a half (ca. 4 cm .) and the leight about two inches (ca. 5 cm .). The rings are smaller, and number about fifty. At the legiming of the tube their free ends are separated by a varying interval, so that the tube is flattened and membranous dorsally; but further back the ends are in apposition, so that they form a ridge dorsally. The trachea is attherent to the right lung from the second rib backward. The bifurcation is opposite the fifth rib, about the junction of its middle and ventral thirds.

In the sheep the average length of the trachea is about nine or ten inches (ca. 25 em .) and its caliber a little less than an ineh (ca. 2 em .).

THE BRONCHI

There are three chief bronehi. The bronchus for the apieal lobe of the right lung (Bronelus apicalis) is detached from the trachea onposite to the third rib, i.e., at a considerable distance anterior to the bifureation.

THE THORACIC CAVITY AND PLEUR压

The thoracie cavity is relatively small; it is especially short dorsalty, and is diminished laterally by the mode of attachment of the diaphragn to the ribs seide Myology). The endothoracic fascial is better developed than in the horse, and is distinetly clastie. The pleura is also thick, and there are no perforations of the metiastinum. The pheural sacs are even more unequal in extent than in the horse, and the wentral part of the mediastinum is further to the left; in front of the pericardium it is for the most part in contaet with the left wall of the chest.

[^123]
THE LUNGS

The difference in size between the two lungs is greater than in the horse, the right lung weighing about half as much again as the left one. The average weight of the lungs is abuut $7^{1} 2^{2}$ pounds (ea. 3 to 4 kg .) ; they form about $\frac{1}{1 \pi \pi}$ of the body witight. They are divided into lobes by deep interlobar fissures (Incisure interlobares). The left lung is divided into three lobes, named from before backward apical, cardiac, and diaphragmatic (Lobus apicalis, cardiacus, fliaphragmaticus). The right lung may be regarted as having either four or five lobes. The apical lobe is much larger than that of the left lung, and occupies the space in front of the pericardium, pushing the mediastinum against the left wall; it is usually subdivided into anterior and posterior parts by a deep fissure. The other bobes are the cardiac, diaphragmatic, and intermediate, the last resembling that of the horse. ${ }^{1}$

[^124]The apical lobe of the right lung receives a special bronchus from the trachea opposite the third rib, and is adherent to the trachea from the second rib backward. The two lungs are not adherent to each other behind the root as in the horse, but

Fig. 4.9.-Right Leng of Ox: Contal sichface.
Hardened in situ. By an error the inscription "cardiac lobe" extends forward upon what is a division of the apical lobe.

Fig. 4so.-Right Levg of Ux: Memial Viet.
Hardened in sith. 1. Left bronchus; 2, pulmonary veins; 3, pulmonary artery; Nediastinal lobe=ibtermediate lobe.
are in contact with the esophagus; above and below the latter the pleura is reflected, as shown in Fig. 480.

The interlobar fissures begin at the rentral margin of the lung and pass toward the root. Those of the left lang lie opposite to the fourth and sixth ribs. The diaphragmatic lobe is the
largest, and has the form of a threesided pyramid with its hase resting on the diaphragm. The cardiac lohe is frismatio and forms the posterior margin of the cardiac noteh; its long axis cotresponds to the fitth rib. The apical lobe of the leit long is small and pointen; its ventral margin

 Arrows madicate intertobar fisoures

Fig. 4ヶ2.-Teft Levg of ox; Medial View.

1. Stem bronchus; 1^{\prime}, bronchitl branch for apical and cardiac lobes; 2, pulmonary artery; 3, 3, 3, pulmonary veins: 4, groove for aorta; 5̈, groove for cosophagus. Irrows indicate interlobar fissures.
lies on the pulmonary artery and the anterior anta: below this the space in front of the heart is oecopied by the apisal lohe of the right lung. In some cases additional fissures partially subdivide the apical lobe, and on the other hand the apisal lobe of the right lung may be undividet.

Fig. 483.-Itigg and Meart of Sheep: Ventral View.
Specimen hardened in situ. Space between heart and lungs was oceupied by pericardium and fat.

Fig. 4S4,-Right Leng of Sheef; Mediastinal Aspect.
Hardened in suu. B, Bronchus: P.a., pulmonary artery: P.v., pulmonary vein; V.c., posterior vena cava; L.g., bronchial lymph gland. Mediastinal lobe=intermediate lobe.

On the left side the eardiac notch leaves the greater part of the pericardium in contact with the thest wath as far back as the fourth intercostal spate. On the right side the hung commonly covers the pericardium, so that the latter has no contact with the lateral wall of the thorax. But in some cases (as in the ammexd figures) there is a small cardiae notch at the ventral part of the third int+rcostal space or fourth rib. In dissecting-room subjects the basal border usually begins at the space between the fifth and sixth costal cartilages, crosses the ventral part of the sixth rib, and is then about paraflel with the diaphragmatic line of pleural reflection. It erosses the ninth rib about its middle and ends at the vertebral end of the eleventh infercostal space,

The lobulation is very distinct on acount of the extremely large amount of interlobular tiscue.

In the sheep the lungs resemble those of the ox in lohation, but differ from them considerably in shape. They are relatively somewhat longer, and the hasal border differs in comformity with the diaphragmatic line of pheural reflection. There is usually a small triangular cardian notch on the right lung opposite to the ventral part of the fourth and fifth ribs; its greatest height is about two inehes (sa. 5 cm .). The left lung leaves the greater part of the pericardium uneovered as far back as the fifth intereostal space. The lobulation of the lung is much less distinet than in the ox. The pleural sace form a cul-cle-sac on each side of the first lumbar vertebra.

Abstract

In the sheep the diaphragmatic line of pleural reflection differs from that of the ox. It extends along the seventh and eighth costal cartilages, "rosses the ninth cartilage dose to the rib, the rentral ends of the tenth and eleventh ribs, the twelfth rib about an inch (ca. $2-3 \mathrm{~cm}$.) from its ventral end, and the thirtenth rib) about two inches (ca. 5 cm .) from its ventral end. It. reathes as far back as the anterior border of the first lumbar transverse process.

THE THYROID GLAND

The thyroid gland is softer in texture than in the horse and is pate in color in the adult; in the calf it is dark red in color. The lateral lobes are irregutarly triangular in outline and are more extensive and flatter than in the horse. In addition to their contact with the trachea they are related deeply to the crsophagus and the erico-pharyngeus muscle to a varying extent. The superficial face is rolated to the sterno-thyro-hyoideus, stemo-eephaticus, the carotid artery, internal jngular vein, and the vagus and sympathetie nerves. The isthmus is constantly present and glandular; it is hand-like and is commonly a quarter to half an inch (ca. (0.5-1 cm.) in width.

The lateral lobes ayerage about three inches or more (ca. \& cm.) in length and about hatf an conce (ea. $11-1.5 \mathrm{gm}$.$) in weight. They are so soft and loose in texture that their true shape is$ seen only in specimens hardened in situ. In soft material they appear oval in outline. The isthmus may be connected with the ventral margin or the posterior end of the lateral lobes; it is relatively large in the calf, amd is very evident on aceount of its dark color.

In the sheep the thyroid gland is dark red in color. The lateral kobes have a long elliptical outline and lie on carch side of the frost six or seven rings of the trachea; they are two inthes or more (ca. $5-6 \mathrm{~cm}$.) in length and half an inch or more (ca. 1.5 cm .) in height. They are comneeted by a llat glandular jsthmus a quarter of an inch or more (ca. f -8 mm .) in wilth; the isthmus is comeeted with the lateral tok at or near the posterior end of the latter, and crosses the trachea about the fifth ring.

Accessory thyroids may be fomed, and parathyroids ako occur near the posterior extremity or om the deep surface of the lateral lobes of the thyroid.

THE THYMUS GLAND

The thymus is pale and distinctly lolsulated. It is much larger in the ealf than in the foal, weighing at five or six weeks about 1.5 to 25 ounces (ca. 425 to 600 grans:). At the periend of its greatest development it oceupies the greater part of the antrrior mediastinal space, reaching hark to the pericardim, puhmonary artery, and aortic areh. Its left face (covered by the mediastinal pleura) is in contact
with the chest-wall and apical lobe of the left lung as far back as the third rib. Its right face is largely molded on the great vessels in front of the heart. The dervical part forms the bulk of the gland: it consists of right and left lobes which extend along the trachea and osophagus from the thoracic inlet to the thyroid gland. The two lobes are large at the root of the neck, where they are in apposition

Fig. 485.-Thymes of Yoeng Calf.
a, Thymus (cervical part) : b, trachea: c, isthmus of thyroid gland; d, laryngeal prominence; 1 , apical lobe of right lung; 2, heart (left ventricle); 3 , pulmonary artery; 4, sorta: $\overline{5}, 5^{\prime}$, कsophagus: 6, m. longus colli: $\tilde{7}$, diaphragm.
and cover the trachea, wsophagus, carotid artery, and vago-sympathetic trunk. Further forward they gradually diminish in size and diverge to the sides of the trachea. They are related superficially to the sterno-cephalicus, sterno-thyrohyoideus, and external jugular vein. It undergoes atrophy slowly and remnants of the thoracic part often remain even in advanced age.

RESPIRATORY SYSTEM OF THE PIG

THE NASAL CAVITY

The nostrils are small, and are situated on the flat anterior surface of the rostrum or snout (Rostrum suis). The latter is a short cylindrical projection, with which the upper lip is fused, and is circumscribed by a prominent circular margin. The skin on the snout is thin and highly sensitive; it presents small pores, and scattered over it are fine short hairs. In the snout between the nostrils is the os rostri, which is to be regarded as a special development of the extremity of the septum nasi in adaptation to the habit of burrowing or rooting. A plate of cartilage, representing the lamina of the alar cartilage of the borse, curves ventrolaterally from the dorsal part of the os rostri, and a pointed bar of cartilage curves upward from the lower part of the bone in the lateral wing of the nostril. The notch between the nasal bone and the premaxilla is closed in by parietal cartilages which resemble those of the ox.

The nasal cavity (Fig. 180) is long and narrow. It is divided behind by the lamina transversalis into an upper olfactory part, which leads to the ethmoidal meatuses, and a lower respiratory part, which is a direct contimuation of the ventral meatus. The posterior part of the septum is membranous. The turbinate bones rescmble in general those of the ox. The dorsal meatus is exceedingly small. The middle meatus is a deep fissure between the two turbinates: it divides posteriorly
into two branches: one of these extends upward and backward hetween the lateral mass of the ethmoid bone and the dorsal turbinate; the other widens and joins the ventral meatus. The opening between the maxillary simus and the middle meatus lies in a transverse plane through the last cheek teeth. The middle meatus is continuous with the space coclused by the dorsal part of the ventral turbinate and with the cavity of the dorsal turbinate. The dorsal division of the middle meatus presents several openings into the frontal simus. The ventral meatus is relatively roomy; it communicates with the space enclosed by the lower coil of the ventral turbinate. The opening of the naso-lacrimal duct is in the pusterior part of the ventral meatus. The incisive duct and the vomero-nasal organ resemble those of the ox.

THE LARYNX

The larms is remarkalle for its great length and mobility. The cartilages are more loosely attached to each other than in the other animals. The cricoid cartilage is thick and eompressed laterally; its lamina is long and narrow; its arch is directed obliquely downward and backward. The thyroid cartilage is very long; its laminse are mited ventrally and form a median ridge. The anterior cormua are absent, and no joints are formed with the hyoid bone. The posterior cormua are broad, bent inward, and articulate with the cricoid cartilage. The epiglottis is relatively very large, and is more closely attachect to the hyoid bone than to the rest of the larynx. The middle part of its base is tumed forward, and rests on the thyro-byoid membrane; it is closely comected with the boly of the hyond Jone by the hyo-epiglottic ligament and the strong hyo-epiglottic musele. ${ }^{1}$ The apex of the arytenoid cartilage is very large, and is divided into two parts at its extremity; the medial part is fused with that of the opposite eartilage. There is a small interarytenoid cartilage in the transverse ligament. The rima glottidis is very narrow. The vocal cords are directed obliquely downward and backward; and each is pierced hy a long, slit-like opering, which leads into, the large laryngeal saccule. The vocal ligament is similarly divided into a larger anterior and a smaller posterior part. There is a middle ventricle near the base of the epiglottis. The thyro-arytenoid musele is very strong and is undivided; it is equivalent (as in the ox) to the vocalis and ventricularis musdes of the horse. The arytenoideus transversus is very small. The crico-thyroid eomsists of two strata: the superficial layer corresponds to the muscle of the other amimals; the deep part consists of transverse filers.

TRACHEA AND BRONCHI

The trachea is about six to cight inches (ea. 15-20 cm.) long, and contains thirty-two to thirty-five rings, which overlap dorsally. It is slightly depressed dorsally, exeept the terminal part, which is circular in eross-section. A special bronchus is detached for the apical lobe of the right lung, as in the ox. In the right lung the stem-bronchus semds branelses (ome each) to the cardiac and intermediate lobes and continues backward in the diaphragmatic lohe, in which it ramifies. In the left lung the stem-homehus givers off a bronchus which divides into two branclues for the anterior part of the lomg (fused apical and cardiac lobes), and continues lackward in the diaphragmatic lobe.
${ }^{1}$ The arrangement here is one of the most striking features of the pig's larynx. The short and thick mithlle hyo-epiglottic ligament and the anterior part of the thyro-hyofl membrane are inelastic, while the postcrior part of the membrane is thim amd dastic amd allows the epiglottis to be semarated by a considerable interval from the thyroid eartilage. Noreover, the borders of the epiglottis are connected with the thyroid cormun of the hyoid bone by lateral hyo-epiglottic ligaments.

THE THORAX AND PLEUR \mathbb{E}

The ribs are in general strongly eurved in most of the improved breeds, so that the thorax is rounded. The pleural saes extend forward to the first intereostal space. The diaphragmatic line of pleural reflection begins at or a little above the sternal end of the seventh rib, and extends in a gentle curve to about the middle of the last rib, along the medial face of which it continues. (When a fifteenth rib is present-a very common oceurrence-it does not affect the arrangement of the pleura or diaphragm).

Fig. 496.-Lexgs and Heart of Pig; Ventral View.
L. i.. Intermediate lobe of right lung: F. d., diaphragmatic surface of lungs; 1, left brachial artery; 2, brachiocephalic artery; 3 , apex of beart; $\dot{\gamma}$, pericardium (cut edge); $\bar{\jmath}$, plica venæ cavæ; 6 , posterior vena cava; γ, , œsophagus; §, ventral cesophageal nerve trunk; 9 , aorta.

THE LUNGS

The right lung has four lobes-apical, cardiac, diaphragmatic, and intermediate. In some cases the apieal lobe is divided by a fissure into two parts; sometimes it is fused with the eardiae lobe. The left lung may be regarded as having two or three lobes. The diaphragmatic lobe is elearly marked off by a fissure. The part
anterior to the fissure represents the apical and cardiac lobes, whieh are, however, noparated only hy the eardiae noteh, not ly an interlobar fissure, as is usual in the

Vig. Añ.- Right Levg df Piff: Memial Vien.

 reflection. Arroms indicate interlolar fissures.
right lung. The lopulation is distinct, but the interlobular septat are thinner than in the ax.

THE THYROID GLAND

The thyroid gland is large and is situated usually at a considerable distance from the laryux, hut may be in contaet with it. The lateral lobes are irregularly triangular in outline, and are two inches or more (ea. $5-6 \mathrm{~cm}$.) in length in a large adult. They are united to a considerable extent ventrally, so that an isthmus cannot be distinguished. The gland is related deeply to the sides and ventral face of the trachea, and is in contact dorsally with the asophagus. The chief artery enters at the posterior extremity.

THE THYMUS

The thymus in young subjects is wery large, extending to the larynx or even to the mandibutar space.

RESPIRATORY SYSTEM OF THE DOG THE NASAL CAVITY

The nostrils are situated on the muzzle, with which the upper lip blends. They are shaped somewhat like a comma, with the hroad part next to the septum and the narrow part direeted backward and outward. The skin around the nostrils is bare, usually black, and in health moist and cool. The muzzle is marked by a median furrow (philtrum), or a deep fissure in some breeds. The eartilaginous
framework is formed essentially ly the septal cartilage and the parietal cartilages which proceed from it. The septal eartilage projects beyomd the premaxilla, and

Fig. 4na--Agittal section of Head and Part of Neck of Dog.

Fig. 4.59-Kiey to Preceding Figere.
is much thickened at its extremity; it gives off from its margins the two parietal cartilages, which curve laterally and toward each other. A grooved plate extends
outward from the septal cartilage in the floor of the nostril, and another lamina supports the alar fold of the ventral turbinate bone; these may be termed accessory nasal cartilages (Cartilagines nasi aceessoriae).

The length of the nasal cavity varies greatly in different breeds, corresponding, of course, to the length of the face. The cavity is romy, but is very largely oceupied by the turbinates and the lateral masses of the ethmoid bone. The middle meatus is short and narrow, and divides posteriorly into two branches: the upper braneh leads to the ethmoidal meatuses; the lower branch joins the ventral meatus. The ventral meatus is very small in

Fig. 490-Aditts Libyngis and Related Strototures of Dos.
The pharynx and cesophagus have bern cut along the mid-dorsal line and reflected.
1, Epiglottis; 2.2. conniculate cartilages; S, S, arytunoid cartilages; ${ }_{4}$, glottis; 5 , wall of pharynx: σ, wsophagus: γ, limen exophatgi; s, posterior pillar of soft palate; $\%$, median sulcu* of tongue: 10 , vallate papilia; 11 , conical papillse of root of tungue $; 12,12$, tonsils (shown by opening up tonsillar sinus). its midelle part, owing to the great development here of the ventral turhinate. The posterior part of the nasal cavity is divided by the lamina transversalis into an upper olfactory part and a lower respiratory part. The sinuses have been described (vide Osteology).

THE LARYNX

The larynx is relatively short. The lamina of the cricoid cartilage is wide; the areh is grooved laterally. The lamine of the thyroid cartilage are high, but short; they mite ventrally to form the body, on which there is anteriorly a marked prominence, and posteriorly a deep noteh. The onlique line on the lateral surface of the lamina is prominent. There is a rounded noteh (Fissura thyreoilea) below the short anterior corm for the passage of the anterior laryngeal nerve. The posterior cornu is strong, and has a rounded surface for articulation with the erieoid cartilage. The arytenoid cartilages are relatively small, and have between them a small interarytenoid cartilage. The epiglottis is quatrilateral; its lower part or stalk (petiolus) is narrow, and fits into the angle of the thyroid cartilage. The cuneiform cartilages (Cartilagines rmeiformes) are large and semewhat eresernt shaped; they are not fused with the epiglottis.

The false vocal cords extend from the euneiform cartilages to the thyroid. The true vocal cords are large and prominent. The large lateral ventricle is a long slit parallel with the anterior margin of the true vocal cord. The laryngeal saccule is extensive and hes lateral to both trus and false vocal cords.

The erico-thyroid muscle is thick. The hyo-epiglotticus is well developed, and is clonble at its hyoid attachment. The ventricularis or anterior part of the thyro-arytemideus arises on the emmeiform cartilage. Hence Lesbre has suggested the name emeo-arytenoideus for it.

THE TRACHEA AND BRONCHI

The trachea is practically circular in eross-section at its ends, but the intervening part is very slightly tlattened dorsally. It contains about forty to forty-
five U-shaped rings; the ends of the rings do not meet dorsally, so that here the trachea has a membranous wall (Paries membranacea), and is composed of a layer of transverse smooth muscle-fibers outside of the rings, the fibrous membrane, and the mueous membrane.

The stem-bronchi diverge at an obtuse angle, and each divides into two branches before entering the lung, but the ramification differs in the two lungs. In the right lung the anterior bronchus goes to the apieal lobe, and the stembronehus gives off a branch to the eardiae lobe and another to the intermediate lobe. In the left lung the anterior bronchus divides into two branches for the apical and ardiac lobes. The anterior branch of the left bronchus crosses under the pulmonary artery.

THE LUNGS

The lungs differ in shape from those of the horse and ox in conformity with the shape of the thorax, which is relatively very wide in the dog; the lateral thoracic walls are strongly curved, and the costal surface of the lungs is correspondingly convex. ${ }^{1}$

The right lung is much (ea. 25 per cent.) larger than the left. It is divided

Fig. 491.-Right Lung of Dog: Medial View.
L. a., Apical lobe; L. c., cardiac lobe; L. d., diaphragmatic lobe; L. i., intermediate lobe; 1, stem-broncbus; $2, \mathcal{Z}^{\prime}$, bronchi of apical lobe; $3,3^{\prime}$, divisions of pulmonary artery; $4-\gamma$, pulmonary veins; 8 , groove for anterior vena cava; 9. groove for vena azygos; 10 , groove for cesophagus; 11, groove for trunk of vertebral, cervical, and dorsal veins; 12, groove for internal thoracic vessels.
into four lobes by deep fissures which extend to the root. The lobes are the apical, cardiac, diaphragmatic, and intermediate. The apical lobe extends considerably over the median plane in front of the pericardium. The internediate lobe has the form of an irregular, three-sided pyramid, with its base against the diaphragm and its apex at the root; on its lateral face there is a deep groove which contains the posterior vena eava and right phrenic nerve, enclosed in a special pleural fold. The cardiac impression of the right lung is much deeper than that of the left. The

[^125]

Fig, 4 !2,-Left Lung of Dog; Costhl Scrface.
L. d., Daphragmatic lobe. Arrows indicate interlohar fissures,

1. Aorta; 2, asophagus; 3, osophageal nerve trunk; 4, posterior vent cava.
cardiac notch is triangular and allows the pericardium to come in contact with the lateral wall at the fourth and fifth interchondral spaces.

The left lung is divided into threc lobes-apical, cardiac, and diaphragmatic. The cardiac impression is shallow, and a distinct cardiae notch is not present. Jut the pericardium is in contact with the lateral wall along a narrow area at the ventral part of the fifth and sixth interchondral spaces. The apical lobe has a small, buntpointed apex which lies over the manubrium sterni. On account of the small amount of interlobular tissue the lobulation is not distinct. Pigmentation of the interlobular tissue is usual in dogs kept in town.

Abstract

Accessory fissures may partially subdivite some of the lobes; this is most common in regard to the apical lobe. When the lungs have been successfully hardened in situ, additional markings are seen ou the mediastinal surface. On the right lung there are: 1) A groove for the anterior vena cava in front of the root; (2) a groove for the vena azygos which curves upward and backward over the root; (3) a shallow groove for the aorta above the posterior part of the root: (t) a groove for the resophagus behind the root: is a grove for the internal thoracie vessels curving downward and backward over the apex; 16 a groove for the right phrenic nerve in the upper part of the cardiac impression; (7) grooves for the dorso-cervical and vertehrat veins running from the dorsal border to the groove for the vena cava. On the left lung there are: (1) I well-marked groove for the aorta, which curves over the root and runs back just below the dorsal border: (2 a shallow groove for the cesophagus behind the root; 3 grooves on the apical lohe for the left brachial and brachiocephalic arteries: (t) grooves near the apex for the internal thoracie vessels; (5) a groove for the left phrenic nerve is more or less evident; it passes downward and baekward over the middle of the apical lobe, then runs backward over the cardiac and diaphragmatic lobes.

The diaphragmatic line of pleural reflection extends along the lower part of the ninth costal cartilage, crosses the tenth cartilage a little (ca. 1-2 cm.) below the costo-chondral junction, and the cleventh rib at the costo-chondral junction; it then curves up to the last rib, just above its middle, and passes medially and backward to the second lumbar transverse process. In a gootsized dog (e.g., bull-terrier) the apex of the pleural sac extends about an inch (ca. 2.5 cm .) anterior to the plane of the first rib.

THE THYROID GLAND

The lateral lobes of the thyroid gland are long and narrow, and have a flattened, ellipsoidal form; they are situated on the lateral surfaces of the trachea near the larynx, extending along the first six or seven rings (Fig. 434). The extremities, are small, the posterior one often being pointed. The isthmus is inconstant and variable; in large dogs it has the form of a glandular band which may be nearly half an inch (ca. 1 cm .) wide; in medium-sized dogs it is often absent, and in small dogs it is usually absent. Accessory thyroids are frequently present; three or four may be found on cither side, as well as a median one near the hyoid bone.

The parathyroids, about the size of millet or hemp seed, are four in number usually: Two are situated on the deep face of the thyroid lobes, in which they are often embedded; the others are placed laterally near the anterior extremity of the thyroid.

THE THYMUS

The thymus is relatively small, and is situated almost entirely in the thorax. The left lobe is much larger than the right, and extends back on the pericardium as far as the sixtl! rib at the time of its greatest size. According to Baum, the gland increases in size during the first two weeks after birth, and atrophies rapidly in the next two or three months. Traces of it are present at two or three years of age, and may be found even in old subjects.

THE UROGENITAL SYSTEM

The urogenital apparatus (Apparatus urogenitalis) includes two groups of organs, the urinary and the genital. The urinary organs claborate and remove the chief exeretory fluid, the urine. The geni-

Fig. 494.-Genfiral Doratl Tiew of T'rinary GBgans of llorse.

1. 1kight kidney; 1^{\prime}, left kidney; 2, 2', adrenal bodies; 3. 3^{\prime}, ureters: 4 . urinary bladder; 4', anterior end of bladder with cicatricial remmant of urachus; $4^{\prime \prime}$, urethra; 5. aorta; 6,6 , renal arteries; $\tau_{1} \tilde{\sim}$, extermal iliac arteries; $s, \delta_{\text {, internal iliae ar- }}$ teries; 9, 4 , umbilical arteries. (After Leisering's Atlas.) tal organs serve for the formation, development, and expulsion of the products of the reproductive glands. In the higher vertebrates the two apparatus are independent except at the terminal part, which constitutes a urogenital tract, and includes the vulva in the female and the greater part of the urethra in the male.

THE URINARY ORGANS

The urinary organs (Organa uropoiëtica) are the kidneys, ureters, hladder, and urethra. The kidneys are the glands which secrete the urine; they are red-brown in color, and are situated against the dorsal wall of the abdomen, loeing in most animals almost symmetrically placed on either side of the spine. The ureters are tubes which convey the urine to the urinary bladder. The latter is an ovoid or piriform sace, which is situated on the pelvic flow when empty or nearly so; it is a reservoir for the urine. The urine accumulates in the bladder and is then expelled through the urethra.

THE URINARY ORGANS OF THE HORSE
 THE KIDNEYS

Each kidney presents two surfaces, two horlers, and two extremities or poles, but they differ so much in form and position as to require a separate description of each in these respects.

The right kidney (Ren dexter) in outline resembles the heart on a playing card, or an equilateral triangle with the anglos rounded off. It lies ventral to the upper parts of the last two or three ribs and the first lumbar transverse process. The dorsal surface (Facies dorsalis) is strongly convex; it is related chiefly to the diaphragm, but also to a small extent posteriorly to the iliac fascia and psoas
muscles. In well-hardened specimens, especially those from thin subjects, impressions of the last two ribs and the tip of the first lumbar transverse process are usually visible. The ventral surface (Facies ventralis) is in general slightly concave, and is related to the liver, panereas, cæcum, and right adrenal; it either has no peritoneal covering, or only a narrow peritoneal area laterally. ${ }^{2}$ The medial border (Margo medialis) is convex and rounded; it is related to the right adrenal and the posterior vena eava. It presents about its middle a deep noteh, the renal hilus (Hilus renalis); this is bounded by rounded margins, and leads into a space termed the renal sinus (Sinus renalis). The vessels and nerves reach the kidney at the hilus, and the sinus contains the renal pelvis or dilated origin of the ureter. The lateral border (Margo lateralis) is rounded, and is thinner than the medial one.

Fig. 495.-Diagram of Position and Dorsal Relitions of Kidneys of Horse.
Areas of direct relations are enclosed by continuous lines; parts of skeleton which overlie the kidneys are indicated by dotted lines. L.I.-L.III, lumbar transverse processes.

It consists of two parts, anterior and posterior, which meet at a lateral angle; the anterior part fits into the renal impression of the liver. The duodenum curves around the lateral border. The anterior extremity (Extremitas cranialis), thick and rounded, lies in the renal impression of the liver. The posterior extremity (Extremitas caudalis) is thimer and narrower.

The left kidney (Ren sinister) is hean shaped. It is considerably longer and narrower than the right one, and is situated nearer the median plane and further back, so that the hilus of the left kidney is usually about opposite to the posterior extremity of the right one. It is usually ventral to the last rib and the first two

[^126]or three humbar transerse processes. The dorsal surface is consex, and is related to the left crus of the diaphragn, the iliae fascia and psoas museles, and the dorsal end

 litte further formurd in this subject than is usual.

Fig. 197.-Kidevers and Aprevila of llobse; Vextion Vikw.
Hardened in situ. Left renal win (not marked) is seen curving round posterior end of left ademal.
of the spleen. The ventral surface is consex and irregular; the greater part of it is covered by the peritonelum. It is in relation with the origin of the small colon, the terminal part of the duodenum, the left adrenal, and the left extremity of the
pancreas. The medial border is longer, straighter, ant thieker than that of the right kidney: It is related to the posterior aorta, the adrenal, and the ureter. The lateral border is related chiefly to the base of the spleen. The anterior extremity extends almost to the saccus eachs of the stomach; it is related to the left end of the pancreas and the splenic vessels. The posterior extremity is usually larger than the anterior one.

The form of the left kidney is variable. In some cases its outline is similar to that of the right kidney, but its ventral surface is convex and is often marked ly several furrows which diverge: from the hilus. In well-hardened specimens the three areas of the dorsal surface are often distinet. The psoas area (Impressio muscularis) is flat, parallel mith the medial border, and widens behind. The diaphragmatic area is small and convex; it is eresecntic and is confined to the anterior end. The lateral splenic area is somewhat flattened and is often so extensive and distinet as really to constitute a third sufface as in Fig. 496.

Fixation.-The kidneys are held in position chiefly by the pressure of adjacent organs and by the renal fascia. The latter is a special development of the sub)-

Fig. 498. -Frontal (Horizontal) Section of Kidney of Horse.
The renal vein is removed. A large accessory rensl artery entered the posterior pole. Sections of arteries in limiting layer between cortical and medullary substance are white in figure.
peritoneal tissue, which splits into two layers to enelose the kidney, together with the perirenal fat, which is termed the capsula adiposa. ${ }^{1}$ On account of its relations with the liver, pancreas, and base of the cæcum, the right kidney is much more strongly attached than the left one. It is, therefore, not surprising that the latter varies somewhat in position; its posterior extremity may be ventral to the third or fourth lumbar transverse process. The position of the right kidney, excluding its movements during respiration, seems to be very constant.

Weight and Size.-The right kidney is usually one or two ounces heavier than the left. The average weight of the right kidney is about 23 to 24 ounces (ea. 700 gm .) ; that of the left, about 22 to 23 ounces (ea. 670 gm .). The relation of the weight of both kidneys to the body-weight is about $1: 300-350$. In the newhorn foal the kidney weighs about 6 ounces (ea. 170 gm .).

[^127]Chanveau gives as an average 750 grams for the right kidney and 710 grams for the left. Ellenherger and Baum (24 cases) give the right kidney as varying between 430 and 840 grams; and the left between 425 and 700 ; this is an average of 635 grams (about $22 \frac{1}{2}$ ounces) for the right kidney, and 602.5 grams (about $21!2$ ounces) for the left. They give the relation of the weight of both kidneys to the body-weight. as $1: 255-344$. In a Pereheron mare wolighing about 2000 pounds the right kidney weighed 4 pounds 3 ounces, and the left one 4 pounds. In a horse of medium size the right kidney is about six inches (ca. 15 cm .) in length, about the same in width, and about two inches (ea. 5 cm .) thick. The left kidney is about seven inches (ea. 18 cm .) long, four to five inches (ea. 10 to 12 cm .) wide, and two to two and a half inches (ca. 5 to 6 cm .) thick.

Structure.-The surface of the kidney is covered by a thin but strong fibrous capsule (Tumiea fibrowa), which is in general (asily stripped off the healthy kidney; it is continued into the renal simus, where it is attached. Sections throngh the kidney show it to consist of an exterual cortical substance and an internal medullary substance. The cortical substance (Sulstantia corticalis) is red brown in color and has a granular appearance. It is dotted over with minute dark points; these are the renal corpuscles (Corpuseula renis), ${ }^{1}$ each censisting of the dilated origin of a uriniferous tubule (Capsula glomeruli), with an invaginatod tuft of eapillaries (Clomerulus) enclosed by it. The medullary substance (Substantia medullaris)

Fig. 499.-Tuansyerse Aection of Right Fidnet of Lumse Passing Threrch the Uilus.
Posturior portion of organ hardened in situ. Note curvature of dorsal surface.
is more resistant and presents a distinet radial striation. Its central part is pale, but its periphery, the intermediate zone, is of a deep red color; in the latter are seen, at fairly regular intervals, seetions of the relatively large areiform vesseds, which are taken to represent the demareation between the primitive lobes. ${ }^{2}$ Brtwen the vessels the medulta is probonged somewhat toward the periphery, forming the bases of the renal pyramids (Pyramides remales). These are not very pronounced in the kidney of the horse, esperially as the gland is not papitlated. Between the hases of the pyramids proeesses of the eortex dip in toward the simus, forming the renal columns (Columme renales). ${ }^{3}$ The imeer eentral part of the medulla forms a concave ridge which projerts into the pelvis of the kidncy. This profectiom is termed the renal crest; it presents numerous small openings at which renal tubules open into the pelvis of the kidney, and hense the surface here is known as the area cribrosa.

${ }^{1}$ Also known as Malpighian corpuseles.

${ }^{2}$ The fortal kiduey is divided by furrows into a number of polygonal areas, each of which is the base of a pyramidal lobe or renculus. These furrows usually disappear before or som after birth in the foal, although traces of them are sometimes seen in the adult.
${ }^{3}$ In the kitney of the horse the renal eolumes dip, in between the pyramids very superficially as compared with the arrangetuent in the hmman kidney. Breuer states that the pyramids are 40 to $19 \frac{1}{2}$ number, and are arranged in four rows. Only the middte ones are distunct.

Examination with a pocket lens shows that the cortex is imperfectly divided into lobules (Lobuli cortieales). Each lobule consists of an axial radiate part (Pars radiata), surrounded by a convoluted part (Pars convoluta). The former appear as ray-like prolongations from the bases of the pyramids (henee also termed medullary rays), and consist largely of narrow, straight or slightly flexuous tubules (limbs of the loops of Henle). The convoluted part is gramular in appearance, and consists largely of the renal corpuseles and convoluted tubules.

The renal pelvis (Pelvis renalis) is the dilated origin of the excretory duet. It lies in the sinus of the kidney, and it is funnel-shaped, but flattened dorso-ventrally. The renal crest ${ }^{1}$ (Crista renalis) projects into the outer part of the pelvis in the form of a horizontal ridge with a coneave free edge. The tubules of the middle part of the medullary substance open on this crest into the pelvis. The tubules from each end of the kidney do not open into the pelvis proper (Recessus medius), but into two long, narrow diverticula (Reeessus terminales), which proceed from it toward the poles of the kidney. The wall of the pelvis consists of three layers. The external fibrous coat or adventitia is continuous with the supporting tissue of the kidney. The muscular coat consists of longitudinal and

Fig. 300.-Cast of Rigit Rexal Pelvis (a), Recesees (c. ć) and Grigin of Lreter (h) of Horse. (.Ifter Dumont.)

Fig. 301.-Cist of Left Revil Pelvis a), Recesses (c, c^{\prime}). and Origin of L'reter (b) of Horme. (After Dumont.)
cireular fibers. The mucous coat does not eover the renal erest nor is it eontinued into the diverticula of the pelvis. It has a yellowish tinge, and forms numerous folds. It contains compound tubular glands (Glandulæ pelvis renalis), which secrete the thick, viscid mueus always found in the pelvis. ${ }^{2}$

Renal Tubules.-The parenehyma or proper substanee of the kidney is composed of the small renal or urin:ferous tubules (Tubuli renales), which are very close together and have a complicated course. Each tubule begins in a thin-walled, spherieal dilatation or capsule Capsula glomeruli, which is invaginated to reecive a tuft of looped capillaries termed a glomerulus; these two struetures constitute a renal corpusele; the corpuscles are risible as minute red or dark spots in the convoluted part of the cortex. Suceeeding this is a short narrow neck, beyond Which the tubule beeomes wide and convoluted, forming the proximal convoluted tubule, and enters the radiate portion of the cortex. It then gradually narrows and enters the intermediate zone; beeoming very narrow and nearly straight. it descends for a variable distance into the medullary substance, turns sharply upon itself. and returns to the cortex, forming thus the loop of Henle, with its descending and ascending limbs. In the convoluted part of the cortex it widens and becomes tortuous, constituting the distal convoluted tubule. The tubule then narrows, enters a medullary ray, and opens with other tubules into a straight collecting tubule; this passes axially through a pyramid, and unites with other collecting tubules to form the relatively large papillary ducts. whieh open into the renal pelvis.

Stroma.-The interstitial tissue forms a reticulum throughout which supports the tubules
${ }^{1}$ The erest is the result of fusion of the papilla or apiees of the pyramids in the embryo and is therefore also known as the papilla communis.

- There are goblet cells in the epithelium of the pelvis which doubtless coneur in the secretion of mucus.
and blood-vessels. It is very smanty in the cortex, much more abundant in the medulla, in whieh it increasos: 11 amount toward the pelvis.

Vessels and Nerves.-The kidneys receive a large amount of blood through the renal arteries which come from the aorta. ${ }^{1}$ Branches of these enter at the hilus and on the ventral surface of the gland, and reach the intermediate zone, where they form anastomotic arches (Arterise arciformes). From these ardiform arteries heanehes pass into the cortes and medulla. The eortical branches (Arterix interlohulares) have in general a radial eourss between the cortical lobules, and give off short lateral branches, each of which ends as the afferent vessel (Vas afferens) of a renal corpusele. The blexe is carriod from the glomerulus ly a smaller efferent

Drawn in part foom the desernptions of (iohume (Rohm, Daviduff, and Huber).
vessel, which breaks up immediately into capillaries which form networks around the tubules. The medullary branches descend in the prramids, forming in them hundles of straight twigs (Arterioler recta). The renal veins are large and thinwalled; they go to the posterior vena cava. In the superficial part of the cortex the veins form star-like figures (Vene stellater) by the convergence of several small radicles to a common trunk. The lymph-vessels form two networks, eapsular or superficial, and parenchymatous or deep. On leaving the hilus they go to lymph glands in this vicinity which are known as the remal lymph glands.

The nerves are derived from the remal plexus of the sympathetie, which enlaces the renal artery.

[^128]
THE URETERS

The ureter is the narrow part of the excretory duct of the kidney. Each begins at the renal pelvis and terminates at the bladder. It is about $\frac{1}{3}$ to $\frac{1}{4}$ inch (ca. 6 to 8 mm .) in diameter, and its average length is about $2 S$ inches (ca. 70 cm .). The abdominal part (Pars abdominalis) of each ureter emerges ventrally from the hilus of the kidney, and curves backward and medially toward the lateral face of the posterior rena cava (right side) or the aorta (left side). They then pass almost straight backward in the subperitoneal tissue on the surface of the psoas minor, cross the external iliac ressels, and enter the pelvic cavity. The pelvic part (Pars pelvina) passes backward and a little ventrally on the lateral wall of the pelvic cavity, turns medially, and pierces the dor:al wall of the bladder near the neck. In the male the pelvic part enters the genital fold and crosses the ductus deferens. In the female the ureter is situated in most of its course in the dorsal part of the broad ligament of the uterus.

The wall of the ureter is composed of three coats. The external fibrous coat (Tunica adrentitia) contains many elastic fibers. The muscular coat consists of internal and external layers of longitudinal fibers, with a stratum of circular fibers between them. The mucous membrane is covered with transitional epithelium; glands (Glandulæ mucosie ureteris) resembling those of the renal petris occur in the first three or four inches of the ureter.

The blood-supply is derived from the renal and umbilical arteries. The nerves come from the solar and pelvic plexuses; many minute ganglia are present.

THE URINARY BLADDER

The urinary bladder (Vesica urinaria) (Figs. 366, 369, 370) differs in form, size, and position according to the amount of its contents. When empty and contracted, it is a dense, piriform mass, about the size of a fist, and lies on the rentral wall of the pelvic carity at a variable distance behind the inlet. When moderately filled, it is ovoid in form, and extends a variable distance along the ventral abclominal wall. Its physiological capacity varies greatly, but may be estimated approximately at about three or four quarts.

The anterior rounded blind end is termed the vertex; ${ }^{1}$ on its middle is a mass of cicatricial tissue (Centrun verticis), a restige of the urachus, which in the foetus forms a tubular connection between the bladder and the allantois. The middle part or body (Corpus vesice) is rounded, and is somewhat flattened dorso-ventrally, except when distended. It presents two surfaces, dorsal and ventral, the former being the more strongly convex, especially in its posterior part in front of the entrance of the ureters. ${ }^{2}$ The posterior narrow extremity, the neck (Collum vesicæ), joins the urethra.

The relations of the bladder vary according to the degree of fulness of the organ, and also differ in important respects in the two sexes. The ventral surface (Facies rentralis) lies on the ventral wall of the pelvis, and extends forward on the abdominal wall as the bladder fills. The dorsal surface (Facies dorsalis) in the male is related to the rectum, the genital fold, the terminal parts of the ductus deferentes, the vesicule seminales, and the prostate; in the female it is in contact instead with the body of the uterus and the vagina. The vertex of the full bladker has variable relations with coils of the small intestine and small colon, and the pelvic flexure of the large colon.

Fixation.-Displacement of the bladder is limited chiefly by three peritoneal
${ }^{1}$ This is often termed the fundus by veterinarians, but is not the homologue of the fundus of the human bladder.
${ }^{2}$ This would correspond to the fundus vesice of man.
36
folds, termed the middle and lateral ligaments (Figs. 352, 370). The middle ligament (Plica umbiliealis media) is a median triangular fold, formed ley the reflection of the peritomeum from the ventral surface of the bladder on to the ventral wall of the pelvis and abdomen. In the new-born animal it is extensive and reaches to the umbilieus; in the adult it is usually much reduced in length relativety. It contains elastic and muscular filers in its pusterior part. The lateral ligaments (Plice umbilieales laterales) streteh from the kateral aspects of the bladder to the lateral pelvic walls. Each contains in its free edge a romul, firm band, the round ligament (Lig. teres vesicer) ; this is the remmant of the large foetal mbilical artery, the lumen of wheh in the achult is very small. The retroperitencal part of the ldader is attached to the surroumding parts ley loose comertive tissue, in which there is a quantity of fat. It is evident that the posterior part of the bladker has a definite tixed position, while its anterior part is movable.

Structure.- The wall of the bhadeler consists of a partial peritoneal investment, the muscular coat, and the mecons liming. The serous coat (Tunica serosa) covers the greater part of the dorsal surface, from which it is reflected in the male to form the genital fold; in the femate it passes on to the rigina, forming the vesicogenital pouch. Ventrally the peritoneum cowers only the anterior half or less of the bladder, and is rellected posteriorly on to the petvie floor. The muscular coat (Tunica muscularis) is relatively thin when the blader is full. It is unstriped, pale, and not clearly thvided intulayers, but has rather a plexiform arrangement. Longitudinal fibers necar on the dorsal and ventral surfaces, hat katerally they lecome obligue and decussate with each other. A distinetly cireular armangement is found at the neck, where the fibers form a sphincter vesicæ. The mucous coat (Tunica muensa) is pale amb thin. It is in general attached ly a highly elastic submucosa to the museular coat, and forms numerous folds when the organ is empty and contracted. It is modified domally in the vieinity of the neck over a triangular area, termed the trigonum vesicæ; the anghes of this space lie at the orifiees of the two ureters and the uretlura, which are close together. Here the mueous membrane is closely attached and does not form folds. From each ureteral orifice (Orificium ureteris) a fold of mucous membrane (Plica ureterica) passes backward and inward, uniting with its fellow to form a median crest (Crista urethralis) in the first part of the urethra. The ureteral orifices are al little more than an inch (ea. 3 cm .) apart. The terminal part of the ureter, alter piereing the museular coat of the bladeler, pasies for a distance of abont an inch (ea. 2 to 3 cm .) betwen the muscular and mucons coats hefore piercing the hatter; this arrangement constitutes a valve which prevents alsolutely the roturn of the urine from the blatwer into the ureter. The internal urethral orifice (Orificium urethre internum) lies at the apex of the trigonum, and is about an inch and a half (ea. 4 cm .) behind the ureterat orifices. The mucous membrane is covered with transitional epithelium like that of the ureter and renal pervis. It contains lymph mortutes.

Vessels and Nerves.-The arteries are derived chictly from the internal pudic, but branthes also come from the oliturator and umbilieal arteries. The veins terminate chacfly in the internal pudic veins. They form plexuses posteriorly. The lymph-vessels form plexuses on both surfaces of the museular coat. They go to the internal iliae and lumbar glands. The nerves are derived from the pelvie plexus (sympathetic and ventral hranches of third and fourth sacral nerves). They form a plexus in the submucosa which presents mieroscopic ganglia.

In the fotus and new-horn amimal the bladker is situated chiefly in the abromen. It is long, narrow, ant fusiform. Its abdominal end lies at the umbiliens, through which it is confimued loy the urachus to the extra-embryonie part of the allantois. The lateral ligaments also extend to the umbilions and each contams in its edge the large umbilical artery. As the pelvis increases in size and the large intestine grows, the bladeler retracts into the pelvis and changes its form.

The urethra will be described with the genital organs.

THE ADRENAL BODIES

The adrenal bodies or glands (Clandulæ adrenales) ${ }^{\mathbf{1}}$ are two small, flattened organs, which lie in contact with the anterior part of the medial border of the kidneys Figs. 496, 497). They are ductless. In the horse they are red-brown in color, about three and a half to four inches (ca. 9 to 10 cm .) long, one to one and a half inches (ea. 3 to 4 cm .) wide, and about half an inch or more (ca. 1.5 cm.) in thickness. The weight varies from one to two ounces ('a. 28 to 56 gm .).

The right adrenal body is related medially to the posterior vena cava, to which it is adherent. Its anterior part curves dorsally around the medial border of the right kidney. Its posterior part is flattened and is related ventrally to the pancreas and capumn, dorsally to the right renal vessels. The anterior extremity is concealed in the renal impression of the liver; the posterior is related to the ureter.

The left adrenal body is a little shorter than the right one, and its extremities are rounded; it is usually curved, so that its medial border partly embraces the anterior mesenteric artery. Its dorsal surface is related to the kidney, the renal artery, the aorta, and the left cœliaco-mesenteric ganglion. The ventral surface is in relation with the left extremity of the pancreas and the root of the great mesentery. The posterior extremity often curves inward behind the anterior mesenteric artery; it is related behind to the left renal vein.

When hardened in situ the adrenals present several features not evident in the soft organs. The anterior part of the right adrenal is twisted dorso-laterally over the medial margin of the kidney, so that this part is prismatie and has three surfaces; of these, the coucave lateral one is appliel to the kidney, the dorsal one is related to the right crus of the diaphragm and the liver, and the medial one is in contaet with the posterior tena eava The anterior mesenteric artery is nearly always more or less enlargel as a result of verminous arteritis, and the form and degree of curvature of the left adrenal seem to vary in conformity with the condition of the artery.

Structure.-The fibrous capsule adheres intimately to the surface of the organ. It contains elastic fibers, and in its deep part unstriped muscle-fibers. From it trabeculæ pas: radially into the substance, blending with the fine supporting reticulum. The parenchyma consist of a cortical and a medullary part. The cor-

Fig. 503.- Idrenal Body of Horse; Hortzontal section, Redtced.

1. Capsule: 2, 2^{\prime}, cortical substance: 3 . medullary substadce; 4. blood-ressel in section. (From Leisering's Atlas, reduced.) tical substance (substantia corticalis) is red-brown in color, and is clearly distinguishable from the yellow medullary substance (Sulstantia medullaris). A large central vein (Vena centralis) is visible on cross-sections.

The eclls of the cortex are arranged in chains of one or two rows. In the peripherat portion the cells are of high eylindrical shape, and the chains form connecting loops; Günther has proposed the name zona arcuata for this part, instead of the usual tem zona glomerularis. More deeply the chains are distinctly palisade-like, and this region is ealled the zona faseiculata. Next to the medulla is the zona reticularis, in which the chains form a network. The cells in these two zones are polygonal and contain a brown pigment. The cells of the medulla are arranged in irregular groups or form sheaths around the veins. They react to chromie salts by assuming a yellow or yellow-brown color, and are termed chromaffin cells; they share this peculiarity with certain cells of the sympathetic ganglia and paraganglia, with whieh they are probably related genetieally. The alkaloid adrenalin appears to be formed in the medullary cells.

Vessels and Nerves.-The adrenals receive a relatively large blood-supply through the adrenal arteries, which arise from the renal arteries or from the aorta directly: The veins terminate in the posterior vena cava and the left renal vein.

[^129]The lymph-vessels go to the renal lymph glants. The numerous nerves are derived from the sympathetic system through the solar and renal plexuses. The fibers form a rich interlacement, especially in the medullary substance. Ganglion cells are found chiefly in the medulla, but also occur in the deeper part of the cortex.

URINARY ORGANS OF THE OX

The kidneys are superficially diviled into polygonal lobes by fissures of variable depth. The lobes vary in size, and are commonly about twenty in number. The fissures are filled with fat.

The right kidney has an elongated elliptical outline, and is flatemeel dorsoventrally. It commonly lies ventral to the last rib and the first two or three lumbar

Fig. N0j- Prontal Section of Kidnet of Ox.
L, Lobes of cortex; P, papilix: C, calys majur; C^{\prime}, calyces minotes.
transerse processes, but its extremities may be ventral to the first and fourth lumbar transerse processes. The dorsal surface is rounded, and is in contact chiefly with the sublumbar muscles. The ventral surface is less convex, and is related to the hiver, panereas, duodenum, and eolom. The hihus is situated on the anterior part of this surface, near the medial horter. The medial horter is nearly straight, and lies parallel with the posterior vena cava. The lateral border is convex. The anterior extremity occupies the renal impression of the liver, and is capped loy the adrenal body.

The left kidney ofeupics a remarkable position, and when hardened in situ differs strongly in form from the right one. When the rumen is full, it pushes the kidney backward and across the median plane, so that it is situated on the right side, behind, and at a lower level than, the right kidney. It then lies usually ventral to the third, fourth, and fifth lumbar vertebrae. When the rumen is not full, the left kidney may lie partly to the left of the median plane. It has three surfaces. The dorsal surface is convex, and presents on its antero-lateral part the hills, which opens laterally. The ventral surface is related to the intestine. The third face is more or less flattened by contact with the rumen, and may be termed the ruminal surface. The anterior extremity is small, the posterior large and rounded. ${ }^{1}$

The kidneys are embedded in a large amount of perirenal fat termed the capsule adipose. The weight of a kidney of an adult animal is about 20 to 25 ounces (ca. $600-700 \mathrm{gm}$.), the left one being usually an ounce or more the heavier. The two form about $\frac{1}{5}$ per cent. of the borly-weight.

[^130]Structure.-The hilus is equivalent to the hilum and sinus of the kidney of the

Fig. 50G, -Cast of Origin of Ureter (a), Calyces Majorer, and Calyces Minored (b) of Ox. (After Dumont.)
horse; in the right kidney it is an extensive elliptical cavity; in the left one it is a deep fissure. The pelvis is absent. The ureter begins at the junction of two wide, thin-walled tubes, the calyces majors; the anterior calyx is usually the larger. Each calyx major gives off a number of branches, and these divide into several funnel-shaped calyces minores, each of which embraces a renal papilla. The space not occupied by the calyces and vessels is filled with fat.

On section through the kidney the renal pyramids are easily made out. The blunt apex of each pyramid, the renal papilla (Papilla renalis), projects into a calyx minor. On each papilla are small orifices (Foramina papillaria) by which the papillary ducts (Ductus papillares) open into the calyx. The renal colum ms are much more distinct than in the horse.

At the hilus the renal artery is dorsal, the rein in the middle, and the ureter ventral; a quantity of fat surrounds these structures in the hilus.
${ }^{1}$ The above statements refer to the adult subject, and are based on investigations made on living subjects, and studies of frozen sections and material hardened in situ. In the new-born ealf the kidneys are almost symmetrically placed, but as the rumen grows it pushes the left kidney to the right and backward pari passus. It also usually causes a rotation of the kidney, so that the primary dorsal surface comes to lie almost in a sagittal plane. Further, the gland is bent so that the hills is largely closed up and faces outward (to the right). In very fat subjects the threesided appearance of the kidney may be absent, and about one-third or more may remain to the left of the median plane, even where the rumen is pretty well filled.

The kidneys of the sheep are bean-shaped and smooth, without any superficial lobation. The soft organ is regularly elliptical in form, with convex dorsal and wentral surfaces and rounded extremities; its length is about 3 inches (ca. 7.5 cm .), its width about 2 inches (ea. 5 cm.), and its thickness a little more than 1 inch (ea. 3 cm. .) They are embedded in fat normally. In position they resmble those of the ox, exrept that the right one is usually a little further loack, and lies under the first three hmbar transwerse procosses. ${ }^{1}$ The average weight of each is ahout four ounces. The hilus is in the middle of the medial border. There is a renal crest or common papilla formed by the fusion of twelve to sixteen pyranids.

The ureters are, in general, like those of the horse, exeept in regard to the first part of the loft one, which has a peculiar course, in conformity with the remarkahle position of the kiduey. It begins at the ventral part of the hilus (which faces

Fig. 5rö.-Rhimt Kidney of Sheep; Ventral Vifw. V.V., Branche's of renal vein,

Fig. 50n.-Kiddney of Sheep: Horizontal Section.

1. Cortural substance; 2, medullary substance; 8 , remul crest : 4 , renal pelvis; \tilde{o}, ureter. (From Leisering's Atlas, redured.)
toward the right), curves over the lateral aspect of the kidney to its clorsal surface, rrosses the median plane, and runs baekward on the left side.

The bladder is longer and narrower than that of the horse, and extends further forward on the abdominal lloor. The peritoneal eoat extends backward further than in the horse.

THE ADRENAL BODIES

The right adrenal lies against the medial part of the anterior pole of the right kidney. When hardened in situ, it is pyramidal in form. Its medial surface is flattened and is in contart with the right crus of the diaphragm. The lateral surface is convex and lies in the renal impression of the liver. The ventral surface is grooved for the posterior vent cava; on this surface a relatively large vein emerges near the apex. The hase is coneave and rests oblicquely against the anterior pole of the kidney. The apex fits into the angle between the posterior vena cava and

[^131]the dorsal border of the liver. The left adrenal lies on the medial face of the posterior vena cava, just behind the anterior mesenteric artery, and is therefore practically median in position. It is flattened, and irregularly triangular or heartshaperl in outline. Its left face is related to the dorsal sae of the rumen. Its right face is related to the vena cava, and presents a large emergent vein. The posterior border or base is deeply notched. The left adrenal does not migrate with the kidney, but retains its primitive position; it lies usually two or three inches (ca. 5-8 cm.) in front of a transverse plane through the anterior pole of the left kidney.

The adrenals of the sheep are both bean-shaped. The right one lies along the anterior part of the medial border of the kidney, at the angle of the junetion of the right renal vein and the posterior vena cava. It is a little over an inch (ca.

3 cm.) long, and about half as wide. The left adrenal is usually longer, and is flatter and somewhat bent. It lies across the left renal vein, to which it is attached: it is not in contact with the kidney, from which it may be separated by a distance of nearly two inches (ea. 4 em .).

URINARY ORGANS OF THE PIG

The kidneys are smooth and bean-shaped; they are more flattened dorsoventrally, more elongated, and smaller at the extremities than those of the dog. The length is about twice the width. They are usually almost symmetrically placed ventral to the transverse processes of the first four lumbar vertebra, but the left kidney is often a little further forward than the right one. The lateral border lies against the flank parallel with the edge of the longissimus muscle. The posterior extremity is usually about midway between the last rib and the tuber coxæ. The anterior extremity of the right kidney has no contact with the liver.

Variations in position are not rare, and involve the left kidney oftener than the right; the former has been found near the pelvic inlet. When a fifteenth rib is present the anterior end of the kidney is usually ventral to it. The right kidney is usually separated from the liver by an interval of an inch or more. Absence of the left kidney has been recorded.

Fig. 511.-Kidneya of Pla in silu; Veviral View.
C.a., Hepatic artery; M.a., gastru-splenic artery.

Fig. 512.-Frontal. Section of Fidney of Pig.

The weight of the kidncy of an adult pig is about seren to nine ounces (200 to 250 grams). The ratio of their combined weight to that of the borly is about $1: 150-200$. The length in an adult of good size is about five inches (ca. 12.5 cm .) and the greatest width ahout two and a half inches (ca. 6-6.5 cm.).

Structure. -The hilus is about in the middle of the medial border. The pelvis is fummel-shaped, and divides into two calyces majores, which pass in a curve forward and backward respeetively, and give off some eight to twelve short calyees minores; each of the latter contains a papilla. Some papille are narrow and conieal, and correspond to a single pyramid; others are wide and flattened, and result from the fusion of two or more pyramids; some project directly through the wall of the renal pelvis without the formation of a calyx. The renal pyramids are distinet, but it is apparent that some are compound, i. e., formed by fusion of primitively separate pyramids. The renal vessels enter the ventral part of the hilus, and the ureter leaves it dorsally.

The adrenals are long and narrow. Each lies along the medial border of the corresponding kidney from the hilus forward; they are in contact medially with the crus of the diaphragm and the posterior vena eava.

The only special features in regarl to the ureter are that it is at first relatively wide and gradually diminishes in caliber, and that it is slightly flexuous.

The bladder is relatively very large; when full, it lies chiefly in the abdominal eavity. The dorsal surface is almost eompletely covered with peritoneum, but the serous covering does not extend so far back ventrally.

URINARY ORGANS OF THE DOG

The kidneys (Fig. 624) are relatively large, forming about $\frac{1}{130}$ to $\frac{1}{200}$ of the body-weight; the weight of the kidney of a medium-sized dog is about two ounces (ea. 50 to 60 grams). They are both bean-shaped, thick dorso-ventrally, with a rounded ventral surface and a less convex dorsal surface; the surfaces are smooth.

The right kidney is not subject to much variation in position; it is situated usually opposite to the borlies of the first three lumbar vertebre, but may be as far forward as the last thoracic. Its anterior half or more lies in the deep renal impression of the liver; its posterior part is related to the sublumbar muscles dorsally, and the right branch of the panereas and duodenum ventrally.

The left kidney is subject to some variation in position; this is due to the fact that it is loosely attached by the peritoncum, and is affeeted by the degree of fulness of the stomach. When the stomach is nearly empty, the kidney usually corresponds to the bodies of the second, third, and fourth lumbar vertebree, so that its anterior pole is opposite to the hilus of the right kidney; exceptionally the anterior pole may be opposite the posterior end of the first lumbar vertebra. When the stomach is full, the left kidney is usually the length of one vertebra further back, so that its anterior pole may be opposite the posterior pole of the right kidney. The dorsal surface is related to the sublumbar muscles. The ventral surface is in contact with the left part of the colon. The lateral border is related to the spleen and the flank. The anterior extremity touches the stomach and the left extremity of the pancreas.

The lateral border of the left kidney usually has considerable contaet with the flank, and hence it may be palpated more or less distinctly in the living animal, ahout half-way between the last rib and the crest of the ilium. But in some cases the spleen assumes an almost longitudinal direction, thus intervening between the kidney and the flank.

Structure.-The hilus is in the middle of the medial border and is relatively
wide. Cortex, limiting zone, and medulla are clearly defined. On frontal sections it is seen that the medullary substance forms a horizontal renal erest like that of the horse, but with the important difference that curved ridges proceed dorsally and ventrally from the crest somewhat like buttresses. Sections above or befow the renal erest often eut these ridges in such a mamer as to give the appearance of ronical papilla, and thus tend strongly to produce it false impression. The pelvis is adapted to this arrangement of the medullary substance. It encloses a central eavity into which the renal arest projects, and is prolonged outward between the ridges, forming eavities for the latter, thus simulating the appearance of ealyees which to not exist.

The ureters present no special features.
The bladder, when full, is abdominal in position, the neek lying at the anterior border of the pubie bones. It is relatively large, and when distemded, the vertex may reach to the umbilieus. When empty and contracted, it is usually entirely in the pelvic eavity. It has a practically eomplete peritoneal coat.

THE ADRENALS

The right adrenal lies between the anterior part of the medial border of the kidney and the posterior sena eava. It is somewhat prismatic, and is pointed at either end. The left adrenal lies along the posterior aorta, from the renal vein forward, but is not in contact with the kidney. It is elongated and flattened dorsoventrally. (There is a furrow on the ventral surface for the phrenico-abdominal vein which erosses it; the part in front of this furrow is discoid, and may be taken for the entire organ in a fat subject.) The cortex is pale yellow in color, the medulla dark brown.

THE MALE GENITAL ORGANS

The male genital organs (Organa genitalia masculina) are: (1) The two testicles, the essential reprorluctive glands, with their coverings and appendages; (2) the ductus deferentes, the ducts of the testicles; (3) the vesiculæ seminales; (t) the prostate, a musculo-glandular organ; (5) the two bulbo-urethral (or Cowper's) glands; (6) the male urethra, a canal which transmits the generative and urinary seeretions; (7) the penis, the male eopulatory organ. The vesiculæ seminales, the prostate, and the butbo-urethral glands diseharge their seeretions into the urethra, where they mix with the fluid secreted by the testicles; hence they are often termed the aceessorv sexual glands.

GENITAL ORGANS OF THE STALLION

the testicles

The testicles (Testes) are situated in the inguinal region, enclosed in a diverticulum of the abdomen termed the scrotum. Their long axes are nearly longitudinal. ${ }^{1}$ They are ovoid in form, but considerably compressed from side to side. Each presents two surfaces, two borkers, and two extremities. The medial and lateral surfaces (Facies medialis, lateralis) are convex and smooth; the former is somewhat flattened by contact with the septum seroti. The free border (Margo liber) is ventral and is convex. The attached or epididymal border (Margo epididymidis) is dorsal; it is nearly straight, and is the one by which the gland is suspended in the serotum by the spermatic cord; the epididymis is attached to this border and overlies it laterally. The anterior and posterior extremities (Extremitas capitata, caudalis) are rounded.

[^132]A testicle of average size of an adult stallion is about four or five inches (ea. 10 to 12 cm .) long, two and a half to three inches (ea. 6 to 7 cm .) high, and two inehes (ca. 5 cm .) wide; it weighs about eight to ten ounces (ca. 225-300 grams). They vary much in size in different subjects, and are commonly of unequal size, the left one being more often the larger.

The epididymis is adherent to the attached border of the testicle, and overlaps somewhat the lateral surface. Its anterior enlarged end is termed the head (Caput, epididymidis); and its posterior, stightly enlarged end is the tail (Cauda epididymidis); the intermediate narrow part is the body (Corpus epididymidis). The head is closely connected with the testicle by the efferent ducts of the latter, by connective tissue, and by the serous membrane. The body is less closely attached by the serous covering, which forms laterally a pocket beneath the epididymis termed the sinus epididymidis. The tail is continued by the duetus deferens; it is attached to the posterior extremity of the testicle by a short ligament (Lig. epididymidis), which is formed by a thick fold of the tuniea vaginalis and contains smooth musele-fibers.
${ }^{1}$ When the testicle is drawn up or has not completed its descent into the scrotum, its long axis is almost vertical.

Structure of the Testicle and Epididymis.-The greater part of the surface of the testiele is eovered by a serous memhrane, the tunica vaginalis propria, whieh is the viseral layer of the serous envelop of the cord and testicle; this is reflected from the attached border of the gland, leaving an uneovered area at wheh the versels and nerves in the spermatic cord reach the testicle.t Beneath this serons envering is the tunica albuginea, a strong capsule composed of tense white fibrons tissue and unstriped musele-fibers. When the tumir is eut, the gland substance, which is soft and roddish gray in color, protrudes. From the attached border and from the deep face of the tunica alhugine trabeenter and septa of comeretive tissue

Fig. ol3.-Inguinal Region of Stallon, with Tenticlea Exposed.
 of tunca vagimalis enclosing serotal ligament; ε_{2} tumica vaginalis propria (mesorchmm); f, ductus deferens; g, θ^{\prime}, tanl
 vaginalis propria; m, spermatic artery; n, prepuce; n^{\prime}, raphé; o, preputial orifice. (Atter Ellenberger-Baum, Top. ADat, d. Pferdes.)
and unstriped musele (Septula testis) pass into the gland and subdivide the parenclyma into lubules (Lobuli testis). The larger trabecole ratiate from the attached border into the central part of the gland.

A distinct modiastimum testis, such as is present in man and many animats, does not exist in the horse. The trabecular and intertobubar septa form a notwork which shows no special condensation in any part of the ghand. In corredation with this is the absence of a rete testis, formed by the anastomosis of the seminferous tubules in the mediastinum.

The spares imperfertly marked off by the septa contain the parenchyma testis, which consists of seminiferous tubules (Tuknli seminiferi), supported
${ }^{1}$ In the normal state the surface of the testicle is quile smooth on account of the sumbs covering. Firequently, and especially in old sabjects, focal inflammation has produced roughening of the surface and thread-like proliferations.
by loose intralobular connective tissue. The tubules are at first very tortuous (Tubuli contorti); then they unite with other tubules, fornuing larger straight tubules (Tubuli recti). The latter unite with arljacent tubules and converge toward the anterior part of the attached border of the gland. In this way there are formed more than a dozen larger efferent ducts (Ductuli efferentes), which pierce the albuginea at a small area (about a centimeter in diameter) at the anterior part of the attaehed border and enter the head of the epididymis.

The epididymis is covered by the tunca raginalis propria and a thin albuginea. Its head consists of a dozen or more coiled tubules, which are grouped into lobules (Lobuli epididymidis). The tubules of a lobule (four or five in number) unite to form a single tube, and by the union of the latter with those of the other lobules there is formed a single tube, the duct of the epididymis (Ductus epididymidis),

Fig. 514.-Right Testicle and Spervatic Cord of Horoe, Excloaed in Teatca faginalia
c. Tunica vaginalis communis; Q, prominence caused by tail of epididymis; p, cremaster eaternus muscle. After Ellenberger-Baum, Top. Anat. d. Pferdes.)

Fig. 515.-Riget Testicle and Spermatic Cord op Hohse, Expozed.
a^{\prime}, Lateral surface of testicle; c, tunica vaginalis, cut and reflected; d, reflection of tunica vaginalis; e, mesorchium; g, tail, h, body, i, head, of epididymis; k, sinus epididymidis; l, spermatic vessels showing through tunica vaginalis propria; m, end of spermatic artery. Dotted line indicates position of ductus deferens on other side of mesorchium. (After Ellen-berger-Baum, Top. Anat. d. Pferdes.)
which, by its complex coils, forms the borly and tail of the epididymis and terminates in the ductus deferens. The tubules and the coils of the duct of the epididymis are held together by connective tissue and unstriped musele-fibers. The tubules and duet are lined with ciliated epithelium, and the duct has a muscular coat which consists of longitudinal and circular fibers.

Several fextal remnants in connection with the epididumis and adjacent part of the spermatic cord have been described in man. The appendix epididymidis is a small, piriform body. 3-4 mm . long. which is at tached to the head of the epididymis. The paradidymis consists of a number of tubules which lie in the lower part of the spermatic cord close to the head of the epididymis. Mlost of the tubules are blind and disappear in early life, but one or more may communicate with the epididymis or rete testis; the latter may give rise to cysts. The ductuli aberrantes are tubules that extend upward from the canal of the epididymis and end blindly. Similar structures have been mentioned as occurring in the domestic animals, but authentic data in regard to them are lacking.

Vessels and Nerves.-The testicle is richly supplied with blood by the spermatic artery, a branch of the posterior aorta. The artery descends in the anterior
part of the spermatic cord, and is very tortuons near the testicle; on reaching the attached border of the gland it passes backward in a flexuons mamer, giving bramehes to the testicle and pididymis, turns around the posterior extremity, and runs forward on the free borler to the anterior extremity. It is partiatly embedded in the tunica albuginea, and detaches lateral branches which ascend and descend in a tortuons: fastion on each surface of the testicle; these give off small branches which enter the ghand on the trabeembe and septa. The roins on learing the testicle, form a network, the pampiniform plexus, around the artery in the spermaticerch. The spermatic vein, which issucs from this plexus, usnally joins the posterior vena cata on the right side, the left renal vein on the left side. The lymph-vessels follow in general the course of the wins and enter the lumbar lymph glands. The nerves, derived from the renal and posterior mesenterie plexuses, form the spermatic plexus around the ressols, to which they are chiefly distributed.

THE SCROTUM

The scrotum, in which the testicles and the adjacent parts of the spermatic corls are situated, is somewhat globular in form, but is commonly asymmetrical, sines one testicle-more often the left-is the larger and more dependent. It varies in form and appearance in the same subjeet, acerding to the comelition of its subeutaneons museular tissue. The latter contracts on exposure to cold, so that tho serotum is drawn up and becomes thicker and wrinkled; when relaxed under the mfluenee of heat or fatigue, or from debility, it becomes smooth and pemblous, with a constriction or neek superiorly. It consists of layers which comespond with those of the abdominal wall; considered from without inward, these are:
(1) The skin, which is thin, clastic, usually dark or black in color, and smooth and oily to the touch. It presents seattered short fine hairs, and is abundantly supplied with very large sehareous and swat glands. It is marked centraldy by a fongitudinal raphé scroti; this is continued forward on the prepuce and bethind on the perinem.
(2) The dartos (Tuniea dartos) is reddish in color and is closely adherent to the skin except superiorly. It comsists of filmo-elastic tissue and unstriped musele. Along the raphe it forms a median partition, the septum scroti, which divides the serotum into two pouches. Dorsally the septum divides into two layers which diverge on either side of the penis to join the abdominal tumie. It the bottom of the serotum fibers comeret the dartos closely with the tuniea vaginalis (and thus indireetly with the tail of the epididymis), constituting the scrotal ligament. ${ }^{1}$ Elsewhere the dartus is loosely comnected with the underlying tunic by areolar tissue which comtains no fat.
(3) The serotal fascia, which is apparently derived from the oblique abdominal museles.

[^133]Vessels and Nerves.-The hlood supply is derived from the external pudic artery, and the veins go chiefly to the external pudic vein. The nerves are derived from the ventral branches of the second and third lumbar nerves.

THE DUCTUS DEFERENS

This tube, also commonly termed the vas deferens, extends from the tail of the epididymis to the pelvic part of the urethra. It ascends in the inguinal canal, enclosed in a fold detached from the medial surface of the mesorchium, near the posterior (attached) border of the latter. At the vaginal ring it separates from the other constituents of the spermatic cord, and turns backward and inward into the pelvic cavity (Fig. 370). For some distance it lies in the free edge of the genital fold, by which it is attached to the inguinal part of the abdominal wall and the rentral part of the lateral wall of the pelvis. In its further course (over the dorsal surface of the bladder) it leaves the edge of the fold and inclines medially between its lavers, and comes in contact with the medial face of the vesicula seminalis. Over the neck of the bladder the two ducts lie very close together, flanked laterally by the necks of the vesiculæ seminales, and having the uterus nasculinus between them. They then disappear under the isthmus of the prostate, and are continued through the wall of the urethra to open in a small diverticulum on the colliculus seminalis with the excretory duct of the vesicula seminalis. The common opening is the ejaculatory orifice (Orificium ejaculatorium).

It has been customary to describe a short tube, the ejaculatory duct, as resulting from the union of the ductus deferens and the duct of the corresponding vesicula seminalis. such a duct, about $1:-20 \mathrm{~mm}$. (ca. ${ }^{3} \frac{1}{4}$ in.) long, exists in man as the morphological continuation of the ductus deferens. In the domestic amimals it is not present, since the ductus deferens and duct of the resicula seminalis open either in common or alongside of each other in a diverticulum or evagination of the mucous membrane on the side of the colliculus seminalis.

From its origin until it reaches the dorsal surface of the bladder the ductus deferens has a umiform diameter of about a quarter of an inch (ca. 6 mm .). It then forms a fusiform enlargement, the ampulla ductus deferentis (Fig. 517); this part is about six to cight inches (ca. 15 to 20 cm .) long, and in its largest part nearly an inch (ca. 2 cm .) in diameter in the stallion; in geldings the enlargement is nsually not very pronounced. Bevond the ampulla the duct abruptly diminishes in size. ${ }^{1}$

Structure.-The wall of the ductus deferens is thick and the lumen very small, so that the tube has a firm and cord-like character. It is covered with peritoneum, except in the last few inches of its course. The loose adventitia contains numerous vessels and nerves. The thick muscular coat consists of longitudinal and circular fibers. The mucous membrane has an epithelium of short columnar cells. Iu the posterior part of the tube, and especially in the ampulla, there are numerous glands.

Vessels and Nerves.-The arteries are branches of the spermatic, umbilical, and internal pudic arteries, and the nerves come from the pelvic plexus of the sympathetic.

THE SPERNIATIC CORD

The spermatic cord (Fumeulus spermaticus) consists of the structures carried down by the testicle in its migration through the inguinal canal from the abdominal cavity to the scrotum. It begins at the abdominal inguinal ring, where its constituent parts come together, extends obliquely downward through the inguinal canal, passes over the side of the penis, and ends at the attached border of the testicle. It consists of the following structures:
(1) The spermatic artery.

[^134](2) The spermatic veins, which form the pampiniform plexus around the artery.
(3) The lymphatics, which accompany the veins.
(4) Sympathetic nerves, which rum with the artery.
(5) The ductus deferens.
(6) The internal cremaster muscle, which consists of bundles of unstriped muscular tissue ahout the vesisels.

(7) The visceral layer of the tunica vaginalis.

The first four of these constituents are gathered into a rounded mass which forms the anterior part of the cord; they are united by comncetive tissue, interspersel with which are bundles of the cremaster internus. The duetus deferens is situated postero-medially, enclosed in a pecial fold detached from the medial surfuce of the tumie; bence it is not visible laterally.

Abstract

The tarm spermatic cord is to a eertain extent misleading as applied to most animals, while in man the structure is distinctly eord-like. In the horse, when the tumica vaginalis is slit open and the "corl" stretched out, the hater is sen to have the form of a wide sheet, the mesorehium, which has a thick, rounded anterion edge, the se-ealled "vasenlar part" of the cord. The posterior edge of the mesorchimm is efontinuons with the parietal layer of the tunic; its medial surface presonts posteriorly the deferential fold (Pliea fluctus deferentis). Between the two layers of the mesordium are bunhles of unstriped muscle (eremaster intermus) and small vessels.

THE TUNICA VAGINALIS

The tunica vaginalis is a flask-like serous sac which extends through the inguinal canal to the bottom of the scrotum. Like the alotominal peritoneum, of which it is an evagination, it con-

Fig. 516.-Diagram of Cbons-section of Spermitic Cord and Tunica Vaginalla; Latteh Represented as DisTENDED. sists of two layers- parietal and risceral. The parietal layer or tunica vaginalis communis lines the serotum below; its narrow, tubular part lies in the inguinal canal, and is directly continuous with the parietal peritoneum of the abdomen at the abdominal inguinal ring. The cavity of the tunica vaginalis (Cavum vaginale) is a diverticulum of the general peritoneal "avity, with which it commenncates through the vaginal ring (Anmulns vaginalis); it contains normally a small quantity of scrous fluid. The parietal layer is reflected from the posterior wall of the inguinal canal around the structures of the cord, forming the mesorchium, a fold imalogons to the mesentery of the intestine. The visceral layer or tunica vaginalis propria covers the spermatic cond, testicke, and epididymis.

The external cremaster muscle (MI. ceremaster extromse) lics on the lateral and posterior part of the tumie, to the scrotal part of which it is attached.

[^135]abnormally large and allow a loop of bowel to enter the cavity of the turica vaginalis. It is large in the young foal. In the gelding it is smaller and sometimes partially oceluded. In man the cavity is almost always obliterated early, except in its scrotal portion, thus abolishing the vaginal ring and the inguinal part of the cavity.

DESCENT OF THE TESTICLES

During early foetal life the testicle is situated against the dorsal wall of the abdominal cavity, in contact with the ventral surface of the corresponding kidney. As growth proceeds it gradually migrates from this primitive position, and finally passes down the inguinal canal into the scrotum. Previous to its descent through the abdominal wall the testicle is attached to the sublumbar region by a fold of peritoneum, termed the mesorchium. This fold contains the vessels and nerves of the testicle in its anterior border. In its posterior edge is the elongated tail of the epididymis, and two cords of fibrous tissue and unstriped muscle. One of these cords is short and connects the tail of the epididymis with the testicle; later it becomes shorter, and is termed the liganent of the epididymis. The other cord, the gubernaculum testis, extends from the tail of the epididymis to the subperitoneal tissue in the vicinity of the future vaginal ring. The deferential fold (Plica ductus deferentis) is given off from the medial face of the mesorchium, and joins the genital fold posteriorly. The body of the epididymis at this time lies in the edge of an oblique fold formed by the lateral layer of the mesorchium. After the middle of foetal life a pouch of the peritoneum, the processus vaginaiis, grows downward through the inguinal canal, carrying with it cremaster fibers derived from the internal oblique muscle and a layer from the transversalis fascia. It is accompamed by an inguinal extension of the gubernaculum testis. The latter blends below with the subcutaneous tissue which later becomes the dartos. The tail of the epididymis first enters the processus vaginalis, follored by the testicle with its mesorchium, which descends within this diverticulum of the peritonemn until it reaches the scrotum. The ductus deferens and its fold descend synchronously with the epididymis and testicle. In the foal the descent of the testicles is often complete at birth, but it frequently happens that one testicle or both may be retained in the inguinal canal or in the abdomen for some months. In other cases the testicle may return into the canal or abdomen, since in the young foal the vaginal ring is large and the testicle small and soft, and not yet closely anchored by the scrotal ligament. In rare cases the descent may be completed as late as the fourth year.

The mechanical factors concerned in the migration of the testicle are matters on which much uncertainty still exists. That the gubernaculum exerts sufficient traction to guide the epididymis and testicle to the inguinal canal seems plausible. The abdominal inguinal ring may constitute a locus minoris resistentis in the abdominal wall, especially after the descent of the processus raginatis. Progressive shortening of the gubernaculum was formerly considered to be the chief cause of the descent through the abdominal wall. Increase in the intra-abdominal presure is probably an important factor.

Indefinite retention of one testicle or both in the abdominal cavity or inguinal canal is not rare in horses; this condition is termed cryptorchism. Abdominal retention is the more usual form of cryptorchism in adult horses, inguinal retention being usually temporary. The retained testicle is usually, but not always, small, thin, soft, and flabby, and is non-rpermiogenic. The processus vaginalis and the inguinal part of the gubernaculum are usually present. but may be rudimentary: The ligament of the epididymis and the corresponding part of the mesorchium are often so long that the tail of the epididymis may le several inches distant from the testicle, The abdominal part of the gubernaculum may be eight to ten inches (ca. 20 to 25 cm .) long, and the ligament of the epididymis much elongated (10 to 15 cm . in length, according to Vennerbolm); thus the testicle may have a wide range. The vaginal ring is sometimes closed.

In many mamimals the testicles normally remain in the abdominal cavity; such animals are terned testiconda, and include the elephant, some insectivora, hyrax, sloths, ant-eaters. armadillos, and cetacea. In others the testicles descend periedisally during the period of ostrum, and then return into the abdomen, or they may he extruded and retracted voluntarily; this is true of most rolents, many insectivora (moles, shrews, bedgehog), and bats.

THE VESICUL压 SEMINALES

The vesiculæ seminales (Fig. 517) are two clongated and somewhat piriform sacs, which lie on each side of the posterior part of the dorsal surface of the blatder. They are partly enclosed in

Fifi 517.-Internal Genital (brgane of Stallion; Dorsal View:
On left side urethral muscle has been removed over bulbomrethral gland. Cornus of uterus masculinus are indicated in genital foll. The posterior limit of the peritoneum is shown but not marked, 1, Round ligament of bladder: 2. laterat ligament of bladder; 3, bulbo-urethral giand.
the genital fold, and are related to the rectum dorsally. Their long axes are parallel with the ductus deferentes and converge posteriorly. Each consists of a rounded blinel enul, the fundus; a middle, slightly narrower part, the body ; and a posterior constricted part, the neck or duct.

In the stallion they are about six to eight inches (ea. 15 to 20 cm .) long, and their greatest diameter is about two inches (ca. 5 cm .) ; in the gelding they are usuatly much smaller. ${ }^{1}$

The vesicula are chiefly retroperitoncal, but the fundus extends forward into the genital fold and hence has a serous covering. The excretory duct (Ductus excretorius) dips under the prostate, and opens in common with or alongside of the ductus deferens in a pouch of the mucous membrane on the side of the colliculus seminalis.

Structure.-The wall, exclusive of the partial serous coat, consists of a fibrous adventitia, a middle muscular coat, and a mucous lining. The muscular coat is thickest at the fundus, and consists of two planes of longitudinal fibers with a cireular layer between them. The mucous membrane is thin, and is arranged in numerous folds and projections which form a network; the spaces so enclosed present the openings of tubulo-alveolar glands. The epithelium is columnar. The blood-supply is derived from the internal pudic artery.

THE PROSTATE

The prostate (Prostata) is a lobulated gland which lies on the neck of the bladder and the beginning of the urethra, ventral to the rectum. It consists of

[^136]two lateral lobes and a connerting isthmus. The lateral lobes, right and left (Lobus dexter et sinister), are somewhat prismatic in form, and are directed forward, laterally, and somewhat upward. The deep surface of each lobe is concave and partly embraces the corresponting vesicula seminatis. The dorsal surface is concave and is in relation with the rectum The ventral surface is convex and lies on the obturator internus musele and fat. The apex is pointed and liss near the posterior end of the superior ischiatic spine. The isthmus is a thin, transverse hand, about four-fifths of an inch (ca. 2 cm .) wide. It lies over the junction of the bladder with the urethra, the uterus masculinus, the terminal parts of the ductus deferentes, and the ducts of the vesicula seminales. Dorsally it is partly covered by fibers of the urethral muscle.

Structure.-The prostate is enclosed in a capsule of fibrous tissue, with an admisture of unstriped muscle fibers. The gland sulstance is divided into spheroidal or ovoid lobules by trabecule which eonsist to a large extent of unstriped muscle. Each lobule is traversed by an axial cluct, which gives off numerous tubular branches and these ramify further in the lobule. The tubules are thickly beset with saccular diverticula, giving the gland a branched, tubulo-alveolar structure. The ducts and tubules are lined with cubical or columnar epithelium. The prostatic secretion (Suceus prostatieus) is milky in appearance and has a characteristic odor. There are fifteen to twenty prostatic ducts (Ductus prostatici) on either side, which perforate the urethra and open lateral to the colliculus seminalis (Fig. 521). The blood-supply is derived from the internal pudic artery.

The surface of the prostate is commonly tuberculate in old subjects, and amyloid bodiss and calcareous concretions may be found in it.

THE UTERUS MASCULINUS

The uterus masculinus or utriculus prostaticus is a fretal remnant of variable size and form, which is situated centrally on the posterior part of the rlorsal surface of the bladder. When well developed, it consists of a median flattened tube, some three or four inches (ca. 7.5 to 10 cm .) long, and about half an inch (ca. 1 to 1.5 cm .) wide, the anterior part of which lies in the genital fold and gives off two slenter processes or cornua; the latter curve forward and outward in the fold a variable distance, being sometimes traceable as far as the anterior end of the ampulla of the ductus deferens. The posterior extremity of the tube passes under the isthmus of the prostate, and opens into the urethra on the summit of the colliculus or joins a duct of a vesicula seminalis or has a blind end. It has a museular coat and a mucous lining. In many cases it consists merely of a very small central tubule with a blind anterior end, or a band, not sharply marked off from the adjacent tissue; in other cases it cannot be recognized. It is a remmant of the ducts of Müller and the homologue of the uterus and vagina.

THE BULBO-URETHRAL GLANDS

The bulbo-urethral glands (Glandule bulbourethrates) ${ }^{1}$ are two in number, and are situated on cither side of the pelvic part of the urethra close to the ischial arch (Fig. 577). They are covered by the urethral muscle, from which bundles enter the larger trabecule of the gland. They are ovoid in form, somewhat depressed dorso-ventrally, and their long axes are directed obliquely forward and outward. In the stallion they may measure nearly two inches (ca .4 cm .) in length, and about an inch (ca. 2.5 cm .) in width. In the gelding they are about the size of an average hazel-mut.

Structure.-They resemble the prostate in gencral structure, but the inter${ }^{1}$ Also termed Cowper's glands.
stitial tissue is much less abundant, and contains much less muscular tissue; hence the kobulation is not very distinct. The parenchyma consists of large collecting tubules, into which numerous side branehes open; these are lined with cubie epithelium. In the larger septa there are striped musele-fibers. Each gland has six to eight excretory ducts (Ductus excretorii) which open into the urethra on a series of small papillse behind the prostatic ducts and close to the median plane (lig. 521). The blood-supply comes from the internal pudic artery whieh overlies the gland.

THE PENIS

The penis, the male organ of copulation, is composed essentially of erectile tissue, and eneloses the extrapelvie part of the urethra. It extends from the ischial areh forward between the thighs to the umbilical region of the abdominal wall. It is supported by the fascia penis and the skin, and its preserotal portion is situated in a cutaneous pouch, the prepuce or sheath. It is cylimdrical in form, but much eompressed laterally in the greater part of its extent.

In the quitsernt state it is about 20 inches (ca. 50 cm) kong ; of this, about 6 to s inches (ca. 15 to 20 cm .) is free in the prepuce. In erection it increases 50 per eent. or more in length.

Retructor pemis muscle
Fig. 51s.-Pemtr of Horse; Lateral View.

It may be divided into a root, a looty, and a terminal enlargement, the glans.
Ther root of the penis (Radix penis) is attached to the lateral parts of the ischial arch by two crura, which converge and mite below the arch (lig. 575). The urethra passes over the ischial arch between the erura, and curves sharply forward to beeome incorporated with the penis. The body of the penis (corpus penis) legins at the junction of the erura and constitutes the bulk of the organ. At its origin it is attached to the symphyis ischii hy two strong Hat bands, the suspensory ligaments of the penis (Ligamenta suspensoria penis), which hend with the tenden of origin of the graciles muscles (Figs, 518, 576). This part of the penis is flattened haterally for the most part, but becomes romuded and smaller anteriorly. It presents four surfaces. The dorsum penis is narrow and rounded; on it are the dorsal arteries and nerves of the penis and a rich venous plexns. The urethral surface (Facies ure thralis) is wentral; it is rounded, and along it rums the urethra, embedded in the deep urethral groose of the corpus cavermosum. The lateral surfaces are high and flatened, exopt anterionly, where they are lower and rounded; they are covered to a large extent ly a plexus of veins.

The glans penis is the enlarged free end of the organ. Its anterior surface or base is surrounded hy a prominent, denticulated margin, the corona glandis. The
surface is convex; its lower part slopes backward, and presents a deep depression, the fossa glandis, in which the urethra protrudes for about an inch (ca. 2.5 cm.) as a free tube, the urethral process (Processus urethrie), covered by a thin integument. The urethra is thus surrounded by a circular fossa, which opens superiorly into the urethral sinus, a bilocular diverticulum lined by thin skin. This diverticulum is filled sometimes with a cascous mass of sebaceous matter and epithelial débris. Behind the corona glandis there is a constriction, the collum glandis. It is to be noted, however, that this does not indicate the demarcation between the glans and corpus penis, since the former extends backward above the corpus cavernosun a distance of about four inches (ca. 10 cm .), forming the processus dorsalis glandis (Fig. 51S).

Structure.-The penis consists essentially of two erectile boolies, the corpus cavernosum penis and the corpus cavernosum urethre.

The corpus cavernosum penis forms the greater part of the bulk of the penis except at its free extrenity. It arises from each side of the ischial arch by a crus penis, which is emberded in the isphio-cavernosus muscle. Below the isehial areh the crura unite to form the laterally compressed body of the corpus cavernosum; this presents ventrally the urethral groove (sulcus urethralis), which contains the urethra and corpus cavernosum urethree. Anteriorly the corpus cavernosum penis divides into three processes - a long central one, which is capped by the glans penis, and two short blunt lateral ones. The corpus cavernosum is enclosed by the tunica albuginea, a thick capsule of fibrous tissue which contains some elastic fibers. Externally the fibers are ehiefly longitudinal: internally they are mainly circular and are looser in arrangement. Numerous trabeculæ pass inward from the tunic and form a framework in the interior of the corpus cavernosum. Enclosed by this framework is the erectile tissue, which is readily distinguished

Fig. 519.-Cross-section of Body of Penis of Horse. from the fibrous trabeculx by its red-dish-gray color and softer texture. It is composed largely of strands of unstriped muscle, between which there are cavernous spaces (Cavern:e). These spaces may be regarded as greatly enlarged capillaries: they contain blood, are hined with flat endothelial cells resting upon a layer of delicate connective tissue, and are directly continuous with the reins of the penis. Erection is produced by distention of these spaces with blood; at other times the spaces are mere slits.

Abstract

In man there are two distinct corpora cavernosa, separated by a median septum penis, which is complete except in the middle part of the organ, where the septum is composed of vertical trabecule, between which are slit-like intervals: through the latter the blood-spaces of the two corpora cavernosa communicate. In the horse no distinct septum exists except near the root, but in the proximal and distal parts of the corpus cavernosum there are vertical trabecula, which form an arrangement like the septum pectiniforme of man.

The corpus cavernosum urethræ (or corpus spongiosum) forms a tube around the urethra, and is continuous at its anterior end with the glans penis. It forms a slight enlargement at the root of the penis, which is termed the bulb (Bulbus urethre). In the body of the pemis it forms a thinner layer dorsally than on the sides and ventrally. The structure of the corpus cavernosum urethre is somewhat
like that of the corpus cavernosum penis, but the trabecular are much finer: they fonsist of fibrous tissue, much of which is elastic, and of hundles of mastriped musele which are chiefly longitudinal in direction. The spaces are numerous and large.

In the glans penis the trabecula are highly clastic, and the spaces are large and very distensible; the latter are specially wide in the posterior part of the processus forsalis, where they eommunieate with large veins on the dorsum penis. There is a partial septum glandis. The skin covering the glans is thin, destitute of glands, and richly supplied with nerves and special nerve-endings.

Vessels and Nerves.-The penis is supplied with blood by three arteries, viz., the internal pudie, ohturator, and external pudic. The terminal part of the internal purlie artery enters the root as the artery of the loulb and loreaks up in the bulb into momerous branches. The obturator artery gives off the large arteria profunda penis, which entors the crus penis and ramifies in the corpus eavormosum. The external pudie artery gives off the dorsal arteries of the penis, branches from which pass through the tumica albuginea. The veins form a rich plexus on the chorsum and sides of the penis, which is drained loy the external pudie and obturator veins; from the root the blood is carried hy the internal purlic veins. ${ }^{1}$ The lymph vessels run with the veins and go to the superferal inguinal glands. The nerves are derived ehiefly from the pudie nerves and the pelvic plexus of the sympathetie. The former supply the dorsal norves of the ponis; sporial nerve-endings, the emblbull) (of Kranse), oeror in the skin of the glans ponis. The sympathetic fibers supply the unstriped monselo of the ressels and the ereetile tissue.

MUSCLES OF THE PENIS (Figs. 272, 576, 577, 581)

1. The ischio-cavernosus ${ }^{3}$ is a short lout strong, paired muscle, which arises from the tuber ischii and the arljacent part of the sacro-sciatic ligament, and is inserted on the crus and adjacent part of the body of the penis. It is somewhat fusiform, encloses the erus as in a sheath, and is situated in a deep depression in the semimembranosus musele. It pulls the penis aganst the pelris, and assists in producing and maintaining erection ly compressing the dorsal veins of the penis. Its blool-supply is derived from the obturator artery, and the nerve-supply from the pudie nerve.
2. The retractor penis is an unstriped musele which is a continuation of the suspensory ligaments of the anus. The latter arise om the sentral surface of the first and second eoceveal vertebrer and pass downward over the sids of the rectum to meet below the anus. Here there is a decussation of finers, thus forming a sort of suspensory apparatus for the posterior part of the reetum and the anus. From the decussation the muscle passes for a short distance leetween superfieial and deep layers of the bulho-eavernosus, and then along the ventral surface of the penis, to which it is loosely attached. Near the glans penis it splits up into bundles which pass through the bulbo-cavernosus and are attached to the tuniea albuginea. Below the amus the muscle is attached to the sphmeter ani externus. On the penis the two museles are intimately united to each other. Their action is to witheraw the pemis into the sheath after erection or protrusion.

THE PREPUCE

The prepuce (Preputium), popularly ealled the "sheath," is a double invagination of the skin which contains and eovers the free or prescrotal portion of

[^137]the penis when not ereet. It consists of two parts, external and internal. The external part or sheath extends from the serotum to within two or three inches of the umbilicus, where the external layer is reflected ventrally and laterally, forming the thick margin of the preputial orifice (Ostium preputiale); dorsally it is directly continuous with the integument of the abdominal wall. It is marked by a median raphé præputii, a continuation of the scrotal raphé. At the lower margin of the preputial orifice there are often in the stallion two papilite, which are regarded as rudimentary teats. The internal layer passes backward from the preputial orifice a distance of about six to eight inches (ea. 15 to 20 em .), lining the cavity of the external part of the prepuce, and is then reflected forward until it approarhes the orifice, where it is again reflected backward. It thus forms within the cavity of the sheath a secondary tubular invagination, the prepuce proper, in which the anterior part of the penis lies. This tubular cavity is closed behind by the reflection of the internal layer on to the penis to form the penile layer of the prepuce. Its orifice is

Fig. 520.-Sagittal Section of Preptce and Part of Pents of Horse.
P, Interaal part of prepuce or prepuce proper; P^{\prime}, external part of prepuce or sheath; C.p., preputial cavity; F. $a_{.}$, fossa glandis; D, diverticulum of fossa glandis; P.u., processus urethre.
surrounded by a thick margin, the preputial ring (Annulus preputialis), which is connected ventrally with the external part by the preputial frenum (Frenulum præputii).

The arrangement differs from that found in man in the fact that the inner part of the prepuce as described above is equivalent to the entire human prepuce. This part, the prepuce proper, is well seen on sagittal sections, and can be demonstrated by pulling the penis, enclosed in this prepuce, out of the cavity of the sheath; the arrangement of the free part of the penis and prepuce is then like that in man. (In paraphimosis the penis is strangulated by the preputial ring.) The external part might be distinguished as the sheath or vagina penis.

Structure.-The outer skin of the external part resembles that of the scrotum. The internal layers of skin, as far as the preputial ring, are almost hairless, variable in color, and often irregularly pigmented; they form irregular folds, and are supplied with numerous large sebaceous glands and coil glands, which reach their greatest size at the ring. Beyond this the glands are absent, and the skin resembles a nonglandular mucous membrane. The secretion of the preputial glands (Clandulæ preputiales), together with desquamated epithelial cells, forms the fatty smegma præputii, which has a strong, unpleasant odor, and often accumulates in considerable
amount. Beneath the skin there is a large amount of loose connective tissue, except over the glans penis, where the skin is closely attached to the tunic of the erectile tissue. The external part of the prepuce is strengthened by a layer of elastic tissue, derived from the abdominal tunic, and termed the suspensory ligament of the prepuce.

Vessels and Nerves.- The arteries are branches of the external pudic artery, and the veins go chiefly to the external pudie vein. The lymph vessels go to the superficial inguinal and lumbar lymph glands. The nerves are derived from the pudic, ilio-hypogastric, and ilio-inguinal nerves.

THE MALE URETHRA

The male urethra (Urethra masculina) is the long mucous tube which extends from the hadder to the glans pemis. It passes lrackwarl on the Ifoor of the pelvis,

Fig. 521. - Pelvic Trethra and Porterior Part of Bladder of Horse Slit Ventrally and Laid Open. e,if., openings of ductug deferentes and ducts of vesiculs seminales.
turns around the ischial arch, forming a sharp bend, and passes forward as a part of the penis, enclosed in the corpus cavernosum urethrie. It may, therefore, be divided into two parts, pelvic and extrapelvic.

The pelvic part (Pars pelvina) is four or five inches (ca. 10 to 12 cm .) long. At its origin it is not distinguishable from the neek of the bladder in size or structure; in fact, no line of demareation exists between the two. Behind the prostate the tube dilates to a potential width of two inches or more (ca. 5 to 6 cm .). Near the
ischial arch, between the bulbo-urethral glands, it contracts again, forming the isthmus urethræ. It is related dorsally to the rectum and the prostate, ventrally to the internal obturator muscles, and laterally to the bulbo-urethral glands. It is enclosed, except at its origin, by the urethral muscle. ${ }^{1}$

The extrapelvic part (Pars externa) passes between the two crura of the penis and runs along the groove on the ventral surface of the corpus cavernosum pemis, enclosed by the corpus cavernosum urethre and the bulbo-cavernosus muscle. It passes through the glans penis and projects forward about an inch in the fossa glandis as a free tube, the processus urethræ; this part is covered by a delicate integument, under which there is a thin layer of erectile tissue.

Abstract

The lumen of the tube is largely obliterated in the inactive condition of the parts. When moderately distended, its dimensions in a horse of medimm size are as follows: At its origin the diameter is about half an inch (1 to 1.5 cm .) . The pelvic dilatation at its widest part measures one and a half to two inches (ca. 3.5 to 5 cm .) transversely, and about an inch (2 to 3 cm .) vertically; it is elliptical in cross-section when fully distended. The isthmus at the ischial arch is a little smaller than the initial part. Beyond this the lumen is about one-half to three-fourths of an inch (ca. 1.5 cm .) in diameter, and is fairly unform to the glans penis. Here there is a slight fusiform dilatation (Fossa navicularis), beyond which the tube contracts.

The opening from the bladder into the urethra is termed the internal urethral orifice (Orificium urethre internum); it is closed except during urination. The terminal opening is the external urethral orifice (Orificium urethre externum) or meatus urinarius. The colliculus seminalis is a rounded prominence, situated merlially on the dorsal wall, about two inches (ca. 5 cm .) behind the internal urethral orifice. Ou either side of the colliculus there is a small diverticulum, in which the ductus deferens and the duct of the resicula seminalis open. The smali orifice of the uterus masculinus is placed centrally on the colliculus; it is inconstant. The orifices of the prostatic ducts are on two groups of small papillæ, placed lateral to the ejaculatory openings. The ducts of the bulbo-urethral giands open on two lateral series of small papille, about an inch (ca. 2.5 cm .) further back and close to the median line. The small orifices of the lateral urethral glands are situated laterally in the wide pelvic portion.

Structure. -The mucous membrane contains a large amount of fine elastic fibers, and in its pelvic part there are tubulo-alveolar urethral glands (Clandula urethrales). ${ }^{2}$ The epithelium is at first like that of the bladder, then becomes cylindrical, and in the terminal part is stratified squamous. In the dorsal wall the membrane forms a median ridge, the urethral crest (Crista urethralis): this terminates about two inches from the internal urethral orifice in the colliculus seminalis.

At the origin of the urethra there is a layer of circular unstriped muscle-fibers outside of the mucous coat. Beyond this the latter is enclosed by a layer of erectile tissue (Stratum cavernosum), which contains plexuses of veins supported by trabecule of elastic and unstriped muscular tissue; in its peripheral part there are numerous small arteries. There is a slight thickening of the erectile tissue at the ischial arch, producing an enlargement known as the bulb of the urethra (Bulbus urethræ). This is continued by the corpus cavernosum urethræ. Outside of the erectile tissue there is a continuation of the intrinsic unstriped muscular coat, consisting of external and internal longitudinal strata, with a layer of circular fibers between them.
${ }^{1}$ It has been customary to divide the pelvic part of the urethra into prostatic and membranous parts. These terms apply well in human anatomy, but have no special value in comparative anatomy. In the horse a prostatic part hardly exists, unless we assume that it and the neck of the bladder together are only about an inch in length. There is no membranous part in the sense in which that term is used in regard to man, since the tube has a continuous envelop of erectile tissue.
${ }^{2}$ Two sets of glands can be distinguished in the pelvic part of the urethra. Two rows of dorsal glands occur close to the median plane; their ducts open into those of the bulbo-urethral glands. A series of lateral glands extends on cither side from a point near the prostatic ducts to the end of the pelvic urethra; their ducts open laterally; as mentioned above.

Exeept at its origin and termination the urethra is provided with a continuous layer of striped muscle, placed outside of the erectile tissue. This is described as consisting of two parts or muscles.
(1) The urethral muscle (M. urethralis) ${ }^{1}$ encloses the wide pelvic part of the urethre, and covers the bulbo-urethral glands. It consists of longitudinal and transverse fibers. It is a compressor of the pelvic part of the urethra and the bulbourethral glands. By its forcible contraction it plays an important role in the ejaeulation of the seminal fluid, and also in evaruating the last of the urine in mieturition.
(2) The bulbo-cavernosus muscle (M. bulbocavernosus $)^{2}$ is the continuation of the urethral muscle on the extrapelvic part of the urethra; it extends from the ischial areh to the glans penis. It the root of the penis it is the thickest, and forms a complete layer of circular fibers which enclose the corpus cavernosum urethre. Beyond this it diminishes very gradually in thickness, and consists of fibers which arise on a median ventral raphé and curve around the corpus cavernosum urethre to end on the tunica albuginea of the corpus cavernosum. Its action is to empty the extrapelvic part of the urethra.

The ischio-urethral muscles (Fig. 577) are small bands which arise on the ischial areh and crura of the penis and pass forward to become lost on the ventral layer of the urethral muscle. They may assist in erection of the penis by exerting pressure on the dorsal veins.

GEINITAL ORGANS OF THE BULL

The scrotum is situated somewhat further forward than in the horse. It is ovoid, hut compressed from before backward, is long and pendulous, and has a wellmarked neek when not eontracted. The skin here is usually flesh-eolored, but in some breeds it is more or less pigmented; it is sparsely covered with short hairs. Just in front of it are four (sometimes only two) rudimentary teats.

The testicles are relatively larger than those of the horse, and have an elongated, oval outline. The long axis is vertical, the attached border being posterior. The medial surface is somewhat flattened. A testicle of an adult bull measures on the average about four or five inches (10 to 12 em .) in length, exclusive of the cpididymis; with the later the length is about six inches (15 cm. .). The width is about two and a half to three inches (ea. 6 to S cm.), and the anterior-posterior diameter about the same. The weight is about ten to twelve oumees (ea. 300 grams). The tunica albuginea is thin; it contains many elastic fiburs, but no unstriped musele. The parenehyma is yeflowish in eolor. The mediastinum testis is an axial strand of connertive tissue (ahout 5 mm . in thickness), which descends from the upper part of the attaehed border deeply into the gland. From it the ehief trabeeula radiate, but distinct interlobular septa are not present. The seminiferous tubules form in the metiastinum a network, the rete testis. The efferent ducts from the rete, a dozen in number, leave at the upperend of the mediastinum.

The epididymis is very closely attaehed to the testicle along the posterior border of the latter. The head is long; it eurves over the upper extremity and about a third of the way down the anterior border of the testiele; it is covered by an extension of the tunica albuginea. The body is very narrow, and lies along the lateral part of the posterior border of the testiele, to which it is attached by a narrow peritoneal fold. The tail is large and is closely attached at the lower extremity of the testicle.

The spermatic cord and the tunica vaginalis are much longer than in the horse;
${ }^{1}$ Formerly termed Wilson's muscle. ${ }^{2}$ Formerly called the accelerator urine.
the extra-inguinal part of the cord is about eight to ten inches (20 to 25 cm .) in length. The cremaster externus is well developed, and almost completely encloses the tunic to the neck of the scrotum; it is inserted about at the level of the upper pole of the testicle. The vaginal ring is relatively very small, and is about four inches (ca. 10 cm .) from the linea alba. The cremaster internus is feeble.

The spermatic cords emerge through the lateral angles of the subcutaneous inguinal rings, and curve downward and inward to the neck of the scrotum. The rings are about four inches ca. 10 cm .) long, and are two and a half to three inches (6 to 8 cm .) apart. In animals in good condition there is a large mass of fat above the neck of the scrotum, between the spermatic cords. The mesorchium extends to the bottom of the tunica vaginalis, forming a narrow fold (ca. 1 cm . wide) which attaches the cpididymis to the posterior part of the tunic.

Fig. 522.-General View of Gentral Orgais of Bell

The inguinal canal presents sereral special features in the bull. The abdominal ring is very long. Its anterior border, formed by the edge of the internal oblique, is decidedly concave and is tendinous in its medial part. The long axis of the subcutaneous ring is directed outward, forward, and downward. The spermatic cord lies in its lateral part, the external pudic vessels in its middle. I muscular band about an inch wide, detached from the internal oblique muscle, crosses the lateral side of the raginal ring.

The ductus deferens is small in caliber and has a much thinner wall than that of the horse. At first it pursues a flexuous course upward along the posterior border of the testicle, then becomes straight and hes in the posterior part of the spermatic cord. The genital fold is narrow, so that the ducts are eloser together in it than in the horse. On reaching the posterior part of the bladder they are in apposition for a distance of about four inches (10 cm. .), flanked and overlapped by the vesiculæ seminales. They form ampullie about four or five inches (10 to 12 cm .) long and half an inch (1.2 to 1.5 cm .) wide, the mueous lining of which is plicated. They then pass under the body of the prostate and end, just medial to the ducts of the resicula seminales, as slit-like openings on either side of the collieulus seminalis.

The vesiculæ seminales are not bladder-like sacs, as in the horse. but are compact glandular organs with a lobulated surface. In the adult they measure about four or five inches (ea. 10 to 12 cm .) in length, two inches (. 5 cm.) in width in
their largest part, and an inch or more (ca. 3 cm .) in thirkness. The tlorsal surface of each faces upward and medially and is partially covered with peritoneum. The ventral surface faces in the opposite direction and is non-peritoneal. Each may be regarded as consisting of a very thick-walled, sacculated tube, bent on itself in a tortuous mamer. This tube, if straightened out, would be about ten inches (25

Fig. 523.-Internill Gentital Organs of Bull; Dormal View.

The right vesimala is sectioned frontally. The dotted line indicates the backward extension of the peritoneum, 1, L'reter; 2, body of prostate; 3, vesicula seminalis; 4 , urethral muscle; 5 , bulbo-urethral gland.

 View: Ifter Bohm.)

Fig. 525.-Cross-section of Pelvic Trethra of Bull 1. Prostate gland (pars disseminata) ; 2, urethra; 3 , urethral muscle; 4 , aponeurosis. The lumen of the urethra is black and the shaded area around the urethral lumen i the stratum eavernosum.
cm .) in length. They are conmonly unsymmetrical in size and shape. Short branches are often given off from the ehief tube. The exeretory duet opens at the collieulus seminalis, just lateral to the ductus deferens.

The structure of the vesicula is masked by a thiek capsule of fibrous tissue and unstriped musele, which maintains it in its bent condition and also sends trabeculie between the alvedi. There is a eentral canal into which the secretion formed in the alveoli passes. The carities (central canal and alveoli) are lined with columnar epithelium. On aceount of this strueture the term glandule vesiculares is preferred by some anatomists.

The prostate is pale yellow in color, and consists of two parts, which are, however, continuous with each other. The body (Corpus prostate) is a small mass which stretches across the dorsal surface of the neek of the bladder and the origin of the urethra. It measures about an inch and a half (ca. 3.5 to 4 cm .) transversely, and about half an inch (ca. 1 to 1.5 em .) in width and thickness. The pars disseminata surrounds the pelvic part of the urethra; dorsally it forms a layer about half an inch (ca. 10 to 12 mm .) thick, but ventrally it is quite thin (ea. 2 mm .). It is concealed by the urethral musele and its aponeurosis; hence it often escapes notice, but is very evident on cross-section (Fig. 525). It has a branched tubular structure, and the interlobular tissne contains a large amount of unstriped muscle. The prostatic ducts open into the urethra in rows, two of which are between two folds of the mueous membrane that proceed backward from the collieulus seminalis; two other series occur on either side, lateral to the folds.

The uterus masculinus appears to be absent usually. Ellenberger states that it opens between the ejaculatory orifices, while Martin says that it usually has two orifices at the colliculus, but that it often unites with the ductus deferens.

The bulbo-urethral glands are somewhat smaller than in the stallion. They are liable to eseape notice, since they are covered by a thick layer of dense fibrous tissue and also partially by the bulbo-eavemosus musfle. Each has a single duct which opens into the urethra under cover of a fold of the mucous membrane.

The penis is cylindrical, and is longer and of very much smaller diameter than in the horse. Just behind the serotum it forms an S-shaped curve, the sigmoid flexure; thus about one foot of the penis is folded up when it is fully retracted. The flexure is effaced during erection. The glans penis is about three inehes (ca. 8 cm .) in length. It is flattened dorso-ventrally, and its extremity is pointed and twisted. The external urethral orifice is situated at the end of a groove formed by this twist; it is only large cnough to admit a probe of medium size. Even in the non-erect state the penis is remarkably dense and firm. The tunica albuginea is very thick, and eneloses the urethra; it is composed of dense white fibrous tissue. lu the first part, as far as the first curve, there is a thick median septum penis. Beyond this there is a central axial band of dense fibrous tissne from which numerous strong trabecule radiate. The erectile tissue is small in amount, except in the root, so that the organ undergoes very little enlargement in erection, the chief effect being inereased rigidity. The walls of the cavernous spaces are fibro-clastic, not muscular.

The length of the penis in the adult is about three feet (ea. 90 cm. .). The crura are flattened laterally; they contain a well-developed corpus cavernosum and numerous helicine arteries, some of which open directly into the eavernous spaces. The suspensory ligaments are attached to the ventral ridge on the symphysis pelvis. The body is somewhat flattened dorso-ventrally beyond the first curve. The extremity of the glans is unsymmetrical, the urethral orifice being situated ventro-laterally. The glans contains only a thin superficial stratum of erectile tissue, and hence undergoes little enlargement in erection. In the body of the penis there is a longitudinal vein on either side in the ventral part of the corpus cavernosum.

The bulbo-cavernosus muscle presents several remarkable features. It is for the greater part an inch or more (ea. 3 cm .) in thickness, but its length is only six to eight inches (15 to 20 cm .). It is covered by a strong aponeurosis, and is divided by a median raphé into two lateral halves, except at its origin. It diminishes in size from behind forward, and its anterior extremity is pointed. ${ }^{1}$

The ischio-cavernosus muscle resembles in general that of the horse, but is flattened laterally. It is covered by a tight aponeurosis.

The retractor penis musele resembles that of the horse in origin. Its two parts

[^138]are about an inch (ea. 2 to 5 cm .) apart on the root of the penis, where they lie in a groove on either side of the bulbo-cavernosus. They then come close together and pass on either site of the ventral "urve of the sigmoid flexure. Further forward they are on the ventral surface of the penis, and end about five or six inches (ea. 12 to 15 cm.) behind the glans.

The prepuce is very long and narrow. Its orifice is about two inches (ca. 5 (mm.) behind the umbilieus; it is only large enough to admit a finger readity, and is surrounded by long lairs. The preputial cavity is about fifteen inches (35 to to cm .) long and a little over an inch (ca. 3 cm .) in diameter. The lining membrane forms longitudinal folds: it is covered with squamous stratified epithelium, and has coiled tubular glands. The penile layer is glandless, and is reddish in color. It presents lymph notules in its posterior part.

There are two pairs of preputial musches which are derivatives of the cutaneus muscle. The anterior preputial muscles or protractors of the prepuce (Alm . preputiakes craniales) are two flat hands, two inches or more (5 to 6 (cm.) in width, which arise close together in the xiphoill region, about eight inches (20 em .) in

Fig. 526.-Anterior Part of Penis of Ram.
A, Right ande: B left side. (After Bühm.)
front of the preputiat orifice. Traced backward they diverge, leaving the umbilicus and an area about one and a half inches wide free, and then umite behind the preputiak orifice. They draw the prepuce forward. The posterior preputial muscles or retractors of the prepuce ($~(1 \mathrm{~m}$. preputiales caudales) arise in the inguinal region and converge on the anterior part of the prepuce. They draw the prepuce backward. ${ }^{1}$

The urethra in its pelvie part is about five inches (12 em .) long, and is of relatively small and uniform caliber. The urethral muscle encloses the tube ventrally and laterally; it is very thick, creseentic in eross-section, and is covered by an aponeurosis. Dorsally the aponeurosis is thick and the muscle alsent. Inside of these the pars disseminata of the prostate surrounds the urethra as far batk as the bulbo-urethral phands. The colliculus seminalis is a rounded prominence about an inch (ea. 2.5 cm .) in length. On it there are two slit-like openings, situated close together. These are the ejaculatory orifices, at which the duetus deferens and the exeretory duet of the vesirula sominalis open. The urethral

[^139]crest extends forward from the colliculus, and two mucous folds pass backward from it and diverge. The mucous membrane behind the colliculus is red in color. The extrapelvic part has an enlargement, the bulb, at its origin; it then gradually diminishes in diameter, and is relatively very small at its termination. (Other features have been mentioned in preceding paragraphs.

Abstract

The bulb of the urethra has a thick tunica albuginea, enclosing a highly developed erectile tissue. The cavernous spaces are wide; their walls are relatively thin and consist of fibrous tissue and unstriped muscle. On cross-section many arteries are visible laterally. Further forward the urethra is surrounded by a well-developed corpus cavernosum, which is thickest ventrally; here an artery of considerable size occurs on each side.

In the ram the genital organs resemble in general those of the bull. But the testicles are relatively much larger; a testicle of an adult ram may be four inches (ca. 10 cm .) long and weigh abont nine to ten ounces (ca. 250-300 gm.). They are broader in proportion to their length. The prostate is entirely disseminate. The bulbo-urethral glands are relatively very large. The peculiar character of the terminal part of the penis is shown in the amesed figure. The urethra lies in a groove on the ventral surface of the corpus cavernosum. Its terminal part projects commonly about an inch and a half (ca. 3-4 cm.) beyond the glans penis, forming a twisted processus urethre.

GENITAL ORGANS OF THE BOAR

The scrotum is situated a short distance from the anus, and is not so sharply defined from the surrounding parts as in the other animals.

The testicles are very large and are regularly elliptical in contour. They are placed so that the long axis is directed upward and backward, the free border being superficial and the tail of the epididymis highest. They are comparatively soft in texture. The tunica albuginea contains moch elastic tissue, but no muscular fibers. The mediastinum testis is an axial strand of fibro-elastic tissue, from which interlobular septa radiate. Other septa are given off from the deep face of the tumica albuginea. The interlobular tissue is abundant, and the lobulation correspondingly distinct. The parenchyma is gray and often dark in fat animals. There is a rete testis from which seven or eight efferent ducts proceed to the epididymis. The epididymis is closely attached to the testicle; its tail is very large and forms a blunt conical projection at the posterior end of the testicle.

The spermatic cord is necessarily very long (20 to 25 cm . in a boar of medium size). The ductus deferens in its testicular part is flexuous, and is closely attached by the tunica raginalis; it forms no distinct ampulla. The cremaster externus is well developed, and extends to about the middle of the scrotal part of the tunic.

The vesiculæ seminales are exceedingly large, and extend into the abdominal cavity. They are three-sided pyramidal masses, are in apposition with each other medially, and cover the posterior part of the bladder and the ureters, the ductus deferentes, the body of the prostate, and the anterior part of the urethra and bulbourethral glands. They are pale pink in color, distinctly lobate and glandular in structure, and are enclosed in a thin fibrous capsule. Half a dozen or more large, thin-walled ducts emerge from the medial surface of each and converge to a much smaller excretory duct. The latter passes back lateral to the ductus deferens, and terminates at a slit-like opening on the colliculus seminalis. The two ducts may unite.

In the adult boar the vesiculæ are about five to six inches (ca. 12 to 15 cm .) long, two to three inches (ca. 5 to 8 cm .) wide, and one and a half to two inches ($e a .4$ to 5 cm .) thick; they weigh about 6 to hounces each. They have a branched tubular structure and are distinctly di-
vided into lobules. Many of the tubules are extremely wide (as much as 2 mm . in thameter), and are beset with bay-like extensions and short, wide branches. These axial spares of the lobules are succeeded by the efferent ducts. The cavities are lined by a single layer of columnar cells. The sceretion is thick and turbid, and has an acid reaction.

The prostate eonsists of two parts, as in the ox. The body is about an inch (2.5 cm .) wide, and overlies the neck of the bhatder and the urethra at their junction. It is concealed by the vesiculie seminales. The pars disseminata forms a layer which surrounds the pelvic part of the urethra, and is covered by the urethral muscle, except dorsally.

The uterus masculinus is small, and appears to be inconstant.
The bulbo-urethral glands are very large aud dense. They are somewhat eylindrical, and lie on either

Ftg. iot.-Gental Grghina of Buar.
a, Textule; b, epudidyms; c, duetus deferens; d, spermatie artery; f. vesculamininalis; e^{\prime}, excretory ducts of vesicular f, bexly of prostate; a. bulbo-urethral gland; h, urnary blatder; i, wrethral musele; $h_{\text {, }}$ butbo-ravernosus muscle; l, penis; l^{\prime}, sugmoid flexure of penis; $l^{\prime \prime}$. spiral anterior part of ponis, exposed by slitting open prepuce; m, orifice of preputial pouch; n, retractor penis muscle. The vesicula seminales are drawn outward to show the structures which, in the natural position, are covered by them. (Ellenberger-Buum, Anat. d. llaustiere.) side of and upon the posterior two-thirls of the pelvic urethra. ${ }^{1}$ In a large boar they are about five inches (ca. 12 em.) in length and an inch or more (ca. 2.5 to 3 cm .) in wilth. They are partially movered with a layer of striated muscle (M. bulbo-glandularis), and have a lobulated surface. Each gland has a large excretory duct which leaves at the deep face of the pusterior part, perforates the dorsal wall of the urethra at the ischial arch, amd opens in a cul-de-sac covered by a fold of mucous membrane.

It is to be noted that these arcessory glands are very small in mimals which have been eantrated carly; the buib r-wrethral ghands may be only about an ineh long in such subjerts.

The penis resembles in general that of the ox. The sigmoid flexure is, however, prescrotal. The anterior part has no glans, and is spirally twisted, expecially in erection. The external urethral orifice is slit-like and is situated ventrolaterally, close to the pointed extremity. The penis in the adult hoar measures about is to 20 inches (ca. 45 to 50 cm .) in length. Its muscles resemble those of the bull. The bulbo-cavernosus is very strong lout short. The retractor penis arises from the thirel and fourth sacral segments; its two parts rum barkward and a little ventrally on cach side of the rectum to the perinemm, where they reach the urethral surface of the penis; they end on the ventral curve of the sigmoid Hexure of the penis.

[^140]The prepuce has a narrow orifice, around which there are stiff hairs. The cavity is very long, and is partially divided by a circular fold into a posterior narrow part and a much wider anterior part. The lining membrane of the posterior part is papillated, and is in close contact with the penis; it contains numerous lymph nodules, the largest of which occur in the fundus. In the dorsal wall of the wide part there is a circular opening which leads into a cul-de-sac, the preputial diverticulum. This pouch is ovoid in form (when distended), and varies greatly in size in different subjects. It extends for the most part backward over the narrow part of the prepuce. Its cavity is partially divided by a narrow septum. It contains usually decomposing urine and macerated epithelium, which have a characteristic and very unpleasant odor. Concrements have been found in it.

Abstract

Oehmke found that a cast of the ponch in a Yorkshire boar weighing about 500 pounds measured 9 cm . in length, $121 / 2 \mathrm{~cm}$. in breadth, and 6 cm . in height. The opening into the prepuce will admit two fingers in the adult, but is ordinarily closed by folds of the lining membrane. The sac is much smaller in animals which were castrated young, and the opening is vertical and further back; in them it is often empty or contains only a lit.tle clear urine. The pouch is glandless, lat contains many small lymph nodules; it is covered by a layer of striped muscle which is mainly derived from the homologue of the protractor of the prepuce of ruminants.

The urethra has a very long pelvic part (ca. 15 to 20 cm long in the adult); it is covered (with the pars disseminata of the prostate) by a thick urethral muscle, except dorsally, where there is a dense fibrous laver. Surrounding the mucous membrane there is a rich venous plexus, which is regarded as a stratum cavernosum. Outside of this the pars disseminata of the prostate is easily distinguished on crosssection by its yellow color. The prostatic ducts are numerous and small. The ductus deferentes and the excretory ducts of the vesiculæ seminales have slit-like openings close together in small diverticula on either side of the colliculus seminalis. The latter has the form of a round prominence. A small uterus masculinus may occur in the colliculus between the ducts, but it is often absent. There is a distinct bulb at the root of the penis. It has a dense covering, which in part resembles fibro-cartilage. The erectile tissue here is highly developed. The cavernous spaces are large, and the trabecula contain much unstriped muscle; between the spaces there are mumerous arteries. The penile part is of small caliber, and is surrounded by ercetile tissue which, however, does not extend to the extremity of the penis.

MALE GENITAL ORGANS OF THE DOG

The scrotum is situated about half way between the inguinal region and the anus. The skin covering it is pigmented and is covered sparsely with fine hairs. The raphé is not very distinet.

The testicles are relatively small, and have a round-oval form. The long axis is oblique, and is directed upward and backward. The mediastinum testis is central and is well developed. The epididymis is large, and is closely attached along the dorsal part of the lateral surface of the testicle.

The spermatic cord and the tunica vaginalis are long; they cross the side of the penis very obliquely. The upper end of the tunic is sometimes closed, so that there is then no vaginal ring. The ductus deferentes have narrow ampullæ.

The vesiculæ seminales are absent.
The prostate is relatively large; it is yellowish in color, dense in structure, and lies at or near the anterior border of the pubis. It is globular, and surrounds the neck of the bladder and the urethra at their junction. A median furrow indicates a division into two lateral lobes. The capsule and stroma contain a large amount of unstriped muscle. The ducts are numerous. Lobules of prostatic
tissue (pars disseminata) are also found in the wall of the urethra for a short distance further back. The gland is subject to much variation in size, and is often enlarged, especially in old subjects.

The position of the prostate varies. When the bladder is empty and contracted, the ghand is entircly in the phtic cavity and may be an inth or more bohind the anterior border of the pubis. When the bladder is full, the prostate is often largely or entirely mepubic.

The uterus masculinus is a small compressed sateule in the colliculus seminalis. The bulbo-urethral glands are alment. ${ }^{1}$
The penis presents several seccial features. In its posterior part there are two distinet corpora cavernosa, separated by a median septum penis. In its anterior part there is a bone, the os penis, which in large dogs reaches a length of four inches (ra. 10 cm.) or more. It is regarded as a part of the corpus cavernosum which has

Fig. 52s.-External fiental Organs of Male Dog; Ventrolateral View of Preparation.
1, Serotum; t^{\prime}, tumea vagınalis; 2, epldidyms; 8 , vascular part of spermatic cord; 4 , ductus deferens; $\overline{5}$, prepuce; f, pars longa glantis; $u^{\prime \prime}$, corpus cavernusum penis; 7 , bulbus glandis; 7^{\prime}, contour of bulbus in erection; s, ischio-caveruosus muscle; a acetabulums; b, obturator foramen. (After Ellenberger, in Leisering's Athas.)
asified. Ventrally it is grooved for the urethra; dorsally it is eonvex, and anteriorly it beeomes smaller and has a curved fibrous prolongation. ${ }^{2}$ The glans penis is very long, extending over the entire length of the os penis; its anterior part, the pars longa glandis, is eylindrical, with a pointed free end; behind this there is a rounded emlargement, the bulbus glandis. Both are composed of erectile tissue. The two dorsal veins arise from the bulbus glandis, pass backward on the dorsum penis, and unite at the ischial arch. A small muscle (M. compressor vene (lorsalis penis) arises from the tuber ischii on cither side; the two converge on the dorsum penis near the bulbus glandis. They compress the dorsal veins, and may akso tend to elevate the penis and thus assist in copulation. The other muscles offer no features worthy of special deseription.
${ }^{1}$ They are present in the cat, and are the size of a pea.
${ }^{2}$ In the young subject it has a prolongation composed of hyaline cartilage, which becomes fibrous later.

The cavernous spaces of the glans penis are venous in character. Von Frey has shown that the spaces of the pars longa are continuous with veins which come from the penile layer of the prepuce, and have no arterial blood supply. The erectile tissue of the bulbus glandis receives its blood by veins which come from the pars longa. This arrangement is consitered to account for the erection of the bulbus during copulation, and the slowness with which erection subsides.

The prepuce forms a complete sheath around the anterior part of the penis. The outer layer is ordinary integument. The inner layers are thin, reddish in color, and glandless. The penile layer is closely attached to the pars longa glandis, more loosely to the bulbus glandis. There are many lymph nodules in these layers, which are specially large and often prominent in the fundus of the preputial cavity. The protractor muscles arise in the xiphoid region and decussate posteriorly around the extremity of the prepuce.

The pelvic part of the urethra is relatively long. Its first part is enelosed in the prostate. ${ }^{1}$ At the ischial arch the urethra has a well-dereloped bulb, formed by an enlargement here of the corpus cavernosum urethre. It is divided by a median furrow and septum (Septum bulhi urethre) into two lateral lobes or hemispheres (Hemispheria bulbi urethræ), and is corered by the strong but short bulbocavernosus muscle. The other erectile bodies have been describerl. The urethral muscle is rery strong; it encircles the urethra from the prostate backward and has a median raphé dorsally. The ischio-urethral muscle arises from the tuber ischii and ends on a fibrous ring at the srmphysis ischii which encireles the dorsal veins of the penis.
${ }^{1}$ This is clinically important, since enlargement of the prostate may interfere with micturition.

THE FEMALE GENITAL ORGANS

The female genital organs (Organa genitalia feminina) are: (1) The tro ovaries, the essential reproductive glands, in which the ova are produced; (2) the uterine or Fallopian tubes, which convey the ova to the uterus; (3) the uterus, in which the orum develops:; (t) the vagina, a dilatahle passage through which the fortus is expelled from the uterus; (5) the vulva, the terminal segment of the genital tract, which serves also for the expulsion of the urine; (6) the mammary glands, which are in reality glands of the skin, but are so closely associated functionally with the generative organs proper that they are usually deseribed with them.

GENITAL ORGANS OF THE MARE THE OVARIES

The ovaries (Ovaria) of the mare are bem-shaperl, and are much smatler than the testicles. Their size varis murh in different subjects, and they are

Fig. 530- Tateral View oe Genifal Organg and Adjacent Structuren of Mare.
It is to le noted that the removal of the other abdominal viscera has allowed the ovaries and uterus to sink down; this has, however, the advantage of showing the broad ligaments of the uterus. I, Left ovary; 2, uterine or Fallopiaa tube; 3, luft cornu uteri; 4. right cornu uteri; $\overline{5}$, corpus uteri; \bar{s}^{\prime}, portio vakinalis uteri, and $5^{\prime \prime \prime}$, as uteri, scen through window cut in vagına; 6 , broad ligament of uterus; $6^{\prime \prime}$, round ligament of uterus; 7 , vagina; $\mathcal{\varepsilon}$, labia vulva; 9 , rima vulvæ; 9^{\prime}, dorsal commissure, and $9^{\prime \prime}$, ventral commissure, of vulva; 10 , constrictor vulvie; 11 , position of vestibular bulb; 12 , ventral wall of abdomen; 13 , left kidney; 14 , left ureter; 15 , urivary bladder; 16 , urethra; 17 , rectum; 15 , anus; 19, 19', unpaired and paired parts of sphincter ani externus; 20, retractor ani cut at disappearanec under sphincter ani externus; 21, suspensory ligament of anus; 22 , longitudinal muscular laver of rectum; 22', recto-cocesgeus; SS, constrictor vagina; a, utero-ovarian artery; with ovarian (a^{\prime}) and uterine ($a^{\prime \prime}$) branches; b, uterine artery; c, umbilical artery; d, ischium; e, pubis; f, ilium. (After Ellenberger, in Leisering's Atlats.)
normally larger in young than in old anmals; one ovary is often larger than the other. They are about three inehes (ca. 7 to Scm .) long and an inch to an inch
and a half (ca. $3-4 \mathrm{~cm}$.) thick. The weight is about two and a half to three ounces (ca. 70-80 grams).

Each presents for description two surfaces, two borders, and two extremities. The surfaces are termed medial and lateral (Facies medialis, lateralis); they are both smooth and rounded. ${ }^{1}$ The attached or mesovarial border (Margo mesovaricus) is convex. It is enclosed in a part of the broad ligament termed the mesorarium; the vessels and nerves reach the gland at this border. The free border (Nargo liber) is marked by a notch which leads into a narrow depression, the ovulation fossa. The tubal or anterior extremity (Extremitas tubaria) is rounded, and is related to the fimbriated end of the uterine tube. The uterine or postcrior extremity (Extremitas uterina) is also round, and is connected with the horn of the uterus by the ovarian ligament.

The ovaries are situated in the sublumbar region, and are usually ventral to the fourth or fifth lumbar vertebra. They are usually in contact with the lumbar wall of the abdomen. The arerage distance from the ovaries to the vulvar orifice is about twenty to twenty-two inches (ca. $50-55 \mathrm{~cm}$.) in a mare of medium size.

The position of the ovaries is very inconstant, as might be expected from their mode of attachment. Either ovary or both may be deflected transversely in either direction to the full limit allored by the mesovarium. The so-called medial and lateral surfaces are usually dorsal and yentral, or vice versâ. according to the direction of the deflection. The range of rariation in the longitudinal direction is greater than was formerly thought to be the case. The right ovary is often about six inches (ca. 15 cm .) behind the corresponding kidney, but the distance between them may be nearly twice as great or may be only about two inches ica. 5 cm .1 . The left orary is usually a little (ea. ' $2-3 \mathrm{~cm}$.) further back than the right one, but is usually nearer the corresponding kidney; the average distance between them being about four inches (ca. 10 cm .). They may be about two inches ($c a .5 \mathrm{~cm}$.) from the extremity of the corre-ponding cornu of the uteru: or in contact with it. Except during pregnancy, they are almost always in contact with the lumbar abdominal wall, and do not hang down among the adjacent viscera.

The orary is attached to the sublumbar region by the anterior part of the broad ligament of the uterus; this part of the ligament, the mesovarium, is about three or four inches (ca. 8 to 10 cm .) mide, measured from the ovary directly to the parietal attachment. The uterine extremity of the ovary is connected with the extremity of the cornu of the

Fig. 531.-Right Orary of Mare, with Adjacent structures.
The extremity of the cornu is opened. 1, Ovary; 1^{\prime}, corpus luteum; 2., uterine or Fallopian tube, with its ostium abdominale $\left(2^{\prime}\right)$, fimbrise $\left(z^{\prime \prime}\right)$, and ostium uterinum $\left(2^{\prime \prime \prime}\right) ; 3$, cornu uteri with its mucous lining $\left.(3)^{\prime}\right)$ exposed: \&. liganent of ovary: 4', mesosalpinx. (.1fter Ellenberger, in Leisering's Attas, reduced.) uterus by the ligament of the ovary (Lig. ovarii proprium): this is a band of unstriped muscle enclosed between the layers of the broad liganent.

Structure. - The greater part of the surface of the ovary has a covering of peritoneum. The peritoneal investment is absent at the attached border where the ressels and nerves enter; this area is termed the hilus of the ovary (Hilus ovarii), although there is no depression here. The ovulation fossa is covered by a layer of short polygonal cells, a remnant of the primitive germinal epithelium.

[^141]The stroma of the ovary (Stroma ovarii) is a network of comective tissue. In the meshes of the stroma there are (in young subjects) numerous ovisacs or folliculi oöphori, entaining ova (Ovula) in various stages of development. The immature ovom is surromuled by follicle eells; those more advanced in development are enclosed by several ($5-8$) layers of follicle cells, forming the stratum granulosum, and by a condensation of the stroma termed the the a folliculi; within the theca is a tuluntity of fluid, the liquor folliculi. It one point the follicle cells are heaped up as a sort of momel (Cumulus oöphorus), in which the ovmm is enclosed. Such sacs are termed folliculi oöphori vesiculosi; they enlarge as they mature, becoming visible to the naked eve as vesicles with a diameter of a centimeter or more. When fully develoged, the follieles are superficially situated, and often project slightly from the surface of the ovary. At intervals follicles rmpture and their contents escape. This process, which sets free the armm, is termed ovulation; it

Fui, 532. - 'rhematu Representation of Changer in ()yary of Mahe from Fietal to Adelet Ntate, (After Born.)
Thu whan's affect chuefly the free border (upper in figure) and the extent and form of the areat covered by germinal epthehum (f). 1. Peritonemen broad ligament); 2. ligament of ovary; 3 , fimbrat of uterine tuble: 4 . germinal epthelium; $\vec{b}_{\text {, vessels, which reach the }}$ ovary at the attached border (if). The latter represents the hulus, while the dery) depression at the free border is the ovulation fossa. (Lllumberger, in Leiseriug's Atlas.) takes place in the mare only at the orulation fossa, and occurs during the perionls of astrum.

The structure of the ovary of the natre is pecultar and differs from that of other animals in the fact that it dow not consist of a cortex (zoma parenchymatosa), in which the folliches are situated, and a medulla (zona vasculosa), which contains the vessels and nerves. This arrangement is present in the fotus, but later the follicles become disitributed throughont the interior of the gland, and the vaseular zone is superficial.

After rupture of a follicle, its eavity is partly ocrupied by a hlokklchot, constituting what mity be termed a corpus rubrum. By prolifcration and conargement and fatty changes, the follicle cells are tramsformed into lutcin celle, forming a yedlow mass known as a corpus luteum. If impregnation takes plare, the accompanying increase in valscularity of the org:ms may canse the corpus luteum to reach a large size; if impregnation does not occur, it is much smaller, and is sooner replaced by sear tisube, forming the corpus albicans s. fibrosum.
In the new-lorn foal the ovaries are large and oval in form. The free horder is convex and is covered by germinal epithelinm, which extends over a large part of the surfares also. This area is distinguishable by its dull gray appearance from the peritomeal surface, which has the ninat smooth glistening character. The limit of the peritoneal epithelium is a distinct line, termex by Widieyer the margo limitaus peritonsei. As growth preneeds the ovary gradually beeones bent until it assumes its definitive curved shape. The germinal epithelium is then limited to the ornlation fosis. The ovary migrates somewhat during development from its primitive phsition, which is the same as that of the testicle.

In old animals the ovaries commonly eonsist largely of fibrous tiswue, in which there are often cysts of varions sizes. The ova, present in enormous number at birth, have then been extruded, or destroyed by phagoeytie action or degeneration.

Vessels and Nerves. The arteries of the ovary are derived from the ovarian artery. The artery is relatively large and is flexuons; it reaches the attached border of the ovary by passing between the layers of the mesovarium. The veins are large and numerons. They form a plexns somewhat like that of the spematic

[^142]cord. The lymph vessels pass to the lumbar glands. The nerves are derived from the sympathetic system through the renal aud aortic plexuses. They accompany the irterial branches.

THE UTERINE TUBES

The uterine or Fallopian tubes (Tubæ uterinæ) act as exeretory ducts of the ovaries, since they convey the ova from the reproductive glands to the uterus. They are not, however, in direct continuity with the glands, but rather partly in contiguity with, and partly attached to, them. ${ }^{1}$ They are two flexuous tubes, eight to twelve iuches (ca. 30 to 20 cm .) long, which extend from the extremities of the uterine cornua to the ovaries. The tube is very small at its uterine end (ca. 2-3 nm . in diameter), but toward the ovary it widens considerably ($4-8 \mathrm{~mm}$. in diameter), forming the ampulla tubæ. Each is euclosed in a peritoneal fold, derived from the lateral layer of the broad ligament, and termed the mesosalpinx. This largety covers the lateral aspect of the ovary, and forms with it and the broad ligament a pouch called the bursa ovarica. The uterine extremity (Extremitas uterina) of the tube communicates with the cavity of the cornu by a minute orifice, the ostium uterinum tubæ. The ovarian extremity is expanded and somewhat fumel shaped, and is therefore termed the infundibulum tubæ uterinæ. The margin of the latter is slit into irregular processes, the fimbriæ, some of which, the fimbriæ ovaricæ, are attached in the orulation fossa. About the middle of the infundibulum is a small opening, the ostium abdominale tubæ, by which the tube communicates with the peritoneal cavity. The ovarian extremity of the tube appears normally to be applied to the ovary, so that the extruded ova pass into it and are conveyed to the uterus. ${ }^{2}$

Pedunculated cysts, the hydatides terminales, ${ }^{3}$ are often found on one or more of the fimbrix. In the mesosalpinx are blind flexuous tubules, which constitute the paroöphoron, a remnant of the Wolffian body. They are most evident in the young adult, and tend to disappear with increasing age. Not uncommonly they give rise to cyists.

Structure.-The tube is covered externally by a serous coat formed by the mesosalpinx. The serous membrane is continued on the fimbrix, and meets the mucous lining on them. The fibrous adventitia is "continuous with the fibrous lamina of the broad ligament. The muscular coat consists chiefly of cireular fibers, outside of which there are longitudinal fibers derived from the broad ligament; the thickness of the muscular coat diminishes toward the ovarian extremity. The mucous coat is thin and is much plieated. The folds (Plice tubarix) are chiefly longitudinal, but in the wide part of the tube (Ampullæ tubæ) they are very complex, so that on cross-sections the spaces between the folds may be mistaken for branched tubular glands. The folds are continued on to the fimbriæ. The epithelium is a single layer of columnar ciliated cells, the cilia producing a current directed toward the uterus. At the ovarian extremity this epithelium passes gradually into the squamous type of the serous coat.

Vessels and Nerves.-The arteries are derived from the utero-ovarian artery: The veins are satellites of the arteries. The lymph vessels pass with the ovarian ressels to the lumber glands. The nerves have a similar origin to those of the ovary.

THE UTERUS

The uterus is a hollow muscular organ, which is continuous with the uterine tubes anteriorly and opens into the vagina posteriorly. It is situated chiefly in the
${ }^{1}$ The tubes may be regarded, both in origin and structure, as prolongations of the uterus.
${ }^{2}$ The arrangement is the only exception to the general rule that the serous carities are closent. In this case the mucous membrane of the infundibulum is continuous with the adjacent peritoneum, a persistence of the embryonic relations of the Mullerian duct.
${ }^{3}$ Also known as hydatids of Morgagni.
alodominal cavity, but extends a short distance into the pelvic cavity. It is attached to the sublumbar region and the lateral walls of the pelvic cavity by iwo fokls of peritoneum termed the broad ligaments. It comsists of two horns, the body, and the neek.

The horns or cornua of the uterus (Cornua uteri) are situated entirely in the abolomen. They appear to vary considerably in position; commonly they are pressed up against the sublumbar muscles by the intestine (ceecum, left parts of

- Fig, 533.-Centtal Organs of Mare; Dorsal. View

The left horn and adjacent part of the body of the uterus and the vagimam vulva are opened up. 1 , Ovary; 2 ,
 munication with the body; 6 , portio vagmalis uteri; f^{\prime}, external oritiee of uterus: γ, browi ligament of uterus; S, Jigament of wary: 9 , vagha; 10 , vulvat; 10^{2}, orifiees of ducts of glantulse vestibulares majores; $10^{\prime \prime}$, orifices of diets of glandulæ veabbuiares minorrs; 11 , transverse fold; 12 , external urethral opening; $13,10^{\prime}$, labia vulvæ; 14 , glans clitorstis; $1 f^{\prime}$, junction of eruris to form corpus elitoridis indicated by dotted lines; $1 \bar{n}$, urinary bladder; a, utroroovaritn urtery with ovarian (a^{\prime}) and uterine ($a^{\prime \prime}$) branches; b, middle uterine artery: (After Ellenberger, in I.eis-ring's Atlas.)
large colon, small colon, and small intestine). They are eylindriead when moterately distended, and are about ten inches (ea. 25 cm.) in length. The anterior extremity of each forms a bhunt point which receives the uterine tube. Ponteriorly they increase somewhat in caliber, converge, and mite with the body. The dorsal border (Aargo mesometrions) is slightly concave and is attached to the subhmar region ly the broad ligament. The ventral border (Margo liber) is consex and fres.

When a soft uterus is distended, its horns are strongly curved, but this does not represent the natural form. When fixed in situ, the homs are enther slightly curvel or nearly strught.

The two horns are commonly umsymmetrical in length and diameter in mares which have borne young.

Tlie body of the uterus (Corpus uteri) is situated partly in the abelominal, partly in the pelvic, cavity. It is cylindrical, but considerably flattened dorsoventrally, so that in cross-section it is elliptical. Its average length is seven or eight inches (ea. 18-20 cm.), and its diameter, when moderately distended, about four inches (10 cm .). Its dorsal surface (Facies flursalis) is related to the rectum and other parts of the intestine. Its ventral surface (Facies ventralis) is in contact with the bladder, and has inconstant relations with various parts of the intestine. The term fundus uteri is applied to the wide anterior part from which the cornua diverge.

The position of the body of the uterus is variable, especially in regard to its anterior part. It is often pressed up against the rectum, and may be deflected to either side--most frequently to the left-by the petric flexure of the great colon or coils of the small colon.

The neck or cervix of the uterus (Cervix uteri) is the constrieted posterior part which joins the vagina. It is about two to three in ches (5.5 .5 cm .) in length, and an inch and a half ($3.5-4 \mathrm{~cm}$.) in diameter. Part of it (Portio raginalis uteri) projects into the cavity of the vagina; it is therefore not visible externally; but may be felt through the vaginal wall.

Attachments.- The body and horns are attached to the alodominal and pelvie walls by two extensive peritoneal folds, the broad ligaments of the uterus Ligamenta lata uteri). These extend on either side from the sublumbar region and the lateral pelvic walls to the dorsal border of the cormua and the lateral margins of the body of the uterus. They contain the vessels and nerves of the uterus and ovaries, connective tissue, and a large amount of unstriped muscular fibers which are continuous with those of the uterus. The ureters are situated along their parietal margins. The lateral layer of each gives off a fold, the round ligament of the uterus (Ligamentum teres uteri), which blends with the parictal peritoneum over the abdominal inguinal ring; its anterior extremity is situated above the extremity of the cornu and forms a long round appendix. It contains muscular tissue, vessels, and nerves, and is the homologue of the gubernaculum testis. The anterior part of the neek is continuous with the vagina, and thus has a more fixed position than the rest of the organ.

The cavity of the uterus (Cavum uteri) is largely obliterated in the nonpregnant state by the contraction of the wall and by folds of the mucous lining. At the extremity of each cornu it communicates with the uterine tube by a minute opening on a small papilla. The cavity of the neck is termed the cervical canal (Canalis cervicis); it is closed ordinarily by mucous folds and a plug of mucus. It opens into the vagina by the orificium externum uteri, ${ }^{1}$ and into the body by the orificium internum uteri.

Structure. -The wall of the uterus consists of three coats. The serous coat (Perimetrimn) is, for the most part, elosely adherent to the muscular coat. It is continuous with the broad ligaments. The muscular coat consists essentially of two layers, a thin external stratum of longitudinal fibers, and a thick internal layer of circular fibers. Between these is a very vascular layer (Stratum vaseulare) of connective tissue with eircular and oblique muscular fibers in it. The circular coat is very thick in the neck, where it forms a sphincter half an inch or more (ca. 1.5 cm .) in thickness. The mucous membrane rests direetly on the muscular coat, and is brownish-red in color, except in the neck, where it is pale. It is covered by a single layer of high colummar cells, and contains mumerous long, branched tubular uterine glands (Clandule uterinie); these are absent in the cervix.

Vessels and Nerves.-The chief arteries are the uterine and the uterine branch of the utero-ovarian, which have a flexuous course in the broad ligaments;
${ }^{1}$ This is frequently designated the os uteri.
there is also a branch from the intermal pudic artery. The veins form panpiniform plexuses and accompany the arteries. The lymph vessels are numerous and go to the internal iliae and humbar glands. The nerves are derived from the sympathetic through the uterine and pelvic plexuses.

The foregoing statements refer to the non-gravid uterus. In the pregnant state it undergoes important thanges in size, position, and structure. The increase in size affects chiefly the gravid horn (except in the case of twins) and the borty. The horn attains a length of about two and a half to three feet (ea. so to 90 cm .) and a corresponding diameter; in this process it extends much beyond the ovary and the brod ligament. The gravid uterus is entirely abdominal in position, and extemls along the ventral wall. chiefly to the left of the median plane. It weighs about nine poums (ca. 4 kg .), aceording to Ellenberger. The browd ligaments insrease greatly in size and contain more muscular tisque. The ressels are greatly enlarged and form new branches. The museular coat, in spite of the increase in size and number of the fibers, is somewhat thimer, except in the neck. The mucous membrane is thicker and more vascular.

THE VAGINA

The vagina is the passage which extents horizontally through the pelvic cavity from the neck of the uterus to the vulva. It is tubular, is alsout six to cight inches (ea. 15-20 cm.) in length, and, when slightly distended, about four or five inches (ca. $10-12 \mathrm{~cm}$.) in diameter. Its dilatability appears to be limited only by the pedvic watl. There is no external line of demareation between the vagina and the uterus or the vulva.

It is related dorsally to the rectum, ventrally to the bladder and urethra, and laterally to the pelvic wall. The recto-genital pouch of the peritoneum commonly extends botween the vagina and rectum for a distance of about two inches (5 cm .). and ventrally the resico-genital pouch passes lackward somewhat further between the vagina and bladder. Thus most of the ragina is rotroperitoneal and is surrounded by a quantity of foose connective tissue, a venous plexus, and a variable amount of fat. ${ }^{1}$

Structure. - With the exception of the short peritoneal part, as indicated above, the proper wall of the vagina is composed of muscular and mucous coats. The muscular coat is composed of a thin layer of longitudinal fibers, and a thicker layer of circular fibers; it is covered extermally by a fibrous adventitia, and there is a large amount of intermuseular connective tissue. The mucous coat is highly elastic, and is covered with a stratified-hnt not squamous-epithelium. It has no glands.

Under usual conditions the eavity is practisally olditerated by apposition of the walls, so that the lumen is a transerse slit; this condition is pronounced when the rectum is full. The anterior end of the vagina is largely occupied by the intraraginal part of the neck of the uterus, so that the cavity is lere reduced to an annular recess termed the fornix vaginæ. The posterior part is directly continuous with the vulva without any line of demarcation exeept the transerse fold which covers the external urethral orifice; in very young sulyects this fold is continued on either side, forming the hymen, which narrows the entrance to the vagina (lntroitus vaginæ). ${ }^{2}$

Vessels and Nerves.-The arteries are branches of the internal pudic arteries. The veins form a rich plexus which is drained by the internal pudie reins. The lymph vessels go to the internad iliac lymph glands. The nerves are derived from the sympathetic through the pelvie plexus; numerous ganglia are present in the adventitia.
${ }^{1}$ The amount of the vagina which is coverel hy peritoneum varies, depending apparently on the alegree of fullness of the rectum and hather. When these organs are empty, the peritonemm may cover the vagina for a distance of three or four inches (ca. $\mathrm{c}-10 \mathrm{~cm}$.) ; when they are full, the vagina masy le completely retruperitomeal or nearly :a.
${ }^{2}$ In formalin-harilened subjects there is frequently a pronounced ring-like constrietion at the junction of the viblva and vagina.

THE VULVA

The vulva or urogenital sinus (Vestibulum vagine) is the terminal part of the gemital tract. ${ }^{1}$ lt is continuous in front with the vagina, and opens externally at the vulvar cleft below the anus. There is no external line of demarcation between the ragina and vulva. The tube is four or five inches (ca. 1012 cm .) in length, measured from the external urethral orifice to the ventral commissure; dorsally (from a point vertically opposite to the external urethral orifice) it is considerably shorter. It is related dorsally to the rectum and anus, ventrally to the pelvic floor, and laterally to the sacro-sciatic ligament, the semimembranosus muscle, and the internal pudic artery: The external orifice, the vulvar cleft (Rima vulvie), has the form of a vertical slit, four or five inches (ca. 10-12 cm.) high, and is margined by two prominent rounded lips, the labia vulvæ. The labia meet above at an acute angle, forming the dorsal commissure (Commissura dorsalis.), which is about two inches (ca. 5 (m.) below the anus. They unite below to form the thick, rounded ventral commissure (Commissura ventralis), which lies about two inches (ca. 5 cm .) behind and below the ischial arch. When the labia are drawn apart, a rounded body, about an inch (ca. 2.5 cm .) wide, is seen occupying a cavity in the ventral commissure; this is the glans clitoridis, the homologue of the glans penis, and the cavity in which it lies is the fossa clitoridis. The roof of the fossa is formed by a thin fold, which overlies the glans clitoridis and is attached centrally to it. At the anterior extremity of the ventral wall of the vulva, i. e., four or five inches (ca. $10-12 \mathrm{~cm}$.$) from the ventral commissure, is the external urethral orifice (Ori-$ ficium urethre externum). ${ }^{2}$ It readily admits the finger and is very dilatable. It is covered by a fold of mucous membrane, the free edge of which is directed backward (Fig. 533).

Structure. - The labia are covered by thin, pigmented, smooth skin, which is richly supplied with sebaceous and sweat glands. This is continuous at a distance of about half an inch (ca. $1-1.5 \mathrm{~cm}$.) from the free edge with a thin, glandless mucous membranc. Under the skin there is a layer of striped muscle, the constrictor vulvæ; this fuses above with the sphincter ani, and embraces the clitoris below, spreading out laterally at the ventral commissure. It constricts the vulvar orifice and elevates the clitoris. The constrictor vestibuli muscle embraces the rulva in front of the preceding; it is deficient dorsally and is joined on either side by a band of unstriped muscle, the suspensory ligament of the anus. It constricts the vulva. Within this there is an unstriped muscular coat, most of the bundles of which are circular. Chiefly between this coat and the mucous membrane there is in the lateral wall, just in front of the labia, a flattened, oval borly, the bulbus vestibuli (Fig. 578); this is an erectile structure, homologous with the corpus cavernosum urethre of the male. It is about two and a half to three inches (ca. $6-8 \mathrm{~cm}$.) long, and an inch or more (ca. 3 cm .) wide. It is similar in structure to the bulb of the corpus cavernosum urethre of the male, and is supplied with blood by a large branch of the internal pudic artery. The mucous membrane of the vulva is reddish in color, and forms Iongitudinal and transverse folds. It presents ventrally two linear series of small papillæ which converge toward the ventral commissure; these mark the orifices of the ducts of the glandulæ vestibulares minores. On either side of the dorsal wall is a group of eight to ten larger prominences on which the ducts of the glandulæ vestibulares majores open (Fig. 533).

Quite exceptionally there may be found on either site of the urethral orifiee the openings of the canals of Cartner Ductus epoóphori longitudinales).
${ }^{1}$ The term vulva is used here in the sense in which it is understood generally by English and French veterinarians. In the German works it is applied only to the labia and other struetures around the external orifice of the urogenital sinus, while the sinus itself is termed the vestibule of the vagina (Vestibulum vaginiャ).
${ }^{2}$ Also termed the meatus urinarius.

The clitoris is the bomologue of the penis and consists of similar parts (minus the urethra and its musele). The corpus clitoridis is about two inches (ra. 5 em .) long, and its diameter about that of one's little finger. It is attached to the isehial arch by two crura (Crura clitoridis). The glans clitoridis is the rounded and enlarged free end of the organ which was noted above as occupying the fossa clitoridis in the ventral eommissure of the vulva. It is covered by a thin pigmented integument, similar to and eontinuons with that which lines the fosisa; these eonstitute the prepuce of the clitoris (Preputium clitoridis). The organ is eomposed of erectile tissue simidar to the corpus cavernosum penis. The ischio-cavernosus is the homologue of the muscle of the same name of the male; it is a very feeble muscle. The wins of the clitoris communcate ly an intermediate plexus on either side with the bullus vestibuli.

THE FEMALE URETHRA

The female urethra (Urethra feminina) represents only that part of the canal of the male which lies between the internal uretliral orifice and the colliculus seminalis. Its length is two to three inches ($5-7.5 \mathrm{~cm}$.), and its lomen is sufficient to allow easily the introduction of the finger; it is, however, eapable of remarkabke dilatation if sufficient care and patience are exereised in the proess. It lies centrally on the pelvic floor, and is related dorsally to the vagina, to whieh it is in part attached. The extornal orifiee is at the anterior end of the vulva, as deseribed above,

Structure. -The intrinsic muscular coat consists of extemal longitudinat and intemal cireular fibers; it is absent where the urethra is attached to the vagina. The mucous membrane is thrown into longitudinal folds when the canal is closed; it is highly clastie, and is covered with stratified epithelium. There is a rich submucous network of veins, forming a sort of corpus cavernosum.

The urethral muscle (M. eompressor urethre) embraces the urethra and is continuous with the constrictor vestibuli. It is covered by a filmo-elastic membrane.

THE MAMMARY GLANDS

The mammary glands (Cilandute tactifere) are modified cutaneous glands which are so chosely assorciated functionally with the genital organs as to be considered aceessory to them.

In the mare they are two in number, and are placed on either side of the median phane in the inguinal region. Each gland has the form of a vers short, flattenel cone, much compressed transversely, and having a flat medial surface. It consists of the glandular mass or body of the gland (Corpus mammet) and the papilla or teat (Papilla manmax). The base is redated to the abdominal wadl, to which it is attached by areotar tissue, which contains a venous plexus, the superficiat inguinal lymph glands, and a variable amoment of fat. The apex is constituted by the teat which is also flattened transversely and varies in length from one to two inches ($\cdot a .2 .5$ to 5 cm.). Between the bases of the teats is the intemmmary groove. On the apex of each teat there are usually two small orifices placed elose together; these are the openings of the lactiferous ducts.

Structure. -The skin covering the glands is thin, pigmented, ehiefly hairless, and supplied with numerous large sebaceous and sweat glands. Under this are two layers of fascia, except on the teats. The superficial fascia presents no special features. The deep faseia consists of elastic tissue; centrally two lamine detached from the abdominal tumic descend on either side of the median ptane, forming a septum between the two glands, and constituting their ligamentum suspensorium. ${ }^{1}$

The gland substance or parenchyma is pinkish gray in color, and of firmer
${ }^{1}$ These lamine are separatel almost completely by a layer of areolar tissue, so that it is possible to remove a diseased gland by cardul dissection befween the layers of the septum.
consistence than the fat which is found around and within the gland. It is enelosed by a fibro-elastic capsule which sends inward numerous trabeculæ; these form the interstitial tissue, and divide the gland into lobes and lobules. In the latter are the secretory tubules and alveoli, which unite to form the larger ducts. Each lobe has a duct, which opens at the base of the teat into a space called the lactiferous sinus (sinus lactiferus), and from this two (or three) lactiferous ducts (Ductus lactiferi) pass through the extremity of the teat. These cluets are lined with a nonglandular mucous membrane, which is eovered with stratifierl squamous epithelium. They are surrounded by unstriped museular tissue, the bulk of the fibers being arranged in a eireular manner to form a sphincter.

The size and form of the mammary glands are subject to much variation. In the young subject, before pregnaney, they are small and contain little gland tissue. During the latter part of gestation, and especially during lactation, they inerease greatly in size, and the gland tissue is highly developed. After lactation the secretory structures undergo marked involution, and the gland is much reduced in size. The relative amounts of gland substance and interstitisl tissue vary greatly: in some eases a gland of considerable size contains little parenchyma and is consequently functionally deficient.

Vessels and Nerves.-The arteries are derived from the external pudic artery, which enters the gland at the posterior part of its base. The veins form a plexus on either side of the base of the gland, which is drained by the external pudic vein chiefly. The lymph vessels are numerous and pass to the superfieial inguinal and lumbar lymph glands. The nerves are derived from the inguinal nerves and the posterior mesenteric plexus of the sympathetic srstem.

GENITAL ORGANS OF THE COW

The ovaries of the cow are much smaller than those of the mare: they measure usually about one and a half inches (ca. 3.5 $\pm \mathrm{cm}$.) in length, and an inch

Fic, 234.-Ovary of Cow.

1. Broad ligament of uterus; 2, ligament of ovary: 3, fimbris ovarica; 4 , attachment of broad ligament; 5 , surface of ovary covered with germinal epithelium: 6, corpora lutea; 7. Graafian follicle. (From Leisering's Atlas.)
(ca. 2.5 em .) in thickness in their largest part; the weight is half an ounce or more (ca. $15-20 \mathrm{gm}.) .{ }^{1}$ They are oval in form, pointed at the uterine

[^143]end, and have no owulation fossa. They are situated usmatly a little above the middle of the lateral margin of the pelvic inlet in the nom-pregnant subject, but may he a little further forward. They are thms about 16 to 18 inches (ea. +0 - 45 em.) from the vulvar opening in a cow of medium size. The greater part of the surface of the gland is covered with germinal cpithelium, the peritoneal rpithelium being limited to a narrow zone along the attached border. Fotlicles of various sizes are olten seen projerting from the surface, as well as corpora lutea; a corpus lutemm verum has a pronounced vetlow color, and may reach a width of half an inch or more (ca. 1-1.5 cm.).

The uterine or Fallopian tubes are long (ea. 2025 cm.) and less flexuous than in the mare. The junction witl the cornu of the uterus is not so abrupt as in the mare, since the extremities of the horns are pointed. The uterine orifiee of the tule is rather large and fumel-shaped. The fimbrice are not so extensive as in the mare.

The uterus lies amost entirely within the aldominal cavity in the adult. The body is only about an meh and a half (ca. $3-1 \mathrm{~cm}$.) in length, although externally it

Fig. 536.-Cotyledon of Granti Tteres of Cow.
The photograph is about three-fourths natural size of a sperimen of medium size.
appears to the about five or six inches long. This false impression is due to the fact that the posterior parts of the cornua are united ly comective and muscular tissue and have a common feritoneal covering. The cornua are, therefore, really more extensive than they appear extermally and have an arerage length of about fiftern inchess (ca. $35-40 \mathrm{~cm}$.). They taper gradually toward the free end, so that the junction with the uterme tubes is not abrupt, as in the mare. The free part of the horn curves at first downward, forward, and ont ward, and then turns backward and upward, forming a spiral coil. The cervix is about four inches (ca. 10 cm .) long; its wall is remarkably dense, and may be more than an inch (ca. 3 cm .)
in thickness. Its lumen, the cervical canal, is spiral, and is ordinarily tightly elosed and very difficult to dilate. The vaginal part of the uterus is fused ventrally with the ragina, so that the fornix vaginee is dorsal, and not an annular space as in the mare. The muscular coat of the uterus is thicker than in the mare. It consists of an external longitutinal layer and two circular strata. The inner circular laver is about a fourth of an inch (ea. 6 mm .) thick in the cervix. The other layers are continued in the vagina. The mucous membrane of the horns and body presents as a characteristic feature the uterine cotyledons (Cotyledones uterinx). ${ }^{2}$ These are oral prominences, about a hundred in number, which are either irregularly scattered over the surface or arranged in rows of about a dozen.

In the non-gravid uterus they average about half an inch or more (ca. 1.5 mm.) in length, and a little less in width and thickness. During pregnaney they beeome greatly enlarged and pedunculated. The larger ones then measure about four or five inches (10 to $122^{\circ} \mathrm{cm}$.) in length, an inch and a half (3 to 4 cm .) in width, and an inch (2 to 2.5 cm .) in thiekness. The deep face has a hilus at which the vessels enter. The rest of the surface has a spongy appearance, due to numerous crypts which reeeive the villi of the ehorion.

The uterine glands are long and branched. The mucous membrane of the cervix is pale, glandless, and forms numerous folds. The latter are arranged in several series which obliterate the lumen. At the external uterine orifice the folds (Plice palmatie) form rounded prominences arranged eireularly, which project into the cavity of the ragina. There are no glands in the cervix, but a thick mucus is secreted by goblet cells.

The broad ligaments are not attached in the sublumbar region as in the mare, but to the upper part of the flanks, about a handbreadth belors the level of the tuber coxse. They contain a conspicuous amount

Fig. sis.-Diagramyatic Sagittal section of Part of Urogenital Tract of Cow, Showivg Suberethral Diverticeluy. of unstriped muscle. The round ligaments are well developed, and can be traced distinctly to the vicinity of the abdominal inguinal ring.

The vagina is somewhat longer and more roomy than that of the mare; its wall is also thicker. Its length in the non-pregnant animal is about eight to ten inches (ca. $20-25 \mathrm{~cm}$.) ; but in the pregnant cow the length inereases to twelve inches (30 cm .) or more. The reeto-genital pouch of peritoneum extends backward about five inches (ca. 12 cm .) on the dorsal surface, while rentrally the serous coat only extends backward about two inches (ca. 5 cm .). In the ventral wall of the ragina, between the muscular and mucous coats, there are commonly present the two canals of Gartner (Ductus epoöphori longitudinales). When well developed, they may attain the diameter of a goose quill, and may be traced forward to the anterior part of the vagina or even further. They open posteriorly near the external urethral orifice. ${ }^{2}$

The vulva has thick, wrinkled labia, and both commissures are acute; the ventral one is pointed, and has on it a number of long hairs: it lies about two inches (5 cm .) behind, and about the same distance below the level of, the ischial arch. The external urethral orifice is four or five inches (10 to 12 cm .) from the ventral commissure. Beneath it is a blind pouch, the suburethral diverticulum, which is

[^144]ahout an inch (ca. 3 cm .) lomy, and readily admits the end of a finger. ${ }^{1}$ The two glandulæ vestibulares majores ${ }^{2}$ are situated in the lateral walls of the vulva, under the constrictor vulve. They are tittle over an inch (ea. 3 em.) long and about half an inch (ca. 1.5 ('m.) in width. Each has two or three ducts which open into a smatl pouch of the mucous membrame; this cul-rle-sac opens on the floor of the volva, about an inch and a half (ca. $3-4$ cm.) lateral to and behind the external

Fig. . 339 - Cnors-section of Mamary Glands of Cow.
a, Body of glami ; b, lactiferous sims; c, cavity of teat; d, lactiferous duct; e, intermammary groove; f, septum between glands; g, supramammary fat.
urethral orifice. The gland consists of lobules separated by relativety thick trabeculæ of connertive tissue and unstriped muscle. The glandulæ vestibulares minores ocenr alomg the median ventral groove. Numerous lymph nodules are present in the muens membrane, especially in the ventral part; they may be large enough to cause visible prominences.

The clitoris has very short crura, but the body is four or five inches (ca. 10-12
${ }^{1}$ The form and position of this pouch should be carefully noted on account of the difficulty it causes in catheterizing the bhadder. If the eatheter is passed along the ventral wall of the vulva (as in the mare), it will always enter the pouch instead of the urethra.
${ }^{2}$ Also known as the glands of Bartholin.
em.) long and is flexuous. Only the pointed end of the glans is visible in the ventral commissure of the vulva.

The urethra is about four inches (10 cm .) in length; it is narrower and much less dilatable than that of the mare. It is fused dorsally with the wall of the vagina, while laterally and ventrally it is covered by the constrictor vaginæ musele.

The mammary glands, normally two in number, are popularly termed the udder. They are very much larger than in the mare, and the body of each is somewhat ellipsoidal in form, but flattened transversely. The base of each gland is slightly coneave and slopes obliquely dommward and forward in adaptation to the abdominal wall, to which it is adherent; it is in relation posteriorly to the large supramammary lympl-glands and a quantity of fat. The medial surface is flat, and is separated from the other gland by a well-developed double septum. The lateral surface is convex. Four well-developed teats are present; they average about three inches (ca. $\overline{-}-8 \mathrm{~cm}$.) in length. It is customary to consider the udder to consist of four "quarters"; there is no septum nor visible division between the two quarters of the same side, but, on the other hand, injections of fluids of different colors into the two teats of the gland demonstrate that the cavities drained by them do not commmicate.

The size and form of the glands vary greatly; in the highly specialized dairy breeds (e. g., Holsteins) they often attain enormous dimensions., The size of the udder is not a certain index of its productivity, since some so-ealled "fleshy" udders contain a very large amount of interstitial tissue and relatively little parenchyma. Small aecessory teats often oceur posteriorly; commonly these are rudimentary and imperforate (polythelia), but sometimes they drain a small amount of gland substance (polymastia). Sanson described a case in which there were seren teats, all giving milk.

Each teat has a single duct which widens superiorly and opens freely into a roomy lactiferous sinus (simus lactiferns), popularly known as the milk eistern. The lactiferous duct (Ductus lactiferus) or teat canal is lined by a glandless mucous membrane which is covered with stratified squamous epithelium; the lower part (ea. 1 cm .) of the canal is narrow, and is closed by a sphincter of unstriped muscle. The mucous membrane of the sinus forms numerous folds which render the carity multilocular.

Vessels and Nerves.-The arteries are derived from the external pudie arteries. The veins form a circle at the base of the udder, from which the blood is ilrained by three trunks, viz., the very large subcutaneous abdominal, the external pudic, and the perineal vein. The lymph vessels are numerous, and pass to the supramammary glands chiefly. The nerves are derived from the inguinal nerves and the posterior mesenteric plexus of the sympathetie.

GENITAL ORGANS OF THE EWE

The genital organs of the ewe resemble in general those of the cow, but a few special features may be noted.

The ovaries are almond shaped and are half an inch or more (ea. 1.5 cm .) in length.

There is no demarcation between the uterine tube and the horn of the uterus; the tube is very flexuous near the infundibulum.

The uterus resembles that of the cow. The horns are four or five inches (ea. 10-12 cm.) long and taper in sueh a manner to their junction with the uterine tubes that no clear distinction between the two exists. They are coiled in a close spiral, and an inch or more of their posterior parts are united. The body is less than an inch (ea. 2 cm .) long. The cotyledons are much smaller than those of the con and
have a depression on the free surface. The neek is about an inch and a half (ea. 4 (m.) in length; its lumen is closed by reeiprocal prominences and depressions of the mucous membrane. The external uterine orifie is in the ventral part of the vagina.

The vagina is three or four inches (ea. 8 cm .) long. Its ventral part contains numerous lymph follicles.

The vulva is an inch or more (ca. $2.5-3 \mathrm{~cm}$.) in length. There is a very small diverticulum behind the urethral orifice. The gtandule vestibutares majores are inconstant; when present, they may be about the size of a small bean. The labia are thick and the ventral commissure is pointed and projects downward.

The clitoris is short, and the glans is concealed in the fossa clitoridis.
The mammary glands, two in numbrr, are relatively large, and are approximately globular, but flattened on the septal side.

GENITAL ORGANS OF THE SOW

The ovaries are concealed in the bursa ovarii, owing to the large extent of the mesosalpins. They are more rounded than in the bitch, and have a distinct hilus. They may be situated at or near the lateral margin of the pelvie inlet, as in the cow; but their position is cuite variable in animals which have borne young and they may le only an inch or two behind the kidney. The surface commonly presents rounded prominences, so that the gland usually has an irregular lobulated appearance; the projections are large follieles and corpora lutea. Mature follieles may have a diameter of about a third of an inch (ea. $7-8 \mathrm{~mm}$.), and corpora lutea may be found which measure half an inch or more (ca. 12-15 mm.).

The uterine or Fallopian tubes are long (ca. 15-30 em.), and less flexuous than in the mare. The fimbriated extremity forms an ampulla and has a large abdominal opening. The uterine end slates insensibly into the small extremity of the cornu of the uterus.

The uterus presents several striking features. The body is only about two inches (ca. 5 cm .) long. The horns are extremely long and flexuons, and are freely movable, on areount of the large extent of the broad ligaments. In the nonpregnant animal they are arranged in numerous coils and appear somewhat like thick-walled small intestine. They may he four or five feet (1.21 .5 m .) in length. The extremities of the horns taper to about the diameter of the uterine tubes. The neck is remarkable for its length (ea. 10 cm .) and the fact that it is directly continued by the ragina without forming any intravaginal projeetion. When slit open. peculiar rounded prominences are seen on its interior; some of these dovetail and ocehude the cervical canal. They are continuous behind with folds of the mucous membrane of the ragina. The broad ligaments contain a large amount of unstriped musele: they also contain a large lymph gland near the ovary. ${ }^{1}$ In the upper part of the ligament the muscular tissue forms a rounded band termed the round ligament. In an adult sow of full size it is ahout six inches (ca. 15 cm .) long; its anterior end forms a blunt projection and posteriorly it ends in the subserous tissue at the internal inguinal ring. The medial layer of the broad ligament is rontinuous with the lateral ligament of the badder.

The vagina is about four or five inches (ea. 10-12 em.) long in a sow of medium size. It is small in caliber, and has a thick muscular cont which consists of circular
${ }^{1}$ The changes in form and ponition of the uterus during pregnancy are simitar to those mentioned later in the case of the bitch (p. 613).
fibers between two layers of longitudinal fibers. The mucous membrane is plicaterl, and is intimately united with the muscular coat.

The vulva is about three inches (7.5 cm .) in length. The labia are thiek and are covered with a wrinkled integument. The dorsal commissure is rounded, but the ventral one is produced to form a long pointed projection. The fossa clitoridis is nearly an inch (ca. 2 cm .) anterior to the ventral commissure. Above it the glans clitoridis forms a pointed projection, from which a mucous fold extends laterally and backward on each side. There is a deep central depression about half way between the fossa clitoridis and the external urethral orifice. The latter is bounded on each side by a thick fold which extends backward for a variable

Fig. 540.-Gental Organs of Sow; Dorsai, View. The Velva, Vagina, and Cervix Uteri are Slit Open.
1, Labium vulvæ; 2, glans clitoridis; 3, valva; f, external urethral orifice; \bar{b}, vagina; 5^{\prime}, cervix uteri; 6, corpus uteri: γ, cornua uteri, on of which is opened at $\hat{\imath}$ to show folds of mucous membrame; \mathcal{E}, uterine tube; A^{\prime}, abdominal opening of tube; $: 1,9$, ovaries; 10 , ovarian bursa; 11,11 , broad ligaments of uterus; 12 , urinary bladder. (From Leisering's Atlas.)
distanee. Lateral to this fold is a depression in which the duets of vestibular glamels open.

On either side of the anterior part of the floor of the vulva there is a cul-de-sac and a deep groove leading back from it; these are bounded medially by a longitudinal fokd. Ductus epoophori (canals of Gartner) may be found opening anterior to the external urethral orifice.

The clitoris is long and flexuous; its glans forms a pointed projection over the fossa clitoridis.

The urethra is about three inches (ca. $7-8 \mathrm{~cm}$.) long. Its posterior part is fused with the vagina and produces a corresponding elevation of the floor of the latter.

The mammary glands are usually ten or twelve in number, and are arranged in two rows, as in the bitch. Each teat has commonly two ducts.

GENITAL ORGANS OF THE BITCH

The ovaries (Fig. 412) are small, elongated-oval in outline, and flattened. The a verage length is a little less than an inch (ca. 2 cm .). Each ovary is commonly situated a short distanee (ca. 1-2 cm.) behind, or in contact with, the posterior pole of the corresponding kidney, and thus lies opposite to the third or fourth lumbar vertebra, or about half way between the last rib and the erest of the ilium. The right one lies between the right part of the

Fig. 54.-Genital Organs of Bitch.
Vulva, vagina, atnd uterns (in part) are sha open, a, ovarian bursa: b, same opened to show the right ovary, ${ }^{\prime} ; d, d$, horns of nterns; $+e^{\prime}$, beoly of uterus; f, neek of uterus: f^{\prime}, external uterme orifice; g, vagina: h, hymen; i, vulva; l, external urethral orifec: l, urnary bladker; m, urcthra; n, n, labia vulve: o, fossa clitoridis; p. central projection of fold of mucous membrane which conceals the clitoris. (After Ellenberger, in Leisering's Atlas.) duodemum and the lateral abdominal wall. The loft one is rekated katerally to the spleen. Each is concealed in a peritoncal pouch, the bursa ovarii, which has a slit-like opening ventrally. The two layers which form this pouch eontain a quantity of fat and unstriped muscle. They are continued to the cornu of the uterus, constituting the mesosalpinx and the ligament of the ovary. The surface of the ovary presents prominences caused by projecting follicles. Many follicles contain several ova. There is no distinct hilus.

The uterine or Fallopian tubes are small and arerage two or three inches (ea. 5-8 cm.) in length. Each passes at first forward in the lateral part of the bursa ovarii, and then runs backward in the medial part of the pouch; it is only slightly flexuous. The pouch is thus a part of the mesosalpins. The fimbriated extremity hes chiefly in the bursa ovarii, hat part of it oftem protrudes through the slit-like opening of the hursa ovarii; it has a rather large abdominal opening. The uterine orifice is very small.

The uterus has a very short body and extremely long narrow homs. In a biteh of medium size the berly is about an inch (ca. $23(\mathrm{~m}$.) and the cornua five or six inches (c:1. 12-15 em.) long. The horns are of uniform diameter, are nearty straight, and lie entirely within the abdomen. They diverge from the boely in the form of a V toward each kidney. Their posterior parts are united by the peritoneum. The neek is very short and has a thick museular coat. Dorsally there is no line of demareation between uterus and vagina, but the eervix uteri is much thicker than the vagina. Ventrally the cervix forms a extindrical progection whieh lies in a depression of the vaginal wall. The mucous membrane of the uterus has long uterine glands and ako short tubudar erypts.

The broad ligaments centain much fat and some unstriped muscle. They are nuch wider in the middle than at either end. The posterior part is attached to the anterior part of the vagima. The round ligaments are contained in the free edge of folds given off from the lateral face of the broad ligaments. They are bands of unstriped musele and fat. Each passes through the inguinal canal, enveloped by a peritoneal pouch (processus vagimalis). A higamentous foll extends forward from
the bursa ovarii lateral to the kidney and is attached to the abdominal wall at the middle of the last rib.

The horns of the gravid uterus present dilatations, the ampullæ, which contain the fotuses, and are separated by constrictions. The gravid uterus lies on the ventral abdominal wall, and toward the end of gestation extends forward to the stomach and liver.

The vagina is relatively long. It is narrow anteriorly, and has no distinet fornix. The muscular coat is thick and consists chiefly of circular fibers. The mucous membrane forms longitudinal folds. The eanals of Gartner are usually absent.

The vulva has thick labia which form a pointed inferior commissure. The mucous lining is smooth and red. It frequently presents small prominences caused by lymph follicles. On either side of the urethral orifice there is a small depression. The glandule vestibulares majores are absent, but the smaller glands are often present, and their ducts open rentrally on either side of a median ridge. The vestibular bulbs are relatively large and are commonly united rentrally by a sort of isthmus. The constrictor muscle is strong and divides into two layers which enclose the vestibular bulb. The body of the clitoris is broad and flat. and is about an inch and a half (ea. 34 cm .) long in a subject of medium size. It is not erectile in structure, but is infiltrated with fat. It is enclosed by a fibrous albuginea and contains large arteries and numerous nerves in its ventral part. The glans clitoridis is composed of erectile tisule and is situated in a large fosia elitoridis. A fold of mucous membrane cxtends backward over the glans and fossa; a central projection of this fold may be mistaken for the glans clitoridis.

The mammary glands are usually ten in number, and are arranged in two series. extending from the posterior part of the pectoral region to the inguinal region; ther are, therefore, designated according to location as pectoral, abdominal, and inguinal. The teats are short, and present on their apices six to twelve small orifices of the excretory ducts.

ANGIOLOGY

Angiology is the deseription of the organs of cireulation of the blood and lymph -the leart amb vessels. The heart is the central hollow muscular organ which functions as a suction aul foree pump; the differences in pressure caused by its contraction and relaxation determine the circulation of the blood and lymph. It is situated in the middte mediastinal space of the thorax and isenclosed in a fibroserous sal-- the pericardium. The vessels are tubular and run through almost all parts of the body. They are designated according to their contents as blood- and lymph-vessels.

THE BLOOD-VASCULAR SYSTEM

The blood-vascular system consists of: (1) The arteries, whieln convey blood from the heart to the tissues; (2) the capillaries, mirroscopic tubes in the tissues, which permit of the necessary interchange between the blood and the tissues; (3) the veins, which convey the blook back to the heart.

The blood-versels are divided into the pulmonary and the systemic. The pulmonary artery comevs the blood from the right ventricle of the heart to the lungs, where it is arterialized, and is returned by the pulmonary veins to the left atrium of the heart, and passes into the left vintricle. The systemic arteries convey the blood from the left ventricle all over the borly, whence it is returned by the venæ cavæ to the right atrium, and passes into the right ventricle. ${ }^{\text {d }}$

The term portal system is often applied to the portal vein and its tributaries which come from the stomach, intestime, pancress, and spleen. The vein enters the liver, where it hranches like an artery, so that the blood in this subsidiary system passes through a secoud set of capillaries before being conveyed to the heart by the hepatie veins and the posterior vena cava.

The arteries (Arteria), as a ruld, divide at an atute angle, giving off finer and finer brancles. In some rases hranches come off at a right angle, and others are recurrent, i. $e_{\text {. , run in a direction opposite to that of the parent stem. The }}$ intercommunication of branches of aljacent arteries is termed anastomosis. Nost eommonly the connections are made by a network of numerous fine branches which constitute a vascular plexus (Plexus vasculosus). Relatively large communicating branches (Rami communicantes) oceur in eertain places; they may be transyeres or in the form of arches. Wide-meshed networks of vessels are termed retia vasculosa. Terminal or end arteries are such as form isolated networks, i. e., do not anastomose with arljacent arteries. A rete mirabile is a network interealated in the course of an artery. A collateral vessel (las collaterale) is one which pursues a course near and similar to that of a larger vessel.

The veins (Kenar) are in general arranged like the arteries, but are usually of greater catiber. When a vein accompanies an artery, it is termed a vena comitans or satellite vein and is usually homonymous; in many places two veins accompany a single artery. The primitive venous trunks do not run with the arteries, and most of the superficial veins (Vene cutanese) pursue independent courses. They anastomose even more freety than the arteries, and large eommunicating branches are very common. Venous plexuses (llexus venosi) occur in many places, Some veins which are enclosed by dense membranes and run usually in bony grooves are

[^145]termed (venous) sinuses; their wall consists of endothelium only; examples of this are the sinuses of the dura mater of the brain. A vein which comnects one of these sinuses with veins outside of the cranium is termed an emissarium.

A corpus cavernosum is an erectile structure which consists essentially of intercommunicating blood-spaces enclosed by unstriped muscle and fibro-elastic tissue. These spaces (Caverna) are lined with endothelium and contain blood. some are to be regarded as greatly enlarged capillaries, since minute arteries open into them and they are drained by veins; others are intercalated in the course of veins. Distention of the caverne with blood produces the cnlargement and hardening of the corpus cavernosum whieh is termed erection.

Structure of Arteries. -The wall consists of three coats. The external coat or adventitia (Tunica externa) consists chiefly of fibrous comective tissue. In the deeper part are some elastic fibers, and in some arteries there are also longitudinal unstriped muscle-fibers. The middle coat (Tunica media) is composed of unstriped muscle and clastic tissuc in medium-sized arteries. In small vessels there is chiefly muscular tissue, and in the largest trunks almost exclusively elastic tissue. The internal coat or intima (Tunica intima) consists of a layer of endothelial cells, resting on an elastic membrane. The sheath of the vessel (Tagina vasis) is a condensation of the surrounding connective tissuc, and is attached more or less closely to the external coat.

Structure of Veins.--The walls of veins are similar in structure to those of the arteries, but are very much thinner, so that veins collapse more or less completely when empty, while arteries do not. The middle coat is very thin and cousists to a large extent of ordinary fibrous tissuc. The internal coat is also less elastic than in the arteries. In many reins this coat forms semilunar valves, the free edges of which are directed toward the heart. They are most numerous in the reins of the skin and of the extremities (execpt the foot), while in most veins of the body cavities and viscera they are absent or occur only where the veins open into larger ones or where two veins join.

The walls of the vessels are supplied with blood by numerous small arteries, called vasa vasorum. These arise from branches of the artery which they supply or from adjacent arteries, ramify in the external coat, and enter the midulle coat also. The nerves of the vessels (Nervi vasorum) consist of both medullated and non-medullated fibers. They form plexuses around the vessels, from which fibers pass mainly to the muscular tissue of the middle coat.

The Lymphatic System

The lymphatic system (Systema lymphaticum) is subsidiary to the venous part of the circulatory system, from which it arises in the embryo. It consists of the lymph vessels and glands.

The lymph vessels (Vasa lymphatica) contain a colorless fluid, the lymph, which contains numerous lymphocytes. ${ }^{1}$ They resemble the veins in structure but have thinner walls and are provided with more numerous valves. The vessels are sacculated opposite the segments of the valves and have a characteristic beaded appearance when distended. The collecting lymph vessels do not usually form rich plexuses, as veins often do, their branching is more limited and less trec-like than that of the blood-vessels, and their caliber therefore increases less from the periphery toward their termination. All of the lymph is ultimately carried into the venous system by two trunks, the thoracic duct and the right lymphatic duct. Almost all

[^146]of the lymph passes through at least one group of lymplı glands before entering the blood-vaseular system.

The lymph glands or nodes (Lymphoglandulie) are intercalated in the course of the lymph vessels. They vary widely in size, some being microscopic, others several inches in length. In form they may be globular, ovoid and flattened, elongated, or irregular. In certain situations they are aggregated into groups, and a knowledge of the position of these and the territory drained into them is important. It is convenient, when possible, to indicate their position with regard to arteries on the course of which they are placed. In color they are usually gray or yellowish-brown in the dead subjeet, pink or reddish-brown during life, but this varies aceording to their position and functional state. The bronchial glands are often blackened by infiltration with carthon. The mesenteric glands are creamy or white while the chyle is passing through, but pink at other times. Vessels which carry hymph to a gland are called afferent; the efferent vessels which convey it away are larger and fewer. Each gland has a depression, the hilus, at which the blood-vessels enter and the efferent lymph vessels emerge.

Lymph nodules or follicles (Noduli lymphatici) are minute masses of lymphoid tissue which occur in certain mucous membranes. They may be solitary, as in the solitary nodules or glands of the intestine, or aggregated into masses or patches, as in the tonsils and the aggregate glands or so-called Peyer's patches.

The lymph nodule or follicle is the unit of structure of the lymph gland. It consists essentially of an artery surrounded by a reticulum of connective tissue, the meshes of which rontain numerous lymphocytes. Surrounding this is a rich plexns of lymph vessels, forming the so-ealled sinus, enclosed in some cases by a fibrous eapsule. The gland consists of a mass of follicles, enclosed in a fibrous capsole, from which trabeculæ pass in and unite the follieles. Beneath the capsule is the peripheral sinus, which eonsists of a rery rich plexus of lymph vessels; to this the afferent vesseds pass at various points of the surface. In the cortical substance the cells are in rountel masses, the cortical notules, while in the medullary substance they lie around the arteries, forming the so-called medullary cords. The medulla is redder than the cortex, since it, is more vascular; it contains the central lymph sinuses, which have a similar structure to the peripheral sinus.

The hæmolymph glands differ from the lymph glands in color and structure. They are of a deep red color or even black, which is due to the high vascularity of the cortical substance. The peripheral sinuses especially are greatly developed and contain numerous red blood-cells. There is no clear division into cortical and medullary substance, and the trabecular contain smooth muscle-cells. Some have afferent and efferent lymph vessels and others do not. They resemble the spleen in sone respects, but their significance is not yet elear. They are mumerous in the ox and sheep, much fewer in the dog, and apparently are absent in the horse. They oceur along the course of the aorta, in the perimeal fat, at the portal fissure, and with the gastric and mesenteric lymph glands. In the ox they are also found onder the trapezius muscle, under the skin of the upper part of the flank, and in other places less constantly.

The tissue or lymph spaces are interstices of varying size between cells or in the meshes of connective tissue. They contain a fluid derived from the bloodplasma, which is usually called lymph. They are drained by the veins and lymph ressels. The large serous sacs are often included in this category.

[^147]
BLOOD-VASCULAR SYSTEM OF THE HORSE THE PERICARDIUM ${ }^{1}$

The pericardium is the fibro-serous sac which surrounds the heart, and also the great ressels in connection mith it to a greater or less extent. Its form is in general similar to that of the heart. The fibrous layer is relatively thin, but strong and inelastic. It is attached dorsally to the large vessels at the base of the heart, and is continued in part up to the longus colli muscle. It is firmly attached ventrally to the middle of the posterior half of the thoracic surface of the sternum. The serous layer is a closed sac, surrounded by the fibrous pericardium, and invaginated by the heart. It is smooth and glistening, and contains a small amount of clear serous fluid, the liquor pericardii. Like other serous membranes, it may be regarded as consisting of two parts, parietal and viseeral. The parietal part lines the fibrous layer, to which it is clusely attached. The visceral layer covers the heart and parts of the great vessels, and is therefore also termed the epicardium. The serous pericardimu is composed of a connective-tissue membrane, rich in elastic fibers, and covered on its free surface by a layer of flat mesothelial cells.

The pericardium is covered by the pericardiac part of the mediastinal pleura (Pleura pericardia), and is crossed laterally by the phrenic nerves. Its lateral surfaces are related chiefly to the lunge, Dut the lower part is in partial contact with the chest-rrall. On the left side the area of contact is from the third rib to the sixth rib and intercostal space. On the right side the contact is smaller and is chiefly opposite the ventral part of the third and fourth intercostal spaces and interrening rib. The anterior end of its base is opposite to the second intercostal space or third rib, and the posterior border is opposite to the sixth rib and space. The base is related to the great vessels, the trachea and its bifurcation, the bronchial lymph glands, the @exophagus, and the vagus, left recurrent, and cardiac nerves.

The extent of contact of the pericardium with the lateral wall of the thorax is determined by the cardiac notch of the lung. On the left side the anterior margin of the notch is at the third rib and the posterior margin is at the sixth rih dorsally and sixth intercostal space ventrally. The greatest height of the notch is at the fourth rib and intercostal space, where it is a handbreadth or more (ca. $10-12 \mathrm{~cm}$.) above the sternal end of the rib. The notch is quadrilateral, but much narrower above than below. On the right side the notch is usually triangular and is much smaller. Its anterior margin begins at the third intercostal space, about three inches ($\mathrm{ca} .7-\mathrm{scm}$.) above the sternal ends of the third and fourth ribs and runs obliquely to the sternal end of the third rib. The posterior margin begins at the same point and extends to the ventral end of the fourth intercostal space or of the anterior border of the fifth rib.

The two parts of the serous pericardium are, of course, continuous with each other at the line of reflection on to the great vessels. The latter are covered in varying degree by the visceral layer. The aorta and pulmonary artery are enclosed in a complete common sheath as far as the bifureation of the latter. The membrane passes inward between the pulmonary artery and the left auricle, and is contmued between the right auricle and the aorta, thus forming the transverse sinus of the pericardium (Sinus transversus pericardii). The posterior vena cava is covered on the right and ventrally for a distance of an inch or a hittle more (ca. 3 cm .). The pulmonary reins have practically no serous covering. The epicardium is closely adherent to the muscular tissue of the heart, but is attached to the vessels by areolar tissue and fat, and hence is easily dissected off them.

THE HEART

The heart (Cor) occupies the greater part of the middle mediastinal space. Its shape is that of an irregular and somewhat flattened cone. It is attached at its base by the great vessels, but is otherwise entirely free in the pericardium. It is decidedly asymmetrical in position, about two-fifths being to the right of the median plaue and three-fifths to the left. The long axis (from the middle of the base to the apex) is directed ventrally and backward. The base of the heart (Basis cordis) is direeted dorsally and its highest part lies about at the junction of the
${ }^{1}$ The pericardium is described before the heart, since it must be examined first in the laboratory:
dorsal and middte thirds of the dorso-ventral diameter of the thorax. It is opposite to the lateral wall of the thorax, from the second intercostal space or third rib, to the sixth ril) or intereostal space. ${ }^{1}$ The apex (Apex cordis) lies centrally above the last segnent of the sternum; it is half an inch or less (ca. 1 cm .) above the sternum and about an inch (ca, 2-3 cm.) from the sternal part of the diaphragm. The anterior border (Margo cranialis) is strongly convex and curves ventrally and hackward; the greater part is parallel with the sternum. The posterior border (Margo caudalis) is much shorter, is nearly vertical, and is opposite to the sixth rib and intercostal space. The surfaces, right and left (Facies dextra, sinistra), are convex and

Fig, jh2. Helat of Horee; Lfit liew. Hibdened in sifk
The dotted line indicates the line of reffection of the serons pericardiom. The epicardinm and snbepicardial fat have not been removel.
are marked by grooves which indicate the division of the heart into four chambers. the two atria above and two ventrieles below. The left surface (covered by the pericardium) is related to the lower third of the chest-wall from the third to the sixtl rib. On the right side the cardiac noteh of the lung is smaller, so that the area of relation to the chest-wall extends from the third to the fourth intercostal space. ${ }^{2}$
${ }^{1}$ The size and form of the heart vary accorling to the degree of its contraction and relaxation (systole and diastole). In subjects which have been bled and preserved by intravasmiar injertion of formalin solution the right side is usually fixed in diastole while the left is more or toss strongly contracted. The base may extend back to the seventh rib.
${ }_{2}$ The arrangement in this regard has been stated at greater length in the deseriptions of the lungs and the perieardium.

The coronary groove (suleus coronarius) ${ }^{1}$ indicates the division between the atria and the rentricles. It almost completely eneircles the heart, but is interrupted at the origin of the pulmonary artery. The longitudinal grooves, ${ }^{2}$ right and left, correspond to the septum between the ventricles. The left longitudinal groove (Auleus longitudinalis sinister) is left-anterior in position. It hegins at the coronary groore, behind the origin of the pulmonary artery, and deseends almost parallel to the posterior border. The right longitudinal groove (Sulcus longitudinalis dexter) is riglit-posterior in position. It begins at the coronary groove, helow the termina-

Fig. 543.-Heart of Horse: Kight View. Hardened in silu.
Line of reflection of serous pericardium dotted. Epicardium and subepicardial fat have not been removed from heart. Left ventricle is considerably contracted.
tion of the posterior vena cava and passes toward the apex, but ends about an ineh and a half (ca. $3-4 \mathrm{~cm}$.) above the latter. Thus the two grooves do not meet. The grooves are oceupied by the coronary vessels and a variable quantity of fat.

The left groove is opposite to the fourth rib, and the right one is opposite to the fifth intereostal space above and the sixth rib below.

Size and Weight.-The average weight of the heart is about nine pounds (ca. 4 kg .) and is about 0.7 per cent. of the body-weight. There is, however, great range of variation in apparently normal specimens.

[^148]As might be expected, race horses have hearts which are larger than the average, hoth absolutely and relatively. In fat subjects the ratio to the body-weight may be about 0.4 per cent., and, on the other hand, it is commonly 1 per cent. or more in light horses which are not fat.

The following average measurements were obtained in medium-sized hearts:

Fig. 514 . -Base of Meart of horse twth Large Vesselm: Dorsal View. Specimen hardened in síh.

The Right Atrium

The right atrium (Atrium dextrum) ${ }^{1}$ forms the right-anterior part of the base of the heart, and lies above the right ventricle. It consists of a sinus venarum, into which the veins open, and an auricle ${ }^{2}$ (Auricula dextra). The latter is a conical diverticulum which curves around the right and anterior surfaces of the aorta, its blind end appearing on the left side in front of the origin of the pulmonary artery; it is the most anterior part of the heart.

There are five chief openings in the right atrium. The opening of the anterior vena cava (Ostium vente cavar eranialis) is in the dorsal part, and is chiefly oppusite to the fourth rib. The opening of the posterior vena cava (Ostium venae cavae

[^149]caudalis) is at the posterior part, opposite to the fifth intercostal space. Between the two the wall pouches upward somewhat, and here the vena azygos opens. The coronary sinus opens ventral to the posterior vena cava; the orifice is provided with a small semilunar valve (\backslash alvula sinus coronarii). The small coronary vein has a separate opening in some cases close to that of the coronary sinus. The right atrio-ventricular orifice (Ostium atrio-ventriculare dextrum) is in the ventral part,

Fif. ahi- - Right sede of Heart of Horge Opened tp by Remotal of Greater Part of Right Wall Orgas Hardened in sutu.
The nght ventricle was in diastole. r. Intervenous crest; I, I. tricuspid valve; P. P, papillary muscles: m, m, molerator bands. Arrow points into origin of pulmonary artery. The crista supraventricularis, which separates the atrio-ventricular orifice from the conus arteriosus, is shown but not marked. The crista terninalis ,unmarked) is nearly directly dorsal to the preceding.
and leads into the right ventricle. In addition to the foregoing there are several small orifices of the venar cordis parvæ; these are concealed in the depressions hetween the musculi pectinati.

The atrimm is lined with a glistening membranc, the endocardium. Its walls are smooth except on the right and in the auricle, where it is crossed in varions directions by muscular ridges, the musculi pectinati. small bands extend across some of the spaces enclosed by the musculi pectinati. The latter terminate above
on a curved erest, the crista terminalis, which indicates the junction of the primitive sinus reuniens of the embryo with the atrium proper, and corresponds with the sulcus terminalis externally. ${ }^{1}$ The openings of the vense eavar are valveless. I ridge, the intervenous crest (Crista intervenosa), ${ }^{2}$ projeets downward and forward from the dorsal wall just in front of the opening of the posterior vena cava; it tends to direct the flow of blood from the anterior vena cava to the atrio-ventrieular

Fig. 5hf, Ifeft side of Heakt of Horae, upened tp by Removal of Part of Wale.
 P, papillary muscles; 1 , 2, great cardiac vein and circumflex branches uf coronary arterus; 3 , position of foramen ovale of fotus; 4,4 , opemngs of pabmonary verns (chiefly cut abay); \bar{b}, atrio-ventricular orifice; 6, arrow prints toward aortic orifice.
opening. The fossa ovalis is a eliverticulum in the septal wall, at the point of entrance of the posterior vena cava, homeded laterally by a concave margin (Limbus fosse ovalis). The fossa is the remnant of an opening in the septum, the foramen ovale, through which the two atria communicate in the foetus.
${ }^{1}$ The crista terminalis is shown, but not marked, in Fig. 545; it is almost opposite (anterior) to the intervenous crest. The sulcus teminalis is commonly indistinct execpt near the vent catar.
${ }^{2}$ Also termed the tuberele of Lower.

Although called a fossa, it is usually a deep but narrow diverticulum in the horse. The interatrial septum is very thin here, and in some cases the foramen ovale fails to elose entirely.

The Right Ventricle

The right ventricle (Ventriculus dexter) constitutes the right-anterior part of the rentricular mass. It forms almost all of the anterior border of the heart, but does not reach the apex, which is formed entirely by the left ventricle. It extends from the third rib to the fourth intercostal space on the left side, to the fifth intercostal space ou the right side. It is somewhat triangular in outline, and is crescentic in cross-section. Its base is connected largely with the right atrinm, with which it

Specimen hardened in situ and cut nearly at right angles to the ventricular septum. The left ventricle is contracted, but not ad maxumum. V. a., Segment of aortic valve.
communicates throngh the right atrio-ventricular orifice; but its left part projects higher and forms the conus arteriosus, from which the pulmonary artery arises. Its apex is two inches or more (ca. $5-6 \mathrm{~cm}$.) above the apex of the heart. On opening the cavity it is seen that the atrio-ventricular orifice and the cavity of the conus arteriosus are separated by' a thick rounded ridge (Crista supraventricularis). The axis of the cavity, taken from this ridge to the apex, forms a spiral curre downward and to the right. The septal wall is convex and faces obliquely forward and to the right.

The right atrio-ventricular orifice (Ostium atrio-ventriculare dextrum) is oval and is chiefly opposite to the fourth and fifth ribs and the intervening space. ${ }^{1}$ The plane of the opening is oblique, much lower in front than behind.
${ }^{1}$ The extent of the atrio-ventricular orifices, of course, varies with the phase in which the heart is fixed. In subjects which are preserved by intravascular injeetion of formalin solution the right side of the heart is usually in diastole, while the left side is more or less contraeted.

The anterior part of the orifice is usually only about an inch or two (ea. $3-5 \mathrm{~cm}$.) above the level of the ventral end of the first rib, while the posterior part is four or five inehes (ca. $10-12 \mathrm{~cm}$). higher than the sternal end of the fifth rib.

It is guarded by the tricuspid valve (Valvula tricuspidalis); of the three large eusps of this valve, one is between the atrio-ventricular opening and the comus arteriosus, one is septal, and the third is on the right margin. Small intermediate eusps intervene between the large ones. The peripheral edges of the cusps are attarhed to the fibrous ring at the atrio-ventricular opening. The central edges are irregular and hang down into the ventricle; they give attachment to chorde tendinese. The auricular surfaces are smooth. The ventricular surfaces are rough and furnish attachment to interlaming branches of the chordie tendinea. The valves are folds of the endocardium, strengthened by fibrous tissue and at the periphery

The supton 18 cut nearly at right angles to the ventrecular septum, and is viewed from the right and posteriorly.
by muscular fibers also. The chordæ tendineæ are attached below to the three musculi papillares, which project from the ventricular wall; superiorly they divide into branches which are inserted into the ventrioular surfaces and the free edges of the valves. Each cusp) of the valve receives chordee tendinese from two papillary muscles. Of the latter, two are on the septum and the third and largest springs from the interior wall.

The pulmonary orifice (0)stium pulnonale) is circular and is situated at the summit of the conus artoriosus, opposite to the third rib) and intereostal space.

The position of the orifice is somewhat variable. Its anterior margin may not he quite so far formard as the posterior borler of the third rib, and the posterior margin is often opposite to
the fourth rib. It is commonly about three or four inches (ca, 6-9 cm.) above the sternal ends of the ribs.

It is guarded by the pulmonary valve, composed of three semilunar cusps (Valvule semilunares arterix pulmonalis); of these, one is merlial, one lateral, and the third posterior. ${ }^{1}$ The convex peripheral border of each cusp is attached to the fibrous ring at the junction of the pulmonary artery and the conus arteriosus. The central border is free and concare. Each cusp consists of a layer of endocardium on its ventricular surface, a continuation of the inner coat of the artery on its arterial surface, and an intermediate layer of fibrous tissue. The edge of the conus arteriosus forms three arches with intermediate projecting angles or horns, to all of which the cusps are attuched; and the artery forms opposite each cusp a pouch, the sinus of the pulmonary artery. ${ }^{2}$

The walls of the rentricle (except in the conus arteriosus) bear muscular ridges and bands, termed trabeculæ carneæ. These are of three kinds, viz., (1) ridges or columns in relief; (2) musculi papillares, somewhat conical flattened projections, continuous at the base with the wall and giving off the chordre tendinere to the tricuspid valve; (3) moderator bands (Musculi transversi cordis) which extend from the septum to the opposite wall. The latter are partly muscular, partly tendinous, and vary in different subjects. The strongest one is usually about midway between the base and apex and extends from the septum to the base of the lateral musculus papillaris (Fig. 545). It is considered that they tend to prevent overdistention.

The Left Atrium

The left atrium (Atrium sinistrum) ${ }^{3}$ forms the posterior part of the base of the heart. It lies behind the pulmonary artery and the aorta and above the left rentricle. The auricle (Auricula sinistra) ${ }^{4}$ extends out ward and forward on the left side, and its pointed, blind end is behind the origin of the pulmonary artery. The pulmonary veins, usually seven or eight in number, open into the atrium behind and on the right side. The cavity of the atrium is smooth, with the exception of the auricle, in which the musculi pectinati are present. In some cases there is a depression on the septal wall opposite the fossa ovalis, bounded above by a fold which is the remnant of the value of the foramen ovale of the fætus. The left atrio-ventricular opening (Ostium atrio-ventriculare sinistrum) is situated below and in front; it usually appears smaller than the right one on account of the contraction of the left ventricle in the dead subject. The apertures of small veins of the heart are found in the spaces enclosed by the musculi pectinati.

[^150]
The Left Ventricle

The left ventricle (Ventriculus sinister) forms the left posterior part of the ventricular mass. It is more regularly conical than the right ventricle, and its wall is much thicker except at the apex. It forms all of the posterior contour of the ventricular part and the apex of the heart. Its base is largely continuous with the left atrium, with which it communicates through the left atrio-ventricular opening, but its anterior part opens into the aorta. The cavity usually appears smaller than that of the right ventricle in the dead subject, on account of the greater contraction of its wall. It is alnost circular in cross-section.

[^151]The left atrio-ventricular orifice (Ostium atrio-ventriculare sinistrum) is chiefly opposite to the fifth rib and intercostal space.

The orifice frequently extends back opposite to the sixth rib, and its anterior margin may be opposite to the posterior border of the fifth rib. It is about four inehes (ca .10 cm .) above the sternal end of the fifth rib. The plane of the opening is somewhat oblique, and is higher behind than in front.

It is ahnost eircular and is guarded lyy the bicuspid valve (Villula bieuspidalis). ${ }^{1}$ The two cusps of this valve are larger and thicker than those of the right side of the

Fig. 549 --Cross-section of Ventrictlar Part of Heart of Lorse.
The section is cut about 5 cm . from the coronary groove. The wentricles are moderately distended. V. d., Right ventricle; V. s., left ventricle; $S . v$. ventricular septum; $1,1^{\prime}$, papillary muscles of right ventricle; 2, large moderator band of right ventricle; $3,3,3$, papillary muscles of left ventricle; $4,4^{\prime}$, moderator bands of left ventricle; 5 , descending branch of left coronary artery and great cardac vein; 6, right coronary artery and small cardiac vein. The anterior septal papillary muscle of the nght ventricle is not visible, and the right one of the left ventricle is double.
heart. One is placed in front and separates the atrio-ventricular and aortic openings. The other is placed behind and laterally and is usually divided into two or three parts.

The aortic orifice (()stium aortieum) is directed upward and slightly forward. It is chiefly situated opposite to the fourth rib) and intereostal space, but may extend forward to the third space or backward to the fifth rib. It is about five inches (ea. 1213 cm.) above the sternal end of the fourth rib. ${ }^{2}$ It is guarded by the aortic valve, composed of three semitunar cusps (Valvule semitunares aorta); one cusp is
${ }^{1}$ Also termed the mitral valve.
${ }^{2}$ It may be noted that the atortic opening is partly overlapped laterally, so to speak, by the orifice of the pulmonary artery.
anterior, the others right and left posterior. They are similar to those of the pulmonary valve, but are much stronger. The free edge of each contains a central nodule of fibrous tissue (Nodulus valvulæ semilunaris). ${ }^{1}$

The chordse tendineæ are fewer but larger than those of the right ventricle. There are two large musculi papillares, one on each side; they are usually compound. The moderator bands are variable. Commonly two larger ones (which are often branched) extend from the musculi papillares to the septum. smaller ones may be found in various places, especially at the apex. The other trabecule are fewer and less prominent than in the right ventricle.

The interventricular septum (Septum ventrieulorum) is the musculo-membranous partition which separates the caritics of the two rentricles. It is placed obliquely, so that one surface, which is convex, faces forward and to the right, and bulges into the right ventricle; the other surface, which faces into the left ventricle,

Fig. 550.-The Bases of the Ventricles of the Heart of the Horse.
The atria have been removed and the aorta and pulmonary artery cut off short. The right ventricle is dilated and the left ventricle is contracted. p.r., Pulmouary valve: a, v, , aortic valve.
is concave and looks backward and to the left. The greater part of the septum is thick and muscular (Neptum musculare), but the upper part is thin and membranous (Septum membranaceum). The latter intervenes between the left ventricle, on the one hand, and the right ventriele and atrium, on the other.

Structure of the Heart

The heart-wall consists mainly of peculiar striped muscle, the myocardium, which is covered externally by the visceral part of the serous pericardium or epicardium, and is lined by the endocardium.

The epicardium is in general closely attached to the museular wall, but is loosely attached orer the coronary vessels and the associated subepicardial fat.

[^152]It consists of a layer of flat polygomal cells, resting on a membrane of white and elantie fibers.

The myocardium consists of planes of fibers arranged in a somewhat complicated mamer. The museular tissue of the atria is almost completely separated from that of the ventricles by the fibrous rings around the atrio-ventricular orifies.

The eonnection between the musculature of the atria and that of the rentricles is established by the atrio-ventricular bundle (Fasciculus atrio-ventricularis). This begins as a network of fibers about the opening of the coronary sims and the adjacent atrial wall. The fibers ronverge to a flat, irregular mass at the upper border of the ventricular septum. From this two chief divisions proceed. One of thesi descends on the right sidh of the ventrieular septum and passes hy the moderator hame to the lateral papillary musde. The other branch descends on the left side of the septum and ramifies on the wall of the ventricle. The left branch is somewhat difficult to follow, since it is thim and reticulate and is covered in great part by a dayer of ventricular muscle fibers. The right branch is subendocardiad. The bundle and its divisions are enclosed in a fibrous sheath. The functional importance of the bublle in mediating the contraction wave was shown by Erfanger, who found that damping the bundle eaused heart-block.

In the atria the musele hands fall naturally into two gromps-superfieial and chep. The former are common to both atria, the later special to each. The superficial or common fibers for the most part hegin and end at the atrio-ventricular ring:, but some enter the interatrial soptum. The deep or special bundles also form two sets. Looped fibers pass ower the atria from ring to ring, while annular or spiral fibers surround the ends of the veins wheh epen into the atria, the auricles, and the fossa ovalis.

The mascular wall of the rentriches is much stronger than that of the atria. That of the left ventricle is in general about three times as thick as that of the right one, lut is thin at the apex. The superficial fibers are attached above to the atrioventricular fibrons rings and pass in a spiral towarl the apex. Here they bend upon themselves and pass deeply upward to terminate in a papillary musele of the ventricle opposite to that in which they arose. The loops so formed at the apex constitute a whorl, the vortex cordis. The deep fibers, although they appear to be proper to each ventricle, have been shown lyaccham to be in reality almost all common to both. Their arrangement is scroll-like. They begin on one side. curve around in the wall of that ventricle, then pass in the septum to the opposite side, and curve around the other ventricle. There is a layer of deep fibers which is confined to the basal part of the left ventriele; it is attached to the left atrioventricular ring.

Four fibrous rings (Annuli fibrosi) surround the orifices at the hases of the ventricles. The atrio-ventricular rings separate the musculature of the atria from that of the ventricles. Those whieh surromel the origins of the pulmonary artery and aorta are festooned in conformity with the attached borlers of the valves. The aortic ring contains on the right side a plate of cartilage (Cartilago cordis), which frequently becomes more or less calcified in old animals. Sometimes a smaller plate is present on the left side.

The endocardium lines the eavities of the heart and is continuous with the internal coat of the vessels which enter and leave the organ. Its free surface is smooth and glistening and is formed by a layer of colothelial cells. The latere rest on a thin layer of fibro-elastic tissue, which is connected with the myocardium by a subendocardial elastic tissue containing vessels and nerves.

Vessels and Nerves. - The heart receives a large blood-supply through the two coronary arteries which arise from the anrta opposite to the anterior and left cuisp of the aortic value. Nost of the blood is returned by the coronary veins, which open into the right atrium by the coronary sinus. ${ }^{1}$ A few small veins open directly into the right atrim, and others are said to open into the left atrium and the ventricles. The lymph-vessels form a subepicardial network which communicates

[^153]through stomata with the eavity of the pericardium. There is a less distinet subendocardial network. The vessels converge usually to two trunks, which actcompany the blood-vessels in the grooves and enter the glands at the bifureation of the trachea. The nerves are derived from the vagus and sympathetic through the cardiae plexus.

The ARTERIES THE PULMONARY ARTERY

The pulmonary artery (A. pulmonalis) springs from the conus arteriosus at the left side of the base of the right ventricle. It curves upward, backward, and medially, and divides behind the arch of the aorta into right and left branches. It is related in front to the right auriele, behind to the left auriele, and medially to the aorta. It is enveloped with the latter in a common sheath of the visceral layer of the serous pericardium. Near the bifurcation it is comeeted with the areh of the aorta by a fibrous band about half an inch (ca. 1.2 cm .) in width; this is the ligamentum arteriosum (Fig. 542), a remnant of the large ductus arteriosus, which conducts most of the blood from the pulmonary artery to the aorta in the foetus. ${ }^{2}$ The artery is bulbous at its origin, and forms three pouches, the sinuses of the pulmonary artery, which correspond to the cusps of the pulmonary valve. Beyond this it gradually diminishes in ealiber.

Abstract

In a horse of medium size the artery is, about seven inches (ra. $1 \overline{-1}-1, \mathrm{~cm} .1$ long. At the origin it is about two and a half inches (ca. $6-6.5 \mathrm{~cm}$.) in width; at the hifurcation its caliber is about one and a half inches (ca. 3.5-4cm.). The wall is relatively thin, especially at the origin.

The right branch (Ramus dexter) of the pulmonary artery is longer and a little wider than the left one. It passes over the forepart of the left atrium and under the hifurcation of the trachea to the hilus of the right lung, and enters the latter below the right bronchus. In the lung it passes to the ventro-lateral side of the stem-bronchus and accompanies it to the hase of the organ. The branches correspond to the ramification of the bronchi. The left branch (Ramus sinister) is very short. It passes backward and enters the lung below the left bronehus. Its branches within the lung are arranged like that of the right one

THE SYSTEMIC ARTERIES

The aorta is the main systemic arterial trumk. It hegms at the base of the left ventricle and is almost median at its origin. Its first part, the ascending aorta (Aorta ascendens), passes upward and formard between the pulmonary artery on the left and right atrium on the right. It then curves sharply backward and dorsally, inclines somewhat to the left, forming the arch of the aorta (Arcus aortæ), and reaches the ventral surface of the spine at the eighth or ninth thoracie vertebra. After passing backward along the ventral aspeet of the bodies of the vertebrex and between the lungs, it traverses the hiatus aorticus and enters the abdominal eavity, where it lies ventral to the vertebral bodies and the psoas minor, just to the left of the median plane. It divides under the fifth lumbar vertebra into the two internal iliac arteries.

From the bifurcation a small vessel, the middle sacral artery A. sacralis media), sometimes passes backward on the pelvic surface of the sacrum. It becomes lost in the periosteum or joins the coccygeal arters, or in exceptional cases is traceable to the sphincter ani externus.

The caliber of the aorta is greatest at its origin, which is termed the bulbus

[^154]aortæ. Here is forms three pouch-like dilatations, the sinuses of the aorta. These correspond to the cusps of the aortic valve, and the coronary arteries arise from the left posterior and anterior simuses. At the arch the diameter is about two inches (ea. 5 cm .), and beyond this it diminishes rather rapidly in width.

It is convenient to divide the aorta into thoracic and abdominal parts. The thoracic aorta (Aorta thoraciea) (Figs. $5.53,554$) hes within the pericardium to the point of attachment of the ligamentum arteriosum, and is enclosed with the pumonary artery in a probongation of the epicardium. Berond this it is between the two pleural sacs. It is crossed on the right by the osophagus and trachea, on the left by the left vagus nerve. The left recurent nerve winds around the eoncavity of the

Fig. 551.-Cardiac Vessels of Horse; Right Side.
Veins are black, arteries white. The circumflex branch of the coronary artery is largely concealed by the great coronary vein.
arch from the lateral to the medial side, and the vena azygos and thoracic duct lie along the dorsal part of its right face. The trachea causes it to deviate to the left, but beyond this it becomes median. The abdominal aorta (Aorta abdominalis) (Fig. 575) is related dorsally to the humbar vectebre, the ventral longitudinal ligament, and the left psoas minor muscle; in the liatus aorticus it is related to the cisterna chyli. Un its right is the posterior vena cava, and on its left the left kidney and ureter.

BRANCHES OF THE THORACIC AORTA
 I. CORONARY ARTERIES

The two coronary arteries, right and left, are distributed almost entirely to the heart, but send some small twigs to the origins of the great vessels.

The right coronary artery (A. coronaria dextra) arises from the anterior sinus of the aorta. It passes forward between the conus arteriosus and the right auricle

to the coronary groove, in which it curves around to the right and backward. It then descends in the right longitudinal groove almost to the apex of the heart. It usually gives off a circumflex branch as it turns downward; this branch (Ramus circumflexus) passes baek in the coronary groove, and anastomoses with the corresponding branch of the left artery.

The left coronary artery (A. coronaria sinistra) arises from the left posterior sinus of the aorta, emerges behind the origin of the pulmonary artery, and divides into two branches. The descending branch (Ramus descendens) passes down the

Fig. 552.-Cardiac Vessels of Horse; Left Side.
The dotted lines indicate part of the left coronary artery which is concealed by the left auricle. The ligamentum arteriosum is shown but not marked.
left longitudinal groove toward the apex. The circumflex branch (Ramus circumflexus) runs backward in the coronary groove, in which it winds around to the right side.

2. COMMON BRACHIOCEPHALIC TRUNK

The common brachiocephalic trunk (Truncus brachiocephalicus communis) ${ }^{1}$ is a very large vessel which arises from the convexity of the areh of the aorta within the pericardium. It is directed forward and upward. Its length in horses of medium size is usually about two inches (ca. 5 cm .), but it is sometimes only half an inch or less (ca. 1 cm .). It is crossed on the left by the left vagus and cardiac nerves, and the left recurrent nerve runs between it and the trachea. It divides opposite to the seeond intercostal space or third rib into the brachiocephalie and left brachial arteries.

The brachiocephalic artery (A. brachiocephalica) is directed forward and somewhat dorsally in the anterior mediastinum, beneath the trachea. Opposite the first rib it gives off the bicarotid trunk and is continued as the right brachial artery. The latter (A. subclavia dexter) turns ventrally and bends around the anterior

$$
{ }^{1} \text { Also known as the anterior aorta. }
$$

borker of the first rib and the insertion of the scalenus musele abowe the brachial vein. Its course and branches beyond this point with be described with the vessels of the thoracie limb).

The left brachial artery (A. sul)(lavia simistra) is longer than the right one and rises to a higher level. It forms an almost semicircular curve, the concavity being ventral. It is related medially to the osophagus, trachea, and thoracic ctuet; and the left vagus, phenic, and cardiae nerves eross under its origin. ${ }^{\text {b }}$ It emerges from the thorax like the artery of the right side. There is thus a difference at first

 Part of Mebiastinal pleura.

1. Right ventriele; $\mathbf{1}^{\prime}$, left ventriele; 2. right auricle; 2', left auriele; 3, pulmonary artery; 3', left branch of 3 . 4. aorta; 5. brachocephalie trunk; 6, left brachal vessels; 7, darsal artery; 7', subcostal arters; \& deep rerves artery; !9, vertebral artery; 10, 10ternal thoracs artery; 11, musculo-phreme artery; 12, inferior cervieal artery: 13, mtorerastal artery: 14, bicarotid trunk; 15, common carothd arteres; 16, anterior vena eava; 17, thoracic duet; 15, fest vagun: $1 s^{\prime}$, unophageal continuations of vagi; 19, left recurrent nerve; 20. left phrenic nerve ipart which crosses percardium urlicated by dotted line); 21, cardiac nerve; 22, sympathetic trunk; 23, prent splanchric norve; 21, (esephagu* 25, trachas: 26, loft bronchus: 27, puhmonary veins; 24, apical lobe of right lung: 29, hasal border of left lung indicated by dotted tine; 30, diaphragm; 30^{\prime}, diaphragmatic line of pleural reflection: 31, 32, extornal and internal intereostal unscles; 33 , longtus rolli; 34 , levator cottx; 35 , multifidus dorsi.
between the trunks of opposite sides, but beyond this their course and distribution are similar.

The left brachial and brachiocephalie arteries give off within the thorax the dorsal, deep eervical, vertebral, and internal thoracie arteries. At the first ribeach gives off the extemal thoracir and inferior cervical arteries.

1. The dorsal or costo-cervical artery (A. costo-ecrviealis) of the left side passes dorsally across the keft face of the trachea and cesophagus toward the second intereostal space. The right artery arises nually by a common trunk with the deep cervieal, crosses the right face of the trachera, and has ne contact with the osophagus. Both detach small bramehes to the tracher, mediastinal lymph glands, and pleura, and on reaching the longus colli divide intot wo branches. Of these, the

[^155]subcostal artery (A. intercostalis suprema) is the smaller. It passes backward along the lateral border of the longus colli with the sympathetic trumk. It gives off the second, third, and fourth intercostal arteries, and ends at the fifth space, where it anastomoses with the first aortie intercostal artery, or constitutes the fifth intercostal artery, or dips into the longissimus muscle. It also gives off spinal branches and twigs to the longus colli and the pleura. The other branch (A. transversa colli) is the direct continuation of the trunk. It emerges through the

Fin. 554.-Thpographt of Thorat of IIorse, Right Side, after Remotal of Lexg, Pericirdtcm, and Greater Part or Medhastinill 1'lelra.

1. Right ventricle: 1^{\prime}, left ventricle: 2 , right atrium; 2^{\prime}, left atrium; 3. anterior vena cava; 4. posterior vena cava; 5, vena azygos; 6 , phrenic vein; 7 , aorta; \searrow, right coronary artery; 9 , bronchial artery; 4^{\prime}, cesophageal artery and vein; 10. firs: aortic intercostal artery and vein; 11, right pulmonary artery: 12 , pulmonary veins; 13 , right brachial vessels; 14 , darsal vessels; 14^{\prime}, subcostal vessels; 15 , deep cervical vessels: 16 . vertebral vessels: 17 , inferior cervical arters; 1s. internal thoracic vessels: 15^{\prime}, musculo-phremic artery: 19 , bicarotid trunk; 20, common carotid arteries: 21 , jugular vein: 22 . thoracic duct: 23 , right vagus; 23^{\prime}, cesophageal continuations of vagi; 24 , right recurrent perve: 25 , right phrenic nerve (part which crosses pericardium indicated by dotted line): 26, sympathetic trunk; 27, great splanchnic nerse; 2b, cesophagus; 29, trachea; 30, right bronchus; 31, left lung; 32, basal border of right lung indicated by dotted line; 33, mediastinal pleura: 34, diaphragm; 35, diaphragmatic line of pleural reflection; 36, intercostal muscle 3 . longus colli; 3ऽ, psoas; 39, interspinous ligament; 40, supraspinous hgament; 41, iunicular part, '41', lansellar part, of ligamentum nuchre.
dorsal end of the second intercostal space, passes across the longissimus costarum and longissimus dorsi toward the withers, and divides into several diverging branches. An anterior branch passes upward and forward between the splenius and complexus and anastomoses with branches of the deep cervical artery; the others ascend on the dorso-seapular ligament under cover of the serratus ventralis and rhomboidens to the withers, supplying the muscles and skin of this region.

The left dorsal artery sometimes arises with the deep cervical by a common trunk; this arrangement is usual on the right side, and there may be a common stem for the dorsal, deep cerrical and veriebral arteries. Oceasionally the artery arises from the brachiocephalic trunk. sometimes it emerges through the third spaec. The subcostal may arise independently behind the dorsal or from the deep cervieal artery
2. The deep or superior cervical artery (A. cervicalis profunda) arises in front of the dorsal or by a common trunk with it. It croses the asophagus (left side),
the trachea (right side), and the longus colli, and emerges from the thoracic cavity by passing through the space behind the first costo-transerse articulation. ${ }^{1}$ In the thorax it gives off a small mediastinal branch (A. mediastini cranialis) to the mediastinum and the pericardium; also the first intercostal artery (A. intereostalis prima), a very small vessel which passes down in the first intercostal space. After leaving the thorax the artery passes upward and forward on the spinalis muscle and the lamellar part of the ligamentum nuchar, covered by the complexus. Its terminal branches anastomose with branches of the oceipital and vertebral arteries in the region of the axis. Numerons collateral branches are detached to the lateral museles of the neck, the ligamentum nuclie, and the skin, and anastomoses occur with the dorsal artery also.
3. The vertebral artery (A. vertebralis) arises from the brachial on the left side, the brachiocephalic on the right; it begins opposite the first intercostal space and passes upward and forward. On the left side it crosses the oxsophagus, on the right, the trachea. Emerging from the thoras it passes between the longus colli medially and the scalenus laterally, under the transwerse process of the seventh rervical vertebra, and continues along the neek through the series of foramina transversaria, between which it is covered by the intertransversales colli. ${ }^{2}$ Emerging

Fig. 555. -V゙prterral Irtery of Iforse. After Rohmaltz, Atlas d. Anat. d. Pferdes.)
from the foramen of the axis, it crosses the capsule of the atlanto-axial joint, and joins the recurrent branch of the oceipital artery under eover of the obliquus capitis posterior. At each intervertebral foramen a spinal branch (Ramus spinalis) is given off which enters the vertebral canal and reinforces the ventral spinal artery. It also gives off series of dorsal and ventral muscular branches (Rami museulares). The dorsal branches are the larger; they supply the deep extensor muscles of the head and neck, and anastomose with the deep cervieal and ocripital arteries. The ventral branches supply chiefly the scalenus, longus colli, intertransversales, and rectus eapitis ventralis major. The artery is accompanied by the vertebral vein and a sympathetic nerve trunk (Nervus transversarius).
4. The internal thoracic artery (A. thoracica interna) is a large vesel which arises from the ventral side of the hrachial opposite the first rib. It curves dormward and hackward, being at first on the medial surface of the rib, and then crosses the ventral part of the first intercostal space and passes under the transversus thoracis muscle. It runs backward under cover of that muscle over the chondrosternal joints to the eighth costal cartilage, where it divides into musculo-phrenic and anterior abdominal branches. At each intercostal space two collateral branches are detached. The intercostal branches (Rami intercostales) ascend in the intercostal spaces and anastomose with homonymous descending arteries. The ventral

[^156]branches detach small twigs to the transversus thoracis, pleura, and pericardium, and pass out between the costal cartilages as perforating branches (Rami perforantes) to supply the pectoral muscles and skin, anastomosing with the external thoracic artery. A very small pericardiaco-phrenic artery (A. pericardiaco-phrenica) ascends in the mediastinum on the left side, in the caval fold of pleura on the right side; it supplies fine twigs to the pericardium and pleura and accompanies the phrenic nerve to the diaphragm. In the young subject it gives small branches, the thymic arteries (Aa. thymicæ), to the thymus gland. The musculo-phrenic or asternal artery (A. musculophrenica) passes along the groove between the eighth and ninth costal cartilages and continues along the costal attachment of the transversus abdominis (Fig. 275). It gives off intercostal branches which anastomose with those descending from the thoracic aorta, and twigs to the diaphragm and transrersus abdominis. The anterior abdominal artery (A. epigastrica cramialis) is the direct continuation of the internal thoracic. It passes between the ninth costal cartilage and the xiphoid cartilage, runs backward on the abdominal surface of the rectus abdominis, and then becomes embedded in the muscle (Fig. 590). It supplies the rentral wall of the abdomen and anastomoses with the posterior abdominal artery:
5. The external thoracic artery (A. thoracica externa) is given off from the ventral aspect of the brachial, usually at the medial surface or anterior border of the first rib. It turns around the first rib ventral to the brachial vein (when given off within the thoras), and passes backward under cover of the deep pectoral muscle; it is continued as a small vessel in the cutaneous muscle, where it accompanies the external thoracic vein. It gives branches to the pectoral muscles and the axillary lymph glands and terminates in the cutaneous muscle and the skin of the ventral wall of the abdomen.

This artery varies in origin and size. Not rarely it arises from the internal thoracic or from the brachial outside of the thorax. In other cases it arises by a common trunk with the inferior cervical. It may he very small or even absent, in which case the perforating branches of the internal thoracic compensate.
6. The inferior cervical artery (Truncus omo-cervicalis) arises usually from the dorsal surface of the brachial artery opposite the first rib or where that vessel winds around the rib. It is directed downward and a little forward across the lateral surface of the terminal part of the jugular vein and the deep face of the scalenus among the posterior cervical lymph glands, and divides into ascending and descending branches. The ascending branch (A. cervicalis ascendens) passes upward and forward along the lateral surface of the jugular vein, then turns sharply backward and runs upward along the anterior border of the anterior deep pectoral muscle, between the omo-hyoideus and brachiocephalicus and in relation to the prescapular lymph glands; it gives branches to these muscles and the posterior cervical and prescapular lymph glands. The descending branch (A. transversa scapulæ) passes ventro-laterally across the surface of the anterior deep pectoral and then runs in the groove between the anterior superficial pectoral muscle and the brachiocephalicus in company with the cephalic vein. It supplies branches to these muscles and the skin of the breast. ${ }^{1}$

THE COMMON CAROTID ARTERY

The two common carotid arteries arise from the brachiocephalic artery by a common trunk. This stem, the truncus bicaroticus, is detached from the medial face of the brachiocephalic opposite the first rib and passes forward medially on the ventral face of the trachea. It is related ventrally to the posterior cervical lymph glands, the terminal parts of the jugular veins, and the anterior vena cava, and
${ }^{1}$ In rare cases the two branches arise separately.
laterally to the vagus and recurrent nerves. It is commonly two or three inches (ca. $5-\overline{6}$ cm.) in length, but it may vary between one and eight inches (ca. 2.520 cm.$)^{1}$

The right common carotid artery (1 . carotis communis dextra) passes obliquely from the rentral face of the trachea to its right side and continues in this position, but inclines toward the dorsal surface of the trachea near its termination, It

> Fic, 5.56, - Vessels and Nerves of Nerk of Horse.
a_{1} Brachiocephaticus; b, sterno-c phalicus; c, omo-hyodeus; d, sterno-thyro-byoulus; e, trachea: f, position of
 cervicis: l, romnant of trapezius; m, rhombohe us; n, splenius; o, complexus: p, q, longissimus capitis et atlantis: p^{\prime}, y^{\prime}. tendons of same: r, longissimus; *, obliquus capitis posterior; t, wing of atlas; u, parotid gland; n, supraspimatus; in. anterior deep pectoral; r, spinc of seapula; y, prescapular lymph ghanda; 1 , external maxillary vein; 2,3 , jugular ven. 4, carotid artery, exposed by drawing jugular vein aside; 5, 6, ascending and descending branches of inferior cervical artery; 7 , cephalie vein: $\&$, branches of deep cervical artery; 9 14. whtral branches of second to seventh cervical nervec 15, branches of dorsal divisions of cervical nerves. (Ellenberger-Bitum, Top, Anat. d. Pferdes.)
diviles at the crico-pharyngeus mosele and under cover of the mandibular glamd into external carotid, internal carotid, and occipital arteries. ${ }^{2}$ It is enclosed in a fibrons sheath, and is acompanied dorsally by the vagus and sympathetie nerves. ventradly by the recurrent nerve. In the posterior part of the neck it is in contact

[^157]superficially with the jugular vein, but further forward the omo-hyoideus musele intervenes between the artery and vein. Near it= termination the artery becomes more deeply placed and is related laterallyto the mandibular and parotid glands, medially to the oesophagus. In some cases it is in contact ventrally with the lateral lobe of the thyroid gland, especially when the latter is more dorsally situated or larger than usual.

The left common carotid artery (A. carotis communis sinistra) differs from the right one in that it is related deeply to the asophagus also, which usually separates it from the trachea in part of its course.

The left carotid is commonly in contact with the trachea for a short distance (ca. -10 cm .) at the root of the neck, but this contact may be even less when the œsophagus is more ventral than usual and the bicarotid trunk long. On the other hand, the relation to the trachea may be more extensive.

The collateral branelies of the common carotids are in the main small. They commonly comprise the following:

1. Muscular branches (Rami museulares) of variable size go to the ventral muscles of the neck and the skin.
2. Esophageal and tracheal branches (Rami oesophagei et tracheales). small twigs go to the cervieal lymph glands also.
3. The parotid artery (A. parotidea) comes off near the termination and enters the ventral part of the parotid gland. It also sends twigs to the adjacent lymph glands, and sometimes detaches a branch to the mandibular gland. It is inconstant.
4. The anterior thyroid or thyro-laryngeal artery (A. thyreoidea cranialis), the largest collateral branch of the carotid, arises from the latter two or three inches before it divides. It curves over the anterior end of the thyroid gland, into which it sends several branches. It gives off the laryngeal artery (A. laryngea), which sends branches to the external museles of the larynx and the constrictors of the pharynx, passes between the crieoid and thyroid eartilages, and supplies the internal muscles and the mueous membrane of the larynx. A small pharyngeal branch (A. pharyngea ascendens) runs upward and forward to the crico-pharyngeus, and supplies twigs to the posterior part of the pharynx and the origin of the

Fig. 557.-Cnoss-section of Nece of Honse, Pasaing throtgh Fifth Cervical Vertebra: Anterior View.
a, Bratiches of cervical nerves; a^{\prime}, nuchal fat; b, intertransversalis muscle; c, longissinus muscle; d, vertebral artery: e, vertebral vein; f, nervus transversarits; g, spinal accessory nerve (dorsal division); h, recurrent nerve; i, vago-sympathetic trunk; k, tracheal lymph duct; l, body of fifth cervical vertebra; l^{\prime}, transverse process of same; m, common carotid artery; n, jugular vein; o, deep cervical artery; o^{\prime}, satellite vein of o; p, spinal cord; q. dura mater: r, spinal vein; s, ligameatum nuchæ; t, rhomboideus muscle; u, splenius; r. complexus; v, multifidus; x, serratus cervicis: y, brachiocephalicus; z, sterno-cephalicus; 1, rectus capitis ventralis major; 2, omo-hyoideus; S, cutaneus; 4, sterno-thyro-hyoideus; 5 , longus colli; $6, \tau$, longissimus capitis ct atlantis; $\mathcal{\varepsilon}$, trapezius: 9 , spinalis; 10 , cesophagus; 11 , trachea, with cartilaginous ring (11^{\prime}), mucous membrane ($11^{\prime \prime}$), and muscular layer ($11^{\prime \prime \prime}$). (After Ellenberger, in Leisering's Atlas.) esophagus. Small innominate twigs are given off to the trachea, the cesophagus, and the sterno-thyro-byoideus and omohyoideus museles.

In some cases the thyroil and larmucal arteries arise from the earotid separately or by a short common stem. A laryngeal branch is often detached from the carotid in front of the thyrolarygeal aml enters the laryns with the anterior laryngeal nerve. The pharyngeal branch frequently comes directly from the earotid.

Fig. 55s.-Deer Dissection of Neck of Horse.
a, a, Ends of sterno-cephalicus; b, anterior part of omo-hyoideus; c, sterno-thyro-hyoideus; d, trachea; c, cesophagus; f, cariniform cartilage; θ, rectus cap. ventralis major; h, stump of longissimus atlantis; i, intertransversale k, multifidus; l, m, scalenus; n, serratus cervicis; o, o, stumps of splemus; p, longissimus cervicis; q, complexus (most of which is removed) ; r, rhomboideus; s, trapezius: ℓ, spinalis et semispinalis; u, lamellar part of lig. nuchæ; v, brachiocephalieus; w, anterior deep pectoral; x, supraspinatus; y, anterior superficial pectoral: z, tuber scapulæ; $1, f$, articular processes of cervical vertebra: 2, 2, transverse processes of same; 3, atlas; 9', axis; 4, 年, jugular vein (remainder re moved) ; $\overline{5}$, common carotid artery, from which a piece is removed to show the accompanying nerves and the o-sophagus; G, vago-sympatbetic trunk; $\tilde{r}, 7$, tracheal and museular brawehes of carotid artery; δ, reeurrent nerve; 10 , left tracheal lymph-duct; 11,12 , ascending aud descending branches of inferior rervical artery (1.3) ; $1 \neq$, cephalif vein; $1 \overline{0}-20$, veutral branches of second to seventh cervical nerves; 21, roots of phrenic nerve; 22, pectoral nerves: 22 , nerve to serratus veutralis; 23 , musculo-eutaneous nerve; 24, median nerve; 25 , ulnar nerve; 26 , radial nerve; 22 , axillary nerve; 25 , dorsal branches of cervical nerves; 28^{\prime}, accessory qerve (eut) ; 29 , deep cervical artery; 30 , muscular branch of vertebral artery; 31, posterior brauch of occipital artery; 32, vertebral artery; 33, museular branches of oceipital artery; 3́, obliquus capitis post. ; 35, oll. cap, ant, ; 36, twig from dorsal branch of third eervical nerve. (After EllenbergerBaum, Top. Anat. des Pferdes.)
5. The posterior thyroid artery (1. thyreoidea caudalis) is a small and inconstant vessel which arises from the carotid at a variable distance behind the anterior thyroid or from the latter or the parotid artery. It sends branches into the posterior part of the thyroid gland, and detaches small tracheal and muscular twigs. In some cases it is distributed chiefly or entirely to the adjacent muscles.

THE OCCIPITAL ARTERY

The occipital artery (A. occipitalis) is usually the second in size of the terminals of the carotid. It arises commonly just in front of the internal carotid, but in some cases with that artery by a common trunk of variable length. It pursues a somewhat flexuous course to the fossa atlantis, where it divides into anterior and posterior branches. It is related superficially to the mandibular gland and the brachiocephalicus, and deeply to the guttural pouch and the rectus capitis ventralis major. ${ }^{1}$ The internal carotid artery, the ventral cerebral vein, and the accessory, vagus, and sympathetic nerves cross its deep face. It gives off twigs to the mandibular gland, the ventral straight muscles of the head, the guttural pouch and the adjacent lymph glands, and two named collateral branches. ${ }^{2}$ The condyloid artery (A. condyloidea) is a small vessel which passes upward and forward on the guttural pouch, and divides into muscular and meningeal branches. The latter enter the cranium through the foramen lacerum and hypoglossal foramen and are distributed to the dura mater. This artery is very variable in its origin. ${ }^{3}$ The posterior meningeal artery (A. meningea aboralis $)^{4}$ is a much larger vessel which runs upward and forward between the obliquus capitis anterior and the paramastoid proccss, passes through the mastoid foramen into the temporal canal, enters the cranial cavity, and is distributed to the dura mater. It gives collateral branches to the atlanto-occipital articulation and the adjacent muscles.

The posterior or recurrent

[^158]

Fig. 559.-Vessels And Nertes of Base of Bratn of Horse,
13, Cerebro-spinal artery; 14, ventral spinal artery; 15, basilar artery; 16. posterior cerebellar artery; 17, anterior cerebellar artery; 18 , internal auditory artery; 19. posterior cerebral artery; 20 , deep cerebral artery; 21, stump of internal carotid artery; 22 , anterior chorioid artery; 23, anterior meningeal artery; 24, middle cerebral artery; 25, artery of corpus callosum; 26, anterior communicating artery; $1,1^{\prime}, 1^{\prime \prime}$, olfactory striæ; $1^{\prime \prime \prime}$, olfactory tract; $2-12$, eranial nerves; a, olfactory bulb; b, trigonum olfactorium: c, lamina perforata anterior; d, fossa lateralis; e, piriform lobe; f, cerebral peduncle; g, tractus transversus; h, corpus mammillare; i, tuber cincreum; k, lateral fissure (of Sylvius); l, presylvian fissure; m, pous; o, pyramid: p, facial eminence; Q, corpus restiforme; r, cercbellum; s, middle peduncle of cerebelIum. (After Ellenberger-Baum, Top. Anat. d. Pferdes.)
branch (Ramus recurrens)' of the occipital passes up through the foramen transversarium of the atlas and joins the verteloral artery. It gives branches to the obliquus capitis posterior, which covers it.

The anterior or occipital branch (Ramus occipitalis) ${ }^{2}$ passes through the alar foramen of the atlas and supplies the museles and skin of the poll, anastomosing with the deep eervical artery and its fellow of the spposite side. In the alar furrow it gives off the cerebrospinal artery (1. cerehrospinalis), which enters the spinal canal through the intervertehral foramen of the atlas, perforates the dura mater, and divides into cerebral and spinal branches. The cerebral branch (Ramms (erebralis) unites with that of the opposite side to form the basilar artery, and the spinal branch (Ramus spinalis) similarly forms by union witl its fellow the ventral spinal artery.

The basilar artery (A. hasilaris cerebri) passes forward in the median groove on the ventral surfare of the medulla oblongata an:l pons and divides into the two posterior cerobal arteries. The collateral brancles of the basilar are:

1. Nedullary branehes (Rami medullares), ten or twelve in number, distributed to the medulla oblongata.
2. Posterior cerebellar arteries (Aa. cerebelli aborales), which pass outward around the medulla behind the pons to the cerehellum, to which they are distributed after giving twigs to the medulla and pons.
3. The small auditory artery (A. auditiva interna) accompanies the eighth nerve to the internal car. It often arises from the posterion cerebellar.
4. Anterior cerebellar urteries (Aa. cerebelli orales). These are very variable in number and origin. There are often two or theer on either side, and they frequently arise from the posterior cerebral. They pass outward in front of the pons and supply the anterior part of the cerebedlum.

The posterior cerebral arteries (Ais. cerebri aborales) diverge at an atute angle and join the posterior eommunicating branches of the internal carotid arteries on the rentral surface of the cereloral peduncles. They are connected by a transwerse hranch and by a network of fine twigs which form often a rete mirabile.

The ventral spinal artery (1 . spinalis ventralis) runs along the ventral median fissure of ther spinal cord, which it supplies. It is reinfored along its course by branches from the vertebral, intereostal, lumbar, and lateral sacral arteries, which enter the vertebral canal through the intervertebral foraminat.

THE INTERNAL CAROTID ARTERY (Figs. 559, 561, 562)

This artery (A. carotis interna) is usually somewhat smaller than the oceipital. It usually arises just behind that artery, crosses its deep face, and runs upward and forward on the guttural pouch to the formen lacerum. ${ }^{3}$ It is closely related to the vagus nerve and the anterior cervical ganglion of the sympathetic nerve, fibers from which accompany it. It is crossed laterally by the ninth and twelfth cranial nerves and the pharyngeal branch of the vagus. It passes through the ventral petrosal sinus and enters the caveroons sinus, within which it forms an S-shaped curve. It is connected with the opposite artery by a transverse branch, the intercarotid artery (A . interearotica), which lies in the intereavernous sinus behind the pituitary body. A branch (A. caroticolasilaris) often connects it with the basilar artery. It then perforates the dura mater, gives off the posterior communicating artery, and passes forward and divides at the side of the optic chiasma into anterior and midelle corebral artories.

The posterior communicating artery (A. communirans aboralis) turns back-
${ }^{1}$ Also termed the retrograde or anastomotic branch.
2 Also termed the musculo-occipital.
${ }^{3}$ Not rarely it arises with the orcipital artery from a common trum of variable length.
warel and joins the posterior cerebral branch of the basilar. It gives off the deep cerebral artery (A. cerebri profunda), which winds around the cerebral peduncle and is distributed chiefly to the mid-brain; it is often double. A smaller collateral branch is the anterior chorioid artery (A. chorioidea oralis), which passes along the optic tract and is distributed in the chorioid plexus of the lateral ventricle.

The anterior cerebral artery (A. cerebri oralis) mites with the corresponding branch of the opposite artery above the optic chiasma. From this junction proceeds the artery of the corpus callosum (A. corporis callosi), which turns around the genu of the corpus callosum, enters the great longitudinal fissure, divides into two branches, and is distributed to the medial aspect of the cerebral hemispheres. The anterior cerebral gives off the small internal ophthalmic artery (A. ophthalmica interna), which passes forward at first lateral to the optic nerve; then, crossing over the latter to its medial side, it joins a branch of the external ophthalmic. A small anterior meningeal branch (A. meningea oralis) of the anterior cerebral is distributed to the anterior part of the dura, and assists in forming a network in the ethmoidal fossa (Rete ethmoidale), anastomosing with the ethmoidal branch of the external ophthalmic artery and the artery of the corpus callosum.

The middle cerebral artery (A. cerebri media) passes outward in the fossa lateralis in front of the piriform lobe, reaches the lateral fissure, and divifles into branches on the lateral surface of the hemisphere.

The circulus arteriosus (Fig. 559) ${ }^{1}$ is formed at the interpeduncular space of the hase of the brain by the union of the anterior ceretral arteries in front, by the diverging posterior cerebral arteries behind, and is completed laterally by the junction of the latter with the posterior communicating arteries and by the internal carotid. It is irregularly polygonal in outline, and surrounds the optic chiasma aud pituitary body. ${ }^{2}$

THE EXTERNAL CAROTID ARTERY (Figs. 561, 562)

This artery (A. carotis externa), by its size and direction, constitutes the continuation of the common caroticl. It passes forward on the lateral wall of the pharynx at the lower horder of the guttural pouch, covered by the manrlibular gland and the oceipito-mandibularis, digastricus, and stylo-hyoideus muscles, and in relation to the parapharyngeal lymph glands. It then emerges between the stylohyoideus and the great comu of the hyoid bone, ascends on the latter parallel with the posterior border of the lower jaw, and terminates about two inches (ea. 5 cm .) below the temporo-mandibular articulation by dividing into superficial temporal and internal maxillary branches. It is crossed deeply near its origin by the anterior laryngeal and pharyngeal branches of the vagus nerve. Just before its emergence its superficial face is crossed by the hypoglossal nerve, and the glosso-pharyngeal nerve passes over its medial surface at the ventral border of the great cornu. The chief collateral branches are the masseteric, external maxillary, and posterior auricular. It also furnishes variable branches to the mandibular and parotid glands, the guttural pouch, and the pharyngeal lymph glands, as well as twigs to some adjacent muscles.

1. The masseteric artery (A. masseteriea) ${ }^{3}$ is given off from the extemal carotid at its emergence from beneath the stylo-hyoideus. It passes downward and slightly forward under cover of the parotid gland and over the tendon of insertion of the sterno-eephalicus to the posterior border of the mandible and appears on the masseter muscle, which it enters after a short course on its surface. It gives
${ }^{1}$ Also termed the circle of Willis.
${ }^{2}$ The cerebral arteries are very variable in arrangement, and the foregoing aceount is a brief statement of the more usual disposition of the larger vessels.
${ }^{3}$ Also termed the maxillo-muscular.
branches also to the medial pterygoid and occipito-mandibularis museles and the parotid gland.
2. The external maxillary artery (A. maxillaris externa) ${ }^{1}$ arises from the external carotid on the deep surface of the posterior belly of the digastricus (Fig. 561). It runs downward and forward on the lateral wall of the pharynx across the decp face of the stylo-hyoideus toward the great cornu of the hyoid bone, accompanied by the glosso-pharyngeal nerve in front and the hypoglossal merve behind. After giving off the lingual artery at the posterior border of the great cornu, it inelines more ventrally on the medial surface of the medial pteryoid nuscle, crosses over the byo-glosins musile, the bypoglossal nerve, the mandibular duct, and the intermediate tendon of the digastricus, and turns forward in the mandibular space. Here it lies on the lower part of the medial pterygoid muscle, and is related medially to the mandibular lymph glands, above to the anterior belly of the digastricus, and below to the homonymous vein. At the anterior border of the masseter it turns around the rentral border of the jaw and ascends on the face in front of that muscle. At the tum the artery is in front, the vein in the middle, and the parotid duct posterior. ${ }^{2}$ The artery is conveniently placed at its inflection for taking the pulse, since it is superficial and lies directly on the bone. Beyoul this point it is commonly termed the facial artery (A. facialis). The artery and wein pass upward along the anterior border of the masseter, under cover of the facial cutancus and the zygomaticus, and are crossed superficially by branches of the facial nerve and deeply by the parotid duct. The artery terminates over the levator labii superioris proprits ly dividing into the dorsal nasal and the angular artery of the eye. The chief branches of the external maxillary are as follows:
(1) The pharyngeal artery (A. palatina ascendens) arises usually behind the stylo-pharyngeus, passes between that muscle and the great cormu, and runs forward on the lateral wall of the pharsmx under the elastic pharyngeal fascia. It is distributed to the pharynx, soft palate, and tonsil.
(2) The lingual artery (A. lingualis) is a large branch which diverges from the parent trunk at an acute angle, rums along the ventral border of the great cornu of the byoid bone, and dips under the hyo-glessus muscle. It then passes across the kerato-byoideus, turns inward under the intercomnal joint of the hyoid bone, and runs forward in the tongue between the lyo-ghasins and genio-glossus. This part (A. profunda lingue) is flexuous and is accompanied by branches of the hypoglossal and lingual nerves. It is the chief artery of the tongue, and anastomoses with the opposite artery and the sublingual. ${ }^{3}$
(3) The sublingual artery (A. sulbingualis) is a smaller vessel which arises at the anterior extremity of the mandibular gland (Fig. 561). It passes forward on the anterior belly of the digastricus, between the ramus of the mandible and the mylohyoideus, perforates the latter, runs along the lower border of the sublingual gland, and ramifies in the mucous membrave of the anterior part of the floor of the mouth. It detaches branches to the muscles and skin in the mandibular space, the mandibular lymph glands, and the sublingual gland. It also gives off the small submental artery (A. submentalis), which runs forward superfieially toward the lower lip, supplying twigs to the skin and the mylo-byoideus.

In some cases the sublingual artery arises from the lingual and the submental from the external maxillary. Sometimes the sublingual remains on the superficial faec of the mylo-hyoideus -thus resembling the submental of man-and the sublingual gland is supplied by a special branch of the lingual.
${ }^{1}$. Also termed the submaxillary or facial artery. The term facial may be applied to the artery after it reaches the lateral surface of the face.
${ }^{2}$ In exceptional cases the win is in front of the artery.
${ }^{3}$ In some cases the limgual trunk runs on the superfieial face of the hyoglossus instead of passing beneath it; in sueh specimens a small branch extends forward a variable distance under the muscle.

A considerable branch may be given off in the mandibular space, which turns around the lower horder of the jaw and enters the middle of the lower part of the masseter muscle. In some cases this artery is of large size and its pulsation can be felt. It is acompanied by a vein.
(4) The inferior labial artery (A. labialis inferior) arises from the external maxillary a little before it reaches the depressor labii inferioris (Fig. 560). It passes forward, dips under the depressor musele, and continues to the lower lip. It supplies branches to the muscles and skin in this region, to the inferior buecal glands, the inucous membrane of the cheek, and the lower lip, anastomosing with the mental artery and the corresponding vessels of the opposite side. It detaches

Fig. 560.-Stperfictal Dissection of Head of Horae. Most of the Cutaneus is Removed.
a, Lateralis nasi; b, levator labii superioris proprius; c, levator naso-labialis; d, dilatator naris lateralis; e, buccinator; f, zygomaticus, posterior part of which is removed; g. depressor labii inferioris; h, stump of retractor anguli oris; i, masseter; k, k, scutularis; l, scutulo-auriculares superficiales; m, $2 y$ gomatico-auricularis; n, parotido-auricularis; o, occipito-mandihularis; p, sterno-cephalicus; p^{\prime}, tendon of $p ; q$, omo-hyoideus; r, splenius; s, tendon of splenius and longissimus capitis: ℓ, corrugator supercili; u, orbicularis oris; v, parotid gland; u, zygomatic arch; x, scutiform cartilage; y, upper commissure of nostril; 1 , facial nerve; 2 , superior buccal nerve; 3 , inferior huccal nerve; f, transverse facial nerve; \dot{s}, cervical hranch of facial nerve; 6 , posterior auricular branch of second cervical nerve; 7 , cutaneous cervical branch of same; 8 , infratrochlear nerve; 9 , frontal nerve; 10 , lacrimal nerve; 10 , end of auriculopalpebral nerve; 11, masseteric artery and vein; 12, transverse facial artery and vein; 13 , facial artery; 14, inferior labial artery; 15, superior labial artery; 16 , lateral nasal artery; 17. dorsal nasal artery; 19 , angular artery of the eye; 19, posterior suricular artery; 20, 21, jugular vein; 22, external maxillary vein; 23, great auricular vein; 24, parotid duct; $2 f^{\prime \prime}$, origin of same; 25, superior buccal glands; 26, facial vein. (After Ellenberger-Baurn, Top. Anat. d. Pferdes.)
a branch (1 . anguli oris) to the angle of the mouth, which anastomoses with the superior labial.
(5) The superior labial artery (A. labialis superior) arises from the facial in front of the facial crest (Fig. 560). It passes forward under the dilatator naris lateralis and levator nasolabialis to the upper lip, gives twigs to the upper part of the cheek and the lateral nasal region, and ramifies in the upper lip, anastomosing with the opposite artery and the palato-labial.
(6) The lateral nasal artery (A. lateralis nasi) arises usually a little above the preceding oue, and runs forward parallel with it and under the levator nasolabialis to the nostril (Fig. 560). It supplies branches to the lateral nasal region and the nostril.

The vensel is of en douhle. It may arise from the superior babial at the point of bifureation of the facial or with the dorsal nasal from the infriorbital artery (as in the ox). In some cases it gives off a dorsal nasal branch.
(7) The dorsal nasal artery (A. dorsalis nasi) arises on the levator labii superioris proprins and passes forward under the levator nasolabialis to the dorsum nasi (Fig. 560).
(A) The angular artery of the eye (A. angularis oculi) runs toward the medial

Fig. J61.-Parotio, Misaeteric, two Lingeal Regloss of Horse; Deep Dissection, Thiro Layer,
a, Ay lo-hyordens, antorior part, reflected; h, genio-byoileus; c, genio-glossus; d, sublingual gland; f, ramns of mandible, greater part removed, e^{\prime}, stump of masseter: f, maxillary tubero-ity: g, great cornu of hyod hone; h, wing of atlas: i, intermediate tendon of digastricus; i^{\prime}, anterior belly, $i^{\prime \prime}$, posterior belly, of digastricus; k, posterior part of mylohyoidens; l, byo-glossus; m, pterygoideus meedialis (eut); n, stylo-hyoideus; o, occipito-maudibularis; p, ericopharyngeus; q, oblıfuus capitis ant.; r, tendon of logissimus atlantis; s, rectus cap, ventralis; t, brachiocephalicus (cut): u, sterno-ctphalicus (cnt); r, sterno-thyroideus (cut); w, sterno-hyoideus (cut); x, omo-hyoideus; y. obliquus cap. post : z, splenius (cut); $1-\frac{4}{}$, upper cheek teeth; ${ }^{4}$, last cheek tooth; 3, stump of facial uerve; f, stump of huccinator nerve: $\tilde{\gamma}$, lingual nerve; γ^{\prime}, superficial branch, $\gamma^{\prime \prime \prime}$, deep branch, of lingual nerve; s, stumps of inferior alveolar artery, vein and nerve : 0 , mylo-byoid nerve (eut) ; 10 . glosso-pharyngeal nerve; 11 , hypoglossal nerve; 12 , anterior larynteal nerve; 13 , ventral hranch of first cervical nerve; 14, vagus and sympathetie; 15 , dorsal braneh of spinal accessory nerve; 1ti, ventra! branch of same; 12, ventral cerebral vein; 18 , mandibular duct; 19, common carotid artery: 2t), parotid branch: 21, thyro-lary ngeal artery: 22, pharyngeal artery; 23, laryngeal artery: 24, intcrnal carotid artery:
 artury; 30, subliggul artery; 32, esternal earotid artery after emergence; 33 , interual maxillary vein (origin): 34 . remmant of parotid glaud; $3 . \overline{2}$, thyroid gland: 36 , jugular veia; $3 \tilde{\gamma}$, parapharyogeal lymph glauds. (After Ellea-berger-Baum, Tof, Anat, d. Pfordes.)
canthus of the ere, where it anastomoses with the orbital branch (Ramus malaris) of the infraorlital artery (Fig. 560).

In addition to the preceding, umamed branches are supplied to the mandibular salivary gland and lymph glands. There is commonly a branch of considerable size which is given olf as the extemal maxillary artery pasies the anterior end of the mandibular gland; it roms upward and batkward along the dorsal border of the gland, which it supplies.
3. The posterior auricular artery (A. aurieularis posterior) arises at an acute angle from the external carotid just above the origin of the masseteric. It passes
upward under cover of the parotid gland, to which it gives branches, and divides into several branches which supply the skin and museles of the external ear (Fig. 560). The posterior branch passes to the posterior part of the bave of the ear, where it divides into two branehes; of these, one (Ramus intermedius) passes up the convex surface of the external ear to the apex, while the other (Ramus medialis) winds around to the anterior (medial) border, and forms an arch with the inter-

Fig. jug2.-Deer Dissection of Head of Horse.
The left ramus of the maadible and structures conneeted with it have been removed. a, a, Stumps of styloglossus; b, genio-glossus; c, genio-hyoideus; d, omo-hyoideus; ε, kerato-byoideus; \%, thyro-hyoideus; 9 , thyro-pharyageus; h, crico-thyroideus; i, steroo-thyroideus; k, thyroid gland; m, erieo-pharyngeus: n, palatinus and palato-pharynyeus; o. pterygoideus lateralis; p, tensor palati; q, levator palati; r, temporalis; s, reetus cap, ventrahis major; !, oblinuus cap. ant.; u, guttural pouch; r, great cornu of hyoid bove, extremity of whicb is removed aod indieated by dotted line: u, position of small corou, dotted line; x, thyroid cornu; y, tongue; z, anterior pillar of soft palare: 1 , superficial tem-
 deep temporal nerve; 6 , masseteric oerve; $\tilde{2}$, buccinator aerve; S, great palatine nerve; 9 , imfraorbital nerve; 1%, sphenopalatine and posterior nasal nerves; 11, spinal accessory nerve; 12, vagus; 13, pharyogeal branch of vagux: 1_{4}, adeterior laryogeal nerve; 15 , vago-sympathetic trunk; 16 , syonpathetic, with anterior cervical ganglion a little further back; 1π, glosso-pharyogeal uerve; 18, pharyngeal and 19 , liagual, branches of elosso-pharyngcal: 20, hypoglossal nerve; 21 , left recurrent aerve; 22 , common carotid artery: 23, parotid branch; 24, anterior thyroid or thyto-laryugeal artery: 2x. laryngeal artery; 25 , occipital artery; 26, internal carotid artery: 22, external earotid artery: 29, 30, external maxillary artery; 29, pharyngeal artery; 31, lingual artery; 32. external carotid artery; 33, stump of inferior alveolar artery; 34. middle meningeal artery; 35, deep temporal artery; 36, buceinator artery: \%/ palatine artery; 3S, eud of interoal maxillary artery; 39, right external maxilary artery; 40, satellite vein of 39 ; 41, right parotid duct: 42, mandihular lymph glands; 43, parapharyngeal lymph glands; $4 \hat{2}$, trachea; 4, wing of atlas: 作, dotted line indicatiog outlice of mandibular gland: \quad in, lacrimal gland. (After Elleaberger-Baum, Top. 1oat. d. Pferdes.)
mediate branch. The lateral branch (Ramus lateralis) passes up the posterior (lateral) border of the ear and forms an areh with the intermediate branch. The deep branch (A, auricularis profunda) enters the interval between the external acoustic process and inastoid process, and passes through an opening into the interior of the external car and ramifies in the skin which lines it. It gives off the stylomastoid artery, which parses through the stylomastoid foramen into the tym-
panum, forms an areh around the membrana tympani, and supplies the middle ear and its muscles.

THE SUPERFICLAL TEMPORAL ARTERY

This artery (A. temporalis superficialis) is much the smaller of the two terminal branches of the external carotil, and is usuathe kess than an inch (ca. 2 cm .) in length. It passes upward behind the posterior

Fig. 563.-Right Eye of Horse.
a, Remants of periorbita; b, levator palpebræ superworis; c, obliquus oculi inferior; d, rectus oculi inferior; e, rectus oculi laterahis; f, rectus oculi superior; g. selera: g^{\prime}, cornca; h, Jacrumal gland; i, frontal nerve; i^{\prime}, trochlear nerve; k, supraorbital artery: l, branches of lacrimal nerve to gland: m, lacrmal artery; n, zygomatic nerve; o, bramch of ophthalnuic artery; p, branch of oculomotor nerve to obliquus oculi inferior; q, maxillary nerve; t, infraorbital nerve; s. posterior nasal nerve; t, great palatine nerve; u, small palatine nerve; v, internal maxillary artery; w, buccinator artery (cut); x, infraorbital artery; x^{\prime}, malar artery; y, sphenopalatine artery; z, great palatine artery; z^{\prime}, small palatine (or staplyline) artery; 1 , anterior deep temporal artery: 2, stump of zygomatie arch (sawn off) ; 3, stump of supraorbital process (sawn off); 4, facial crest; \bar{s}, temporal fossa; f, foramen orbitale; $\gamma_{\text {p }}$ foramun rotundum and anterior end of ahar cunal: 8, post"rior opening of alar ranal. (Ifter Ellenberger, in Leiserng's Atlas.) borter of the ramus of the mandible, under cover of the parotid gland, and divides below the level of the condyle into the anterior auricular and transrerse facial arteries. It is crossed superficially ly the facial nerve.

The anterior auricular artery (A. aurieularis anterior) ascends behind the temporo-mandibular articulation under eover of the parotid gland and reaches the temporalis muscle. It is erossed deeply at its origin by the superfieial temporal nerve and is accompanied by a satellite vein and the auriculo-palpebral branch of the facial nerve. It is distributed to the skin and the temporal and tonterior auricular museles, and sends a braneh through the conchal cartilage to the skin which lines it. Collateral twigs are detached to the parotid gland, and an anterior branch anastomoses with the supraorbital artery. A branch sometimes passes into the temporal canal and anastomoses with the posterior meningeal artery.

The transverse facial artery (A. transversa faciei) is larger than the precerding, it turns aromel the neck of the mantible and emerges from beneath the parotid gland (Fig. 560). It then passes forward a short distance on the masseter about half an inch below the zygomatic areh, and enters the muscle, in which it commomly divides into two chief branches. It is accompanied by a vein and a branch of the superficial temporal nerve. It supplies the masseter and the skin of this region, and anastomoses with the external maxillary and posterior deep temporal arteries.

THE INTERNAL MAXILLARY ARTERY (Figs. 562, 563, 564)

This artery (A. maxilaris interna) is murh the larger of the two terminal branches of the external arotid. It begins at the medial side of the posterior border of the mandible, about two inches (ca. 5 cm .) below the articulation of the jaw, and ends in the anterior part of the pterygo-palatine fosst. (nn account of its
complex course and the large number of branches given off it is convenient to divide it into three parts.
I. The first part is much the longest, forms an S-shaped curve, aud is in great part in contact with the guttural pouch. It passes upward and forward on the medial surface of the mandible a distance of about an inch (ea. 2-3 cm.), and is related here to the rein, which is ventral. It then turns inward on the ventral surface of the lateral pterygoid muscle and the mandibular nerve, passes between that muscle and the tensor palati, and runs forward to enter the alar canal. This part gives off the following branches:

1. The inferior alveolar artery (A. alvcolaris mandibulæ s. inferior) ${ }^{1}$ passes downward and forward with the homonymous vein and nerve, being at first between

Fig. 564.-Left Ete of Horse, Deeper Dissection.
The outer plate of bone has been removed behind the pterygoid crest to expose the vessels and nerves. a, a, Remnants of periorbita; b, b, stumps of rectus oculi superior; c, obliquus oculi inferior; d, rectus oculi inferior; e, rectus oculi lateralis; e^{\prime}, retractor oculi; f, rectus oculi medialis; g, g, obliquus oculi superior: k, eyeball; i, trochlear nerve; k, ophthalmic nerve; k^{\prime}, nasal nerve; $k^{\prime \prime}$, infratrochlear nerve; $k^{\prime \prime \prime}$, ethmoidal nerve; l, optic nerve; m, frontal nerve; n, lacrimal nerve; o, zygomatic nerve; p, nerve to obliquus inferior (from oculomotor); q, maxillary nerve; r, infraorbital nerve; s, sphenopalatine nerve; t, great palatine nerve; u, small palatine nerve; z, internal maxillary artery: u, buccinator artery (cut off); x, infraorbital artery; x^{\prime}, malar artery; y, spheno-palatine artery; z, great palatine artery: z^{\prime}, small palatine artery; 1,2, stumps of zygomatic arch; 3 , stump of supraorbital process; 4 , facial crest; $\bar{\delta}$, temporal fossa; 6 , external ophthalmic artery; 7, muscular branch of $6 ; \mathcal{E}$, lacrimal artery (cut); 9 , supraorhital artery; 10, antcrior deep temporal artery; 11, ethmoidal artery. (After Ellenberger-Baum, Top. Anat. d. Pferdes.)
the lateral and medial pterygoid muscles, then between the latter and the ramus of the mandible. It enters the manelibular foramen, passes downward and forward in the mandibular canal, and terminates at the mental foramen by dividing into mental and incisor branches. The mental branch (A. mentalis) emerges through the mental foramen and anastomoses in the lower lip with the opposite artery and the inferior labial. The incisor branch (Ramus incisivus) continues forward in the bone, supplies twigs to the canine and incisor teeth, and anastomoses with its fellow of the opposite side. Collateral branches are detached to the pterygoid and mylohyoid muscles, and within the bone to the teeth, alveolar periosteum, the gums, and the spongy substauce of the mandible.
2. The pterygoid arteries, two or three in number, are distributed to the pterygoid and tensor and levator palati muscles.
${ }^{1}$ Also known as the inferior dental artery.
3. The tympanic artery is a very small vessel which passes along the Eustachian tule to the petro-tympanie fissure and enters the middle ear.
4. The middle meningeal artery (A. meningea media) arises beneath the buccinator nerve, where the internal maxillary turus forward. It passes backward across the temporal wing of the sphenoid to the antero-lateral part (foramen spinosum) of the foramen Iacerum. Entering the eranium, it divides into branches which course in the grooves on the temporal and parietal bomes and supply the dura mater. It anastomoses with the posterior meningeal.

The size of this artery is variable, and is in inverse ratio to that of the posterior meningeal.

Ftg. 5fto - Sagittal Section of Mead of Horse, Ctt a Little to the: Right of the Median Plane.
1, skin: 2, nasal bone; 3, frontal bone; 4. parnetal bone; ${ }^{\prime}$, teutorium osseum; 5, occrpital bone; 6, splenoid bone; γ, hard palate: 3 , premaxilla: 9 , mathble; 10 , byoid bone; 11 , septum between frontal smuses; 12 , alar eartilage; 15, transversus nasi: 14 , septum nasi wath venous plexuses; 12 , palatolabial artury; 19 , 16^{\prime}, upper and lowir septal branches of 1.5: $1 \tilde{4}$, septal branch of sphenopalitine artery and satellite vein; 18 , septal branch of ethmoidal artery; 19, spbenoidal sinus; 20, guttural puuch; 21, maryax; 22, pharyngeal orifice of Eustachian tube; 23, posterior naris; 24 , soft palate; $2 \overline{50}$, palatimus muscle; 26 , pharyngeal muscles: 27 , wsophagus; 28 , dotted line indicating position of postorior pillar of soft palate: 23 , lamina, 29 , arch of cricoid cartilage; 30 , arytenoideus transversus muscle; 31, cpiplottis; 32, body of thyroid cartilage: 3.3, vocal proeess and cord; 34, arytenoid cartilage; 3.3, lateral ventricle of larynx; 36, trachea; 32 , ventral straight muscles of head: 35 , longus colli; 39 , atlas: 40 , axis: 41, lig. nucher: 42 , dorsal spinal muscles; 43 , unsches of external ear: 44 , omo- and sterno-hyoidens; $4 \overline{5}$, tongue; 46 , mylo-hyoidens; 47 , genio-hyoideus; 48, gemio-glossus; 49, longitudinalis inferior; 50 , longitud superior; 51 , hypo-epiglotticus; 52, chin and mentalis musele; 53 . venous plexus of hard palate; 54 , corpus eallosum; 55 , septum pellucidum; 56 , fornix: 57 , thalamus; $\quad 58$, pineal body: $\bar{i} 9$, corpora quadrigemina: 60 , cerebral peduncle; 61 , corpus mammillare: 62 , pituitary body; 63 , chasma opticum; 64 , interearotid artery; 6.5 , medulla oblongata; 66 , interventricular foramen; 67 , infundibulum; 63, third ventricle; 69 , eerebral aquedurt; $\gamma 0$, anterior medullary velum; $\gamma 1$, fourth ventricle; $\gamma 2$, posterior medullary velum: $i 3$, bisilar artery; $i \neq$, spinal end; $; \bar{j}$, ethmoidal nerve; $\gamma \sigma$, septal branch of posterior nasal nerve; $\gamma 6^{\prime}$, branch of same to vomero-nasal organ; $\gamma 7$, olfactory nerve to vomero-nasal organ; 78 , nasal branches of palatine artery. (Ifter Elenberger, in Leisering's Atlas.)
5. The posterior deep temporal artery (A. temporalis profunda aboralis) arises from the internal maxillary just hefore the latter conters the alar eanal. It passes upward and lackward in the temporal fossa on the decp face of the temporalis musele, in which it ramifies. It sonds a branch coutward to the masseter, and anastomoses with the superficial temporal amel middle meningeal arteries.

In some cases the tympanic and middle meningeal arise from this artery.
II. The second part lies in the alar camal, and is about an ineh (ca. 2-3 cm.) in length. It gives off two branches-the anterior deep temporal and the external ophthalmie.

1. The anterior deep temporal artery (A. temporadis profunda oralis) emerges from the canal through the small alar or temporal foramen, and ascends in the
anterior part of the temporal fossa on the deep face of the temporalis muscle, in which it is chiefly distributed. It gives twigs to the orbital fat and the skin of the frontal region.
2. The external ophthalmic artery (A. ophthalmica externa) emerges from the anterior opening of the alar canal, and enters the apex of the periorbita. Within this it forms a semicircular bend under the rectus oculi superior, and is continued by the ethmoidal artery. Its branches are as follows:
(a) The supraorbital artery (A. supraorbitalis) is a small vessel which often arises from the anterior deep temporal or the internal maxillary. It passes along the inner wall of the orbit in company with the nerve of the same name to the supraorbital foramen, through which it emerges. It is distributed to the orbicularis oculi, the corrugator supercilii, and the skin of the supraorbital region.
(b) The lacrimal artery (A. lacrimalis) runs upward and forward within the periorbita along the lateral edge of the levator palpebræ superioris to the lacrimal gland, in which it is chiefly distributed. It also sends twigs to the upper evelid.
(c) Muscular branches (Rami musculares) supply the orbital muscles, the periorbita, the third exelid, and the conjunctiva.
(d) Ciliary branches (Aa. ciliares), two sets of very slender arterics, arise from the ophthalmic direct and from the muscular branches. The anterior ciliary arterics (Aa. ciliares anteriores) pierce the sclera in front of the equator and ramify chiefly in the ciliary body and the iris. The posterior ciliary arterics (A. ciliares posteriores) pierce the posterior part of the sclera; most of them ramify in the chorioid coat as the short ciliary arteries, but two of larger size, the long ciliary arteries, run forward, one on each side, between the sclera and chorioid to the periphery of the iris. Here they divide into branches which anastomose and form a circle (Circulus iridis major). From this secondary branches are detached which form a second circle around the pupil (Circulus iridis minor).
(c) The central artery of the retina (A. centralis retinæ) is a small vessel which arises from the ophthalmic or from a posterior ciliary artery. It pierecs the optic nerve a short distance behind the sclera, and runs in its center to the lamina cribrosa, where it breaks up in thirty to forty fine branches. These appear in the fundus of the eye at the margin of the optic papilla and radiate in the posterior part of the retina.
(f) The ethmoidal artery (A. ethmoidalis) is the continuation of the ophthalmic. It enters the cranial cavity through the ethmoidal foramen, passes inward on the cribriform plate, and divides into meningeal and nasal branches. The former ramify in the anterior part of the dura mater and anastomose with branches of the artery of the corpus callosum. The nasal branch passes through the cribriform plate, gives brauches to the mucous membrane of the lateral mass of the ethmoid and the adjacent part of the septum nasi, and runs forward on the dorsal turbinate.
III. The third part passes forward in the pterygo-palatine fossa, accompanied by branches of the maxillary nerve. On reaching the posterior palatine foramen it is continued by the greater palatine artery. Its branches are as follows:
(1) The buccinator artery (A. buccinatoria) arises from the ventral aspect of the internal maxillary shortly after its emergence (Fig. 562). It turns around the maxillary tuberosity, accompanied by the buccinator nerve, and under the masseter muscle, enters the cheek, and runs forward in it. It supplies branches to the cheek, the superior buccal glands, and the masseter and pterygoid muscles. Near its origin it gives off a branch to the orbital fat behind the periorbita.
(2) The infraorbital artery (A. infraorbitalis) ${ }^{1}$ arises from the upper aspect of the internal maxillary a little in front of the preceding ressel. It passes upward and forward to the maxillary foramen, runs in the infraorbital canal in company with
${ }^{1}$ Also termed the superior dental artery.
the nerve of the same name, and is continued forward within the jaw to the incisor teeth. It gives branches to the teeth and gums, and detaches a branch through the infraorbital formen which anastomoses with the hateral nasal and superior labial. ${ }^{1}$ Ahout midway between its origin and the maxillary formmen it gives off the malar branch (Ramus malaris), which passes along the floor of the orhit to end in the lower lid and anastomose with the angularis oculi. It gives twigs to the inferior oblique musele and the lacrimal sace.
(3) The lesser palatine artery (A. palatina minor) is a small vessel which passes forward in the groove at the medial side of the maxillary tuberosity to the soft palate. In the groove it is accompanied by the nerve of the same name and the palatine vein.
(4) The sphenopalatine artery (A. sphemopalatina) arises in the anterior part of the pterygo-palatine fonsa, passes through the sphenomalatine foramen into the nasal cavity, and divides into two brandhes. The medial branch is distributed to the mucous membrane of the septum nasi; the lateral one goes to the ventral turbinate, the ventral meatus, the posterior nares, and the maxillary and frontal simuses. It may arise from the infraorbital.
(5) The greater palatine artery (1. patatina major) is the direct rontinuation of the intermal maxillary. It passes through the palatine eanal to the roof of the mouth, accompanied by the palatine nerve, and runs forward in the palatine groove, where it is joined by the win. A little behind the plane of the corner incisor teeth it curves medially over a bar of cartilage to the foramen incisivum, where it unites with its fellow of the apposite side. The single artery thus formed (A. palato-lahialis) passes up through the foranem and divides under the transversus nasi into tro branches. These ramify in the upper lip and anastomose with the lateral nasal and superior lalial arteries. In its course in the palate the artery gives off branches to the hard and soft palate and the gums, and others which pass through the acessory palatine foramina to be thistributed in the mucous membrane of the lower part of the nasal cavity. Commonly two branches, right and left, are detached from the convexity of the arch formed by the union of the two arteries; these run forward in the anterior part of the hard pabate.

Arteries of the Thoracic Limb THE BRACHIAL ARTERY

The brachial artery, after (rossing the ventrad horder of the scalenus at the first rib, passes backward and downward across the origin of the coraco-brachialis and the insertion of the sulscapularis muscle at the medial site of the shoulder joint. ${ }^{2}$ At the posterior borker of the subseapularis it gives off the subseapular artery, and turns distally on the medial surftee of the arm. In its course in the arm it inclines a little forward, crosees the humerus very obliquely, and is contimed by the median artery:

In its course owr the chest-wall the artery is related medially to the ventral border of the serratus thoracis and the rectus thoracis. Opposite the ventral end of the first rib it is crossed medially by the median merve and laterally ly the mus-culo-cutaneous nerve; the two nowes unite below the artery, which is thus suspended in a sort of loop. In the arm it is related medially to the posterior deep pectoral muscle and is covered hy the deep brachial fascia. Laterally it lies on the subscapularis, the brachialis, the insertion of the teres major and latissimus dorsi,

[^159]and the medial head of the triceps. The coraco-brachialis muscle lies along the front of the artery, which, however, overlaps the muscle clistally. The vein crosses the medial face of the artery and runs down behind it, accompanied part way by the ulnar and radial nerves. The chief branches are as foliows:

1. The suprascapular artery (A. thoraco-acromialis) is a small and somewhat flexuous vessel, which arises near the anterior border of the subscapularis, runs dorsally, and dips in between that muscle and the supraspinatus. It gives branches to these muscles, the anterior deep pectoral, and the brachiocephalicus. A branch passes in front of the coraco-brachialis to the shoulder joint and the proximal end of the humerus. ${ }^{1}$
2. The subscapular artery (1. sulscapularis) is a very large vessel which arises at the pusterior border of the subscapularis muscle. It ascends in the interstice between that muscle and the teres major, on the medial surface of the long head of the triceps, turns around the posterior border of the scapula below the dorsal angle, and ends in the infraspinatus and deltoid. Besides collateral mnscular branches (Rami musculares) to the subscapularis, teres major, triceps, and tensor fascise antibrachii, it gives off the following named branches:
(a) The thoraco-dorsal (A. thoracodorsalis) is a long artery which is usually given off about an inch from the origin of the subscapular, crosses the medial face of the teres major, and runs upward and backward on the latissimus dorsi. It gives branches to these muscles, the abdominal cutaneus and the axillary lymph glands.
(b) The posterior circumflex artery of the humerus (A. circumflexa humeri posterior) arises a little above the preceding vessel, and passes outward behind the shoulder joint between the long and lateral heads of the triceps with the axillary nerve. It gives branches to these muscles, the joint capsule, and the muscles and skin of the lateral side of the shoulder, anastomosing with the anterior circumflex artery.
(c) The circumflex artery of the scapula (A. circumflexa scapulæ) arises about two or three inches (ca. $5-7.5 \mathrm{~cm}$.) above the shoulder joint, passes forward to the posterior border of the scapula, and divides into two branches. The lateral one runs forwardon the lateral surface of the scapula below the spine, and gives branches to the supraspinatus, infraspinatus, and teres minor. The medial branch passes forward in a similar fashion on the costal surface of the seapula and supplies branches to the subscapularis.
3. The anterior circumflex artery of the humerus (A. circumflexa humeri anterior $)^{2}$ arises nsually at the anterior border of the teres major. It passes forward between the two parts of the coraco-brachialis or between the latter and the humerus. It gives branches to the coraco-brachialis and deep pectoral and ends in the upper part of the biceps and in the brachiocephalicus. It anastomoses nith the posterior eircumflex artery.

Not rarcly it is replaced largely by an artery which arises from the brachial at the distal end of the coraco-brachialis, and ascends on the front of the humerus. In these cases a small branch for the coraco-brachialis is usually given off at the usual point of origin of the anterior circumflex.
t. The deep brachial artery (.1. profunda brachii) is a large but short trunk which arises usually about the middle of the humerus. It passes backward to the interval between the tendon of the teres major and latissimus dorsi, and the long and medial heads of the triceps, where it divides into several branches which supply the triceps, tensor fascie antibrachii, anconeus, and brachialis. A brauch runs in the musculo-spiral groove with the radial nerve to the front of the elbow joint and anastomoses with the anterior radial. A slender branch descends along the lateral

[^160]

Fif, 56 h ,--Diseection of Shoulder and Arm of Horse; Medlal Surface.
A. Brachial artery; the stump of which has been turned backward; B, subscapular artery; C, thoraco-dorsal artery; D. deep brachial artery; E, ulnar artery; F, anterior radial artery; G, median artery; H, stump of brachalal vein; I, external thoracic vein; J, brachial win, part of which has been removed to expose deep brachial artery, K, K, K, median veins; L, cephalic vein; L^{\prime}, cornmunicating veim; H. brachiadis muscke; X. medial epicondyle of humerus; O. prescapular lymph glands; P. indicating position of axillary lymph glands, shoult be dorsal to vein: Q. position of cubital lymph glands: 1 , supraseapular nerve; 2, subscapular nerves; 3 , thoraro-dorsal nerve; \& musculocutaneous nerve: $\left\{^{\prime}\right.$, cutaneons branch of nusculo-cutaneous nerve; \bar{b}, median nerve: 6 , axillary nerse; 7 , ulnar nerve; γ^{\prime}, cutaneous branch of ulnar nerve: s, radial nerve; 9 , thoracic nerves. The vein at the rllow which lies in front of the nedian artery should be shown crossing ower the median nerve and the median and ulnar arteries, as in the next figure. (After Schmaltz, Atlas d. Anat. d. Iferdes.)
border of the extensor earpi and supplies cutaneous twigs. Anastomoses oceur with the ulnar and recurrent interosseous arteries.

The point of origin is inconstant and it is not uncommon to fimd two arteries instead of one. Oiten a large branch for the posterior deep peetoral muscle is detached close to the origin or arises from the brachial directly.

Fig. 567.-Dissection of Right Forearm and Carpts of Horse; Medlal View.
1, Whar vessels; 2, cutaneous brancb of musculo-cutaneous nerve: 3, 3, satellite veins of median artery: 4 , position of cubital lymph glauds; 5 , anastomosis of ulaar and lateral volar metacarpal arteries; 6, brachialis muscle; 7. superficial digital flexor; s, deep digital flexor. Dotted lines indicate contour of flexor carpi radialis, most of which has been removed. (After Schmaliz, Atlas der Anatomie des Pferdes.)
5. Muscular branches (Rami musculares) are distributed to the teres major, deep pectoral, coraco-brachialis, and biceps. The largest and least variable of these supplies the distal part of the biceps.
6. The ulnar artery (A. collateralis ulnaris proximatis) arises at the distal end of the coraco-brachialis and passes downward and backward along the ventral edge of the medial head of the trieeps under cover of the brachial vein and the tensor fascie antibrachii. It gives branches to these museles, the posterior superficial pectoral, the cubital lymph glands, cutaneus, and skin. At the elbow it lies on the posterior part of the medial epicondyle, in relation in front to the ulnar nerve, and largely covered by the satellite win; it then turns downward under the ulnar head of the flesor carpi ulnaris. It continues its descent with the vein and nerve under the deep fascia of the forearm botween the ulnar and humeral heads of the deep flexor of the digit, and in the distal half of the region between the lateral and middle flexors of the carpus. It unites just above the carpus (under cover of the flexor carpi ulnaris) with a branch of the median artery, with which it forms the supraearpal areh. It detaches small collaterals to the musces along which it passess and terminal twigs to the lateral suriace of the earpus.
7. The nutrient artery of the humerus (A. nutritia humeri) is a short vessel which enters the nutrient foramen of the humerus. It often arises from the ulnar.
\therefore The anterior radial artery (A. collateralis radialis distalis) ${ }^{1}$ passes downward and a little outward on the anterior face of the humerus under cover of the biceps and brachialis to the front of the ellow joint, where it is in contact with the radial nerve. It then descends on the anterior surface of the radius, under cover of the common digital extensor, to the carpus, where it coneurs in the formation of the rete earpi chrsale, anastomosing with the median and dorsal interosseous arteries. It supplies branches to the ellow joint, the biefps, brachialis, and the extensors of the carpus and digit. A cutaneous branch energes between the distal end of the bicens and the brachialis.

THE MEDIAN ARTERY

The median or posterior radial artery (A. mediana) ${ }^{2}$ is the direct continuation of the brachiat. It descemels, inclining slightly backward, at first on the mediat surface of the humerus, and then over the capsule and medial ligament of the etbow joint, under cover of the posterior superficial pectoral muscle. ${ }^{3}$ At the proximal third of the forearm it dips under the flexor carpi radialis and passes down the medial part of the posterior surface of the radius. In the distal part of the forearm it inclines backward and is separated from the radins by the reinforeing band (Caput tendineum) of the superficial flexor of the digit and is continued ly the common digital or large metacarpal artery.

It is accompanied by the median nerve, which lies in front of the artery at its origin, then usuatly crosses over it obliquely at the elbow joint and becomes posterior. At the distal cond of the arm the artery is erossed by the large anastomotic vein which connects the cephatie and brachial veins, and a radicle of the brachial vein lies behind and partly upon the artery; lower down there are usually two satellite veins, anterior and posterior. The chief collateral branches are as follows:

1. Articular branches are supplied to the elbow joint.
2. Muscular branches go to the flexors of the carpus and digit; the largest of these arise at the proximal third of the forearm.
3. The common interosseous artery (A. interossea communis) is a vessel of
${ }^{\text { }}$ This vessel is apparently the A. transversia cubiti of comparative anatomy.
${ }^{2}$. 1 though the homology of some arteries in this region are still unset tled, it seems clear that this vessel should be termed the median artery.
${ }^{3}$ The pulse can be taken where the artery lies on the ligament, since the pectoral muscle is thin here.
considerable size which arises at the level of the interosseous space, through which it passes outward. Before entering the space it gives off a small branch, the volar

Fio. 568.-Dissection of Left Foneabm of Honse; Lateral Slrface.
The radial and ulnar heads of the anterior digital extensor are shown in front of the lateral extensor, but are not marked. The muscular branches of the radial nerve are shown, but not designated individually. Dotted lines indicate contour of parts of muscles which have been removed (lateral head of triceps, extensor carpi radialis, lateral flexor of carpus). (After Schmaltz, Atlas d. Anat d. P'ferdes.)
interosseous artery (A. interossea volaris), which descends to the radial head of the deep flexor. In the space it supplies the nutrient arteries of the radius and ulna.

Emerging from the space it gives off branches to the ulnaris lateralis, and the small recurrent interosseous artery (A. interossea recurrens), which ascends on the lateral

1. Realial marpal hone; 2, aceessory carpal bone; 3 , seeond carpal bone. (After Schmaltz, Athas d. Anat, d. Pferdea.)

Fig. 540. Cross-semtun of Proximal Part of left Cabius of Horse.
 tendon; 3 (on volar carpal ligament), carpal canal; 4 , oblidue ligament from radius to ralial carpal bone; 5 , tendon of common extensor; ti, medial volar nerve; \quad, lateral volar nerve. Synovial cavities are black.
surface of the ulna and anastomoses with the deep brachiak and ulnar arteries. Under cover of the common digital extensor it connects with the anterior radial artery and gives off the dorsal interosseous artery (Fig. 56 f) . This vessel (A.
interossea dorsalis) descends between the common and lateral extensors of the digit and concurs with the anterior radial in forming a network on the dorsal surface of the carpus, the rete carpi dorsale. From the latter arise two small ressels, the medial and lateral dorsal metacarpal arteries (A. metacarpea dorsatis medialis, lateralis), which run distally in the grooves between the large and small metacarpal bones and anastomose with the volar metacarpal arteries.
4. The artery of the rete carpi volare (A. retis (arpi volaris) is a small vessel which arises at the distal third of the forearm and descends on the radius to the posterior surface of the carpus, where it concurs with branches of the volar metacarpat arteries in forming the rete carpi volare.
5. The lateral volar metacarpal artery (A. metacarpea volaris lateralis) ${ }^{1}$ is a small vessel which arises just above the carpus under cover of the flexor carpi uluaris and anastomoses with the uhar artery, forming the supracarpat arch. From the latter a branch descends with the lateral branch of the median nerve,

Fig. 5:1.-Cruss-section of Riget Metacarpts of Horse.
Section is cut a little above middle of region.
$1,1^{\prime}$, Dorsal metacarpal arteries; 2,2 , deep volar metacarpal arteries; 3, deep volar metacarpal vein; 4 , distal part of carpal sheath.
inclines outward toward the posterior border of the accessory carpal bone, and arrives at the head of the lateral metacarpal bone. Here it is connected with the medial volar metacarpal artery, usually by two transverse branches, thus forming the deep volar or subcarpal arch (Arcus volaris profundus proximalis). One of these branches lies between the subcarpal check ligament and the suspensory ligament: the other (not always present) lies beneath the latter on the large metacarpal bone. A small branch descends to the fetlock with the lateral volar nerve. Below the arch the artery pursues a flexmous course downward on the volar face of the large metacarpal bone alongside of the lateral small metacarpal and under cover of the suspensory ligament. At the distal third of the metacarpus it commonly unites with the corresponding vessel of the other side to form a short trunk which passes backward through the angle of divergence of the lranches of the suspensory ligament and joins the lateral digital or the common digital artery. This junction forms the distal volar arch (Arcus volaris distali.).
6. The medial volar metacarpal artery (A. metacarpea volaris medialis) ${ }^{2}$ is
${ }^{1}$. Ilso termed the external metacarpal artery.
${ }^{2}$. Aso called the internal or small metacarpal artery.
given off from the median at an acute angle, usually a little above the lateral one or hy a common trumk with it. It passes down the medial side of the earpus behind the tendon of the flexor carpi radialis and embedded in the posterior annular ligament. Arrixing at the proximal end of the medial metacarpal bone it becomes more deeply placed and is comected with the lateral volar artery by one or two transverse branches, as stated above. It then pursues a flexuous course downward

Fig. 572.-Disbection of Right Carpus, Metacarpes, and Digit of Horse; Medial View. (After Schmaltz, Allae d. Anat. d. Pferdes.)
alongside of the medial small metacarpal bone, like the corresponding lateral artery, with which it eommonly mites as deseribed above. It is larger than the lateral artery, and supplies the nutrient artery to the large metacarpal bone.

The foregoing account describes the most common arrangement of the dorsal and volar metacarpal arteries. Variations in their origin and connections are common, but have no great surgical importance. Collateral branches are omitted for the same reason. In some cases the mediad volar metararpal is connected with the common digital artery a little below the earpus hy a lranch passing obliquely aeross the medial border of the deep flexor tendon; this forms a supetficial volar arch.

THE COMMON DIGITAL ARTERY

The common digital artery (1. digitali, communis s. metacarpea volaris superficialis) ${ }^{1}$ is the direct contimuation of the median. It descends in the carpal canal along the medial side of the flexor tendons in company with the medial volar nerve. Continuing down the limb it preserves this relation to the tendons to the distal third of the metacarpus, where it inelines toward the middle line of the limb behind the suspensory ligament, and divides into the medial and lateral digital arteries. In the metacarpus the artery is related to the vein in front and the nerve behind, and is covered by the fascia and skin. It furmishes collateral branches to the suspensory ligament, the flexor tendons, and the skin.

THE DIGITAL ARTERIES

The digital arteries, medial and lateral (A. digitalis volaris propria medialis, lateralis), are formed by the bifurcation of the common digital at the distal third of the metacarpus. They diverge, pass down over the abaxial surface of the corresponding sesamoid at the fetlock, and descend parallel with the borders of the deep flexor tendon to the volar grooves and foramina of the third phalanx. Entering the latter the two arteries unite in the semilunar canal and form the terminal arch (Arcus terminalis), from which numerous branches pass through the bone to the dorsal surface and ramify in the corinm of the wall and sole of the hoof. ${ }^{2}$ A number of branches emerge through the foramina at the distal border, where they anastomose with each other in arciform fashion.

These branches were namel by Spooner the inferior commumicating arteries, and the anastomotic arch formed by them is termed the circunflex artery of the third phalanx (Chauveau) or the artery of the distal border of the third phalanx (Leisering).

Each artery is accompanied by a vein and by the digital nerves. Above the fetlock the artery is most deeply placed and is corered by the vein; the nerve is beh nd the vein. At the fetlock the artery has become superficial and is related to the vein in front and the posterior branch of the nerve behind. The anterior branch of the nerve crosses over the artery obliquely to the side of the first phalanx. The artery and nerves are crossed obliguely by a small band, the tendon or ligament of the ergot (vide digital fascia).

In addition to branches to the joints, tendons and synovial sheath, ergot, and skin, the digital arteries give off the following named branches:

1. The artery of the first phalanx (A. phalangis prime) ${ }^{3}$ is a short trunk which arises at a right angle about the middle of the first phalanx, and divides into dorsal and volar branches. The dorsal branch (Ramus dorsalis) passes between the first phalanx and the extensor tendon and ramifies on the front of the digit, anastomosing with its fellow. The volar branch (Ramus volaris) dips in between the flexor tendous and the first phalanx and anastomoses with the opposite artery between the superficial and middle distal sesamoidean ligaments.
2. The artery of the digital cushion (A. torice phalangis tertia) arises at the proximal border of the cartilage of the third phalanx and passes backward and downward to ramify in the digital cushion and the corium of the heels and frog.
3. The dorsal artery of the second phalanx (Ramus dorsalis phalangis secundæ) arises a little above the level of the distal sesamoid bone, and passes forward under cover of the cartilage of the third phalanx and the extensor tendon to the front of the second phalans, where it anastomoses with the opposite vessel. It gives

[^161]branehes to the skin, the tendon, the coffin joint, and the eoronary corium of the houf.
4. The volar artery of the second phalanx (Ramus volaris phalangis seeunda) is smakler than the preceding, opposite to which it arises. It passes above the proximal border of the distal sesamoid and unites with the opposite artery.

Abstract

The arteries of the serond phatanx form what is termed by Chauveau the coronary circle. The dorsal (anterier) purt of the circte gives off commonly an artery (A . coronalis phatangis tertian) near either side of the extensor tendon, which divides into two branches. The central branch unites with that of the opposite side, while the other joins a branch of the artery of the digital cushion. In this way is formed the circumflex artery of the coronary cushion, in anastomotic arch which lies on the extensor tendon at the coronet. In some cases descending branches of the arteries of the first phalanx concur in the formation of the arch.

5. The dorsal artery of the third phalanx (A. dorsalis phalangis tertie) ${ }^{1}$ arises at the deep face of the angle of the third phatans, passes through the noteh or foramen there, and rums forward in the groove on the dorsal surface. It gives off ascending and deseending branches, which ramify in the corium of the wall of the hoof, anastomosing above with the ciremmflex artery of the cormary cushion and distally with the circmoflex artery of the third phatans. Before passing through the wing it detaches a retrograde branch to the digital cushion, and after emerging, one which ramifies on the convex surface of the cartilage of the third phatans.

BRANCHES OF THE THORACIC AORTA

In addition to the coronary arteries and the eommon brachiocephatie trunk (which have been described), the thoracic part of the aorta gives oll branches to the thoracie walls and viscera and to the spinal cord and its membranes. The visceral branches (Rami viscerales) are the bronchal and cesophageal, which arise by a broncho-asophageal trunk. The parietal branches (Rami parietales) are the intercostal and phrenic arteries.

1. The broncho-œsophageal artery (Truncus hroncho-(xsophageus) is a short, usually halbous, trumk which arises at the sixth thoracic vertehra from the aorta or in eommon with the first aortic intereostal arteries. It deseends (under cover of the vena azygos) over the right face of the aorta toward the lifurcation of the trachea and divides into bronchial and osophageal branches. The bronchial artery (A. lronchialis) (rosses the left faee of the usophagus to the bifurcation of the trachea, where it divides into right and left branches. Each enters the hilus of the corresponeling lung above the bronchus, which it aceompanies in its ramification. It supplies the lung tissue and also detaches twigs to the bronchial lymph glands and the metiastinum. The œesophageal artery (A. crsophagea) (Fig. 554) is a small vessel which passes lrackward dorsal to the orsophagus in the posterior mediastimum and anastomoses with the ersophageal branch of the gastric artery. It detaches twigs to the cesophagus and the mediastinal lymph glands and pleura, and gives off two branches which pass hetween the havers of the ligaments of the hongs and ramify in the sulpleural tissue. Very eommonly there is another artery which runs backward ventral to the arsophagus. ${ }^{2}$
2. The intercostal arteries (Aa. intereostales) (Figs. $5.53,554$) number eighteen pairs. The first arises from the deep eervieal artery, the next three from the subeostal branch of the dorsal artery, and the remainter from the aorta. The aortic intercostal arteries arise from the dorsal face of the aorta in pairs close together; the fifth and sixth usually spring from a common stem. Each pasies aeross the body of a vertebra to the eorresponding intereostal space, detaches twigs to the vertebre and the pleura, and divides into dorsal and ventral hranches. The dorsal
${ }^{1}$ Also termed the preplantar artery.
${ }^{2}$ In some cases there is no broncho-c*sphageal trunk, the bronchial and arsophageal arising separately. In other cases the second aortic intereostal arises in common with them also,
branch (Ramus dorsalis) gives off a spinal branch (Ramus spinalis) which passes through the intervertebral foramen, gives twigs to the membranes of the spinal rord, perforates the dura, and reinforces the sentral spimal artery. A muscular branch passes to the muscles and skin of the back. The ventral branch (Ramus ventralis) is much the larger. It descends, at first almost in the middle of the intercostal space between the intercostal muscles, then gains the posterior border of the rib, and is subpleural. Each is accompanied by a vein and nerve, the artery being in the middle and the vein in front. At the ventral part of the space it unites with a rentral intereostal branch of the internal thoracic or the musculo-phrenic artery. It supplies the intercostal muscles, the ribs and the pleura. and gives off perforating branches which pass out to the serratus ventralis, the abdominal muscles, and the skim.
3. The phrenic arteries (Aa. phrenice) are two or three small vessels which arise at the hiatus aorticus from the ventral aspect of the aorta, often by a common trunk. They supply the crura of the diaphragm. In some cases they arise in common with an intercustal artery.

BRANCHES OF THE ABDOMINAL AORTA

The collateral branches of the abdominal part of the aorta are distributed chiefly to the walls and contents of the abdominal cavity; but some branches are

Fig. 573. - Plav of Bravches of Cchltac Artery of Horse.
1, Coliac artery; 2. gastric artery; 3, hepatic artery; 4, splemic artery; 5, posterior gastric artery; 6, anterior gastric artery; $\tilde{\text {, epsophageal branch; }} \delta$, gastro-duodenal artery; 9 , pancreaticoduodenal artery; 10, right gastroepiploic artery; 11, pyloric artery; 12, left gastro-epiploic artery: 13 , short gastric branches of splenic.
supplied to the spinal cord and its membranes, and others extend into the pelvis and to the scrotum. The visceral branches are the cceliac, anterior mesenteric,
renal, posterior mesenterie, and internal spermatic or utero-ovarian. The parietal branches are the lumbar arteries.

1. The coeliac artery (A. cerliaea) is an umpaired vessel, usually half an inch or less (ca. 1 cm .) in length, which arises from the ventral aspect of the aorta at its emergence from the hiatus aorticus. It divides on the dorsal surface of the panereas into three branches-the gastric, hepatie, and splenic.
2. The gastric artery (1. gastrica sinistra) passes downward and forward in the gastro-phrenic ligament, gives off cesophageal and panereatic branches, and divides above and behind the eardia into anterior and posterior branches. The anterior branch (Ramus (ranialis) crosses the lesser curvature just to the right of the cardia and ramifies on the parietal surface of the stomach. The branches pursue a flexuous course toward the greater eurvature and anastomose with the short gastric arteries and the gastric branch of the hepatie artery. The posterior branch (Ramus caudalis) is distritmed in a similar fashion on the viseeral surface. The œesophageal branch (Ramus cesophageus) passes through the hiatus asophageus into the thoracie cavity above the erophagus and anastomoses with the asophageal branch of the broncho-osophageal artery.

The gastrie artery often arises by a common trunk with the splenie. The two terminal hranches may arise separately, or the tanterior from the splenie and the posterior from the hepatie. The osophageal branch often arises from the splenie or the posterior gastric.
2. The hepatic artery (A. hepatiea) is larger than the gastric. It passes forward and to the right and ventrally on the dorsal surface of the panereas, covered by the gastro-pancreatie fohd, crosses obliquely under the vena cava, and reaches the medial border of the portal vein. It divides into three or four branches whieh enter the portal fissure of the liver and ramify within the gland with the portal vein and the hepatie duct. It gives off the following eollateral branches: (1) Pancreatic branches (Aa. panereatice) are gion off as the artery crosses the pancreas, in which it is partly embedded. (2) The pyloric artery (A. gastrica dextra) arises above the first curve of the chodenum. It descemds to the pytorus, sending branches to the pytorus and the first part of the duodmum, and anastomoses with the gastric and right gastro-epiploie arteries. It may arise from the gastro-duodenal. (3) The gastro-duodenal artery (A. gastroduodenatis) passes to the second eurve of the duodenum and divides into the right gastro-epiploie and the panereatieo-duodenal. The right gastro-epiploic artery (A. gastroepiploica dextra) crosises over the posterior surfare of the duodonum and enters the greater omentum, in which it runs to the left, parallel with the greater curvature of the stomach. It gives branches to the latter and to the omentum and forms an anastomotic arch with the left gastroepiploic artery. The pancreatico-duodenal artery (Λ. panereaticoduodenalis) divides into pancreaticend duokenal branches. The former (Ramms panereaticus) supplies the middle part of the panereas and is often replaced by a number of variable twig. The duodenal hraneh (Ramus duodenalis) passes to the right along the lesser curvature of the duodenum and anastemoses with the first branch of the anterior mesenteric artery.

Variations in the branching of the hepatic artery are not uneommon. The pancraticoduotenal may arise direetly from the trumk, and there may be a common trank for the pyloric and right gastro-cpiplois which runs along the dorsal surface of the first curve of the duotenum to the pylorus; bere it gives off the small pyloric branch and is continued across the parietal surface of the pylorus as the right gastro-epiploic, no gastre-duodenal trunk being present.
3. The splenic artery (A. lienalis) is the largest branch of the coeliac. It passes to the left (with the large satcllite vein) on the left extremity of the pancreas and aeross the saecus etecus of the stomach. Entering the suspensory ligament of the spleem, it runs in the hilus of the spleen to the apex, beyond which it is continued as the left gastro-epiploic. It gives off the following branches: (1) Pancreatic branches (Rami pancreatici), which supply the left extremity of the pancreas.
(2) Splenic branches (Rami lienales), which plunge into the substance of the spleen.
(3) Short gastric branches (Aa. gastricue breves), which pass in the gastro-splenic omentum to the greater enrvature of the stomach, where they bifurcate and anastomose with the branches of the gastric arteries. (4) The left gastro-epiploic

Fig. 574.-PlaN of Chief Bravehes of Anterior Mesenteric Artery of Horse,
1 , Stump of anterior mesenteric artery; \mathcal{L}, stumps of arteries of small intestine; 8 , lateral cæcal artery; 4 , medial cecsil artery; 5 , ileal artery; 6 , ventral colic artery; 7 , dorsal colic artery; δ, middle colic or first artery of suall colon. By an oversight the left ventral colon is erroneously labeled right dorsal (upper left part of figure).
artery (A. gastroepiploica sinistra) is the continuation of the splenic artery. It passes to the right in the greater omentum, parallel with the greater curvature of the stomach, and anastomoses with the right gastro-epiploic. It gives off branches to the greater eurvature of the stomach and twigs to the omentum.

 branches of extermal spermatic nerve; 20, external eutaneous nerve of thigh; 21, femoral nerve; 22, saphonous nerve; 2.5, branch of 22 to surtoritus.

(A. mesenterica cranialis.) arises from the ventral face of the aorta at the first lumbar vertebra. It is a large unpaired trunk, about an inch (ca. 2-3 em.) in length, which passes ventrally between the vena cava and the left adrenal into the root of the great mesenters, when it divides into three branches-left. right, and anterior. ${ }^{1}$

1. The left branch gives off at once about fifteen to twenty arteries of the small intestine (Aa. intestinales.). These come off close together and pass in divergent fashion between the layers of the great mesentery, each dividing into two branches which anastomose with adjacent branches to form a series of arehes. In the anterior part of the series secondary arches are formed by the union of branches given off from the primary set of arches. From the convex side of these arehes terminal branches pass to the wall of the small intestine, in which they ramify and form a vascular network. They are accompanied by satellite veins and by nerves and lymph vessels. The first artery anastomoses with the pancreatico-duodenal. and the last with the ileal branch of the great mesenteric artery: Branches are supplied to the mesenteric lymph glands.
2. The right branch (A. ileo-ereco-colica) might be regarded as the continuation of the trunk. It runs downward and a little forward and to the right, and gives off the ileal, the two cecal, and the ventral colic arteries. (1) The ileal or ileo-cecal artery (A. ilea) pases in retrograde fashion alung the terminal part of the ileum and unites rith the last branch of the left division. (2) The lateral cæcal artery (Ramus cæcalis lateralis) passes between the cecum and the origin of the colon and runs on the lateral band of the ceecum to the apex, where it anastomoses with the medial artery. Besides numerous collaterals to the cecum, it gives off the artery of the arch, which pases along the lesser curvature of the base of the carcum and runs on the lateral face of the origin of the great colon. (3) The medial cæcal artery (Ramus cæcalis medialis) passes along the medial band to the apex of the cercum, where it anastomoses with the lateral ceecal artery. (4) The ventral colic
${ }^{1}$ In the great majority of subjects this ressel and some of its branches are the seat of more or less extensive verminous ancury*m, produced by the sclerostomum vulgare. In the author's experience an entirely normal specimen is quite unlikely to be encountered except in very young foals.
${ }^{2}$ The left branch is a descriptive convention rather than a reality, since the arteries of the small intestine spring from the mesenteric trunk either directly or by short common stems with an adjacent vessel.
artery (A. colica ventralis) ${ }^{2}$ runs along the dorso-medial bands of the opposed surfaces of the ventral parts of the great colon to the pelvie flexure, where it unites with the dorsal colic artery. It supplies the ventral parts of the great colon and sends a loranch to the base of the cexum.
3. The anterior branch divides after a very short course into the dorsal and middle colic arteries. (1) The dorsal colic artery (1. colica dorsalis) ${ }^{2}$ is a large ressel which passes along the dorsal parts of the great colon to the pelvic flexure, where it joins the rentral eolic artery. (2) The middle colic artery or first artery of the small colon (1. colica media) is a much smaller vessel which passes to the origin of the small colon, enters the colic mesentery, and forms an arel ly joining the first branch of the posterior mesenteric artery close to the lesser eurvature of the bowel. It sends an anastomotic branel to the dorsal colie artery.
III. The renal arteries (ta. renales), right and left, are relatively large vessels which arise from the aorta near the anterior mesenteric. The right artery is the longer of the two. It crosses over the dorsal surface of the vena cava to the right and somewhat forward. It the hilus it divides into several (five to eight) branches; some of these enter the gland at the hilus, while others pass to the ventral surface and enter there. The left artery is short and usually arises a little further back; it passes directly outward to the kidner and is then disposed like the right one. Amall collateral branches are supplied to the ureters, the perirenal fat, the remal lymph glands, and the adrenals. The latter also receive small adrenal arteries directly from the aorta. The distribution within the kidney has been described.

Variations in the renal arteries are frequent. Two or more arteries may oecur on one side or both. Decessory arteries are more cemmon on the left sifle and usually enter the posterior part of the gland. They may arise from the aorta, the external iliac, or the circumfles iliac artery.
IV. The posterior or small mesenteric artery (A. mesenterica caudalis) is an umpaired vessel which arises from the ventral face of the aorta at the fourth lumbar vertebra, i. c., about five or six inches (\times a. $12-15 \mathrm{~cm}$.) behind the origin of the anterior mesenteric artery. It is much smatler than the latter and supplies the greater part of the small colon and rectum. It deseends in the colic mesentery and, after a short course, divides ints) two branches. The anterior branch (A. colica sinistra) gives off three or fonr arteries which divide and form anastomotic arches close to the howel. The first areh is formed ley union with the middle colic braneh of the anterior mesenteric. The posterior branch or anterior hæmorrhoidal artery (A. hiemorrhoilalis cranialis) passes hackward in the upper part of the mesentery and the mesorectum and terminates near the anus by anastomosing with the internal pudic artery. Three or four of its anterior collateral branches form arches.
V. The internal spermatic arteries (Aa. spermatiete interne), right and left, are long slender arteries which arise from the aorta near the posterior mesenteric and supply the testicle and epididymis. ${ }^{3}$ Each passes backward in a narrow fold of peritoneum (Plica vaseulosa) to the internal inguinal ring and deseends through the inguinal canal to the serotum. In its course in the anterior border of the spermatic cord it forms numerous coils, surrounded by the pampiniform plexus of veins, and associated closely with the spermatic nerves and lymphaties and unstriped muscle-fibers. It passes between the epididymis and testiele, runs in flexuous fashion along the attached border of the latter, turns around the posterior pole, and runs forward on the free border to the anterior pole. The largest branches arise from its ventral part, pass tortuonsly up either side of the gland, embedded in the tumica albuginea, and give off fine branches to the gland substance. Small
${ }^{1}$ Also termed the right or direct colic artery.
${ }^{2}$ Also termed the left or retrograle colic artery.
${ }^{3}$ Variations in the origin of the internal spermatie artery are common. It may arise from the posterior mesenteric, or from the renal, or the two may arise by a short common trunk.

L, Lumbar vessels; V.c., posterior veua cava; A, aorta (termination); C, sympathetic truuk; 1 , internal iliac artery; z, lateral sacral artery; 3 , middle coceygeal artery; 4 , iateral coccygeal artery; $\overline{5}$, umbilical artery (cut off); 6 , internal pudic artery: σ^{\prime}, vesico-prostatic artery; γ, obturator artery; S, a. profunda penis (from left obturator); 9 , posterior gluteal vessels; 10 , external iliac artery; $11,11^{\prime}$, deep fermoral artery; 12 , prepubic artery; 13, branch of deep femoral artery; 14, great sciatic nerve; 15, posterior ghateal nerve; 16 (above), pudic nerve; 16 (below, near pelvic outlet), suburethral venous plexus; $1 \sim$, sacro-coccygeus ventralis; $1 S$, coceygeus; 19 , recto-coccygeus; 20 , retractor ani: 21, 21', two heads of obturator interous: 22, symphysis pelvis; 23, prepubic tendou; 24, suspensary ligament of penis; 25, retractor penis muscle; 26 , bulbo-cavernosus muscle; 2π, urethra (cross-section); 28, crus penis (cross-section); 29, suspensory ligaments of anus; 30, aaal tymph glands; 31, tibial nerve. (After schmaltz, Atlas d . Anat. d. Pferdes.)
collateral branches are detached to the ureter, the epididymis, and the spernatie corrl.

Va. The utero-ovarian arteries in the female correspond to the preceding vessels, but are muth larger and shorter. Each is placed in the anterior part of the brod ligament of the uterus and divides into ovarian and uterine loranches. The ovarian artery (1 . ovariea) pursues a flexusus course to the ovary, which it supplies. The anterior uterine artery (A. uterina (ramialis) passes to the coneave border of the cormu of the uterus, which it supplies, anastomesing with the midelle uterine artery:
II. The lumbar arteries (A: humhales) are in series with the intereostal

Fig. 547.-Disaection of Perinetm of LIorse (Mile).
 bulbo-eavernosus muscle. (After Schmaltz, Atlas d. Anat. (1. I'ferdes.)
arteries and haw a similar origin and distribution. There are usually six pairs of hmbar arteries, of whiclo five arise from the aorta and the sixth from the internal iliace or the lateral sacral at the junction of the last lumbar vertebra and the sacrum. Each passes across the body of a lumbar vertebra to the intertranswerse sace, gives branches to the sublumbar museles, and divides into dorsal and ventral branches. The dorsal branch (Ramus dorsalis), the larger of the two, pasises upward to ramify in the extenswr museles of the spine and the skin of the loins; it gives off a spinal branch (Ramms spinalis) which comports itself tike the corresponding branch of an aortie intereostal artery. The ventral branch (Ramus ventralis) runs ontward in the intertranserse spare, passes hetween the transversus
and obliquns internus abdominis, gives branches to these muscles, and ends in the obliquus externus, the cutaneus, and the skin of the flank.

THE INTERNAL ILIAC ARTERY

The internal iliac or hypogastric arteries (Aa. hypogastrice) result from the bifurcation of the aorta under the fifth or sixth lumbar vertebra. They diverge at an angle of about 60 degrees, and each passes backward under the wing of the: sacrum, then inclines downward on the pelvic surface of the shaft of the ilium. along the ventral border of the iliac head of the obturator internus, and divide- a

Fig. 5is.-Dissection of Perinetcs of Mare,

1. Sacro-coccygeus dorsalis; 2, sacro-coceygeus lateralis; 3 , intertransversales: 4 , sacro-cocrygeus ventralis: i, recto-coccygeus; 5, sphincter ani externus: 6^{\prime}, branch connecting sphincter ani with constrictor vulvæ; λ, vestibular bulb: s, tuber ischii: 9. sacro-sciatie ligament. (After Schmaltz, Atlas d. Anat. d. Pierdes.)
little (ca. 2 cm .) above the psoas tubercle into iliaco-femoral and obturator arteries. The chief branches are as follows:
2. The last pair of lumbar arteries pass up through the foramina at the junction of the last lumbar vertebra and the sacrum and are distributed as alreadydescribed.
3. The internal pudic artery (A. pudenda interna) arises near the origin of the internal iliac. It passes backward and somewhat downward, at first along the ventral border of the iliac head of the obturator internus, then above the superior ischiatic spine on the deep surface of the sacro-sciatic ligament, perforates the latter and runs for a variable distance in its substance or on its lateral face. It then reenters the pelvic cavity, passes backward on the retractor ani to the ischial arch. and divides into the perineal artery and the artery of the bulb in the male, perineal and artery of the clitoris in the female. It is accompanied posteriorly by the pudic nerve. Its chief branches are as follows:
(1) The umbilical artery is given off from the internal pudic about an inch (ea. $2-3 \mathrm{~cm}$.) from the origin of that wasel. It is a very large artery in the fortus, in which it curves downard and forward at the side of the blader in the edge of the lateral umbilieal fokl of peritoneum, passes through the umbilical opening, beeomes a component of the umbilical cord, and ramifies in the foetal placenta. After birth it extemds only to the vertex of the bladder and is much redueed. Its lumen is ahmost obliterated and its wall is very thick, giving the vessel a cord-like character, henee it is commonly termed the round ligament of the bladder. ${ }^{1}$ It gives off small vesical branches (Aa. vesieales eramiales) to the bladder, and twigs to the prostate and ductus deferens in the male. In the mare a small branch runs forward along the weter into the hroad ligament of the uterus.
(2) The middle hæmorrhoidal or vesico-prostatic artery (A. hæmorrhoidalis media) in the male arises usually near the prostate and runs backward lateral to the rectum. It supplies branches to the rectum, hadder, urethra, and aceessory genital glands. In the fenald the homologous vessel is much larger and gives off the posterior uterine artery (A .

Fig. 57% - Croms-section of Tail of Horse.

1. Dorso-lateral coceyget vessels and nerve: 2, ventro-lateral cocrygeal attery and nerve; 3, middle coneygeal artery; 4, sacrococcygens dorsahs; 4^{\prime}, sacro-coccygeus laterahs: $j^{\prime}, \dot{3}^{\prime}$, intertransversalrs; 6, sacro-coceygeus ventralis; γ, recto-coceygeus; 8 , cocerecal fascia; 9 , fibro-cartilage between fourth and fifth coceygeal vertebre. The veins are black. uterina (audalis). This runs forward on the side of the vagina, to which it gives branches, and ramifies on the body of the uterus, anastomosing with the anterior and middle uterine arteries. (In some cases this artery arises from the internal iliae or the umbilical.)
(3) The perineal artery (A. perinei) is relatively small in the male. It aseends at the side of the anus, which it supplies, and gives twigs to the bulloreavemosus musele and the skin of the perineum. In the female it is large and is distributed to the anus and vulva, and gives a large branch to the vestibular bullb.
(4) The artery of the bulb (A. bulli urrthræ) may be regarded as the direct continuation of the internal pudie in the male. It lies at the side of the urethra above the ischial arch, dips unter the bulbo-eavernosus musele, and ramifies in the corpus eavernosum urethre. Before doing so it gives off a small branch which turns around the ischial arch to reach the dorsum penis, and anastmoses with the deep branch of the obturator.
(4a) The artery of the clitoris (A. clitoridis) is the homologue in the female of the preceding vessel, but is murh smaller. It passes to the ventral surface of the vulva with a branch of the purlic nerve, supplies the clitoris, and gives twigs to the vulva.
2. The lateral sacral artery (A. sacralis lateralis) arises at the lumbo-sacral articulation (Fig. 576). It passes baekward under the wing of the saerum, then along the pelvie surface of the bone below the ventral saeral foramina and the nerves omerging from them, and is continued by the lateral coceygeal artery. The branches are as follows:
(1) Spinal branches (Rami spinales) enter the vertebral canal through the

[^162]

Fig. 5s0.-Dissection of Pelits, Thigh, and Leg of Horse; Lateral View.

1. Dorsal branches of last thoracic and first three lumbar nerves; 2 , cutaneous branch of fourtb lumbar nerve: 3 , veatral branches of last thoracic nerve; 4, branches of ilio-hypogastric nerve; 5 , superficial branch of ilio-inguinal nerve; 6 , great sciatic nerve; 7,8 , nerves to biceps femoris (from posterior gluteal nerve); 9 , berve to semitendinosus (from same); 10 , posterior cutaneous nerve of thigh; 11 , pudic nerve; 12, anterior gluteal vessels and nerves; 13, posterior gluteal vessels; 14, branches of obturator vessels; 15 , proximal muscular branches of great sciatic nerve to biceps femoris, semitendinosus, and semimembranosus; 16 , merve to tensor fasciæ latæ (from anterior gluteal nerve); 1%, gluteus profundus; 18 , stump of ghteus medius; 19 , gemellus; 20 , stump of quadratus femoris; 21 , stump of biceps femoris; 92, sacro-coccygeus dorsalis; 222^{\prime}, sacro-coccygeus lateralis; 23 , coccygeus; 24 , sacro-coccygeus veatralis; 25 , line of fusion of aponeuroses of internal and external oblique muscles of abdomen; 23 , aponeurosis of external oblique muscle (lamina iliaca) ; 26, branches of iliaco-femoral vessels; 2π, ilio-lumbar vessels; 28, ilio-lumbar ligament or deep layer of lumbo-dorsal fascia; 29 , tuber coxæ; 30 , tuber sacrale; 31 , lateral sacro-iliac ligament; 32, sacro-sciatic ligament. The ventral part of a nineteenth rib is shown in front of 3. (After Schmaltz, Atlas d. Anst. d. Pferdes.)
ventral sacral foramina. They give off loranches to the spinal cord and its membranes, which reinforce the ventral spinal artery, and others which emerge through the dorsal sacral foramina and supply the muscles and skin of the croup.
(2) The middle coccygeal artery (A. coceygea) is an unpaired vessel which arises from the right or left lateral sarral or from a lateral eocergeal artery. It passes barkward on the pelvie surface of the sucrum to the median line and contimues in that position along the tail between the rentral muscles, supplying these and the skin.
(3) The posterior gluteal artery (A. glutea caudalis) ${ }^{1}$ emerges through the upper part of the samosesiatic ligament and runs on the latter toward the tuber ischii, under cover of the hiceps femoris (Fig. 580). It gives branches to that

2. Eatornal pudic artery and small satellste vem: 2 , adastoobsis between external pudic vein and decp femoral
 (stumps); s. medial margio of obturator foramen; 9 , oripin of gracilis; 10 , origio of adductor; 11 , bulbucavernosus; 12, retractor pens; 13, sumpermory ligament of peus. After Scbmaltz, Atlas d Anat d Pferdes.)
muscle, the semitendinosus, semimembramosus, superfieial glutens, and cocevgens, and anastomoses with the obturator, deep fomoral, and posterior femoral arteries.
(4) The lateral coccygeal artery (A. caudalis lateralis ventralis) continues the direction of the lateral sareral, but is much smaller tham the preceding wessel. It passes back between the ventral and intertransversales muscles of the tail and divides into dorsal and ventral branches which supply twigs to the museles and skin.
3. The ilio-lumbar artery (A. iliolumbalis) arises at a right angle from the internal iliac and runs outward behind the sacro-iliac joint, crossing the ventral surface of the ilium under cover of the iliacus muscle. It gives branehes to the iliopsoas and longissimus, turns around the lateral border of the ilium a little behind the tuber eoxa, and ends in the gluteus medius and tensor fascia latie (Fig. 580).
4. The anterior gluteal artery (A. glutea cranialis) is the largest branch of the internal iliae. It arises usually opposite to the preeeding vessel, and passes outward

[^163]through the greater sciatic foramen, dividing into several branches as it emerges; these enter the gluteal muscles (Fig. 580).
6. The iliaco-femoral or lateral circumflex artery of the thigh (A. circumflexa femoris lateralis) passes ventro-laterally across and beneath the shaft of the ilium, under cover of the iliacus muscle, and dips in between the rectus femoris and vastus lateralis. It is accompanied by two satellite veins. It gives collateral branches to the iliopsoas, the glutei, and the tensor fasciæ latie, supplies the nutrient artery of the ilium, and terminates in the quadriceps femoris (Fig. j80).
7. The obturator artery (A. obturatoria), the medial terminal branch of the internal iliac, passes downward and backward on the pelvic surface of the shaft of the ilium, along the ventral border of the iliac head of the obturator internus, accompanied by the satellite vein and nerve, which lie ventral to the artery (Fig. 576). On reaching the obturator foramen it dips under the obturator internus and passes obliquely through the lateral part of the foramen. In this part of its course it gives off a vesical branch and twigs to the obturator internus and the hip-joint. It emerges from the obturator foramen behind the obturator externus, passes between the quadratus femoris and the adductor, runs backward on the ventral face of the ischium, and, in the male, enters the crus penis, forming the arteria profunda penis. It anastomoses with the internal pudic, and usually with the external pudic by a branch (A. dorsalis penis caudalis) which runs forward on the dorsum penis. Collateral branches are detached to the obturator muscles, the adductors of the thigh, the semimembranosus, biceps femoris, and semitendinosus, and anastomoses are formed with the deep femoral and posterior femoral arteries. In the female the terminal part is small and enters the root of the clitoris.

ARTERIES OF THE PELVIC LIMB

The main arterial trunk of each pelvic limb descends to the proximal part of the posterior surface of the tibia, where it divides under cover of the poplitens muscle into the anterior and posterior tibial arteries. The different parts of the trunk receive names which correspond to the several regions through which it passes. In the abdomen it is termed the external iliac artery, in the proximal twothirds of the thigh it is called the femoral artery, and distal to this it is termed the popliteal artery.

The External lliac Artery (Figs. 575, 576)
The external iliac artery (A. iliaca externa) arises from the aorta under the fifth lumbar vertebra, and usually just in front of the origin of the internal iliac. It descends at the side of the pelvic inlet along the tendon of the psoas minor, crosses the insertion of that muscle, and reaches the level of the anterior border of the pubis, beyond which it is continued by the femoral artery. It is covered by the peritoneum and fascia, and is related behind to the corresponding vein. Its chief branches are as follows:

1. The circumflex iliac artery (A. circumflexa ilium profunda) arises from the external iliac at its origin or from the aorta directly. It passes across the iliac fascia toward the tuber coxe, and divides into two branches at or near the lateral border of the psoas major. The artery lics between the fascia and the peritoneum and is accompanied by two veins. It furnishes small branches to the psoas muscles and the external iliac lymph glands. The anterior branch gives twigs to the iliacus and psoas muscles, and passes downward and forward in the flank ou the transversus abdominis, along, or under cover of, the upper margin of the obliquus abdominis internus. It gives branches to these muscles, the obliquus ablominis externus, and the skin of the flank. The posterior branch perforates the abdominal wall close to the tuber coxæ, and runs downward on the medial face of the tensor
fasciex latie to the fold of the llank, supplying branches to that mascle, the entaneus, the prefemoral lymph glands, and the skin.
2. The external spermatic or cremasteric artery (A. spermatical exterma) is a very small vesiel whicl arises in a variable mamer. It springs most often from the external iliae near the origin of the latter, but may come from the circumflex iliac, the aorta betwem the external and internal iliac, or the latter vessel. It accompanies the eremaster musele to the inguinal canal, supplies twigs to that musele, the tumica vagimalis, aud other constituents of the spermatic corl (Fig. 575).

2a. The middle uterine artery (A. uterina media) of the female is regarded as the homologue of the preceding vessel; it has a similar origin, but is a much larger artery. It enters the boow ligament of the nterns, in which it pursues a flexuous course to the posterior part of the horn of the uterus. Its branches are distributed to the uterus and anastomosic with those of the other utcrine arteries.

The Femoral Artery (Figs. 575, 576)

The femoral artery is the main arterial trunk of the thigh. It begins at the level of the anterior border of the puhis, from which it is separated by the femoral

Fig. 5n2.-Dinsection of Ingunal Reglun and Medal surface of Thigh of 11 obse,

Abstract

1, External pudic artery; 2, anterior branches of $1 ; 2$, posterior branches of $1 ;$, tradsverse anastomosis betweed external pudic veins; $f^{\prime \prime}$, verons plexus of dorsum penis; $\overline{5}$, femoral artery; θ, saphenous nerve; 7 , anterior border of extornal inguaal ring; \&, obliquis abtommis internus; ? posterior border of exterbal ingunal ring; 10, tunica vaginalis; 11, ductus foferems; $1 \therefore$ cromastor musele: 13 , prepuce; 1年, glans penis; 15, external urethral orifice; 16, posterior branches of circumtlex iliae vessels; 17 , saphenous vessels; $1 S$, fold of flank; 19 , penis (cut); 1 , superticial ingurnal lymph glavds; B, prefemoral lymph glan ls; C, deep inguinal lymph glands. The testicle (on the right side) bas been rotated somewhat to show the cremaster muscle. (After kichmaltz, itlas d. Anat. d. Pferdes.)

rein. It deseends ahost vertically in the femoral eanal behind the sartorius museld, covered at first by the medial femoral fascia and hower down by the gracilis. After passing over the insertion of the pectineus, it perforates the adductor musele, crosses in the vascular groove of the prosterior surface of the femur, and is continued
between the two heads of the gastroenemius as the popliteal artery. It is related at its origin to the sartorius in front, the femoral vein behind (which separates it from the pectineus), and the iliacus laterally. Lower down it is related superficially to the deep inguinal lymph glands, and deeply to the vastus medialis, while the saphenous nerve is in front of it, and the vein passes to its lateral face. The chief branches are as follows:

1. The prepubic artery (Truncus pudendo-abdominalis) arises usially by a common trunk with the deep femoral, a little below the level of the pubis. It passes forward across the edge of the inguinal ligament, inclining ventro-medially, and then runs on the abdominal surface of the ligament to the medial part of the internal inguinal ring, where it divides into the posterior alodominal and external pudic arteries. (1) The posterior abdominal artery (A. abdominalis caudalis) (Fig. 370) passes along the lateral border of the rectus abdominis and anastomoses in the umbilical region with the anterior abdominal artery. It supplies branehes chiefly to the rectus and obliquus internus museles. (2) The external pudic artery (A. pudenda externa) descends on the inguinal ligament through the medial part of the inguinal canal, and emerges at the medial angle of the external ring. In the male it divides into the subcutaneous abdominal artery and the anterior dorsal artery of the penis. The former (A. abdominalis subcutanea) runs forward on the aldominal tumic a short distance from the linea alba, and gives branches to the superficial inguinal lymph glands, the sheath, and the serotum. The latter (A. dorsalis penis eranialis) passes to the dorsum penis and ends at the glans as the arteria glandis. It gives off collateral branches (Rami profundi penis) to the corpus cavernosum, one of which usually passes backward and anastomoses with a branch of the obturator artery. Branches are also supplied to the superficial inguinal lymph glands, the prepuee, and the scrotum. In the female the mammary artery (A. mammaria) takes the place of the anterior dorsal artery of the penis; it enters the base of the mammary gland, in which it ramifies.
2. The deep femoral artery (A. profunda femoris) (Fig. 581) arises either by a common trunk with the prepulic or a little distal to it. The point of origin is usually at the level of the anterior border of the pubis, but may be as much as an inch lower. It passes backward and downward across the medial face of the femoral vein, then below the pubis in the space between the hip joint and the pectineus musele. On reaching the obturator externus it inelines more ventrally and laterally, passes out between the posterior surface of the femur and the quadratus femoris, and ramifies in the bieeps femoris and semitendinosus. It supplies large collateral branches to the medial femoral museles and twigs to the deep inguinal lymph glands and the hip joint, and anastomoses with the obturator artery. ${ }^{1}$
3. The anterior femoral artery (A. femoris eranialis) (Fig. 575) arises a little distal to the preceding vessel, from the opposite side of the femoral trunk. It passes forward, outward, and a little downward across the deep face of the sartorius, dips in between the rectus femoris and vastus medialis, and ramifies in these muscles and the vastus intermedius. It is related laterally to the ilio-psoas and to the femoral nerve.

In some cases this artery is replaced by a large branch of the iliaco-femoral or external circumflex, which passes between the ilio-psoas and rectus femoris and enters the interstice between the latter muscle and the vastus medialis.
4. Innominate muscular branches (Rami musculares) of variable size and arrangement are given off to the museles of this viciuity.
5. The saphenous artery (A. saphena) (Figs. 576,582) is a small vessel which arises from the femoral about its middle, or from a musenlar branch, and emerges between the sartorius and gracilis or through the latter to the medial surface of the
${ }^{1}$ In the new nomenclature the term A. circumflexa femoris medialis is applied to the part which turns outward, while the part which runs backward is regarded as the continuing trunk.
thigh. In company with the large saphenous vein and the saphenous nerve it descends superficially on the anterior part of the gracilis, continues on the deep fascia of the leg, and divides above the hock into two branches, which accompany the radieles of the rein. It gives off rutaneous twigs and anastomoses with the recurrent tibial artery.

In some eases this anastomosis does not occur. The artery may be larger and direetly continuous with the medial tarsal artery.

6. The articular branch (1. genu suprema) is a slender artery which arises from the femoral just hefore it passes through the adductor. It descends along the posterior border of the vastus medialis to the medial surface of the stifle joint, where it ramifies.
7. The nutrient artery of the femur (A. nutritia femoris) is given off at the middle of the femur and enters the mutrient formmen.
8. The posterior femoral artery (A. femoris raudalis) ${ }^{1}$ is a large vessel which arises from the posterior face of the femoral just before or as the trunk passes between the two heads of the gastroenemius (Fig. 584). It is very short and divides into two branches. The aseending hraneh passes upward and outward between the adductor (in front) and the semimembranosus (hehind), and ramifies in the biceps femoris, vastus lateralis, adductor, and semitendinosus. The descending branch passes downward and backward on the lateral head of the gastrocnemius, then curves upward between the bieeps femoris and semitendinosus (erossed laterally by the tibial nerve) and divides into branches to these muscles. A branch descends between the heads of the gastromemius, gives branches to that muscle and the superficial digital flexor, and is contimued by a slender artery which accompanies the tibial nerve and unites with the recurrent tilial artery. A small branch often ascends alongside of the seiatic nerve, between the biceps and semitendinosus and anastomoses with a descending branch of the obturator.

This branch is frequently absent, but the large vein which it accompanies when present, is constant and connects the obturator and posterior femoral veins.

The Popliteal Artery

This artery (A. poplitea) is the direct continuation of the femoral. It lies between the two heads of the gastrocnemins, at first on the posterior face of the femur, then on the femoro-tibial joint capsute. It descends through the popliteal noteh under cover of the popliteus, inclines outward, and divides near the proximal part of the interossobus space into anterior and posterior tibial arteries. The satcllite vein lies along its medial side at the stifle joint. Collateral branches are supplied to the stifle joint and the gastromemius and pophiteus.

One of the artionlar hranches (A. genu mectia) rums directly forward, passes through the posterior part of the capsule of the femoro-tilial joint, and supplies the cruciate ligaments, symovial membrane, ete. Another branch (A. genu lateralis distalis) passes outward under the lateral head of the gastromemins, and coneurs with the articular branch of the femoral artery in forming a plexiss on the stifle.

POSTERIOR TIBIAL ARTERY

The posterior tibial artery (A. tibialis posterior) is much the smaller of the two terminals of the popliteal. It lies at first between the tibia and the popliteus, then between that muscle and the deep and medial heads of the deep digital flexor. Lower down it descemds along the tendon of the flexor longus, becomes superficial in the distal third of the leg, and divides into lateral and medial tarsal branches. ${ }^{2}$ The collaterat branches include the nutrient artery of the tibia (A. nutritia tibie) and muscular branches (Rami musculares) to the muscles on the posterior surface of the tibia.
${ }^{1}$ Also termed the femoro-popliteal artery.
${ }^{2}$ Instead of dividing thus, the posterior tihial may be continued by the lateral tarsal. The medial tarsal may be a continuation of the saphenous artery.

The lateral tarsal artery (A. tarsea lateralis) passes outward between the tibia and the deep flexor of the digit, and is distributed to the outer surface of the hock.

Fig. 5:3.-Dissection of Riget Legand Hock of Horse; Medial View: (After Schmaltz, Atias d. Anat. d. Pierdes.)
It gives off the small recurrent tarsal artery (A. tarsea reenrens), which ascents along the lateral margin of the gastrocnemius tendon with a satellite vein and nerve
and anastomoses with a branch of the posterior femoral artery. In some cases an arch is formed by junetion with the peroneal artery on the lateral surface of the deep flexor at the distal fourth of the leg.

The medial tarsal artery (A. tarsea medialis) usually forms a double curve in front of the tuber calcis, then deseends on the deep flexor temdon with the plantar nerves, and divides into the two plantar arteries. From the second part of the curve there arises a small branch, the recurrent tibial artery (A. tibialis recurrens). This aseends along the medial lorder of the superficial digital flexor in company with a satellite vein and the tibial nerve, and anastomoses with a deseending branch of the posterior femoral artery and with the saphenous artery. ${ }^{1}$
6. The plantar arteries, medial and lateral (A. plantaris medialis, lateralis), are the small terminals of the medial tarsal. They descend along the sides of the tarsal sheath of the deep flexor temlen with the plantar nerves to the proximal part of the metatarsus, where they unite with the perforating tarsal artery to form the proximal plantar arch (Arens plantaris proximalis). Four plantar metatarsal arteries proeeed from this arch. The two slender superficial plantar metatarsal arteries (A. metatarsea plantaris superficialis medialis, lateralis) may be regarded as the contimuations of the plantar arteries; they descend on either side of the deep flexor tendon with the plantar nerves, and unite with the corresponding digital artery: The medial one is the smaller; it may give off or conneet with the corresponding dorsal artery. The lateral, larger one usually unites with the lateral digital artery. Both may unite at the distal part of the metatarsus to form a short trunk which joins one of the digital arteries. They supply twigs to the flexor tendens and the skin. The two deep plantar metatarsal arteries (A. metatarsea plantaris profundus medialis, lateralis) ideseend on the plantar surface of the large metatarsal bone alongside of the corresponding small metatarsal bone and unite near the fetlock with the great metataral. The medial artery is the larger of the two and usually appears to be the contimuation of the perforating tarsal. It supplies the nutrient artery of the large metatarsal bone. In other eases it is the direet eontinuation of the medial plantar artery, the lateral artery only uniting with the perferating tarsal. The comnection of these vessels with the great metatarsal artery forms the distal plantar arch (Arcus plantaris distalis).

ANTERIOR TIBIAL ARTERY

The anterior tibial artery (A. tilialis anterior) is much the larger of the two terminal branches of the popliteal. It passes forward through the proximal part of the interoseous space and desends with two satellite veins on the lateral part of the front of the tibia, unter cover of the tibialis anterior. At the distal part of the leg it cleviates to the lateral border of the tendon of this muscle, passes on to the capsule of the hock joint, gives off the large perforating tarsal artery, and is continued as the great metatarsal artery. ${ }^{2}$ It gives off muscular branches to the dorsolateral group of muscles of the leg and articular branches to the hock. The peroneal artery (A. peronea) is a variable vessel which descends along the fibula under cover of the lateral extemsor: it gives off muscular branches and one which perforates the fascia and divides into ascending and deseending cutancous twigs. ${ }^{3}$

The perforating tarsal artery (A. tarsea perforans) arises under eover of the lateral tendon of the peronens tertins. It passes hackward through the vascular canal of the tarsus with a satellite vein and nerve and unites on the upper part of

[^164]the suspensory ligament with the plantar arteries (or only with the lateral plantar) to form the proximal plantar arch (Arcus plantaris proximalis).

Fig. 584 - Deep Dissection of Left Stifle, Leg, and Hock of Horse; Posterior View.
The hock is flexed at a right angle, and the tuber calcis is sawn off. The tibial perve is drawn aside to show its muscular branches. The capsules of the stifle and hock joints are partially removed. Branches of tibial nerve. 1, 2 , to gastroenemius; 3, 4, to superficial flexor; 5 , to popliteus; 6, to flexor longus; $\tilde{\sim}$, to deep flexor. (After Schmaltz, Atlas d. Anat. d. Pferdes.)

In well-injected specimens it is seen that there is a fine arterial network (Rete tarsi (lorsale) on the dorsal surface of the hock, which is formed by twigs from the

Fig, 585 .-Scperfictal Dissection of Right stifle, Leg, and Hock of Horse; Front Vien. (After schmaltz, Itlas d. Inat, d, Pferdes.)
anterior tibial and lateral tarsal arteries. From it proceed two very slender dorsal
metatarsal arteries (A. metatarsea dorsalis medialis, lateralis). The medial one
descends in the furrow between the medial small and large metatarsal bones, and anastomoses usually in the proximal part of the metatarsus with the medial superficial plantar metatarsal, uniting sometimes with the medial deep plantar metatarsal. The lateral vessel passes down under the periosteum on the dorsal face of the large metatarsal bone and becomes lost or joins the great metatarisal artery.

In rare cases the anterior tibial artery passes undivided through the tarsus, gives off the medial deep plantar metatarsal, and is continued as a very large medial superficial plantar metatarsal along the deep flexor tendon, thus resembling the arrangement in the forelimb.

In a few eases the perforating tarsal is a large vessel, directly continuing the anterior tibial, and is continued by a large medial deep plantar metatarsal. The great metatarsal is then small. Other variations are common.

THE GREAT METATARSAL ARTERY

This artery (A. metatarsea dorsalis lateralis) is the direct continuation of the anterior tibial. It descends, incliming outward, under cover of the extensor brevis and the tendon of the lateral extensor, at first on the joint capsule and then in the oblique vascular groove on the proximal part of the large metatarsal bone. It then deseends superficially in the groove formed by the apposition of the large and lateral small metatarsal bones, passes between the two, and divides on the distal part of the plantar surface of the large metatarsal bone into the medial and lateral digital arteries. It is not usually accompanied by a vein. It is joined near its termination by two or more of the plantar arteries, and beyond this the term common digital artery (A. digitalis communis) may be applied to it. In the digital region the arterial arrangement is the same as in the thoracic limb; it is only necessary in reading the description to substitute the word "plantar" for "volar."

THE VEINS ${ }^{1}$ PULMONARY VEINS

The pulmonary veins (Iv. pulmonales), usually seven or eight in number, return the aërated blood from the lungs and open into the left atrium of the heart. They are destitute of valves. Their tributaries arise in the capillary plexuses in the lobules of the lungs, and unite to form larger and larger trunks which accompany the branches of the bronchi and pulmonary arteries. A very large vein is formed by the union at an acute angle of a trunk from each lung, where the latter are adherent to each other.

CARDIAC VEINS

The coronary sinus (Sinus coronarius) is a very short, bulbous trunk which receives most of the blood from the wall of the heart. It is situated just below the termination of the posterior sena cava, and is covered in part by a thin layer of atrial musele fibers. It opens into the right atrium just below the posterior vena cava. It is formed by the union of two tributaries. The great cardiac or left coronary vein (V^{-}. cordis magna) ascends in the left longitudinal groove and turns backward in the coronary groove, in which it winds around the posterior border of the heart to the right side and joins the coronary sinus. The middle cardiac or right coronary vein (V . cordis media) ascends in the right longitudinal groove and joins the coronary sinus, or opens separately into the atrium just in front of the

[^165]orifice of the great cardiac vein, so that a common trunk (coronary simus) does not then exist.

The small cardiac veins (${ }^{+}$. cordis minores), three to five in number, are small vessels which return some blood from the right ventricle and atrium; they open into the latter near the coronary groove in spaces between the musculi pectinati.

THE ANTERIOR VENA CAVA (Fig. 554)

The anterior vena cava (V. cava cranialis) returns to the heart the blood from the head, neck, thoracic limbs, and the greater part of the thoracic wall. It is formed at the ventral part of the thoracic inlet by the confluence of the two jugular and two brachial reins. It passes barkward in the anterior mediastinum, at first median and ventral to the common carotid trunk, then deviates to the right of the common brachiocephalic trunk, and opens into the right atrium opposite to the fourth rib. It is partly enclosed by the pericardium. The demareation between vein and atrium is not very distinet. It contains no valves except at the mouths of its radicles. Its length is about five to six inches (ca. $12-15 \mathrm{~cm}$.) and its caliber about two inches (ca. 5 cm .) in a subject of medium size. It is related, dorsally to the trachea, the right ragus and cardiac nerves, and anterior mediastimal lymph glands. Its right face is crossed by the right phrenic nerve, and on the left it is related to the brachiocephalic trunk and artery. The thoracic duct opens through the dorsal wall of the origin of the vena cava. It receives, in addition to small pericardial and mediastinal veins, the following tributaries:

1. The internal thoracic vein (V. thoracica interna) is a satellite of the artery of that name. It opens into the anterior vena cava at the first rib. The ventral intercostal veins (V. intercostales ventrales) open into the internal thoracic and musculo-phrenic veins.
2. The vertebral vein (V. vertcbralis) corresponds to the homonymous artery. On the right side it terminates either in front of the deep cervical vein or by a short common trunk with it. On the left side it usually unites with the deep cervical and dorsal veins to form a common trunk.
3. The deep cervical vein (V. cervicalis profunda) corresponds to the artery. On the right side it passes downward and backward across the right face of the trachea and opens into the vena cava; it may form a common trunk with the dorsal or vertebral. On the left side there is usually a common trunk for all three. It receives the first intercostal vein.
4. The dorsal vein (V . costocorvicalis) corresponds to the artery. On the right side it leaves the artery on entering the thorax, crosses the right face of the trachea, and opens into the vena cava behind the deep cervical or by a common trunk with it. On the left side it usually joins the deep cervical and vertebral to form a short common trunk which crosses the left face of the intrathoracic part of the brachial artery opposite the second rib and opens into the anterior vena cava. It receives the third, fourth, and fifth intercostal veins by weans of the subcostal vein on the right side.

The Vena Azygos

The vena azygos (Fig. 554) is an umpaired vessel which arises at the level of the first lumbar vertebra by radicles from the spinal and psoas muscles and the crura of the diaphragm. It passes forward along the right side of the bodies of the thoracic vertebree, in contact usually with the thoracic duct, which separates the vein from the aorta. At the seventh vertebra it leaves the spine, curves downward and forward over the right side of the thoracic duct, trachea, and cesophagus, and opens into the right atrium opposite the fourth intercostal space. Its tributaries are:

1. The last fourteen dorsal intercostal veins (Vv. intercostales dorsales) of the right side go directly to the vena azygos; but on the left side a variable number (four to seven usually) at the end of the series go to the vena hemiazygos when that vessel is present.
2. The vena hemiazygos arises from a branch of the left first lumbar vein and twigs from the crura of the diaphragm. It passes forward through the hiatus aorticus and continues along the left dorsal face of the aorta, and about the middle of the back joins the vena azygos. It receives the last four to seven dorsal intereostal veins of the left side. It is inconstant and variable. In its absence its tributaries join the vena azygos.
3. The œsophageal vein (V. œsophagea), satellite of the œsophageal artery, joins the vena azygos as it inclines downward.
4. The bronchial vein (V. bronchialis) unites with the preceding to form a short common trunk, or, according to Chauveau, empties into the great coronary vein. The author is unable to find in the horse any distinct bronchial vein emerging at the root of the lung. ${ }^{1}$

VEINS OF THE HEAD AND NECK

Jugular Veins

The jugular veins (Vv. jugulares), right and left (Fig. 556), arise behind the ramus of the mandible, about two and a half inches (ca. 6-7 cm.) below the tem-poro-mandibular articulation by the union of the superficial temporal and internal maxillary veins. Each passes downward and backward, at first embedded more or less in the parotid gland, and continues in the jugular furrow to the thoracic inlet, where it unites with its fellow and the two brachial veins to form the anterior vena cava. In the neck it is covered by the skin, fascia, and cutaneus muscle, and is superficial to the carotid artery, from which it is separated in the anterior half of the region by the omo-hyoideus muscle. ${ }^{2}$ It contains valves at the mouths of its tributaries, and has several pairs of semilunar valves variably disposed along its course. Its tributaries are as follows:

1. The internal maxillary vein (V. maxillaris interna) is larger than the external maxillary. It may be considered to begin as the continuation backward of the buceinator vein where that vessel crosses the alveolar border of the mandible, about two inches (ca. 5 cm .) behind the last molar tooth. It runs backward on the medial surface of the ramus ventral to the lateral pterygoid muscle, and covered by the medial pterygoid muscle for a distance of about three inches (ea. $7-8 \mathrm{~cm}$.), then inclines a little downward aud runs ventral to the artery for about an inch (ca. 2-3 cm.). It crosses the lateral face of the artery at the posterior border of the jaw, and is joined by the superficial temporal vein to form the jugular. Its principal radicles are the following:
(1) The dorsal lingual vein (V. dorsalis lingux) is not a satellite on any artery,

[^166]but is in company with the lingual nerve. It receives tributaries from the tongue and soft palate.
(2) The inferior alveolar or (lental vein (V. alveolaris mandibula) is a satellite of the corresponding artery. It often unites with the preceding.
(3) The middle meningeal vein (V. meningea media) emerges through the foramen lacerum anteriu*.
(t) Pterygoid veins (Rami pterygoilei).
(5) The posterior deep temporal vein (V. temporatis profuncla aboralis) is a

Fig. 3ali.-Verss uf Heato of Horse.
Parts of the superficial muscles and the ramus of the uandible, and all of the masseter muscle excopt its ventral margin, have been removed. Veins: 1, 3, Jugular: 2, thyroid; 3, iuternal maxillary; 4. cramo-
 which emerges through foramen of latural mass of at las; $\varepsilon^{\prime \prime \prime \prime \prime}$, wein which emerges through intervertebral foramen of axis; 7 . great auricular; $\gamma^{\prime}-\gamma^{\prime \prime \prime \prime}$, radicles of 7 ; 8 , pesterior auricular; 9 , masseterico-pterygoid; 10 , superficial tempural; 11 , deep auricular; 12 , dursal cerobral; 13 , tratusverse facial and its anastomosis whth internal maxillary; $15^{\prime \prime}$, palnebral radiele of 18; 14, pterygoin; 15, mandibular alveolar; 16, dorsal lingual; 17, deep temporal; 18, buccinator19. anastomosis between buccinator and masseteric: 20, arnstomosis between buccinator and commou labial (3) ; 22, 23, inferior and superior labial: 24, angular of mouth; 25, 25', external masillury; 26, facial: 27, lateral nasal; 25, dorsal nasal: 29 , angular of eye: 30, reflexa: 31, trunk of infranthital and sphenopalatine. Muscles, ete: ; a, Orbicularis orn: b, levator nasolalialis; c, dilatator naris lateralis: d, burcalis; c, zygomatieus; f, levator labii superioris proprius; y, molaris aud deprusor lahii inferioris; \quad, labial glands; k, m . temporalis; l, m. masscter; $m, \mathrm{~m}$. pterygoideus medialis: n, the parotido-auricularis: o. m. pterygoideus lateralis; p, m. sterno-rephalicus: q, m. rectus capitis ventralis maju: r, m. omo-hyoideus and sterno-hyoideus; s, parotid gland (dissected away from veins); t, lorsal buceal gland \uparrow. After Mockel.)
large vessel which receives tributaries from the temporalis musele and emissaries from the temporal canal. It is connected with the dorsal cerehral wein and usually. with the meningeal veins by its frontal branch. The latter drains chiefly the lacrimal gland and passes behind the supraorbital process.
2. The superficial temporal vein (V. temporalis superficialis) is the large satellite of the corresponding artery, It is formed by the contluence of the anterior auricular and transverse facial veins. The former is much larger than the cor-
responding artery. Its radieles come from the posterior part of the temporalis muscle and from the external ear. It receives the dorsal cerebral vein (V. cerebralis (dorsalis), which is the emissary of the transverse sinus of the dura mater, and emerges from the temporal canal behind the postglenoid process. The transverse facial vein (V . transversa faciei) runs at first above the artery of like name, then plunges deeply into the masseter and unites in front with the facial wein. It is connected with the vena reflexa and with the posterior deep temporal vein by a branch which emerges from the temporal fossa through the mandibular notch.
3. The masseteric vein (V. masseterica) joins the jugular at the upper border of the sterno-cephalicus tendon. It is a short but large trunk which is formed by the confluence at the posterior border of the jaw of masseteric and pterygoid veins. The former is commonly comnected by an anastomotie branch with the buceinator rein.
4. The great auricular vein (V . auricularis magna) is a satellite of the posterior auricular artery above, but joins the jugular a variable distance below and behind the point of origin of the artery.
j. The occipital vein (\mathbf{V}. oceipitalis) arises in the fossa atlantis by the union of two radicles. It passes downward and backward on the rectus capitis ventralis major and joins the jugular vein a variable distance in front of the termination of the external maxillary vein. The anterior radicle is the ventral cerebral vein (V. cercbralis ventralis). This is an emissary of the eavernous sinus of the dura mater; it emerges through the foramen lacerm posterius and is connected with a venous plexus in the infratemporal fossa. It receives the condyloid vein (V. condyloidea), which is an emissary of the basilar plexus and the petrosal sinus, and emerges through the hypoglossal foramen. ${ }^{1}$ The posterior radicle is formed by the confluence of muscular and cerebro-spinal branches. The former (Ramus muscularis) comes through the foramen transwersarium of the atlas from the muscles of the poll; it anastomoses with the vertebral and deep cervical veins. The latter (Ramus cerebrospinalis) receives emissary veins from the meningeal plexus in the atlas, which emerge through the intervertebral and alar foramina and the foramen of the lateral mass of the atlas.
6. The external maxillary vein (V . maxillaris externa) arises by radicles which correspond in general to the branches of the artery of like name. It passes down over the cheek along the anterior border of the masseter musele behind the artery, erossing over the parotid duct, which lies behind the vein lower down. Thus on the ramus and as they turn around its ventral border the artery is in front, the vein in the middle, and the duct posterior. In the mandibular space the vein is ventral to the artery for some distance, then parts company with the artery, runs straight backward along the ventral border of the parotid gland, and opens mito the jugular vein at the posterior angle of the gland. ${ }^{2}$ The chief differences in the tributaries of the vein as compared with the branches of the corresponding artery are as follows:

The labial veins (liv: labiales), superior and inferior, are in the substance of the orbicularis oris near the free edges of the lips. The upper one is the larger. They anastomose with the opposite veins. They drain into a venous plexus which is situated in the submucous tissue of the cheek and the buccinator mnscle, and from this plexus two veins emerge. The upper one passes back and joins the buceinator vein. The lower one, the common labial vein (V . labialis communis), receives a submental vein from the chin and joins the external maxillary vein.

Three veins connect with the external maxillary at the anterior border of the masseter.

[^167]The upper one is the transverse facial vein, which unites close to the end of the facial crest.

A little lower is the large valveless vena reflexa, or alveolar vein. This passes bark umler the upper part of the masseter on the maxilla, turns around the tuber maxillare, perforates the periorhita, and joins the ophthalmic vein. It is relatively small at each end, but presents one or two large fusiform dilatations. Its posterior part is embedted in a mass of fat. It

Fif. 5a7.-Dinsection of Mandibleat space and Adjacent Part of Neck of Horse,
a, Ramus of mandibie; b, sterno-cephatiens unuscle; c, c^{\prime}, omo-hyoidei and sterno-hyoidei (portion removed on right side): d, hyoid bone; c, anterior belly of digastricus; $f . a$, mylo-hyoidens; h, mandibular lymph glands (portion removed on right side); i, parotid gland; k, mandibular salivary gland; l, chin; m, oceipito-mandibolaris; 1 , parotid duct; 2 , facial vein: 8, facial artery; 4, external maxillary vem: b, lingual ven; 6 , sublingual artery; r, ventral branch of first cervictl nerve; 8 , mylo-hyoid nerve. (After Ellenbeiger, in Loisering's Atlas.) receives the following tributaries: (a) The great palatine vein (V. patatina major), separates from the palatine artery at the anterior palatine foramen, and passes in the groove between the tuber maxillare and the palate bone. The palatine veins form a very rich plexus of valveless vessels in the submueosa of the hard palate, which consists of several layers anteriorly. (b) The sphenopalatine vein (V. sphenopalatina) is the satellite of the artery; it forms a rich plexus of valveless vessels on the turbinate bones and the septum nasi. The venous plexuses are remarkably developed in certain parts of the nasal mucosa. On the septum a little below its middle and on the turbinates the veins are in several layers. The olfactory region does not share in this arrangement, and the veins here are small and join the ethmoidal vein. (c) The infraorbital vein (V . infraorbitalis) is also a satellite of the artery; it usually unites with the sphenopalatine to form a short common trunk. (d) The ophthalmic vein (V. ophthatmica) is a short trunk, which is comected in front with the vena reflexa and behind with the cavernous sinus through the foramen orbitale. It receives veins which correspond to the arterial branches.

The buccinator vein (V. buceinatoria) extends backward from the externad maxillary along the ventral border of the depressor labii inferioris and buccinator under cover of the matsseter, turns medially over the ramus of the mandible about two inches (ca. 5 cm .) behind the last molar tooth, and is continued as the internal maxillary vein. It has a large fusiform dilatation and is valveless. It receives a large vein from the buccal plexus, and is usually connected with the masseterie vein.

The lingual vein (V. lingualis) is formed at the side of the lingual process of the hyoid bone by the confluence of several veins which come from the substance of the tongue. One or two considerable vessels run partly in the substance of the hyo-
glossus, and another in the genio-lyoideus. The vein is at first covered by the mylo-hyoideus, perforates that musele, runs back along the omo-hyoideus in relation to the mandibular lymph glands, and joins the external maxillary near the posterior border of the jaw.

The sublingual vein V^{\prime}. sublingualis) is smaller than the preceding. It receives veins from the skin and museles of the mandibular space, the sublingual gland, and the gmms. It opens into the external maxillary vein near the lingual or joins the latter.
7. The thyroid vein (V. thyreoidea) is a large vessel which joins the jugular near the external maxillary vein. It receives anterior thyroid, laryngeal, and pharyngeal radicles, and sometimes a posterior thyroid vein.
8. Muscular, tracheal, œsophageal, and parotid veins.
9. The cephalic vein (V. cephalica) enters the jugular near its termination. It will be described with the veins of the thoracic limb.
10. The inferior cervical vein (\mathbf{V}. cervicalis ascentlens) accompanies the ascending branch of the artery. It may open into the brachial vein.

The Sinuses of the Dura Mater

These (Sinus duræ matris) are blood-spaces between the memingeal and periosteal layers of the dura mater and are lined with endothelium. In many places

Fig. 5Ss.-Medlas Section of Head of Horee, Upper Part with Seftem Nast Removed.
a, Lateral mass of ethmoid bone; b, dorsal turbibate; c, ventral turbinate; d. d^{\prime}, turbinate folds; ϵ, frontal sinus; f, fals cerebri; a, tentorium cerebelli; h, medial surface of hemisphere; i, cerebellum; k, occipital bone; k, occipital condyle; $k^{\prime \prime}$. paramastoid process; l, external acoustic meatus; m, temporal condyle; n, temporal canal; 1 , branches of ethmoidal artery; $2,2^{2}$, branches of sphenopalatine artery; $3,3^{\prime \prime}$, branches of sphenopalatine vein; 4, branches of ethmoidal derve; $\bar{s}, \bar{\sigma}^{\prime}$, branches of sphenopalatine nerve: 6 , artery of corpus callosum; $\tilde{\pi}$, dorsal longitudinal sinus; δ, straight sinus: 3 , vena magns cerebri; 10 , ventral fongitudınal sinus; $11,11^{\prime}$, transverse sinuses: 12 , dorsal petrosal sinus; 13, occipital sinus; 14, dorsal cerebral vein; 15. corpus callosum; 16, fornix. (After Ellenberger, in Leisering's Atlas.)
the lumen is crossed by fibrous strands. They receive the cerebral veins (Vv. cerebri), meningeal veins ($\mathrm{T} v$. meningex), diploic veins (T v. diploicæ), and communicate with veins outside of the cranium; their comections with the latter are by means of emissary veins (Emissaria). They convey the blood directly or indirectly to the jugular veins. some are paired, others unpaired. They may be divided into dorsal and basilar systems.

The dorsal system comprises the following:
The dorsal longitudinal or sagittal sinus (sagittalis dorsalis) is situated in the convex border of the falx cerebri along the internal parietal crest. It begins at the crista galli and ends near the tentorium osseum at the confluence of the sinuses (Confluens sinuum) formed by the junction with the straight sinus. It receives most of the ascending cerebral reins. Along each side are small ponches (Lacumæ laterales) into which the vems open. The lumen of the sinus is very irregular: it is traversed by fibrous bands and is partially divided by a longitudinal septum.

The ventral longitudinal or sagittal sinus (A . sagittalis ventralis) is much smaller than the dorsal simus. ${ }^{1}$ It runs backward on the eorpus callosum in the concave edge of the falx cerebri, and joins the great cerebral vein to form the straight sinus. It receives veins from the medial surface of the cerebral hemispheres and from the corpus callosum.

The straight sinus (S. rectus) proceeds from the junction of the ventral longitudinal sinus with the great cerebral rein behind the corpus callosum. It ascends in the falx cerelri, inclining backward, and joins the dorsal longitudinal sinus at the confluens sinum.

The transverse sinuses (As. transyersi), right and left, proceed laterally from the confluens sinumm; they pass outwarl in the transverse grooves of the parietal bones, enter the temporal canals, and are continued hy the dorsal cerebral veins to the superficial temporal veins. They receive the corsal petrosal sinuses, veins from the posterior part of the ecthrum and from the corpora quadrigemina, and the posterior meningeal rein. The two sinuses are comected by the sinus communicans, which extends across the cranial vault in a channel in the base of the internal occipital protuberance.

The dorsal petrosal sinuses (s. petrosi dorsales) ascend in the tentorium cerebelli and join the transverse sinuses near the internal opening of the temporal canal. Each is the direct continuation of the vena rhinalis posterior and receives the rena basilaris cerebri. There is sometimes an accessory petrosal sinus alongside of the ehief sinus, which is formed by the confluence of veins from the pons and medulla oblongata.

The occipital sinuses (Ss. occipitales) are situated in the dura mater on each side of the vermis cerebelli. They communicate in front with the sinus communicans, and one of them is continued posteriorly by the dorsal spinal vein. Each sinus is connected by a communicating branch with the transverse sinus and with the ventral petrosal sinus. The right and left sinuses are connected by anastomotic lranches, so that the arrangement is more or less plexiform. They receive veins from the cercbellum, medulla oblongata, and diploë.

The basilar system consists of the following:
The cavernous sinuses (ns. cavernosi) lie in the medial grooves of the root of the temporal wings of the sphenoid bone at either side of the pituitary fossa. The two are connected by a wide transwerse branch, the intercavernous sinus (Sinus intercavernosus), behind and below the posterior part of the pituitary body. ${ }^{2}$ Each is continuous in front with the ophthalmic vein and below with the ventral petrosal sinuses; it communicates also by small anastomotic veins with the basilar plexus. The third, sisth, and the ophthalmic and maxillary divisions of the fifth nerve lie along the lateral wall of the sinus. The internal carotid artery traverses the sinus and is connected with its fellow by a transverse branch which lies in the intercavernous sinus. An oval opening in the floor communicates with the ventral petrosal sinus and transmits the internal carotid artery.

The sinus is not subdivided lyy strands of fibrous tissue as in man, but a few delicate bands attach the artery to its wall.

The ventral petrosal sinuses (As. petroxi ventrales) ${ }^{3}$ lie atong the borders of the basilar part of the ocripital bone, enclosed in the thick dura which closes the foramen lacerum. The anterior part extends about half an inch (ca. 12 mm .) under the temporal wing of the sphenoid. Here communications exist with veins in the pterygopalatine fossa. The posterior end is bulbous and lies in the condy-

[^168]loid fossa; it communicates with the condyloid vein issuing from the hypoglossal foramen and is drained by the ventral cerebral vein; it also receives an emissary vein from the temporal eanal. The sinus communcates with the cavernous sinus by an oval opening at the earotid notch which transmits the internal carotid artery; the latter forms the first bend of its S-shaped curve in the petrosal and the second in the cavernous sinus.

The basilar plexus (Plexus basilaris) is situated on the cerebral surface of the basilar part of the occipital bone, and is direetly continuous behind with the venous plexus in the atlas. Its chief emissary is the condyloid vein, which brings it into communication with the ventral petrosal sinus. It is connected with the carernous and intercavernous sinuses by small veins.

The Veins of the Cranium

The cerebral veins (Vente cerebri) do not in general accompany the cerebral arterics. They have very thin walls, no muscular coat, and no valves. They are arranged in two sets, superficial or cortical and deep or central. The superficial veins are more numerous and larger than the arteries. They lie on the surface of the brain in the pia mater and the subarachnoid space.

The ascending cerebral veins drain most of the convex surface and the medial surface of the cerebral hemispheres. Nost of them open into the dorsal longitudinal sinus, but some enter the confluens sinuum or the transverse sinuses. Near the termination they becone bulbous, and open into the sinus obliquely and in such a manner as to tend to prevent reflux of blood into them. ${ }^{1}$ The descending cerebral veins which come chiefly from the ventral part of the convex surface of the cerebrum open into the rena rhinalis posterior.

The basal cerebral veins converge to a large common trunk, the vena rhinalis posterior; this begins at the anterior end of the piriform lobe, runs backward in a groove on the latter, enters the tentorium cerebelli, and opens into the dorsal petrosal sinus.

The deep cerebral veins issue from the central or ganglionic parts of the brain at the transwerse fissure. The principal ones come from the chorioid plexuses, the corpus striatum, and the septum pellncidum. These unite to form the internal cerebral veins (Iv. cerebri internæ), which run backward in the roof of the third ventricle and unite to form the great cerebral vein (V. magna cerebri). This passes upward and backward behind the splenium of the corpus callosum and is continued as the straight sinus to join the longitudinal sinus.

The dorsal cerebellar veins ramify on the upper surface of the cerebellum. They go chiefly to the occipital and dorsal petrosal sinuses. The ventral cerebellar veins are larger and go ehiefly to the basilar plexus. The veins of the medulla and pons end chiefly in the basilar plexus and the occipital and dorsal (and accessory) petrosal sinuses.

The meningeal veins (Venæ meningeæ) arise in capillary plexuses in the superfieial and deep faces of the dura mater. Some end in the sinuses of the dura, others accompany the meningeal arteries.

The diploic veins (Venæ diploicæ) are anastomosing channels in the spongy substance of the eranial bones. Their walls are thin, consisting in many places only of the endothelium, and they have no valves. Some open inward into venous sinuses, others into extracranial veins.

Vertebral and Spinal Veins

Two renous trunks, the longitudinal vertebral sinuses (Simus vertebrales longitudinales), extend along the floor of the vertebral canal, one on either side of
${ }^{1}$ Most of these veins open into the sinus in the direction of the blood-stream in the sinus, but some of the posterior ones open about at a right angle, or even contrary to the direetion of the eurrent.
the dorsal longitudinal ligament. They are continuous in front with the basilar plexus. They lie in the grooves on the bodies of the vertebres and are connected by a series of transwerse anastomoses which pass between the eentral part of the bodies of the vertebre and the dorsal longitudinal ligament or in channels in the hone. They receive reins from the spinal cord, the meninges, and the bodies of the vertebre (Fense hasis vertebre). Through the intervertebral foramina efferent vessels comect with the occipital, vertebral, intercostal, lumbar, and lateral sacral veins. The veins of the spinal cord are drained by dorsal and ventral longitudinal trunks. The ventral vein, which is the smaller,

Fig. j89.-Vertebral Sinuses of IIorse. The vertebral canal has been opened by sawing off the arches. The nerve-roots are cut on one side and the spinal cord turned over to right. 1 , Ventral spinal artery; 2, reinforcing branches from vertebral, intercostal, or lumbar arteries (aceording to region); 3 , longitudianl vertebral sinuses; a, ventral surface of spinal cord; b, dura mater (eut); c, nerve-roots; d, dorsal longitudinal ligament. (After Ellenberger, in Leisering's Atlas.) accompanies the ventral spinal artery.

VEINS OF THE THORACIC LIMB

The brachial vein (V. brachialis) (Fig. 566) is the satellite of the extrathoracic part of the brachial artery. It arises at the medial side of the distal end of the shaft of the humerus and ascends in the arm behind the artery under cover of a layer of fascia and the posterior superficial pectoral muscle. At the shoulder it is ventral to the artery, crosses the anterior border of the first. rib, and concurs with its fellow and the two jugulars in the formation of the anterior vena cava. The roots of the vein are somewhat variable, but most often four veins in addition to a large ohlique branch from the cephalic unite in its formation; two or three of these radicles are satellites of the median artery. Its tributaries correspond in general to the branches of the artery, but a few differences are worthy of notice. The thoracodorsal vein (V. thoracodorsalis) often joins the external thoracic or the deep brachial vein. The external thoracic vein (V. thoracica externa) ${ }^{1}$ is a large vessel which arises in the ventral wall of the abdomen, passes forward (embedded partly in the cutaneus muscle) along the lateral border of the posterior deep pectoral muscle, and joins the brachial vein close to the subscapular or in common with it. It may receive a vein which is the satellite of the external thoracic artery.

The cephalic vein (V. cephalica) arises at the medial side of the carpus as the contimution of the medial metacarpal vein. It aseends on the deep fascia of the forearm at first in the furrow between the flexor carpi radialis and the radius. Toward the middle of the forearm it inclines gradually forward on the medial surface of the radius, accompanied by a branch of the musculo-cutaneous nerve, and arrives at the insertion of the biceps. Here it detaches a large communicating branch (Ramus communicans), which passes upward and backward over the medial insertion of the biceps and the median artery and median nerve, and joins the brachial vein. The vein to this point is often termed the internal subcutaneous vein of the forearm (V. cephalica antebrachii). It is continued (as the V. cephalica humeri) in the furrow between the brachiocephalicus and the anterior superficial pectoral muscle with a branch of the inferior cervical artery, crosses the drep face of the cervical cutaneus, and opens into the terminal part of the jugular or the brachial vein. It receives the accessory cephalic vein (V. cephalicaaccessoria), which arises from the carpal network, runs upward on the deep fascia along the ${ }^{1}$ Often termed the spur vein.
medial border of the extensor carpi, and joins the eephatie wein at the proximal end of the forearm.

The deep veins of the forearm are variable. Commonly two median veins

Fig. 590-Dissection of Pectoral Region and Anterior Pabt of Abdominal Wall of Horse.

1. Jugular vein; 2 . lonse connective tissue of axillary space; 3 , ascending branch of inferior cervical artery; 4 , descending branch of same; j, cephalic vein: 6 , median nerve: γ, ulnar nerve; δ, brachial artery; 9 , brachial vein; 10 , external tharacic vein; 11, anterior abdominal artery and vein; 12 , branches of sixth cervical nerve: 18 , cutaneous branch of axillary nerve; 14, cutanenus branch of musculo-cutaneous nerve; 15, cervical cutaneus; 16, sterno-cephalicus; 17, scalenus; 15 , brachiocephalicus: 19 , anterior superficial pectoral: 20, pasterior superficial pectoral; 21. anterior deep pectoral; 22, posterior deep pectoral: 23, abdominal cutaneus; 24, abliquus abdominis externus; 20, rectus andominis; 26, caraco-brachialis; 27, tensor fascia antibrachii; a, prescapular lymph glands; b, prepectoral lymph glands; c, axillary lymph glands; d, cubital lymph glands; c. x., xiphoid cartilage. (After schmaltz, Atlas d. Anat. d. Plerdes.)
(Vente medianæ) accompany the artery of like name, one in front and one behind. A third vein arises by radicles emerging from the proximal part of the deep flexor;
it joins the posterior satellite of the median artery or forms one of the roots of the brachial vein. The common interosseous vein joins the posterior satellite. The anterior radial vein (V . collateralis radialis) is a satellite of the artery. The ulnar vein is usually double at its proximal part, and communicates with the deep brachial rein.

There are three chicf metacarpal veins. The medial metacarpal or common digital vein (T. metaearpea volaris superficiadis medialis) arises from the volar venons arch above the fetlock. It is the largest vein of the region and lies in front of the common digital artery. It separates from the artery at the proximal end of the metacarpus, passes upward on the medio-volar surface of the earpus, under cover of the superficial layer of the volar ammlar ligament, and is continued as the cephalic vein. It communicates at its proximal part with the origin of the median veins by a short but relatively large branch. The lateral metacarpal vein (V. metacarpea volaris superfieialis lateralis) arises from the venous arch above the fetloek and passes upward behind the lateral horder of the suspensory ligament in front of the lateral volar nerve and accompanicd by a small artery. At the proximal end of the metacarpus it is connected with the deep metacarpal vein by two transverse anastomoses which pass across the suspensory ligament. It then ascends as a satellite of the lateral volar metacarpal artery and coneurs in the origin of the ulnar and median veins. The deep metacarpal vein (V. metacarpea volaris profund medialis) arises from the venous areh, passes forward between the two branches of the suspensory ligament, and ascends on the posterior surface of the large metaearpal bone. At the proximal end of the latter it communicates with the other metacarpal veins, aseends with the medial volar metacarpal artery, and concurs in forming the median veins.

The venous arch (Areus venosus volaris), from which the metacarpal veins arise, is situated above the sesamoids of the fetlock, between the suspensory ligament and the deep flexor tendon. It is formed by the junction of the two digital reins.

The digital veins, medial and lateral (V. digitalis medialis, lateralis), drain the venous plexuses of the foot. They arise at the proximal edge of the cartilages of the third phatanx and aseend in front of the corresponding arteries.

It is convenient to reeognize the following venous plexuses of the foot, which, however, communicate very frecty:

1. The coronary plexus encircles the upper part of the foot. It eovers the terminal part of the extensor tendon, the cartilages of the third phalamx, and the bulbs of the digital eushion.
2. The dorsal (or laminal) plexus covers the dorsal surface of the third phalanx in the deep layer of the corium of the wall of the hoof. It forms the circumflex vein of the third phalanx, or sein of the distal border of the third phalanx, which corresponds to the artery of like name.
3. The volar plexus is in the decp layer of the corium of the sole of the hoof and on the deep surface of the eartilages of the third phalans. It communicates aromed the distal border of the third phalanx with the dorsal plexus and throngh the cartilages with the coronary plexus.

The deep vein of the third phalanx accompanies the terminal part of the digital artery. It drains the intraosseous plexus contained in the third phalanx.

THE POSTERIOR VENA CAVA (Figs. 554, 575)

The posterior vena cava (V. eava caudalis) returns almost all of the blood from the abetomen, pelvis, and pelvic limbs. It is formed ly the eonfluenee of the right and left common iliae veins at the fifth lumbar vertebra, above the terminal part of the aorta, and chiefly to the right of the median plane.

The mode of origin is variable. In some eases there is a common trunk formed by the union of the two internal iliace veins so that the arrangement resembles the termination of the aorta. In other cases the internal ilise vein does not exist. Exceptionally there is a small middle sacral vein on the middle of the pelvic surface of the sacrum. It opens at the angle of divergence of the common iliac veins.

It passes forward on the ventral face of the psoas minor to the right of the abdominal aorta. At the last thoraeic vertebra it separates from the aorta and runs forward between the right crus of the diaphragm and the pancreas till it reaches the liver. Here it inclines ventrally along the medial border of the right lobe and on the parietal surface of the liver, largely embedrled in the gland sul)stance, and passes through the foramen vens cave of the diaphragm. It then runs forward and somewhat ventrally between the intermediate lobe and the main mass of the right lung at the upper margin of a special fold of the right pleura, accompanied by the right phrenic nerve, and opens into the posterior part of the right atrium opposite the fifth intercostal space. It receives the following tributaries:

1. The phrenic veins (V.v. phrenica), two or three in number, return the blood from the diaphragm. They are very large in comparison with the arteries, and join the vena cava at the foramen venie cava.
2. The lumbar veins (V v. hmbales) correspond to the arteries. Five pairs usually empty into the posterior vena cava. Sometimes the forresponding veins of opposite sides unite to form a common trunk. The first eommunicate with the vena azygos or hemiazygos, and the last usually enters the common iliae vein.
3. The internal spermatic veins (Iv. spermaticæ internse) (Fig. 575) accompany the arteries of like name. In the spermatic cord they form a very rich network, the pampiniform plexus (Plexus pampiniformis) about the artery and nerves. Their termination is variable. The right one commonly joins the vena cava near the renal vein, often by a common trunk with the left one. Frequently the left vein joins the left renal, and sometimes the right one ends similarly.

3a. The utero-ovarian veins are much larger than the preeeding and are satellites of the arteries in the broad ligaments. The ovarian branch is plexiform near the ovary. The uterine branches form a rich plexus in the wall of the uterus. The trunk is very short and terminates like the corresponding vein of the male.
t. The renal veins (Vv. renales), satellites of the arteries, are of large caliber and thin walled. The right vein passes medially and baekward on the ventral face of the kidney, between the artery in front and the ureter behind. It joins the vena cava above the right adrenal. The left vein is somewhat longer. It passes medially at first like the right one, then bends around the posterior end of the adrenal, crosses the origin of the renal artery, and opens into the vena cava a little further back than the right one. They receive veins from the adrenals, but some adrenal veins (Vv. adrenales) open directly into the vena cava.
5. The hepatic veins (Yv. hepatice) return the blood from the liver, and open into the vena cava as it lies in the groove in the liver. Three or four large veins open into the vena cava just before it leaves the liver, and numerous small oncs discharge into its embedded part.

Of the foregoing, the phrenic and lumbar veins are termed parietal radicles (Radices parietales), and the remainder are visceral radicles (Radices viscerales).

THE PORTAL VEIN

The portal vein (V . portæe) is a large trunk which returns the blood carried to the viscera by the gastric, splenic, and mesenteric arteries; its average diameter is a little more than an inch (ea. 3 cm .). Its peripheral tributaries correspond elosely with the branches of the arteries, but the trunks do so in part only. The vein is formed behind the pancreas and below the posterior vena cava by the confluence of the anterior and posterior mesenteric and splenic veins. It passes forward,
traverses the posterior part of the panereas very ohliquely, inclines ventrally and a little to the right, and rearhes the portal fissure of the liver. Here it divides into three branches whiclo enter the liver and ramify in the substance of the gland like an artery, terminating in the lobular eapillaries. From the lobules the blood passes into the hepatie veins and through these to the posterior rena cava. Thus the blood which is distributed to the stomach, nearly the entive intestinal tract, the pancreas, and the spleen, passes through two sets of eapillaries prior to its return to the heart, viz., the eapillaries of these viscera and of the liver.

1. The anterior mesenteric vein (V. mesenterict cranialis) is the largest of the portal radicles. It is situated to the right of the artery of like name, and its tributaries correspond in general to the branches of the artery. The dorsal colic vein usually unites with the ventral one at the pelvic flexure, thus forming a single trunk (V. colica dextra) which runs between the right parts of the colon. There is,

Fig. 591.-Portal Tein of Horse,
a, Intrahepatic part, b, extrahepatic part, of portal \mathbf{v} (in; c, anterior gastric vein; d, right gastro-epiploic veib; ϵ, pancreatico-duodenal voin; f, spleric vein; $f^{\prime \prime}$, left gastro-epiploic vein; g, posterior gastric vein; h, posterior mesedteric vein; i, middle colic vein; k, left colic vein; k^{\prime}, auterior hamorrhoidal vein; m, jojunal truak; m^{\prime}, jejunal veios; o, right colic viin; o^{\prime}, ventral colic vein; $o^{\prime \prime}$, dorsal colic vein; $o^{\prime \prime \prime}$, small collateral vein connecting dorsal colic and posterior orescnteric weins; p, ileal vein; q, eteeal veins; I, liver; $I I$, spleen; $I I I$, stomach; $I V^{\prime}$, duodeounn; 1 , jojunum; ${ }^{1} I$, crecum; III, ventral parts of great colun; YIII, pelvic flexure; $I X$, dorsal parts of great colon; X, small colon; NI, rectum, (After Schmitz.)
however, a small vein on the right dorsal colon which is connected by numerous branches with the right colie vein; it joins the posterior mesenterie vein or its middle colie radicle. The veins of the small intestine ($V \mathrm{v}$. intestinales) unite to form a short trunk.
2. The posterior mesenteric vein (V. mesenterica caudalis) is the smallest of the radicles of the portal vein. It accompanies the artery in the colic mesentery, and its rectal branches (V_{v}. liemorrhoidates craniales) anastomose with those of the internal pudic vein. It reecises the middle eolic vein from the initial part of the small colon and atso the small vein of the right dorsal colon, as mentioned above.
3. The splenic vein (V. lienalis) is the very large satellite of the splenie artery: It is formed by the union of two radieles at the base of the spleen. On leaving the hilus of the spleen it passes medially between the anterior pole of the left kidney and the sacelts eiecus of the stomach and alove the left end of the pancreas, receives
commonly the posterior gastric vein (V . gastrica caudalis), and unites with the anterior mesenteric at the posterior border of the pancreas. Not uncommonly the splenic and posterior mesenteric veins form a short common trunk.

The collateral tributaries of the portal vein are as follows:
(1) Pancreatic veins (Rami pancreatici).
(2) The gastro-duodenal vein (T. gastroduodenalis), when present, corresponds mainly to the extrahepatic branches of the hepatic artery; but in most cases it does not exist, and the right gastro-epiploic vein (V. gastroepiploica dextra) and pan-creatico-duodenal vein (V°. pancreaticoduodenalis) open directly into the portal rein.
(3) The anterior gastric vein (V. gastrica cranialis) joins the portal vein at the portal fissure.

THE COMLMON IIIAC VEINS (Fig. 581)

These (V. iliacæ communes) are two very large but short trunks, which result from the union of the internal and external iliac veins of each side at the sacro-iliac articulation. The left one is the longer, and crosses obliquely over the terminal part of the aorta. The chicf tributaries of each are as follows:

1. The last lumbar vein.
2. The circumflex iliac veins (Vv. circumflexæ ilium profundæ) are the two satellites of the corresponding artery, on either side of which they are placed. They may open directly into the posterior rena cava or into the external iliac vein.
3. The ilio-lumbar vein (V . iliolumbalis) may open into the common iliac, the external iliac, or the internal iliac vein.

THE INTERNAL ILIAC VEINS

The internal iliac or hypogastric veins (V.v. iliacæ internæ s. hypogastricæ), right and left, are usually formed by the confluence of lateral sacral, gluteal, and internal pudic veins. The obturator vein may open into them also. They are short trunks, and are smaller than the external iliac veins. The tributaries correspond in general to the branches of the three arteries of like names. The internal pudic veins receive affluents from the anus and posterior part of the rectum; from the renous plexuses of the prepuce and penis in the male; and from those of the mammary gland, vulva, vagina, and vestibular bulb in the female. A large anastomotic branch connects the internal pudic and obturator veins at the lesser sciatic notch.

THE VEINS OF THE PELVIC LIMB

The external iliac vein (V. iliaca externa) (Figs. 576. 581) lies behind the corresponding artery at the brim of the pelvis. It is the upward continuation of the femoral vein, and unites at the sacro-iliac joint with the internal iliac to form the common iliac vein. Its tributaries are as follows:

1. The obturator vein (V. obturatoria) is a satellite of the artery, except in its terminal part; it usually opens into the external iliac at the insertion of the psoas minor. Its radicles anastomose with those of the internal and external pudic reins (Figs. 576, 658).
2. The iliaco-femoral or lateral circumflex veins (TV. circumflexæ femoris laterales) are the two satellites of the homonymous artery. They open a bittle higher than the obturator.

The femoral vein (V. femoralis) (Figs. 575,582) lies behind the artery in the proximal part of the thigh, lateral to it lower down. Its chief tributaries are:

1. A large but short trunk is formed by the union of the deep femoral and the external pudic vein. The deep femoral vein ($\sqrt{ }$. profunda femoris) corresponds
otherwise to the artery. The external pudic vein (V. pudenda externa) arises chiefly from a rich plexus of large veins situated alove and along the sides of the penis and prepuce in the mate, the mammary glands in the female. It passes through a foramen in the anterior part of the tendon of origin of the gracilis and runs outward behind the pectineus to mite with the deep femoral vein. The right and left veins are comected by a large transverse anastomotic branch which lies in the subpubic groove, and each has a large comection with the obturator win. Each receives the posterior abdominal vein (V. abrominalis caudalis), which accompanies the artery of like name. The subcutaneous abdominal vein (V. abdominalis subentanea) arises in the skin and rutaneons musele of the ventral abdominal wall, anastomoses with the internal and external thoracie and deep abdominal reins, and joins the external pudie or the posterior abdominal rein.

A small vein may arempany the external pudic artery in the inguinal canal.
2. The anterior femoral vein (V. femoris cramialis) accompanies the artery.
3. The saphenous vein (V'. saphena) (Figs. 575, 576, 583) arises on the dorsomedial surface of the tarsus as the upward contimuation of the medial metatarsal vein. Its course is distinetly visible. It ascends on the subentaneous surface of the tibia and the poplitens muscle, enclosed between layers of the deep fascia, inchines a little backward to the proximal part of the leg, then deviates slightly forward, runs upward on the gracilis, passes between that muscle and the sartorius, and joins the femoral or the external pudie vein. ${ }^{1}$ On the upper part of the capsule of the hock joint it forms an arch with the anterior tibial vein. The vein has numerous valves. The satellite artery is relatively small, and lies in front of the vein as far as the junction with the recurrent tibial vein, which it aceompanies on the leg. It receives the recurrent tibial vein (V. recurrens tibialis) at the proximal fourth of the leg. This vessel arises at the distal third of the leg, where it forms an arch with the posterior tibial vein; here it is a satellite of the artery of like name. It ascends in the furrow in front of the gastrocnemius tendon, inelines forward at the proximal third of the leg, and joins the saphenous rein at an acute angle. It gives off a branch which ascends with the artery and joins the posterior femoral or the popliteal vein. ${ }^{2}$ A smaller vein from the anterior face of the metatarsus joins the saphenous at the hock.
4. Muscular branches which correspond to the arteries.
5. The posterior femoral vein (V. femoris candalis) is a satellite of the artery. It receives the recurrent tarsal vein (V. tarsea recurrens), which arises at the lateral side of the hock, ascends on the deep fascia of the lateral surface of the leg in front of the tendo Achillis, passes between the biecps femoris and semitendinosus, and joins the posterior femoral rein. It is comected with the reenrent tibial vein by a large anastomotic branch which crosses in front of the tuber ealcis. Usually a branch from it ascends along the great sciatic nerve and anastomoses with the obturator vein.

The popliteal vein (V. poplitea) lies along the medial side of the artery (Fig. 584). It is formed by the conflunce of anterior and posterior tibial veins.

Two anterior tibial veins (V v. tibiales anteriores) usually accompany the artery of like name; the lateral vein is much the larger. ${ }^{3}$ In other cases there is a single

[^169]large vein in the proximal part of the leg, two lower down. They arise from a number of anastomosing radicles on the front of the capsule of the hoek joint, chiefly as the continuation of the perforating tarsal vein. A large branch from the saphenous rein concurs in the formation of the somewhat plexiform arrangement on the flexion surface of the hock.

The posterior tibial vein (V. tibialis posterior) is commonly double (Fig. 583). It arises at the level of the tuber calcis, where it has a communication with the recurrent tibial vein. It is a satellite of the artery.

The medial or great metatarsal vein (V. metatarsea dorsalis medialis (Figs. 583,585) arises from the venous arch above the sesamoids at the fetlock, but is practically the upward continuation of the medial digital vein. It ascends along the medial border of the suspensory ligament, then in the groove on the proximal part of the large metatarsal bone to the capsule of the hock joint, and is continued by the saphenous vein. The small middle dorsal metatarsal vein (T. met. dorsalis media) joins this vein or the saphenous at the hock.

The lateral metatarsal vein (T. metatarsea dorsalis lateralis) is the very small satellite of the great metatarsal artery. It is inconstant, but may be double in the proximal part of the metatarsus.

The medial plantar vein (V . metatarsea plantaris superficialis medialis) is very small, and is not always present. It ascends along the medial border of the deep flexor tendon in front of the corresponding nerve. It is connected below with the medial digital vein, and above with the deep metatarsal or the lateral plantar vein.

The lateral plantar vein (${ }^{\circ}$. metatarsea plantaris superficialis lateralis) arises from the renous arch above the fetlock, but appears to be the upward continuation of the lateral digital vein. It ascends along the lateral border of the deep flexor tendon in front of the plantar nerve, and is connected with the deep metatarsal rein at the proximal part of the metatarsus by a transverse branch. It then parses upward along the deep flexor tendon in relation to the plantar nerves and the medial tarsal artery, and is continued by the recurrent tibial vein.

The deep metatarsal vein (V. metatarsea plantaris profunda medialis) arises from the plantar venous arch, above the fetlock, passes forward between the branches of the suspensory ligament, and ascends on the posterior face of the large metatarsal bone. At the proximal end of the metatarsus it is connected with the lateral plantar vein by a transverse branch, thus forming the deep plantar arch (Arcus plantaris profundus). It then passes, as the perforating tarsal vein (V. tarsea perforans), through the vascular canal of the tarsus and forms the chief radicle of the anterior tibial vein.

The distal plantar venous arch (Areus venosus plantaris distalis) and the digital veins are arranged like those of the thoracic limb.

Lymphatic System of the Horse

THE THORACIC DUCT (Figs. 553, 554)

The thoracic duct (Ductus thoracicus) is the chief collecting trunk of the lymphatic system. It begins as an elongated irregular dilatation, the cisterna chyli, which is situated between the right side of the aorta and the right crus of the diaphragm at the first and second lumbar vertebre. The duct enters the thorax through the hiatus aorticus and runs forward on the right of the median plane, between the vena azygos and the aorta, covered by the pleura. At the sixth or seventh thoracic vertebra it inclines somewhat ventrally, crosses obliquely over the left face of the œesophagus, and passes forward on the left side of the trachea to the inlet of the thorax. The extrathoracic terminal part passes downward and
forward a variable distance ($3-4 \mathrm{~cm}$.) on the deep face of the left sealenus muscle, bends inward and backward under the bicarotid trunk, and opens into the dorsal part of the origin of the anterior vena cava just behind the angle of junction of the jugular veins. The terminal bend is ampullate, and sometimes divides into two very short branches which open close together.

Since the duet develops from a plexus of ducts in the embryo, considerable variation from the more usual course oceurs. There is often a left duet which arises at the cisterna or at a variable point from the right duet, runs aeross the left intercostal arteries parallel to the latter, and unites with it over the base of the heart or further forward. The two are connected by erossbranches. In some eases the left duct is the larger, and there nay indeed be none on the right side. Other variations are common.

The chief tributaries of the thoracic duct are as follows:

1. The two lumbar trunks (Trunci lumbales) are formed by the confluence of the efferent ducts of the lumbar glands, and commonly unite with each other and with the posterior intestinal trunk before opening into the cistern.
2. The intestinal trunks (Trunci intestinales), two or three in number, receive the efferents of the lymph glands of the intestine, stomach, liver, and spleen. ${ }^{1}$

In its course through the thorax the thoracic duct receives efferents from the intereostal, mediastinal, and bronchial glands. At the thoracie inlet it is joined by ducts from the prepectoral and right axillary glands, and by the left tracheal duet. The duct is provided with several pairs of valves; the best developed are at its termination.

THE RIGHT LYMPHATIC DUCT

This vessel (Ductus lymphaticus dexter)-when present-collects the lymph from the right side of the head, neck, and thorax, and from the right thoracic limb. It is commonly alsent, leing represented by a number of short ducts which terminate in the thoracic duct, the right jugulo-hrachial junction, or the origin of the anterior vena cava. When present in its typical form, it results from the confluence of efferent ducts from the right axillary and posterior cervieal lymph glands with the right tracheal duct. It lies on the deep face of the scalenus muscle, above the terminal part of the right jugular vein. It is more or less ampullate and usually opens into the anterior vena cava to the right of the thoracic duct. It may be connected with the latter by anastomoses or may join it.

The duet is very variable in form and in regard to its afferents. Often it is a very short, in regular, and bulbons trunk; in some cases it is about an inch and a half (ea. 3-4 em.) in length and reeeives the tracheal duct at its terminal bend. The lymphatico-venous connections here have not yet been satisfactorily worked out by modern methods.

THE LYMPH GLANDS AND VESSELS OF THE HEAD AND NECK

1. The mandibular or submaxillary lymph glands (Lgg. mandibulares s. submaxillares) (Figs. 265, 587) are arrangor in two elongated groups in the mandibular space along each side of the omo-hyoid muscles. The two groups are in apposition in front of the insertion of these musdes, and diverge posteriorly in the form of a V, extenting backward about four or five inches (ca. $10-12 \mathrm{~cm}$.). They are eovered by the skin and a thin layer of fascia and cutaneus muscle, and are therefore palpable. Anteriorly they are firmly attached to the mylo-hyoidei, but otherwise they are freely movable in the normal state. Each group is related laterally to the external maxillary artery and the anterior belly of the digastricus, ventrally to the external maxillary vein, and clorsally to the lingual and sublingual veins.

They receive afferent vessels from the lips, nostrils, nasal region, eheeks, the

[^170]anterior part of the tongue, the jaws, the floor of the mouth, and the greater part of the hard palate and nasal cavity. The efferent vessels pass to the anterior cervical and pharyngeal glands.

Nost of the superficial lymph vessels of the face converge to twelve to fifteen trunks which turn around the lower border of the jaw with and in front of the facial vessels. Those of the lips form plexuses at the commissures. The nasal mucous membrane is richly supplied with lymph vessels which accompany the reins; posteriorly they communicate with the subdural and subarachnoid spaces and send efferents to the pharyngeal and anterior cervical glands.
2. The pharyngeal lymph glands (Figs. 562, 706) usually comprise two groups. One lies on the upper part of the lateral surface of the pharynx, along the course of the external carotid artery. These glands are related laterally to the occipito-mandibularis and digastricus, and often to the mandibular gland also, above to the guttural pouch; they may properly be termed the parapharyngeal lymph glands (Lgg. parapharyngeales). Other small glands are commonly found on the guttural pouch along the course of the internal carotid artery; they are best designated as the suprapharyngeal lymph glands (Lgg. suprapharyngeales). ${ }^{1}$ They lie below the artery and are covered by the aponeurosis of the brachiocephalicus and the cerrical end of the mandibular gland. In some cases a number of glands occur in the angle of divergence of the external and internal carotid arteries.

They receive afferent vessels from the cranium, the posterior part of the tongue, the soft palate, pharynx, guttural pouch, larynx, posterior part of the nasal carity, and efferents from the mandibular glands.
3. The anterior cervical lymph glands (Lgg. cervicales craniales) (Fig. 646) are situated along the course of the common carotid artery, in the vicinity of the thyroid gland, under cover of the cervical angle of the parotid gland. Some occur between the thyroid and the mandibular salivary gland, others above and partly upon the thyroid. They are related deeply to the posterior part of the larynx, the trachea, the thyroid gland, and the œesophagus; below to the external maxillary vein and the lateral border of the omo-hyoideus. ${ }^{2}$

These glands are variable. Often there are none in front of the thyroid and the group may extend back a considerable distance along the course of the carotid artery.

Their afferents are deep lymph vessels from the head, the pharynx, larynx, guttural pouch, and thyroid gland, and efferents from the mandibular and pharymgeal glands. Their efferent vessels go to the middle and posterior cervical glands.
4. The middle cervical lymph glands (Lgg. cervicales mediæ) form an inconstant group situated a little in front of the middle of the neck on the trachea below the carotid artery. The group is usually small, and in some cases is replaced by a number of glands occurring at intervals along the course of the carotid artery. In other subjects the group cousists of several glands of considerable size. They are intercalated in the course of the tracheal lymph ducts.
5. The posterior cervical or prepectoral lymph glands (Lgg. cervicales caudales) form a large group below the trachea at the entrance to the thorax (Fig. j90). They occupy the interstices between the ressels and muscles and extend forward a variable distance on the ventral aspect of the trachea. Posteriorly they are continuous with the anterior mediastinal glands. They are covered by the cutaneus and sterno-cephalicus. Their afferent vessels come from the head, neck, thorax, and thoracic limb. They receive efferent ducts of the anterior and middle cervical, prescapular, and axillary glands. Their efferents go to the thoracic duct on the left, to the right lymphatic duct on the right, or open directly into the rena cava.
6. The prescapular or superficial cervical lymph glands (Lgg. cervicales

[^171]superficiales) lie on the anterior horder of the anterior deep pectoral musele, in relation to the omo-hyoideus medially and the brachiocephalicus laterally (Figs. $556,566,590)$. They are on the course of the ascending lyanch of the inferior rervical artery, and may form an elongated series which is continuous ventrally with the posterior cervical group. They receive afferents from the neck, breast, shoulder, and arm. Their efferents pass to the posterior cervical glands.

The tracheal ducts, right and left (Ductus trachealis (lexter, sinister), are collecting trunks for the lymph of the head and neck. They lie on the trachea in relation to the carotid arteries. The right one goes to the posterior cervical glands or to the right lymphatic cluct, the left one to the terminal part of the thoracic duct.

THE LYMPH GLANDS AND VESSELS OF THE THORAX

The thoracic lymph glands (Lgg. thoracales) are in general of small size, but are numerons. They comprise the following:

1. The intercostal lymph glands (Lg. interecostales) are small and are situated at the sides of the boolics of the thoracie vertebres, in series corresponding to the intercustal spaces; others are between the aorta and the vertehre. They receive afferents from the vertebral canal, the spinal muscles, the diaphragm, intereostal muscles, and pleura. The efferent vessels go to the thoracie duct. ${ }^{1}$
2. The anterior mediastinal lymph glands (Lgg. mediastinales eraniales) are mumerons. Some are situated on the course of the brachial arteries and their branches; on the right side they are related deeply to the trachea, on the left to the resophagus also. They are variable in size and disposition and are continuous in front with the posterior cervical glands. Other glands lic along the ventral face of the trachea on the anterior vena cava and the right atrium of the heart; these are continuous behind with the hronchial glands. A few glands usually occur along the dorsal surface of the trachea, and there is often one at the angle of divergence of the lorachiocephalic trunk. The afferent vessels come chiefly from the pleura, the pericardium, the heart, the thymus or its remains, the trachea, the osophagus, and the bronchial lymph glands. Their efferent vessels pass to the posterior cervical glands and the thoracic duct.

The glands along the vent ral face of the trachea are frequently enlarged and commonly pigmentel in dissecting-rom subjects. The left recurrent nerve lies above them on the ventral face of the trachea.
3. The bronchial lymph glands (Lgg. bronchiales) are grouped around the terminal part of the trachea and the bronchi. One group lies on the dorsal surface of the bifurcation of the trachea, and is continued a short distance backward under the cesophagus. Others lie below the trachea and bronchi and also occupy the angle between the aortic arch and the pulmonary artery, concealing the left recurrent nerve and often covering the ragus in this part of its course. Small glands oceur along the chicf bronehi in the substance of the lungs (Lg. pulmonales). They receive the deep and most of the superficial lymph ressels of the lungs, and the effernts from the posterior mediastinal glands. Their efferent vessels go to the thoracie duct and the anterior mediastinal glands. The deep lymph vessels of the lung arise in plexuses which surround the terminal bronchi and accompany the bronchi to the root of the lung. The superficial vessels form a rich network under the pleura; most of them pass to the bronchial glands, but some go to the posterior mediastinal glands.

The bronchial glands are commonly pigmented (exeept in young subjects) and are often enlarged and indurated.
4. The posterior mediastinal lymph glands (Lgg. mediastinales caudales) are
${ }^{1}$ These glands appear to be more numerous in the young subject than they are later in life.
usually small and are scattered along the posterior mediastinum chiefly above the asophagus. They receive afferent vessels from the cesophagus, mediastinum, diaphragm, pleura, and liver. The efferents go to the bronchial and anterior mediastinal lymph glands, partly to the thoracic duct directly.

Sometimes one or two small glands are situated in the acute angle between the posterior vena cava and the diaphragm; and the oceurrence is recorded of a gland between the apex of the pericardium and the sternal insertion of the diaphragm.

THE LYMPH GLANDS AND VESSELS OF THE ABDOMEN AND PELVIS

The abdominal and pelvic lymph glands (Lgg. abdominales et pelvinæ) consist of two main groups, parietal and visceral. The parietal glands lie in the subserous or subcutaneous tissue; they receive the lymph vessels from the abdominal and pelvic walls, from parts of the viseera, and from the proximal lymph glands of the pelvic limbs. The visceral giands lie on the walls of the viscera or in the peritoneal folds which connect the organs with the wall or with adjacent viscera. They receive all or most of the lymph vessels from the organs with which they are connected.

The parietal glands comprise the following:

1. The lumbar lymph glands (Lgg. lumbales) lic along the course of the abdominal aorta and posterior vena cava (Fig. 575). Some are placed along the ventral surface and sides of the vessels, others above. A few small glands may be found above the sublumbar muscles. The small nodes which are situated at the hilus of the kidneys are often termed the renal lymph glands (Lgg. renales). They receive afferent vessels from the lumbar wall of the abdomen and the paired viscera (kidneys, adrenals, genital organs), also the inguinal vessels and the efferents of the iliac glands. Their efferents go to the thoracie duct, constituting the lumbar trunks of origin of that vessel.
2. The internal iliac lymph glands (Lgg. iliace internax) are grouped about the terminal part of the aorta and the origins of the iliac arteries (Fig. 575). Their afferent vessels come chicfly from the pelvis, pelvic viscera, and tail, and they receive efferent vessels of the external iliac and deep inguinal glands.
3. The external iliac lymph glands (Lgg. iliacæ externæ) form a group on either side on the iliac fascia, at the bifurcation of the circumflex iliac artery (Fig. 575). Their afferent vessels come from the flank and abdominal floor, the lateral surface of the thigh, and the prefemoral glands. The efferent vessels go to the lumbar and internal iliac glands.
4. The sacral lymph glands (Lgg. sacrales) are small nodes situated along the borders of the sacrum and on its pelvic surface. They receive afferents from the roof of the pelvis and from the tail, and their efferent vessels pass to the internal iliac glands.
5. The superficial inguinal lymph glands (Lgg. inguinales superficiales) lie on the abdominal tunic in front of the external inguinal ring (Fig. 582). ${ }^{1}$ They form an elongated group along the course of the subcutaneous abdominal artery, on either side of the penis in the male, above the mammary glands in the female; in the latter they are often termed mammary. Their afferents come from the medial surface of the thigh, the ablominal floor, the sheath, penis, and scrotum in the male, and the mammary glands in the female. The efferent vessels ascend through the inguinal canal and go to the deep inguinal, internal iliac, and lumbar glands.
6. The ischiatic lymph glands (Lgg. ischiadicæ) are small nodes on the npper part of the sacro-sciatic ligament along the course of the posterior gluteal artery. They receive lymph from the adjacent parts and from the popliteat glands, and send efferents to the sacral and internal iliac glands.
[^172]
The visceral glands include the following:

1. The gastric lymph glands (Lgg. gastricer) are situated along the course of the gastric arteries. Several ofcur on the saccus cecus ventral to the left part of the pancreas, and along the attachment of the gastro-phrenic ligament. A group lies at the lesser curvature a short distance below the cardia. There is another small group on the viseeral surface where the posterior gastric artery divides into its primary branches. There are usually two or three small nodes on the ventral aspect of the pytorus. Other small glants are seattered along the course of the gastro-epiploic and short gastric arteries, in the great and gastro-splenic omenta. The efferent vessels pass largely to the cteliac radicle of the cisterna chyli, but along the left part of the great curvature they go to the splenif glands.
2. The hepatic lymph glands (Lgg. hepaticar) lie along the portal vein and hepatic artery and in the lesser omentum. Their efferent vessels go to the coeliace radiele of the cisterna chyti.

Dany of the lymph vessels from the parietal surface of the liver pass in the falciform and lateral ligaments to the diaphragm and join the lymphatis of the latier. Some pass through the diaphragm with the sema cava and go to the mediastinal glands.

The pancreatic lymph vessels follow the course of the bloocl-ressels which supply the gland; mest of them go to the splenic and bepatie glands.
3. The splenic lymph glands (Lgg. lienales) lie along the course of the splenie blood-vessels in the hilus of the spleen and the gastro-splenie omentum. Their afferent vessels come from the subeapsular network of the spleen, from the greater curvature of the stomach, and from the left part of the pancreas. The efferents pass to the glands of the saccus cecus of the stomath and to the eroliac radicle of the cistema chyli.

1. The mesenteric lymph glands (Lgg. mesenterice) are situated in the great mesentery near its root. Ther are muncrous and hence lie close together. They receive a very large number of afferent vesisels (400 to 500) from the small intestine. They have several considerable efferents, which roncur in the formation of the intestimal radicles of the cistema chyli.

Abstract

The lymplr ressels of the intestine form three sets of capillary plexuses, viz., in the subserosa, sulomucosa, and murosa. The lymph follieles, solitary and aggregate, lie in the zone of the phexus of the mucosa. The collecting ressels arise from the sulnserous plexus.

5. The cæcal lymph glands (Lgg. ceecales) are numerous and are distributerl along the course of the cecal bleoef-ressels. Their efferents enter into the formation of an interstinal radicle of the eisterna chyli.
6. The colic lymph glands (Lgg. colicae) romprise those of the great colon and those of the small colon. The giands of the great colon are extremely numerous and are placed chose together along the colic blooct-vessels. Their efferent vessels are large and mumerons. They converge to two large trimks which concur with those of the exedm and small intestine to form an intestinal radicle of the cisterna chyti. The glands of the small colon are situated in part on the wall of the bowel along the attachment of the mesentery, in part between the layers of the latter along the course of the blool-vessels. The efferent versels go to the lumbar glands and to the posterior intestinal radicle of the thoracie duct.

The intestinal radicles of the cisterna chyli are formed by the confluence of efferents from the intestinal lymph ghands. The anterier truak lies on the left side of the anterior mesenterio artery, passes between that vessel and the enline artery, turns sharply hackward across the right remal vesisels, and opens into the cisterma. It is formed by the union of the coliae trunk with efferents from the glands of the small intestine, cacum, and colon. It is about four inches (ea. 10 cm .) in length and is ampullate. The posterior trunk receives vessels from the small intestine and small colon. It usually opens into a trum formed by the union of the right and left lumbar ducts. It is usually ampullate at its termination (Franck). The arrangement of these collecting trunks is, however, very variable.

The rectal lymph glands (Lgg. rectales) form a chain along the dorsal surface
of the bowel. They receive afferent vessels from the rectum and anus, and their efferent vessels pass ehiefly to the internal iliac glands.
7. The anal lymph glands (Lg. anales) form a small group of three or four on either side of the sphincter ani externus (Figs. 578). They receive afferents from the anus, perineum, and tail. Their efferents go to the internal iliac glands.

THE LYMPH GLANDS AND VESSELS OF THE THORACIC LIMB

1. The axillary lymph glands (Lgg. axillares) (Fig. 590), some ten to twelve in number, are grouped on the medial face of the distal part of the teres major and the tendon of the latissimus dorsi at the angle of junction of the external thoracie and subseapular reins with the brachial (Fig. 566). Their afferents include most of the lymph vessels of the limb, which come directly or as efferents from the eubital glands. They receive also lymph vessels from the thoracic wall. The efferents accompany the brachial blood-vessels and end in the posterior cervical glands and the thoracic and right lymphatic ducts.
2. The cubital lymph glands (Lg. cubitales), usually eight to ten in number, form a discoid oral group at the medial side of the distal part of the shaft of the humerus (Figs. 566, 590). They lie behind the biceps musele on the brachial vessels and median nerve, and are covered by the deep faseia and the posterior superficial pectoral muscle. They receive as afferents most of the vessels from the limb below this point. Their efferents pass chiefly to the axillary glands, but in part to the prescapular glands also.

In quite exceptional cases a lymph gland may be found on the brachial vessels about the middle of the arm.

A number of superficial lymph vessels ascend with or near the subcutancous veins (eephalic and aecessory eephalic), and join the prescapular and prepectoral glands. Superficial vessels from the chest-wall and shoulder run across the latter to the preseapular glands. The superficial lymphatics of the pectoral region form a plexus which drains into the posterior cervical and prescapular glands by a number of vessels which accompany the cephalic vein. The deep lymph vessels of the pectoral region run with the external thoracic vein to the axillary glands.

In one subject the author observed several small glands along the posterior branch of the dorsal artery, under cover of the rhomboideus.

THE LYMPH GLANDS AND VESSEIS OF THE PEIVIC LIMB

1. The prefemoral or subiliac lymph glands (Lgg. prefemorales s. subiliacæ) are situated in the fold of the groin on the anterior border of the tensor fasciæ latæ, about midway between the point of the hip and the patella (Figs. $575,576,582$). They lie on the course of the posterior branch of the eireumflex iliae artery, and number usually about a dozen. They receive superficial lymph vessels from the hip, thigh, and flank. Their efferent vessels ascend with the posterior circumflex iliae vein, enter the abdomen near the tuber coxæ, and join the external iliac lymph glands.
2. The deep inguinal lymph glands (Lg. inguinales profundæ) form a large group situated in the proximal part of the femoral canal, between the peetineus and sartorius muscles (Figs. 576, 5S2). The group is elongated and is commonly four or five inches (ea. $10-12 \mathrm{~cm}$.) in length. They cover the femoral vessels and are related superficially to the inguinal ligament. They receive nearly all of the lymph vessels of the limb below them. Their efferent vessels ascend to the internal iliac glands.
3. The popliteal lymph glands (Lg. popliteæ), usually four to six in number,
lie behind the origin of the gastrocnemius and between the bieeps femoris and semitendinosus at the division of the posterior femoral artery into its primary branches (Fig. 580). They reecive the deep lymph vessels of the distal part of the limb. Their cfferent vessels chiefly follow the course of the femoral vessels to the deep inguinal glands, but one or two ascend in company with a vein along the great sciatic norve and may enter an ischiatic gland or accompany the internad pudie vein and join the internal iliae glands.

Several superficial lymph vessels ascend with or near the medial metatarsal and saphenous veins, enter the femoral canal, and end in the deep inguinal ghads.

The Fetal Circulation

The blood of the feetus is oxygenated, receives mutrient matter, and gives off waste matter by close contiguity with the maternal hood in the placenta. The chief elifferences in the blood-vascular system as comparel with that which obtains after birth are eorrelated with this interehange.

The umbilical arteries, right and left, are targe vessels which arise from the internal iliae arteries and pass downward and forward in the umbilical folds of peritoneum on either side of the bladder to the umbiliens. Ilere they are incorporated with the umbilical vein and the urachus in the umbilicad cord, ramify in the allantois, and end as the capillaries of the foctal placenta. They conduct the impure bood to the placenta. After lirth these vessels retract with the bladder to the pelvie cavity; their lumen beromes greatly reduced and the wall thiekened so that they are cord-like and are nsually termed the round ligaments of the bladder.

The umbilical vein receives the oxygenated blood from the placenta. Its radicles converge to form in the horse a single karge trunk which separates from the other constituents of the umbilical cord on entering the abdomen and passes forward along the abdoninal floor in the free border of the fakiform ligament of the liver. It euters the latter at the umbilical fissure and joins the portal vein, so that the blood conveyed by it passes through the capillaries of the liver before entering the posterior vena cava. The vein contains no valves.

In the ox and dog some of the hlood in the umbilical vein is conveyed directly to the sena cava by the ductus venosus. This vessel is given off within the liver from a venous sinus formed by the confluence of the portal and umbilical veins and passes directly to the posterior vena cava.

The foramen ovale is an opening in the siptum between the atria of the heart, by which the latter commmieate with each other. It is guarded by a valve (Valvula foraminis ovalis) which prevents the bloot from passing from the left atrium to the right. After birth the foramen soon closes, but this part of the septum remains membranous, and there is a deep fossa ovalis in the right atrime which inticates the position of the former opening. In some cases the foramen persists to a variable extent in the adult without apparent disturbance of the circulation.

The pulmonary circulation is very limited in the feetus, and most of the blood which enters the pulmonary artery passes through the ductus arteriosus to the arorta. This vessel is larger than the divisions of the puhmonary artery which go to the lungs, and joins the left side of the atortic areh. After birth the pulmonary cireulation undergoes promptly an enormous increase and the ductus is rapidly transformed into a fibrous cord-the ligamentum arteriosum.

The only arterial blexed in the feetus is that carried by the umbilical vein. This blood is mixed in the liver with the venous blood of the portal vein, and after passing through the capillaries of the liver is carried hy the hepatie veins to the posterior rena cava. The latere receives also the venous blood from the posterior part of the trunk and the pelvic limbs. It is generally believed that the blood car-
ried into the right atrium by the posterior vena cava passes largely, if not entirely, through the foramen ovale into the left atrium, while the blood flowing into it through the anterior vena cava passes into the right rentricle. On this hasis the blood received by the left atrium consists chiefly of mixed blood from the posterior rena cava, since the small amount of blood conveyed by the pulmonary veins is renous. This mixed blood passes into the left rentricle and is forced into the srstemic arteries. The venous blood from the anterior part of the body and the thoracic limbs is conveyed by the anterior vena cava to the right atrium, passes into the right ventricle, and is forced into the pulmonary artery. A small amount is carried to the lungs, but the bulk of it passes by the ductus arteriosus into the aorta behind the point of origin of the brachioccphalic trunk, and is carried to the posterior part of the body, a large part passing by the umbilical arteries to the placenta.

THE BLOOD-VASCULAR SYSTEM OF THE OX

The Pericardium and Heart

The pericardium is attached to the sternum opposite the facets for the sixth costal cartilages by two fibrous bands, the sterno-pericardiac ligaments (Ligg. sternopericardiaca); these ligaments, right and left, are embedded in the mass of fat which separates the apex of the pericardium from the floor of the thorax. On the left side the greater part of the pericardium is in contact with the chest wall as far back as the fourth intercostal space. On the right side the pericardium is commonly covered by the lung, and has therefore no contact with the lateral chest wall. But in some cases there is a small cardiac notch on the right lung opposite to the rentral part of the third rib and intercostal space.

The heart of the adult ox has an average weight of about five and a half pounds (ca. 2.5 kg .) , or about 0.4 to 0.5 per cent. of the body-weight. Its length from base to apex is relatively longer than that of the horse, and the base is smaller in both its diameters. The ventricular part is more regularly conical and more pointed. A shallow intermediate groove (Sulcus intermedius) extends from the coronary groove down the left side of the posterior border, but does not reach the apex. The amount of fat in and near the grooves is much greater than in the horse. Eren more of the heart is situated to the left of the median plane than in the horse. The base is opposite the chest wall from the third rib to the fifth intercostal space, both inclusive. The apex is opposite to the fifth interchondral space; it is just to the left of the median plane, and is about an inch (ca. 2.5 cm .) from the diaphragm. The long axis is much less oblique than in the horse. The posterior border is opposite to the fifth intercostal space; it is practically vertical and is slightly concave.

The pulmonary orifice is opposite to the third rib in part and the third intercostal space, about a handbreadth (ea, $10-12 \mathrm{~cm}$.) above the sternal ends of the ribs. The aortic orifice is chiefly opposite to the fourth rib. The right atrio-ventricular orifice is opposite to the third intercostal space and fourth rib and space. The left atrio-ventricular orifice is chiefly opposite to the fourth intercostal space and fifth rib.

The left longitudinal groove corresponds to the fourth rib. The right groove is chiefly posterior: it begins below the termination of the posterior vena cava. The intermediate groove begins below the posterior end of the left auricle, and in its descent inclines gradually to the left side of the apex.

The vena hemiazygos usually unites with the terminal part of the great cardiac rein, thus forming a trunk which opens into the right atrium below the posterior rena cava.

Two bones, the ossa cordis, develop in the aortic fibrous ring. The right one 45
is in apposition with the atrio-ventricular rings, and is irregularty triangular in form. Its left face is concave and gives attachment to the right posterior cusp of the aortie valve. The right surface is convex from before backward. The base is dorsal. The posterior border bears two projections separated by a notch. It is usually a little more than an inch (ea. 4 em .) in length. The left lone is smaller and is inconstant. Its coneave right lrorder gives attachment to the left posterior cusp of the aortic valve. There is a large museular moderator band in the right

Fig. 592.-Leart of Ox; Left Venw.
The ventricles are contracted.
ventricle, which extends from the base of the anterior septal papillary musele to the lateral wall at the base of the papillary muscle there. In the left ventricte there are several branehed moderator bands.

The ARTERIES ${ }^{1}$

The great arterial trunks in the thorax resemble those of the horse in general disposition.

1 Only the most important differential features of the arrangement of the vessels as compared with those of the horse will be eonsidered.

The left coronary artery is much larger than the right one; it gives off a branch which descends in the intermediate groove, and terminates by running downward in the right longitudinal groove. The right coronary artery, after emerging from the interval between the right auricle and the pulmonary artery, divides into branches which are distributed to the wall of the right ventricle.

The brachiocephalic trunk (anterior aorta) is usually four or five inches (ca. $10-12 \mathrm{~cm}$.) in length.

The brachial arteries give off in the thorax the following branches:

1. A common trunk for the dorsal, deep cervical, and vertebral arteries.
(1) The subcostal artery commonly arises separately and runs forward along the sides of the bodies of the vertebra. It supplies the second to the fifth intercostal arteries.
(2) The dorsal artery is relatively small. It usually ascends in front of the first costo-vertebral joint, and is distributed as in the horsc. It gives off the first intercostal artery.
(3) The deep cervical artery may arise from a commou stem (Truncus vertebrocervicalis) with the vertebral, or may constitute a branch of that artery. It passes up between transverse processes of the first thoracic and last cervical vertebra, or between the sixth and seventh cervical, and is distributed as in the horse.
(t) The vertebral artery passes along the neck as in the horse to the intervertebral foramen between the second and third cervical vertebre, gives off a muscular branch, and enters the vertebral canal (Fig. 594). It runs forward on the floor of the canal-comected with its fellow by two or three transverse anas-tomoses-and divides in the atlas into two branches. The smaller medial division (cerebrospinal artery) passes forward to the floor of the cramum and concurs with the condyloid artery and branches of the internal maxillary in the formation of a large rete mirabile. The large lateral branch emerges through the intervertebral foramen of the atlas and ramifies in the muscles of the neck in that region, compensating for the smallness of the branches of the occipital artery. It also sends a branch to the rete mirabile. The collateral brauches detached to the cerrical muscles are large and compensate for the small size of the deep cervical artery. The spinal branches pass through the intervertebral foramina, divide into anterior and posterior branches, and form two longitudinal trunks which are connected by crossbranches so as to form irregular polygonal figures.
2. The internal thoracic artery presents no remarkable features.
3. The inferior cervical artery corresponds usually to the ascending branch of that ressel in the horse.

4 . The external thoracic artery is large and usually gives off a branch which is equivalent to the descending branch of the inferior cervical artery of the horse.

THE COMMON CAROTID ARTERY

The carotid arteries usually arise from a common trunk about two inches (ca. 5 cm .) in length, but in exceptional cases are given off separately from the brachiocephalic. Each pursues a course similar to that of the horse, and is accompanied by the small internal jugular vein, but is separated from the external jugular vein by the omo-hyoid and sterno-mastoid muscles. It divides at the digastricus into occipital, external maxillary, and external carotid arteries. In addition to tracheal, œsophageal, and muscular branches, it gives off the thyroid, laryngeal and inferior parotid arteries. The thyroid artery (A. thyreoidea cranialis) bends around the anterior end of the thyroid gland, in which it ramifies. The accessory thyroid artery is usually absent. The laryngeal artery may arise with the thyroid.

1. The occipital artery is relatively small. It gives off the following:
(1) The pharyngeal artery (A. patatina ascendens) goes to the pharynx and soft palate; it may arise from the external carotid.
(2) Muscular branches go chiefly to the ventral straight museles of the head and supply twigs to the atlanto-oeripital joint.
(3) The condyloid artery passes into the cramium through the anterior foramen in the condyloid fossa, and joins the vertebral in the formation of the rete mirabile about the pituitary gland. Before entering the cranium it gives off a branch to the pharyngeal lymph glands and the middle meningeal artery; the latter paskes

Fig. 593.-Schema of Chtef Arteries of Head of Coti.
1, Cormmon carotid artery; 2, thyro-laryngeal; 3, thyroid; 4. laryngeal; b, pharyngenl; 6, oceipital; 7 , condyloid; 8 , middle meringeal; 9 , pharyngeal; 10 , external maxillary; 11 , liugual; 12 , sublingual; 18 , supurior labial; 14 , internal maxillary; 15 , masseteric; 16 , inferior alveolar; 17 , buccinator; 18 , great palatine; 19 , sphenopalatine; 20 , posterior auricular; 21, superficial teunoral; 22. posterior meningeal; 23 , anterior auricular; 24, artery to corium of horn; 25 , deep temporal; 26 , arteries to rete mirabile; 27 , frontal; 28 , malar; 28^{\prime}, dorsal nasal continuation of malar; 29 , infraorbital; 29 , lateral nasal continuation of 29 .
through the foramen lacerum. Another branch enters the temporal canal and gives twigs to the temporalis muscle and the mucous membrane of the frontal sinus. A muscular branch emerges from the intervertehral foramen of the atlas. A diploie brancl goes into the oceipital condyle and squama, and emits twigs to the occipital musiles.
2. The external maxillary artery is smaller than that of the horse, but pursues a similar course. ${ }^{1}$ It gives off several bramehes to the parotid and mandibular glands. The lingual artery is large, and often arises separately from the common
${ }^{1}$ In the sheep the artery crosses the masseter muscle about its middle and is continued as the superior labial artery.
carotid; it gives off a branch to the mandibular gland, and the sublingual artery. After turning around the jaw the facial gives off the two labial arteries. The inferior labial artery is small; it runs forward along the ventral margin of the depressor labii inferioris. The superior labial is large: it passes forward ventral to the depressor labii superioris, and usually gives off a muscular branch which runs forward almost parallel with the lateral nasal. The angular artery is very small or absent, and the lateral and dorsal nasal arteries spring from branches of the internal maxillary:
3. The external carotid artery passes upward between the stylo-hyoideus and the great cornu of the hyoid bone, turns forward across the lateral face of the latter, and divides into superficial temporal and internal maxillary arteries. It gives off the following collateral branches:
(1) The pharyngeal artery may be a branch of the external carotid, but often arises from the occipital.
(2) The posterior auricular artery, which resembles that of the horse, sends a

Fig. 594.-Floor of Cbayicm and Anterior Part of Vertebral Canal of Ox.
1, Vertebral arters: ; 2, muscular branches of $1 ; 3$, branches of 1 to the rete mirabile: 4,3 , branches of internal maxillary artery to rete; 5 , branch of internal maxillary artery entering cranium through foramen ovale; 7 , condyloid artery; s, emergent artery from rete.distributed like internal carotid artery of horse $9,9^{\prime}$, longitudinal vertebral sinuses; a, cribriform plate; b, optic formina; c, for orbito-rotundum; d, foramen ovale; e, occipital condyle; f, b, h, first, second, and third cervical vertebra. (After Leisering's Atlas.)
stylo-mastoid branch into the tympanum. It may arise from the superficial temporal.
(3) The superior parotid artery arises near the termination of the external carotid and enters the upper part of the parotid gland.
(t) The masseteric artery resembles that of the horse, but is smaller; it may arise from the internal maxillary artery.

The superficial temporal artery is large and presents the following special features: (1) The transverse facial artery passes into the central part of the masseter. (2) It gives off a branch which corresponds to the posterior meningeal artery of the horse, enters the temporal canal, and ramifies in the dura mater, giving off twigs to the external ear, the temporal muscle, and the frontal simus. (3) It usually gives off the anterior auricular artery. (t) A large branch passes around the outer side of the base of the horn-core, supplies the corium of the horn, and anastomoses across the back of the frontal eminence with the artery of the opposite side. (5) Other branches go to the frontal muscles and skin and to the orbital fat, the lacrimal glands, and the eyelids.

The internal maxillary artery is entirely extransseous, since the alar canal is absent. It passes forward along the side of the pharynx and the lateral pterygoid muscle and forms a double curve at the infratemporal fossa. It then runs forward to the pterygo-palatine fossa and divides into two terminal trunks; one of these divides into malar and infraorbital arteries, the other into sphenopalatine and greater palatine. It gives off branches to the pterygoid muscles, and the principal differential features in its branching are as follows:
(1) The buccinator artery arises from the first curve of the internal maxillary; it is relatively large, supplies the superior buceal glands, and divides into two branches. One of these enters the buccinator; the other, which is much larger, ramifies in the deep part of the masseter.
(2) The anterior deep temporal artery usually arises by a common trunk with the middle meningeal artery. The latter enters the cranial cavity through the foramen ovale and concurs in the formation of the rete mirabile cerelorale.
(3) The ophthalmic artery forms a rete mirabile within the periorlita. ${ }^{1}$ Its frontal branch enters the supraorbital canal and ramifies chiefly in the frontal sinus.
(4) Several branches which take the place of the internal carotid artery enter the cranial eavity through the foramen orbito-rotundum. They coneur with the vertebral, middle meningeal, and condyloid arteries in the formation of an extensive rete mirabile cerebrale on the eranial floor around the sella turciea. From each side of the rete an artery arises which is distributed in general like the internal carotid and basilar arteries of the horse. ${ }^{2}$
(5) The malar artery is large; it arises by a common trunk with the infraortital and gives off the dorsal nasal and the angular artery of the eye.
(6) The infraorbital artery is large and emerges from the infraorbital foramen to form the lateral nasal artery.
(7) The greater palatine artery usually arises by a common trunk with the sphenopalatine. It passes through the palatine canal and along the palat ine groove, enters the nasal cavity through the incisive fissure, and does not go to the upper lip. It forms a rete mirabile about the incisive canal and terminates in the mucous membrane of the anterior part of the nasal cavity.

ARTERIES OF THE THORACIC LIMB

The brachial artery pursues the same course in the arm as that of the horse. At the elbow it becomes the median. ${ }^{3}$ The chief differential features in its branches are as follows:

1. The subscapular artery is almost as large as the continuation of the brachial. The posterior circumflex artery is large; it sends branches backward and downward into the triceps, taking the place in part of the deep brachial artery. The thoracicodorsal artery supplies branches to the pectorat museles and the triceps as well as the teres major and latissimus dorsi; it may arise directly from the brachial.
2. The smallness of the deep brachial artery is compensated, as noted above, by the large size of the posterior eireumflex.
3. The proximal collateral ulnar artery is often double, and does not extend to the carpus. Its superficial deseending branch goes to the superficial pectoral musele and the skin, and its ascending branch is distributed chiefly to the medial head of the triceps and the anconeus.
(4) The (distal) collateral radial artery, which is given off at the ellow joint,
${ }^{1}$ This may he distinguished as the rete mirabilt orbitale.
${ }^{2}$ The arteries which concur in the formation of the rete may be termed the arteria retis mirabilis cerehratis.
${ }^{3}$ The homologies of the ressels of the lower parts of the limbs are still uncertain. The account given here is mainly based on the views of Susstorf and Baum.
sends branches to the biceps, brachialis, and extensor muscles; it also supplies the nutrient artery of the humerus. It does not descend to the carpus.

The median artery descends along the medial part of the posterior surface of the radius and divides near the middle of the forearm into the radial and ulnar arteries. It gives off at the proximal third of the forearm the common interosseous artery, a large vessel which anastomoses with the deep brachial, passes through the proximal interosseous space, and descends as the dorsal interosseous artery in the groove between the radius and ulna, and concurs in the formation of the rete carpi

Fig. 595. -Arteries of Distal Part of Right Fore Lamb of Ox; Dorsal View.
a, Interosseous artery; b, dorsal brancb of radiat artery; c, rete carpi dorsale; d, dorsal metacarpal artery; e, dorsal common digital artery; f, f, dorsal proper digital arteries.

Fig. 596.-Arteries of Distal Part of Right Fore Limb of Ox; Volar View.
g. Clnar artery; h, radial artery; i, volar branch of common interosseous artery; k, l, m, deep volar metacarpal arteries; .1.0., volar arches; n, volar common digital artery; o, o^{\prime}, p, volar proper digital arteries.
dorsale. At the distal end of the forearm it sends a branch through the distal interosseous space, which passes downward, assists in forming the rete carpi volare, and is continued in the metacarpus as the lateral deep volar metacarpal artery. This is a small vessel which passes down under the lateral borter of the suspensory ligament and assists in forming the deep volar arch near the fetlock. The recurrent interosseous artery arises from the common interosseous and ascends to the lateral surface of the elbow. A large muscular branch arises from the median at the proximal end of the forearm; it is distributed chiefly to the flexor muscles.

The radial artery is the smaller of the two torminal branches of the median. It descends on the flexor carpi radialis, passes over the medio-volar surface of the carpus, and is continued as the medial deep volar metacarpal artery. At the distal end of the forearm and at the carpus it furmishes branches to the retia carpi. Another branch (A. met. perforans proximalis) rus outward betwern the suspensory ligament and the large metacarpal bone, passes through the proximal foramen of the bome, and unites with the dorsal metacarpal artery; before passing through the foramen it detaches the middle deep volar metacarpal artery (A. met. volaris prof. 1II.). This desemds on the volar face of the metacarpal bone, receives an anastomotic branch from the medial deep artery, and concurs in the formation of the deep volar arch above the fetlock. The medial deep volar metacarpal artery (A. met. volaris prof. II.) deseends along the medial part of the volar surface of the large metacarpal hone and is continued as the medial volar proper digital artery. At the distal part of the metacarpus it is comected by a trausverse branch with the middle deep volar metacarpal artery, and similarly with the volar common digital, forming with the latter the superficial volar arch.

The ulnar artery, the larger of the two divisions of the median, descends under cover of the flexor carpi radialis without giving off any large branches in the forearm. It passes through the earpal canal and contimues along the medial side of the deep Hexor tendom as the volar common digital artery (1. met. volaris superficialis III.). At the distal third of the metacarpus this vessel is joined hy a branch from the medial deep volar metacarpal artery, forming the superficial volar arch. Near this another branch of the common digital (or of the mediat digital) passes aromed the lateral horder of the flexor tendons to the posterior face of the metacarpal bone and concurs with the deep volar metacarpal arteries in the formation of the deep volar arch. A branch from the arch (A. met. perforans, listalis) passes forwarl through the distal foramen of the metararpal bone and joins the dorsal metacarpal artery which descents from the pete earpi dorsale in the dorsal metacarpal groove.

The volar common digital artery (A. metacarpea volaris superficialis III.) passes into the interdigital space and divides into two volar proper digital arteries, which descend along the interdigital surfares of the chief digits and pass through the foramina at the proximal part of the interdigital surfaces of the third phalanges, enter the eavities in these hones, and ramify in a manner similar to the corresponding vessels in the horse. The volar common digital detaches a branch (A interdigitalis perforans: which passes forwarl through the upper part of the interdigital spare and tmastomoses with the dorsal metacarpal artery.

The volar proper digital arteries (or the common digital) give off, in addition to other collaterals, hranches which correspond to the arterins of the digital eushion of the horse. These pass to the bulbs of the claws amd anatstomose with each other and with the medial and lateral digital arteries, foming an arch from which mumerous branches are distributed to the corium of the hoofs.

The dorsal metacarpal artery (A. met. dorsalis III.) is a small vessel which arises from the wete carpi dorsale, descends in the groove on the dorsal fare of the metacarpat bone, and is joined by the distal perforating metacarpal artery from the deep volar areh to comstitute the dorsal common digital artery. This versel (A. digitalis communis dorsalis JII.) divides into two dorsal proper digital arteries.

The medial volar digital artery (A. digiti IIl. medialis) is the continuation of the medial deep volar motacarpal artory. It desends on the medial side of the medial digit and terminates at the bulb of the claw by anastomosing with the corresponding volar proper digital artery. It gives off a branch to the rudimentary digit and forms a transverse anastomosis lehind the lirst phalans with the volar common digital or its medial division.

The lateral volar digital artery (A. digiti \mathbb{N}. lateratis) arises from the deep volar
arch, passes down on the lateral side of the lateral digit, and is distributed like the medial one.

BRANCHES OF THE THORACIC AORTA

The bronchial and œsophageal arteries ofterl arise separately:
There are thirteen pairs of intercostal arteries. The first comes from the dorsal. the next four from the subrostal, and the remainder from the aorta directly.

The two phrenic arteries are very variable in origin. They may come from the aorta, the coeliac, left ruminal. or an intercostal or lumbar artery.

BRANCHES OF THE ABDOMINAL AORTA

The coliac artery is about four to five inches (ca. 10-12 cm .) in length. It pases rentratly and curves forward between the rumen and pancreas on the left and the right crus of the diaphragm and the posterior vena cava on the right. It gives off five chief branches.

1. The hepatic artery arises from the convex side of the curve of the celiac artery as it crosses the posterior vena cava. It passes downward, forward, and to the right above the portal vein to the portal fissure, and gives off the following branches:
(1) Pancreatic branches.
(2) Dorsal and ventral bramches go to the corresponding lobes of the liver. The ventral branch is the larger: it gives off the right gastric artery, which runs in the lesser omentum to supply the origin of the ductenum and the prlorus, anastomosing with the dorsal branch of the omaso-abomasal artery.
(3) The cystic artery supplies the gall-bladuler.
(4) The gastro-duodenal artery divides into right gastro-epiploic and pan-creatico-duodenal branches. The right gastro-epiploic artery anastomoses with the left gastro-epiploic. The pancreatico-duodenal artery anastomoses with the first intestinal branch of the anterior mesenteric artery.
2. The right ruminal artery (A. ruminalis dextra) is the largest branch. and usually arises by a short common trunk with the splenic. It runs downward and backward on the right face of the dorsal sac of the rumen to the posterior transverse fissure, in which it turns around to the left and anastomoses with branches of the left ruminal artery. It gives off a pancreatic branch, dorsal and ventral coronary arteries, branches to the great omentum, and rannifies on both surfaces of the rumen.
3. The left ruminal artery (A. ruminalis sinistra) descends on the anterior part of the right face of the rumen, enters the anterior furrow, in which it runs from right to left, and continues backward in the left longitudinal groove. anastomosing with branches of the right artery. It supplies chiefly the left face of the rumen, but not its posterior part. It usually gives off near its origin the reticular artery (A. reticularis); this rather small vessel passes forward on the dorsal curvature of the rumen and turns downward in the rumino-reticular groove, in the bottom of which it runs around ventrally to the right side. It gives off a branch which passes to the left of the cardia and along the lesser curvature of the reticulum to the neck of the omasum. The reticular branches anastomose with the omaso-abonasal and left ruminal arteries.
4. The omaso-abomasal artery (A. gastrica sinistra) appears as the continuation of the coeliac. It passes formard and domnward to the greater curvature of the omasum, and divides after a course of four or five inches into two branches. The dorsal branch curves sharply backward on the dorsal surface of the omasum. continues along the lesser curvature of the abomasum, and anastomoses with the hepatic artery. It supplies branches to the omasum and to the lesser curvature

Fig. 597.-Gistric Abteries of Ox; Right Vien (Partly schematic).
1, Coeliac; 2, right ruminal; 3, splenic: 4 , reticular; 5 , left ruminal; 6 , omaso-abomasal; τ, dorsal branch of 6 ; S, ventral branch of $C(=1$ fft gastro-epiphoir): A, dorsal sac of rumen; B, ventral sac of rumen; C, C, posterior blind sacs; D, cesophagus; E, reticulum; F, omasura; G, abomasum; H, duodenum; I, right longitudinal furrow of rumen. By an oversight the reticular artery is shown as arising from the omaso-abomasal.

Fig. jog.-Gastric Arteries of Ox; Left View (Partly Schematic).
1 , Left ruminal artery; 2, continuation of right ruminal artery; 3 , reticular artery, which disappears into ruminoreticular groove; 1 , dorsal sac of rumen; B, ventral suc of rumen; C, C, posterior blind sacs; D, cesophagus; E, reticulum; F, rumino-reticular groove; ϵ_{1} left longitudinal furrow of rumen.
and pyloric part of the abomasum. The ventral branch (A. gastro-epiploiea sinistra) runs forward and downward over the anterior extremity of the omasum, passes backward in the great omentum elose to the ventral eurvature of the abomasum, and anastomoses with the right gastro-epiploie. A considerable branch from it curves around in front of the neek of the omasum to communicate with the reticular artery. Another branch runs back aeross the left side of the omaso-abomasal junction, and a third goes to the lesser curvature of the omasum.
5. The splenic artery usually arises by a eommon trunk with the right ruminal

Fig. 599.-Plan of Branches of Anterioh Mesenteric Artery of Ox.
1, Anterior mesenteric artery; 2, middle colic artery; 3, ileo-cæco-colic artery; 4, ramus collateralis; 5 , continuation of anterior mesenteric artery, giving off branches to small intestine; 6 , cacal artery; $\%$, colic branch of posterior mesenteric artery; A, termination of duodenum.
artery. It passes forward and to the left across the dorsal curvature of the rumen and euters the hilus of the spleen.

The anterior mesenteric artery arises from the aorta just behind the coliac, and has about the same caliber as the latter. It descends, inclining a little to the right, and crosses the colon as the latter emerges from the spiral to run backward. After detaching twigs to the pancreas it gives off in succession the following branches:

1. The middle colic artery (A. colica media) passes to the colon as it emerges from the spiral arrangement. This artery is comparable to the middle colic or artery of the small colon of the horse; it runs backward along the terminal part of the colon, whieh it supplies.
2. The ileo-cæco-colic artery ranifies on the right fare of the spiral part of the eolon. It gives off the ileo-cecal artery, which divides into ileal and ceeral arteries.
\therefore. The ramus collateralis runs in the mesentery in a curve along the ventral border of the coils of the colom. (This vessel is alsent in the sheep.)
3. The continuing trunk (Truncus intestinalis) of the anterior mesenteric pursues a course in the mesentery corresponding to the seri-s of mesenterie lymph glands and is comeeted with the ramus collateralis.

The two preceling ressels are essentially the arteries of the small intestine, which they supply with the exception of its initial and terminal parts. The ramus collateratis gives off no considerable branches in its course along the ventral border of the coils of the colon, but on curving upward along the latter it anastomoses with

Fig. 6ion.-Pelvic Arteries of Cow.

Abstract

Part of the right wall of the uterns athl vagma is removed and the cervix uteri is shown in sagital section. a, Aorta: b, bern-ovarian arcery; b^{\prime}. ovarian, and $b^{\prime \prime}$, uterine branch of b; c, exturnal iliue artery; d, right internal iliac artery: f, common trunk of umbilical artery (a^{\prime}) and midulle uterine artery (f) ; y, ilio-lumbar artery; h, anterior gluteal arternes; z, middle hwmorrhomlal artery; k, posterior uterme artery; l, perineal artery; m, pusterior gluteal artery; n, obturator arteries; o, artcry of clitons; p, posterior mesonteric artery; r, anterior hamoriboidat artery; s, midalle sacral artery; I, ovary; \mathcal{L}^{2}, uppareut body of uterus, rally apposed horns: 2^{\prime}. horn of uterus; 3 , vagina; 4, neek of uterus; ${ }^{\prime \prime}$ e external orifice of uterus \cos uteri); $5,5^{\prime}$. broad ligaments, large part of right one removed; 6, urinary bladder; \quad. reetum; 8 , saerum; 0 . symphysis pelvis. (After Zieger.)

the continuing trunk of the anterior mesenterie artery and detaches mumerons branches to the small intestine which form series of superposel anastomotic arehes. It supplies, roughly speaking, ahout one-third of the small intestine and terminates ly joining the itad artery. The comtinuing tronk gives off mumerous branches which also form arches and supply about the first two-thirds of the small intestine, exclusive of the small part supplied he hanches of the coliace artery. Both arteries give branches to the Iymph glands. ${ }^{1}$

The posterior mesenteric artery arises from the anrta near its termination. It is small and supplies lnanches to the terminal part of the colon and to the reetum (A. colica sinistra; A. hemorrhonlalis cranialis).

[^173]The renal arteries arise from the aorta close together. The right one passes outward and forward across the dorsal face of the posterior vena cava to the hilus of the kidncy. The left one runs backward, but necessarily varies in direction in conformity with the position of the kidney (q. \quad.).

The spermatic arteries resemble those of the horse.
The utero-ovarian arteries are small.
The five pairs of lumbar arteries derived from the aorta are distributed much as in the horse. The sixth usually comes from the internal iliac artery:

The middle sacral artery is a vessel about 5 mm . in cliameter which continues the aorta. It arises from the dorsal face of the aorta at the angle of divergence of the internal iliacs, runs hackward on the pelvic surface of the sacrum a little to the left of the median line, and is continued as the middle coccygeal artery. It gives off small collateral branches to the spinal cord and the muscles of the tail and the lateral coccygeal arteries. The latter may have a common trunk of origin, and each divides into dorsal and ventral branches. The middle coccygeal artery runs through the ventral (hæmal) arches of the coccygeal vertebræ. The coccygeal arteries are connected at pretty regular intervals by segmental anastomoses.

The internal iliac arteries are much longer than in the horse. Each passes backward on the sacro-sciatic ligament and divides about the middle of the pelvic wall into posterior gluteal and internal pudic branches. The chief differences in its distribution are: (1) A large trunk gives origin to the umbilical and middle uterine arteries. The umbilical artery is usually largely obliterated, and itsterminal branches receive their blood through anastomoses with the internal pudic. It gives off near its origin two small vessels, the ureteral artery (A. ureterica) and the deferential artery (A. deferentialis), which accompany the ureter and the ductus deferens respectively. The middle uterine artery (A. uterina media) is very large. It is distributed chiefly to the cornu of the uterus, and compensates for the small size of the utero-ovarian artery. (2) The ilio-lumbar artery is relatively small and is distributed chiefly to the sublumbar muscles. It is sometimes replaced by branches of the circumflex iliac and gluteal arteries. (3) The anterior gluteal artery is commonly represented by several vessels. (4) The obturator artery is represented by several small branches which supply the obturator and adductor muscles. (5) The iliaco-femoral and lateral sacral arteries are absent. The absence of the latter is compensated by the middle sacral and gluteal arteries. (6) The posterior gluteal artery is large. It emerges through the lesser sciatic notch and ramifies in the biceps femoris and adjacent muscles. (7) The internal pudic artery (A. urethro-genitalis) is the direct continuation of the internal iliac. It gives off branches to the rectum, bladder, urethra, and genital organs. In the male it supplies the accessory genital glands and divides into dorsal and deep arteries of the ponis; the a.dorsalis penis runs along the dorsum penis to the glans and gives twigs to the prepuce; the a. profunda penis gives off a perineal branch and enters the corpus cavernosum penis. In the female it gives off the large posterior uterine artery, which supplies the posterior part of the uterus and gives branches to the vagina and bladder. It ends as the a. clitoridis, which supplies the clitoris and adjacent parts.

ARTERIES OF THE PELVIC LIMB

The external iliac artery has the same course as in the horse. The circumflex iliac artery is large. A branch from it emerges between the abdominal and lumbar muscles near the tuber cose and ramifies like the terminals of the ilio-lumbar artery of the horse.

The femoral and popliteal arteries pursue a similar course to those of the horse. The chief differences in their branches are as follows:

1. The external pudic artery is distributed chiefly to the scrotum in the male.

In the cow it is usually termed the mammary ant is very large, especially during lactation. Eacll divides at the base of the mammary gland into two branches Which are distributed to the anterior and posterior parts ("quarters") of the gland. A small branch accompanies the subeutaneous alutominal wein to the xiphoid region.
2. The deep femoral artery gives olf an obturator branch which passes up through the ohturator foramen to supply the obturator intermus and compensates otherwise for the absence of the obturator artery.

Fug, 601.-Intenees of Dastal Part of Right Hind Lamin of Ox; Dorsal Vien.
a, Anterior tibial artery; b, proximal perforatidg metatarsal artery; c, dorsal metatarsal artery; d, dursal common digital aztery; $e_{*} e^{\prime}$, dorsal proper digital arteries.

Fig. goz.- Anteries of Distal Part of Right Hind Limn of (Ox; Plantar View.
f, Saphenous artery; f, f^{\prime}, internal and external plantar arteries; $g . \eta^{\prime}$, medhal and lateral snperficial plantar nuelutarsal arterios; $h_{\text {a }}$ deep plantar metatarsal artery; i, j, nedial and lateral plantar digital arteries, k, plantar common digital artery; l, l^{\prime}, medial and lateral plantar digital arteries.
3. The anterior femoral artery is large. It often gives off the external circumflex artery of the thigh, which perforates the proximal end of the quadriecess, gives branches to that musele, the iliachs, glutei, and tensor fasciz late.
4. The saphenous artery is large. It deseends in front of the homonymous vein ofer the medial surface of the leg, and divides near the hock into lateral and medial tarsal arteries. The lateral tarsal artery is small and is distributed on the outer part of the hock. The medial tarsal artery is the direct continuation
of the saphenous. It descends along the medial border of the superficial flexor tendon and divides into medial and lateral plantar arteries. The medial plantar artery descends along the medial side of the deep flexor tendon with the medial plantar nerve. It anastomoses at the proximal end of the metatarsus with the perforating tarsal artery, assisting in the formation of the proximal plantar arch, and continues distally as the a. met. plant. superfic. med. along the medial border of the deep flexor tendon. Near the fetlock it concurs with the perforating branch of the dorsal metatarsal artery and with a branch of the corresponding lateral artery in the formation of the distal plantar arch. Below this it is continued as the medial digital artery. The lateral plantar artery is small. ${ }^{1}$ It descends along the lateral border of the deep flexor tendon with the lateral plantar nerve, concurs with the perforating tarsal and medial plantar arteries in the formation of the proximal plantar arch, and gives branches to the rete tarsi dorsale. Continuing downward along the deep flexor tendon as the a. met. plant. superfic. lat., it assists in forming the distal plantar arch and becomes the lateral digital artery.

The posterior tibial artery is relatively small and is distributed chiefly to the muscles on the posterior surface of the tibia. Lower down it is replaced by the saphenous artery, as described above.

The anterior tibial artery has the same course as in the horse. It is continued down the groove on the front of the metatarsal bone as the dorsal metatarsal artery. At the tarsus branches are given off which concur with the lateral tarsal artery in the formation of the rete tarsi dorsale. The perforating tarsal artery passes back throngh the vascular canal and anastomoses with the plantar arteries, thus forming the proximal plantar arch. From this the small deep plantar metatarsal artery descends in the plantar groove of the large metatarsal bone to the distal plantar arch. The dorsal metatarsal artery (A. met. dorsalis) is the chief artery of the region and is accompanied by two veins. Near the distal end of the metatarsal bone it gives off the perforating metatarsal artery, which passes back through the distal metatarsal foramen and assists in forming the distal plantar arch.

The dorsal common digital artery is the direct continuation of the dorsal metatarsal. It divides into two branches which unite in the interdigital space with the corresponding branches of the plantar common digital to form the proper digital arteries.

The plantar common digital artery descends from the distal plantar areh, anastomoses in the interdigital space with the medial and lateral digitals, and divides into two branches which join those of the dorsal common digital artery as befere mentioned.

The foregoing is a brief statement of the more common arrangement of the vessels in the distal part of the limb, but minor variations are very common.

The VEINs ${ }^{2}$

The vena hemiazygos takes the place of the vena azygos. It lies along the left side of the aorta and the bodies of the thoraeic vertebree, turns down across the left face of the aorta and left pulmonary artery, runs back over the left auricle, and usually joins the great cardiac vein, but may open into the right atrium. It receives the dorsal intercostal veins.

Two jugular veins occur on either side. The internal jugular vein (T. jugularis interna) is a relatively small vessel which accompanies the carotid artery. It

[^174]arises by occipital, laryngeal, and thyroid radicles, reeeives tracheal, asophageal, and muscular branches, and joins the external jugular near its termination. It is sometimes absent, but in some eases it appears, on the other hand, to be large enough to interfere with renesection practised on the external jugular. The external jugular vein (V. jugularis externa) is very large and corresponds to the jugutar of the horse. It is separated from the earotid artery in the greater part of its course by the sterno-cephalicus and omo-hyoidens muscles.

The ventral cerebral vein usually does not unite with the occipital; the latter is continued loy the internal jugular vein.

The ventral longitusinal sinus is represented by a vein. There is an anterior intereavernous simus. The transverse sinus is comected with the basilar plexus by a vein which traverses the condyloid eanal. In the sheep there are two rentral occipital simuses in place of the basilar plexus.

The orbital veins form a network hetween the periorbita and the museles of the eyeball. This plexus communicates with the eavernous sinus and with the dorsal cerebral vein. It is also drained by the frontal vein, which runs in the supraorbital canal and groove and joins the angular vein of the cyo.

The dorsal nasal vein is usually double.
The superior labial vein usually joins the infraorbital.
The vena reflexa is absent, and the radicles which are received by it in the horse go to the intemal maxillary vein.

The sublingual vein is very large.
The veins of the thoracic limb differ ehicfly in the distal part; the sipecial features are as follows:

The dorsal digital veins aseend on the front of the digits and are comnected with the other digital veins by transverse branches. They unite near the fetlock to form the dorsal metacarpal vein. This runs upward on the dor*al face of the metaearpus and carpus, inclines to the medial surface of the radius, and joins the cephatic or the acecssory cephalic vein.

The volar digital veins are larger than the dorsal veins. They lie on the interdigital surfaces of the digits and unite in the interdigital spaer to form a trunk which is a satellite of the volar common ligital artery. This trunk, the volar common digital vein, which is often double, is comected distally by transverse branches with the lateral and medial digital veins to form the superficial volar arch; it is continued upward as the satellite of the ulnar artery.

The medial and lateral digital veins lie in front of the corresponding arteries. They are connected with the volar digital wein by a large branch which passes between the flexor tendons and the first phalanx. It the distal end of the metacarpus each inclines forward and anastomoses with the volar eommon digital vein to form the volar venous arch. The medial vein is continued as the medial volar metacarpal vein along the medial border of the suspensory ligament, and beeomes a satellite of the radial artery in the forearm, while the lateral one is continued on the volar face of the metacarpal bone by the lateral volar metacarpal vein. The latter unites at the proximal part of the metacarpus with the midelle volar metaearpal vein, and the trunk thus formed joins the medial wein to form the deep plantar areh. They unite below the carpus or join the volar common digital rein.

The digital veins arise from the venous plexuses of the corium of the hoof. They form by anastomotic branches a venous cirele at the coronary borker of the hoot, which may be termed the coronary circle. I vein which emerges from the foramen on the proximal part of the interdigital surface of the third phalanx is the principal radiele of the dorsal digital vein.

The accessory cephalic vein is the upward continuation of the dorsal metacarpal vein and is mueh larger than in the horse.

The posterior vena cava is partially embedded in the medial border of the liver. Its abdominal part has a thieker wall than in the horse. Its affluents
correspond to the arteries of which they are satellites. The renal veins are large and thick-walled; they run obliquely forward and join the vena eava at an ancute angle. The left one is much the longer.

Two middle sacral veins usually accompany the artery.
The veins of the mammary glands deserve special notice. They converge to a venous circle at the base of the udder, which is drained chiefly by two pairs of veins. The subcutaneous abdominal vein (anterior mammary or "milk" vein) is very large in animals of the dairy breeds, and its course along the ventral wall of the alndomen is easily followed. It is usually flexuous. It emerges at the anterior border of the udder about two or three inches (ca. is s cm.) from the linea alba, runs forward (deviating a little outward), dips umber the cutaneus, pasics through a foramen in the abdominal wall about a handbrealth from the median plane, and juins the internal thoracic vein. The two wins are connected by a transverse anastomosis at the anterior border of the base of the udder, and each anastomoses behind with a branch of the external pudic vein. The external pudic vein (middle mammary vein) is also of considerable size. It ascends in the inguinal canal as a satellite of the artery and joins the external iliac vein. The right and left veins are connected at the posterior border of the base of the udder by a large transverse branch. From the latter arises the perineal vein (posterior mammary vein), which runs medially upward and backward to the perineum, turns aromul the ischial arch, and joins the internal pudic vein. Two veins may present. In the male these veins are relatively small.

The deep veins of the thigh and leg resemble those of the horse, but there is no recurrent tibial vein.

The saphenous vein is much smaller than in the horse. It may be regarded chiefly as the upward continuation of the medial tarsal vein, which arises from the decep plantar arch.

The recurrent tarsal vein ${ }^{1}$ is large. It is the upware continuation of the dorsal metatarsal vein and anastomoses with the anterior tibial and saphenous veins. It arises on the lateral face of the hock, asecuds at first in front of the tendo Achillis, then crosses the latter laterally, passes up between the biceps femoris and semitendinosus, and joins the posterior femoral vein.

There are three chief metatarsal veins. The large dorsal metatarsal vein arises at the distal part of the metatarsus by the union of the dorsal digital vein and a large branch from the venons arch above the sesamoids. It ascends superficially between the long and lateral extensor tendons and may be regarded as being continued in the leg by the recurrent tarsal vein; it also furnishes a large chief radiele of the anterior tibial vein. The medial plantar metatarsal vein arises from the renous arch above the fetork, ascends between the medial border of the suspensory ligament and the plantar surfuce of the metatarsal bone; it is comected with the corresponding lateral vein at the proximal end of the metatarsus by a transverse anastomosis, thus forming the deep plantar arch. From this the perforating tarsal vein passes through the vascular canal of the metatarsus and centrotar*al (as the perforating tarsal) and joins the anterior tibial vein. The lateral plantar metatarsal vein pursues a similar course laterally, and is continued by the lateral tarsal vein, which joins the recurrent tarsal vein above the hock. It passes superficially over the lateral face of the hock and is continued by the recurrent tarsal rein.

The digital veins sliffer from those of the forelimb chiefly in that the dorsal common vein is large and the plantar absent or small.

The dorsal common digital vein arises at the distal part of the interdigital space by the union of branches coming from the venous plexuses of each digit. It deviates outwarl at the fetlock and joins the lateral digital vein to form the dorsal metatarsal vein. The medial digital vein ascends
${ }^{1}$ Also termed the external saphenous vein.
along the medial surface of the medial chid digit, turns laterally above the fotlock joint, and is connected with the corresponting lateral vein to form the phatar venous arch. From this the three clief metatarsal veins ascend and to it come small veins from the rudimentary digits.

The portal vein is fomed usually by the confluence of two radieldes, gastrice and mesenteric. It receives the gastro-luodenal win and weins of the pancreas. The gastric vein is the largest affluent. It is formed hy the junetion of two trunks. One of these, the right rmmal vein, recerves the splenic vein. The other is a short trunk which is formed by the confluence of the left ruminal and omasoahomasal veins; it reqeives the reficular vein. The anterior mesenteric vein is formed hy the confluence of three chief radicles which return the blood from the entire intestine, with the exception of part of the duoclenum and rectum; from these the blowd is convered by the gastro-duodenal and internal pudic veins. The portal tributaries are in general satellites of the corresponding arteries.

LYMPHATIC SYSTEM OF THE OX AND SHEEP

The lymph glands of the ox are in general less mumerous but larger than those of the horse; in some situations a single large gland oceurs instead of a group of small ones, as foumd in the latter amimal.

The thoracic duct arises from the cisterna dyyli at the hiatus aorticus. In some cases it remains single, as is most common in the horse, pursues a similar course and opens into the origin of the anterior vena cava, or into the left common jugular vein. But in many cases the duct divides into two branches which lie on the right and left sides of the dorsal face of the aorta. The two duets are united by anastomotic branches and are embeded in fat. They usually unite about the lifth thoracie vertehra. The terminal part is often ampulate, but the lymphaticovenous opening is small. When single, the duct is 610 mm . in diameter. The duct may receive efferent vessels from the intereostal, mediastinal, and bronchial lymph glamels.

[^175]The cisterna chyli lies in the histus abrticus, dorsal to the aorta and ventral to the last theracin and first lumbar vertebre. It reerives the lumbar and intestinal lymph trumks. It is wery variable in form and is commonly about three-fourths of an inch ($1.5-2(\mathrm{~m}$.$) wike.$

The intestinal trunk (Truncus intestinalis) is formed at the ventral face of the posterior vena cava, just behind the dorsal border of the liver. It results from the union of the common efferent vessels of the gastrie and intestinal lymph glands.

The trunk is a centimeter or Jas in diameter in the odult. It runs barkward a short distance, bends sharply dorsally between the aupta and vena cava, and unites (usually) with the lumbar trunk to form the cisterna chyli.

The lumbar trunk (Truneus lumbalis) is formed in the suldumbar region by the confluence of efferent vessels from the iliac lymph glands. It concurs with the intestinal trumk in the formation of the cisterna chyli. It reecives efferent vessels of the limbar and renal lymph glands. The tromk is very variable in regard to its mode of formation and two may be present.

The mandibular lymph glands are nsually two in mumber, one on each side. The gland is situated between the sterno-cephalieus muscle and the ventral part of the mandibular salivary glame and is usually related dorsally to the external maxillary vein. The gland is oval and is commonly about an meh and a half (ca. $3-4 \mathrm{~cm}$.)
long and an inch (ea. 2-3 cm.) wide. In some cases a second, smaller gland is present. Its position is variable; it may be behind or dorsal-medial to the large gland, or may he on the deep face of the sentral end of the mandibular salivary gland. Hzmolymph glands often occur in this vicinity: The efferent vessels come from the muzzle, lips, cheeks, hard palate, the anterior part of the turbinates and septum nasi, the gums (in part); the sublingual and parotid glands; the tip of the tongue, the muscles of the head, except those of the eye, ear, tongue, and hyoid bone; the mandible, premaxilla, and nasal bone; the skin of the face in part. It also receives the efferent vessels of the pterygoid lymph gland when present. The efferent vessels, two to four in number, go to the atlantal gland.

The parotid lymph gland (Lg. parotidea) lies on the posterior part of the masseter muscle and is partly covered by the dorsal end of the parotid salivary gland. It is related deeply to the internal maxillary and superficial temporal vessels and the superficial temporal nerve. It is about three inches (ca. 6-8 cm.) long and about an inch (ca. $2-3 \mathrm{~cm}$.) wide. In some cases there are instead two smaller glands.

Fig. 603.-Stperfictal Lisiph Glands of Con Projected on Scrface of Body.
1, Mandibular; 2. parotid; 3, atlantal: 2 parapharyngeal; 5 , anterior rervical: 1 , picicie cervical; 7 . prescapular; s, prefemoral. With use of fig. in Ellerterger-Baum, Anat. f. Kürstler.)

The afferent vessels come from the muzzle, lips, the gums (in part), the anterior part of the turbinates and septum nasi; the parotid salivary gland; most of the muscles of the head, including those of the eye and ear; the eyelids, lacrimal gland and external ear; the frontal, malar, nasal and premaxillary bones and the mandible; the skin of the head in great part. The efferent vessels, eight to twelve in number, go to the atlantal gland.

The suprapharyngeal lymph glands (Lgg. suprapharyngeæ) ${ }^{1}$ are usually two in number, right and left. They are situated about an inch apart, medial to the great cornu of the hyoid bone, and between the pharynx and the ventral straight muscles of the head (Fig. 386). They average about three inches (ca. 6-8 cm.) in length. In some cases an additional gland is present. The afferent vessels come from the tongue, the floor of the mouth, the hard palate, the soft palate, the gums (in part), the pharynx, the sublingual and mandibular salivary glands; the posterior

[^176]part of the nasal eavity, the maxillary and palatine simuses, and the larynx; and the rectus capitis ventralis major. The efferent vessels, four to eight in number, concur in foming the tracheal lymph duct.

A small parapharyngeal lymph gland is usually present on the lateral wall of the pharmix, under cover of the mandibular salivary gland or at its posterior horder. It is rentral to the carotikl artery and the atlantal gland. Its afferent and efferent vessels are similar to those of the atlantal glant.

The atlantal lymph gland is situated ventral to the wing of the atlas, on the eleide-mastoideus tendon, and partly under cover of the mandibular salivary glancl. It is related ventrally to the earotid artery. It is usually discoid and an inch and a half to two inches (ea. $4-5 \mathrm{~cm}$.) in length. One or more small lymph notes may oceur near the large constant one, and small hemolymph glands are commonly present here. The afferent vessels come from the tongue, the salivary glands, the gums in part ; the cervical part of the thymus; most of the hyoid and cervical muscles. It alsa receives vessols from the parotich, mandibular, and suprapharyngeal lymph glands. The efferent vessels, three to six in number, concur in forming the tracheal lymph duct.

The pterygoid lymph gland (Lg. pterygoidea), which is present in the majority of cases, is situatel on the dorsal part of the lateral face of the pterygoid musele, close to the maxillary tuberosity, It is usually about half an ineh (ca. $1-1.5 \mathrm{~cm}$.) in length and witth, but may be much smaller amd escape observation. Its afferent vessels come from the harel palate and adjacent part of the gums. The efferent vessels, to or three in number, go to the mandibular lymph gland.

The hyoid lymph glands Lge. hyoidear) occur in about 20 per cent. of cases. The anterior hyoid gland (Lg. hyoidea oralis) hes on the thyroid cornu of the hyoid bone, at the insertion of the stylohyoideus muscle. It is about half an inch (ea. $1-1.5 \mathrm{~cm}$.) long. It receives afferent vessels from the tongue. The efferent vessels, two or three in number, go to the atlantal gland, and may go in part to the suprapharyngeal gland. The posterior hyoid gland (Lg hyoidea aboralis) lies on the dorsal end of the great cornu of the hyoid hone or in the angle between the bone and the occipito-hyoideus muscle. It receives lymph vessels from the mandible which issue from the mandibular foramen. The efferent vessels go to the atlantal gland.

The anterior cervical lymph glands (Lgg. ecrvieales craniales) are situated on the anterior part of the trachea, along the eourse of the carotit artery. They are variable in number and size. Four or five may be present. They vary in length from alout half an inch to two inches (ea. 1-2.5 cm.).

The middle cervical lymph glands (L.gg. cervieales medix) lie on each side of the trachea, in the midtle third of the neck. They vary in position, number, and size. The sories may extend to the anterior group, or may rearh back almost to the posterior group. The number appears to vary from one to seven on either sifle. Their length ranges from alout one-fourth inch to an ineh or more (ea. $0 . \overline{0}-3 \mathrm{~cm}$.). There are usually hamolymph glands near them.

The posterior cervical lymph glands (Lgg. cervicales eaudales) are situated near the thoracic inlet. One of them lies dorsal to the manubrium sterni and the cervieal museles attached to it. It is usually about half an inch (ea. 1-1.5 em.) long. Three or four others usually occur on either side. Of these, one is rentral to the brachial vein at the first rilh, one or two lie on the brachial vessels here, ant others are dorsal and ventral to the jugular vein. Itemolymph glanels usually are present in the fat about this group.

The ecrical lymiph glands receive afferent vessels from the ventral museles of the neek, the osophagus, the larynx, the trachea, the thyroid gland, and the cervical part of the thymus. The anterior cervical glants receive efferent vessels of the atlantal gland. The efferent ressels go in general to the tracheal lymph ducts, but efferents from some of the posterior group may go to the terminal part of the thoracie duct or to the common jugular vein.

The costo-cervical lymph gland (Lg. costo-cervicalis) ${ }^{1}$ is situated lateral to the trachea and œesuphagus and lorsal to the carotid artery and the rago-sympathetic trunk. It lies usually just in front of the first rib, under cover of the scalenus muscle, but it may be partly medial to the first rib. Its length varies from about half an inch to an inch or more ($1.5-3 \mathrm{~cm}$.). Its afferent vessels come from the muscles of the neck and shoulder, the costal pleura, the trachea. and the intercostal and anterior mediastinal glands. The efferent vessels on the right side usually go to the right tracheal duct or join the efferent vessel of the prescapular gland: on the left they go most often to the end of the thoracic duct, but are very variable.

The tracheal lymph ducts (Ductus tracheales), right and left, are formert essentially by the confluence of efferent vessels from the atlantal gland. They usually receive efferent vessels from the cervical, costo-cervical, and prescapular glands. The ducts pass along each side of the trachea and œesophagus; the right one usually opens into the right common jugular rein: the left one joins the terminal part of the thoracic duct or opens into the left common jugular vein.

These ducts are very variable in regard to formation affluents, and termination. There may be an accessory tracheal duct, which receives part of the lymph vessels that otherwise go to the chief duct: this accessory duct runs a variable distance along the neck practically paralle] with the chief duct, and unites with the latter.

A short right lymphatic duct may be formed by the junction with the terminal part of the right tracheal duct of efferent vessels from the right cervical, costo-cerrical, and prescapular lymph glands. It also usually receives an efferent vessel from the anterior sternal lymph głand.

The prescapular or posterior superficial cervical lymph gland (Lg. cervicalis superficialis caudalis) is situated at the anterior horder of the supraspmatus, a little above the level of the shoulder joint; it is covered by the omo-transcersarius and brachiocephalicus muscle. It is elongated and may attain a length of four or five inches (ca. 10-12 cm.) and a width of an inch or more (ca. 3 cm .). Its deep face has a long and distinct hilus. It receives afferents from the skim of the neck, shoulder, part of the ventral and lateral surfaces of the thorax, and the thoracic limb; from the muscles of the shoulder-girdle, and from the external scapular muscłes; from the tendons of the muscles of the forearm and digit and the fascia of the forearm; from the joints of the carpus and digit. The efferent vessel descends over the scalenus muscle and opens on the right side into the end of the right tracheal duct, on the left into the terminal part of the thoracic duct or the left. tracheal duct.

Abstract

In one case Baum found two efferent ressels on the right side: one opened into the end of the tracheal duct, the other went to a posterior cervical gland.

A chain of small nodes, five to ten in number, extends along the border of the supraspinatus, dorsal to the prescapular gland, and covered by the trapezius and omo-transversarius, These nodes, termed by Baum lymphoglandulæ cervicales nuchales, are in most cases dark red in color, and most of them are hæmolymph glands. But some are lymph glands, since they receive afferent. vessels from adjacent muscles and send efferent vessels to the prescapular lymph gland or to another gland of the group.

The intercostal lymph glands are situated in the dorsal ends of the intercostal spaces, on the course of the intercostal vessels, and embedded in fat. Most of them are small, but some may be nearly an inch (ca. 2 cm .) long. Not all of the spaces contain glands, and quite exceptionally two may occur in one space. Associated with them are hæmolymph glands. The afferent vessels come chiefly from the intercostal and spinal muscles, the serratj, latissimus dorsi, trapezius, subscapularis, longus colli, obliquus abdominis externus; from the costal pleura and the peritoneum; from the thoracic vertebræ and the ribs. The efferent vessels go to the mediastinal lymph glands.
${ }^{1}$ This gland has been included in the posterior cervical group, but forms a connecting link. as it were, between the cervical and mediastinal glands. Baum has given it the above name and has shown that it receires lymph vessels from the pleura.

The dorsal mediastinal lymph glands (Lgg. mediastinales dorsales) are situated on fach sisle of the thoracic aorta, in the fat which levels up the space between that vessel and the bodies of the vertebre. On the right side they lie chiefly dorsal to the thoracic duct, and on the left side they are related to the vena hemiazygos. They are irregular in arrangement and their length varies from about half an inch to an inch and a half (ca. 1-3.5 cm.). They are in series with the anterior mediastinal glan!s.

Their afferent vessels come from the same parts as those of the intereostal glanes; also from the diaphragm, the mediastinum, the pericardium, the ribs, and the intercostal lymph glands. The efferent vessels go ehiefly to the thoracie duct or join the common efferent duct of the posterior mediastinal glands.

The ventral mediastinal lymph glands (Lgg. mediastinales ventrales) are situated on the transwersus thoracis muscle. Several (2-5) ocour constantly in the fat sbout the apex of the pericardiun; they vary in length from about half an inch to an inch or more (ca. $1-3 \mathrm{~cm}$.). In some eases other glands are present further forward. The afferent vessels come from the eostal and mediastinal pleura, the diaphragm, the pericardium, and the ribs. The efferent vessels usually unite to form a trunk which goes to the anterior stemal lymph gland. Hxmolymph glands may be present in this region.

The anterior mediastinal lymph glands (Lgg. mediastinales craniales) are situated in part at the thoracic inlot, in part along the oxophagus, trachea, anterior sena eava, and brachiocephalie trunk. The former group comprises two to four glands on either side, ventral to the trachea and asoplagus. Usually the largest of these, which may be an inch or more (ca. $2-3 \mathrm{~cm}$.) in length, lies along the origin of the internal thoracic artery. The second group liffers somewhat on the two sides. On the right side there is usually a large gland, which may be two or three inches (ca. $5-7 \mathrm{~cm}$.) in length; it lies on the (wsophagus and is crossed laterally by the dorsal vein. Behind this there are emmonly two or three glands on the cesophagus or the longus colli, and in front two or three are placed similarly and on the trachea. Oni the left side a variable number (2-7) are situated on the esophagus, trachea, brachiocephalie trunk, and anterior vena cava; glands may be between the vessels, or between the vessels and the trachea, and escape superficial examination. Hemolymph glands are often present in the vieinity of these glands. The afferent vessels come from the thoracic part of the arophagus, trachea, and thymus; from the lungs, pericardium, heart, costal and mediastinal pleura; from the intercostal glands of the first four spaces and from the gland on the apieal bronchus. In some cases these glands receive also efferent vessels from the anterior sternal, left bronchial, and other merliastinal glands. The efferent vessels for the most part go to the thoracic duct, the right tracheal duct, ant the costo-cervical glands.

The posterior mediastinal lymph glands (Lgg. mediastinales caudales) are situated along the oesophagus, from the aortic arch backward. The largest of these may be eight inches (ea. 20 em .) or more in length; its anterior part is dorsal to the asophagns, while posteriorly it lies in the angle bretween the aorta and the diaphragm (lig. 389). But in some subjects there are two glands in place of this large one; in these cares the alditional posterior one is usually the smaller. Several other glands of smaller size lie in front of the large one, in the angle between the aorta and the ensophagus. In front of these there are usually two or three on the right side on the aorta and the asophagus. ${ }^{1}$ The afferent vessels come from the cesophagus, the lungs, the perieardinm, the mediastinum, the diaphragm, the peritoneum, the liver, and the spleen. The efferent vessels unite to form a common trunk which joins the thoracic duet.

The diaphragmatic lymph glands (Lgg. diaphragmatice) are small nodes which may be present at the foramen vence cavar and the termination of the phrenic
${ }^{1}$ These are termed by Baum the middle mediastinal lymph glands.
nerves. The one most often present is at the acute angle between the vena cava and the diaphragm. The afferent vessels come from the diaphragm and mediastinum. The efferent vessels go to the posterior mediastinal glands.

The bronchial lymph glands (Lgg. bronehiales) are situated on the termination of the trachea and on the bronchi. Commonly three or four are present. One (Lg. bifureationis simistra) constantly oceurs on the left side in the angle between the aortic arch and the left division of the pulmonary artery (Fig. 38:3); it is erossed laterally by the vena hemiazygos. This gland is about an inch to an ineh and a half (ca. 2.53.5 cm .) in length and an inch (ca. 2.5 cm .) in width; it is often very irregular in shape. A gland (Lg. bifurcationis dextra) is similarly situated on the right side in the majority of eases. It is smaller than the left gland and appears to be absent in about 25 per eent. of subjects; in some eases, on the other hand, two glands occur here. In ahout half of the eases a small gland (Lg. bifureationis dorsalis) is situated above the bifurcation of the trachea. Another gland (Lg. eparterialis) occurs at the origin of the bronchus of the apical lobe of the lung. Exeeptionally a second small gland is present here. The afferent vessels of these glands come chiefly from the lungs and the pulmonary lymph glands, the thoracie part of the cesophagus, and the heart. ${ }^{1}$ The efferent vessels of the left gland are quite variable. They may join the common efferent of the posterior mediastinal glands. Those of the right gland go to a middle mediastinal gland, those of the dorsal gland go to the right gland, and those of the apieal gland go to anterior mediastinal glands.

The pulmonary lymph glands (Lgg. pulmonales) are inconstant and variable nodes which may be found on the chief bronchi in the lungs. They appear to be absent in one-third to one-half of the cases on one side or both. They vary in size from a fifth to half an inch or more (ca. $0.5-1.5 \mathrm{~cm}$.) in length. The afferent ressels come from the lungs, and the efferent vessels go to the bronchial and posterior mediastinal glands.

It is worthy of note that in some cases lymph ressels of the left lung go to glands on the right (middle mediastinal glands), and lymph vessels of the right lung go to the left bronehial gland.

The pericardiac lymph glands (Lgg. perieardiacæ) are small and variable nodes which lie on the pericardium. The left gland is usually present and is situated at the space between the aortic areh and the vena hemiazygos. In some eases it may be unusually large-nearly three inches (ca. 7 cm .) in length-and extend back to the left bronchial gland. Other small glands may be found in this vieinity or lower down. The right gland is only exeeptionally present. It is situated just ventral to the termination of the posterior vena cava. The afferent vessels come from the pericardium, and the efferents go to the dorsal mediastinal glands (or their efferents) or to the left bronchial gland on the left side, to the apical bronchial gland or an anterior mediastinal gland on the right side.

The sternal lymph glands (Lgg. stemales) are situated along the course of the internal thoracic vessels. The largest, distinguished as the anterior sternal gland (Lg. sternalis eranialis), is embedded in the fat in front of the transversus thoracis. It is about half an ineh to an ineh (ca. $1.5-2.5 \mathrm{~cm}$.) in length. The other glands are covered by the transversus thoracis, and vary in size, number, and arrangement. There is not one at every interchondral space, and, on the other hand, two may oceur at one space. The last of the series is often situated in the angle between the eighth and ninth costal cartilages and the stermum and may eseape notice. ${ }^{2}$ The afferent vessels eome from the diaphragm, the intereostal, deep pectoral, serratus ventralis, rectus thoracis, and abdominal muscles; the costal and mediastinal pleura, the

[^177]pericardium, the peritonoum; the liver; the ribs, costal cartilages, and stemum; the ventral mediastinal glands. The efferent vessels usually concur in forming one or two trunks which run forward along the internal thoracic vessels to the anterior gland. From the latter one or two efferexts go to the anterior mediastinal glands or directly to the end of the right tracheal duct or the thoracic duct (on the leift side).

The axillary lymph gland lies on the medial fare of the distal part of the teres major on the course of the rein from the latismimes dorsi. It is oral in outline and is usually a little more than an inch (ca. 3 rm.) in bength. (buite exceptionally two glands may be present. The efferent vessels eome from most of the museles of the shoukler and arm, the museles of the forearm, the trapezius, latissimus dorsi, pectoralis profundus, and cutaneus; the fascia of the forearm; the shoulder, ellow, and earpal joints; the scapula, humerns, radius, uha, and carpus; the infraspinatus gland. The efferent vessels (one to three) go to the posterior eervieal glands.

The infraspinatus lymph gland (Lg. infraspinata) is a small mode which is present in somewhat less than a fourth of the (ases (Baum). It is situated at or near the posterior border of the infraspinatus, about on a devel with the proximal cul of the eaput longum. It receives tymph vessels frem the latissimus dorsi and sends an efferent vessel to the axilliry gland.

The rhomboid lymph gland (Lg. rhomboidea) is small and only present in about 15 por erent. of subjects (Benum). It is situated under the rhombeitens cervicalis near its yentral horder and the cervical angle of the seapula. It receives afferents from the rhomboideus, supraspinatus, and serratus ventralis, and sends efferents to the costorervical gland.

The lumbar lymph glands (Lgg. lumbales) are situated along the abdominal aorta and the posterior vena cava, and in some of the spaces botween the transverse processes. ${ }^{1}$ some of the ghands are dorsal to the vessels. Hemolymph glands also oecur in this region. The afferent vessels eome from the spinal, sublumbar, abdominal. and serratus dorsalis muselds; the lumbothorsal fascia; the kidneys, adrenals, and the peritonelum; the lumbar vertebre. The efferent vessels go to the lumber trunk and the eisterma chyli.

The renal lymph glands (Lgg. renakes) belong in reality to the preceding group, from which they are only cemventionally distinguished. They are situated on the course of the renal vessels and vary in size and number. Their afferent vessels come from the kidneys and adrenals, and the efferent vessels go mainly to the cisterna chyli.

The cœliac lymph glands (Lgg. codiacer), two to five in number, are situated on and near the eceliae and anterior mesenteric arteries, and in relation to the left extremity of the panereas, the dorsal eurvature of the rumen, and the posterior vena cava. One is a large discoid gland which lies on the codiae artery and the origin of the chief hranches of that vessel (Fig. 389). It is heart-shaperl, marked by a deep noteh, amd is about two inches (ea. 5-6 cm.) long and an inch and a half (ea. 3-1 cm.) wide. Their afferent vessels come from the spleen. The efferent vessels go to the common efferent ressel of the gastric lymph glands, or to the intestinal trunk, or to the cistema chyli.

The internal iliac lymph glands are situated in relation to the terminal hranches of the aorta and the radicles of the posterior vena eava. They number commonly six to eight and vary in length from half an inch to two inches (ea. $1-5 \mathrm{~cm}$.). Their afferent vessels come chiefly from museles of the sublumbar region, pelvis, tail, and thigh; from the genital organs; from the kidneys, hadder, and urethra. They alsin receive vessels which are efferents of the external iliac, sacral, ischatie, deep inguinal, prefemoral, and cosal glands. Their efferent vesseds go chicfly to the lumbar trunk.

[^178]The deep inguinal lymph gland ${ }^{1}$ is situated rentral to the psoas minor, at the angle of divergence of the circumflex iliac from the external iliac artery. It is diseoid and is commonly two to three inches (ca. 5-7.5 cm.) in length. A smaller gland may be present near the large one or at the origin of the prepubic artery. The afferent vessels come chiefly from the abdominal museles; the pelvic limb; the urinary organs, the vesicule seminales, tumica vaginalis, cremaster musele; and the superficial inguinal, extemal iliae, sacral, prefemoral, and popliteal glands. The efferent ressels go in part to the internal iliac glands, in part directly to the lumbar trunk.

The external iliac lymph glands (Lgg. iliacæ laterales) number one or two on each side, and are situated at the bifurcation of the circumflex iliac artery: In the majority of cases a single gland is found just in front of the origin of the anterior branch of the artery, but another may lie in the angle between the two branches. The more constant one is half an inch to an meh (ea. 1.25-2.5 cm.) in diameter. They may be absent on one side or (quite exceptionally) on both sides. The afferent vessels come from the abdominal muscles, the gluteus profmelus, the tensor fascie lata, the fascia lata; the peritoncum of the adjacent region: the pelvie bones. They also receive ressels from the prefemoral and coxal glands. The efferent vessels go im part to the lumbar trunk, in part to the interual iliac or deep inguinal glands.

The epigastric lymph gland (Lg. epigastrica) is small and inconstant. It is situated on the course of the posterior abdominal artery near the pubis. It receives afferent ressels from the adjacent part of the peritoneum and abdominal museles, and sends an efferent vessel to the deep inguinal gland.

The paralumbar lymph glands (Lgg. paralumhales) are small and meonstant nodes, variable in number, which may he found under the skin of the upper part of the flank. Their afferent vessels come from the adjacent skin, and the efferents go in part to the prefemoral gland, in part to the deep inguinal gland. Hamolymph glands occur in this region.

The superficial inguinal lymph glands (Lgg. ingumales superficiales) differ in the two sexes. (1) In the bull they are situated below the prepubic tendon and in the narrow interfemoral space. They lie in the mass of fat about the neck of the scrotum and behind the spermatic cord, and are covered (in part) by the retractor of the prepuce. It is usual to find one or two on each side of the penis, but in exceptional cases one or two more may be present. A central one above the penis has been observed, and there may be one further back. The afferent vessels come from the external genital organs (except the testicles); also from the skin of the adjacent region, the medial and posterior surface of the thigh, and the medial surface of the leg. The efferent ressels ascend through the inguinal canal to the deep inguinal gland at the side of the pelvic inlet. (2) In the cow they are usually termed the supramammary lymph glands (Lgg. supramammarice), since they are situated above the posterior border of the base of the mammary glands. ${ }^{2}$ Lsually two are present on either side. The larger ones are in apposition medially and are sometimes united. The smaller glands are above or in front of the large ones. Exceptionally a third gland may be present or there may be only one on one side. The large glands are usually two or four inches (ca. 6-10 cm.) long, the smaller ones a fourth to one-half as large. The afferent vessels come from the udder, the external genital organs, and part of the skin of the thigh and leg. The efferent ressels converge to two or three large trunks which go to the deep inguinal glands at the side of the pelvic inlet.

[^179]The efferent wossels run forward on the lase of the udder, then incline ontward and pass through the aponeuroses of the obligue alodominal muscles at the lateral elge of the reetus abdominis, a hanthreadth or more in front of the pubis. On reaching the femoral ring they follow the course of the external iliae vessels to the deep inguinal gland. When the deep femoral gland on the upper part of the quatriceps femeris is present, some efferents go to it. Baum states that offerents of one side may go to a supramammary or deep inguinal gland of the opposite side.

The sacral lymph glands (Lug. sarrates) may be sublivided into two groups. ${ }^{1}$
(I) The medial sacral lymph glands (Lgg. sacrales mediates) are quite inconstant. When present, there is a gland on either side on the deep surface of the sacro-sciatic ligament, in the fat between the liganent and the rectum or the retractor ani. Its afferent vessels come from the pelvie urethra and urethral musele, the root of the penis and its muscles, the prostate, the vagina and urethra, and the cocergeal muscles. The efferent ressels usually go to the internal itiac glands.
(2) The lateral sacral lymph glands (Lge. sacrates laterates) comprise one or two inconstant nodes on the upper part of the outer surface of the sacro-sciatic ligament. One oceurs in the majority of cases at the greater sciatic foramen; the other, whieh is further back, under the origin of the hiceps femoris, is absent on one side or both in more than half the cases. Their atferent vessels come from the ghatens profundus, the hmbo-dorsal fascia, the pelvic bones, and the hip joint. The efferent vessels go to the internal iliac and deep inguinal glands.

The ischiatic lymph glands (Lge. ischialice) are one or two in number. The one which appears to be constant lies on the sacro-sciatic ligament, about an inch (ca. $2-3 \mathrm{~cm}$.) above the lesser swiatic notch, and under cover of the biceps femoris. It is discoid and is an ind or more (ea. 2.5-3.5 cm.) in diameter. A second gland occurs in the majority of cases at the medial side of the tuber ischii and the attachment of the sacro-sciatic ligament, covered only by the skin and subcutancous fat. ${ }^{2}$ The afferent vessels come from the rectum and anus; the vulva, the root of the penis, the prostate, the latho-urethral glands, the urethra and urethral muscle; the ghatei, biceps femoris, semitendinosus, obturator internus, and gemellus, and the lumbodorsal fascia; the skin of the hip and tail; the hip joint. They also receive efferent vessets of the popliteal gland. The efferent vessels go to the internal iliac glands. ${ }^{3}$

The gastric lymph glands (Lgg. gastrice) are numerous, as might be expected, and are diffeult to group satisfactorily. They comprise the following:
(1) The atrial lymph glands (Lge, atriales) lie chicfly on the viseeral surface of the atrium, just behind the cardia; commonly three or four are present. Their afferent vessels come from the atrinm, from the adjacent part of the rumen and reticulum, and from the spleen. They receive efferent vessels of the right and anterior ruminal, reticular, omasal, and dorsal abomasal glands. Their efferent vessels commonly converge to a large trunk, the common efferent vessel (Vas efferens commune) of the gastric lymph glands. This rums upward aud baekward in relation to the coliac artory and reaches the ventral face of the posterior vena eava; here it unites with the common efferent vessels of the mesenteric glands to form the intestinal trunk.
(2) The right ruminal lymph glands (Lgg. ruminales dextre) hie along the course of the right ruminal artery. Commonly four or five are present, and they are half an ind to an meh and a half (ea. 1-3.5 cm.) long. Their afferent vessels come chidfly from the rumen. They aks receive efferent vessels of the other ruminal glands. The efferent ressels go from the anterior part of the series to the reticular glands and the common gastric efferent.
${ }^{1}$ Baum distinguishes three groups of sarral glands and terms the glands about the termination of the aorta and the origin of the vena eava as the ligg, sacrales hypogastrice. These have been included in the internal iliae group of this description.
${ }^{2}$ This gland is termed by Baum the lg tuberosa.
${ }^{3}$ Many variations oceur in the arranumenewose efferent vessels. An efferent may go

ANATORY
(3) The left ruminal lymph glands (Lgg. ruminales sinistre) are inconstant. One or two may be present in the left groove of the rumen. Their afferent vessels come from the rumen, and the efferent vessels go to the anterior or the right ruminal glands.
(4) The anterior ruminal glands (Lgg. ruminales craniales) are deeply situated in the anterior groove of the rmmen. They average four or five in number and abont half an inch (ca. 1.5 cm .) in length. They reccive lymph vessels from the rumen and from the left ruminal glands, and their efferent vessels go to the right ruminal and atrial glands.
(5) The reticular lymph glands (Lgg. reticulares) are situated on the reticulum above and below its jumction with the omasum. They receive afferent vessels chiefly from the reticulum and the adjacent parts of the omasum and abomasum. Their efferent ressels go chiefly to the atrial lymph glands.
(6) The omasal lymph glands (Lgg. omasice:) lie on the omasum chiefly along the course of the dorsal omasal vessels. Their afferent vessels come from the omasum, and the efferent vessels go chiefly to the atrial lymph glands.
(7) The dorsal abomasal lymph glands (Lgg. abomasice dorsales) form a series along the lesser curvature of the abomasum. They receive afferent vessels from the abomasum, duodenum, and ventral part of the omasme. The efferent vessels go chiefly in the lesser omentum to the hepatic lymph glands, but some from the anterior part of the series go to the omasal and reticular glands.
(S) The ventral abomasal lymph glands (Lgg. abomasica ventrales) comprise a few nodes in the fat along the greater curvature of the pyloric part of the abomasum or in the omentum an meh or two distant from the abomasum. ${ }^{1}$ They receive afferent vessels from the abomasum and the duodenum and their efferent ressels go to the hepatic lymph glands.

The mesenteric lymph glands (Lgg. mesentericæ) comprise a large number of nodes which receive lymph from the intestine. The following groups may be recognized, although the distinction is in part conventional.
(1) The duodenal lymph glands (Lgg. duodenales) are small norles in the anterior part of the mesoduodenum. They receive afferent vessels from the duodenum and their efferent vessels go to the hepatic lymph glands.
(2) The jejuno-ileal lymph gland (Lgg. jejuno-ileales) lie in the part of the mesentery to which the coils of the jejuno-ileum are attached. They vary in number from ten to fifty, and in length from about a quarter of an inch to four feet (ca. $0.5-120 \mathrm{~cm}$.). As a rule, the long narrow glands are in the peripheral part of the mesentery, while numerous small nodes are scattered throughout the mesentery and extend centrally to the coils of the colon. Their afferent vessels come from the mesenteric part of the small intestine. The efferent vessels converge to form a large common efferent vessel. This receives efferent vessels of the excal and colic lymph glands, runs upward and forward on the right side of the spiral mass of the colon, and reaches the ventral face of the posterior vena cava just behind the anterior mesenteric artery; here it unites with the common efferent vessel of the gastric lymph glands to form the intestinal trunk.
(3) The cæcal lymph glands (Lgg. cæcales), usually not more than two or three in number, are situated along the attached surface of the ceecum. Their efferent ressels come from the cerum and ilemm. The efferent vessels go to colic or ileal glands or to the common efferent vessel.
(t) The colic lymph glands (Lgg. coliex) are situated in part superficially on the right side of the spiral mass of the colon, in part deeply between the coils. One or two are constantly present on the initial part of the colon, near the termination of the ilemm. The afferent vesscls come from the colon chiefly, but some of the

[^180]glands receive vessels from the ileum and emonn and their lymph whads. The efferent vessels g_{0} to the eommon intestinal efferent or to other colie glants.
(5) The rectal lymph glands (Lug. rectales) are situatex along the dorsal and lateral surfaces of the rectum. They receive afferent vessels from the rectum, anus, and terminal part of the colom. Mons of the efferent vessels go to other glands of the group, but some unite to form one or two large trunks whieh eud in the internal iliae lymph glands. There are many small hamotymph gland in relation to the reetal lymph glands.
(6) The pancreatico-intestinal lymph glands (Lgg. pancreation-intestinales) fie on the ventral surface of the pancreas and along the right part of the later in relation to the duodemm. Some are at the panereatie notch about the portal rein and its alluents, and others are covered by the adhesion of the colon to the gland. Their afferent vessels come from the pancreas, the duodenum, and the adjacent part of the colon. The efferent vesisels go to the common intestinal efferent.

Fig. G04.-Intestine of ()N, spread (Ott.
 Edilmann.)
(7) The hepatic lymph glands (1.gg. hepatices) are situated in and ventral to the portal lisumere. Noest of them are grouped about the pertal vein, the hepatic artery, and the bile duct, and are covered by the panceas; but some are ventral to the pancreas. Their average number is ten to filteen, but twenty or more have been coment. Their length varies frem less than half an ineh to three inches (ea. 1-7 (cm.). They receive vessels from the liver, pancreas, ant duodenum, and from the abomasal homph glands. Their efferent versels converge to a large trunk which passes along the portal voin and joins the emmon efferent vessel of the intestinal glands or that of the gastric glands.

The prefemoral or subiliac lymph gland ${ }^{1}$ is situated on the aponeurosis of the obliquus abdominis externus, at the anterior border of the tensor fascie late and about a handbreadth abowe the patellat. It has an elongated ellipticat ontline and is flattened. Its average length is three or four inches (ea. $\mathbf{s}-\mathbf{1 0}$ (cm .), and its
${ }^{1}$ This is also tomed the precrural or suprapatellar gland.
midth about an inch (ca. 2.5 cm .) in the adult, but it may be considerably larger. In some cases a second small gland is present above or below the large one. It receives afferent ressels from the skin of the posterior part of the thorax, the al,domen. pelvis, thigh, and leg: also from the tensor fascie latee and the prepuce. The efferent ressels ascend on the deep face of the tensor fasciæ latee and end chiefly in the deep inguinal gland. but in some cases some go to the iliac glands.

The popliteal lymph gland (L, p. poplitea) is situated in a mass of fat on the gastrocmemius muscle, behind the tibial and peroneal nerves and between the biceps fenoris and semitendinosus. Its average length is about an inch and a half (ca. $3-4$ (cm.) and its width about an inch (ea. 2-3 cm.). The gland receives afferent vesels from the lateral and posterior part of the leg and from the distal part of the limb: vescels from the biceps femoris and semitendinosus also go to it. The efferent ressels go chiefly to the deep inguinal gland, but some end in the ischiatic or internal iliac glands.

The coxal lymph gland (Lg. coxalis) is situated in front of the proximal part of the quadriceps femoris. under cover of the tensor fascie lata. It is present in the majority of subjects on one side or both and may be an inch or more (ea. $2.5-3 \mathrm{~cm}$.) in length. It receives ressels from the quadriceps femoris, tensor fasciæ latæ, fascia lata, and the prefemoral gland. The efierent vessels go to the iliae or the deep inguinal glands.

One or two lymph glands are commonly present on the superficial face of the tensor fasciee latie, an inch or two from the anterior horder of the muscle and five or six inches from the tuber coxæ. They are often partially embedded in the muscle, and are usually small, but may be alnost an inch (ca. 2 cm .) long. Hæmolymph glands may be found here and in some cases appear to take the place of the lymph gland. The afferent ressels come from the skin of the hip and the efferent vessels go to the prefemoral or deep inguinal gland.

The lymph glands of the sheep rescmble in gencral those of the ox. but a few special features may be noted. Hemolymph glands are numerous, especially along the course of the aorta; they are dark red or black and hence are easily seen, in spite of their small size, in the fat in which they are chiefly embedded.

The mandibular lymph glands are usually two in number on each side, and are situated behind the angle of the jaw on the course of the external maxillary vein. The larger one is flattened and kidney shaped and may be nearly an inch (ca. 2 cm .) long.

The parotid lymph gland lies on the posterior border of the masseter muscle, about midway between the mandibular joint and the angle of the jaw. It is related to and commonly partly covered by the anterior border of the parotid salivary gland. It is flattened and has a deep notch posteriorly. It is usually a little lew than an inch (ca. 2 cm .) long.

The suprapharyngeal lymph glands, two in number, have an elongated oval outline. They are situated on the dorsal wall of the pharyms, a quarter of an inch or less (ca. 0.5 cm .) apart. They are related laterally to the dorsal end of the great cornu of the hyoid bone, and dorsally to the rentral straight muscles of the head. They are about an inch (ea. 2-3 cm.) long, and half as wide.

The atlantal lymph gland is related to the ventral part of the paramastoid process and is dorsal to the carotid artery. It is discoid, oral in outline, and about half an inch (ca. 1.5 cm .) long. Commonly there is a small node behind the atlantal gland and one or more hromolymph glands occur here.

The sternal lymph gland, which overlies the first segment of the sternum, is about the size of a hazel nut.

The mesenteric lymph glands consist chiefly of long narrow elongated masses instead of isolated small nodes.

The prefemoral lymph gland is in front of the anterior border of the tensor
fascix lata, about midway between the tuber coxa and the patella. It is kidneyshaped and is a little more than an inch (ca. 3 cm .) long and nearly an inch (ca. 2 (m.) wide.

The superficial inguinal or mammary lymph glands are usually two in mumber on each side. The larger one is kidney-rhaped; it may be an inch and a half (ca. 3.5 cm .) long and abont hall as wide. The smaller gland is oval and usually about half an inch (ca. 1 cm .) in length.

CIRCULATORY SYSTEM OF THE PIG

THE HEART

The pericardium is attarhed to the sternum from a point opposite to the thirel rib as far as the xiphoil cartilage, and also to the sternal part of the diaphragm.

Fig, fin5.-Heart of Pig; Left View.
1, Conus arteriosus; 2, great cardiac vein in left longitudinal groove; 3, cardiac vein in intermediate groove; 4, apex.

It has extensive contact with the chest wall from the second intercostal space to the fifth rib.

The heart is small in proportion to the body-weight, especially in fat animals. Its weight in a large adult is usually less than a poumel. It is broad, short, and blent. When hardened in situ it is compressed dorso-ventrally. The ventral or sternocostal surface (Facies sternocostalis) is only moderately convex; it overlies the sternum from the second sternebra to the anterior part of the last one. The left longitudinal groove is on its left part, and is almost paraliel with the left border. The dorsal or diaphragmatic surface is more convex. The right longitudinal groove runs obliquels across this surface; it begins below the end of the posterior vena cava and extends to the left border. There is often an intermediate groove on the left border; it may extend to the apex, but it is frequently small and is sometimes

Fig. 606. - Heart of Pig. Diaphragmatic Surface.
$1-5$, Pulmonary veins; 6 , left pulmonary artery; 7,8 , branches of right pulmonary artery; 9 , vena azygos; 10 , fat in coronary groove; 11, vessels and fat in right longitudinal groove; 12, apex.
absent. The apex is blunt and is almost median; it overlies the anterior part of the last sternebra, and is about a quarter of an ineh (ca. 5-6 mm.) from the sternal part of the diaphragm. When the ventricles are dilated, there is a noteh at the apex (Incisura apicis cordis). The lower border of the left auriele is marked by several notches and is situated at a lower level than the right one.

In the right atrium the large orifice of the vena hemiazygos is seen below that of the posterior vena cava; the two are scparated by a valvular fold with a concave free edge. The intervenous crest is broad and rounded, not prominent, as in the horse. The musculi pectinati radiate from a distinct crista terminalis and form a highly developed network in the auricle. The fossa ovalis is extensive. There is a large moderator band in the right ventricle.

The Arteries

The pulmonary vessels present no remarkable features.
The aorta resmbles that of the horse and ox in its course and relations, but the arch is much more strongly eurved. There is no common brachiocephatic trunk.

The brachiocephalic artery arises first from the antic arch and passes forward below the trachea to the first rib. Here it gives off the common carotid arteries, separately or by a very short bicarotid trunk, and is contimed around the first rib as the right brachial artery.

The left brachial artery arises from the aortic arch just ahowe the brachocophalie. It curves forward and downward and turns around the anterior border of the first rib).

The branches given off by the brachial arteries are as follows:
There is usually a common trunk for the dorsal, deep eervical, and vertetral arteries. This trunk or the dorsal artery gives off the subcostal artery, which supplies usually the third, fourth, and fifth intereostal arteries. The second intercostal artery arises separately. The dorsal artery emerges throngh the dorsal end of the second intercostal spare ant divides into dorsal and cervical branches; the dorsal bramel passes upward and hackward and ramifies in the deep musdes of the anterior part of the back: the cervical banch passes deeply to the atlantal region, where it anastomoses with the occipital artery. The deep cervical artery is a much smaller vessel, which emerges through the first intercostal space; it gives off the first intereostal artery, passes upward and forward deeply, and ramifies chiefly in the complexus and multifichs. The vertebral artery resimbles that of the horse.

The inferior cervical artery is large; its ascemding branch gives off the posterior thyroid artery and parotid branches.

The internal and external thoracic arteries give hranches to the pectoral mammary glands; the external artery may he ahsent.

The common carotid arteries arise from the brachiocephalie elose together or by a very short common trunk; they are acempanied hy an internal jugular vein of considerable size, and their collaterals are similar to those of the horse. They terminate in occipital and internal and external carotid divisions.

The occipital artery resembles that of the horse.
The internal carotid artery usually arises ley a common trunk with the occipital. After giving off a large meningeal branch which enters the cranium through the mastoid formen, it passes through the foramen lacerum and forms with the opposite artery a rete mirabile which resembles that of the ox, but is smaller; it is not comected with the vertebrad and condyloid arterics, but the meningeal branch just mentioned and the midtle meningeal artery concur in its formation.

The external carotid artery has the same course and temination as in the horse. Its collateral branches present the following special features: (1) The lingual artery is relationy large and supplies the pharyngeal artery, the sublingual artery, musenlar branches, and branches to the solt patate, mandibular gland, and larynx. (2) The external maxillary artery is represented ly a small vesed which ends in the masseter muscle; it gives branches to the pterygoideus medialis, the parotid and mandibmar glands, and the mandibular lymph glands, the masseter and the eutaneus. It dows not extend upon the lateral surface of the face. (3) The posterior auricular artery is long and relatively large; it ascends along the anterior border of the paramastoid process and ramifies on the eonvex surface of the extemal ear. It gives of the posterior moningeal artery, which enters the eranial cavity through the mastoid foramen.

The internal maxillary artery pursues a flexuous course between the ramus of the mandible and the pterygoid muscles to the maxillary recess and divides into infraorbital and palatine lranches. Its branches offer the following special features:
(1) The inferior alveolar artery is large; branches from it emerge through four or five mental foramina and take the place of the inferior labial. (2) The middle meningeal artery enters the cramial cavity through the foramen ovale and concurs in the formation of the rete mirabile. (3) The buccinator artery is large and partly compensates for the lack of a facial artery. It ramifies in the cheek and its fine terminal branches extend to the lips. (4) The large infraorbital artery extends to the snout and replaces the superior labial largely and the lateral nasal in part. The malar branch compensates largely for the absence of the lateral and dorsal nasal arteries. (5) The palatine artery is small.

The superficial temporal artery ascends behind the temporo-mandibular articulation and ramifies in the temporalis muscle; it is small and may be absent. In the latter case the anterior auricular and transverse facial arteries arise separately from the external carotid artery, which is directly continued by the internal maxillary artery:

The intercostal arteries number usually fourteen or fifteen on either side; of these ten to twelve arise from the aorta, usually by short common trunks Frequently an intercostal artery is given off from that of an adjacent space.

The bronchial and œsophageal arteries usually arise separately.
The coeliac artery is half an inch to an inch long. It supplies a branch to the left crus of the diaphragm, and divides into two primary branches, gastro-hepatic and splenic. The gastro-hepatic artery is the larger. It gives off pancreatic branches, the anterior gastric artery, branches to the lesser curvature of the stomach, pyloric, and gastro-duodenal arteries. The latter divides into pancreatico-duodenal and right gastro-epiploic. The anterior gastric usually supplies the œesophageal artery. The continuing trunk (A. hepatica propria) gives off a cystic branch and divides in the portal fissure into three or four branches which ramify in the liver. The splenic artery gives off the posterior gastric (usually): a branch to the stomach above the cardia (A. diverticuli), twigs to the pancreas. snurt gastric arteries to the left part of the great curvature, and splemic branches, and is contimued as the left gastro-epiploic artery.

The posterior gastric may arise from the gastro-hepatic or in the angle of divergence of the two promary divisions of the coliac. The asophageal branch may come from the posterior gastric or the splenic. Other variations occur.

The anterior mesenteric artery arsses an inch or more behind the cocliac and is long, like that of the ox. It gives twigs to the pancreas and is continued in the mesentery as the artery of the small intestine or truncus intestinalis. This gives off about a dozen branches which form a series of arches along the mesenteric lymph glands. From these is formed a rich network which gives off immerable fine branches placed close together. The ileo-cæco-colic artery gives cff ileal and cæcal arteries, and enters the axis of the spiral coil of the colon. Here it pursues a spiral course and gives off branches which form remarkable plexuses; from the latter numerous fine branches go to the centripetal coils. A short trunk gives origin to right and middle colic branches. The right colic artery is arranged like the colic branch of the ileo-creco-colic artery, with which it anastomoses at the apex of the coil; it supplies the centrifugal parts of the coil. The middle cclic artery goes to the colon as it emerges from the coil and anastomoses with the posterior mesenteric artery.

A phrenico-abdominal artery arises on etther side a little in front of the renal arteries. It divides into branches which go to the costal part of the diaphragm and the abdominal muscles.

The renal and spermatic arteries present no special characters.
The posterior mesenteric artery arises near the termination of the aorta. It is small and is distributed like that of the ox.

Six pairs of lumbar arteries arise from the aorta. The seventh comes from the middle sacral.

The terminal branches of the aorta resemble those of the ox.
The arteries of the shoulder, arm, and forearm resemble in general those of the ox.

The brachial artery is continued over the medial surface of the elbow by the median artery. The latter divides near the middle of the forearm into radiad and uhar arteries.

The radial artery is the smaller of the two teminal branches of the median. It descents aiong the meelial border of the radius and divides at the proximal end

Fig. 607.-Abteries of Dital Part of Right Fore limb of Pig; Dorsal View.
a. Terminal part of volar interosseous artery; b, dorsal interosspous artery; c, rete carpi dorsale: d, dorsal metacarpal arterics: e, dorsal common digital arterifs; f. dorsal proper digital arteries.

Fig. 60s.- Irteriea of Distal Patt of Right Fore Limb of Pio; \olat V'iets.
g. Ularar artery: h, suprerficial branch of radial artery: i, collateral ulnar artery , , volar interosseous artury; h, deep branch of radat artury; k, deep volar metaearpal arteries; l, superficial volar metaearpal arteries; m, volat common digital artery; n, volar proper digital arteries.
of the metacarpus into two branches. The superficial branch descents in the space between the second and third metacarpal bones and unites with the ulnar artery or with the lateral superficial volar metacarpal artery to form the superficial volar arch. The deep branch joins the volar interosseous artery at the proximal end of the metacarpus to fom the deep volar arch. There is also a communicating branch between the ratial and uhar arteries at the carpus.

The ulnar artery descends along the metial side of the deep digital flexor and connects with the superficial branch of the radial artery to form the superficial volar arch.

The main facts as to the metacarpal and digital arteries are as follows: The rete carpi dorsale is formed essentially by the terminals of the interosseous artery of the forearm. It gives rise to three dorsal metacarpal arteries, which descend in the corresponling interosseous spaces and unite with branches of the volar metacarpals to form three common digital arteries. Each of these divides into two proper digital arteries, which descend along the interdigital surfaces of the digits. From the superficial and deep volar arches described above there arise three superficial and three deep volar metacarpal arteries. The deep arteries unite near the distal end of the space between the principal metacarpal bones to form a stem which unites with the middle (third) superficial artery. The superficial arteries

Fig. 609.-Arteries of Distal Part of Riget Hind Limb of Pig; Dorsal View.
a, Anterior tibial artery, continued on tarsus as the dorsalis pedis; b, perforating tarsal artery; c, dorsal metatarsal arteries; d, common digital arteries; $e_{\text {. }}$ proper digital arteries.

Fig. 610.-Arteries of Distal Part of Riget llind Limb of Pig; Plantar Iiew.
f. Saphenous artery, continued as medial tarsal artery: g, lateral tarsal artery: h, medial plantar artery. h^{\prime}, lateral plantar artery; i, perforating tarsal artery; j. deep plantar metatarsal arteries; k, common digital artery; l, proper digital arteries.
unite to form an arch from which proper digital arteries are given off to the axial aspect of the small digits, and a common digital which supplies two volar proper digital arteries to each of the chief digits.

The arteries of the hip, thigh, and leg are arranged much as in the ox. A few special features may be noted.

The ilio-lumbar artery gives off a branch to the quadriceps femoris and lateral muscles of the thigh, and ramifies in the abdominal muscles. It may also supply the posterior abdominal artery, which otherwise arises from the deep femoral.

The deep femoral artery is given off above the level of the pubis. It is large and compensates for the absence of the obturator artery. The posterior abdominal
and external pudie arteries may arise from it by a short common trunk or separately. The external pudic gives branches to the prepuce and preputial bursa but not to the penis. In the female it supplies the inguinal and abdominal mammary glands and anastomoses with the external thoracie artery. The popliteal artery gives off the peroneal.

The femoral artery gives off a short trunk which divides into anterior femoral and lateral circumflex arteries, the latter being much the larger.

The saphenous artery is large. It deseends as in the ox on the medial surface of the leg and divides near the hook into lateral and medial tarsal arteries. The latter is the real continuation of the saphenous; it divides into medial and lateral plantar arteries, which concur with the perforating tarsal artery in forming the proximal plantar arch.

The posterior tibial artery is small, being replaced distally by the saphenous. It gives branches to the museles on the posterior face of the tibia and supplies the nutrient artery of that bone.

The anterior tibial artery is contimued as the dorsalis pedis on the dorsal surface of the tarsus. This gives off the perforating tarsal artery, which passes back through the vascular canal of the tarsus and unites with the plantar arteries to form the proximal plantar arch.

The metatarsal and digital arteries resemble in arrangement the eorresponding vessels of the limb.

The Veins

The veins resemble in general those of the ox. Thus there is a hemiazygos vein and two jugular veins, the internal one being relatively larger than in the ox. A few differential features may be noted.

The buccinator vein resmbles that of the horse, and unites with the vena reflexa to form a short common trunk which joins the external maxillary vein.

The external maxillary vein resembles in general that of the horse. The dorsal nasal vein is large, receives the veins from the snont, rmo backwart in the groove of the nasal bone, and joins the frontal vein; it is eomected with its fellow by a transverse branch, and anastomoses freely with the malar and facial veins.

The veins of the distal parts of the limbs naturally present differences which are corrclated with those of the arteries.

The Lymphatic System

The thoracic duct often divides near its termination into two branches which unite to form an ampulla. The latter suddenly contracts and opens into the terminat part of the left jugular win. The lymph glands of animats in good condition are almost alt embedded in fat.

The mandibular lymph glands are situated in the space between the omohyod and mertial pterygoid muscles, in relation to the lower part of the anterior border of the mandbular salivary gland. There are eommonly two on each side, one large, the other small.

The parotid lymph glands (Fig. 415) are reddish-bromn in color. There are usually four of considerable size and several smaller ones on either side. One is situated at the upper part of the posterior horder of the masseter, partly covered by the parotid salivary gland. A large subparotid gland lies below the base of the ear on the terminal part of the brachiocephalieus musele. Ventral to this are two smadler glands, one above and one betow the externat maxillary vein.

The suprapharyngeal lymph glands (Fig. 416) are situated on the dorsal wall of the pharynx, dorsal to the external earotid artery and below and behind the paramastoid process. There are usually two of considerable size on either side.

They are related deeply to the rectus capitis ventralis major and are covered by tho clcido-mastoideus.

The middle cervical lymph glands form a group on the brachiocephalicus on the course of the external jugular vein. Other small nodes are present in the fat around the trachea

The prescapular lymph glands are situated at the anterior border of the anterior deep pectoral muscle, under cover of the trapczius and omo-transversarius.

The posterior cervical or prepectoral lymph glands are reddish in color and usually three in number. The largest is placed centrally under the trachea; the others are situated ou the brachial vessels as they turn around the first rib.

Fig. 611,-Stomach and Part of Intestine of Pig, Spread Ott.
a, Pyloric part of stomach b, duodenum; c, jejunum; d, cæcum; ε, f, colon; g, pancreas; h, epiploic foramen; i, portal vein; k, bepatic lymph glands; l, gastric lymph glands; m, cesonhagus. (After Edelmann.)

The axillary lymph glands are usually absent, but very small nodes may be found near the insertion of the latissimus dorsi. Cubital glands are not present.

The thoracic lymph glands comprise the following:
(1) A sternal lymph gland of relatively large size lies on the first segment of the sternum. (2) The mediastinal lymph glands include: a number of small reddish nodes in the fat along the dorsal surface of the aorta: a gland on the left side of the trachea in front of the aortic arch; a gland on the aorta where it is crossed by the vena hemiazygos; two or three glands in the posterior mediastinum along the ventral surface of the aorta: several glands along the ventral surface of the trachea. (3) The bronchial lymph glands include one on the bifureation of the trachea and another at the apical bronchus of the right lung.

The lumbar lymph glands are seattered along the abdominal aorta and the vena cava. Those phated near the hilus of the kidney are often designated renal.

The internal iliac lymph glands are rounted and relatively large. They comprise: (1) Three or four glands situated on and between the origin of the circumflex iliae and the extemal and internal iliae arteries: (2) a gland in the angle of (livergence of the internal iliae arteries; (3) several glands along the course of the external iliac artery, the most ventral of which is usually the largest, and might be regarded as a deep inguinal gland.

The external iliac lymph glands are suall, three or four in number, and lie in front of the circumflex iliae vessels.

The viseral lymph glands of the ablomen comprise the following:

1. The gastric lymph glands are situated on the lesser curvature of the stomach, covered by the pancreas in situ. They are commonly five or six in number and are in series with the hepatic glands.
2. Several hepatic lymph glands (Fig. 429) are present about the portal vein at the portal fissure. The largest ones are about an inch (ea. $2-3 \mathrm{~cm}$.) long.
3. A long splenic lymph gland lies on the splemic vessels near the dorsal ent of the spleen.
4. The mesenteric lymph glands are situated along the anastomotic arches formed by the vessels of the small intestine.
5. heveral cæcal lymph glands are situated along the first part of the excal versels.
6. Two series of colic lymph glands accompany the arteries of the spiral part of the colon, and are exposed by separating the coils of the bowel. Small glands are placed in the colic mesentery and above the rectum.
7. The anal lymph glands are situated on either sille on the retractor ani.

A small ischiatic lymph gland is found on the sacro-sciatic ligament near the lesser sciatic notch.

The prefemoral lymph gland is situatefl on the aponeurosis of the external oblique muscle at the anterior border of the tensor fascia late, and a little above the middle of the thigh. It has an elongated oval outline, and in the adult may be about two inches (ca. 5 cm .) long, and nearly an inch (ea. 2 cm .) wide. It is embedered in fat.

The superficial inguinal lymph glands form an extensive group, which may be five inches or more (ca. $10-12 \mathrm{~cm}$.) in length. The middle part of the group is at the external inguinal ring, and the series extends back on the upper part of the gracilis and forward and outward on the aponeurosis of the obliquus abdominis externus. They number about a dozen; the largest are about an inch (ca. 2-3 em.) long, and the others about the size of a pea.

The popliteal lymph glands are small normally and may escape notice. They are more superficially placed than in the other animals, and are in part in contact with the skin.

A few small tarsal glands oceur in front of the distal part of the tendo Achillis. The oreurrence of a gland in the subcutaneous fat about a handlirearlth above the tuber caldis has been noted hy Hartemstein; it varies from the size of a pea to that of a hazel mut.

CIRCULATORY SYSTEM OF THE DOG

The Pericardium and Heart

The pericardium is attached to the sternal part of the diaphragm by a fibrous band, the pericardiaco-phrenic ligament (Lig. perjcardiaco-phrenicum). and is connected with the stermum only by the mediastinal pleura.

The area of contact of the pericardium with the chest wall is chiefly ventral, and is best seen with the subject on its back. In this position (after removal of the intercostal and rectus thoracis musches), the area is seen to be almost triangular. The anterior horder of the triangle (formed by the apical lobe of the right lung) is at the right fourth costal cartilage and extends across the median plane, ending at the third interchondral space near the costo-chontral junction. The right border extends from the sternal end of the fourth rib to the eighth chondro-sternal joint. The left border begins at the left end of the anterior borker, crosses the fourth cartilage nearly an inch from its junction with the rib and the fifth and sixth chondro-costal junctions.

The heart differs greatly in form and position from that of the larger animals. In diastole it is ovoid and the apex is blunt and rounded. Its long axis is very oblique. Thms the base faces chiefly toward the thoracie indet and is opposite to the ventral part of the third rib. The apex is on the left side at the sixth interchondral space or seventh costal cartilage, and in close relation to the sternal part of the diaphragm. The sterno-costal surface corresponds largely to the floor of the thorax from the fifth chondro-sternal joint backward. It is crossed obliquely

Fig. 612.-Heart of Dog; Left View.
1, Pulmonary veins; 2, left auricle; 3 , vessels and fat in coronary groove; 4, vessels and fat in left or ventral longitudinal groove; 5 , vessels and fat in intermediate groove.
by the left (or ventral) longitudinal groove, which begins behind the origin of the pulmonary artery, and joins the right (or dorsal) groove at the right border, thus forming a notch not far from the apex. The diaphragmatic surface is less extensive and less convex. On it is the right (or dorsal) longitudinal groove, which begins at the coronary groove just behind the termination of the posterior vena cava and joins the leit (or ventral) groove to the right of the apex. There is frequently an intermediate groove between these on the left ventricle, which extends a variable distance toward the apex. The weight of the heart of a dog of medium size is five to six ounces, and is about 1 per cent. of the body weight.

The relative weight is subject to wide variation. It is large in hunting dogs and such as are trained for speed or worked. In fat dogs of sedentary habit it may be only about 0.5 per cent.

The fossa ovalis is very shatlow and is hounded in front by the intervenous crest. The musculi pectunati form a rich network in the right auricle. The tricuspid valye has two chief cusps and three or four small ones. There are four musculi papillares in the right ventricle, all of which spring from the septal wall. They diminish in size from before hackward, the anterior ones being long and cylindrical. Their bases are connected mith the lateral wall by trabeculx carnea. Usu-
ally six pulmonary reins open into the left atrium. The lricuspicl valve consists of two large cusps and four or five small ones. There are two musculi papillares in the left ventricle, both of which arise from the lateral wall; they are much larger than those of the right ventricle.

THE ARTERIES

The two coronary arteries usually' spring separately from the origin of the aorta, but may arise by a common trunk. Each divides into eircumflex and desecuding branches. The left artery is twire as large as the right ont'; it commonly gives off a branch of considerable size which runs in the intermediate groove.

Fig. 613.- Versels, Nerves, Etc., of Thorax of Dog; Rigat View.

1. First rib (stump): 2, sternum; \mathcal{Z}^{\prime}, manubrium sternt; $2^{\prime \prime \prime}$, xiphoil cartilage; 3, trachea; 4, asophagus; $6-8$, ventral braarhes of fith to cighth cervical norves; 9 , ventral branch of firat thoracic nerve; 10,10 , muscular and tendenous parts of diaphragm; $11,11^{\prime}$, left ventricle and atrium of heart; 12,12 , right ventricle and anricle of heart; 18 , corunary groove; 14, right coronary artery; 15, mollle eardiae vein; 16 , pulmonary vems; $1 \tilde{\gamma}$, aorta; $1 \mathcal{8}$, thoracic duct; 14, anterior vena cava; 20, postenur vena cava; 21, dorsal intercostal vessels; 22, intercostal nerve; 20, inferior cervical (or omo-cerveal) artery; 24, external thortwe artury; 25, brachal vessels; 26, common jugular vein; 27, internal thoracue vessels; 23, sternal branches of internal thoracic vessels; 29, mediastinal arteries; 30, musculu-phrenic artery; 31, antertor abdommal artery; 32, th. longus coll; 33, anterior mediastinal lymph glands; 34, sternal lymph glands; a, t^{\prime}, right brachal artery and vein; b, common carotid urtery; c, deep cervicul vessels; d, vertebral vessels; e, dorsal vessels; f, subeostal vessels; g, h, dorso-cervical trunks; 2 , vens azyigus; k, rucurrent nerve; l, vago-sympathetic nerve; l^{\prime}. $l^{\prime \prime}$, dorsal and ventral branches of vagus; m, phrenic nerve; n_{1} roots of phrenic nerve; o, thoracie trunk of sympathetic; v^{\prime}, oerve loop formed uround brachal artery by branches which connect posterior cervical and first thoracic ganglia of sympathetie (Ansa subelavia); p, thoracic ganglia of sympatteetic; \downarrow, rami communicantes; r, posterior cervical ganglion; s, first thoracie ganglion; $t_{+}, u_{,} v_{1}$ rami communicantes between s and seventh carvical, first thoracic, and eighth cerveal nerves; w, cardiae branch of first thoracic ganglion; x, cardiac branches of posterior cervical ganglion; y, bronchial branches of vagus; z, d"pressor nerve. (Aiter Bucher.)

The aorta runs at first almost straight forward and then turns backward, forming a very sharply curved areh. It gives off at its origin the two coronary arteries. From the convexity of the arch two large vessels arise. The first and larger of these is the brachiocephalic artery; this runs forward at first on the ventral surface of the crophagus, then under the trachea. It gives off in suceession the left and right common carotid arteries, and turns around the first ril, as the right brachial artery. The left brachial artery passes forward on the left face of the osophagus, forming a slight arch (eoncaver ventrally), and turns around the first rib. The intrathoracie branches of the brachial arteries are as follows:
(1) The vertebral artery arises opposite the first intereostal space from the dorsal face of the parent trunk. It runs forward on the longus eolli (crossing the trachea on the right side), and passes along the neck in typical fashion to the third cervieal vertebra, where it divides into three branches. The largest of these supplies the museles in this region, compensating for the absence of branches of the deep cervieal artery. The seeond passes between the seeond and third cervieal vertebre into the vertebral canal and unites with the opposite artery and a branch of the oceipital artery to form the basilar artery. The third branch is the small continua-

Fig. 614.-Vessels, Nerves, Etc., of Thorax of Dog; Left View.
1, First rib (stump) : 2 , sternum; \mathcal{Z}^{\prime}, manubrium sterni: $2^{\prime \prime}$, xiphoid cartilage: 3 , trachea: 3^{\prime}, bifurcation of trachea; 4, cesophagus: $5-8$, ventral branches of fifth to eighth cervical uerves; 9 . ventral branch of first thoracic nerve, 10, 10, muscular and tendinous parts of diaphragm; 11, 11^{\prime}, left ventricle and suricle of heart; $12,12^{\prime}$, right vent ricle and auricle of heart: $13,13^{\prime}$, left coronary artery (descending branch) and great cardiac vein; 14. branch of left corocary artery in intermediate groove; 15 , pulmonary artery; 16 . pulmonary veins; 17,18 , aorta; 19, anterior vena cava; 20, $200^{\prime}, 200^{\prime \prime}$, intercosta! nerve, artery, and vein; 21, thoracic duct; $22,222^{\prime}$ internal thoracic vessels; 23. sternal branches of $22 ; 24$, mediastinal arteries; 25, musculo-phremic artery; 26, anterior abdominal artery: 27, inferior cervieal (or omo-cervical) arters: 2S, brachial vesscls; 29, external thoracic artery; 30 . left common jugular vein; 31, m. longus colli; 32, anterior mediastinal lymph glands; 33 , sternal lymph glands; a, brachiocephalic artery; b, b^{\prime}, common carotid arteries; c, c^{\prime}, brachial arteries; d, left brachial vein; c, e^{t}, dorso-cervical vessels; $f_{0} f^{\prime}$, vertebral vessels; g, dorsal veseels; h, subcostal vessels; i, deep cervical vessels; k, recurreat aerve; l, vago-sympathetic trunk; l^{\prime}. $l^{\prime \prime}$, dorsal and ventral branches of vagus; m, phrenic nerve: n, roots of phrenic nerve from fifth to seventh cervical nerves: 0 , thoracic trunk of sympathetic; a^{\prime}, ansa subclavia formed by branches connecting posterior cervical and first thoracic ganglia; $a^{\prime \prime}$, great splanchnic nerve; p, thoracic ganglia of sympathetic; q, rami communicantes; r, posterior cervical ganglion; s, first thoracic ganglion of sympathetic: t, u, r, rami conmumicantes connecting s with seventh and eighth cervical and first thoracic nerves; u, cardiac branch of first thoracic nerve; x, cardiac nerves from posterior cervical ganglion; y. bronchial branches of vagus; z, depressor nerve. (After Bucher.)
tion of the parent trunk; it passes to the wing of the atlas and anastomoses with the oceipital artery:
(2), (3) The dorsal and deep cervical arteries arise by a common trunk elose to the vertebral. The trunk crosses the lateral face of the latter, ascends on the longus colli, and divides into two branches. The anterior branch, the deep cervical artery, emerges medial to the upper end of the first rib and ramifies in the deep museles of the neek. The dorsal artery gives off the subcostal artery (which supplies two or three intereostal arterjes) and emerges through the dorsal end of the first intercostal space and ramifies in the spinal muscles.
(4) The inferior cervical artery arises at the first rib, and gives off the ascenting cervical and transverse scapular arteries. The former runs on the deep face of the brachiocephalicus, in which it ramifies. The latter goes to the anterior border of the subscapularis, and its largest braneh (equivalent to the prescapular of the horse) accompanies the suprascapular nerve.
(5) The internal thoracic artery is large and sends perforating branches to the pectoral mammary glands.

The axillary part of the brachial artery gives off the thoraco-acromial and extemal thoracic arteries.

The thoraco-acromial artery supplies branches to the deltoid and peetoral museles.

The external thoracic artery passes backwarl under cover of the deep pectoral

Fig. 6I5.-Stperficial Vessels of 1 lead of Dog,
1, Facial artery; 2 , inferior labial artery; 3 , artery of angle of mouth; 4, superior labial artery; 5 , lateral nasal artery; 6 , dorsal nasal artury; 2 , superficial temporal artery; s, transverse facial artery; 4 , snterior auricular artery; 10 , zygomatico-orbital arter: : 11 , satellite vein of $10 ; 12$, ant. auricular vein; 13 , superficial temporal vein; 14, internal maxillary vein; 15 , post, auricular vein; $16,1 \pi$, external jugular vein; 15 , external maxillary vein; 19,23 , facial vein; 20, inf. lahial vein; 21, buccinator vein; 22, vena reflexa; 24, superior labial ven; 25, vena angularis oculi; 26, dorsal nasal vein; a, conchis; b, parotisl alabd; c, mandibular gland: d, mandibular aymph glands; e, mylo-hyoideus; f, digatricus; η, masseter; h, zygomaticus; i, scutularis; k, temporalis; l, orbicularis oculi; m, zygomatic arch; n, retractor anguli oris; a, buccinator. (Elleoberger-Baum, Auat. d. Hundes.)
muscle and ends in the alodominal cutaneous muscle. It sends branehes to the mammary glands.

The common carotid arteries, left and right, arise in that orter from the brachiocephalic. In the neck the right one lies on the trachea, the left on the asophagus. Coliateral branches are the posterior thyroid (which may, however, arise from the right or loft brachial on the inferior cervieal), pharyngeal, anterior thyroid, laryngeal, muscular, tracheal, and glandular (to the mandibular gland). Each carotid divides under the wing of the atlas into oceipital and internal and external carotid branches.

The occipital artery is small; it ascends behind the liypoglossal nerve to the paramastoid process, frossing laterally the internal carotid artery and vagus and sympathetic nerves. It curves over the paramastoid process and pursues a flexuous
course on the nuchal surface of the occipital bone parallel with the nuchal erest, anastomoses with the opposite artery, and ramifies in the nuchal muscles. It gives collateral branches to the ventral straight muscles and to the pharyn. It also gives off the condyloid and posterior meningeal arteries. The latter passes through the mastoid foramen and ramifies in the dura mater. The cerebrospinal artery passes through the intervertebral foramen, and unites in the vertebral canal with its fellow and a branch from the vertebral artery to form the basilar artery. The recurrent branch anastomoses with the vertebral as in the horse.

The internal carotid artery, also small, arises just behind the occipito-mandibularis muscle; it passes to the foramem lacerum posterius, enters the carotid canal, and forms a bend before entering the cranial cavity through the carotid foramen. It forms a plexus which is connected by branches with the middle meningeal and external ophthalmic arteries. It then perforates the dura mater and enters into the formation of the circulus arteriosus, which is formed in a manner similar to that of the horse. The anterior cerebral artery gives off the internal ophthalmic artery which aceompanies the optic nerve to the eveball. The middle cerebral artery is large, and gives off the choroid artery.

The external carotid artery is the direct continuation of the common carotid. It passes along the lateral wall of the pharynx, emerges from beneath the occipitomandibularis, and divides behind the postglenoid process into superficial temporal and internal maxillary arteries. It gives off the following collateral branches: The large flexuous lingual artery passes to the side of the root of the tongue, runs forward under cover of the hyo-glossus, and continues to the tip of the tongue in company with a satellite vein and the hypoglossal nerve. It ramifies in the tongue and gives collateral branches to the pharyns and soft palate. The external maxillary artery, smaller than the lingual, passes aiong the upper border of the occipi-to-mandibularis, gives off the sublingual, gains the anterior border of the masseter, and divides into superior and inferior labial and the angularis oris. The last-named vessel passes forward on the cheek between the labials to the angle of the mouth. The sublingual artery passes along the upper border of the occipito-mandibularis, then between the inylo-hyoideus and the ramus of the mandible. The great auricular artery arises at the anterior border of the occipito-mandibularis, gives branches to the parotid and mandibular salivary glands and the adjacent muscles, and terminates in three auricular branches which ramify on the convex face of the concha. These branches anastomose with each other and the anterior auricular artery.

The superficial temporal artery, after giving off the anterior auricular artery and a small transverse facial artery, turns forward under the temporal faseia toward the eye, and divides into upper and lower branches which supply the frontal region and the eyelids. It also supplies branches to the parotid gland and the masseter and temporalis muscles.

The internal maxillary artery pursues a course similar to that of the horse, and ends in the pterygo-palatine fossa by dividing into the infraorbital artery and a common trunk for the greater palatine and sphenopalatine arteries. The mental branches of the inferior alveolar artery are of considerable size and are distributed in the lower lip and gums. Two or three deep temporal arteries are present; the anterior one may arise from the buccinator artery. The middle meningeal artery enters the cranium through the foramen ovale, ramifies in the dura mater, and sends a branch to the carotid plexus. The external ophthalmic artery is connected with the internal carotid by a large ramus anastomoticus which passes through the orbital foramen. The superficial branches of the infraorbital artery replace the dorsal and lateral nasal arteries, and compensate for the small size of the superior labial.

The brachial artery in its course in the arm presents no special features. At the elbow it passes between the biceps and the pronator teres, descends as the
median artery under the flexor carpi radialis about a third of the way down the forearm, and clivides into radial and ulnar arteries. Among its collateral branches are the following: (1) The large subscapular artery passes up between the sub-

Fig. 61fi.-Vessels ano Nerves of Meoial Strface of shotldea asd Aby of Dug.
a, b, Brachal artery; c, subscapular vessels; d, thoraco-dorsal wessels; i, deep brachal vessels; f proximal collateral uluar vessels; g, brachial ven; $h, h^{\prime \prime}$, cephalie vein; h^{\prime}, mediano-ralial vom; i, anterior thoracir nerves; k, musculo-cutaneons aerve; l median nerve; m, ulnar nerve; n, rachal nerve; a, thoracodorsal nerve; 1 , snbseapnlaris musele; 2, supraspinatus muscle; 3 , teres major; 4 latissimus dorsi; 5 , deen pectoral muscle; 6, biceps brachii, \tilde{r}, long head of tricens; S, tensor fasciex antibrachii; 0 , medial head of tricups; 10, pronator teres. (Ellenberger-Baum, Aat. d. Hundes.)

Fig. 617.-Irteries of Forearm of Dog; Medial Víew.
Arteries: a, Brachial: a^{\prime}, median; c, common interosseous: d, volar antibrachial; ϵ, radial; $e^{\prime}, e^{\prime \prime}$, dorsal and votar branches of $e: f, f^{\prime}$, cutaneous branches of e; g. nlnar. Museles: 1, Biceps brachii; 2, extensor carpi radialis; 3, pronator teres; 4, deep digital flexor; $\overline{5}$, radius; 6 , superficial digital flexor; γ, flexor carpi radialis; 5 , ulnaris lateralis; 9 , bumerus. (EllenbergerBium, Anat. d. Hundes.)

Scapularis and teres major, turns around the posterior angle of the scapula, and terminates in the supraspinatus, deltoid, trapezius, and brachiocephalicus. In about half the eases it gives off the anterior circumflex, which often arises with the
posterior circumflex. Its other branches resemble those of the horse. (2) The anterior circumflex artery in about half the cases arises from the brachial. (3) The deep brachial artery arises about a third of the way down the arm. (4) The bicipital artery (for the hiceps) is given off at the distal third of the arm. (5) The proximal collateral ulnar artery arises almost opposite to the preceding vessel. It ramifies chiefly in the distal part of the triceps, and sends a superficial branch to the medial and posterior surfaces of the proximal part of the forearm. (6) The proximal collateral radial artery (not present in the horse) arises at the distal fourth of the arm , crosses over the terminal part of the biceps, deseends on the extensor earpi radialis, and coneurs with a branch of the volar interosseous artery in forming the rete carpi dorsale. It often supplies the bicipital artery. (7) The distal collateral radial artery is very small; it aecompanics the deep branch of the radial nerve on the dorsal surface of the forearm and supplies branehes to the elbow joint and the brachialis, supinator, and extensor muscles. (8) The common interosseous artery is given off from the median a little below the elbow. It supplies branches to the flexor muscles and gives off the dorsal interosseous artery, which passes through the interosseous space, gives branches to the extensor muscles, and by its terminal twigs concurs in the formation of the rete earpi dorsale. The direct continuation of the trunk is the volar interosseous artery, which descends along the interosseous space under cover of the pronator quadratus, gives off a branch to the rete carpi dorsale and the fifth volar metacarpal artery, and terminates by joining the volar branch of the radial artery to form the deep volar arch. (9) The volar antibrachial artery (Ramus volaris antibrachii) arises below the interosseous and descends at first under the flexor carpi radialis, then between the heads of the deep flexor, and divides into ascending and descending branches which ramify in the muscles mentioned.

The radial artery, the smaller terminal of the median, descends along the medial border of the radius, and divides near the carpus into dorsal and volar branches. The dorsal branch assists in forming the rete carpi dorsale. The larger volar branch descends behind the medial border of the earpus and joins the end of the volar interosseous in forming the deep volar arch. The areh extends across the interossei at the proximal part of the metacarpus. From this arch three deep volar metacarpal arteries deseend in the second, third, and fourth intermetacarpal spaces and concur with the corresponding superficial volar and the dorsal metacarpal arteries to form the common digital arteries.

The ulnar artery is much the larger of the two terminal branehes of the median. It descends with the median nerve along the medial border of the deep flexor of the digit, and sends a conneeting branch to the radial above the carpus. It then inclines somewhat laterally and passes between the superficial and deep flexor tendons. Near the middlle of the metacarpus it gives off the first volar metacarpal artery and divides into the second, third, and fourth superficial volar metacarpal arteries. The first volar artery unites with the corresponding dorsal artery to form the first common digital artery, which supplies proper digital arteries for the opposed surfaces of the first and second digits. The superfieial volar arteries descend in the spaces between the other metacarpal bones, and unite near the metacarpo-phalangeal joints with the corresponding deep volar and dorsal metacarpal arteries to form three common digital arteries. Each of the latter divides after a short course into two proper digital arteries, which run along the opposed surfaces of the second to the fifth digits. The lateral digital artery of the fifth digit comes from the superficial volar arch formed by the union of a branch of the volar interosseous with the fourth superficial volar metacarpal artery:

The rete carpi dorsale gives off four dorsal metacarpal arteries which deseend in the intermetacarpal spaces and unite near the metacarpo-phalangeal joints with the volar arteries to form the common digitals.

The thoracic aorta supplies the last nine or ten pairs of intercostal arteries, but no anterior phrenic arteries. It gives off two or more œsophageal branches, in addition to the broncho-œsophageal, which arises close to or with the sisth intercostal and ramifies in the usual manner.

The abdominal aorta, after giving off the external iliac arteries, continues about half an inch to an inch (ca. $1-3 \mathrm{~cm}$.) under the last lumbar vertebra, gives off the internal iliac arteries, and is continued by the middle sacral artery (Fig. 624). This small vesse! runs backward under the sarrum and coccygeal vertebre and gives off branches in segmental fashion. Six pairs of lumbar arteries are given off from the aorta, the seventh coming from the internal iliac artery.

Fig. i18.-Arterier of Distal Part of Right Fore Limb uf Dog, Dorsal View.
a, Branch of volar interosseous artery; b, proximal collateral radial artery (lateral branch); c, radial artery (dorsal branch); d, rete carpi dorsale; e. deep tlorsal metacarpal arteries; δ, superficial dorsal metacarpal arteries; a, common digital arteries; h, proper digital arteries.

Fic. 619.-Artertes of Distal Part of Right Fore Limb of Dog; Volar View.
z. Radial artery; j, ulnar artery; k, volar interosecous artery; l, deep volar arch; m, fifth volar metacarpal artery: n, deep volar metacarpal arteries; p, superficial volar metacarpal arterieq; $0, q$, common digital arteries; r, proper digital arteries.

The cœliac artery gives off the hepatic artery and forms a short trunk from which the gastric and splenic arteries arise. The hepatic artery, after giving off several proper hepatic arteries, and the right gastric artery, which passes along the lesser curvature of the stomach and anastomoses with the left gastric artery, is continued by the gastro-duodenal artery. This divides near the pylorus into right gastro-epiploic and pancreatico-duodenal arteries; the former supplies branches to the pyloric part of the stomach and passes along the greater curvature of that viscus in the omentum and anastomoses with the left gastro-epiploic. The left gastric artery passes to the lesser curvature of the stomach and ramifies chicfly on
the left part of the stomach, giving off a branch which anastomoses with the right gastrie artery. The splenic artery gives off pancreatic bronches, and reaches the ventral part of the spleen. It gives off the left gastro-epiploic and a gastrosplenic branch which passes to the dorsal end of the spleen, which it supplies, besides giving off twigs to the left extremity of the stomach.

The anterior mesenteric artery arises close lehind the eceliac. It gives off a common trunk for two colic arteries and the ileo-ceeco-colic. The right colic artery is a small vessel which goes to the right part of the colon. The middle colic artery, much the largest of the colic vessels, supplies the transverse colon and part of the left colon. The ileo-cæco-colie gives off ileal, cæcal, and colic branches. Anastomoses are established between the colic arteries, and the ileal branch anastomoses with the last jejunal artery. The trunk is contimued as the

Fig. 620.-End Branches of Aorta and Radicles of Posterior Vena Cava of Dog.
a, Abdominal aorta; b, posterior mesenteric artery; c, lumbar arterjes; ć, circumflex ihac artery; e, extornal iliac artery; f, deep femoral artery; g, posterior abdonmal artery; h, exterual pudic artery; a, femoral artery; i, i, internal iliac arteries; k, visceral branch of i; l, parietal branch of $i ; m$, ilio-lumbar artery; n, anterior gluteal artery; $v_{\text {, lateral }}$ coccygeal artery; p, posterior gluteal artery; q, umbilical artery; r, middle hæmorrhoidal artery; β, posterior hæmorrhoidal artery; s, perineal artery; t, art. profunda peris; n, art. bulbi urethre; v, art. dorsalis penis; w, middle sacral artery; a^{\prime}, posterior vena cava; other veins are satellites of arteries and correspondingly named: 1 , ilio-psoas muscle; 2, tendon of psoas minor; 3 , abdominal muscles; 4. sartorius; $\overline{5}$, rectus femoris; 5^{\prime}, vastus medialis; 6 , pectineus; 6^{\prime}, adductor; 7 , gracilis; 8 , symphysis pelvis; 9 , ilium; 10 , piriformis; 11 , gluteus superficialis; 12 , obturator internus; 13, penis; 1 1 , lumbar vertebræ. (After Ellenberger, in Leisering's Atlas.)
artery of the small intestine, giving off fourteen to sixteen branches (Aa. jejunales), which form a series of anastomotic arches in the mesentery near the bowel.

Two phrenico-abdominal arteries (Aa. phrenice caudales) come off from the aorta behind the anterior mesenteric, and divide into phrenic and abdominal branches. Each phrenic artery diverges from its fellow in deseending on the abtominal surface of the corresponding crus of the diaphragm to the sternal part. The medial branches anastomose with those of the opposite artery, the lateral branches with intercostal arteries chiefly. The abdominal arteries pass outward across the psoas muscles, give branches to the lumbar museles, the renal fat and adrenals, and ramify in the oblique abdominal muscles.

The renal and spermatic arteries offer no special features.
The utero-ovarian artery divides near the ovary into three or four branches
 terior abdominal; ε, external pudic; f, medial circumflex: a, anterior femoral (accompanicd by athteriot branch of femoral nerve); h, lateral circumflex; i, k. musedar branches; l, articular branch; m, suphenous; n, o, plantar and dorsal branches of suphenousi q, saphenous nerve; r, obturator nerve: 1 , iliopsoas; 2, ilium; 3, gracilis; 4, semitendinosus; 5, adductor magmus; 6 , sdductor longus; γ. quadriceps femoris; 8 , sartorius; 9 , semimembranosus; 10 , gastrocnemius; 11, tibialis anterior; 12, tibia. (Ellen-berger-Baum, Anat. d. Hundes.)
which supply the ovary and uterine tube and anterior part of the corm of the uterus, anastonosing with the uterine artery.

The posterior mesenteric artery is small. It divides into two hranches which supply the terminal part of the colon and the anterior part of the rectum; the former (A. colica sinistra) passes forward along the left part of the colon and anastomoses with the middle eolie branch of the anterior mesenterie artery; the latter (A. hemorrhoidalis cranialis) anastomoses with the middle hemorrhoidal branch of the internal pulie artery.

The circumflex iliac artery usually arises from the terminal part of the aorta.

The external iliac artery usually gives off no collateral branches.

The femoral artery has the usual course in the femoral triangle and canal. The deep femoral artery gives off the posterior abdominal and external pudic arteries by a very short common trunk or separately. In the female the external pudic divides into anterior and posterior branches; the former runs forward, supplies branches to the superficial inguinal lymph glands, the mammary glands and skin, and anastomoses with the mammary branch of the internal thoracic artery; the posterior branch pursues a flexuous course between the thighs to the vulva, where its terminal branches anastomose with the intermal pudic artery. In the male the artery crosses the medial side of the spermatic eord and rums forward to the umbilical region; it supplies the inguinal lymph glands, prepure, and skin. The anterior femoral artery may arise by a short common trunk with the lateral eircumflex. The former, accompanied by the anterior branch of the femoral nerve, dips in between the rectus femoris and vastus medialis. The lateral circumflex artery passes forward between the sartorins medially and the rectus famoris and tensor fascle late laterally and supplies branches to these muscles and the glutei. In addition to museular branches of considerable size, an articular branch (A. genu suprema) arises a little below the middle of the thigh and runs down-
ward and forward to the medial face of the stifle joint. The saphenous artery is large. It arises from the medial surface of the femoral a little below the middle of the thigh, descends superficially to the proximal part of the leg, and divides into two branches. The smaller dorsal branch (Ramus dorsalis) passes obliquely downward and forward across the medial surface of the tibia to the flexion surface of the hock and gives off the second, third, and fourth superficial dorsal metatarsal arteries. These descend along the grooves between the metatarsal hones and each divides into two proper digital arteries. The plantar branch (Ramus plantaris), which is much the

Fig. 622.-Arteries of Distal Part of Right Hino Lhab of Dog; Dohsal View
a, Lateral branch of anterior tibial artery; b, an= terior tibial artery; c, saphenous artery (dorsal brancb); d, perforating metatarsal artery; e, dorsal metatarsal arteries; f, deep dorsal metatarsal srteries; g, superficial dorsa! metatarsal arteries; h, anastomoses between dorsal and plantar arteries; i, common digital arteries; i, proper digital arteries.

Fig. 623.-Arteries of Distal Part of Right Hind Limin of Dog; Plantar View.
k, Saphenous artery (plantar branch); l, l^{\prime}, medial and lateral plantar arteries; m, perforating metatarsal artery; n, deep plantar metatarsal arteries; o, superficial plantar metatarsal arteries; p, common digital artery; q, proper digital arteries.
larger, descends on the medial face of the gastronnemius and the long digital flexor. It gives off the lateral tarsal artery to the lateral surface of the tarsus, and at the plantar face of the tarsus detaches the medial and lateral plantar arteries; these descend on either side of the deep flexor tendon and unite with the perforating metatarsal artery to form the proximal plantar arch. The artery continues down the middle of the plantar surface of the metatarsus and divides near the metacarpo-phalangeal joints into three superficial plantar metatarsal arteries (II, III, IV). These vessels unite with three deep plantar metatarsal arteries, which descend from the proximal plantar arch and with branches from the dorsal meta-
tarsal arteries. From these anastomoses four plantar digital arteries result; of these, the central two have a common cligital trunk.

The popliteal and posterior femoral arteries present nothing of special interest.
The posterior tibial artery is very small, being replaced largely by the saphenous. It supplies twigs to the flexor muscles at the proximal part of the leg.

The anterior tibial artery descends on the anterior face of the tibia and tarsus and is continued as the perforating metatarsal artery, which passes through the upper part of the space between the second and third metatarsal bomes and coneurs with the plantar arteries in the formation of the proximal plantar areh. Besides muscular and articular branches, the anterior tibial supplies the fifth dorsal metatarsal artery for the lateral side of the fifth cligit. At the proximal part of the metatarsus it gives off three deep dorsal metatarsal arteries which descend in the intervals between the metatarsal bones and concur with the superficial torsal metatarsal and the plantar arteries in the formation of the eligital arteries. The latter resemble in general arrangement the corresponding arteries of the thoracic limb.

The internal iliac artery (Fig. 620) runs backward and a little outward across the itio-psoas, and on reachimg the ilium tivicles into parictal and viseeral branches; it gives off the seventh hmbar artery. The parietal branch is the larger. It runs backwarl on the lateral wall of the pelvis, passes out through the lesser sciatic noteh, and breaks up into branches which supply the muscles of this region; this terminal part may be regarded as the posterior ghateal artery. It gives off the following lranches: (1) The ilio-lumbar artery pasies outward between the iliopsoas and the shaft of the ilium and ramifies in the gluteus medius, giving branches to the ilio-psoas and tensor fascie late; it may arise from the internal iliac. (2) The anterior gluteal artery passes out through the greater sciatic foramen and supplies branches to the glutei. (3) Muscular branches go to the ohturator internus, coccygeus, and retractor imi. (4) The superficial lateral coccygeal artery (A. caudalis lateralis superficialis) passes back at first on the lateral face of the corevgeus and continues bencath the skin along the side of the tail. The visceral branch is equivatlent to the internal pudic artery; it passes back below the parietal branch on the lateral face of the rectum, retractor ani, and coceygeus. Its chief collateral branches are: (1) The umbilical artery, which pursues a flexuous course and supplies twigs to the blatder, ureter, and ductus deferens. In the biteh it gives off a large uterine artery which ramifies chiefly in the booly and neck of the uterus and the vagina and anastomoses with the utero-ovarian. (2) The middle hæmorrhoidal artery arises near the ischial arch, passes upwarel and forward on the lateral surface of the rectum, gains its dorsal surface, aml anastomoses with the posterior mesenteric; it supplies the rectum and the anus, together with its musches and glands. (3) A small perineal artery is detached to the perimem. In the make the trunk turns around the iscelial arch as the artery of the penis (A. penis). This vessel, after giving off the deep artery of the penis (A. profunda penis), which supplies the artery of the bulb (A. bulhi urethre) and enters the corpus cavernosum, is continued as the dorsal artery of the penis (A. dorsalis penis) along the dorsum penis. In the female the teminal branches of the trunk go to the vulva, vestibutar bulb, and clitoris.

Tfie Veins ${ }^{1}$

The arrangement of the wins is, of course, correfated in gencral with the arterial system, but a few sperial features are worthy of mentiom.

The coronary sinus is a harge but short trunk formed by the confluence of the rartiae veins; it opens inter the right atrim below the jesterior vena cava. The
${ }^{1}$ Many of the veins are shown in the illustrations of the arteries.
great cardiac vein ascends in the left longitudinal groove of the heart to the coronary groove, in which it courses to the diaphragmatic surface. Here it is joined by one or two lesser cardiac veins, which are satellites of the right coronary artery, thus forming the coronary simus. There is commonly a vein in the intermediate groove which joins the great cardiac vein.

The anterior vena cava (Figs. 613, 614) is formed by the junction of short right and left brachiocephalic veins, and each of the latter results from the confluence of jugular and brachial veins.

The vena azygos (Fig. 613) is continuous behind with the first lumbar vein; it resembles that of the horse, and receives at the ninth or tenth thoracic vertebra a vena hemiazygos.

Two jugular veins are present on each side. The external jugular vein is the chief vein of the neek; it is formed by the union of external and internal maxillary veins at the posterior border of the mandibular gland. The two external jugulars are commonly united by a transwerse branch below the cricoid cartilage. Each passes along the neek on the sterno-cephalicus, covered only by the skin and cutaneous muscle, dips under the cleido-cervicalis, and joins the internal jugular. The internal jugular vein is the satellite of the common carotid artery. It results usually from the junction of laryngeal and thyroid veins, but in some cases it is formed by the confluence of the ventral cerebral and occipital veins.

The external maxillary vein arises on the lateral nasal region by the junction of the dorsal nasal vein with the angularis oculi. Near the infraorbital foramen it receives the lateral nasal vein, and a little lower the superior labial. In its course along the anterior border of the masseter it receives the vena reflexa, which arises in the pterygo-palatine fossa by the junction of infraorbital, sphenopalatine, and palatine radicles, together with a branch from the cavernous sinus. At the ventral border of the mandible it is joined by the inferior lahial wein, which receives the buccinator vein. The lingual sein is connected with its fellow by a superficial transverse branch at the insertion of the stemo-hyoidei. The sublingual and submental veins terminate in a variable manner, but often form a common trunk which joins the lingual.

The internal maxillary vein arises from the pterygoid plexus, formed chiefly by dorsal lingual, inferior alveolar, deep temporal, pterygoid, and meningeal tributaries. It receives the dorsal cerebral, auricular, superficial temporal, transverse facial, and masseteric veins, and often a trunk formed by the union of the ventral cerebral and occipital veins.

The brachial and radial veins are satellites of the arteries.
The ulnar vein is usually double. It unites below the carpus with a branch of the interosseous vein to form the superficial renous arch.

The cephalic vein accompanies the ulnar artery in the forearm and joins the superficial venous arch below.

The accessory cephalic vein arises from the union of three dorsal metacarpal veins. It joins the cephalic vein about the middle of the forearm.

There are three short volar metacarpal veins which open into the superficial venous arch. They are formed above the metacarpo-phalangeal joints by the junction of the volar digital veins, of which there are two for each of the chief digits. The volar vein of the first digit joins the superficial venous arch.

Each of the chief digits has two dorsal digital veins, while the first cligit has one.
The portal vein (Fig. 625) is formed by the union of a common intestinal or mesenteric vein with the gastro-splenic vein. It receives the gastro-duodenal vein. The intestinal trunk is formed in the mesentery by the confluence of veins from the jejunum; it reccives an ilco-ceco-colic vein.

The posterior vena cava, its collateral affluents, and common iliace radicles present no special features of importance.

The internal iliac vein eorresponds in regard to its tributaries with the branches of the artery, exeept that it is not divided into parietal and visecral branches.

The external iliac, femoral, and popliteal veins with their collateral tributaries are satellites of the arteries.

The anterior tibial vein is usually double, and the posterior tibial vein is very small.

The saphenous vein is the upward continuation of the medial plantar metatarsal rein. It commmieates by a large braneh with the dorsal metatarsal vein, and asemels the leg as a satellite of the saphenous artery and its plantar branch. The recurrent tarsal vein is larger. It is formed at the lower part of the leg by the union of florsal metatarsal and lateral plantar metatarsal veins, erosses the lateral surface of the leg obliquely upward and backward, aseends behind the gastroenemius, and joins the femoral vein.

The metatarsal and digital veins resemble in generad the corresponding vessels of the forelimb.

The Lymphatic System

The cisterna chyli is relatively large and is fusiform; it is ventral to the last thoracic and first lumbar verteln:e and is related ventro-medially to the aorta, dorsally and laterally to the right erus of the diaphragm and the psoas minor. The thoracic duct passes forward to the right of the aorta and ventral to the vena azygos as far as the sixth thoracic vertebra; here it crosses ter the left face of the cesophagus and rums forward, tums ventrally at the thoracie inlet, and opens into the left Drachioeephatie or the common jugular vein. The duct may be single throughout, but often divides anterionly into two branches, which may then unite and form a dilatation which receives the left tracheal duct and the vessels from the forelimb. Other variations oceur and the primitive plexiform arrangement persists in varying degree. The tracheal lymph ducts acempany the intermal jugular veins. The right duct opens into the right brachiocephalic vein.

The mandibular lymph glands (Fig. 615) are eommonly two or three in number on each side, but as many as five have bern observed. They are situated in the angle between the masseter and the mandibular salivary gland, above and below the external maxillary rein, and covered only by the skin and cutaneus musele.

A small round parotid lymph gland is situated superficially between the upper part of the posterior border of the masseter and the parotid salivary gland or partly or completely under cover of the latter. Exeptionally two or three may be present.

The suprapharyngeal lymph glands, usually one om cach side, lie dorsal to the pharynx, under cover of the stemo-mastoidens and the mandibular sativary gland. They are related deply to the reetus eapitis ventralis and the carotiel artery, and the anterior end is just behind the oreipito-mandibularis (Fig. 433). Each is about two inches (ea. 5 cm .) long in a good-sized dog. In a good many eases a second gland is present.

Anterior cervical lymph glands appear to be absent in the majority of subjects, but in other eases small noles may lo present in relation to the anterior end of the thyroid gland. It should le noted, however, that parathyroids may he mistaken for lymph nodes unless a microseopie examination is made. Middle cervical lymph glands are apparently mot present, and the same is usually the ease in regard to the posterior cervical lymph glands; hut in some cases one or more of the latter occur on the ventral faee of the trachea near the thoraeie inlet.

The prescapular or superficial cervical lymph glands lie on the serratus ventralis, at the anterior looder of the suprapinatus, embeded in a mass of fat. Usually two are present on each side, lat there may be theree or only one. They are oral and are about an inch long in a dog of medimen size when two are present.

The axillary lymph gland lies in a mass of fat on the merlial face of the distal part of the teres major. It is discoid and is about an inch ($\mathrm{fa}, 5 \mathrm{~cm}$.) wide in a large dog. Exceptionally a second smaller gland is present.

The cubital lymph gland is usually absent. When present, it is situated on the medial face of the long hearl of the triceps or on the latissimus dorsi.

Intercostal lymph glands do not appear to be present.

Two sternal lymph glands (Fig. 613) are usually present, one on each side. They are situated on the course of the internal thoracic vessels, usually at the second sternebra. A third node may be present in front of the more constant one, and in some cascs, on the other hand. the gland is absent on one side. In large dogs the gland may be nearly an inch long.

The mediastinal lymph glands are rariable in number and arrangement. None have been found in the posterior mediastinum, and the following statement is to be understood merely as an account of what is most often found. Two or three glands usually occur on the ventral face of the trachea, osophagus, and brachiocephalic artery to the left of the anterior vena cava; they are related ventrally to the thymus, when the latter is not too much reduced. Others may be found on the lateral face of the brachiocephalic artery. One or two glands are usually present between the trachea and the anterior vena near the thoracic inlet, and one or two are on the right side of the trachea, dorso-lateral to the right brachial artery. Another lies on the trachea at the crossing of the vena azegos over that tube.

The bronchial lymph glands are usually four in number. The largest one (Lg. bifurcationis) is situated in the angle of divergence of the chief brouchi, to which it is adapted, so that it is somewhat Vshaped. Another lies on the left bronchus at its bifurcation and in the angle between the aortic arch and the left pulmonary artery. A third smaller one lies on the

Fig. 624.-Stblimbar and Pelvic Limpe Glands of Dog.
1, 1^{\prime}, Reoal lymph glands: 2, lumbar lymph glands; $3,3^{\prime}, 4,4^{\prime}$, internal iliac lymph glands; $5,5^{\prime}$, medial sacral lymph glands; 6, 6', lateral sacral lymph giands; 7. 7^{\prime}, external liac lymph glands; a, a^{\prime}, kidneys; b, b^{\prime}, crura of diaphragm; c, c^{\prime}, psoas minor; d, d^{\prime}, iliopsoas: e, e^{\prime}, sacro-coccygeus ventralis; f, f^{\prime}, coccygeus; 1 , posterior rena cava; $I I$, abdominal aorta; $I I I, I I I^{\prime}$, renal arteries; $I \Gamma^{\circ}, I 1^{-}$, renal veins; $1^{1}, 1^{-1}$. TI I, I' I^{\prime}, circumflex iliac vessels; $V=I I, V^{\prime \prime} I I^{\prime}$, exterdal iliac arteries: ${ }^{-} I I I$, I'III $^{\prime}$, ideternal iliac arteries; $I S$, middle sacral artery; $\mathrm{I}, \mathrm{X}^{\prime}$, parietal branches of internal iliae arteries; XI. XI', risceral branches of internal iliae arteries; $\bar{X} I I, \mathrm{~N} I I^{\prime}$, common iliac veins; JIII, $\Gamma I I I^{\prime}$, esternal iliac veins; $\Gamma I 1^{\circ}, ~ \Gamma I \mathrm{~T}^{-r}$, internal iliac veins. (After Merzdorf). right bronchus, lateral to the cesophagus; it is not always present. A fourth is anterior to the root of the apical bronchus, in relation in front to the vena azygos. These glands are commonly black, and the same is true of the gland on the right side of the trachea in relation to the rena azygos, indicating that all of these glands receive lymph from the lungs.

Minute pulmonary lymph glands occur in the lungs along the bronchial branches.

The lumbar lymph glands are situated in the sublumbar region around and between the aorta and posterior vena eava. Most of them are very small and are diffieult to find in the fat in which they are usually embedded. Their number is very variable; as many as fifteen have been counted.

Usually two large internal iliac lymph glands are present. The right one lies atong the posterior part of the posterior vena cava and the eommon iliae vein; the lelt one is similarly placed in relation to the aorta and left common iliac vein. They may he two inches or more (ca. $5-6 \mathrm{em}$.) in length and nearly an inch (ca. 2 cm .) wide in large dogs. In some cases there is a third small gland anterior to the large one in relation to the origin of the cireumflex iliar vessels. In most cases there is a gland on each side of the middle saeral artery, between that vesel and the intermal iliate artery and its viseral hranch. The gland may be absent on one side or there may lo instead two or three glands.

Fig. 625.-Limph Glands of Abdominal Viscera of Dog.
$1-6$, Portal lymph glands; 7,3 , mesenteric lymph glands; $9-11$, ceco-colic lymph glands; a, liver; b, stomach; c, spleen; d, duodemm (eat ofl and intiested by dotted line);, , jejumm; f ilem: η, eseum; h, i, k, right, transverse, and left parts of colon; I, portal vein; $I I$, gastro-duodenat vein; $I I I$, gastro-splenie vein: $I l^{\prime}$, spletric vein; l, common gastric vein; VI, radicles of spleme vein; VII, ileo-cepo-colic vin: VIII, left colic vein; $I \mathrm{X}$, middle colic vein; X , right colic vein; X I, eacal vein; $X I I$, ileal vein; NIII, jejunal venous trunk. (After Merzdorf.)

The external iliac lymph glands are situated on the ventral surface of the proas minor, between the diverging external and internal iliar veins. ${ }^{1}$ They are inconstant and variable. One may oecur on each side or two on one side and none on the other.

The sacral lymph glands are situated along the roof of the pelvie eavity and may easily escape notiee on aecount of the fat in which they are embedded. Their size, number, and arrangement are very variable. In the majority of subjeets there are two or three glands on the anterior part of the sacro-coceygens ventralis in relation to the middle cocregeal artery. In some cases one or two glands oecur at the interspace between the sacro-eoceygeus ventralis and the cocergeus. In other eases glands are present eentrally or on one side only or appear to be absent.

The term portal lymph glands may he applied to those which oceur along the course of the portal vein and some of its affluents. The larger and more constant of these are as follows: One lies to the left of the portal vein, on the origin of the
${ }^{1}$ It scems not unlikely that these glanils correspond regionally to the deep inguinal glands of the horse.
duodenum and the duodenal angle (or head) of the pancreas. In most cases two glands occur on the right of the portal vein and further back along the mesenteric vein. Glands of variable size and number occur in the gastro-splenic part of the omentum along the splenic vein and its radicles.

The mesenteric lymph glands consist chiefly of two elongated nodes which extend from the root of the mesentery of the jejuno-ilcum along the course of the artery of the small intestine and the corresponding vein.

The colic lymph glands comprise a variable number of nodes (5-8) in the mesocolon. One is at the origin of the ileo-cæco-colic vein; a second one may be found here. One or two may be found in the transverse mesocolon and others (2-5) occur at the terminal part of the colon.

The renal lymph glands, one on each side of the aorta, are in relation to the origin of the renal arteries; the right one is coneealed by the vena cava.

The superficial inguinal lymph glands are embedded in the fat about the external inguinal ring in relation to the external pudic vessels. In the mate they are related medially to the penis; in the female they are commonly termed supramammary on account of their relation to the base of the inguinal nammary glands. In the majority of cases two are present on each side, but there is often only one, and sometimes three occur on one side.

The popliteal lymph gland is situated in a mass of fat on the gastrocnemius at the level of the stifle joint. It is between the biceps femoris and semitendinosus, but is more superficial than in the other animals, and hence is commonly palpable. It is oval and in large dogs may be nearly two inches (ca. 4.5 cm .) long and more than an inch (ca. 3 cm .) wide.

NEUROLOGY

THE NERVOUS SYSTEM

The nervous system (Systema nerorum) is a complex mechanism by which the organism is brought into functional relation with its chviromment, and its varions parts are coördinated. For purposes of gross description it is divided primarily into two parts, central and peripheral. The central nervous system (Systema nervorum centrale) comprises- (a) the spinal cord (Medulla spinalis), and (b) the brain (Encephalon). The peripheral nervous system (systema nervorum periphericum) includes- (a) the cranial and spinal nerves with their ganglia, and (b) the sympathetic nervous system.

Abstract

The division into central and peripheral parts is quite arbitrary, and is empoyed purely as a matter of convenience of description. The fibers of which the nerves are composed either arise or end within the central system, and therefore constitute an integral part of the latter. The structural and functional unit of the nervous system is the neurone, which consists of the cell-body, usually termed the nerve-cell, and all its processes. The processes arise as outgrowths from the cell-boty and contuct impulses to or from the eell; they vary greatly in length. some being less than a millimeter long, while othres extrmd from a cell in the spinal cord to the distal end of a limb. A nerve is composed of such processes, usually enclosed in a protecting and insulating sheath, and united into bundles by areolar tissue. The neurones are embedded in a peculiar supporting tissue termed neuroglia. This consists of a very intricate feltwork of glia-fibers, many of which are connceted with the small glia-cells or astrocytes. In addition the nervous tissue is invested closely by a vaseular layer of connective tissue, the pia mater, from which ingrowths extend into the nervous substance proper. ${ }^{1}$

To the naked eye the central nerwous system appears to be composed chiefly of two kinds of substance, white and gray. The white matter (Substantia alha) is dead white in color and is soft in the natural state. It consists largely of medullated nerve-fibers, packed closely together and arranged more or less clearly in large or small bundles or tracts (funiculi, fasciculi). The gray matter (Substantia grisea) is usually brownish-gray in color, often with a tinge of pink. It is softer than the white substance and much more vascular. It is composed chiefly of cell-bodies and non-medullated processes. In some situations it is modified to form the gelatinous substance (Substantia gelatinusa), which is pale yellowish-gray and jelly-like.

Ganglia are gray masses found on the dorsal roots of the spinal nerves and on the course of many nerves. They are commonly ovoid in form, but some are irregular in shape and branched. They vary greatly in size; some are microscopic, while others are several inches long. They are enclosed in a fibrous capsule. They are composed largely of the cell-hoolies of neurones, but have connected with and passing through them nerve-fibrers (processes) which extend peripherally and centrally. In origin and function the spinal ganglia belong properly to the central system, but it is customary to include them with the peripheral part in gross anatomical descriptions.

Nerves (Nervi) are conducting trunks composed of bundles of parallel nervefibers. They are enveloped in a fibro-elastic sheath, the epineurium, which contains the blood and lymph vessels. They are classified according to their central comections as cranial or cerebral, spinal, and sympathetic. The groups of cells of which the nerve-fibers are processes are termed the nuclei of origin (Nuclei originis) or terminal nuclei (Nuclei terminales) of the nerves, accorling as the latter conduct

[^181]impulses in a peripheral or central direction. ${ }^{1}$ On the same basis the nerve-fibers are designated efferent and afferent respectively. A bundle of fibers which passes from one nerve-trunk to another is called an anastomotic branch (Ramus anastomoticus). In some situations the exchange of branches between adjacent nerves is so free as to constitute a nerve-plexus \{1lexus nervorum). The term ramus communicans is properly restricted to branches which commect the ventral divisions of the spinal nerves with adjacent ganglia or nerses of the sympathetic system. The terminal twigs of the nerves are designated, according to their distribution, as muscular branches (Rami musculares), cutaneous nerves (Nervi cutanei), and articular nerves (Nervi articulares.). The nuscular branches are motor in function, the cutaneous and articular sensory, but all contain rasomotor fibers which control the caliber of the blood-vessels.

THE MENINGES

The central organs of the nervous system are enclosed in three meninges or membranes. From without inward these are: (1) the dura mater, (2) the arachnoidea, and (3) the pia mater.

The Dura Mater

The dura mater is a dense, resistant membrane of white fibrous tissue; in the fresh state it is bluish-white in color. On account of the difference in its arrangement within the cranium from that in the spinal canal it is customary to describe it as consisting of two parts, cerebral and spinal; these portions are continuous with each other at the foramen magnum.

The cerebral dura mater (Dura mater encephali) is adherent to the interior of the cranium, and may be regarded as forming an internal periosteum for the bones here as well as being an envelope of the brain. Its outer surface is connected with the bony wall of the cranial cavity by numerous fine fibrous strands and by blood-vessels; hence it appears rough in many places when separated from the wall. The degree of adhesion varies greatly at different points. It is most firmly attached at the various projections, e. g., the internal parietal crest, the tentorium osseum, the petrosal crest; also at the base and the foramen magnum. Before the sutures are closed the dura is comected with the sutural ligaments and through them is continuous with the external periosteum. The cranial nerves receive sheaths from the dura, which is thus continuous without the cranium with the epineurium and periosteum. Along the roof and sides (except as noted above) the adhesion is relatively slight, and lymph spaces are said to exist between the dura and the bone. The internal surface of the dura is smooth and glistening, since it is lined by endothelium and is moistened by a fluid resembling lymph; it forms the outer boundary of the subdural space. In accordance with its double function the dura is composed of two layers, which are, however, intimately adherent to each other in most places in the adult. The renous sinuses are channels between the two layers and are lined by endothelium. They have been described with the other vessels. Two folds or septa given off from the inner surface of the dura project into the cranial cavity between the gross subdivisions of the brain. These are: (1) the fals cerebri; (2) the tentorium cerebelli.

The falx cerebri is a sickle-shaped median partition which is situated in the longitudinal fissure between the cerebral hemispheres. It is attached dorsally to the internal parietal crest, in front to the crista galli, and behind to the tentorium osseum. Its dorsal border is convex and separates into two layers
${ }^{1}$ These cell-groups are the real origin or termination of a nerve. The term "apparent origin" is a convenient designation for the point at which a nerve is connected with the surface of the brain.
which enclose the forsal longitudinal sims. Its ventral border is concave and lies over the corpus callosum. The fals is thick above, but much thimer below, and is in some places cribriform, ${ }^{1}$

The tentorium cerebelli is a crescentic transverse fold which oceupies the transverse fissure between the cerelollum and the cerelmad hemispheres. It is attached dorsally to the tentorium osseum and laterally to the petrosal crest. Its ventral border is thin, coneave, and free; it forms the dorsal and lateral boundaries of an opening (Incisura tentorii) in which the mitl-brain is situated.

The diaphragm sellæ is a thickening of the tura which roofs over the pituitary fossa; it covers the pituitary body and the cavernous and intereavernous sinuses. It is perforated centrally by an opening (Foramen diaphragmatis) for the infundibulum.

The falk rerebelli, a sickle-shaped fold π hich projects into the median notch between the cerebellar hemispheres in man, is not present in the domesticated animals. There is instead merely a slight thickening of the dura.

The spinal dura mater (Dura mater spinalis) forms a tube around the spinal cord from the foramen magnum to the serond or third segment of the sarrum. It is separated from the periosteum of the spinal canal by a considerable epidural space (Cavum epidurate), which is occupied by fatty connective tissue and veins. It is hedd in position chiefly by the sheaths which it furnishes to the roots of the spinal nerves, and in its anterior part by two ligaments; the latter comect it with the ventral atlantu-occipital membrane and with the dens of the axis. It is large in proportion to its contents, but its diameter is not uniform. It is largest in the atlas, small in the thoracic region, and becomes very small in its terminal part, where it encloses the delicate filum terminale of the spinal cord.

The subdural space (Cavum subdurale) is the eavity between the inner surface of the dura mater and the arachnoidea. It is a mere capillary space which contains just sufficient fluid to moisten its surfaces; this fluid is usually regarded as lymph, which is replenished lyy filtration through the walls of the bloot-vessels. The space is in communication with the lymph paths of the nerve sheaths.

The Arachnoldea

The arachnoidea is a very delieate and transparent membrane which is situated between the dura and pia mater. Its outer surface forms the inner wall of the subclural space and is covered by a layer of enctothelimm continuous with that of the opposed surface of the dura mater. Between it and the pia mater is the subarachnoid space (Cavm subarachondeale), which contains the cerebrospinal fluid. An inner surface can scarecly be said to exist, since deeply the membrane becomes a reticulum of fine fibers which traverse the subarachnoid space and are attached to the pia mater. The arachnoidea furnishes sheaths to the cerebral nerves from their superficial origins to a variable but usually short distance beyond the emergence from the sac. In the case of the optic nerve this sheath extends to the eyeball.

The cerebral arachnoidea (Arachoidea enceplati), except in the case of the great longitudinal and transverse fissures, does not dip into the sulci on the surface of the brain. On the summits of the gyri it is so closely attached to the pia mater that the two form practically a single membrane. Its outer part bridges over the sulci, and here the subarachoid space is partially divided up by the loose arachnoil tissue into intercommunicating cavities. In certain situations the arachnoidea is separated from the pia by spaces of considerable depth and extent. These enlargements of the subarachnoid space are termed subarachnoid cisterns (Cisteme subarachnoidales). In them the subarachnoid tissue loes not form a close network,

[^182]but consists of a relatively small number of long, thread-like strands which traverse the cavity:

Abstract

The chief cisternx are: (1) the cisterna magna, which is at the angle formed between the posterior face of the cerebellum and the dorsal surface of the medulla oblongata. It communicates with the fourth ventricle through lateral openings in the latter, and bebind with the mide subarachnoid space of the spinal cord; (2 the cisterna pontis, on the yentral surface of the pons; (3) the cisterna basalis, which lies at the base of the cerebrum and is divided ty the optic chiasma into two parts cisterna chiasmatis, cisterna interpeduncularis ; 4 the cisterna fosse lateralis, situated at the iower part of the lateral fissure and continuous with the cisterna basalis.

Along the dorsal border of the fall cerebri the arachnoidea bears bulbous excrescences, the arachnoid granulations. ${ }^{1}$ These are enclosed in thin eraginations of the dura mater and project into the dorsal longitudinal sinus or the parasinoidal sinuses along either side of it. In some cases they are sufficiently large to exert pressure on the bone and produce in it depressions of variable depth.

The spinal arachnoidea (Arachnoidea spinalis) is continuous with that of the brain at the foramen magnum. It forms a relatively wide tube around the spinal cord, so that the latter (enclosed in the pia) is surrounded by a very considerable quantity of cerebrospinal fluid. The spinal subarachnoid space is traversed by fewer trabecule than is the case in the cranium. It is partially subdivided by three imperfect septa. One of these, the septum dorsale, is median and dorsal. The other two, the ligamenta denticulata, are lateral and will be described with the pia mater.

Pia Mater

The pia mater is a delicate and very vascular membrane. which invests closely the surface of the brain and spinal cord and sends processes into their substance. It also furnishes sheaths to the nerves, which blend outside of the dural sac with the epineurium.

The cerebral pia mater (Pia mater encephali) follows accurately all the inequalities of the surface, dipping into all the fissures and sulci of the cerebrum, and into the larger fissures of the cerebellum. Its external surface, which forms the inner boundary of the subarachnoid space, is covered by a layer of endothelium. From its deep face numerous trabeculæ are given off which penetrate into the substance of the brain, forming a path for the blood-vessels, and concurring with the neuroglia in forming the supporting tissue of the nervous substance proper. The larger blood-vessels of the brain lie within the subarachnoid space, but the smaller vessels ramify in the pia, forming rich plexuses. The twigs which penetrate into the gray matter are enclosed in pial sheaths. They are end-arteries, i.e., constitute the entire supply of the district which they enter and do not anastomose with adjacent ressels.

Important folds of the pia extend into two of the great fissures of the brain. One of these passes in at the transverse fissure between the cerebellum and the cerebral hemispheres, and is continued so as to overlie the third ventricle; it forms the tela chorioidea of that cavity. Another fold passes in at the fissure between the cerebellum and the medulla oblongata and forms the tela chorioidea of the fourth ventricle. They constitute paths for the deeper vessels and their edges contain vascular convolutions which are known as chorioid plexuses. They will receive further consideration more appropriately later.

The spinal pia mater (Pia mater spinalis) is thicker and denser than that of the brain. It has a strong outer layer of fibrous tissue, most of the fibers of which are longitudinal. The inner layer is vascular and adheres closely to the surface of the spinal cord, because numerous processes extend into the latter from it. It sends a fold into the median rentral fiseure and also helps to form the median dorsal septum of the cord. Along the median ventral line it forms a band-like

[^183]thickening, the linea splendens, along which the rentral spinal artery runs. On each side the pia mater gives off a strong longitudinal band, the ligamentum denticulatum, which is connected externally with the dura mater. The inner or pial border extends in a line between the dorsal and ventral roots of the nerves. The outer or dural border is denticulated and to a large extent free. The denticulations are attached to the dura between the nerve-roots.

NERVOUS SYSTEM OF THE HORSE
 The Spinal Cord

The spinal cord (Medulla spinalis) is the part of the central nervous system which is situated in the vertebral canal. It extends from the foramen magnum to about the middle of the sacrum. Its average length is about 76 to 78 inehes (ea. 190-195 (cm.), and its weight about $8 \frac{1}{2}$ to 9 ounces (ca. 240-255 grams).

It is approximately eylindrical, but more or less flattened dorso-ventrally. There is no natural line of demareation between it and the medulla oblongata, but for descriptive purpost's the division is usually assumed to be at the plane of the foramen magnum. Its posterior part tapers rapilly to a point, forming the conus medullaris. This is prolonged for a short distance by the slender filum terminale.

Forty-two pairs of spinal nerves are eomected with the sides of the spinal cord. They are classified as eight cervical, eighteen thoracie, six lumbar, five saeral, and five coceygeal. According to the attachments of these series of nerves the spinal cord is divided into cervical, thoracic, lumbar, and sacral parts. ${ }^{1}$

In the embryo these divisions correspond primitively to the regions of the vertebral column, but later, through unequal growth of the cord and spine, the correspondence between the two is not at all exact in the anterior regions and is lost in the last two. The lumbar part of the eord in the horse ends at the junction of the fifth and sixth lumbar vertebre, so that the roots of the last lumbar nerve must run backward the length of the last lumbar vertebra to reach the intervertebral foramen through which it emerges. The conus medullaris reaches only to the anterior part of the sacral canal, so that the roots of the sacral and coceygeal nerves extend backward in the spinal canal for a considerable distance, forming a leash of bundles, in the center of which lie the conus medullaris and the filum terminale. This arrangement is expressively designated the cauda equina.

Each pair of spinal nerves is attached by its root-fibers to a certain length of the cord, and the latter is, therefore, regarded as eonsisting of as many segments as there are pairs of nerves. It is to he noted, however, that there is no line of demareation between the segments other than the intervals between the root-fibers of adjacent nerves.

> The segments are of different lengths; the longest are the third to the sixth cervical, which measure $11,10,10$, and 5.5 cm . respectively. The spinal nerves are in general designated according to the vertebra behind which they emerge from the vertebral canal. In the neek, however, there are cight pairs of nerves and only seven vertebre; here the first nerve emerges through the intervertebral foramen of the atlas and the eighth between the last cervieal and the first thoracic vertebre.

> In the greater part of the thoracic region the spinal eord is fairly uniform in size, but there are two conspieuous enlargements which involve the segments with which the nerves of the limbs are connected. The cervical enlargement (Intumescentia cerviealis) begins gradually in the fifth cervical vertebra and subsides in

${ }^{1}$ In a horse about $16^{1}{ }^{1}$ hands high these parts measured 65 cm . (ca. 26 in .), 86 cm . (ea. 34.4 in.), 27 cm . (ca. $10 . \mathrm{cin}$.), and 15 cm . (ca. 6 in .) respectively (Dexler).
the second thoracic. Its maximum transverse diameter is about an inch (ea. 25 mm .) and its dorso-ventral nearly half an inch (ca. 12 mm .). The lumbar enlargement (1ntumescentia lumbalis) is situated in the fourth and fifth lumbar vertebre. It is a little narrower than the cervi-

Fig. 626.-Vextral View of Medella Oblongata and First and Secono Segments of Spinsl Cord of Horse; the Membranes are Cut ano Reflected.
1, Lig. suspensorium arachnoideale; 2, right cerebrospinal srtery; 3, \bar{s}, digitations of lig. denticulatum; 4. free border of lig. denticulatum; 6, middle spinal artery; 7, basilar artery; S, pons; 9 , arachnoidea; 10, dura mater; 11, 12, ventral root-bundles of first and second segments of spinal cord; VI, N. abducens; IN, I. glosso-pharyngeus and vagus; $X I$, accessory, medullary part; $\mathcal{N} I^{\prime}$, accessory, spinal part; a, line between medulla oblongata and spiual cord. (Dexler, in Ellenberger-Baum, Anat. d. Haustiere.) cal enlargement, and its dorso-sentral diameter is also slightly smaller. Behind this the cord tapers rapidly to form the conus medullaris. The tip of the latter is continued by a delicate glistening strand, the filum terminale, which is composed largely of fibrous tissue continued from the pia mater, covered by arachnoid.

Fig. 627.-Cadda Eqtina.

1. Dura and arachuoidea divided and reflected; z, spinal cord; 3 , nerve-roots. (From Leisering's Atlas, reduced.)

The surface of the spinal cord is divided into two similar halves by a dorsal median groove and a ventral median fissure. On either side of the former is the dorso-lateral groove (sulcus dorsalis lateralis), at which the fibers of the dorsal nerve-roots enter the cord; it is faint except at the enlargements, and is represented by two grooves in the first cervical segment. The ventral root-fibers as they emerge from the cord do not form a continuous series, but arise from a zone (Area radicularis ventralis) 3 to 5
mm . in width, a little lateral to the ventral median fissure, and no groove is found here. In the greater part of the cervical region and the enterior part of the thoracie region there is a shallow dorsal intermediate groove (Sulcus intermedius torsalis) a short distance lateral to the median groove. These grooves indieate the division of the white matter of the cord into columms to be described later.

Examination of cross-sections of the spinal cord shows that it is a bilaterally symmetrical structure, incompletely divided into right and left halves by a ventral fissure and a dorsal septum. The ventral median fissure (Fissura mediana ventralis) is narrow and penetrates nearly to the middle of the dorso-ventral diameter of the cord. It is occupied by a fold of pia mater. The dorsal median septum (Septum medianum dorsale) is a partition which descends from the dorsal median groove to about the middle of the corl. It apparently eonsists of condensed neuroglia with an admixture of pial tissur. The two halves of the corl are comected

Fig. figs.-Choss-section of Sbinal Cord in situ, Endarged and in Part Schematic.
1, Dorsal column; 2, lateral column; 3 , ventral column; 4, dorsal horn; \bar{b}, ventral horn; 6, gray commissure; 7 , white commissure; S, central canal; I, dorsal septum; 10 , ventral fissure; 11 , dorsal merve-root; 12 , wentral nerve-root: 13 , spinal ganglion; 14 , spinal nerve; $1 \overline{2}$, intervertehrat foramen; 10 , arch of vertebra; 1%, epidural space; 15 , dura mater (rppresented a little too thick); 14, liganentum denticulatum; 20, 20, longitudinal venous sinuses; 21, midale spinal artery; 22 , body of vertebra. The subdural and subarachnoid spaces (black) are traversed by delicute trabeculæ. The outer part of the arachnoid and the pia mater are not shown.
ly commissures of gray and white matter. The gray commissure (Commissura grisea) is a transverse band of gray matter at the ventral end of the dorsal septum. It is divided into dorsad and ventral parts ly the central canal of the cord. The white commissure (Commissura alba) is a bridge of white matter which connects the ventral columns of the cord over the dorsal end of the ventral median fissure, and constitutes a conducting path from one side to the other.

The central canal of the spinal cord (('analis centralis), the spinal vestige of the lumen of the embryonal neural tube, is a mimute passage which tumels the gray commissure. It opens at its anterior end into the posterior part of the fourth ventriele of the brain, and its terminal part in the conns medullaris forms a slight dibatation, the ventriculus terminalis. It is lined by epithelium and is surrounded by a layer of modified nemroglial (substantia grisea centralis).

The gray matter of the spinal curd as seen in cross-sections resembles roughly
a capital H , the cross-bar of the letter being formed by the gray commissure. Each lateral part is considered as consisting of dorsal and ventral gray columns (Columna grisea dorsalis, ventralis), which appear in cruss-section as the so-called horns (Cornu dorsale, ventrale). In the greater part of the cord the dorsal column or horn is elongated and narrow and tapers to a point which extends almost to the surface of the cord at the attachment of the dorsal root-fibers of the spinal nerves. Its apex or tip consists of gray matter which is lighter in color and less opaque than that of the rest of the horn, and is termed the substantia gelatinosa. The ventral column or horn is short, thick, and rounded, and is separated from the surface of the cord by a thick layer of white matter, through which the fibers of the ventral roots of the spinal nerves pass. From the middle of the cervical region to the lumbar region there is a medial projection of gray matter on the ventral part of the dorsal column; this is the nucleus dorsalis. ${ }^{1}$ In the anterior part of the cord there is an outward projection of the gray matter at the base of the ventral horn; this is termed the lateral column or horn. The demarcation between the gray and white matter is in many places indistinct; this is especially the case laterally, where processes of gray matter extend into the white substance, producing what is known as the formatio reticularis.

Cross-sections of the spinal cord present the following gross regional characters: (1) The eervieal cord near the medulla is compressed dorso-ventrally. Its width is about 15 mm . and its greatest thickness about 8 mm . It has dorsally a deep median sulcus and a distinct dorsolateral sulcus. Lateral grooves are also present. The dorsal cornua are strongly everted. Each has an expanded head, which comes very close to the surface of the cord, and has an extensive eap of substantia gelatinosa. The neck is distinct. The ventral cornua are short and blunt and diverge very little. The gray commissure is about in the middle of the section, and 2.5 mm . in length. According to Dexler, the column between the median and lateral grooves dorsally is the funiculus cuneatus, the funiculus graeilis being very small and not showing on the surface in this region. In the middle of the cervical region the diameters are about 16 nmm . and 10 nmm . respectively. The ventral surface is somerhat flattened. The dorsal cornua have pointed ends and turn decidedly outward. The ventral cornua are short and thiek and are directed very slightly outward; their ends are about 4 mm . from the ventral surface. The gray commissure is just above the middle of the section and is about 2 mm . long. The eervical enlargement measures about 25 nim . transversely and 12 mm . vertically. The dorsal cornua are snaller than the ventral and have a large cap of substantia gelatinosa. The rentral cornua are short and thick, eurye strongly outward, and are about 4 mm . from the ventral surface. Each bears a prominence on its medial side near the base. The gray commissure is considerably above the middle of the section and is about 4 mm . long. (2) In the middle of the thoraeic region the cros-section is biconvex, the ventral surface being the more strongly curved. The transverse diameter is about 15 mm . and the dorso-ventral about 10 mm . The gray eolumns are close together, the gray commissure being only about 1 mm . in length, and !ying considerably above the middle of the section. The dorsal cornua are short and have slightly enlarged ends. The ventral cornua have a uniform diameter, turn very little outward, and end about 3 mm . from the ventral surface. (3) The lumbar enlargement is mueh flattened, especially dorsally. The transverse diameter is about 22 mum. and the dorso-ventral 9 to 10 mm . The cornua are very large. The ventral cornua are thick and rounded and turn sharply outward; they end about 2 mm . from the ventral surfaee. The dorsal cornua are smaller and shorter and do not diverge so strongly. The gray commissure is about in the middle of the section and is alout $3 \mathrm{n}: \mathrm{m}$. long. In the third lumbar vertebra the eord is about 3 mm . narrower and thicker, and both surfaees are about equally eonvex. The dorsal cormua are smaller, considerably everted, and constricted in the middle. The ventral cornua are very short and do not turn outward. (4) In the first saeral ver tebra the eord is almost round and is 5 to 6 mm . in diameter; the cornua are relatively very large and the commissure has the form of a high intermediate mass.

The ventral horn contains large cells, the axones of which emerge as the fibers of the ventral nerve-roots (Fila radicularia). The axones of many cells cross to the opposite side in the white commissure and pass out in a ventral root of that side, or enter the white matter and pass forward and baekward, associating various segments of the cord. Fome pass to the ventral horn of the opposite side at the same or at different levels. Others pass to the periphery of the eord, join the eerebellospinal faseiculus, and extend to the cerebellum. Scattered through the gray matter are many smaller eells with axones which pursue a short eourse and serve to conneet different parts of the gray matter.

The white matter of the spinal cord is divided into three pairs of columns. The dorsal columns (Funiculi dorsales) lie on either side of the dorsal median septum and extend outward to the dorso-lateral groove and the dorsal gray column. The
${ }^{1}$ Also known as Clarke's column.
ventral columns (Funiculi ventrales) are situated on cither side between the median fissure and the ventral gray columns. They are comected above the fissure by the white commissure. The lateral columns (Fumiculi laterales) are lateral to the gray colums on either side; their limits are indieated superficially by the dorsolateral groove and the energence of the ventral root-fibers. The intermediate groove (where present) indicates a subdivision of the dorsal column into two fasciculi or tracts; the medial of these in the fasciculus gracilis; the lateral one is the fasciculus cuneatus. ${ }^{1}$

The amounts of gray and white matter vary greatly in different parts of the corl both absolutely and relatively. In cross-section the absolute areas of both are greatest in the enlargements. The relative area of gray matter is smallest in the thoracic region (except at its anterior end), and increases from the lumbar enlargement backward.

Investigations have shown that in man the columns of white matter are subdivided into fasciculi or tracts, which constitute definite conducting paths of greater or less length. (Yur knowledge of the tracts in the flomesticated animals is very limited, and it is quite unsafe to make inferences from the arrangement in man. As evidence of this it may be noted that the ventral cerebrompinal or direct pyramidal tract of man eannot lee reeognized as such.

The dorsal white columns consist essentially of two sets of axones. The afferent or sensory axones which come from the cells of the spinal gatiglia cuter as the dorsal roots of the spinal nerves and divile into two branches in the vicinity of the dorsal gray column. The anterior branches torm the direct sensory path to the brain and extend in the fasciculus cuneatus and faseiculus gracilis or correspending tracts to nuctei in the melulla ohlongata. The posterior branches extend backward for varying distances and give off numerous collaterals to eells of the gray column, thes forming part of the mechanisn for the mediation of reflex action. Some collaterals cross in the white commissure to the opposite side. Many of these fibers are collected in the commashaped tract hetween the fasciculus gracilis and cuneatus. The second set of axones arises from the smaller cells of the gray column. They enter the white matter, divide into anterior and posterior branches, forming the fasciculi proprii or ground bumbles of the cord. Some branches cross to the opposite sile. The function of this set of axones is chicfly to associate various levels of the cord.

The lateral columns contain some axones of the dorsal nerve-roots, which (in man) are grouped in the marginal tract of Lissauer, situated just dorsal to the apex of the dorsal horn. The cerebellospinal fasciculus (threct ecerebellar tract of Flechsig) extends along the periphery of the lateral column. It contains the axones of the cells of the muclens dorsalis (Clarke's column), which proced to the mechulla oblongata and enter the cerehellum by the restiform body. The rubrospinal tract (of Nonakow) appears to take the place of the laterat cerchrospinal fasciculus or crossed prramidal traet of man. It lies at the medial side of the cerebollospinal laseiculus. Its fibers arise in the meleus ruher of the mill-hrain, cross the metian phane (decussation of Forel), and pass backwarl in the tegmentum and metulla oblongata to the lateral column of the cord. It is a path for motor impukes coming from the cerelral cortex and the cerebellum. The lateral fasciculus proprius or ground-bundle is deeply situated at the side of the gray columns. The bulk of its fibers are axones of cells of the dorsal column which tivide into anterior and posterior branches. They are intersegmental paths which associate different levels of the gray matter of the cord. The signifieanee of the remaining filers is not yet known.

The ventral white columns to not contain a ventral cerebrospinal or direct pyramidal tract, as in man. There is a small tract (Faseiculus intracommissuralis ventralis) dorsal to the white commisulure, which separates it from the rest of the ventral column. It extends to the middle of the thoracic region. It consists of intersegmental fibers, and contains in the anterior part of the ceryical cort in the sheep and goat both croseet and direet pyranidal filers. The descending cerelellospinal fasciculus extends from the cerebellum to the lumbar rexion. In the cervical region it oeeupies a semilunan area which reaches ahmost to the surface ventro-laterally. Seattered fibers belonging to it lie also in the medial part of the ventral column. Posteriorly it diminishes in size and comes to occupy a position next to the ventral mectian fissure, corresponding to the suleo-marginal fasciculus of man (Devter).

The Braln

The brain or encephalon is the part of the central nervous system that is situated in the cranial cavity. It is the enlarged and highly modified cephalic part of the primitive neural tube. It conforms in great part in size and shape to the cavity in which it lies. Its average weight without the dura mater is about

[^184]23 ounces (ea. 650 gm .), and forms about $\frac{1}{7}$ of 1 per cent. of the body-weight in a subject of medium size.

It is desirable to examine the general external configuration of the brain before studying its various parts in detail. ${ }^{1}$

When divested of its membranes and ressels (Fig. 629), its ventral surface or base presents the median brain stem (Caudex eneephali), which is continuous with the spinal cord without any natural line of demarcation; it divides in front into two branches, the cerebral peduncles, each of which disappears into the mass of the corresponding cerebral hemisphere. The brain stem consists of three parts. The medulla oblongata is the posterior part which extends forward as the direet continuation of the spinal cord. The pons is a transversely elongated mass which appears to turn up on either side into the cerebellum. The cerebral peduncles (Pedunculi cerebri) extend forward from the pons and diverge to plunge into the rentral part of the cerelral hemispheres. The area between them is the interpeduncular fossa. It is largely covered by the hypophysis cerebri or pituitary body, a yellowish-brown, diseoid structure, which is comected with the base of the cerebrum by a delicate tube ealled the infundibulum. ${ }^{2}$ (m drawing the pituitary body gently aside, the infundibulum is seen to be attached to a slight gray emiuence, the tuber cinereum. Behind this is the mammillary body (Corpus mamillare), a well-marked round prominence. The posterior part of the space is perforated by numerous openings for the passage of small arteries, and hence is termed the substantia perforata posterior. A large band of white matter, the optic tract (Tractus opticus), erosses the anterior end of the cerebral peduncle obliquely, and unites witly the opposite tract to constitute the optic chiasm or commissure (Chiasma opticum), and form the anterior boundary of the interpeduneular fossa. Above and in front of the chiasm the hemispheres are separated by the median longitudinal fissure. In contact with the anterior extremity of each hemisphere is the olfactory bulb (Bulbus olfactorius), an oval enlargement which oceupies the ethmoidal fossa of the cranium. This appears as a gray swelling on a wide flat band, the olfactory tract or peduncle (Tractus olfactorius), which is continued behind by two divergent bands, the olfactory striæ. The medial stria (Stria medialis) disappears after a very short course on to the medial surface of the hemisphere. The lateral stria (Stria lateralis) is larger and longer; it runs backward, inclines at first outward and then curves medially and disappears on the concealed or tentorial surface of the hemispheres. It is separated from the lateral cerebral gyri by a distinet groove (Sulcus rhinalis). Along the medial side of the stria are two eminences. The anterior of these is the trigonum olfactorium, a gray elevation situated in the angle of divergence of the medial and lateral strix. Behind this is a depression, the fossa lateralis, which is continued across the lateral stria and sharply limits the second and much larger eminence, the piriform lobe.

The superficial origins of most of the eranial nerves are visible on the base of the brain.

The olfactory nerve-fibers join the convex surface of the olfactory bulb and give it a shaggy appearance in speeimens which have been removed intact-a diffieult proceeding.

The second or optic nerves eonverge to the optic chiasm.
The third or oculomotor nerve arises from the medial part of the cerebral pedunele.
${ }^{1}$ The description given here is intended to present the chief facts in regard to the brain as they may be studied in the dissecting-room. The ressels and membranes, which must be examined first, have been described.
${ }^{2}$ Unless care is used in removing the brain, the infundibulum is likely to be torn and the hypophysis left in the cranium. In this case there is a small opening which communicates with the third ventricle.

The fourth or trochlear nerve may be seen emerging between the pons and the cerelral hemisphere, but its connection with the hrain is not visible.

The fifth or trigeminal nerve is comnected with the lateral part of the pons.

Fig 1929-Base of Brin of Horse About Nattral Size.
Hardened on sitiz.
The sixth or abducent nerve arises just behind the pons and lateral to the pyramid of the medulla.

The seventh or facial and the eighth or acoustic nerves arise close together just behind the pens on the extrenity of the corpus traperaideum.

The ninth or glosso-pharyngeal, the tenth or vagus, and the eleventh or spinal accessory nerves are comected by a linear series of roots with the lateral aspect of the ventral surface of the medulla. The spinat part of the acceswory nerve comes forward along the edge of the medulla to join its medullary root.

The twelfth or hypoglossal nerve arises from the posterior part of the medullat along the lateral edge of the prramid.

The parts that are visible when the brain is viewed from above are the cerebral hemjepheres, the cerebellum, and part of the medulla oblongata. The cerebral hemispheres (Hemisphæria cerebri) form an ovoid mass, and are separated from each other by the median longitudinal fissure (Fissura longitudinalis cerebri),

Fig. 630.-Line Drawing of Base of Brain of Horse. Liey to Fig. 629.)
「I, Abducent nerve; TII, facial nerve; TIII, acoustic nerve.
in which the fals eerebri is situated. Their surfaces are marked by thick ridges, the gyri cerebri, separated by sulci. The upturned ends of the olfactory bulbs are seen in front of the frontal poles of the hemispheres. The oecipital poles of the hemispheres overlie the anterior part of the cerebellum, from which they are separated by the transverse fissure (Fissura transversa cerebri) and the tentorium eerebelli contained in it. The cerebellum is a much smaller rounded mass which conreals the greater part of the medulla oblongata. Its surface is divided into a middle lohe, the vermis cerebelli, and two lateral hemispheres (Hemispheria cerehelli). It is marked by numerous gyri and narrow sulci which have in general a transverse direetion. The posterior third of the medulla oblongata is not covered by the cerebellum.

The brain is developed from the expanded cephalic part of the neural tube of the embryo. The process comprises a series of thickenings, flexures, and unequal growth and expansion of
various parts of the tube. In the higher animats the result is that the tubular character of the brain is not very evident, since the lumen comes to consist of four irregular cavities, the cerebral ventricles, which are connected by narrow passages. The tube is first subdivided by two constrictions into three brain vesicles, termed respectively the hind-brain or rhombencephalon, the mid-brain or mesencephalon, and the fore-hrain or prosencephalon. The hind-brain gives rise to three secondary segments and the fore-brain to two. The annexed table indicates the origin of the principal structures of the fully developed brain from the primitive vesicles. It has become customary to deseribe the brain with reference to its embryological relations.

Fig. 63I--1sruts of lobre; Dorsll Viem, Abott Natcral Size. Hardened in situ. 1. Entonuarginal finsure; 2, marginal fissure; 3, ectomarginal fissure; 4, suprasylvian fissure.

TABLE INDICATHC: THE DERIVATION OF THE PRINCIPAL PARTS OF THE IBRALN

Prinary Segmenta.	Secondary Segments.	Derivatives.	Cavities.
	Myelencephalon.	Medulla oblongata.	
Rhombencephalon (posterior vestele).	Metencephaton	$\left\{\begin{array}{l}\text { Pons } \\ \text { Cerebellium }\end{array}\right.$	Fourth ventricle
	Isthmus rhombencephali	$\left\{\begin{array}{l}\text { Anterior curebellar peduncles } \\ \text { Anterior medullary velum } .\end{array}\right.$	
Mesencephalon (middle vesicle).	Wesencephaton	$\left\{\begin{array}{l} \text { Corpora quadrigemina ... } \\ \text { Cerebral peduncles } \end{array}\right.$	Corebral aqueduet
Prosencephalon (anterior vesicle.).	Dirnerphaton	Optic thalami Hypothalanue tegmenta Pineal body	Posterior part of third ventricle
	Telencephalon. ...	$\left\{\begin{array}{l}\text { Pituitary body } \\ \text { Optic nerves sind retinas } \\ \text { Cerebral hemispheres } \\ \text { Olfactory trats and }\end{array}\right.$	Anterior part of third ventricle. Lateral ventricles and olfactory continuations.

THE RHOMBENCEPHALON
 The Medulla Oblongata

The medulla oblongata (Figs. 629, 632, 635) lies on the basilar part of the oecipital bone. It is quadrilateral in outline, but mueh wider in front than behind, and compressed dorso-ventrally. Its length, measured from the root of the first cervical nerve to the pons, is about two inches (ca. 5 cm .).

Its ventral surface is convex in the transverse direction, and presents a ventral median fissure (Fissura mediana ventralis), whieh is continuous behind with the similar fissure of the spinal cord. The posterior part of the fissure is faintly marked, but in front it becomes deeper and ends in a small depression (Foramen ceeum) behind the central part of a transverse band, the corpus trapezoideum. On either side of the fissure is a rounded tract, the pyramid (Pyramis), which is bounded laterally by a faint groove (Suleus internedius ventralis). The pyramids join the pons in front; behind they beeome narrower and disappear into the substance of the medulla, in which their fibers intereross, forming the decussation of the pyramids (Deeussatio pyramidum). ${ }^{1}$ The superfieial origin of the oculomotor nerve (N. oeulomotorius) is just lateral to the anterior end of the pyramid. The corpus trapezoideum is a transverse band which extends aeross the surface immediately behind the pons. It is erossed by the pyramids, whieh eut off a small eentral part. The lateral part extends out to the roots of the seventh and eighth nerves on either side. Behind the lateral part of the eorpus trapezoideum there is a variably developed rounded eminence, the tuberculum faciale. The rootfibers of the hypoglossal nerve form an oblique linear series lateral to the posterior part of the prramid.

The dorsal surface is largely concealed hy the cerebellum and forms the greater part of the floor of the fourth ventriele. The dorsal median fissure (Fissura mediana dorsalis), the direct continuation of the corresponding groove of the spinal cord, extends forward to about the middle of the surface. Here the restiform bodies, which constitute the lips of the fissure, diverge to form the lateral houndaries of a triangular depression; this is the posterior part of the rhomboid fossa or floor of the fourth ventricle of the brain. The dorso-lateral groove winds outward and forward to the lateral aspect of the medulla, where it presents the roots of the glosso-pharyngeal, vagus, and accessory nerves. Lateral to it is a distinet oval eminence on the anterior part of the lateral column, termed the tuberculum cinereum. The central canal of the cord is continued in the posterior part of the medulla, inclines dorsally, and opens in the posterior angle of the fourth ventriele. Hence it is eustomary to distinguish a elosed and an open part of the medulla. The dorsal aspect of the latter, whieh is concealed at present, will be considered later in the description of the fourth ventriele.

The lateral surface is narrow behind, wider and romded in front. From it the root-fibers of the ninth, tenth, and eleventh cranial nerves arise in a linear series, and alongside of it the spinal part of the eleventh nerve passes forward to join the medullary root. Close inspection reveals the presence of strize which eurve ventrally and backward from the surface of the restiform body toward the hypoglossal root-fibers; these are the external arcuate fibers (Fibre areuate externæ). The recess between the lateral aspeet of the medulla and the cerebellum is oecupied by an irregular mass of villous projections of the pia mater, containing tufts of vessels; this is the chorioid plexus of the fourth ventricle, and is the lateral edge of the tela chorioidea of the ventricle. On raising the ehorioid plexus, it is seen that the tela chorioidea is attached to the dorsal aspect of the medulla, and reinforees here the wall of the fourth ventriele; also that the restiform body ter-
${ }^{1}$ The decussation varies superficially in different specimens. In some there is a distinet superficial crossing of fibers so that the median fissure is practically effaced at this point.
minates in front by entering the base of the cerebellum, forming its posterior peduncle.

In the medulla the fiber tracts of the spinal cord either terminate in the muctel of the gray matter or undergo changes in their relative position, and new tracts appear. The gray matter is highly molified and forms masses which have no homologues in the cord. The central eanal of the chosed part of the medula is surroumled by a thicker layer of gray matter than is the case in the spinal cord. As the medulla opens out this gray mater is naturally spread in the floor of the fourth ventrishe. The torsal horns of gray matter become wide, spreal apart, and are broken up to a great extent in the formatio reticularis. Two elongated maises of cells appear above the central grav matter; these are the nucleus gracilis an! nucleus cuneatus, and in them the faseiculi of like name gradually end. In front of these are the terminal nuclei of the afferent or sensory cranial nerses and of the sensory portions of the mixed norves. The ventral horns are sufeceiled by the nuclei of origin of the efferent or motur eranial nery+s and the motor ront-fibers of the mixeh nerves. Of the twelve pairs of eraniat nerves, the last eight are fommented with mucle in the medulla and pons. The posterior olivary nucleus (Nuctros olivaris caudalis) is a ronspicuens gray mass which lies dorsal to the pyramid on cach side. (om cross-sections it appears

Fig. 632.-Bran of Horse; Left View.
1, luteral fissure; 2, suprasylvian fissure; 8. presylvian fissure; 4. ectomarginal fissure; $5, b^{\prime}$, sulcus rhinalis anterior it posterior; L. $p^{2 .}$. priform lobe: B. $p .$, muldle feduncle of ecrebellum (brarhium pontis) ; P. c., choroid plexus of fourth ventricle. Roman numerals indicate roots of cranial nerves,
as a wavy layer of gray matter whide is fokled on itself so as to enclose a mass of white matter. It is about 2 cm . long in the horse, but is smahtr in circumference than in man and hence does not eause any very distinet external enlargenent (olivary eminence), as in the later. It is connected with the opposite side of the errebellum hy the cerebello-ohvary fibers. At its methal side are two small ureessory ohivary muclei. The pyramidal tracts, which are small in ungulates, send most of their fibers aeress to the opposite side in the posterior part of the medulta, forming the pyramidal decussation. Some fibers, however, contime in the veutral column of the same side of the rorth amb others are commected with the muclei of the motor nerveroots. From the nucleus gracilis and nucleus cumeatus fibors arise which are traceable forward to the thalamus. These are the internal arcuate fibers (Fibre arcuatte internie), which curve across the median plane ventral to the entral gray mater and form with those of the opposite side the decussation of the fillet (1)ecussatio lemniserom). Beyond the decussation the fibers form an important longitudmal tract which extemk forward in the mid-hrain. This is the fillet or lemniscus, the chicf continuation of the sonsory combeting path from the dorsal roots of the spinal nerves. The external arcuate fibers (Fibra arcuatre extome), some of which were seen on the lateral aspeet of the medulla, have a similar origin. Part of them (Filma dersales) pass direetly to the tlorsal aspect of the restiform body of the sameside; others (Fibre ventrales) eross to the opposite side, desend close to the ventral fissure, and then eurve upward and forward to the restiform body. The decussation of the areuate fibers forms the distinct median raphe seen on cross-sections of the medulla anterior to the pyramidal decussation. The restiform body, situated dorso-laterally, contains, in addition to the arcuate fibers, the cerebello-olivary fasciculus before mentioned,
and the cerebellospinal fasciculus or direct eerebedtar tract. The dorsal longitudinal fasciculus corresponds to the ventral ground-bundle of the spinal cord, displaced dorsally hy the deeussation of the pyramisls and fillet. In the posterior part of the medulla it is not marked off from the fillet, along the dorsal edge of which it lies. From the level of the hypoglosial nucleus forward it is distinet and can be traced as a conspicuous tract in the ventral margin of the gray matter of the floor of the fourth ventricle and of the central gray matter of the mid-hrain. Ventral to the restiform body and related laterally to the external areuate fibers there is a considerable bundle of longitudinal fibers, the spinal root (Tractus spinalis) of the fifth nerve; medial to it is the terminal nueleus of the sensory root of the nerve.

Fig, 633.-Cross-section of Medclla Oblongata of Horse, Passing throegh Factal Jeclets.
(r, Corpus restiforme; D, dorsal longitudinal fasciculus: Fa, ascending part of facial nerve: L, fillet; $\mathcal{N} \boldsymbol{\gamma}$, aucleus of facial nerve; $\ \mathcal{S}$, triangular nucleus of of vestibular root of eighth nerve: $\ s^{\prime}$ ' spinal root of eighth nerve; Py, pyramid: Ra, raphe: R r., radicular part of facial nerve: $R s$, vestibular root of eighth perve; $S g$, substantia gelatinoza; $T a$, posterior end of tuberculum acusticum; 「, spinal root of trigemious. (Ellenberger-Baum, Anat. d. Haustiere.)

Fig. hi34.-Cross-section of Meotlla Oblongata of Horse; Section Pasies throtgh Miodle of Corpes Trapezoioecm.
$C r$. Corpus restiforme: D. dorsal iongitudinal bundle; $F a$, ascending part of facial nerve: $F n^{\prime}$. emergent or desecnding part of facial nerve; L, fillet; M, central white matter of cerebellum; $\mathcal{N} 6$, abducens nucleus: $\mathcal{X} 5$, triangular nucleus: Ns^{\prime}. nucleus of Deiters; N "", tuberculum acusticum; Oo, anterior olive; Py, pyramid; Rb, root of abducens nerve: R r, root of facial nerve; $R c$, cochlear nerve; $R v$, vestibular nerve: so. substantia gelatioosa; T, corpus trapezoideumi: ${ }^{\Gamma}$, spinal root of trigemidus. (Elleaberger-Baum, Anat. d. Haustiere.)

The Pons

The pons is that part of the brain stem which lies between the medulla and the cerebral peduncles; it is marked off from these ventrally by anterior and
posterior grooves. Viewed ventrally, it is elongated transversely, convex in both directions, and presents a wide shallow median groove (Suleus basilaris), which lodges the basilar artery. Laterally a large part of its mass curves dorsally and backward into the base of the cerebellum, forming the middle cerebellar peduncle (Brachium pontis). The superficial origin of the trigeminal (fifth) nerve is at the lateral limit of the ventral surface. Transverse striations indieate the course of superfieial (ventral) fibers which connect the two sides of the cerebellum. The dorsal surface is bleuded on either side with the overlying anterior peduncles of the cerebellum; the central free portion forms the anterior part of the floor of the fourth ventricle, and will be considered in the account of that cavity.

On cross-section the pons is seen to be composed of dorsal and ventral parts. The dorsal part (Pars dorsalis pontis) consists superficially of a layer of gray matter covered by the ependyma of the fourth ventricle. Benezth this the median raphe of the medulla is continued into the pons, diviling it into similar halves. In the anterior part of the pons the fillet divides into a medial and a lateral part, the medial and lateral fillets (Lemmisens medialis, lateralis); the latter arches out ward to reach the outer side of the anterior ccrebellar peduncle. The dorsal longitudinal fasciculus becomes sharply defined into a round bundle which lies close to the raphé under the gray matter of the floor of the fourth ventricle. In cross-section the formatio reticularis forms a large area below the superficial gray matter and the longitudinal bundles. Dorso-laterally is the large rounded section of the anterior cerebellar peduncle. Lower down is a large bundle, the sensory root of the fifth nerve. In front of this is the motor nucleus of the same nerve, lateral to which is its motor root. The basilar or ventral part of the pons (lars basilaris pontis) is composed of transverse and longitudinal fibers, and a large amount of gray matter which is broken up into small masses (Nuclei pontis) by the intersection of the fibers. The transverse fibers are gathered laterally into a compact mass which turns dorsally and backward and enters the central white matter of the cerebellum, forming the middle cerebellar peduncle. Centrally the fibers are arranged in bundles which intercross. The transverse fibers are chiefly of two kinds. Some arise from the Purkinje cells of the cerebellar cortex and pass either to the opposite side of the cerebellum or turn at the raphé and run forward and backward in the brain stem. Others are axones of cells of the muclei pontis, and pass to the hemisplores of the cerebellum. The corpus trapezoideum is mainly the central continuation of the cochlear division of the acoustic nerve. Above it is the small anterior olivary nucleus (Nuclens olivaris nasalis). The longitudinal fibers of the ventral part of the pons consist chiefly of the cerebrospinal or pyramidal fasciculi. These come from the ventral part (basis) of the cerebral peduncles and are situated laterally, interspersed among the deep transverse fibers in the anterior part of the pons. Toward the posterior part the bundles inctine toward the median plane and become collected into a compact mass which appears superficially at the posterior border. Many fibers come from the cerebral cortex and terminate in the mulei of the gray matter of the pons; they may be designated corticopontile fibers.

The Cerebellum

The cerebellum is situated in the posterior fossa of the cranium, and is separated from the cerebral hemispheres by the transverse fissure and the tentorium rerebelli which occupies it. It overlies the pons and the greater part of the medulla, from which it is separated by the fourth ventricle. Its average weight is about two ounces (ca. 60 gm .), or about 9 per cent. of the weight of the entire brain. Its shape is approximately globular but very irregular. It is somewhat compressed dorso-ventrally and its transverse diameter is the greatest.

The anterior surface faces dorsally and forward and is covered partially by the tentorium cerebelli. The posterior surface is almost vertical. The ventral surface or base lies over the fourth ventricle, and is comected by three pairs of peduncles with the medulla, pons, and mid-brain.

It is customary to recognize three gross divisions of the cerehellum, viz., the metian vermis and two lateral hemispheres. The vermis cerebelli is eurved in a circular manner so that its two extremities are close together, or even in contact on the ventral surface. The anterior extremity is termed the lingula; it lies betwen the cerebellar peduncles and gives attachment to the anterior medullary velum (Velum medullare orale), a thin lamina which forms the anterior part of the roof of the fourth ventricle. The posterior extremity, the nodulus, gives attachment to the posterior medullary velum (Velum medullare aborale), which covers the posterior recess of the fourth ventricle. The hemispheres (Hemispharia cerebelli)
are separated from the vermis by two deep paramedian fissures. They lie in the lateral depressions of the cerebellar compartment of the cranium.

In tracing the fissures from behind forward it will be noticed that they are nearly sagittal as far as the anterior surface, where they diverge widely, so that the vermis forms all of the fore part of the cerebellum.

The surface of the cerebellum is further cut up into numerous gyri (cercbelhi) by narrow and relatively deep sulci (cerebelli), many of which approach a transverse direction. Certain of the sulci are more pronounced than the others, and lyy means of them it is possible to define groups of gyri. Such groups are termed lobes, and have reccived specific names, derived chiefly from the systematic descriptions of the human cerebellum.

Abstract

The lobes of the vermis are readily distinguished on median seetion. Enumerated from the anterior to the posterior extremity they are: (1) lingula, (2) lobus centralis, (3) lobus aseendens, (4) lobus culminis, (5) lobus clivi, (6) tuber vermis, (7) pyramis, (8) wvula, (9) nodulus. Each hemisphere is cut into laterally by two sulei which mark off two sagittal discoid masses, termed by Ziehen tabulations. The lateral tabulation consists of four or five lobules, the lowest of which is regarded as the flocculus. The medial part of the hemisphere is divided into three or four lobes. Martin proposes the term tractus for the sagittal masses; on this basis the vermis would become the tractus medianus, and the others tractus laterales (primus, secundus, etc.). In the absence of a satisfactory morphological basis it seems undesirable to deal with the lobation of the cerebellum in further detail.

The cerebellar peduncles (Pedunculi ccrebelli), thrce on each side, join the central white matter of the cerebellum at the base. The posterior peduncle is the restiform body of the medulla, a large rounded tract derived from the lateral and ventral columns of the cord. Near the middle of the medulla it inclines outward, forms the lateral wall of the fourth ventricle, and ends by entering the central white matter of the cercbellum. The middle peduncle is formed, as previously seen, by the brachium pontis. The anterior peduncles (Brachia conjunctiva) pass forward on either side on the dorsal surface of the pons, forming the lateral boundary of the fore part of the fourth ventricle. They disappear under the corpora quadrigemina into the substanee of the mid-brain. At the point of disappearance the trochlear (fourth) nerve emerges from the mid-brain. In some cases two or three bundles of fibers (Fila lateralia pontis) arise in the angle between the middle and anterior peduncle, curve obliquely forward and downward over the outer aspect of the latter, and spread out on the ventral face of the cerebral peduncle just in front of the pons.

On sagittal section the cerebellum is seen to consist of a layer of gray cortical substance (Rubstantia corticalis) and the white medullary substance. The white matter consists of a large basal mass (Corpus medullare), which is joined by the peduncles and gives off primary laminæ (Lamine medullares) to the lobules; from these secondary and tertiary laminæ arise, the latter entering the gyri. The arrangement on sagittal section is tree-like, hence the term "arbor medullaris," which is applied to it. ${ }^{1}$ The central gray matter consists of groups of cells which form sinall nuclei embedded in the central white substance.

The principal connections established by the peduncular fibers of the cerebellum are as follows: The posterior peduncle (Corpus restiforme) is composed of afferent aud effereut fibers which conneet the cerebellum with the medulla and spinal cord. The cerebello-spinal fasciculus or direct cerebellar tract, which arises from the cells of the nueleus dorsalis (Clarke's column) of the cord, ends in the cortex of the vermis; many of its fibers cross to the opposite side. Numerous arcuate fibers from the nucleus gracilis and nucleus cuneatus of the same and opposite sides establish connections with cells of the cerebellar cortex. Olivo-cerebellar fibers (chiefly afferent) connect with the olivary uucleus of the same and of the opposite side of the medullia oblongata. The nucleo-cerebellar fasciculus comprises fibers derived from the nuelei of the fifth, eighth, and tenth eranial nerves (Edinger). The descending cerebello-spinal fasciculus consists of fibers which terminate in retation with cells of the ventral horns of the spinal cord. The chief facts concerning the middle petluncle have been mentioned in the description of the pons. The anterior peduncle is essentially an efferent tract, the fibers of which pass forward
${ }^{1}$ Also known as the "arbor vitse."
to the tegmentum of the cerebral peduncle, the hypothalamic region, and the thatamus. After the peduneles disappear under the corpora quadrigemina, they converge and many of their hbers intercross, forming the decussation of the anterior peduncles. A considerable nimber of fibers end in the nuclens ruber. Thence impulses are transmitted in two directions: first, by thalamocortical fibers to the cerebral cortex; second, by the rubro-spinal tract through the brain stem and lateral columns of the cord to the ventral horn cells. The ventro-lateral cerebellospinal fasciculus (Gowers' tract is an ill-lefined tract which eomnects the spinal corl with the eerebellum. Its fibers appear to be axones of cells of the dorsal columns of the eord; they pass in the lateral column of the cord, become stattered in passing through the reticular formation of the medulla and pons, and enter the cerebedlum by way of the anterior medullary velum.

The Fourth Ventricle

The fourth ventricle (Ventriculus quartus) is the cavity of the rhombencephalon; it commmieates with the eentral canal of the spinal eord behind and through

Fig. Gis. - Disgertion of Brun stem and Bashl Gangha of Horse; Dorsal View

1. Columns of formx (seetion): 2, remnant of hippocampus; 3 , trenia thalami; 4. pheal body; 3 , enmentia medialis:
 indicated by Roman numerals.
the cerebral aqueduct with the thirel ventrick in front. It is somewhat rhomboid in outline. eltongated from before backward, and narrowest hehind. It is lined completely by an epithelium (Ependyma) and contains a small amount of fluid.

Its floor, the fossa rhomboidea, is formed by the medulla oblongata and pons
and is marked by three longitudinal furrows which converge behind. It is widest and deepest a little in front of its middle. The posterior part narrows to a point at the opening of the central canal of the spinat cord, and on account of its appearance in man it has been termed the calamus scriptorius. The median sulcus (Suleus medianus) extends the entire length of the floor and is deepest toward the ends. The limiting sulci (sulei limitantes) begin on either side of the opening of the central canal and extend forward as the lateral limits of the rhomboid fossa. Just beyond the middle of the fossa they expand into a shallow depression, the anterior fovea (Fovea oralis). On either side of the median sulcus and margined laterally by the limiting sulcus is a slightly rounded column, the eminentia medialis. Opposite the fovea this presents an elongated prominence, the colliculus facialis, so named becanse it overlies the bend formed by the fibers of origin of the facial nerve. Lateral to the limiting sulcus is a long fusiform elevation, the area acustica, from which a band of fibers (Strix acustice) winds over the anterior end of the restiform body to the superficial origin of the cochlear nerve.

The lateral wall is formed by the restiform body and the anterior peduncle of the cerchellum.

The roof (Tegmen ventriculi quarti) is formed in its middle part by the vermis

Fig. 636.-Brann Stem and Basal Gangla of Horae; Right View.
F.a., External arcuate fibers; C.r., corpus restiforme; P. pyramid; T, corpus trapuzoideurn; B. p., middle peduncle of cerebellum; P. c., cerebral peduncle; S, suleus lateralis; T.t., tractus transversus; L, trigonum lemnisci; C. a. ., corpus quad. ant.; ('.p., corpus quad. post.; B, commissure of $C . p . ;$ ($;$, corpus geniculatum mediale; T.o., olfactury peduncle; B.o., olfactory bulb.
of the cerebellum, covered by the epithelium before mentioned. There is commonly a dorsal recess (Fastigium) between the extremities of the vermis. The anterior part of the roof is formed by a thin lamina of white substance, the anterior medullary velum (Velum medullare anterius), ${ }^{1}$ which extends backward from the corpora quadrigemina, and is attached on either side to the anterior peduneles of the cerebellum. Its anterior part is relatively thick and contains the decussation of the fibers of the trochlear nerves. Posteriorty it blends with the white matter of the cerebellum. A thin lamina of white matter, the posterior medullary velum (Velum medullare posterius), backed by pia mater, completes the roof posteriorly After removal of the cerebelhum the line of attachment (Teenia ventriculi quarti) to the medulla is seen; it begins centrally over the opening of the central canal, runs forward on the inner face of the restiform body, and turns outward behind the brachium pontis. The thick part which stretches over the posterior angle of the rentricle is termed the obex. The posterior part of the ventricle forms three recesses, of which two are lateral and the third median and posterior. The lateral recesses (Recessus lateralis) communicate with the subarachoid space by lateral apertures (Aperture laterales). The layer of pia mater which actually forms the roof here is named the tela chorioidea of the fourth ventricle. It is triangular in outline and closely adherent to the velum. It forms three fringed masses which

[^185]contain vascular convolutions and are designated the median and lateral chorioid plexuses of the fourth ventricle (Plexus chorioides ventriculi quarti). They appear to lie within the ventricle, lut are reatly exchuded from the cavity by the epithelial lining, which they invaginate.

THE MESENCEPHALON

The mesencephalon or mid-brain connects the rhombencephaton with the fore-brain. In the undissected brain it is covered dorsally by the cerebral hemispheres. It consists of a dorsal part, the corpora quadrigemina, and a larger ventral part, the cerebral pedunctes, which are visible on the base of the brain. It is traversed longitudinally by a narrow canal, the cerebral aqueduct, which connects the fourth ventricle with the third (Fig. 639).

The corpora quadrigemina ${ }^{1}$ are four rounded eminences which lie under the posterior part of the eerobral hemispheres. They consist of two pairs, separated by a transverse groove. The anterior pair (Colliculi nasales) are larger and much higher than the posterior pair. They are gray in color, almost hemispherical, and are separated by a narrow furrow which leads forward to the subpineal fovea. A wide groove intervenes between them and the optic thalami. The posterior pair (Colliculi caudales) are relatively small and are paler than the anterior pair. They are marked hy a wide median depression, and are limited behind by a transverse furrow (Sulcns postquadrigeminus), at either side of which the trochlear (fourth) nerve emerges. Laterally each is prolonged to the medial geniculate body by a band of white matter termed the posterior pethuncle (Brachium aborale). ${ }^{2}$

The cerebral peduncles (Pedunculi cerebri) ${ }^{3}$ appear on the base of the brain as two large, rope-like stalks which emerge from the pons close together and diverge as they extend forward to enter the cerebrum. At the point of disappearance the optic tract winds obliquely across the peduncle. About half an inch further back a small tract (Tractus peduncularis transversus) curves across the peduncles, and behind this, near the median line, is the superficial origin of the oculomotor nerve. The triangular depression between the diverging peduncles is the interpeduncular fossa (Fossa interperluncularis). It is covered to a large extent by the hypophysis cerebri or pituitary body, a discoid brown mass which is connected with the base of the brain by a hollow stalk, the infundibulum. The posterior part of the fossa is pierced by numerous minute openings which transmit bood-vessels, and is therefore termed the substantia perforata posterior. The objects here belong to the diencephaton, and will be described later. The lateral aspect of the peduncle is marked by a groove (Sulcus lateralis mesencephati) which indicates the division into a dorsal part, the tegmentum, and a ventral part, the basis pedunculi; these are separated by a layer of dark gray matter, the substantia nigra. The triangular area (Trigonum lemnisci) above the lateral groove is faintly marked by fibers passing dorsally and backward to the anterior cerebellar peduncle; these betong to the fillet or lemmisens, an important traet that comneets the thalamus and corpora quadrigemina with the sensory reception medei of the opposite side of the medulla.

The aqueduct of the cerebrum (Aqueductus cerelri) ${ }^{4}$ is the canal which extends through the mid-brain from the third to the fourth ventride. It is largest beneath the posterior pair of corpora quadrigemina. It is surromeled by a layer of gray matter (Stratum griseum centrale), in the ventral part of which are the nuclei of origin

[^186]of the oculomotor and trochlear nerves, and laterally nuclei of the mesencephalic roots of the trigeminal nerves.

THE DIENCEPHALON

The diencephalon or inter-brain comprises the thalamus and a number of other structures grouped about the third ventricle, the cavity of this division of the brain. ${ }^{1}$ To expose its dorsal aspect, the greater part of the cerebral hemispheres, the corpus callosum, the fornix, the hippocampus, and the tela chorioidea of the third ventricle must be removed (Fig. 635).

The thalamus is the principal body in this part of the brain. It is a large ovoid mass placed obliquely across the clorsal face of each cerebral peduncle, so that the long axes of the two thalami woukd mect in front about at a right angle. Medially they are fused to a large extent, and around the area of adhesion they are scparated by a sagittal circular space, the third ventricle. The dorsal surface is convex, and is separated from the overlying hippocampus by the tela chorioidea. Laterally it is separated from the nucleus caudatus by an oblique groove in which there is a band of white matter termed the stria terminalis. When the tela chorioidea of the lateral ventricle has been detached from this band it leaves a torn edge, the trenia chorioidea. Medially it is bounded by a narrow white band, the stria medullaris; to this the tela chorioidea of the third ventricle is attached, and when the latter is removed in dissection, there remains a thin irregular edge termed the tænia thalami. The strix unite posteriorly and blend with the stalk of the pineal body. Near this point they present a small enlargement caused by the nucleus habenulx. Anteriorly there is a small eminence, the anterior tubercle of the thalamus (Tuberculum orale thalami). The posterior part of the thalamus has the form of a rounded ridge which is continuous laterally with the optic tract. ${ }^{2}$ Behind the point of origin of the tract, in the angle between the thalamus and the cerebral peduncle, is the medial geniculate body (Corpus geniculatum mediale), a welldefined oval prominence.

The lateral surface is separated from the lenticular nucleus by the internal capsule, an important mass of white matter composed of fibers passing to and from the cerebral cortex. These fibers go to form a large part of the ventral portion (basis) of the cerebral peduncle. From the entire lateral surface of the thalamus fibers pass into the internal capsule and radiate to reach the cerebral cortex; similarly fibers coming from the cortex converge in the internal capsule to enter the thalamus. This arrangement is termed the thalamic radiation. Ventral to the thalamus proper is the hypothalamic tegmental region. This is the continuation of the tegmental part of the cercbral peduncte into the diencephalon. It contains the red nucleus (Nucleus ruber), an important ganglion on the course of the motor tracts. It receives numerous fibers from the cerebral cortex and the corpus striatum. From it fibers proceed to the thalamus and to the spinal cord; the fibers to the cord, which constitute the rubro-spinal tract (Tractus rubro-spinalis), cross to the opposite side and extend back in the tegmentum to the lateral columns of the cord. Lateral to the red nucleus a conspicuous lenticular area of dark gray matter is visible on crosssections of the hypothalamic region; this is the hypothalamic nucleus (Nucleus hypothalamicus Luysi), which consists of pigmented nerve-cells scattered through a dense network of fine medullated tibers, and is richly supplied with capillary blood-vessels. The two nuclei are connected by a transverse commissure (Commissura hypothalamica), which crosses the floor of the third ventricle above the manmillary body.

The pineal body or epiphysis cerebri (Corpus pineale) is a small ovoid or fusiform red-brown mass situated in a deep central depression between the thalami and corpora quadrigemina. It is variable in size, but is commonly about 10 to 12 mm . long and 6 mm . wide. It is attached at the postero-superior quadrant of the third ventricle by a short stalk, in which is a small recess of that cavity. Its

[^187]base blends in front with the junction of the strix medullares of the thalamus. Immediately under the posterior part of the stalk is a short transverse band of white matter, the posterior commissure of the cerebrum (Commissura aboralis (erebri).

The pineal body is enclosed in a fibrous capsule from which numerous trabecule pass inward, dividing the organ into spaces occupied by round epithelial cells of the same origin as the ependyma of the ventricle.

The mammillary body (Corpus mammillare) is a white, round elevation a little larger than a pea which projects ventrally at the anterior end of the median furrow of the interperluncular fossa. While it is a single borly in external form in the horse,

Fig. fi37. - Cross-section of Brain of Horse, Natural Size.
Section passes through posterior part of third ventricle and is vewed from behnd, 1 , Longitudinal fissure; 2 , hippocampus; 2 , fimbria; 3 , septum pellucidum; folateral ventricle; 5 , thalamus; 6 , babemula; 7 , third ventricle; 8 , cerebral perluncle; \mathcal{S}^{\prime}, hypothalmus; 9 mammillary body; 10, hypophysis or pituitary body; 11, piriform lobe; 12. ventral end of hippocampus; 18, amygdaloid nucleus. Between the upper parts of the treniz thalami is the chorioid plexus of the third ventricle, and above this are the internal cerebral veins.
sections show that it is double in structure and contains a nucleus of gray matter on either side (Fig. 637).

Three sets of fibers are connected with the mammillary body. The column of the formix curves down in the lateral wall of the third ventricle to the boly and many of the fornix fibers end in it. A bundle (Fasciculus thalamo-mammillaris) passes dorsally and backward from it into the anterior part of the thalamus, and a tract (Fasciculus pedunculo-manmillaris) extends baek in the floor of the third wrntricle to the tegmentum of the mid-hrain.

The hypophysis cerebri or pituitary body was mentioned as covering part of the interpeduncular fossa. It is oval in outline, flattened dorso-ventrally, and nearly an inch (ca. 2 cm .) in width. It is attached by a delicate tubular stalk, the infundibulum, to the tuber cinereum, a small gray prominence situated between the optic chiasm in front and the mammillary borly helind. A fibrous capsule, derived from the dura mater, encloses and is intimately wherent to it.

The borly consists of two parts which can be distinguished on sections by their color (Fig. 639). The glandular lobe is brown in color and forms the external and greater part of the body. It is
glandular in character and there is good ground for the view that it is an organ of internal secretion. Besides the chief cells, which stain lightly, it contains large, deeply staining ehromophile cells. It arises as an outgrowth from the dorsal wall of the primitive moutli cavity. The cerebral lobe is pale and is connected with the infundibulum so as to form a rather flask-shaped arrangement. It is almost entirely enelosed by the glandular part. It arises as an outgrowth from the primitive diencephalon, but loses most of its earlier nervous character.

The optic chiasm and tracts form the anterior boundary of the interpeduncular fossa (Figs. 629, 636). The optic chiasm (Chiasma opticum) is formed by the convergence of the optic nerves and the crossing of the major part of the fibers of the nerse of one side to the tract of the opposite side. From the chiasm each optic tract (Tractus opticus) curves obliquely around the cerebral peduncle to the posterior part of the thalamus and the medial geniculate body; some fibers reach the anterior quadrigeminal body.

All the fibers in the chiasm are not lerived from the optic nerves. The posterior part contains fibers which pass from one tract to the other and are connected with the medial geniculate bodies; this bundl is called the rentral commissure (Commissurat ventralis). Above it is the dorsal commissure (Commissura dorsalis), the fibers of which enter the hypothalamic body. ${ }^{1}$

The third ventricle (Ventriculus tertins) is the narrow annular space between the thalami. It communicates by means of the cerebral aqueduct with the fourth rentricle behind, and in front it is continuous with the lateral ventricle on each side through the interventricular foramen. Its floor is formed by the structures of the interpeduncular fossa, and to a small extent by the tegmentum of the cerebral peduncles. The roof is formed in the strict sense only by the ependyma, above which is a fold of pia mater, termed the tela chorioidea of the third ventricle. ${ }^{2}$ The roof is invaginated by the two delicate chorioid plexuses (Plexus chorioidei ventriculi tertii) which appear to lie within the ventricle, although they are excluded from the cavity by the epithelium. When the tela is removed, the delicate ependyma of the roof is torn away with it, leaving the line of attachment to the stria medullaris to constitute the tænia thalami. The anterior wall is formed by the lamina terminalis, a thin layer of gray matter which extends from the optic chiasm dorsally to the corpus callosum. A distinct rounded band of white matter extends across its posterior face, bulging into the ventricle. This is the anterior commissure (Commissura oralis) of the cerebrum; its fibers extend to the olfactory bulb and to the piriform lobe. A similar but more slender posterior commissure (Commissura aboralis) crosses the posterior wall above the entrance to the cerebral aqueduct; the connections of its fibers are not yet clearly known. The interventricular foramen ${ }^{3}$ is situated on either side of the anterior part of the ventricle, and leads outward and slightly dorsally between the column of the fornix and the anterior tubercle of the thalamus (Fig. 639). The cavity presents three recesses or diverticula, of which two are sentral and the third is posterior. The optic recess (Recessus opticus) lies above the optic chiasm. Just behind it is the infundibular recess (Recessus infundibuli), which extends through the infundibulum to the pituitary borly. The pineal recess (Recessus pinealis) is in the stalk of the pineal body.

THE TELENCEPHALON

The telencephalon or end-brain comprises two principal parts, the cerebral hemispheres and the optic part of the hypothalamus. The latter has been considered as a matter of convenience in the description of the diencephalon.

The Cerebral Hemispheres

The cerebral hemispheres (Hemisphæria) form the greater part of the fully developed brain. Viewed from above (Fig. 631) they form an ovoid mass, of

[^188]which the broader end is posterior, and the greatest transverse diameter is a little behind the middle. The two hemispheres are separated by a deep median cleft, the longitudinal fissure of the cerebrum (Fissura longitudinalis cerehri), which is occupied by a sickle-shaped fokl of dura mater, the fals cerebri. In front the separation is complete, and it appears to be behind also, but here the two hemispheres are attached to each other ovor a small area by the pia mater. When the hemispheres are gently drawn apart, it is seen that the fissure is interrupted in its middle part at a depth of a little more than an inch (ca. 3 em.) by a white commissural mass, the corpus callosum ; this connects the hemispheres for about half of their length. The transverse fissure (Fissura transversa cerebri) separates the hemispheres from the cerebellum, and contains the tentorium cerebelli.

The convex or dorso-lateral surface (Facies convexa cerchri) conforms closely to the cranial wall. The medial surface (Facies medialis cerebri) (Fig. 639) is flat and sagittal and hounds the longitulinal fissure; to a large extent it is in contact with the fals cerelni, but behind the great cerel ral vein the two hemispheres are in contact and are attached to each other over a small area as noted above. In well-

Fig. 13 B .-Ifet Cerehril Memisphere of Horse; Lateril View. The Oleactory Bula is Cut Off.
 rhinalis, anterior it ponterior; 7 , zuprasylvian fissure; δ, tetomarginal fissure; 9 , 在, ectosyivian fissure.
hardened specimens there is usually an impression for the vein in front of the area of athesion. The base or ventral surface (Basis cerelri) (Fig. 629) is irregular. Its anterior two-thirds is adapted to the ceredral fossa of the cranial floor. Crossing this area in front of the optic tract is a depression, the lateral fossa (Fossa lateralis), which leals outward to the lateral fissure (Fissura lateralis), ${ }^{1}$ and lotges the midille cerebral artery. In front of the fossa there is a consitlerable romed devation known as the trigonum olfactorium. The trigomm and the medial part of the fossa are piercel by mumerous openings for the passage of small blood-vessels and are cequivalent to the sulstantia perforata anterior of man. Behind the lateral part of the fossa is the romeded anterior end of the piriform lobe (Lobus piriformis). Tracel baekwarl, the lobe murves dorso-medially over the optic tract and the thalamus to the tentorial aspeet of the hemisphere: its continuation, the hippo(ampus, forms part of the floor of the lateral ventriele, and will be examined later.

The tentorial surface (Fig. 640) is flattened, faces medially and backward as well ats ventrally, and rests largely on the tentorium cevebelli; on its anterior part there is a shallow depression alapted to the corpora quatrigemina and the pineal body.
${ }^{1}$ Also conmonly known as the fissure of Sylvius.

The frontal pole or anterior extremity (exelusive of the olfactory bulb) is compressed laterally, and the occipital pole or posterior extremity forms a blunt point.

The hemisphere comprises: (1) The pallium, which consists of an outer layer of gray matter, the cortex (substantia corticalis), covering a large mass of white matter (Centrum semiovale); (2) the rhinencephalon or olfactory portion of the brain; (3) the corpus callosum and fornix, the great commissural white masses; (4) the lateral ventricle and certain important structures associated therewith.

The pallium is thrown into numerous folds, the gyri cerebri, which are separated by sulci or fissures of varying depth. The general pattern of the gyri and sulei is similar in normal brains of the same species, but the details are very variable and are never alike on the two hemispheres of the same brain. In the horse the arrangement is complicated by the existence of numerous short accessory fissures which cut into the gyri at right angles and tend to confuse the observer. The principal fissures and sulei of the convex surface (Figs. 631, 632, 638) are as follows:1

1. The lateral fissure (Fissura lateralis Sylvii) aseends on the lateral surface of the hemisphere as the continuation of the fossa lateralis in front of the piriform lobe. After crossing the lateral olfactory stria it divides into three branches; of these one passes dorsally, one runs obliquely forward and dorsally, and the third is directed dorsally and backward. It contains the middle cerebral artery.
2. The suprasylvian fissure (F. suprasylvia) ${ }^{2}$ is long and divides a large part of the convex surface of the hemisphere into dorsal and lateral portions. It begins on the dorso-medial border near its anterior end, and. inclining gradually downward, passes back to end on reaching the tentorial surface. It is usually continuous medially with the transverse fissure and in front with the presylvian fissure.
3. The presylvian fissure (F , presylvia) is on the anterior part of the hemisphere. passes forward and rentro-laterally almost to the frontal pole, and thea inclines backward to end at the groove which marks the dorsal limit of the rhinencephalon (sulcus rhinatis).
4. The marginal fissure (F. marginalis) extends along the dorso-niedial border. It begins a little in front of the middle of the border and turns around the oceipital pole to end on its tentorial aspeet.
5. The entomarginal fissure (F . entomarginalis) lies medial to the dursomedial border. It does not extend quite as far forward as the marginal fis:ure, from which it is separated by a narrow gyrus.
6. The ectomarginal fissure (F. ectomarginalis) lies about midway between the marginal fissure and the posterior part of the suprasylvian fissure.
7. The sulcus rhinalis is a very distinet furrow on the ventral part of the lateral surface which marks off the olfactory part of the brain (rhinencephalon) from the rest of the hemisphere. It is undulating and is highest where it is crossed by the lateral fissure.

Just above this point is a lobe which is homologous with the insula of man. When the overhanging gyri which partly conceal it-forming the operculum-are removed, there are disclosed several short, deeply placed gyri (Gyri breves).

On the medial surface (Fig. 639) the main fissures and sulci are as follows:

1. The calloso-marginal fissure (F . callosomarginalis) is extensive and well defined. It is approximately parallel to the dorso-medial border of the hemisphere, from which it is about half an inch distant. It begins in front a short distance below and in front of the genu of the corpus callosum, and forms a C-shaped curve, its posterior part extencling on the tentorial surface to a point behind the depression

[^189]for the eorpora quadrigemina. It separates the marginal gyri above from the gyrus fornicatus, which extends down to the corpus callosum.
2. The transverse fissure (F. transwersa) begins a little behind the middle of the calloso-marginal fissure, passes obliquely dorsally and forward to the dorsomedial border-into which it cuts deeply-and usually joins the suprasylvian fissure. ${ }^{1}$
3. The sublimbic fissure (1 . sublimbica) curves over the gyrus formicatus a short distance above the corpus callosum. Its middle part is commonly indistinct, and it is oftel divided into anterior and posterior parts.

Fig. 639.-Metian Section of Brain of liorse.
The membranes and vessels are rumoved. C, Contral white matter (corpus medullare) of cercbellum; P.c., cere bral peduncle; C.q., corgora ulualrigemina; P. pineal body; Th., thalamus; V.III., third ventricle; r, optic recess; r^{\prime}, infundibular recess; ('m., mamuillary body; s, subcallosal gyrus; A.p., area parolfactoria; G. genu of corpus callosum: S, splenium of same: F.i., interventricular foramen; B.o., olfartory bulb; C.p., choroid plexus of lateral ventricle. The crebral lobe of the hypophysis cerebri or pituitary body is distingnished by its lighter color.
4. The callosal sulcus (Sulcus corporis callosi) separates the corpus callosum from the gyrus formeatus.

The hippocampus ${ }^{2}$ is a gyrus which curves from the deep face of the piriform lobe around the thalams and forms the posterior part of the floor of the lateral ventricle. It can be displayed ly cutting away the brain stem up to the optic tract and the interventrieular foramen. Viewed from below, the hippocampal gyrus is seen to form a semicircular curve from the apex of the piriform tobe to the angle of divergence of the erura of the formis, i.e., to a point under the central part of the corpus callosum. It is separated deeply by the hippocampal fissure from the gyrus dentatus (Fig. 640). Along the concave margin of the latter is a
${ }^{1}$ By some authors this is regarded as the homologue of the eruciate fissure of the dog, but it seems likely that the latter is represented by a short and inconstant suleus situated further forward.
${ }^{2}$ Also termed the cornu Ammonis.
band of white matter, termed the fimbria, which is the prolongation of the greater part of the crus of the formix into this region. The ventricular surface of the hippocampus (Fig. 642) is covered with a thin layer of white matter, the alveus, which is also derived from the crus of the formix, and is therefore continuous with the fimbria. The two hippocampi are connected at their highest parts by transverse fibers which constitute the hippocampal commissure.

The interval between the hippocampus and fimbria on the one hand, and the brain stem on the other, is a lateral continuation of the transverse fissure of the brain, and is occupied by a fold of pia mater, the tela chorioidea of the third ventricle. This fold is triangular in outline and its apex reaches to the interventricular foramen. Its base is continuous at the transverse fissure with the pia which covers the surface of the brain. Its middle part lies over the epithelial roof of the third ventricle, as has been seen (Fig. 637). The lateral borders will be seen on the floor

Fig. 640.- Medio-yentral Aspect of Right Cerebral Hemisphere of Horse.
The olfactory bulb is cut off. T.ol., Olfactory tract; A.p., area parolfactoria: Tr.a., trigonum olfactorium: Tr.op., optic tract; C.o., chiasma opticum; G.s., subeallossl gyrus; C.c., corpus callosum; S.p., septum pellucidum; F, fornix; F^{\prime}, fimbria; G.c., callosal gyrus; T, cut surfice of thalamus; G.d., gyrus dentatus; L.p., piriform lobe; G.h., hippocampal gyrus.
of the lateral ventricles, where they form thick, rounded bands containing convolutions of blood-vessels, known as the chorioid plexuses of the lateral ventricles (Fig. 642).

When the tela is pulled out, one may easily get the impression that the lateral ventricle communieates with the exterior by means of the chorioid fissure. Such is not the ease, since the chorioid plexus is eovered by the epithelial lining of the ventricle, which has been torn away.

The rhinencephalon or olfactory part of the brain comprises the olfactory bulb, tract, and striæ, the trigonum olfactorium, the area parolfactoria, and the piriform lobe. ${ }^{1}$

The olfactory bulb (Bulbus olfactorius) is an oval enlargenent which curves upward in front of the frontal pole of the hemisphere. Its convex superficial face fits into the ethmoidal fossa and receives numerous olfactory nerve-fibers through the eribriform plate; hence it is very difficult to remove the bulb intact. It contains a considerable cavity, the ventricle of the olfactory bulb (Ventriculus bulbi

[^190]olfactorii) which is connected with the lateral ventricle by a small canal in the olfactory tract. The deep face is largely in contact with the frontal pole of the hemisphere and is comected with the olfactory tract.

The gray matter of the bulb is external and is thickest on the convex anterior surface. The posterior part consists to a large extent of fibers which are the axones of the mitral cells of the deep layer of the gray substance and go to form the tract and strix.

The olfactory tract (Tractus olfactorius) ${ }^{1}$ is a very short but wide band of white substance which arises in the olfactory bull, and extends back to be continued by the olfactory strie. It contains a canal which comects the ventricle of the bulb with the lateral ventricle.

The olfactory striæ (strie olfactorii) ${ }^{2}$ are two in number. The lateral stria (Stria lateralis) is much the largest and most distinct. It passes backward, upward, and outward, widens out and joins the piriform lobe. It is elearly defined dorsally by the sulcus rhimalis and is marked off from the trigomm olfactorium by the suleus arcuatus. The medial stria (Stria medialis) is smaller, short, and not so

Fig. 64l.-Lateral View of Cabt of Cayitier of Rrain of Horse.
Bo, Cavity of olfactory bulb, whech communcates through the canal I wrh a lateral ventricle; Ca, anterior horn, Cm , bods: Cz, ventral horn of lateral ventricle: M. mententricular foramen which connects lateral and third ventricles; Ep, suprapmeal recess, below whoh is the small infrapneal recess (not visible); Ro, optic recess; Rh, infundibular and patuitary recess: s, aqueduct; $F l$, rilge corresponding to sulcus limatans; $R l$, lateral recess, $R m$, posterior recess of fourth ventricle: (c, begmning of central canal of spinal cord. (Dexler.)
well defined; it bends over to the parolfactory area on the medial face of the hemisphere below the genu of the corpus callosum. ${ }^{3}$

The trigonum olfactorium is the prominent gray area situated in the angle of divergence of the medial and lateral olfactory strix. It is bounded laterally by the lateral olfactory stria, from which it is defined by the suleus arcuatus. It is continuous with the area parolfactoria on the medial surface; behind the latter a band deseends from the rostrum of the corpus callosum and is contimuous below with the anterior perforated sulnstance; it is termed the subcallosal gyrus (Cyrus sul)callosus).

The piriform lobe (Lobns piriformis) is the well-marked prominence on the base lateral to the optic tract and cerelral peduncle, from which it is separated by a deep fissure. Its nipple-like apex lies behind the fossa lateralis and rovers the optic tract. The external surface is marked by one or two sulei (lohi piriformis). The lobe contains a cavity, the ventral hom of the lateral ventricle.

[^191]The fibers of the olfactory stris go to the piriform lobe and hippocampus, the trigonum olfactorium, the area parolfactoria, the subcallosal gyrus, and part of the gyrus fornicatus. The central conneetions of the olfactory apparatus are complex and are not yet fully understood. The anterior cerebral commissure contains fibers which pass from the olfactory bulb of one side by way of the medial striee to the bulb of the opposite side; also fibers which cross in it from the medial strixe of one side to the piriform lobe of the opposite side. Nany fibers pass to the hippocampus by way of the septum pellucidum, fornix, and fimbria. Other fibers pass in the column of the formix to the mammillary borly and thence to the thalamus by the thalamo-mammillary bundle.

The corpus callosum is the great transverse commissure which connects the two cerebral hemispheres through about half of their length. On median section

Fig. 642.-Bran of Horse, with Lateral Ventricles Opened by Removal of Upper Pakt of Cerebral Hemispheres and Most of the Corpes Callosum.
(Fig. 639) it is seen to be arched from before backward, white in color, and composed substantially of transverse fibers. The middle part or truncus (Truncus corporis callosi) slopes downward and forward and is thinner than the ends. The anterior thickened end, the genu, bends ventrally and backward and thins out to form the rostrum; the latter is continuous with the lamina terminalis. The posterior end, the splenium, also thick, lies at a considerably higher level than the genu. The dorsal surface is convex in its length, concave transversely; it forms the floor of the longitudinal fissure. It is covered by a thin layer of gray matter (Induseum griseum), in which are strands of longitudinal fibers (Striæ longitudinales); the latter are arranged in medial and lateral bundles (Stria medialis, striæ
laterales). ${ }^{1} \quad$ The ventral surface has the reverse configuration, and presents transverse ridges and grooves. It forms the roof of the lateral ventrictes, and the septum pellucidum is attached to it medially. The fibers of the corpus eallosum (with the exception of the longitudinal strise) run transversely and spread out laterally in all directions in the eentral white matter of the hemispheres to the cortex, forming the radiation of the corpus callosum (Radiatio corporis callosi).

The fornix is a bilateral structure composed of white filers which arch chiefly over the thatamus and the third ventricle. It is described as consisting of a body, two columns, and two crura. The body (Corpus fornicis) is formed by the fusion of the two arehes of which the fornix is eomposed. It is triangular and overlies the anterior parts of the thatami and the third ventricle. The dorsal surface gives

Fio. 643.-Crosq-section of Brain of Ilorse, About Natural Size.
Section passes through optic chiasm, and is viewed from in front. 1, Longitudinal fissure; 2, septum pellucidum; 3. columns of formix: 4 , lateral ventricle; 5 , chorioid plesus; 0, corpus medullare (central white matter) of hemisphere; \tilde{r}, caudate nucleus; 8 , lenticular nucleus; 9 , internal capsule; 10 , external capsule; 11 , insula.
attachment medially to the septum pellucidum, and on either side forms part of the floor of the lateral ventricle. The lateral border is related to the chorioid plexus of the lateral ventricle and forms the inner boundary of the interventricular foramen. The columns (Columne fornicis) (Fig. 643)2 are two slender round bundles which emerge from the body in front of the interventrieular foramen and diverge slightly as they curve ventrally and backward to the mammillary body.

From the mammillary body the greater part of these fornix fibers are continued to the thalamus by the thalamo-inammillary fascirulus (or bundle of lieq d'Azyr). Others pass to the cerebral peduncle. A portion of the fibers eross to the opposite thalamus and cerebral peduncle.

The crura (Crura fornicis) ${ }^{3}$ are much larger bands which diverge widely from

[^192]the posterior angles of the body. Each curves outward and backward over the thalamus (from which it is separated by the tela chorioidea), and is chiefly continued as the fimbria along the concave border of the hippocampus. The crura give off fibers to form the alveus, a layer of white matter which covers the ventricular face of the hippocampi, and between them are transverse fibers which constitute the hippocampal commissure (Commissura hippocampi).

The septum pellucidum is the median partition between the two lateral ventricles. Its convex dorsal border blends with the corpus callosum and its concave ventral border joins the fornix. Its anterior part is received into the genu of the corpus callosum. Traced backward, it diminishes in height and the two edges meet at an acute angle at the splenium.

The septum consists of two layers (Laminæ septi pellucidi) which are in contact with each other. They consist of medullated nerve-fibers and gray matter. The latter exists in considerable amount in the thicker part of the septum adjacent to the eolumns of the fornix. Many of the fibers of the septum pass up through the corpus callosum to the gyrus fornicatus. Others are connected with the subeallosil gyrus and the parolfactory area.

Fig. 644.-Sagittal Section of Braix of Horse.
Section is cut about 1.5 cm . to the right of the median plane. M. Medulla oblongata; P. pons; P.c. (above M. , chorioid plexus of fourth ventricle; C.m., central white matter (corpus medullare) of cerebellum and of cerebrum; P.c. (in front of P), cerebral peduncle; H. bippocampus: V, lateral ventricle; T, thalamus; N.c., caudate nucleus; C.i., internal capsule: N.l.. lenticular nucleus; B.o., olfactory bulb.

The lateral ventricle (Ventriculus lateralis cerebri) is the irregular cavity in the interior of each cerebral hemisphere. ${ }^{1}$ Each communicates with the third ventricle through the interventricular foramen (Foramen interventriculare), ${ }^{2}$ and by a small canal with the cavity of the olfactory bulb. It is usual to describe the ventricle as consisting of three parts, viz., the central part or body, and anterior aud ventral horns. The central part (Pars centralis) extends back to the splenium of the corpus callosum. It opens into the third ventricle through the interveutricular foramen, which is situated between the fornix and the anterior part of the thalamus. The anterior horn (Cormu orale) is the part in front of the interventricular foramen; it communicates ventrally with the olfactory cavity. The ventral horn (Cormu ventrale) curves downward and forward into the piriform lobe. The roof of the ventricle is formed by the corpns callosum, and the merlial wall is the septum pellucidum. After removal of the roof the floor is seen to be formed chiefly by two bodies.
${ }^{1}$ It is hardly possible to get an accurate idea of the shape of the ventricle except by studying a cast of it (Fig. 641). The size of the ventrieles raries in different subjects, and it is common to find more or less disparity between the two ventricles of the same brain.
${ }^{2}$ Formerly termed the foramen of Monro.

The anterior one is the caudate nucleus (Nucleus caudatus), a somewhat pearshaped gray eminence, the long axis of which is directed obliquely upward, backward, and outward. Its anterior large end is termed the head (Caput muclei caudati), and the posterior long tapering end the taif (Cauda nuclei caudati). The posterior berly, the hippocampus, is white on its ventricular surface, which is strongly convex. It eurves outward and barkward and then turns ventrally and forward to join the piriform lobe. The two borlies are separated by an oblique groove which is oecupied by the chorioid plexus of the lateral ventricte (llexus chorioideus ventriculi lateradis). This is the thickened edge of a fold of pia mater, the tela chorioidea of the third ventricle, which lies between the hippocampus and the thalamus. It contains comvolutions of small blood-vessels, and in old suljects there are often calcareous concretions in it. The plexuses of the two sides are continuous through the interventricular foramen. On drawing the chorioid plexus backwarl, a narrow white bamd, the stria terminalis, ${ }^{1}$ is seenalong the margin of the caudate muleus, where it bomds the intermetiate groove. The plexus partially covers a wider white band which is hended with the white substance of the hippocampus; this is the crus of the fornix and its continuation, the fimbria.

The corpus striatum ${ }^{2}$ is the great lasal ganglion of the hemisphere. It is situated in frent of the thalamus and the cerebral perluncle, and its anterior rounded end appears on the hase of the hemisphere at the trigomum olfactorium. It is composed of two masses of gray matter, the caudate and lentieular nuclei, separated incompletely by tracts of white mater which are known collectively as the internal capsule. The caudate nucleus (Nudens caudatus) is the dorso-medial and larger of the two gray masses; it was seen in the examination of the lateral ventricle. The lenticular nucleus (Nudms lentiformis) lies ventro-laterally, ower the trigonm olfactorium and the fossa lateralis. It is related externally to a layer of white matter termed the external capsule (Capsula extema), which separates it from a stratum of gray sulstamee known as the claustrum. The two nuclei are fused in front, and further back they are comnerted by strands of gray matter which intervect the inturnal capsule.

The amygdaloid nucleus (Nucleus amygdalæ) (Fig. 637) is an ovoill mass of gray matere lateral to the ventral horn of the lateral ventricle and ventral to the posterior part of the lenticular muldus. Some fibers of the stria terminalis are commected with it.

The internal capsule (Capsula interna) is a broad band of white matter situated between the thatamus and candate muches medially and the lenticular nucleus laterally: A sagittal seetion through the hrain (Fig. 644) shows that it is in great part directly continuous with the basis or ventral part of the cerebral petuncle. It contains most of the so-called projection fibers of the hemisphere, which connect the cerebral cortex with muckei of other and more posterior parts of the brain. When the fibers of the internal capsule are traced forward it is evident that they spreall out in all directions to reach the cerebral cortex. This arrangement, in which the fibers of the corpus callosum participate, is termed the corona radiata.

The internal capsula also contains fibers whech connect the corpus striatum with the thalamus. These are termed the thalamo-striate and strio-thalamic fibers respectively, accorling to the direction in which they conduct impulses.

The fibers of the stria terminalis comeet the amygdaloid nucleus with the septum pellucidum and trigonum offactorium. It is therefore probably part of the complex connections between the primatry and secondary olfactory centers.

Blood-vessels of the Brain.-The arteries which supply the brain are derived dhiefly from the internal carotid and oceipital arteries. The basilar artery, formed by the umion of the right and left cerebral branehes of the oecipital artery, enters
${ }^{1}$ Formerly termed the tarnia semicircularis.
${ }^{2}$ The term arose from the striated appearaner of the mass in sections cut in certain planes, the gray matter being cut up into strands by tracts of white fibers.
the eranial cavity through the foramen magnum, and divides at the interperduncular fonsa into the two posterior cerebral arteries. These concur with branches of the internal carotid arteries in forming the remarkable arterial circle on the base of the cerebrum. From these emanate basal arteries which supply in general the brain -tem and basal ganglia, and cortical arteries which in general run superficially and supply the cortical substance and medullary white substance.

The veins enter the simuses of the dura mater, and in the main are not satellites of the arteries. The simuses communicate with the ophthalmic, dorsal and ventral cerebral, and spinal reins.

The Cranial Nerves

The cranial or cerebral nerves (N n. cerebrales) comprise twelve pairs which are designated from before backward numerically and by name. Their number, names, and functional characters are given in the subjoined table:

I. Olfactory
II. Optic.
III. Oculomotor.
IV. Trochlear.
V. Trigeminal
VI. Abducent.
VII. Facial.
VIIl. Acoustic
I. Crlosso-pharyngexal
X. Vagus.
JI. SpinaI accessory
NII. Hypoglossal
sensory smell)
大ensory *ight
Sotor
Motor
Nixed
Motor
IIised
sensory (Hearing and Equilibration)
Mixed
Mixed
Motor
Motor

THE OLFACTORY NERVE

The olfactory nerve (N . olfactorius) is peculiar in that its fibers are not aggregated to form a trunk, but are connected in small bundles with the olfactory bulb. They are non-medullated, and are the central processes of the olfactory cells which are situated in the olfactory region of the mucous membrane of the nasal cavity. This region is distinguished by its brown color and comprises the posterior part of the lateral mass of the ethmoid, a small adjacent area of the dorsal turbinate, and the corresponding surface of the septum nasi. The nerve-bundles are enclosed in sheaths derived from the membranes of the brain and pass through the foramina of the cribriform plate to join the convex surface of the olfactory bulb. Some fibers come from the vomero-nasal organ.

THE OPTIC NERVE

The optic nerve (N. opticus) is composed of fibers which are the central processes of the ganglion cells of the retima. The fibers converge within the eveball to the optic papilla, where they are collected into a round trunk, the optic nerve. The nerve thus formed pierces the chorioid and sclera, emerges from the posterior part of the eveball, and passes backward and medially to the optic foramen. After traversing the latter it decussates with its fellow of the opposite side to form the optic chiasma. In the orbit the nerve is slightly flexuous and is embedded in the fat behind the eyeball and surrounded by the retractor oculi muscle. Its intraosseous part is an inch or more (ca. 3 cm .) long. The sheath of the nerve is formed by prolongations of the membranes of the brain, and includes continuations of the subdural and subarachnoid spaces.

The greater part of the fibers of the optic nerve cross in the chiasma to the tract of the opposite side. In the tract the fibers proceed to (1) the medial geniculate body, (2) the posterior
part of the thalamus, and (3) the anterior quadrigeminal body (indireetly). The fibers which go to the medial geniculate body appear to befong to Gudden's commissure and to be non-risual in function. The visual fibers, which come from the lateral part of the retina of the same side and the medial part of the retina of the opposite side, terminate about eells in the anterior quadrigeminal body and the part of the thalamus which corresponds to the pulvinar and lateral geniculate body of man. From the edls of the former fibers pass to the muelei of the motor nerves of the eychall, and complote the refiex are. Fibers proeed from the cells of the thatamus to the visual areat of the cortex in the oecipital part of the hemisphore.

THE OCULOMOTOR NERVE

The oculomotor nerve (N . oculomotorius) arises by several radicles from the basal surface of the cerebral peduncle, a little lateral to the interpeduncular furrow. It turns sharply outward and for-

Fig. fits.-Floor of Cranial Cavity of Horse.
The roots of the cramial nerves are shown on the left side and are designated by number: I, interior cranial fossa: $I I$, middle eramal fossa: $I I I$, posterior cranial fossa; a, ethmoidal fossa; b, ethmoidal foramen; c, foramen for nasal branch of ophthalnic artery; $d_{\text {a }}$ orbital wing of sphenoid bone; $e_{\text {, optic }}$ groove; f, bypophyseal fossa; g, spheno-occipital crest; h, h^{\prime}, contour of hypopbysis or pituitary body; $h^{\prime \prime}$, slight elevation representing dorsum sellx; i, k, grooves for nerves and cavernous sinus; l, depression for piriform lobe of cerebrum; m, groove for middle neningeal artery; n, depression for pons; a, foramen lacerum anterius; p, foramen lacerum posterius; q, incisura carotica; q^{\prime}, incisura ovalis; $q^{\prime \prime}$, incisura spinosa; r, depression for medulla oblongata: s, hypoglossal foramen; t, internal acoustic meatus; u, foramen magnum; v, frontal sinus; u, zygomatic process of temporal bone; x, section of petrous temporal; u, section of occipital bone; z, crista galli; $1,1^{\prime}, 1^{\prime \prime}$, dotted lines indicating position of olfactory strix and tract. (After Ellenberger-Baum, Top. Anat. d. Pferdes.) ward, crosses over the cavernous simus, and continues above the maxillary nerve and in company with the ophthalmic nerve to the foramen orbitale. It emerges through the foramen with the latter nerve and the ablucens and divides into two branches. The dorsal branch is short and divides into two twigs which supply the rectus dorsalis and levator palpebre superioris. The ventral branch (Figs. 563, 564) is larger and much longer. It supplies the motor fibers to the ciliary ganglion (which lies directly on this branch in the horse) and short branches to the reetus medialis and rectus ventralis, and continues forward on the latter to end in the ventral oblique muscle.

The deep origin of the fibers of the oculomotor nerve is in the oculomotor nueleus, situated in the gray matter of the floor of the cerebral aqueduct in the region of the anterior corpora quadrigemina.

THE TROCHLEAR NERVE

The trochlear nerve (N. trochlearis) ${ }^{1}$ is the smallest of the eranial nerves. It arises from the anterior cerebellar peduncle just behind the corpora quadrigemina, curves outward and forward, pierces the tentorium cereholli, and passes forward along the lateral border of the maxillary nerve (Figs. 635, 636). It emerges from the eranium through a small foramen ${ }^{1}$ Formerly termed the nervus patheticus.
immediately above the foramen orbitale or through the latter and passes forward along the medial wall of the orbit to end in the posterior part of the dorsal oblique muscle of the eycball (Fig. 564).

The filers of the fourth nerve spring from a nueleus in the gray matter of the floor of the cerebral aqueduct behind the oculomotor nucleus. The fibers run backward in the tegmentum, then turn dorso-medially, and undergo total decussation with those of the opposite nerve in the anterior part of the anterior medullary velum. In addition to this peculiarity it is the only nerve which is connected with the dorsal aspect of the brain.

THE TRIGEMINAL NERVE

The trigeminal nerve (N . trigeminus $)^{1}$ is the largest of the cranial series. It is connected with the lateral part of the pons by a large sensory root and a smaller motor root (Fig. 629).

The sensory root (Portio major) extends forwarl through a notch on the lower part of the petrosal crest and widens out to join the semilunar ganglion.

The semilunar ganglion (Ganglion semilunare) ${ }^{2}$ is a crescent-shaped mass of nerve-fibers and cells which overlies the antero-lateral part of the foramen laccrum basis cranii, and is partly embedded in the dense fibrous tissue which occupies the foramen except where vessels and nerves pass through. Its long axis, which is about an inch (2.5 cm .) in length, is directed forward and medially and its convex anterior face gives rise to the ophthalmic, the maxillary, and the sensory part of the mandibular division of the nerve. The surface of the ganglion is irregularly striated. It is connected by filaments with the adjacent carotid plexus of the sympathetic, and sends delicate twigs to the dura mater.

The fibers of the sensory root arise from the ganglion as axones of the ganglion cells, and the fibers of the nerves which extend peripherally from the ganglion are dendrites of the cells. The sensory root-fibers enter the tegmentum of the pons and divide into anterior and posterior branches, which terminate about the cells of the sensory nucleus of termination of the trigeminus. This nucleus extends from the pons to the sixth cervical segment of the spinal cord (Dexler). The posterior branches of the fibers are collected into a compact bundle, the spinal tract or root of the trigeminus, which lies lateral to the substantia gelatinosa in the medulla. The central connections of the sensory part of the trigeminus are very extensive. The most important paths are: (1) Axones of cells of the sensory nucleus and the substantia gelatinosa pass chiefly as arcuate fibers across the raphé to the thalamus, whence impulses are transmitted by thatamo-cortical fibers to the cerebral cortex. In ungulates a distinct tract extends from the anterior part of the sensory nuckeus to the thalamus of the same side (Wallenberg). It is probable that collaterals of the arcuate fibers go to the motor nuclei of the fifth, seventh, ninth, and tenth cranial nerves. (2) Axones of cells of the sensory nucleus enter the posterior cerebellar peduncle of the same side and reach the cerebellar cortex. (3) Collaterals are distributed to the nuclei of origin of the hypoglossal and of the motor part of the trigeminal and facial nerves.

The motor root (Portio minor) extends forward beneath the sensory root and the semilunar ganglion and is incorporated with the mandibular division of the nerve. Its fibers arise chiefly from the so-called masticatory nuclens, which is situated in the pons near the inner face of the sensory nucleus; a few of these fibers come from the nucleus of the opposite side and cross in the raphé. Other fibers, which constitute the mesencephalic root, arise from cells in the outer part of the central gray matter of the mid-brain.

It is evident from the foregoing statements that the trigeminus has essentially the same arrangement as a typical spinal nerve. It divides into three branches.
I. The ophthalmic nerve (N. ophthalmicus) (Figs. 563, 564, 565) is purely sensory and is the smallest of the three branches of the trigeminus. It arises from the medial part of the front of the semilunar ganglion, passes forward along the outer side of the cavernons sinus, and is blended with the maxillary nerve for some distance. It enters the foramen orbitale with the third and sixth nerves and divjdes into three branches.

1. The lacrimal nerve (N. lacrimalis) runs forward on the rectus dorsalis and

[^193]the levator palpebres superioris and ramifies chiefly in the lacrimal gland and the upper eyelid. A branch (Ramus zygomatien-temporalis) exchanges twigs with the zygomatic loranch of the maxillary nerve, perforates the periorbita, and emerges from the orbital fossa behind the suprambital process; it forms a plexus with branches of the auriculo-palpebral and frontal nerves, and ramifies in the skin of the temporal region.
2. The frontal nerve (N. frontalis), also termed the supraorbital, runs forward almost parallel with the dorsal ohligue musele, at first within, then outside of the periorbita. It passes through the supraorbital foramen with the artery of like name and ramifies in the skin of the forehead and uppor eyelid, forming a plexus with the lacrimal and auriculo-palpebral nerves. It divides into three branches.
3. The naso-ciliary nerve (N. nasociliaris), also termed the palpebro-nasal, runs forward along the medial side of the optic nerve between parts of the retractor muscle and divides into two branehes. Of these, the ethmoidal nerve (N. ethmoidalis) is the contimuation of the parent trunk. It accompanies the ethmoidal artery through the foramen of like name into the cramial cavity and crosses the lower part of the ethmoidal fossa. Leaving the eranium through an copening in the cribriform plate close to the erista galli, it enters the masal cavity and ranuifies in the mucous membrane of the septum nasi and the dorsal turlinate. The infratrochlear nerve (N. infratrochlearis) runs forward to the medial canthus and ramifies in the skin in this regiom; it detaches twigs to the conjunctiva and carmeula lacrimalis, and a long branch which supplies the third eyeld and the lacrimal ducts and sac. The naso-ciliary nerve furnishes the sensory or long root (Radix longa) of the ciliary ganglion.

The ciliary ganglion is plaeed on the ventral branch of the oculomotor nerve, close to its origin from the latter. It is usually not larger than a millet-seed, and is best found ley following the nerve to the ventral oblique muscle back to its origin. The ganglion receives-(() sensory fibers from the masio-diary nerve; (b) motor fibers from the oculomotor nerre; and (c) sympathetic fibers from the splenopalat ine plexus. It detaches filaments which unite with twigs from the ophthalmie and maxillary nerves and from the sphenopalatine ganglion to form the ciliary plexus. From the latter emanate five to eight delicate short ciliary nerves (Nn. eiliares breves), which pursue a somewhat flexuons comrse along the optic nerve, pierce the selera near the entrance of that norve, and run forward between the sclera and chorioidea to the circomference of the iris. Here the branehes of adjacent norves anastomose to form a circular plexus (llexus gangliosis ciliaris), from which filaments go to the ciliary body, iris, and cornea.

The circular fibers of the iris and the ciliary muscle are innervated by fibers derived from the oculomot or norve, the ratial fibers of the iris by the sympathetic.
II. The maxillary nerve (N. maxillaris) ${ }^{1}$ is purely sensory and is much larger than the ophthalmie. It extends forward from the semilumar ganglion in the middle cranial fossa in the large groove on the root of the temporal wing of the sphenoid. It is related medially to the cavernous simus and dorsally to the ophthalmie nerve, with which it is blended for some distance. It emerges through the foramen rotundum, passes forward in the pterygo-palatime fossa alove the internal maxillary artery and embed led in fat, and is continued in the infraorbital canal as the infraorbital nerve (Fig. 564). Its branches are as follows:

1. The zygomatic nerve (N. zygomaticus s. subertaneus malæ), also termed the orhital brancl, arises before the maxillary nerve reaches the pterygo-palatine fossa (Figs. 563, 564, 646). It pierees the periorbita and divides into two or three delicate branches which pass along the surface of the lateral straight muscle to

[^194]the lateral canthus and ramify chiefly in the lower lid and the adjacent skin. Anastomoses are formed with branches of the lacrimal nerve.
2. The sphenopalatine nerve (\mathbf{N}. sphenopalatinus) is given off in the pterygopalatine fossa from the ventral border of the maxillary nerse (Fig. 56t). It is broad and flat and forms a plexus in which several small sphenopalatine ganglia

Fig. 646.-Dissection of Head of Horse.
The masseter and superficial muscles and the parotid gland are in great part removed. a, a, Levator labii superioris proprius; b, b, levator nasolabialis; c, dilatator naris inferior; d_{3} buccinator; e, common mass of buecuator and depressor labui inferioris; f, depressor labii inferioris; g, masseter; h, orbicularis oculi; i, temporalis; h, occipitohyoideus; k^{\prime}, occipito-mandibularis; l, sterno-cephalicus; l^{\prime}, tendon of same: m, omo-hyoideus; n, crico-pharyngeus; o, mastoid tendon of brachiocephalicus; p, splenius; q. inferior buccal and labial glands; r, superior buccal glands; s, remnant of parotid gland; t, mandihular gland; u, anterior cervical lymph glands; $\quad v$, probe passed into diverticulum nasi; u, cornu of alar cartilage; x, medial palpebral ligament; y, wing of atlas; z_{1} scutiform cartilage of ear; 1 , lateral nasal nerve; 2, anterior nasal nerve: 3. superior labial nerve; 4 , anterior part of superior buccal nerve; 5 , buccinator nerve; $b^{\prime}, 6^{\prime}$, inferior alveolar nerve; $6^{\prime \prime \prime}$, mental nerve-continuation of $6 ; 7$, masseteric nerve; S, facial nerve cut ; 9 , superficial temporal nerve; 10 , anastomosts between 9 and $\delta ; 11$, internal auricular nerve; 12 , posterior auricular nerve; 13 , digastric nerve; 14, cervical branch of facial nerve (cut); 10 , auriculo-palpebral nerve: 16 , lacrimal nerve; 17, frontal nerve: 18 , infratrochlear nerve; 19, zygomatic nerve; 20 , spinal accessory aerve; 21 , ventral branch of spinal accessory nerve (to sterno-cephalicus); 22, ventral end branch of first cervical nerve; 23, thyro-laryngeal artery: 24 , internal maxillary artery; 25, masseteric artery; 26, great (posteriot auricular artery; 27, external branch of $26 ; 23$, deep auricular artery; 29, anterior auricular artery; 30, transverse facial artery; 31, facial artery; 23, inferior labial artery; 33, superior labial artery; 34, lateral nasal artery; 3.5, dorsal nasal artery: 36, angular artery of eve; 37 . terminal branches of superior Labial nerve; $3 S$, branch of buccinator artery: 39 . buecinator vein: 40 , vena reflexa; 43 , jugular vein; 43 , external maxillary vein; $4 \neq$, ventral cerebral vein; 45, stump oi great auricular vein; 45 , rarmus of mandible; fín, facial crest; ; $\mathbf{4}$, zygomatic arch; 49, parotid duct. (After Ellenberger-Baum, Top. Anat. d. Pferdes.)
are interposed. It dirides into posterior nasal, and greater and lesser palatine nerves. (1) The posterior nasal nerve (N. nasalis aboralis) passes through the sphenopalatine foramen, in which it bears one or more minute ganglia, enters the nasal cavity, and divides into medial and lateral branches (Figs. 565, 558). The medial branch (N . septi narium) rums forward in the submucous tissue of the lower part of the septum nasi, gives twigs to the mucous membrane here and to the vomero-nasal organ, passes through the palatine fissure, and ramifies in the anterior
part of the hard palate. The lateral branch (Ramus tateratis) ramifies in the mucous membrane of the rentral turbinate and the midde and ventral meatus nasi. (2) The greater or anterior palatine nerve (N . palatinus major s. oralis) (Figs. $563,564)$ is the largest of the three branches. It runs forward in the palatine canal and groove and ramifies in the hard palate and gums. It also supplies twigs to the soft palate, and gives off branches which pass through the accessory palatine foramina to supply the mucous membrane of the ventral meatus.

The branches of the two nerves anastomose in the harl palate and form a plexus about the branches of the palatine arteries.
(3) The lesser or posterior palatine nerve (N. palatinus minor s. aboralis), also termed the staphyline, is much the smallest of the three branches (Figs. 563, 564). It passes downwarl and forward with the palatine rein in the groove at the medial side of the tuber maxillare and ramifies in the soft palate.

The sphenopalatine ganglia and plexus (Fig. 647) lie on the perpendicular part of the palatine bone and the pterygoil process, under cover of the maxillary nerve. The afferent fibers of the plexus and ganglia come chi fly from the branches of the sphenopalatine nerve and the nerve of the pterygoid canal. Interspersed in these are several minute ganglia and one or more larger ones. The nerve of the pterygoid canal (N. canalis pterygoidei $)^{1}$ is formed by the union of sympathetic fibers with the superficial petrosal branch of the facial nerve. It passes forward at first between the Enstachian tube and the sphenoid bone, enters the canal between the pterygoid bone and process, and joins the posterior part of the plexus. It is probathle that it furnishes the motor fibers to the levator palati and palatinus museles. Efferent filaments go to the priorbita and the ophthatmic vessels, and others accompany the branches of the maxillary nerve, around which they have a plexifurm arrangement.
3. The infraorbital nerve (Λ^{*}. infraorlitalis $)^{2}$ is the continuation of the maxillary trunk. It traverses the infraorbital canal, emerges through the infraorlital foramen, and divides into nasal and superior labial branehes. Along its course it gives off maxillary alveolar or dental branches (Rami alveolares maxilhæ), which supply the teeth, alvedar periosteum, and gums.

Small posterior alveolar branches (Rami alveolares maxillie ahorales) are given off in the pterygo-palatine fossa, pass through small foramina in the tuber maxillare, and supply the posterior molar teeth and the maxillary sinus. The middle alveolar branches (Kami alveolares maxille medii) are given off in the infraorbital canal, and constitute the chief nerve-supply to the cheek teeth and the maxillary sinus. The maxillary incisor branch (Ramus alveolaris maxillie incisivus) runs forward in the incionr eanal and supplies branches to the canine and incisor teet h. The foregoing unite with each other to form the maxillary dental plexus (Plexus dentalis maxilla) from which the dental and gingival branches are given off.

The external nasal branches (Rami nasales externi), two or three in number, acempany the levator labii superioris proprins and ramify in the dorsum nasi and the nasal diverticulum.

The large anterior nasal branch (Ramus nasalis oratis) gives branches to the upper lip and nostril, passes over the nasal process of the premaxilla under cover of the lateralis nasi, and ramifies in the mucous membrane of the nasal vestibule.

The superior labial branch (Ramus labialis dorsalis) is the largest of the terminals of the infraorbital nerve. It passes downward and forward under cover of the levator nasolabialis and, after supplying the skin of the anterior part of the eheek, forms a rich terminal ramification in the skin and nucous membrane of the upper lip. It anastomoses with the superior buecal branch of the facial nerve.

IIL. The mandibular nerve (N. mandibularis) ${ }^{3}$ is formed by the umion of two roots; of these, the large sensory root comes from the semilunar ganglion, and the small motor root is the pars minor of the trigeminus. It emerges from the eranium through the oval notch of the foramen lacerum, and passes between the temporal wing of the sphenoid bone and the muscular process of the petrous temporal. It then runs forward, downward, and a little outward, between the ventral surface of

[^195]the pterygoideus medialis and the guttural pouch, and on reaching the lateral surface of the pterygoideus lateralis, it divides into two terminal branches- the inferior alveular and lingual nerves. It gives off the following branches:

1. The masseteric nerve (N. massetericus) (Figs. 562, 646) passes outward through the sigmoid notch of the mandible across the anterior surface of the tem-poro-mandibular articulation and enters the deep face of the masseter muscle, in which it ramifies.
2. The deep temporal nerves (Nn. temporales profundi) (Fig. 562), two or three in number, arise from, or by a common trunk with, the masseteric. They supply the temporalis muscle.
3. The buccinator nerve (N. buccinatorius) passes downward and forward at first across the medial surface of the temporomandibular articulation, then through the anterior part of the lateral pterygoid muscle, then between the bucci-

Fig. 647.-Deer Dissection of Base of Cranicm, Vieted from the Riget and Below.
The tympanic cavity is opened and the paramastoid process is sawn off. a, Occipital condyle; h, body of sphenoid; c, external acoustic meatus (part removed) : d, mafleus; ϵ, incus; 1 , stunp of ophthalnic nerve; 2 . stump of maxillary nerve; 3 , sphenopslatine plexus; 4 , nerve of pterygoid canal; 4^{\prime}, deep petrosal nerve; $4^{\prime \prime}$, branch to tympanic plexus; $4^{\prime \prime \prime}$, superficial petrosal nerve; $\overline{5}$, superGcial temporal nerve (cut off); 6 , masseteric nerve (cut off); π, mandibular nerve (raised); 8 , lingual nerve (cut off); 9 , pterygoid nerve (cut); 10 , berve to tensor tympani; 11, otic ganglion; 12 , facial nerve; 13 , stapedial nerve; 14 , chorda tympani; 15 , glosso-pharyngeal nerve (cut); 16 , tympanic nerve; 17 , vagus (cut off); 15 , auricular branch of vagus; 19, spinal accessory nerve (cut off); 20, hypoglossal nerve (cut off; 21, sympathetic nerve (cut off); 22, internal carotid artery. (After Ellenberger, in Leisering's Atlas.)
nator vein and the tuber maxillare (Fig. 646). It continues forward in the submucous tissue of the cheek along the ventral border of the depressor labii inferioris and divides into branches which ramify in the mucous membrane and glands of the lips in the ricinity of the commissure. It supplies small branches to the lateral pterygoid and temporal museles and detaches numerous collateral twigs to the mucous membrane of the cheek and to the buccal glands. It also communicates with the inferior buccal branch of the facial nerve.
4. The pterygoid nerve (N. pterygoideus) arises in common with the preceding, passes downward and forward under cover of the parent trunk, and divides into branches which enter the posterior part of the pterygoideus medialis at the division between the two layers of the muscle (Fig. 647).

The otic ganglion (G. oticum) is situated on the mandibular near the origin of the buccinator nerve, and is related medially to the tensor palati and the Eustachian tube. It receives motor fibers from the pterygoid nerve and sensory fibers by the
smatl superficial petrosal nerve from the tympanic plexus, through which communications are made with the facial and glosso-pharyngeal nerves. Sympathetie fibers are derived from the plexus on the internal maxillary artery. Efferent filaments go to the tensor palati, tensor tympani, and pterygoid muscles and to the Eustachian tube.

The ganglion is small and somewhat difficult to find, and in many cases it is replaced by a number of minute ganglia interspersed in a fine plexus.
5. The superficial temporal nerve (N . temporalis superficialis) (Fig.. 562 , 646,647) runs outward across the pterygoileus lateratis, passes between the parotid gland and the neek of the ramus of the mandible, turns aromed the latter, and divides into two branches. The transverse facial branch (Ramus transversus faciei) aceompanies the transerse facial vessels and ramifies in the skin of the eheek. The larger ventral branch unites with the ventral buceal division of the facial nerve. Bofore its division the nerve gives off twigs to the guttural pouch, the parotid gland, the external ear, and the skin of the external aeoustic meatus and the men-

Fig. 64S.-Part of Branch of Lower Jaw of Hobse; Mldiat. View,
The bone has been removed to show the vessels and nerves. $1, l^{\prime}$, Mamblumar alwolar nerve: 2,2 , branches to cheek teeth and gums; z^{\prime}, branch to canine and incisor teeth; 3, 3^{\prime}, alveolar artery: 4, satellite vein, (.ffer Leisering's Atlas.)
brana tympani. Branches from it concur with filaments from the cervical braneh of the farial nerve in the formation of the auricutar plexus.
6. The mandibular alveolar nerve (N. alveolaris mandibule) (Figs. 561, 562, $646)^{1}$ arises with the lingual by a common trunk which passes forward at first on the lateral pterygoid mushe, then inclines ventrally between the medial pterygoid and the ramus of the mandible. The tingual and alvolar separate at an arute angle, and the latter enters the mandibular foramen and eourses in the eanal within the ramus (Fig. 648). Emerging at the mental foramen, it terminates be dividing intos six to eight inferior habiat and mental branches, wheh ramify in the lower lip and chin. Before entering the bone, the nerve detaches the mylo-hyoid nerve (N. mylohyoidus), which runs downward and forward between the ramus and the mylo-hyoid muscle; it supplies that musele, the anterior betly of the digastrieus, and the skin of the anterior part of the mandibular space. The dental and gingival branches detached from the nerve within the mandible are arranged like the corresponding nerves of the upper jaw.
7. The lingual nerve (N, lingualis) arises beymon trunk with the mandib)ular alvedar nerve (Figs. 561, 562). After separating from the latter it runs

[^196]downward and forward, lying at first between the ramus of the mantible and the medial pterygoid muscle, then on the mettial face of the mylo-hyoid. On reaching the root of the tongue it divides into superficial and deep branches. The superficial branch (Ramus superficialis) runs forward on the stylo-glossus and accompanies the mandibular duct on the deep face of the sublingual gland. It supplies the mucous membrane of the tongue and the floor of the mouth. At the root of the tongue it gives off a recurrent branch to the isthmus faucium, which commmicates with the lingual branch of the glosso-pharyngeal nerve. The larger deep branch (Ramus profundus) turns around the lewer edge of the stylo-glowse and hyoglossus, passes upward and forward between the latter muscle and the genioglossus, and continues forward on the latter to the tip of the tongue. At the turn it gives off one or more ascending branches which ramify on the deep face of the hyo-glossus. It gives branches to the mucous membrane and the fungiform papillie of the tongue, and anastomoses with branches of the hypoglossal nerve and with the superficial branch. Minute ganglia occur on the finer branches of the lingual nerve. The chorda tympani branch of the facial joins the lingual nerve at the origin of the latter and is incorporated with it in its distribution to the tongue.

THE ABDUCENT NERVE

The abducent nerve (N. abducens) emerges from the brain behind the pons and just lateral to the pyramid (Fig. 629). It passes forward across the pons, pierces the dura mater, and accompanies the third and ophthalmic nerves, below which it emerges through the foramen orbitale. In the orbit it divides into two branches which innervate the rectus lateralis and the retractor muscle of the eycball. Within the cranium it receives filaments from the carotid plexus of the sympathetic.

The fibers of the abducent nerve are axones of the large multipolar cells of the abducent nucleus which is situated beneath the eminentia teres of the floor of the fourth ventricle. The nucleus lies within the loop formed by the fibers of origin of the facial nerve. It is connected with (a) the antcrior olive; (b) the oculomotor nucleus of the opposite side; (c) the motor area of the cerebral cortex by means of the pyramidal tract of the opposite side.

THE FACIAL NERVE

The facial nerve (N. facialis) has its superficial origin at the lateral part of the corpus trapezoidcum, immediately behind the pons (Fig. 629). It passes outward in front of the eighth nerve and enters the internal acoustic meatus. At the bottom of the meatus the two nerves part company, the facial coursing in the facial canal of the petrous temporal bone. The canal and nerve are at first directed outward between the vestibule and the cochlea, then curve backward and ventrally in the posterior wall of the tympanum to end at the stylo-mastoid foramen. The bend formed by the nerve is called the knee (Geniculum n. facialis), and bears at its highest point the round geniculate ganglion (C. geniculi).

Abstract

The nerve consists of two parts, motor and sensory. The motor part constitutes the bulk of the nerve. Its dcep origin is from the cells of the facial nucleus, which is situated in the medulla above the facial tubercle. On leaving the nucleus the root-fibers pass dorso-medially, incline forward close to the median plane, and then bend sharply downward to the point of emergence. The highest point of the bend is subjacent to the gray matter of the eminentia teres in the floor of the fourth ventricle, and the abducent nucleus lies in the concavity of the curve. The small sensory part (N. intermedius) consists of axones of cells of the geniculate ganglion, which is interposed on the facial nerve as it bends downward in the facial canal. The fibers of this part, after entering the medulla, pass to the nucleus of termination which it shares with the ninth and tenth nerves. The peripheral fibers from the geniculate ganglion constitute the chorda tympani.

After its emergence through the stylo-mastoid foramen (Fig. 646) the nerve passes ventrally, forward, and outward on the guttural pouch under cover of the
parotid gland, and passes between the origin of the supericial temporal and internal maxillary arteries medially and the superficial temporal vein laterally. It then crosses the posterior border of the ramus of the mandible ventral to the transverse facial artery and about an inch and a half (ea. 3.5-4 cm.) below the articulation of the jaw. Emerging from beneath the parotid gland upon the masseter muscle, it receives the ventral braneh of the superficial temporal nerve, and divides into dorsal and ventral buceal branches. The following collateral branches are given off, the first five boing detached within the facial canal, and the others betwen the stylo-mastoid foramen and the lorder of the jaw.

1. The great superficial petrosal nerve (N. petrosus superficialis major) arises from the geniculate ganglion. ${ }^{1}$ It passes through the petrosal canal, contributing a filament to the tympanic plexus, receives the deep petrosal nerve from the carotid plexns of the sympathetic, emerges through the foramen lacerum, and is continued as the nerve of the pterygoid canal to the sphenopalatine plexus and ganglia (Fig. 647).
2. A delicate branch (R. anastomotions cum plexu tympanico) emerges from the geniculate ganglion and unites with a filament issuing from the tympanic plexus to form the small superficial petrosal nerve (N . petrosus superficialis minor); this ends in the otic ganglion.
3. The stapedial nerve (N. stapedius) (Fig. 647) is a short filament detached from the facial nerve as it turns down in the facial c:mal. It innervates the stapedius muscle.
4. The chorda tympani (Fig. 617) is a small nerve which arises a little below the preceding and pursues a recurrent course in a small canal in the mastoid part of the temporal bone (Canaliculus chorde tympani), to reach the tympanic cavity. It traverses the latter, passing loetween the handle of the malleus and the long branch of the incus. Emerging through the petrotympanic fissure, the nerve passes downward and forward on the guttural pouch, crosies beneath the internal maxillary artery, and joins the lingual nerve. It sends twigs to the mandibular and sublingual glands, and through its incorporation with the lingual nerve furnishes fibers to the mucous membrane of the anterior two-thirds of the tongue which are believed to mediate the sense of taste.
5. Anastomotic filaments unite with the auricular branch of the vagus near the stylomastoid formmen.
6. The posterior auricular nerve (N. auricularis aboralis) arises from the facial at its emergence from the facial canal (Fig. 64ti). It rums upward and backward with the posterior auricular artery under cover of the parotiel gland, and supplies the posterior and dorsal auricular muscles and the skin of the convex surface of the external ear. It anastomoses with branches of the first and second cervical nerves.
7. The internal auricular nerve (N. auricularis internus) springs from the facial close to or in common with the preceding (Fig. (it6). It ascends in the parotid gland just behind the styloid process of the eonchal cartilage, passes through an opening in the cartilage, and ramifies in the skin of the eoncave surface of the car.
8. The digastric branch (R. digastricus) (Fig. 646) arises from the facial below the auricular nerves and descends under cover of the parotid gland. Its branches imnervate the posterior belly of the digastricus, the stylo-hyoideus, and the oceipitohyoidens. At its origin it gives off a small branch which forms a loop around the great auricular artery or its posterior branch and rejoins the trunk.
9. The auriculo-palpebral nerve (N. auriculopalpebralis) (Fig. 646) arises from the upper efge of the facial near the posterior border of the ramus. It ascents
${ }^{1}$ Although this nerve springs directly from the ganglion, it contains motor as well as sensory fibers.
in the parotid gland behind the superficial temporal artery, and terminates in anterior auricular and temporal branches. The small anterior auricular branches form with the frontal and lacrimal branches of the trigeminus the anterior auricular plexus. They innervate the anterior auricular and parotido-auricularis muscles. The temporal branch runs forward and inward over the temporal muscle to the medial canthus of the eve, forms a plexus with the terminal branches of the ophthalmic nerve, and is distributed to the orbicularis oculi, corrugator supercilii, and levator nasolabialis.
10. The cervical branch (R. colli) (Fig. 560) is small; it arises from the ventral border of the facial opposite to the preceding nerve. It passes obliquely through the parotid gland, emerging under cover of the parotido-auricularis. passes dommward and backward on or near the jugular vein, and anastomoses with the cutaneous branches of the cervical nerves. It gives branches to the parotido-auricularis and the cervical cutaneous muscle. In its course along the neck the nerve is reinforced by twigs from the cutaneous branches of the second to the sisth cervical nerves.
11. Small branches are detached to the guttural pouch and the parotid gland. The latter (Rami parotidei) concur with branches of the superficial temporal nerve in forming the parotid plexus.

The facial nerve usually terminates after a short course on the surface of the masseter by dividing into two buccal branches (Fig. 560).

1. The dorsal buccal nerve (Λ. buccalis dorsalis) passes forward on the upper part of the masseter, dips under the zygomaticus, and reaches the ventral border of the dilatator naris lateralis. It continues under cover of the last-named muscle and the levator nasolabialis in company with the superior labial artery and ramifies in the muscles of the upper lip and nostril. It gives collateral branches to the buccinator and anastomoses with the infraorbital and ventral buccal nerve.
2. The ventral buccal nerve (N . buccalis ventralis) crosses the masseter obliquely and continues forward along the depressor labii inferioris. It is connected by variable anastomotic branches with the clorsal nerve. It gives collateral branches to the cutaneus, buccinator, and depressor labii inferioris, and ramifies in the muscles of the lower lip.

The buccal nerves are subject to much rariation in regard to their course, anastomoses, and relations to the sensory components derived from the superficial temporal nerve. Their distribution is constant. The point at which the branch of the superficial temporal nerve joins the facial is variable.

THE ACOUSTIC NERVE

The acoustic nerve (N. acusticus) is connected mith the lateral aspect of the medulla just behind aud lateral to the facial (Fig. 629). It has two roots, vestibular and cochlear (Radix vestibularis, cochlearis).

Abstract

The acoustic nerve consists of two distinct parts which might well be regarded as separate nerves. The cochlear part mediates the sense of hearing, while the vestibular part is not auditory in function, but is concerned in the sense of the position of the body and the mechanism of equilibration.

The nerve passes outward to the internal acoustic meatus, which it enters behind the facial nerve. In the meatus it divides into two nerves, of which the upper is the vestibular and the lower is the cochlear nerve.

1. The vestibular nerve (\boldsymbol{N}. vestibuli) is distributed to the utriculus, the sacculus, and to the ampullæ of the semicircular ducts of the internal ear. In the internal acoustic meatus the nerve is connected by filaments with the geniculate ganglion of the facial nerve. At the bottom of the meatus it bears the vestibular ganglion (G. vestibulare), from the cells of which the fibers of the nerve arise.
2. The cochlear nerve (N . cochleæ) detaches a filament to the sacculus, passes
through the lamina cribrosa to the labyrinth, and is distributed to the organ of Corti in the cochlea.

The fibers of the vestibular nerve arise from the vestibular ganglion as central processes (axones) of the bipolar eells of the ganglion. The peripheral processes (dendrites) of the cells form arborizations about the dece, ends of the hair-eetls of the maculx and cristar acustice of the utrieulus, saeculus, and semicircular ducts. The fibers enter the medulla, pass between the restiform body and the spinal tract of the trigeminus, and spread out to end in the vestibular nuelcus in the floor of the fourth yentricle. Among the centrat conneetions of the vestibular nerse are: (1) fibers which eonnect its nucleus with eenters in the cerebellum (chiefly of the opposite side) ; (2) the restibule-spinal tract, which conveys impulses to the motor cells of the ventral columns of the spinal cord; (3) fibers whieh eonnect the nucleus with those of the abducent nerve of the same side, the third and fourth norves, and the motor part of the trigeminus of both sides.

The fibers of the corlilear norve are the central processes of the bipolar cells of the spiral ganglion of the cochlea. The peripheral processes of these cells end in relation to the hair-eells of the organ of Corti. Some of the nerve-fibers enter the ventral cochlear nueleus in the medulla elose to the superfieial origin of the nerve; others end in the dorsal nuclens of the tuberculum acustieum at the lateral angle of the floor of the fourth ventricle. From the ventral nuelcus fibers pass in the corpus trapezoideum to the anterior olivary nucleus of the same and of the opposite side. Thence tracts pass to the nuclei of the motor aryes of the cye, and through the lateral fillet to the posterior cquadrigeminal body and the medial geniculate body. The axones of the cells of the dorsal nucleus pass largely (as the strie acustica) over the restiform body and across the floor of the fourth ventricle toward the motian plane. They then turn ventrally, cross to the opposite side, and are continued by the lateral fillet. From the mid-brain a traet proceets to the cortex of the temporal part of the cerehral hemisphere.

THE GLOSSO-PHARYNGEAL NERVE

The glosso-pharyngeal nerve (N. glossopharyngeus) is attached to the anterior part of the lateral aspect of the medulla by several filuments (Fig. 629). The rootbundles enter the furrow ventral to the restiform borly; they are separated by a short interval from the origin of the facial nerve, but are not marked off behind from the roots of the vagus. The bundles converge laterally to form a nerve which perforates the dura mater and emerges through the foramen lacerum posterius just in front of the tenth nerve (Fig. 617). As it issues from the cramium the nerve bears a considerable ovoid gray enlargement, the petrous ganglion (C . petrosum). ${ }^{\text { }}$ It then curves downward and forward over the guttural pouch and behind the great cornu of the hyoid bone, crosses the deep face of the external earotid artery, and divides into pharyngeal and lingual branches (Fig. 562). The collateral branches are as follows:

1. The tympanic nerve (N. tympanicus) (Fig. 64i) arises from the petrous ganglion and passes upward between the petrous and tympanie parts of the temporal bone to reach the eavity of the tympanum. Here it breaks up into branches to form, along with branches from the earotid plexus of the sympathetie, the tympanic plexus. From the plexus branches pass to the mueous membrane of the tympanum and the Eustachian tube. The continuation of the nerve issues from the plexus and unites with a filament from the geniculate ganglion of the facial to form the small superficial petrosal nerve; this rums forward and ends in the otie ganglion.

Filaments also connect the petrous ganglion with the jugular ganglion of the vagus nerve and with the anterior cervical ganglion of the sympathetic.
2. A considerable branch runs baekward on the guttural pouch, contributes filaments to the pharyugeal plexus, and concurs with twigs from the vagus and the sympathetie in forming the carotid plexus on the terminal part of the earotid artery and on its chief branches. In this plexus is the small ganglion intercaroticum.
3. The very small nerve to the stylo-pharyngeus muscle (N. stylopharyngeus) arises from the clorsal border of the nerve.

The pharyngeal branch (R. pharyngeus) (Fig. 562) is the smaller of the two turminal branches. It runs forward across the deep face of the great cornu of the

[^197]hyoid bone and concurs with the pharyngeal branches of the vagus and with sympathetic filaments in forming the pharyngeal plexus; from this branches pass to the muscles and mucous membrane of the pharynx.

The lingual branch (R. lingualis) is the continuation of the trunk (Fig. 562). It ruus along the posterior border of the great cornu of the hyoid bone in front of the external maxillary artery, and dips under the hyo-glossus muscle. It gives collateral branches to the soft palate, isthmus faucium, and tonsil, and ends in the mucous membrane of the posterior part of the tongue, where it supplies gustatory fibers to the vallate papillae. A considerable branch unites with a twig from the lingual nerve.

The glosso-pharrngeal is a mixed nerve, containing hoth motor and sensory fibers. The latter constitute the bulk of the nerve and include those which mediate the special sense of tastc. They are processes of the cells of the petrous ganglion. The central processes of the gangion cells enter the medulla, pass dorso-medially through the formatio reticularis, and end in the nucleus of termination in the floor of the fourth sentricle. The motor fibers arise from dorsal and rentral efferent nuclei in the medulla. The glosso-pharyngeal shares these nuclei with the vagus and has practically the same central comections as that nerve (q.v.).

THE VAGUS NERVE

The vagus (N . vagus ${ }^{1}$ is the longest and most widely distributed of the cranial nerves; it is also remarkable for the connections which it forms with adjacent nerves and with the sympathetic. It is attached to the lateral aspect of the medulla by several filaments which are in series with those of the ninth nerve in front and the elcrenth nerve behind (Fig. 629). The bundles converge to form a trunk which passes outward, pierces the dura mater, and emerges from the cranium through the foramen lacerum posterius (Fig. 647). In the foramen the nerve bears on its lateral aspect the elongated flattened jugular ganglion (G. jugulare).

The ganghon communicates with-(a) the tympanic nerve, (b) The petrous ganglion of the glosso-pharyngeal nerve. (c) the spinal accessory, and (d) the hypoglossal. It also gives off the auricular branch (R. auricularis), which runs forward below the petrous ganglion and passes through a small canal in the petrous temporal bone to gain the facial canal. Here it gives filaments to the facial and emerges with that nerve through the stylo-mastoid foramen. It ascends behind the external acoustic meatus, dips under the deep aurieular muscles, and passes through a foramen in the conchal cartilage to ramify in the integument which lines the meatus and the adjacent part of the ear. It may be noted that many fibers of the vagus pass over the medial face of the ganglion without entering it.

A ganglion nodosum in the form of a compact mass is not present in the horsc. It appears to be represented by masses of ganglion cells in the nerve trunk which begin in front of the origin of the pharyngeal branch and continue a considerable distance behind the origin of the anterior laryngeal nerve.

Beyond the ganglion the ragus runs backward and downward with the spinal accessory in a fold of the guttural pouch (Fig. 562). Then the two nerves separate, allowing the hypoglossal to pass between them, and the ragus descends with the internal carotid artery and crosses the medial face of the origin of the occipital artery. Here it is joined by the cervical trunk of the sympathetic, and the two nerves continue along the dorsal aspect of the common carotid artery in a common sheath (Fig. 558). ${ }^{2}$ At the root of the neek the vagus separates from the sympathetic, and from this point backward the relations of the right and left vagi differ somewhat and must be described separately:

The right vagus nerve (Fig. 554) enters the thorax in the angle of divergence of the right brachial artery and the truncus bicaroticus. It then passes backward and slightly upward, crossing obliquely the lateral surface of the brachiocephalic artery and the right face of the trachea. Reaching the dorsal surface of the latter near the bifurcation, it divides into dorsal and rentral branches.

[^198]The left vagus nerve (Fig. 553) enters the thorax on the lateral or the ventral face of the cesophagus, crosses obliquely under the left brachial artery, and passes back on the lateral surface of that vessel in company with a large cardiac nerve. ${ }^{1}$ Separating from the latter, the vagus continues backward on the left face of the

Fig. 649.-Cross-section of Nece of Horse, Passing throtgh Posterior Part of Atlas.
The head and neck were extended. 1 , Dorsal arch of atlas; 2 , dens of axis; 3 , ligament of dens; 4, vertebral sinuses; 5 , dura mater; θ, spinal cord; $\tilde{\sim}$, vertebral artery; 8 , wing of atlas; 9 , atlanto-axial joint cavity; 10 , oesophagus: 11,11, recurrent nerves; 12,12, ventral branches of spinal accessory nerves. By an oversight the obliquus cap. post. (above wing of atlas) is nomarked; also the parotid gland between the jugular and external maxillary vein.
aorta, inclines to the upper surface of the left bronchus, and divides into dorsal and ventral branches.

The dorsal and ventral branches unite with the corresponding branches of the opposite nerve, thus forming dorsal and ventral œsophageal trunks (Truncus
${ }^{1}$ In some cases the left vagus passes back below the junction of the jugular veins and the termination of the left brachial vein. It then runs backward and somewhat dorsally across the left face of the anterior venia cava to reach its usual position.
œesophageus dorsalis, ventralis). These run backward in the posterior mediastinum, dorsal and ventral to the oesophagus respectively, and enter the abdominal cavity through the hiatus cesophageus; they supply branches to the cesophagus and anastomose with each other. The dorsal trunk receives the major part of its filers from the right vagus. After eutering the abdomen it passes to the left of the cardia, and divides into gastric and ceeliac branches; the former gives branches to the risceral surface of the stomach, forming the posterior gastric plexus; the latter ends in the right coeliaco-mesenteric ganglion and the anterior interganglionic cord. The smaller ventral trunk passes to the lesser 'urvature of the stomach and ramifies on the parietal surface of the stomach; it forms here the anterior gastric plexus from which branches are supplied also to the first part of the duodenum and to the liver and pancreas. ${ }^{1}$

The collateral branches of the vagus are as follows:

1. The pharyngeal branch (R. pharyngeus) is given off in relation to the anterior cervical ganglion, turns around the internal carotid artery, and runs ventrally and forward on the guttural pouch to the dorsal wall of the pharynx (Fig. 562). Here its branches concur with the pharyngeal branch of the glossopharmgeal nerve and with filaments from the spinal accessory and the sympathetic in forming the pharyngeal plexus. This supplies the muscles of the pharymx and of the soft palate (except the tensor palati), delicate filaments to the anterior cervical ganglion of the sympathetic, and a larger branch which passes along the side of the œesophagus and ramifies in its cervical part.

According to Ellenberger and Baum, the pharyngeal plexus receives filaments also from the digastric, anterior laryngeal, hypoglussal, and first cervical nerves. The branches of the plexus form secondary intermuscular and submucous plexuses, in which there are numerous minute ganglia.
2. The anterior (or superior) laryngeal nerve (N. laryngeus cranialis) is larger than the preceding and arises a little behind it (Fig. 562). It crosses the deep face of the origin of the external carotid artery, runs downward and forward over the lateral wall of the pharynx behind the hypoglossal nerve, and passes through the foramen below the anterior cornu of the thyroid cartilage. Its terminal branches ramify in the mucous membrane of the larynx, the floor of the pharynx, and the entrance to the œesophagus; they anastomose with those of the recurrent. At its origin the nerve gives off its small external branch (R. externus); this descends to the crico-thyroid muscle, which it supplies, and sends filaments to the cricopharyngeus also. It often arises from the vagus just below the anterior laryngeal and may come from the pharyngeal branch.

At the point of origin of the anterior laryngeal nerve there is a plexiform widening which is regarded by some authors as the homologue of the ganglion nodosum of man; it often contains minute ganglia. From it a filament arises which, after a short course, rejoins the vagus or enters the sympathetic trunk. Stimulation of its central end causes a reduction of the blood-pressure, and it is therefore termed the depressor nerve (\mathcal{N}. depressor). On reaching the heart it passes between the aorta and the pulmonary artery and is distributed to the myocardium.
3. The recurrent nerve (N . recurrens), also termed the inferior or posterior laryngeal nerve, differs on the two sides in its point of origin and in the first part of its course. The right nerve (Fig. 554) is given off opposite the second rib, turns around the dorso-cervieal artery from without inward, runs forward on the ventral part of the lateral surface of the trachea, and ascends in the neek on the ventral face of the common carotid artery. The left nerve (Fig. 553) arises from the vagus where the latter begins to cross the aortic arch. It passes back over the ligamentum arteriosum, winds around the concavity of the aortic arch from without inward,
${ }^{1}$ It will be noted that the formation of the ventral œsophageal trunk usually occurs at the root of the lungs, while the union of the dorsal branches of the two vagi generally occurs nearer the hiatus crsophageus.
runs: forward on the ventral part of the left face of the trachea, and continues in the nerk in a position similar to the right nerve.

It is wort hy of note that the left nerve passes beneath the bronchial lymph glands as it winds around the aort:t; :lso that in the next part of its course it lies between the left surface of the trachea and the drep face of the aorta, and is then related to lymph glands which tie along the ventral aspect of the tracheas. The left recurrent is often incorporated in part of its course in the anterior mediastimum with a deep cawliac nerve. Further, the left nerve lies at first ventral to, and then upon, the cesophagus in the nerk. The right recurrent is given of from, or in common with, a considerable trunk which conneets the vagus with the first thoracic ganglion of the sympathetic. The arrangement leere is commonly more or less 1 lexiform, and from it one or two cardiac nerves arise.

The terminal part of each nerve (Fig. 649) lies on the dorsal surface of the trachea, in relation to the asophagus methally and the earotid artery dorsally. ${ }^{1}$ It passes between the crico-arytenoideus dorsalis and the crico-pharyngeus, and enters the larynx at the medial side of the lamina of the thyroid cartilage. Before entering it gives branches to the crico-arytemoideus dorsalis and arytenoideus tramsersus, and afterward supplies the internal muscles of the larynx. It also communicates by delicate filaments with branches of the anterior laryngeal nerve. ${ }^{2}$ Collateral branches are given off to the cardiac plexns: (Rami cardiaci), to the trachea (Rr. tracheales), to the asmphagus (Rr. asophagei), and to the posterior cervical ganglion of the sympathetic.
4. Cardiac branches (Rr. eardiari), usually two or three in number, are given off from each vagus within the thorax (Figs. 553, 5254). These concur with the cardiae branches of the sympathetic and recurrent nerves to form the ardiac plexns, which !mervates the heart and great vessels.
5. Small tracheal and œsophageal branches (Rr. tracheales et asophagei) are given off from both vagi in the thorax. These concur with branches from the recurrent nerves and the posterior corvical and anterior thoracic ganglia of the sympathetic in forming the posterior tracheal and œsophageal plexuses, from which twigs go to the trachea, exophagus, heart, and large resisels.
(6. Bronchial branches (Rr. bronchiales) are detached at the roots of the lungs and unite with sympathetie filaments in forming the pulmonary plexuses. From the latter numerous branches proceed in a plexiform mamer along the bronchi and vessels into the substance of the lungs.

The vagus and glosso-pharyngeal nerves are so elosely assuciated in origin and central conncetions that they may be deseribed together in this respeet.

The sensory fibers arise from the petrous and jugular ganglia, and their central parts enter the lateral aspeet of the medulta and divide into anterior and posterior branches like the fibers of the dorsal roots of the spinal nerves. Nost of the fibers ent in arborizations about the cells of the vago-glosso-pharyngeal nueleus of termination, which consists of two parts. Of these, the dorsal sensory nucleus (Nuckens abe cinerees) is situated in the posterior part of the floor of the fourth ventriple and in the :uljacent part of the elosed portion of the medulla near the median plane. The other part is termed the nucleus of the solitary tract, and is so named beeause its cells are grouped about the bundle (Tractus solitarius) formed by the posterior divisions of the afferent nerve-fibers. It ends ahout the level of the pyramidat decussation. The serondary eentral connertions are similar to thnse of the sensory part of the trigeminus.

The motor fibers (and those of the medullary part of the aceessory) arise from the dorsal motor nucleus and the ventral motor nucleus. The cells of the former lie in groups along the yentro-medial side of the dorsal sensory nuclens. The latter, also terned the nucleus ambiguus, is situated more deeply in the lateral part of the formatio retieularis.

THE SPINAL ACCESSORY NERVE

The spinal accessory nerve (N. accessorius) is purely motor. It consists of two parts which differ in origin and function.
${ }^{1}$ The nerve lies here about a finger's breath above the thyroid gland. If, however, the gland is enlarged it may come in contaet with the nerve. The same is true in regard to the relation to the anterior cervical lymph glands.
? The recurrent nerves imervate all the intrinsic muscles of the baryn except the ericothyroid.

The medullary part arises from the lateral aspect of the medulla by several rootlets which are behind and in series with those of the vagus (Fig. 629). The spinal part arises from the cervical part of the spinal eord by a series of fasciculi which emerge between the dorsal and ventral roots. The bundles unite to form a trunk which is very small at its origin at the fifth segment of the cord, but increases in size when traced toward the brain, since it continually receives accessions of fibers. It passes through the foramen magnum and joins the medullary part.

Fig. 650. - Neck of Hobse, After Removal of Part of Cutaneus ano Trapezics.

[^199]The trunk thus formed sends its medullary fibers to the vagus and glosso-pharyngeal nerves and emerges through the foramen lacerum posterius. It then runs backward and downward with the vagus in a fold of the guttural pouch, separates from that nerve, crosses the deep face of the mandibular gland and the oecipital artery, and divides in the recessus atlantis into dorsal and ventral branches.

It is connected by anastomotic branches with the vagus and hypoglossal nerves and the anterior cervical ganglion of the sympathetic, and contributes a branch to the pharyngeal plexus.

The dorsal branch (R. dorsalis) (Figs. 558, 649, 650) receives a twig from the second and third cervical nerves and turns around the atlantal tendon of the splenius under cover of the brachiorephalicus. It then passes obliquely through the latter musele and continues backward on the cervical part of the serratus, inclines upward across the anterior deep pectoral and the supraspinatus, and enters the deep face of the trapezius, in which it ramifies.

The ventral branch (R. ventralis) (Fig. 561) is smaller and much shorter. It passes domnward and backward under cover of the cervical angle of the parotid ghand and enters the deep face of the sterno-cephalicus muscle at the junction of the muscular sulstance with the temdon of insertion. It usually crosses over the carotid artery just behind the lateral lobe of the thyroid gland.

Abstract

The fibers of the spinal part of the accessory arise from the vent ro-lateral cells of the ventral gray column of the cord as far back as the fifth errical segment. The fibers of the medullary part come chicfly from the nucleus ambiguus in common with the motor fibers of the vagus.

THE HYPOGLOSSAL NERVE

The hypoglossal nerve (N. hypoglossus) is purely motor; it immervates the muscles of the tongue and the genio-hyoideus (Fig. 5f2). Its root-filers arise from the ventral face of the medulla in linear series about 3 to 4 mm . lateral to the posterior half of the pyramid (Fig. 629). The filaments converge to three or four bundles which perforate the dura mater and unite to form the trunk. The latter emerges through the hypoglossal foramen (Fig. 617) and runs downward and backward between the guttural pouch and the capsule of the atlanto-occipital articulation for a distance of a little less than an incly (ra. 2 (9u.). It then passes between the vagus and accessory nerves, turns downward and forward, crosses the lateral face of the extemal caroticl artery, and continues over the pharyms parallel with the great cormu of the hyoid bone and behind the extemal maxillary artery. It then crosses heneath the artery, mons forward on the lateral face of the hyo-glossus muscle, and divides into its terminal branches (Rami linguales). The smaller branch supplies the stylo-glossus, hyo-glussus, and lingualis. The larger branch passes upward and forward between the hyo-glossus and genio-glossus, ramifies on the latter, and supplies the remaining muscles and the genio-hyoideus. Anastomoses occur with branches of the lingual nerve.

In the first part of its eomrse the nerve communicates with the anterior cervical ganglion and with the ventral branch of the first cervical nerve, and gives filaments to the pharyngeal branch of the vagus and the plaryngeal plexus.

[^200]
THE SPINAL NERVES

The spinal nerves (Nervi spinates) are arranged in pairs, of which there are usually forty-two in the horse. They are designated according to their relations to the fertebral colum as cervical (\$), thoracic (18), lumbar (6), sacral (5), and coccygeal (5). Each nerve is connected with the spinal cord by two roots, dorsal and wentral (Fig. 628).

The dorsal root (Radix dorsalis) is the larger of the two. Its fibers (Fila radicularia) spread out in fan shape and join the cord in a linear series along the dorso-lateral groove. The fibers converge laterally to form a compact bundle, on
which there is a gray nodular enlargement, the spinal ganglion (Ganglion spinale). Beyond the ganglion the dorsal root joins the ventral root to constitute the nerve. The ganglia are external to the dura mater, and are situated in the intervertebral foramina, exeept in the case of the saeral and coceygeal nerves, the ganglia of which lie within the vertebral canal. Those of the coceygeal nerves are intradural.

The ganglia vary greatly in size; that of the first cervical nerve is seareely as large as a hempseed, while that of the eighth cervical is about 2 em . long and 1 em . wide. On the large roots conneeted with the eerrieal and lumbar enlargement of the ford there are multiple ganglia of varying sizes interposed in the eourse of the root-bundles. The fibers of the dorsal roots arise from the cells of the spinal ganglia; conneeted with each ganglion eell there is a proeess whieh bifurcates, giving rise to a fiber which enters the spinal cord and another which passes into the nerve.

The ventral root (Radix ventralis) contains fewer fibers than the dorsal root, except in the ease of the first cervical nerve. It arises from the ventral surface of the spinal cord (Fig. 626) by means of numerous small bundles of fibers which do not form a linear series, but emerge from the cord over an area three to five millimeters in width (ventral root zone). The fibers are processes of the large cells of the ventral gray columns of the spinal cord. There is no ganglion on the ventral root.

In the cerrieal, thoraeie, and anterior lumbar regions the bundles of both roots pass through separate openings in linear series in the dura mater before uniting into a root proper. Further baek the bundles of each root unite within the dura. In the anterior part of the eervieal region and in the thoracie part of the cord there are intervals of varying length between adjaeent roots, but in some places the fibers of adjaeent roots overlap and an exehange of fibers may be observed. Many of the roots are directed almost straight outward or ineline slightly back ward, but the posterior lumbar, sacral. and eoccygeal roots and nerves run baekward to reach the foramina, through whieh they emerge. The distance thus to be traversed inereases from before baekward, so that these nerves form a tapering sheaf around the conus medullaris and filum terminale in the last lumbar vertebra and the sacrum, which is known as the cauda equina.

The size of the spinal nerves varies greatly. The largest are conneeted with the cervical and lumbar enlargements.

In, or immediately after its emergence from, the intervertebral foramen each spinal nerve gives off a small meningeal branch (Ramus meningeus). This is joined by a bundle of fibers from the ramus communicans and enters the vertebral ranal, in which it is distributed. Each nerve then divides into two primary branches, dorsal and ventral (Ramus dorsalis, ventralis). The dorsal branches are smaller than the ventral, except in the cervical region. They are distributed chiefly to the muscles and skin of the dorsal part of the body. The ventral branches supply in general the museles and skin of the ventral parts of the body, including the limbs. Each nerve or its ventral branch is connected with an adjacent ganglion of the sympathetic system by at least one small short braneh known as a ramus communicans. Many nerves have two and some have three such rami. A nerve may be connected with two ganglia, and a ganglion may be connected with two nerves.

The dorsal root is sensory or afferent, i. e., it conveys impulses to the central system. Its fibers are axones of the cells of the spinal ganglion. The ventral root is motor or efferent, and convers impulses toward the periphery. Its fibers are axones of the large cells in the ventral gray columns of the spinal cord. The common trunk or nowe formed by the union of the two roots contains both kinds of fibers, as do also their primary divisions. In addition to these fibers, which are distributed to the skelctal muscles and the skin, the spinal nerves contain fibers derived from the sympathetic system through the rami communicantes; these go to the glands and unstriped muscle and are designated secretory and vasomotor fibers.

THE CERVICAL NERVES

The cervical nerves (Nervi cervicales) (Figs. 556, 55x, 650, 655) mumber eight pairs. The first of these emerges through the intervertebral foramen of the atlas, the second through that of the axis, and the eighth between the last cervieal and the first thoracie vertebre.

The dorsal branches are distributed to the dorso-lateral museles and skin of the neek. They divide usually into lateral and medial branehes. The medial branches (Rami metiales) run in general across the multifidus and the lamellar part of the ligamentum nuche to the skin of the dorsal border of the neek; they supply the deep lateral museles and the skin. The lateral branches (Rami laterales) are chicfly museular in their distribution. The dorsal branches of the third to the sixth nerves are connected by anastomotic branehes to form the dorsal cervical plexus.

The ventral branches are smaller than the dorsal ones-an exeeption to the general rule. They increase in size from first to last. They supply in general the museles and skin over the lateral and ventral aspeet of the vertelrax, but the last three enter into the formation of the brachial plexus, and the two or three preceding the last give off the roots of the phrenie nerve. An irregular ventral cervical plexus is formed by anastomoses estalhished thetween the ventral branches. The following special features may be noted:

The first cervical nerve emerges through the intervertebral foramen of the athas. Its dorsal branch (N. oecipitalis) passes dorso-laterally between the obliqui capitis and the recti capitis dorsales and supplies branches to these museles, the scutularis and posterior auricular muscles, and the skin of the poll. The ventral branch deseends through the alar foramen of the atlas, crosses over the ventral straight museles and the carotid artery under cover of the parotid gland, and divides into two branches. The anterior branch enters the omo-hyoideus musele. The posterior branch passes downward and backward under eover of that musele, unites with a braneh of the ventral division of the sceond cervical nerve, and continues its course on the ventro-lateral surface of the trachea to enter the sterno-thyro-hyoideus behind the intermediate tendon. In the recessus atlantis the ventral braneh is comnected by one or more twigs with the anterior cervical ganglion of the sympathetie, and a little lower with the hypoglossal nerve. It also sends branehes to the ventral straight muschs of the head and the thyro-hyoideus. Below the atlas the ventral branch is crossed superficially by the spinal accessory uerve, the oecipital artery, and the ventral ecrebral vein.

The second cervical nerve is larger than the first. It emerges from the vertebral eanal through the intervertebral foramen of the anterior part of the areh of the axis. Its dorsal branch ascends botween the complexus and the ligamentum nuche and ramifies in the skin of the poll. The ventral branch gives off muscular branches to the rectus capitis ventralis major, and anastomotic branches to the spinal arcessory and the ventral divisions of the first and third ecrvical nerves; one of these crosses over the earotid artery and coneurs in the formation of the nerve to the sterno-thyro-hyoideus mentioned above. The ventral branch then beeomes superficial by passing between the two parts of the brachiocephalicus, and divides into posterior auricular and cutaneous branches. The posterior auricular nerve
passes upward and forward on the parotid gland parallel with the posterior border of the parotido-auricularis to ramify on the convex face of the external ear. The cutaneous nerve of the neck (N . cutaneus colli) erosses the brachiocephalicus musele and turns backward along the course of the jugular vein. On the lower part of the parotid gland it is connected by a twig with the cervical cutancous branch of the facial nerve. It gives off twigs to the subcutancous museles and the skin of the parotid and laryngeal regions, and a long branch which passes forward in the mandibular space.

The third cervical nerve leaves the vertebrat canal through the foramen between the second and third cervical vertebre. Its dorsal branch emerges between two bundles of the intertransversalis muscle, accompanied by a branch of the vertebral artery, turns dorsally on the multifidus, and divides into several branches which radiate on the deep face of the complexus. It gives branches to these muscles and to the skin, and a twig which joins the corresponcling branch of the fourth nerve. The ventral branch emerges through the intertransversalis below the bundle above which the dorsal branch appears. It gives branches to the longissimus capitis et atlantis, rectus capitis ventralis major, longus colli, splenius, and brachiocephalicus. It also gives off a large cutancous nerve which passes out between the two parts of the brachiocephalicus and divides into several divergent branches.

The fourth and fifth cervical nerves are distributed in general like the third. Their dorsal branches are united by anastomotic twigs with each other and with those of the third and sixth nerves to form the dorsal cervical plexus. The ventral branch of the fifth nerve often contributes a small twig to the phrenic nerve.

The sixth cervical nerve has a smaller dorsal branch than the fifth. Its ventral branch is larger and goes in part to the brachial plexus; it supplies twigs to the intertransversales, the longus colli, the brachiocephalicus, and the cervical parts of the serratus and rhomboideus, furnishes a root of the phrenic nerve, and gives off several considerable subcutaneous branches. One of the latter ramifies on the thick part of the cervical cutancus, to which it gives branches; another and larger branch (N . supraclavicularis) sends twigs to the skin over the shoulder joint, and descends to the skin over the superficial pectoral muscles (Fig. 590).

The seventh and eighth cervical nerves have small dorsal branches, which ascend between the longissimus and multifidus, giving twigs to these muscles, the spinalis and semispinalis, the rhomboideus, and the skin. Their ventral branches are very large and go almost entirely to the brachial plexus; that of the seventh nerve contributes the posterior root of the phrenic nerve.

Phrenic Nerve

The phrenic nerve (N. phrenicus) (Figs. 553, 554, 558), the motor nerve to the diaphragm, is formed by the union of two or three roots which run obliquely downward and backward over the superficial face of the scalenus muscle. The chief roots come from the ventral branches of the sixth and seventh cervical nerves. The roat derived from the fifth nerve is small and inconstant. The root from the seventh cervical comes by way of the brachial plexus. The nerve crosses the ventral border of the scalemus a fingerbreadth in front of the first rib, passes through the angle of divergence of the inferior cervical and brachial arteries, and enters the thorax by passing between the latter vessel and the anterior vena cava. Beyond this the course of the nerve is not the same on both sides. The right nerve courses backward and somewhat downward over the right face of the anterior vena cava, crosses the pericardium, and continues along the posterior vena cava to the diaphragm. In the latter part of its course it is enclosed in a special fold of the right pleura and inclines gradually to the ventral face of the vein. The left nerve, in part with the vagus, runs its entire course in the mediastinum. In the anterior mediastinum it lies along the lateral face of the brachiocephalic artery ventral to
the left vagus and a cardiae nerve, and crosses orer the dorso-cervical vein. It then parts eompany with the vagus, passes orer the upper part of the pericardium, and runs backwarl in the posterior mediastimum to reach the temlinous center of the diaphragm considerably to the left of the median plane. Each nerve is usually connected near its origin with the first thoracie ganglion of the sympathetie ly a ramus communicans, and each terminates loy dividing into several branches which are distributed to the corresponding part of the diaphragm.

The Brachial Plexus

The brachial plexus (Plexus brachialis) (Fig. 558) results from anastomoses established between the ventral branches of the last three cervical and first two thoracic nerves. It appears as a thick, wide band between the two parts of the sealems musde, and is rosered by the anterior deep pectoral and subseapularis museles. Each of the three chief roots, i.e., those from the last two cervical and the first thoracic nerve, is connected with the sympathetic by a ramus commmieans.

Abstract

The root darived from the sisth cerrical nerve is very small, while the ventral branehes of the seventh and eighth cervieal nerves go almost entirely to the plexus. The first thoracie nerve furnishes the largest root; its whole ventral brameh goes to the plexts with the exeeption of its small lirst intercostal branth. The root from the serond thoracie nerve is small, since most of ite ventral branch goes to form the second intercostal nerve.

The branches emanating from the plexis go for the most part to the thoracic limb, but some are distributed on the chest-wall. The names of the branches, and their arrangement so far as they can be conveniently examined before removal of the forelimb, are as follows: ${ }^{1}$

1. The large suprascapular nerve (N . suprascapularis) arises from the anterior part of the plexus, passes ventro-laterally, and disappears between the supraspinatus and subseapularis museles.
2. The much smaller subscapular nerves (Nn. subseapulares), usually two primary truks, arise elose behind the suprascapular, run hackward a short distance, and divide into several branches which enter the distal third of the subseapułaris musele.
3. The anterior thoracic or pectoral nerves (Nn. pectorales craniales), three or four in mumber, arise from the anterior part of the plexus and from the loop formed by the musculo-cutaneous and median nerves. One enters the anterior deep pectoral musele. Another passes between the divisions of the deep pectoral to supply the superficial pectoral and brachioeephaticus, giving a twig usually to the posterior deep muscle. The latter receives one or two other nerves.
4. The musculo-cutaneous nerve (N. museulocutaneus) arises from the anterior part of the plexus and deseends over the lateral face of the brachial artery, below which it is comected by a large but shert branch with the median nerve, thus forming a loop in which the artery lies. ${ }^{2}$ One or two branches to the pectoral muscles are given off from the nerve or the loop.
5. The median nerve (N. medianus) is usually the largest branch of the brachial plexus. It descends ower the insertion of the scalenus, erosses the medial face of the brachial artery, and reaches the anterior burter of that vessel. It is easily recognized by its large size and the lowp which it forms with the musculocutaneous nerve.
6. The ulnar nerve (N. ulnaris) arises with the median by a short common

[^201]trunk. It descends behind the brachial artery and is accompanied a short distance by the radial nerve, from which it can be distinguished by its smaller size.
7. The radial nerve (N. radialis) arises from the posterior part of the plexus and is sometimes the largest branch. It descends with the ulnar nerve over the medial face of the origin of the subscapular artery and the lower part of the teres major and dips into the interstice between that muscle and the long and medial heads of the triceps.
8. The axillary nerve (N . axillaris) arises behind the musculo-cutancous. It passes downward and backward on the medial face of the subscapularis and disappears between that muscle and the subscapular artery.
9. The long thoracic nerve (\mathcal{N}. thoracalis longus) is wide and thin. It arises from the anterior end of the plexus, gives off (usually) three branches to the serratus ventralis at the junction of its cervical and thoracic parts, and passes backward across the surface of the serratus thoracis, to which it is distributed. The branches which enter the muscle are given off both upward and downward in fairly regular fashion.
10. The thoraco-dorsal nerve (N . thoracodorsalis) passes upward and backward across the subscapularis muscle to ramify in the latissimus dorsi.
11. The external thoracic nerve (N. thoracalis lateralis) arises by a common trunk with the ulnar. It passes backward and ventrally across the medial surface of the humeral tendon of the cutaneus muscle, and continues backward in company with the external thoracic vein. Its terminal branches ramify in the cutaneus and the skin of the abdominal wall as far back as the flank. It gives collateral branches to the deep pectoral muscle and others which anastomose with perforating branches of intercostal nerves. A branch from it, accompamied by a large perforating intercostal branch, winds around the ventral border of the latissimus dorsi and ramifies in the cutaneus on the lateral surface of the arm.

The term posterior thoracic or pectoral nerves (Nn. pectorales caudales) may be used to include 9,10 , and 11 .

Suprascapular Nerve

The suprascapular nerve (Fig. 566), short but large, is usually derived chiefly, if not exclusively, from the sixth and seventh cervical components of the brachial plexus. It passes between the supraspinatus and subscapularis muscles and turns around the distal fourth of the anterior border of the scapula to reach the supraspinous fossa. It gives branches to the supraspinatus and continues backward and upward into the infraspinous fossa, and terminates in several branches which innervate the infraspinatus.

> The direct relation of this nerve to the seapula renders it liable to injury, the result of which may be paralysis and atrophy of the muscles supplied by it. There is, however, a small tendinous band which extends over the nerve as it turns aroud the edge of the scapula.

Musculo-cutaneous Nerve

The musculo-cutaneous nerve (Fig. 566) arises close behind the suprascapular, and is derived chiefly from the part of the brachial plexus which is supplied by the seventh and eighth cervical nerves. It descends across the lateral surface of the brachial artery, below which a great part of the nerve unites with the median to form the loop previously mentioned. It gives off a branch which enters the proximal part of the belly of the coraco-brachialis, passes downward and forward in company with the anterior circumflex vessels between the two parts of that muscle or between the muscle and the bone, and divides into branches which enter the biceps brachii. It contributes one of the nerves to the pectoral muscles. In some cases this nerve sends a branch to join the cutaneous branch of the median.

Axillary Nerve

The axillary nerve (Figs. 566, 652) ${ }^{1}$ derives its fibers chiefly from the eighth cervical root of the brachial plexus. It runs downward and backward across the distal part of the subseapularis, and, in eompany with the posterior circumflex artery, dips in between that

Fig. 6is2-Cutaneous Nerves of Right Forelimb of Horse; Lateral Face.
a, Cutaneous branch of axillary nerve; b, eutaneous branches of radial nerve; c, posterior cutaneous branch of ulnar nerve; d, cutaneous branch of median nerve; e, superficial branch of ulnar nerve; f, lateral volar nerve; g, anas tomotic branch connecting medial and lateral volar nerves; 1 , lateral head of triceps: 2, extensor earpi radialis; 3, common extensor; 4, ulnaris lateralis. (After Ellunberger, in Leisering's Atlas.) muscle and the subseapular artery at the level of the shoulder joint. Continuing outward in the interval between the teres minor and the long and lateral heads of the triceps, it reaches the deep face of the deltoid and divitles into several divergent branches. The muscular branches supply the teres major, eapsularis, teres minor, deltoid, and brachiocephaliells. The cutaneous branch (N. cutaneus brachii lateralis) runs downwarl and a little forward across the lateral head of the triceps and ramifies on the fascia on the front of the forearm and on the superfieial pectoral muscle.

Radial Nerve

The radial nerve ${ }^{2}$ (Figs. $566,568,652$) is sometimes the largest branch of the brachial plexus. Its fibers are rerived chiefly from the first thoracic root of the plexus. It passes downward and baekward over the medial surface of the origin of the subseapular artory and the distal part of the teres major. In this part of its course it is related in front to the ulnar nerve, which separates it from the brachial vein. ${ }^{3}$ It detaches a branch to the tensor fasciae antibrachii, passes outward in the interval between the teres major and the long ant medial heads of the triceps, and gains the museulo-spiral groove of the humerus. Accompanied by a branch of the deep brachial arters, it runs obliquely downward and outward in the groove, covered laterally by the lateral head of the triceps and the extensor carpi radialis, and reaches the flexion surface of the elbow joint. In this part of its course it gives off muscular branches to the three heads of the triceps and to the anconeus, and a cutaneous nerve (N . cutaneus antibrachii dorsalis); branches of the latter emerge below or through the lateral head of the triceps and ramify on the dorso-lateral surfate of the forearm. At the elbow the nerve descends with the anterior radial vessels on the joint eapsule, hetween the brachialis and extensor earpi radialis, and supplies branches to the extensor carpi and the common extensor of the digit and (inconstantiy) to the brachialis. Below the elbow joint the nerve detaches a large branch which pasises back between the lateral extensor and the radius to the ulnaris lateralis, and terminates by small branches which descend on the radius to enter the radial and ulnar heads of the common and lateral extensors of the tigit, and the oblique extensor of the earpus. Thus the radial nerve immervates the extensors of the elbow, earpal, and digital joints, and supplies also the lateral flexor of the carpus. ${ }^{4}$
${ }^{2}$ Also termed the circumflex nerve.
${ }^{2}$ This is also known as the museulo-spiral nerve.
${ }^{3}$ The relative positions of the vessels and nerves here are variable; not rarely the ulnar nerve passes between the subscapular artery and vein.
${ }^{4}$ Morphologieally the last-named muscle belongs to the extensor group. In man and in many animals it is an extensor in funetion.

Ulnar Nerve

The ulnar nerve (Figs. 566, 567, 568, 652) arises with the median from the thoracic eomponents of the brachial plexus. It descends between the brachial artery and vein, accompanied for a short distance by the radial nerve. It then crosses the vein and continues behind the latter along the anterior border of the tensor fasci:e antibrachii and dips under that musele near the elbow. Here it is joined by the ulnar vessels and passes downward and backward over the medial epicondyle of the humerus. In the forearm it crosses obliquely the deep face of the ulnar head of the flexor carpi ulnaris and descends under the deep fascia with the

Fig. 653.-Cross-section of Forearm of Horse abott Tbree Inches (ca. Scm.) below the Elbow Joint.
The deep fascia is designated by red line. N, A, V, Dorsal interosseous vessels and nerve.
vessels, at first on the ulnar head of the deep flexor, and then between the middle and lateral flexors of the carpus. Near the level of the accessory carpal bone it divides into two terminal branehes, superficial and deep. It gives off two principal collateral branches. The cutaneous branch (Ramus cutaneus volaris) is detached just before the nerve passes under the tensor fascie antibrachii; it runs downward and backward on that musele under cover of the posterior superficial pectoral, becomes superfieial below the elbow, and ramifics on the posterior surface and both sides of the forearm. The muscular branches, which are given off at the elbow, supply the superficial digital flexor, the ulnar head of the deep flexor, and the flexor carpi ulnaris. Of the two terminals, the superficial branch (Ramus superficialis) emerges between the tendons of insertion of the lateral and middle flexors of the carpus and ramifies on the dorso-lateral aspect of the carpus and metacarpus. The deep branch (Ramus profundus), after a very short course, unites under cover of
the tendon of the ulnaris lateralis with the lateral branch of the merlian nerve to form the lateral volar nerve.

Median Nerve

The median nerve (Figs, 566, 567, 572, 652, 653) derives its fibers chiefly from the eighth cervical and first thoracic roots of the brachial plexus. It is u*ually the largest branch, and it aecompanies the chiof arterial trumks to the distal part of the limb. It descends over the medial face of the brachial artery, whieh it erosses obliquely, and continues down the arm in front of the artery. Near its origin it is

Fig. Gith.-Dirsection of Disthe Part of Right Fore Limb of Horse; Yolar Surface.

1. Cartilage of third phalanx; $2,3,4$, ligaments from first phalanx to distal sesamond, bulb of heel and martilage of third phalanx. (After Schmaltz, Atlas d. Anat. d. Pferdes.)
joined by a barge branch with the museulo-eutancous nerve, thus forming a loop in which the artery appears to be suspended. Near the elbow it usually crosses oblifuely over the median artery and lies behind it on the medial ligament. Below the joint it again crosses the artery and lies hehind the radius and the lower part of the long medial ligament.

At the ellow the norve is covered by the posterior superficial pectorad muscle and is crossed by the large oblicque eomection between the cephatic and brachial veins. The variable and often plexiform venous arrangement renders approach to the nerve hore undesirable. It can be reached best by an incision just behind the lower part of the long medial ligament; here the nerve hes uniler the deep faseia in the furrow between the radius and the anterior border of the flexor carpi radialis, overlapped by the latter. Not uncommonly the nerys retains its position in front of the artery at the clbow; in other cases it lies upon the artery, and rarely it crosses the deep face of the artery.

Passing beneath the medial flexor of the earpus, the nerve continues downward in the forearm with the median vessels, and divides at a variable distance above the earpus into two branches; these are the medial volar nerve, and the lateral branch, which unites with the ulnar to form the corresponding lateral volar nerve.

At the proximal part of the forearm the nerve runs almost straight downward along the posterior border of the long medial ligament, while the artery here inclines somewhat backward. Thus the nerve is superficial to the artery for a short distance, then lies in front of the latter to about the middle of the region, where it inchines a little backward and arrives at the interval between the radial and ulnar flexors of the earpus. The division may occur about the middle of the region or even higher, but commonly takes place in the distal third or fourth.

The collateral branches are as follows:

1. The musculo-cutaneous branch is in reality the contimuation of the nerve of that name. It is given off about the middle of the arm, passes beneath the lower part of the biceps, and divides into muscular and cutaneous branches. The muscular branch enters the brachialis. The cutaneous branch emerges between the braehiocephalicus and the biceps and divides into two branches; these descend on the fascia of the forearm with the cephalie vein and its accessory, and ramify on the front and medial face of the forearm, earpus, and metacarpus.
2. Muscular branches to the radial flexor of the carpus and the humeral head of the deep flexor of the digit are given off just as the nerve passes under the first named musele.
3. The small interosseous nerve passes through the interosseous space and is distributed chiefly to the periosteum, but in some cases twigs may go to the extensor museles.

The volar or metacarpal nerves, ${ }^{1}$ medial and lateral, are the contimuations of the median and ulnar nerves in the distal part of the limb.

The medial volar nerve (N . volaris medialis) arises as the medial terminal branch of the median nerve at a variable distance above the carpus (Fig. 567). It descends through the earpal canal along the medial border of the superficial flexor tendon, and lies at first in front of the common digital artery. It then passes behind the artery to the distal third of the metacarpus, where it lies behind the vein, the artery here becoming deeper in position. In addition to cutaneous twigs, the nerve gives off near the middle of the metacarpus a considerable anastomotic branch which winds obliquely over the flexor tendons and joins the lateral nerve below the middle of the metacarpus (Fig. 572). Near the fetlock the nerve divides into two digital branches.

1. The dorsal (or anterior) digital branch (Ramus dorsalis) descends at first between the digital artery and vein, then crosses over the vein and ramifies in the skin and the corium of the hoof on the dorsal face of the digit.
2. The volar (or posterior) digital branch (Ramus volaris) is the direet continuation of the trunk. It descends behind the digital artery, which it accompanies in its ramification. A middle digital branch is sometimes described as descending behind the vein. In some cases this branch is distinct, but usually there are instead several small twigs derived from the volar branch, which cross very obliquely over the artery and anastomose in a variable manner with each other and with the dorsal branch.

The lateral volar nerve (N . volaris lateralis) is formed by the union of the lateral terminal branch of the median with the deep branch of the ulnar nerve (Fig. 567). It descends with the lateral volar metacarpal artery in the texture of the posterior annular ligament of the earpus. In the metacarpus it descends along the lateral border of the deep flexor tendon behind the lateral metacarpal vein, and is accompanied by a small artery from the volar subcarpal arch. Toward the

[^202]distal end of the metacarpus it is joined by the oblique branch from the medial nerve, and beyond this is arranged like the latter. Below the earpus it detaches a deep branch to the suspensory ligament and the interossei, and also supplies twigs to the skin. ${ }^{1}$

THE THORACIC NERVES

The thoracic nerves (N . thoracales) number eighteen on either side in the horse. They are designated numerically according to the vertebre behind which they emerge. Nost of them are arranged in a very similar manner and therefore do not require separate description. Each divides into a dorsal and a ventral branch, the latter being the larger.

The dorsal branches (Rami dorsales) emerge hehind the levatores costarum and divide into medial and lateral branches. The medial branches ascend on the multifidus and supply the dorsal spinal muscles. The lateral branches run outward under the longissimus dorsi and emerge between that muscle and the longissimus costarum; after giving twigs to these museles they pass through the latissimus dorsi and the lumbo-dorsal fascia and ramify as dorsal eutaneous nerves under the skin of the baek (Fig. 655). In the region of the withers they give branches to the serratus dorsalis and rhomboideus, and their cutaneous terminals pass through these muscles and the dorso-seapular ligament to supply the skin over the ligamentum nuche and the seapular cartilage.

The ventral branches or intercostal nerves (Nn . intercostales) are much larger than the preceding, and are connected with the sympathetic by rami communicantes. The first goes almost entirely to the brachial plexus, but sends a small branch downward in the first intercostal space, which is expended in the musele there without reaching the lower end of the space. The second ventral branch furnishes a considerable root to the brachial plexus, but its intercostal continuation is typical. The intercostal nerves (Fig. 273) descend in the intercostal spaces with the vessels of like name, at first between the intereostal muscles, and lower down ehiefly between the pleura and the internal intercostal musele. In the anterior spaecs the artery lies along the posterior border of the rib, witlo the nerve in front of it; further back the nerve lies behind the border of the rib, with the artery in front of it. They supply the intereostal museles, give off lateral perforating branches, and terminate in the following manner: The second to the sixth inclusive emerge through the spaces between the eostal eartilages and concur in supplying the pectoral museles. The second to the eighth give branches to the transpersus thoracis. The succeeding ones give branches to the diaphragm, pass between the transverse and internal oblique abdominal museles, give twigs to these, and end in the rectus abdominis. There are three series of cutaneous nerves given off by the intereostal nerves. The dorsal nerves emerge through the serratus ventralis and the external intercostals about parallel with the digitations of the external oblique. The middle ones perforate the origin of the latter muscle. The ventral ones appear through the abdominal tunic. They supply bramehes to the abdominal museles, the eutaneus, and the skin. Some of the anterior ones anastomose with the posterior thoracic branches of the brachial plexus. The posterior three supply in part the skin of the flank. The ventral branch of the last thotacic nerve runs outward behind the last rib across the dorsal surface of the psoas major and divides into superfieial and deep branches. The superficial branch passes over the superficial face of the transversus abdominis, perforates the obliquus externus, and ramifies under the skin of the flank (Fig. 657). The deep branch descends on the deep face of the internal oblique to the rectus abdominis, in which it ends.

[^203]
THE LUMBAR NERVES

There are six pairs of lumbar nerves (Nin. lumbales) in the horse, the last of which emerge between the last lumbar vertehra and the sacrum. The anterior two or three are about the same size as the thoraric nerves, but the others are much larger.

Their dorsal branches are small in eomparison with the ventral ones. They are distributed to the muscles and skin of the loins and eroup in a fashion simitar to those of the thoracie nerves.

The ventral branches are comected with the sympathetic by small rami communicantes, and give branches to the sublumbar museles. Those of the first two nerves are arraged in a mamer aualogous to the corresponding branch of the last thoracid nerve.

The ventral hranch of the first lumbar nerve is termed the ilio-hypogastric nerve (N. iliohypogastricus). It passes outward between the quadratus lum-

Fig. 656.-Immbar Nervea of Horse; Ventral View. (After Sehmaltz, Atlas d. Anat. d. Pferdes.)
bormm and the proas magor, and divides at the lateral border of the latter into a superfirial and deep branch. The superficial or cutaneous branch passes over the dorsal etge of the internat oblique, descends between that muscle and the externat (w) ${ }^{\text {qu }}$ ue, perforates the latter, and runs downward and backward and ramifies moler the skin of the posterior part of the llank and the lateral surface of the thigh. It gives branches to the tramsversts and obliguns externus atodominis. The deep (or musular) branch is smatler; it runs downard and backward beneath the peritomem to the lateral bonder of the rectus abfominis, gives branches to the internal ohligue, and terminates in the rectus abelominis.

The ventral branch of the second lumbar nerve is usually connected by an anastomotic branch with that of the third nerve. It gives off a large branch to the psoas major and is continued as the ilio-inguinal nerve (N. ihoinguinalis). This divides like the iho-hypogastric into superficiat and deep branches. Its superficial branch perferates the external ehlifue musele a little in front of the point of the hip, runs downward on the front of the thigh and the lateral surface of the stifle, and gives off eutaneous branches. The deep branch rums behind and parallet with that of the ilio-hypogastricus and detaches branches to the abtominal muscles.

It joins a branch of the external spermatic nerve, and the trunk so formed deseends the inguinal canal, to be distributed to the external genital organs and the surrounding skin in the inguinal region.

The ventral branch of the third lumbar nerve is comected by a small anastomotic branch with the second nerve and furnishes a root of the lumbo-sacral plexus. It gives off a branch to the psoas muscles, the external spermatic nerve, and is continued as the lateral cutaneous nerve. The external spermatic nerve (N. spermaticus externus) passes backward in the substance of the psoas minor and divides into two branches. One of these, the muscular branch, emerges in front of the circumflex iliac vessels and goes to the cremaster and internal oblique muscles. The other, the inguinal branch, emerges behind the vessels just mentioned. It then runs lateral to and parallel with the external iliae artery and descends in the medial part of the inguinal canal. It pmerges at the external ring with the external pudic artery and ramifies in the external genital organs and the skin of the inguinal region. The lateral cutaneous nerve of the thigh (N. cutaneus femoris lateralis) runs backward in the substance of the psoas muscles and emerges at the lateral border of the psuas minor. It then passes outward and backward on the iliac fascia and accompanies the posterior branch of the circumflex iliac artery. With this vessel it perforates the abdominal wall by passing between the external oblique and the iliacus a short distance below the
 vic limb and Posterior Part of Truses of Horse.
a. Cutaneous branches of sixteenth and seventeenth thoracic nerves; b, cutaneous branches of lumbar nerves; c, cutaneous branches of sactal nerves; d, cutameous branches of coccygeal nerves; $e_{,}, f_{1} g$, cutaneous branches of last thoracic and first and second lumbar nerves; g^{\prime}, end of lateral cutaneous nerve of thigh; h, posterior cutaneous nerve of thigh; i, i, cutaneous branches of great sciatic nerve; k, posterior cutaneous nerve of the leg; l, superficial peroneal nerve; m, teruinal part of deep peroneal nerve; n, lateral plantar nerve; 1 , obliquus abdominis externus; 2, tensor fascie latæ: 3, gluteus superficialis; 4. biceps femoris; 5 , semiteadinosus; 6 , common extensor; γ, lateral extensor; 8, flexor tendons: 9, great metatarsal artery. (After Ellenberger, in Leisering's Atlas.) point of the hip, descends on the medial face of the tensor fasciæ latæ (near its anterior border), and ramifies subcutaneously in the region of the stifle.

The origin and disposition of some of the foregoing nerves are variable. In some cases the ilio-inguinal nerve ends in the psoas major, and appears then to be absent. The mode of formation of the inguinal nerves is inconstant.

The ventral branches of the fourth, fifth, and sixth lumbar nerves concur in the formation of the lumbo-sacral plexus.

Lumbo-sacral Plexus

This plexus (Fig. 576) results substantially from the union of the ventral branches of the last three lumbar and the first two sacral nerves, but it derives a small root from the third lumbar nerve also. The anterior part of the plexus lies in front of the internal iliae artery, between the lumbar transverse processes and the psoas minor. It supplies branches to the ilio-psoas (designated by Girard the iliaco-muscular nerves). The posterior part lies partly upon and partly in the texture of the sacro-sciatic ligament. From the plexus are derived the nerves of the pelvic limb, which are now to be described.

Femoral Nerve

The femoral nerve (N. femoralis) ${ }^{1}$ is derived chiefly from the fourth and fifth lumbar nerves, but commonly, if not always, receives a fasciculus from the third nerve also (Fig. 656). It is the larger of the two nerves which are given off from the anterior part of the lumbo-sacral plexus. It runs ventrally and backward, at first between the psoas major and minor, then crosses the deep face of the tendon of insertion of the latter, and descends under cover of the sartorius over the terminal part of the ilio-psoas. It gives off the saphenous nerve, and divides into several terminal branches which dip into the interstice between the reetus femoris and the vastus medialis (Fig. 575). These braches are accompamied by the anterior femoral vessels and innervate the quadriceps femoris. A collateral branch is given off to the ilio-psoas.

The saphenous nerve (N. saphemus) (Figs. $575,576,582$) is given off as the femoral crosses the terminal part of the ilio-psoas. It gives off a branch which enters the deep face of the sartorius, and descends with the femoral vessels in the femoral canal. Ahout the middle of the thigh it divides into several branches which energe from between the sartorius and gracilis, perforate the deep faseia, and ramify on the medial surlace and the front of the limb as far downward as the hoek. The longer posterior branches accompany the saphenous vessels, while the anterior branches deviate forwarl toward the stifle and the anterior surface of the leg.

Obturator Nerve

The obturator nerve (\mathcal{N}. obturatorius) is derived chiefly from the ventral branches of the fourth and fifth lumbar nerves, but may reecive fibers from the third or the sixth (Fig, 656). It runs downward and backward, at first above and then upon the exterwal iliac vein, inclines inward across the olturator vein, and pasies through the anterior part of the obturator foramen (Fig. 576). It continues downward through the obturator externus, and divides into several branches which immervate the obturator externus, pectineus, adductor, and gracilis musches (Fig. 581).

Anterior Gluteal Nerve

The anterior gluteal nerve (N . glutaus cranialis) is derived chiefly from the last lumbar and first sateral nerves, but commonly has a fifth lumbar root. It divides into four or fise branches which emerge through the greater seiatic foramen with the divisions of the anterior glutead artery and supply the ghtei, tensor fascice latie, and capsularis (Fig. 658). The nerve to the tensor fasciæ late and the anterior part of the superficial gluteus passes between the deep part of the gluteus medius and the gluteus profundus, and is accompanied on the iliacus by branches of the lateral circumflex vessels.

Posterior Gluteal Nerve

The posterior gluteal nerve (N. glutepus caudalis) is derived mainly from the sacral roots of the lumbo-sacral plexus (Figs. 576, 6.58). It divides into two trunks ${ }^{1}$ Also termed the anterior crural nerve.
which emerge above the great sciatic nerve. The dorsal nerve passes backward on the upper part of the sacro-sciatic ligament and divides into branches which enter the biceps femoris; it supplies a branch to the posterior part of the middle gluteus, and a nerve which turns around the posterior border of the latter and enters the posterior head of the superficial gluteus. The ventral nerve runs downward and backward on the sacro-sciatic ligament and divides into the posterior cutaneous nerve of the thigh (N . cutancus femoris caudalis) and muscular branches which supply the semitendinosus. The former passes through the biceps femoris, emerges between that muscle and the semitendinosus at or a little below the level of the tuber ischii, and ramifies subcutaneously on the lateral aud posterior surfaces of the hip and thigh (Fig. 657). The deep part of the nerve is connected by filaments with the pudic nerve.

Great Sciatic Nerve

The great sciatic nerve (N . ischiadicus) (Figs. $574,580,658$), the largest in the body, is derived chiefly from the sixth lumbar and first sacral roots of the lumbo-

Fig. 65s.-V゙essels and Nerves on Pelvic Wall of Horse.
Nervus ischiadicus = great scistic nerve; a. glut. inf. = posterior glutesl nerve; a. pudendus = pudic aerve. (After schmaltz, Atlas d. Anat. d. Pferdes.)
sacral plexus, but usually has a fifth lumbar rout and may receive a fasciculus from the second sacral nerve. It emerges through the greater sciatic foramen as a broad flat band which is blended at first with the posterior gluteal nerve and passes downward and backward on the lower part of the sacro-sciatic ligament and on the origin of the deep gluteus muscle. It turns downward in the hollow between
the trochanter major and the tuber isehii over the gemellus, the tendon of the obturator internus, and the quadratus femoris. In its descent in the thigh it lies between the biceps femoris laterally and the adductor, semimembranosus, and semitendinosus medially, and is contimued between the two heads of the gastroenemius as the tibial nerve. Its chief hranches are as follows:

1. In the pelvic part of its course the selatie nerve supplies small muscular branches to the obturator internus, gemellus, and quadratus femoris; the branch to the olbturator internus reaches the muscle by passing through the anterior end of the lesser seiatic foramen.

These very small nerves arise from the upper border or deep face of the great sciatic, about half way between the two sciatie formmina. The nerve to the obturator internus hes along the dorsal margin of the sciatic and divides into branches for both heads of the muscle. The nerves in the gemeltus and quadratus femoris commonly arise from the deep face of the seiatic by a common trunk which passes back between the latter and the sacro-sciatic ligament to the posterior border of the gluteus profundus, where it divides.

2 . As the sciatic nerve turns down behind the hip joint it gives off a large muscular branch (Ramus muscularis proximalis), which divides to supply the semimembranosus and the short heads of the biceps femoris and semitendinosus.
3. The posterior cutaneous nerve of the leg or external saphenous nerve (N . cutancus sure eaudalis) is detached from the seiatic about the middle of the thigh. It receives a fasciculus from the peroneal nerve and descends with the recurrent tarsal sein on the lateral face of the gastrocnemius to the distal third of the leg. Here it perforates the deep fascia and ramifies under the skin on the lateral surface of the tarsus and metatarsus (Fig. 657).
4. The peroneal nerve (N. peronaus) (Fig. 580, 585, 659) ${ }^{1}$ is a large trumk which arises from the great sciatic nerve very shortly after the latter emerges from the pelvic eavity. It descends with the parent trunk to the origin of the gastrocnemius; here the peroneal nerve deviates outward and forward across the lateral face of the gastrocnemins under cover of the biceps femoris, and divides at the origin of the lateral extensor muscle into superficial and deep branches. The collateral branches include one to the biceps femoris, the reinforcing fasciculus detached about the middle of the thigh to the posterior cutaneous nerve, and, lower down, the lateral cutaneous nerve of the leg (Ramus cutaneus sure lateralis). ${ }^{2}$ The latter emerges between the middle and posterior divisions of the liceps femoris at the level of the stifle joint and ramifies under the skin. The superficial peroneal nerve (N. peronaus superficialis) ${ }^{3}$ furnishes branches to the lateral extensor, and descends in the furrow between that musele and the long extensor, perforates the deep fascia of the leg , and ramifies under the skin on the front and the lateral face of the tarsus and metatarsus. The deep peroneal nerve (N. peroneus profundus) ${ }^{4}$ is the direct eontinuation in point of size of the peroneal tromk. It dips in between the lateral and long extensors of the digit, gives branches to these museles and the tibialis anterior, and descends in front of the intermuscular septum which separates the two museles first named. It eontinues downward behind the tendon of the long extensor and divides on the front of the hock into mediad and lateral branches. The medial branch (Ramus medialis) passes down under the skin on the anterior face of the metatarsus and supplies the cutaneous filers of this region. The lateral branch (Ramus lateralis) furnishes a twig to the extensor brevis muscle and descends with the great metatarsal artery. It supplies the skin on the lateral face of the metatarsus and the fetlock.

In the greater part of its course in the leg the deep peroneal nerve is separated from the anterior tibial vessels by the tibialis anterior. It should be noted that the lateral one of the two

[^204]veins which almost always accompany the artery here is usually very large, and the layer of musele which intervenes between it and the nerve is often execedingly thin. In the distal part of the leg the nerve is in direct contaet with the vein, and on the front of the hoek it lies behind the vessels. In very exceptional eases the nerve lies for a variable distance in the middle of the leg in the lateral part of the tibialis anterior.

Tibial Nerve

The tibial nerve $(N \text {. tibialis })^{1}$ is the direct continuation of the great sciatic nerve (Figs. $576,580,583,584,659$). It passes flown between the two heads of the gastrocnemius, and accompanies the recurrent tibial vessels to the distat third of the leg, where it divides into the two plantar nerves. In the proximal third of the

Fig. 659.-Crosa-section of Distal Third of Left Leg of Horse.
The deep fascia is shown by red line.
leg it lies along the medial side of the superficiat flexor under cover of the medial head of the gastrocnemius; lower down it is covered by the common deep fascia and is situated in the space between the deep flexor and the medial border of the tendo calcaneus (Achillis).

At the usual point of election for tibial neurectomy, i. e., about a handbreadth above the level of the tuber calcis, the nerve lies in areolar tissue and fat in a fascial compartment formed by the sperial fascia of the deep flexor in front and by the common faseia and the tarsal tendon of the semitentinosus and bieeps femoris behind and medially:

At its origin the tibial nerve gives off a muscular branch (Ramus muscularis distalis), the divisions of which pass between the two heads of the gastroenemius

[^205]and radiate to supply that musele, the popliteus, the soleus, and the flexors of the digit. Small cutaneous twigs are also detached along the course of the nerve.

Plantar Nerves

The plantar nerves, medial and lateral (N. plantaris medialis, lateralis), result from the bifureation of the tibial nerve in the distal part of the leg (Figs. 583,584). They continue at first in the same direction and relations as the parent trunk, in tirect apposition and enclosed in a common sheath. At the hock they diverge at a very acute angle and descent in the tarsal canal behint the fleep flexor tendon in eompany with the plantar arteries. The medial plantar nerve supplies cutaneous nerves to the medial aspect of the tarsus and metatarsus, deseends along the medial border of the flexor tendons behind the superficial plantar metatarsal vessels, and is otherwise arranged like the corresponting volar nerve of the forelimb. The lateral plantar nerve deviates outward between the two flexor tendons to reach their lateral border. It supplies a branch to the suspensory ligament, and in its further course resembles the forresponeling nerve of the fore limb.

In so-called "tibial" neurectomy the operator really cuts the two plantar nerves which have not yet separated. The anastomotic branch between the two plantar nerves is smaller and more distal than that which connects the corresponding nerves of the fore limb, and is absent in 30 per cent. of the cases according to Rudert.

Sacral Nerves

Five pairs of sacral nerves (Nn . sacrales) are present in the horse.
The small dorsal branches emerge through the dorsal sacral foramina and the space between the sacrum and the first cocegeal vertebra, and ramify in the museles and skin of the sacral region and the arljacent part of the tail (Fig. 657). The fifth anastomoses with the elorsal branch of the first eocergeal nerse.

The ventral branches leave the vertebral canal through the rentral sacral foramina and the interval between the sacrum and first coecygeal vertebra. They are eonnected with the sympathetic by rami commmicantes, and contribute branches to the pelvic plexus. The first and second are the largest, and unite with etah other and with those of the last three lumbar nerves to form the lumbo-sacral plexus. The third and fourth are connected with each other, and the majority of their fibers go to form the pudie and posterior hemorrhoital nerves.

The pudic nerve (N^{-}pudendus) (Figs. 576, 580, 658) passes downward and backward partly embededed in the sacro-sciatie ligament, then arcompanies the internal pulle artery to the isehial arch, turns around the latter, parting company with the artery, and pursues a flexuous course along the forsum penis as the nervus dorsalis penis and ramifies in the glans penis and the penile layer of the prepuce. Within the pelvis it anastomoses with the posterior hemorrhoidal nerve, and gives branchess to the bladder and urethra, the terminal part of the rectum, and the skin and museles of the anus (Fig. 587). It also supplies the nerve to the ischio-cavernosus musele and numerous branches to the corpus cavernosum of the penis and urethra. In the female it terminates in the elitoris and rulva ($\mathrm{Fig}, ~$ ars $)$.

The posterior hæmorrhoidal nerve (N . hemorrhoidalis caulalis) passes downward and backward above the putlie nerve, with which it anastomoses. It gives twigs to the terminal part of the rectum, the sphineter ani externts, and the surrom ling skin (Fig. 575). In the female it supplies twigs to the vulva also (Fig. 57ふ).

The ventral branch of the fifth nerve is small. It gives twigs to the sacrocorergens ventralis lateralis and the skin of the root of the tail and joins the first coceygeal nerve.

Coccygeal Nerves

The coccygeal nerves (Nn. coccygei) commonly number five pairs. Their dorsal and ventral branches anastomose to form respectively two trunks on either side, which extend to the tip of the tail and supply its muscular and cutaneous nerves. The dorsal trunk runs with the dorso-lateral artery between the sacrococcygeus dorsalis and intertransversales muscles (Fig. 579). The ventral trunk accompanies the ventro-lateral artery below the intertransversales.

The Sympathetic Nervous System ${ }^{1}$

The sympathetic nervous system (Systema nervorum sympathicum) is that part of the nervous system which serves (1) to transmit stimuli to the heart muscle, unstriped muscle, and glands; (2) to conduct impulses from the viscera to the cerebrospinal system.

Many of the fibers are derived from the cerebrospinal system and are rearranged and distributed in the sympathetic system. Numerous sympathetic fibers are contributed to the cerebrospinal nerves, through which they are distributed to the unstriped muscular tissue and glands, as vasomotor, pilomotor, and secretory nerves. The sympathetic, like the cerebrospinal system, consists of neurones, each of which comprises the cell-body, an axone, and numerous branched dendrites. The cell-bodies are aggregated into ganglia, some of which are large and more or less constant in position and form, while others are microscopic and are scattered in an irregular manner through the peripheral part of the system. Simple visceral refiexes may be mediated by sympathetic neurones alone.

In descriptive anatomy the sympathetic system is regarded as consisting of (1) a chain of ganglia extending along each side of the vertebrak column and connected by association fibers to form the sympathetic trunk; (2) central branches to and from the cerebrospinal nerves; (3) peripheral branches, which form plexuses (Plexus sympathici) with each other and the cerebrospinal nerves; (4) the peripheral ganglia which are interposed in the plexuses (Ganglia plexuum sympathicorum).

The sympathetic trunk (Truncus sympathicus) extends on either side from the base of the cranium to the tail. In it are interposed, at intervals of varying regularity, the ganglia of the sympathetic trunk (Ganglia trunci sympathici). These are connected with the cerebrospinal nerves by central branches, the rami communicantes.

Two kinds of rami communicantes occur. Of these, one type consists largely of medullated fibers derived from the spinal nerves and ganglia; they have therefore a white appearance, and are termed white rami. They contain both efferent and afferent fibers. The efferent splanchnic fibers are derived from the ventral roots of the spinal nerves and terminate in great part about the cells of the nearest sympathetic ganglion; others end in more distant or iu peripheral ganglia. The afferent splanchnic fibers are chiefly peripheral processes of the cells of the spinal ganglia, but some are sympathetic fibers which enter the spinal nerve-trunk and terminate about cells of the spinal ganglion. The gray rami consist mainly of non-medullated fibers derived from the sympathetic ganglia directly or through the trunk, which proceed centrally to the spinal nerves and are distributed along the somatic divisions of the latter to unstriped muscle and glands as vasomotor, pilomotor, and secretory fibers. Some go to the membranes of the spinal cord, and a few terminate about cells of the spinal ganglia as sensory sympathetic fibers.

Similar but more complex and irregular communications which exist between the sympathetic system and the cranial nerves-with the exception of the first and second-have been referred to in the accounts of the nerves.

It is convenient for descriptive purposes to divide the sympathetic system into cephalic, cervical, thoracie, abdominal, and pelvic parts.

1. The cephalic part (Pars cephalica systematis sympathici) comprises the otic, sphenopalatine, and ciliary ganglia, which may be regarded as homologues of the ganglia of the trunk of other regions. It also includes three plexuses formed by

[^206]branches derived from the anterior cervical ganglion. The ganglion gives off two or three filaments which subdivide to form the internal carotid plexus (Plexus caroticus intemus) around the artery of like name. The cavernous plexus (Plexus cavernows) surrouds the artery within the cavernous simus and communieates with that of the opposite side. The external carotid plexus (Plexus earoticus externus) is formed around the homonymous artery, and filaments from it go to the vessel and its branches and to the salivary glands.
2. The cervical part (Pars cervicalis s. sympathici) includes two ganglia and the trunk which comects them.

The anterior or superior cervical ganglion (G. cervicale craniale) lifs on the guttural pouch helow the occipito-atlantal articulation (Fig. 562). It is reddishgray in color, fusiform, and about an inch (ca. $2-3 \mathrm{~cm}$.) in length. It is comnected by rami commmicantes with the last four cramial and first cervieal nerves, sends branehes to form the plexuses mentioned above, and contributes to the pharyngeal plexus.

The cervical trunk of the sympathetic connects the anterior and posterior

Fig. 660.-Right Cervico-thoracic Ganglion and Related Structures of llorse.
G, G^{\prime}, Ganglis; S, sympathetic trunk: I^{*}, vagus; R, recurrent nerve; X.c., cardiac nerves, C.ITII, T.I., rani communicantes from eighth cervical and first thoracic nerves; V.lr., nervus transwersurius; T.h., brachocephalic trunk: A.d.c., dorso-cervical artwry; A.b.d., right brachial artery; . 1.c.c., common carotid artery.

lig. fiti.-Left Cervico-thoracic Ganglion and Related strectifes of Horre.
$f_{i}, r_{i}^{\prime \prime}$, Ganglia; S, sympathetic trunk; r°, vagus: R, recurrent nerve; C.IHI, C.I'TII, T.I, rami communicantes from last two cervical and first thoracic netves; N.tr., nervus transversarius; N.c., cardiac nerves.
etrvical ganglia. On leaving the former it is assoriated in a common sheath with the vagus along the dorsal face of the common carotid artery. At the root of the neck it separates from the vagus and joins the posterior cervical ganglion. AT.T.

The posterior or inferior cervical ganglion (C. cervicale candale) is situated under cover of the first rib and the insertion of the scalems (Figs. 660, 661). On the right side it liss upon the longus colli and the trachea, on the left side upon the same muscle and the cesophagus. It is flattened, very irregular and variable in outline, and is blembed more or less with the first thoracie ganglion, ${ }^{1}$ so that the two may be considered together as the ganglion stellatum. This reselves at its anterodorsal angle the nervus transversarius, which accompanies the vertebral artery in the canalis transversarius; it is a trunk formed by the rami commumicantes of the cervical nerves except the first and last. Large rami connect with the last cerviral and first and second thoracie nerves. Filaments also comect with the vagus. From the ventral part of the ganglion proceed the cardiac nerves now to be Iescribed.

[^207]

The cardiac nerves (Nn. cardiaci) are formed by branches from the posterior cervical and first thoracic ganglia, together with twigs from the sympathetic trunks and the vagi. They form the cardiac plexus (P. cardiacus) on the ventral face of the trachea with each other and with branches of the vagus and recurrent nerves. They are subject to considerable variation, but their gencral arrangement may be stated 'as follows:
(a) On the right side there are usually two cardiae nerves. Of these one passes back with the vagus in the angle between the right brachial artery and the bicarotid trunk, pierees the pericardium, crosses the aortic arch, and divides into branches which are mingled with those of the left nerves. The second erosses obliquely over the right face of the trachea and joins the vagus, where the latter gives off the right recurrent nerve; a small plexus is formed here, from which two or three cardiae branches are detached. These pass back beneath the trachea and ramify on the atria and ventricles.
(b) On the left side there are commonly three cardiae nerves. One of these is distributed to the great vessels in the anterior mediastinum. The largest passes back at first with the vagus beneath the arch of the left brachial artery, inclines downward, perforates the pericardium, and divides into two branches. One branch passes beneath the bifureation of the pulmonary artery and is distributed to the left atrium. The larger branch dips in between the aorta and the pulmonary artery, gives twigs to these vessels, and ramifies on the ventricles, especially along the course of the right coronary artery. The third nerve crosses the deep face of the left brachial artery, passes back below the trachea, and unites with filaments of a right cardiac nerve. It passes around the aorta and ramifies chiefly along the course of the left coronary artery on the left face of the ventricles.
3. The thoracic part (Pars thoracalis systematis sympathici) extends backward ventral to the costo-vertebral joints from the posterior cervical ganglion to the crura of the diaphragm, and passes between the latter and the psoas minor to be continued by the abdominal part.

The trunk is concealed in the first part of its course by the subcostal vessels and the lateral border of the longus colli, but further back it is visible under the pleura.

The ganglia are arranged segmentally at each intercostal space and partly on the heads of the ribs. They are flattened and are small and fusiform, with the exception of the first. This (G. thoracale primum) is extensive, irregularly quadrilateral in outline, and is united with the posterior cervical ganglion, as previously mentioned. The ganglia are conneeted with the thoracie nerves by white and gray rami communicantes. Distinet ganglia may be absent at two or three spaces succeeding the first, and here the trunk is thickened and contains ganglion cells.

The visceral branches comprise aortic, cardiac, pulmonary, and cesophageal branches, and the splanchnic nerves. The aortic branches ramify on the thoracic aorta, forming around that vessel the thoracic aortic plexus (P. aorticus thoracalis). The cardiac branches concur with those of the ragus in forming the cardiac plexus (P. cardiacus). From this branches go to form the coronary plexuses (P. coronarii) along the course of the vessels of like name. The pulmonary branches join with corresponding branches of the vagus and filaments from the cardiac plexus in forming the pulmonary plexus (P . pulmonalis) at the root of the lung. Branches of the plexus, on which are minute ganglia, ramify with the bronchi in the substance of the lung. ${ }^{1}$ The œsophageal branches join with those of the vagus in the formation of the œsophageal plexus (P. œsophageus).

The great splanchnic nerve (N. splanchnicus major) arises by a series of roots derived from the sixth or seventh to the fourteenth or fifteenth thoracie ganglia

[^208]inclusive. It extends along the bodies of the vertebre medio-ventral to the thoracic trunk, then crosses the latter ventrally, passes back between the crus of the diaphragm and the lateral border of the psoas minor, and joins the collaco-mesenteric ganglion. It is small at its origin, but becomes considerably larger than the sympathetic trumk. Near its termination it may present a small splanchnic ganglion, from which and from the nerve filaments go to the aorta, the crsophagns, and the vertebre. The fibers of the nerve are derived chiefly from the spinal cord; hence its white appearance as compared with the sympathetic trunk.

The small splanchnic nerve (\mathbf{N}. splanchnicus minor) is formed by roots derived from the last two or three thoracic ganglia. It runs back with the great splanchnic nerve, but ents in the coeliac or in the renal and adrenal plexuses.

The splanchnic nerves are quite variable. The greater splanchnic is often blended more or less with the sympathetic trunk and may be separate only in the posterior fart of the thorax. The lesser splanchnic may be included in the greater, and thus appear to be absent. Its roots communicate by filaments with the great splanchnic.
4. The abdominal part of the sympathetic trunk (Pars abdominalis systematis sympathici) lies along the medial border of the psoas minor, above the aorta on the left side ant the posterior vena cava on the right (Fig. 656). The trunk is smaller than the thoracic part, and presents usually six small fusiform lumbar ganglia (G. lumbalia), which are connected by rami communicantes with the ventral divisions of the lumbar nerves. Visceral branches go to the aortic and pelvic plexuses and to the celiaco-mesenteric ganglion.
5. The pelvic and caudal part of the sympathetic trunk (Pars pelvina et candalis systematis sympathici) begins at the last lumbar ganglion and extends along the pelvic surface of the sacrum medial to the emergence of the ventral branches of the sacral nerves (Fig. 576). At the third or fourth segment of the sacrum the trunk divides into medial and lateral branehes. The medial branch inclines to the median plane and unites with the opposite branch. At the junction there is often found the small coccygeal ganglion (C . impar), which lies on the coceygeal artery at the joint between the first and second coccygeal vertebre. A filament from the ganglion accompanies the artery. The lateral branch communicates with the last two sacral nerves and joins the ventral coccygeal nerves. Sacral ganglia (G. sacralia) occur near eath of the first three sacral foramina, and are comected by gray rami communicantes with the ventral branches of the satral nerves. The visceral branches are distributed through the pelvic plexus. They supply motor fibers to the longitudinal, and inhibitory fibers to the circular, muscular coat of the rectum; motor fibers to the bladder and uterus; and the vaso-dilator fibers (Nn. erigentes) to the penis.

According to von Schumacher, minute segmental coccygeal ganglia occur along the caudal branches of the sympathetic trunk. The lateral branch is regarded by van der Broek as an aggregate of rami communicantes.

THE ABDOMINAL AND PELVIC PLEXUSES

The chief plexuses which distribute nerves to the viscera and vessels of the abdominal and pelvic cavities are two in number, the coeliac and the pelvic. From them fibers proceed to form numerous subsidiary plexuses which are named according to the organs which they supply or the vessels which they enlace.

The cœliac plexus (Fig. 575$)^{1}$ is situated on the dorsal wall of the abdominal cavity, in relation to the aorta and the origin of its chief visceral branches. It is formed by the splanchnic nerves, branches of the vagi, and filaments from the anterior lumbar ganglia of the sympathetic. It contains the coliaco-mesenteric ganglia. From the coeliae plexus and its ganglia subsidiary plexuses are continued upon the branches of the aorta.

[^209]The cœliaco-mesenteric ganglia (G. cœliaco-mesenterica) ${ }^{1}$ are two in number, right and left. They are situated on each side of the aorta, in relation to the origin of the coliac and anterior mesenteric arteries. The right ganglion is concealed by the posterior vena cava; it is irregularly quadrilateral and is about two inches (t6 cun.) in length. The left ganglion is largely covered by the left adrenal; it is narrower than the right one and is three or four inches (ca. $5-10 \mathrm{~cm}$.) long. The two ganglia are united by irregular connecting branches in front of and belind the anterior mesenteric artery. ${ }^{2}$ Each receives the great splanchnic nerve of its own side and branches from the dorsal œesophageal continuation of the vagus nerves. Branches from the ganglia and the cords which connect them pass back to the posterior mesenteric ganglion which is situated at the origin of the posterior mesenteric artery.

The following unpaired plexuses proceed from the coliac plexus and coeliacomesenteric ganglia:

1. The abdominal aortic plexus (P . aorticus abdominalis) occurs along the abdominal aorta. It is connected with the renal plexuses and behind with the pelvic plexus. It receives filaments from some of the sympathetic lumbar ganglia.
2. The gastric plexus (P. gastricus) enlaces the gastric artery and divides like the artery into two parts, forming the anterior and posterior gastric plexuses. These receive branches of the vagus nerves.
3. The hepatic plexus (P. hepaticus) is formed by several nerves of considerable size which accompany the hepatic artery and the portal vein. It receives fibers from the left vagus, ramifies in the liver, and gives off branches which accompany the collateral branches of the hepatic artery and supply the areas in which these vessels are distributed.
4. The splenic plexus (P. lienalis) resembles the preceding in its arrangement. In addition to its terminal branches to the spleen it gives collateral twigs to the pancreas and the left part of the greater curvature of the stomach.
5. The anterior mesenteric plexus (P . mesentericus cranialis) is formed mainly by branches from the posterior part of the coliaco-mesenteric ganglia; it is continuous with the cœliac plexus in front and the posterior mesenteric behind. It surrounds the anterior mesenteric trunk and its branches, and supplies the viscera to which these vessels are distributed.

The posterior mesenteric ganglion (G. mesentericum caudale) is unpaired; it is irregularly stellate, and is situated on the origin of the posterior mesenteric artery. It is connected with the cœliaco-mesenteric ganglia by anastomosing branches which concur in the formation of the aortic plexus. Two or more pairs of nerves proceed from it posteriorly. One of these, the internal spermatic nerve (N. spermaticus internus), accompanies the spermatic artery to the spermatic cord and testicle in the male; in the female it goes to the ovary, uterine tubes, and adjacent part of the uterine horn. These concur in the formation of the spermatic and utero-ovarian plexuses. The other branches from the ganglion pass back to the pelvis ventral to the great vessels and concur in the formation of the pelvic plexuses.

The posterior mesenteric plexus (P. mesentericus caudalis) accompanies the artery of like name in its distribution.

The secondary plexuses which accompany the branches of the mesenteric arteries give off branches which form two fine peripheral plexuses in the wall of the intestine. One of these, the myenteric plexus (P. myentericus), or plexus of tuerbach, lies between the layers of the muscular coat, and is provided with microscopic ganglia. The other is in the submucous tissue, and is therefore termed the submucous plexus (P . submucosus) or plexus of Meissner.
${ }^{1}$ It has been customary to designate these in veterinary works as the semilunar or coliac ganglia, but in the horse they evidently include the anterior mesenteric ganglia as well.
${ }^{2}$ A good preparation of the ganglia in the horse is often difficult to obtain on account of aneurysm of the artery and the formation of a quantity of connective tissue about it.

The following paired plexuses are derived mainly from branches of the coeliac and aortic plexuses:

1. The renal plexuses (P. renales) proceed largely from the coeliaco-mesenteric ganglia, but receive fibers also from the small splanchnic nerves. They enlace the renal arteries and supply the kidneys. Ninute renal ganglia occur on the course of the nerves along the renal vessels.
2. The adrenal plexuses (P . suprarenales) are formed by a relatively very large number of fine fibers derived in great part directly from the coliaco-mesenteric ganglia. Numerous minute ganglia occur in their meshes.

3a. The spermatic plexuses (P. spermatici) proceed from the aortic plexus and branches from the posterior mesenteric ganglion. Each accompanies the corresponding (internal) spermatic artery to the testiele.

3b. The utero-ovarian plexuses (P. ovarici) are the homologues in the female of the preceding. They accompany the utero-ovarian arteries to the ovary and the cornua of the uterus.

The pelvic plexuses (P. hypogastrici) are the pelvic continuations of the aortic and posterior mesenterie plexuses. Two or more nerves proceed from the posterior mesenteric ganglion and enter the pelvic cavity ventral to the large vessels, anastomose with each other and with branches from the sacral nerves-especially the third and fourth-and ramify on the pelvic viscera. The peripheral plexuses derived therefrom are named according to the organs which they supply; the chief of these are the hæmorrhoidal, vesical, utero-vaginal, prostatic, cavernous (of the penis or clitoris) (P. hæmorrhoidalis, vesicalis, uterovaginalis, eavernosus penis s. clitoridis, ete.). Others enlace the arteries (P. iliacus, femoralis, etc.).

THE NERVOUS SYSTEM OF THE OX ${ }^{1}$

The spinal cord resembles that of the horse in conformation and structure. In cattle of medium size its length is about 165 to 170 cm . (ea. 65-67 inches), and its weight about 240 to 250 grams (ca. 8 ounces).

> In a cow 140 cm . in height Dexler found the weight of the cord (including the intradural nerve-roots) to be 260 gm . and the length 162 cm . The lengths of the regions were: cervical 41 cm., thoracic 72 cm ., lumbar 32 cm ., sacral 7 cm .

The brain has an average weight of about 500 grams (ca. 16-17 ounces). Its differences in general form are correlated with those notef in the consideration of the cranial cavity.

The medulla oblongata is short, wide, and thick. Its sentral face is strongly convex. The pyramids are narrow, short, and close together in front. Near the decussation there is a well-defined oval prominence on either side which indicates the position of the posterior olive. The corpus trapezoideum is large; it has no central part between the pyramids. The external arcuate fibers are distinct. The restiform borlies are short and thick and diverge more strongly than in the horse. The floor of the fourth ventricle is only about two-thirds as long as in the horse. The area aeustica is a well-marked oval prominence lateral to the middle part of the limiting sulcus. The tuberolum acusticum at the origin of the acoustie nerve is very large. The anterior fovea is distinct. The posterior recess of the fourth ventricle communieates through a median aperture (Apertura mediana) ${ }^{2}$ with the subarachnoid space.

[^210]The pons is smaller, both transversely and longitudinally, than that of the horse. It is strongly convex and has a distinet central depression.

The cerebellum is smaller and more angular in form than in the horse. The vermis is large and has a distinct depression on its anterior face for the posterior corpora quadrigemina. The liemispheres are relatively small and are not clearly divided into tabulations. The anterior peduneles are very short.

The cerebral peduncles are short. A small eminence in the interpeduncular

Fig. 662.-Brain of Ox; Dorsal View.
Fissures: 1, Lateral; 2, suprasylvian; 3. coronal; 4, transverse; 5, marginal; 6, entomarginal; 7 , ectomarginal. \&, Alarginal or sagittal pole.
fossa is caused by the presence of the interpeduncular ganglion. The medial geniculate body is prominent. The pineal body is long and fusiform, and is often pigmented in spots. The third ventricle forms two considerable recesses in relation to the pineal body: one (R. pinealis) extends up into the body; the other (R . suprapinealis) is a long tubular prolongation in front of it.

The optic tracts cross the cerebral peduncles almost at a right angle.
The hypophysis or pituitary body is situated in a deep fossa and is surrounded
by a plexus of vessels. It is much narrower and thicker than that of the horse. The infundibulum is relatively long and slopes downward and backward.

The cerebral hemispheres are shorter, higher, and relatively wider than in the horse. The frontal poles are small, the occipital, large. The length from pole to pole is about the same as the greatest transverse diameter of the two hemispheres.

Fig. 663.-Base of Brain of Ox.
1, Olfactory bulb; 2, 2^{\prime}, olfactory strie; 8, trigonum olfactorium; 4, fossa lateralis; 5 , piriform lobe; 6 , optic chiasma; 7 , optic tract; s, tuber cinereum; 9 , cerebral peduncle; 10 , pons; 11 , corpus trapezotleum; 12 , pyramid; 13 , cerebellum; 14, chorioid plexus of fourth ventricle; (".I., first cervical nerve roots. The stumps of the cranial nerves are designatel by Roman numerals. The hypophysis has been removed and its contour is indicated by dotted line. The entral black urea is the infundibular recess of the third ventricle opened up when the infundibulum is torn off.

Viewed from the site, the dorsal surface is strongly convex. The highest point of the dors()-medial border is a little in front of its middle and forms a marked prominence termed the sagittal or marginal pole (Polus sagittalis s. prominentia marginalis dorsalis). Anterior to this the lorder (lrops abruptly, being cut into by the teep transverse fissure. The arachnoid on the basal and anterior parts of the hemispheres is usually pigmented. The corpus callosum extends through a little
more than a third of the length of the hemisphere. The pattern of the fissures and gyri of the pallium is somewhat simpler than in the horse.

1. The lateral fissure (of sylvius) is very deep. lts middle branch extends almost vertically upward on the middle of the lateral surface of the bemisphere, and is separated by a gyrus of variable width from the suprasylvian fissure. The anterior branch runs forward about parallel with the sulcus rhinalis anterior, from which it is separated by the short gyri of the insula. The latter are covered to a small extent only by the overhanging gyri (operculum). The posterior branch may run back a distance of only about 1.5 cm . and end in T-shaped manner, or it may join the sulcus rhinalis posterior.
2. The suprasylvian fissure is deep and very distinct. It extends in an undulating manner from the lateral surface of the occipital pole to the lateral side of the sagittal pole. Here it may

Fig. 664.-Brain of Ox: Right View.
Fisures: 1. Lateral: 2. 2, suprasylvian: 3. coronal: 千. transverse: $\overline{\boldsymbol{j}}$. ectomarginal: 5. diagonal: 7. posterior ectnsylvian: 8, presylvisn; 9, 9^{\prime}, rhinal (anterior and posterior); P.ch., chorioid plexus of fourth ventricle; P.c., cerebral peduncle: L.p., piriform lobe; I. insula. Stumps of cranial nerves are designated by Roman numerals.
be interrupted or may be continued by the coronal fissure, which descends to the frontal pole and divides into two short branches.
3. The diagonal fissure (S . diagonalis) begins in front of the stem of the lateral fissure and runs upward and forward. Its form is very variable.
4. The transverse fissure cuts obliquely into the dorsal border in front of the sagittal pole. It is short and deep and commonly communicates with the suprasylvian and coronal fissures, but may be separated from the former.
5. The marginal fissure is distinct. It extends from the sagittal pole to the occipital pole. It is flexuous and deviates outward somewhat in its posterior two-thirds.
6. The entomarginal fissure lies medial and parallel to the posterior part of the preceding.
7. The ectomarginal fissure is lateral and parallel to the marginal fissure. It does not extend so far in either direction as the latter, and is often more or less broken up by annectant gyri.
s. The sulcus rhinalis is more open than in the horse, since it is not overlapped by the gyri above it
9. The calloso-marginal fissure is fiexuous and not so regular as in the horse. It is often interrupted at or near the level of the genu of the corpus callosum, in which case the genual fissure continues it downward.
10. The cruciate fissure is faint and is confined to the medial surface. It lies about one centimeter in front of the transverse fissure, and commonly joins the calloso-marginal fissure below.
11. Short and variable fissures occur in front of and behind the middle branch of the lateral fissure (F, ectosylvia anterior, posterior).

The olfactory bulb is much smaller than in the horse. The lateral olfactory stria is large, the medial one small and not distinet.

The cranial nerves have in general the same superfietal origin as in the horse. The more important differences in other monects are as follows:

The oculomotor nerve is larger than in the horse. It emerges with the fourth, sixth, ophthalmic and maxillary nerves through the foramen orbito-rotumbun.

The trigeminal nerve presents the following differences in its distrilution:

Fig. (ift.).-Shaittal. sertion of Brain of Ox.
I.IV. Fourth ventricle; F.c., charod plexuses; I'.m.s anterior medullary velum; A.s., cerebral agueduct; C.q., corpora (uadrigemina; (.p., pusturier rommisure; f.pn., pmeal body; F.c.з., great cerebral vein; T, thalamus; I. $1 /$ II., thirl ventrele (arrow ponts to interventricuar foramen): ' 'a., anternor commissure; L.t., limina terminalis; C'.o, cluanmit opticum. Fissures: 1, callosal; 2, calloso-marginal; 3. splenial; 4. transverse; 5 , entomarginal.

The internal branch of the lacrimal nerve supplies twigs to the mucous membrane of the frontal sims; the large outer hranch runs backward and supplies the corium of the horn. The frontal nerve emerges from the orbit below the supracrbital proeess. The naso-ciliary nerve is large and sends filaments to the ocular musclos. The ciliary ganglion is somewhat larger than in the horse, and is connected with the lower division of the oculomotor nerve beveral short filaments. In eonseduence of the absence of the eanine and upper incisor teeth the correspon ling branch of the infraorbital nerve is naturally wanting. The mandibular nerve emerges through the foramen ovate. The superficial temporal nerve gives off a large hanch which joins the superior buecal thivision of the farial on the masseter, about half-way between the zygomatic arch and the angle of the jaw. The otic ganglion is larger than in the horse. Aecording to Monssu the buecinator nerve furnishes excito-secretory twigs to the parotid and inferior buccal glands.

The facial nerve divides into its two terminal branches before reaching the border of the jaw. The superior buccal nerve is the larger of the two; it crosses the masseter much lower than in the horse. The relatively small inferior buccal nerve runs beneath the parotid or in the gland substance parallel with the border of the lower jaw, crosses under the insertion of the sterno-cephalicus, and runs forward along the depressor labii inferioris. At the point where it crosses the facial

Fig. 666.-Stperfictal Nertes of Head of Ox.
Nerves: a, Facial; $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$, superior buceal and primary branches; b, deep auricular; c, posterior auricular; $d, d^{\prime}, d^{\prime \prime}$, auriculo-palpebral and primary branches; e, parotil plexus; f, digastrir: g, σ^{\prime}, iaferior buccal; $a^{\prime \prime}$, auastomosis between g and $a^{\prime} ; ~ h$, superficial temporal; i, k, l, braaches of infraorbital; m, bueciдator; m^{\prime}, branch of m to zygomaticus and malaris muscles; $m^{\prime \prime}$, branch of m to parotid gland; n, branches of infratrochlear; o, frontal; p, p^{\prime}, $p^{\prime \prime}$, lacrimal; q, dorsal branch of accessory; r, auricular branch of second cervical; $r^{\prime}, r^{\prime \prime}$, brancbes of r; ε, cutaneous branch of second cervical; s^{\prime}, anastomotic branch connecting s and $t ; t_{1} t^{\prime}$, $t^{\prime \prime}$, third cervical and branches; u, zygomatic. Nluscles: 1, Frontalis (part removed) ; 2, levator nasolabialis (part removed); 3, origin of levator labii supcrioris proprius; 4, malaris; 5,5 , stumps of zygomaticus; 6 , buccinator; 7 , masseter; 8, sterno-cephalicus; 10 , cleido-mastoideus: $11,11^{\prime}$, cleido-occipitalis; 12 , zygomatico-auricularis: 13 , fronto-scutularis; 14 , scuto-auricularis superficialis supcrior; 15 , scuto-auricularis superficialis accessorius; 16 , cervico-scutularis; $17,17^{\prime}$, stumps of parot-ido-auricularis. 18, 15'. Remnants of parotid gland; 19, 19', mandibular gland; 9 , jugular vein; 30 , facial vein. (After Schachtscbabel.)
rein and parotid duct it gives off an anastomotic branch to the superior nerve. The auriculo-palpebral nerve is large.

The vagus bears-in addition to the relatively large jugular ganglion - a ganglion nodosum at the point of origin of the anterior laryngeal nerve. The trunk is large. The pharyngeal branch is large and anastomoses with the anterior and external laryngeal nerves. The latter commonly arises directly from the trunk. The dorsal œsophageal trunk communicates with the splanchnic nerve, contributes twigs to the hepatic plexus, and ramifies chiefly on the right surface of the
rumen and the adjacent surface of the ahomasum. The ventral œsophageal trunk goes to the left surface of the rumen; it supplies branches to the hepatic plexus and to all the divisions of the stomach.

The spinal accessory nerve presents two special features. The part which joins the jugular ganglion hears a small ganglion. The ventral branch supplies both parts of the sterno-cephalicus.

The hypoglossal nerve is large. It is comeeted with the ventral division of the first cervical nerve by a branch of considerable size, and detaches a long branch which rums backward along the carotid artery.

The spinal nerves resemble those of the horse in origin and general arrangement. The thoracie nerves mumber thirteen pairs. The more important differences in the limb-plexuses and their branches are as follows:

The brachial plexus is formed by the ventral branches of the last three cervical and first thoracie nerves; the second thoracic nerve usually furnishes no root, but the veutral branch of the sixth eervieal goes almost entirely to the plexus after giving of the nerve to the rhomboidens and the serratus corvicis.

The differences in the nerves above the clbow are not of suffieient moment to receive notice in this brief account, but below this point there are maturally
important special features correlated chiefly with the arrangement of the digits.

The radial nerve is contmued below the elbow by a large cutaneous branch (N. cutanens antibrachii dorsalis) which emerges at the lower border of the lateral head of the triceps and descends on the dorsal aspect of the limb. It communicates above the carpus with the lateral eutancous branch of the median nerve and terminates in three dorsal digital nerves; two of these descend along the axial or interdigital side of the dorsal surface of the chief digits, and the third along the medial (abaxiat) side of the medial chief digit.

The ulnar nerve divides at a variable distance down the forearm into two branches. The dorsal (or superficial) branch emerges between the tendons of the ulnaris lateralis and flexor carpi ulnaris, and is continued as the lateral dorsal digital nerve on the lateral chief digit. The volar (or deep) branch deseends along the superficial digital flexor, gives a branch to the suspensory ligament below the carpus, and unites with the lateral branch of the median nerve to form the lateral volar digital nerve (N. digitalis lateratis digiti IV).

The median nerve is much larger than the ulnar. It passes beneath the pronator teres, descends the forearm as in the horse, and divides in the distal part of the metacarpus into two branches. The medial branch gives twigs to the medial small digit and is continued on the medial side of the volar surface of the medial chief digit as the medial volar digital nerve (N . digitalis medialis digiti III); it also concurs with the lateral branch in forming the two digital nerves which descend along the interdigital aspect of the chief digits. The lateral branch is larger. It bifureates, and one division unites with the twig from the medial branch to form a common digital trunk. From the latter two digital nerves proceed as mentioned above; these are the lateral and medial volar digital nerves of the medial and lateral chief digits respectively (N . digitalis volaris lateralis digiti III, medialis digiti IN). The other division unites with the volar branch of the ulnar nerve to form the lateral volar digital nerve of the lateral chief digit (N. digitalis lateralis digiti IN).

The lumbo-sacral plexus and its branches to the pelvis and thigh present no very striking special features.

The superficial peroneal nerve is much larger than in the horse. After crossing beneath the peroneus longus it passes down on the front of the tarsus and metatarsus and divides into three branches. The medial and lateral branches descend as the medial and lateral dorsal digital nerves on the chief digits. The larger middle branch joins a branch of the deep peroneal nerve in the interdigital space, and from this union proceed the dorsal digital nerves which descend on the opposed surfaces of the chief digits.

The deep peroneal nerve descends in the leg as in the horse, and continues down the dorsal groove of the metatarsus with the dorsal metatarsal artery. It gives collateral branches to the anterior muscles of the leg and to the extensor digitalis brevis. Its terminal branches concur with branches from the superficial peroneal nerve in the formation of the two axial dorsal digital nerves (N. dig. dors. lat. dig. III et dig. dors. med. dig. I ${ }^{\prime}$ pedis), and with a branch of the medial plantar nerve in the formation of corresponding ptantar digital nerves.

The tibial nerve divides at the back of the hock into medial and lateral plantar nerves. The medial plantar nerve descends between the superficial flexor tendon and the suspensory-ligament and divides into two branches; the medial branch descends as the medial plantar digital nerve (N. dig. plant. med. dig. III) along the medial side of the flexor tendons of the medial chief digit; the lateral branch turns around the flexor tendons to reach the interdigital space, where it concurs with a branch of the deep peroneal nerve in the formation of two axial plantar digital nerves (N. dig. plant. lat. dig. III et dig. plant. med. dig. IV), which descend on the opposed surfaces of the chief digits. The lateral plantar nerve descends along
the lateral border of the fiexor tentons, gives a branch to the suspensory ligament and to the lateral small digit, and continues along the lateral face of the lateral digit as the lateral plantar digital nerve (N. dig. plant. lat. dig. IV).

The sympathetic system closely resembles that of the lowse in its general arrangement, and only a few differential features will receive attention. The anterior cervical ganglion is closer to the eranial base and is thicker than in the horse; its branches to the carotid and cavernous plexuses are large, and no connection is formed with the spinal accessory nerve. The cervical trunk is smaller

Fig. 669.-Nerves of Distal Part of Rigit Hind Limb of (dx; Dorsal View (sithematte). p, Dorsal digital nerves.

Fig, fião.-Nerves of Digtal Part of Right llind Lamb of Ox; Plintar View (sichematic).
p P Plantar digital nerves.
than in the horse, and arises by two or three hundles from the anterior eervieal ganglion behiud its middle. The posterior cervical ganglion is distinctly separable from the first thoracic; the latter is large. There are thirteen pairs of thoracic ganglia. The great splanchnic nerve begins at the fiftl or sixth thoraeic ganglion and receives branches from the sureeding ones; it is commonly diffieult to distinguish clearly from the thoracic trunk. The small splanchnic nerve is represented apparently by filaments which go from the first lumbar ganglion to the adrenal plexus and the ecrliar ganglion. The coliac ganglion is rounded and lies on the encliat artery. The anterior mesenteric ganglion is longer and is closely
related to the anterior mesenteric artery. The two are connected by gangliated cords, and are similarly connected with the ganglia of the opposite side, so that the arrangement is plexiform. The cœeliac plexus is more complex than that of the horse in correlation with the compound character of the stomach. The posterior mesenteric ganglion is small and is situated behind the artery of like name. It receives fibers from the last three or four lumbar ganglia and two fasciculi from the anterior mesenteric ganglia. The pelvic viscera receive branches from the posterior mesenteric ganglion and from the sacral ganglia; the latter number five pairs, and the right and left trunks are connected here by transverse anastomoses. The coccygeal trunks unite at a single fourth cocevgeal ganglion, then separate, and reunite at the sisth coccrgeal ganglion.

THE NERVOUS SYSTEM OF THE PIG

The spinal cord weighs about one and a half ounces (ca. 42 gm .). It is almost circular in cross-section, except at the enlargements, where it is somewhat flattened dorso-ventrally. The conus medullaris extends to the anterior part of the third sacral segment. The epidural space is occupied by a large quantity of fat.

The brain in adults of medium size weighs about four to four and a half ounces (ca. 125 gm.). When viewed from above, the cerebrum has an elongated oval form. The hemispheres are widest at the posterior third. The occipital pole is larger than the frontal pole. The medulla oblongata is relatively broad. The cuneate tubercle is very

Fig. 671.-Brain of Pig; Dorsal View.
Fissures: 1, Lateral, 2, suprasylvian, with anterior (2') and dorsal ($Z^{\prime \prime}$) branches; 3. diagonal: 4. coronal; 5. presslvian: 6, marginal; 7 . ectomarginal: 8 , entomarginal: 9 , cruciate. Two different arrangements of the coronal and cruciate fissures are seen on the two sides. large and is limited laterally by a groove. The corpus trapezoideum is very wide laterally. The pons is less prominent than in the ox. The cerebellum is very wide and short. Its anterior face is flattened and presents a depression for the corpora quadrigemina. The vermis is large. The hemispheres consist of a large medial part and a small lateral part. The cerebral peduncles are very short. The posterior corpora quadrigemina are wide apart, rounded, and relatively large. The medial geniculate body is prominent. The cerebral hemispheres are somewhat bean-slaped in lateral profile, the conrex border being dorsal. The arrangement of the gyri and sulei is simpler than in the horse or ox.

The principal fissures are as follows:

1. The lateral fissure (of syvius) begins at the sulcus rhinalis and runs upward and somewhat backward on the depressed part of the lateral surface of the hemisphere; it appears
unbranehed on superficial examination, but when the gyrus which almost completely conceals the insula is raised, an anterior branch is exposed which forms the dorsal boundary of the insula.
2. The suprasylvian fissure pursurs a curyed course approximately paratlel with the dorso-medial border of the hemisphere. Its posterior end is separated by a short interval from the sulcus rhinalis posterior. From its highest point a branch proceeds obliçuely upward and forward, crosses the dorso-medial border, and joins the cruciate fissure.
3. The diagonal fissure crosses the anterior part of the lateral surfare. It is tirected obliquely downward and buckward.
f. The coronal fissure is constant and deep. It is directed upward and medially ofer the frontal pole, continues hackward near the dorso-media? boriler, and often ends hy passing obliguely over the border to the medial surface of the hemisphere. It is usually continuous in front with the presylvian fissure.
4. The presylvian fissure begins-apparently as a branch of the suhtos rhinalis anteriorabout 2 cm . in front of the lateral fissume, and rurves over the lateral aspert of the frontal pole.
5. The marginal fissure begins ladind the ernefate fissure close to the dorso-medial border and extends in a gentle curve backward to the oreipital pole.

Fig. 672.- Bratin uf Pig; Left View.
Fissures: $1, t^{\prime}$, sulcus rhinalis (anterior et posterior) ; 2, lateral; S, suprasylvian; 4, ectomarginal; 5 , coronal. Stumps of eranial nerves indicated by Roman numerals.
7. The ectomarginal fissure lies above and nearly parallel to the posterior part of the suprasylvian fissure.
s. The entomarginal fissure lies along the posterior part of the thorso-medial border.
9. The calloso-marginal fissure emsists of two separate parts. The more extensive posterior part is termed the splenial fissure. It extends from the tentorial aspect of the hemisphere in a direction paralhel with the corpus callosum nearly to the mistlle of the medial surface; it is continued by the cruciate fissure and may be also connectel with the coronat fissure hy a branch which passes obliguely upward and forward. The anterior part, the genual fissure, liss about midway hetween the anterior part of the eorpus callosun and the dorso-medial border.
10. The cruciate fissure runs ohliqu ty upwarl and forward from the anterior end of the sphenial fissure on the imer surface of the hemisphere, euts ohliquely into the dorso-medial margin about its middle, and usually joins the dorsal branch of the suprasylvian fissure.
11. The sulcus rhinalis extents in an umbulating mamor along the entire lower part of the lateral surface of the homisphere and forms the upper limit of the rhinencephaton.

The olfactory bulbs are very large and the tracts extremely broad and short. The trigonum offactorium is so prominent as to suggest the designation tuberculum olfactorium.

The cranial nerves present the following special features:
The third, fourth, sixth, and the ophthalmic and maxillary divisions of the fifth nerve emerge together as in the ox.

The lacrimal nerve resembles that of the horse, the frontal that of the ox. The naso-ciliary nerve is relatively large and sends numerous filaments to the ocular muscles. The maxillary nerve has a very short course in the pterygo-palatine fossa. The infraorbital nerve is large in correlation with the development of the snout, which receives numerous branches. The mandibular nerve emerges through the foramen lacerum anterius. The superficial temporal nerve is small; according to Moussu it furnishes the excito-secretory fibers to the upper part of the parotid gland, while those going to the lower part are derived from the mylo-hyoid nerve.

The inferior buccal nerve passes downward and forward under cover of the parotid gland and accompanies the parotid duct, with which it turns around the lower border of the jaw in front of the masseter.

The vagus bears a jugular ganglion and a ganglion nodosum; the latter occurs

Fig. 673.-Nerves of Distal Part of Right Forelimb of Pig; Dorsal View (Dehematic).
c, Dorsal common digital nerves; p, dorsal proper digital nerves.

Fig. 674.-Nerves of Distal Part of Right Forelimb of Pig; Volar Vien (schematic).
p, Volar proper digital nerves.
at the point of origin of the anterior laryngeal nerve, and may be as large as a small pea. Proximal to this the vagus is easily divided into two strands, one of which is the accessory component. The œesophageal trunks form a posterior œsophageal plexus, as in man, from which two nerves issue. The ventral nerve is small and ramifies on the parietal surface of the stomach. The dorsal nerve is much larger; it gives branches to the stomach, crosses the lesser curvature of that organ, and joins the cœliac plexus.

The hypoglossal nerve may present a small dorsal root, on which there is a minute hypoglossal ganglion.

The spinal nerves number on each side eight in the cervical region, fourteen (commonly) in the thoracic, seven in the lumbar, and four in the sacral. Some of the special features of the nerves of the limbs are as follows:

The brachial plexus is derived from the same nerves as in the ox, but the root furnished by the sixth cervical is relatively smatler. The plexus consists of two parts, the upper of which emerges above the scalenus, the lower between the two parts of that muscle. The more important differences in the nerves emanating from the plexus from the arrangement in the ox occur in the distal part of the limb. The cutaneous branch of the radial nerve divides at the carpus into branches which concur with the dorsal branch of the uhar nerve in supphying the dorsal digital nerves, two for each digit. The volar digital nerves, also two for each digit, are formed by the terminal branches of the median nerve and the volar or deep branch of the ulnar nerve. The formation and arrangement of the digital nerves are indicated in the amexed schematic figures.

The lumbo-sacral plexus is derived from the ventral branches of the last three

Fig. 675.-Nerves of Dintal Part of Right Hind Limb of Pig; Dorsil View (fochematic). p, Dorsal proper digital nerves.

Fig. 676.-Nerves gf Distal Part of Right Hind Limb of Ph; Plantar View (Schematic). p, Plantar proper digital nerves.
lumbar and first sacral nerves. The distribution of the branches of the plexus differs chiefly in the distal part of the limb. The superficial peroneal nerve is large and terminates by forming the greater part of the dorsal digital nerves. The latter, two for each digit, are also in part formed by the terminal branches of the deep peroneal nerve.

The tibial nerve divides at the tarsus into medial and lateral plantar nerves. The latter divide to form the plantar digital nerves, two for each digit. In addition, the lateral plantar nerve supplies a branch to the dorsal aspect of the lateral (fifth) digit. The arrangement of the digital nerves is indicated by the amexed schematic figures.

The sympathetic system of the pig has received very little attention from anatomists. The anterior cervical ganglion is long and fusiform. It gives off
filaments which join the vagus near the ganglion nodosum. The cervical trunk is short and relatively larger than in the ox; it is enclosed in a common sheath with the vagus in the neck and separates from that nerve to join the middle cervical ganglion at the thoracic inlet.

THE NERVOUS SYSTEM OF THE DOG

The spinal cord is almost circular in cross-section except at the well-marked cervical and lumbar enlargenents, where it is compressed dorso-ventrally. The conus medullaris lies over the junction of the sisth and seventh lumbar vertebre. The length of the cord of a rather large dog was found to be about fifteen inches (ca. 3 Scm .); of this, the cervical part was about four and a half inches (ca. 11 cm .), the thoracie a little less than seven inches (17.4 cm.), the lumbar a little less than three inches (ca. 7 cm .), and the sacro-coccygeal about an inch (ca. 2.6 cm .) (Flatau-Jacobson).

The brain weighs about two to two and a half ounces (ca. 60-70 gm.) in dogs of medium size, but there is, of course, a wide range of weight in the different breeds. Thus in small terriers the weight is about an ounce (ca. 30 gm .) or even less, while in very large dogs it may exceed five ounces (ca. 150 gm .). It corresponds much more closely with the external form of the cranium in size and general form than in the animals previously described; this is specially true of the small breeds, in which the bony crests and frontal sinuses are little developed.

The medulla oblongata is broad and thick. Its ventral surface is strongly convex from side to side. The prramids are large and prominent and are limited by a distinct median fissure and lateral grooves. The median fissure ends at a small depression, the foramen cæcum, just behind the pons. The olivary eminence is a well-defined oval elevation situated between the pyramed and the superficial origin of the hypoglossal nerve. The external arcuate fibers form a wide band which crosses the lateral surface obliquely upward and forward, and obscures the facial tubercle and the groove which limits the restiform body laterally. The cuneate tubercle is clistinct. The rhomboid fossa is deep and narrow. The fourth ventricle communicates with the subarachnoid space on each side through a lateral aperture.

The pons is relatively small, and in correlation with this fact the corpus trapezoideum is very wide; it is divided by the pyramids into two lateral parts. The cerebellum is very broad, but is low and also compressed from before backward. Rather more than half of it is overlapped by the cerebral hemispheres. The anterior surface is accurately adapted to the concave tentorial surfaces of the hemispheres and to the posterior corpora quadrigemina and their commissure. The posterior surface is almost vertical and is convex centrally and flattened laterally. The rermis is prominent and in general well defined, although it is connected in its middle part with the hemispheres. The latter are three-sided and consist of four lobules. The small lobule lateral to the origins of the facial and acoustic nerves is the flocculus. Lateral to this, and separated from it by a deep fissure is the paraflocculus; this is divided into dorsal and ventral parts by a sagittal fissure. The anterior pectuncles are very short.

The posterior corpora quadrigemina are large, very wide apart, and prominent, and are connected by a curved commissure. The medial geniculate body is large and distinct. In the deep interpeduncular fossa are two small bands which indicate the course of the fasciculi retroflexi, tracts which commect the habenular and iuterpeduncular ganglia. The mammillary body is double. The tuber cinereum is relatively large. The hypophysis or pituitary body is circular and rather small.

Fig. 677.-Base of Brain of Doo.

The cerebral hemispheres are very broad behind and diminish in width anteriorly; there is a sudden narrowing at the frontal poles, which are flattened laterally. The tentorial surfaces are concave and form a deep cavity which receives the anterior part of the cerebellum. The arrangement of the fissures and gyri is simpler than in the animals previously examined.

The chief fissures are as follows:

1. The lateral fissure extends upward and baekward from the sulcus rhinalis a little behind the middle of the lateral surface of the hemisphere.
2. The ectosylvian fissure has approximately the shape of an inverted U, and curves over the lateral fissure. It is regarled as consisting of three parts-anterior, middle, and posterior (F. ectosylvia anterior, media, posterior).
3. The suprasylvian fissure lies above and approximately concentric with the preceding. It also consists of three parts-anterior, middle, and posterior.
4. The ectomarginal or collateral fissure runs forward on the dorsal aspect of the hemisphere almost parallel with the dorso-medial border. A little in front of the middle of the surface it gives off a short ansate fissure (F. ansata) which runs obliquely medially and forward. It is ustally continued anteriorly by the coronal fissure, and may be in continuity posteriorly with the medilateral (or post-lateral) fissure.

Fig. 679.-Braln Stem of Dog; Dorsal View.
a, Spinal cord; b, dorsal median groove; c, c, funiculus gracilis; $c^{\prime \prime}$, clava; d, d^{\prime}, funiculus cuneatus; $d^{\prime \prime}$, tuberculurn cuneatum; e, funiculus lateralia e^{\prime}, tuberculum cinereum; f, medulla oblongata; $I, I I$, III, foveæ of floor of fourth ventricle (fossa rhomboidea); a, limiting groove; h, median fissure; i, eminentia medialis; k, ala cinera; l, l^{\prime}, pons; m, posterior peduncle, and n, middle peduncle, of cerebellum (cut) ; o, anterior peduncle of ccrebellum; p, p^{\prime}, corpora quadrigemina, anterior and posterior; q, q^{\prime}, peduncles (brachia) of corpora quadrigemina; r, thalamus; s, massa intermedia; t, atria medullaris; u, anterior tubercle of thalamus; τ, pulvinar; w, corpus gemiculatum laterale; $x_{\text {, }}$ corpus geniculatum mediale. (After Ellenberger, in Leisering's Atlas.)

7. The entomarginal fissure lies between the anterior part of the ectomarginal fissure and

 the dorso-medial border. It is often indistinet and not rarely absent.S. The presylvian fissure-sometimes termed the orbital-begins at the sulcus rhinalis, a little in front of its middle, and curves over the anterior third of the lateral surface of the hemisphere in front of the coronal fissure.
9. The cruciate fissure is the derpest and most characteristic. It euts deeply into the anterior third of the dorso-medial border aud runs almost straight out ward. It is continuous on the medial surface of the hemisphere with the eatoso-marginal or splenial fissure.
10. The sulcus rhinalis is continued on the tentorial

Fig. 6isl.-Right Cerebral Memisphere of Dob; Medial Vew.
1, Corpus callosum: 1^{\prime}, genu: $1^{\prime \prime}$, splenium of corpus callosum; a, genual fissure; b. splenial fissure; c, suprasplenial fissure; d, huppocampal fissure; ϵ, suleus corporis callosi; f, postsplenial fissure; g, lesser cruriate fissure; h. cruciate fissure. (.1fter Ellenberger, in Leisering's Atlas.) surface of the hemisphere by the oceipito-temporal fissure. Anteriorly it is prolonged as the offactory lissure, which is concealed by the olfactory bulb and tract
11. The calloso-marginal fissure usually consists of two parts, splenial and genual. The splenial fissure is parallel with the splenium and mikdle part of the corpus catlosum on the medial surface of the hemisphere. It is continuous in front with the cruciate fissure and runs forward and outward across the tentorial surface to join the occipito-temporal or ealcarine fissure. It gives off from its highest part the short aceessory eruciate fissure. The genual fissure is approximately parallel with the genu of the corpus callosum.
12. The suprasplenial fissure runs almost parallel with the posterior part of the calloso-marginal fissure on the inner and tentorial surfaces of the hemisplere
13. The occipito-temporal or calcarine fissure is the continuation on the tentorial surface of the hemisphere of the splenial fissure.
14. The hippocampal fissure forms the medial boundary of the piriform lobe.

The olfactory bulb is large and is compressed laterally; its anterior end projects heyond the frontal pole of the hemisphere. The tract is short and is also flattened laterally. Both contain a narrow cavity which communieates with the lateral ventricle. The piriform lobe is large and roumed.

The cranial nerves present the following special features whieh are worthy of notice:

The ophthalmic nerve gives off frontal, long ciliary, ethmoidal, and infratrochlear branches. The lacrimal nerve arises from the ophthatmie at its origin; ${ }^{-1}$ its recurrent branch emerges at the orhital ligament and concurs with the zygomatic and frontal nerves in the formation of the anterior auricular plexus. The frontal nerve cmerges from the orhit in front of the upper end of the orbital ligament, ramifies in the upper lid and the adjacent skin of the forehead, and sends branehes backward to the anterior auricular plexus. The long ciliary nerve accompanies the optic nerve and divides intos several branches whieh pierce the posterior part of the sclera. The ethmoidal nerve gives off internal nasal branches and ends in the muzzle. The infratrochlear nerve runs forward between the medial straight and the superior oblique muscles of the eye and ramifies on the face in the viemity of the merlial canthus.

The maxillary nerve emerges through the foramen rotundum and gives off five branches. The lacrimal nerve emerges from the orloit lateral to the frontal: its lranches concur with the frontal and auriculo-palpelsal nerves in the formation of the anterior auricular plexus. The zygomatic nerve emerges through an opening in the upper part of the orlital higament and ramifies in the lower lid and on the adjacent surface of the face. The infraorbital nerves, two in number, livide within the infraorbital canal and after their cmergence upon the face, thus forming seven or eight external nasal and superior labial branches. The sphenopalatine nerve gives off lesser and greater palatine and posterior nasal nerves.

The mandibular nerve pasises out through the foramen ovale. The superficial temporal nerve divides into auricular, temporal, and malar branches; the lastnamed crosses the masseter and ramifies with the buecal nerves. The mylo-hyoid nerve is given off from the mandibular nerve almost immediately after the latter emerges from the cramium; it innervates the mylo-hyoideus and oeeipito-mandibutaris and gives off a branch which turns aromed the lower jaw, joins the inferior
${ }^{1}$ The origin of the lacrimal nerve is such that EHenberger-Baum and Martin deseribe it as a branch of the maxillary nerve.
buccal nerve, and ramifies on the lateral surface of the face. The inferior alveolar nerve arises by a common trunk with the mylo-hyoid; it gives off dental branches and terminates in mental and inferior labial branches. The lingual nerve supplics vaso-dilator and excito-secretory filaments to the mandibular and sublingual salivary glands; these fibers are derived from the chorda tympani.

The facial nerve divides near the posterior border of the jaw into four branches. The upper branch is the auriculo-palpebral nerve, which divides after a very short course into anterior auricular and zygomatic branches. The latter curves upward and forward across the zygomatic arch toward the eye, and divides into branches which supply the eyelids and nasal region and concur with the frontal and lacrimal nerves in forming the anterior auricular plexus. The superior buccal nerve accompanies the parotid duct across the masseter. The inferior buccal nerve runs forward along the lower border of the masseter and the mandible. The two nerves

Fig. 682.-Deep Dissection of Head of Dog, Showing Especlally Trigeminal and Hypoglozsal Nerves,

Abstract

a. Hypoglossal nerve; b, cervical branch of $a ; c$, mandibular division of trigeminus; a, lingual nerve; e, nerve to mandihular gland; f, deep temporal nerve; g, pterygoid nerve; h, buccinator nerve (cut) ; i, inferior alveolar nerve; k, staphyline branch of lingual nerve; l, chorda tympani; m, mylo-hyoid nerve; n, sphenopalatine nerve; o, lesser palatine nerve; p, great palatine nerve; q, infraorbital nerves; r, n. subcutaneus malæ; s, hranch of oculomotor nerve to inferior oblique muscle; t, lacrimal nerve; u, frontal nerve; r, trochlear nerve; u, abducens nerve; 1 , carotid artery; 2, lingual artery; 3, internal maxillary artery; 4, m. thyro-pharyngeus; $5, \mathrm{~m}$. hyo-pharyngeus; 6, m. thyro-hyoideus; $i, \mathrm{~m}$ sterno-hyoideus; $8, \mathrm{~m}$. hyo-glossus; $9, \mathrm{~m}$. genio-hyoideus; $10, \mathrm{~m}$. genio-glossus; $11, \mathrm{~m}$. stylo-glossus; $12, \mathrm{~m}$. pterygoideus medialis; 13 , outline of mandibular gland (dotted); 14, atlas; 15, bulla ossea; 16, 2ygomatic arch (dotted); $17, \mathrm{~m}$. rectus oculi inferior; $18, \mathrm{~m}$. obliquus oculi inferior. (Ellenberger-Baum, Anat. d. Hundes.)

ramify on the cheek and anastomose with each other and the infraorbital nerves to form a plexus from which branches go to the muscles of the lips and nostrils. The cervical branch runs downward and backward over the mandibular gland and ramifies in the cervical cutaneus muscle; it communicates with the inferior buccal nerve and sends twigs to the parotido-auricularis muscle and the mandibular space.

The vagus bears a jugular ganglion and a ganglion nodosum. The former is situated on the nerve just before the emergence of the latter from the cranium. The latter is situated near the anterior cervical ganglion on the rectus capitis ventralis, major and dorsal to the internal carotid artery; it is fusiform and may be about half an inch (ca. 1-1.5 cm.) long in a large dog. In its course in the neck the nerve is inclosed with the sympathetic trumk in a common sheath and is related ventrally-
to the common carotid artery. The two nerves separate after entering the thorax (Figs. 613, 614). The right vagus crosses obliquely over the right face of the trachea and divides a short distance behind the bifureation of the latter into dorsal and ventral branches. The left vagus crosses the lateral surface of the aortic arch and divides similarly. By the union of the dorsal and ventrat divisions of the two nerves there are formed dorsal and ventral asophageat trunks. The dorsal trunk coneurs with branches of the cotiac plexus in forming the posterior gastric plexus on the visceral surface of the stomach. The ventral trunk ramifies on the parietal surface of the stomach, forming the anterior gastric plexus, from which a considerable branch passes along the lesser curvature to the pylorus. Some special features of the collateral branches are: Two pharyngeal branches are present. The anterior pharyngeal branch arises from the vagus ahove the ganglion nodosum. It passes under the deep face of the earotid artery and descents on the lateral surface of the pharynx to end in the crico-thyroid musele. It furnishes a root of the inferior pharyngeal branch, and communicates with the pharyngeal branch of the ninth and with the

Fig. 683.-Nerves of Face of Dog. Parotid Gland is Removed.
Nerves: a, Fucial; b, posterior auricular; c, interual auricular; d, digastric; e, infurior buccal; f, cervical branch of facial; a, auriculo-palpebral; h, superior buccal; i, temporal branch; $k, k^{\prime}, k^{\prime \prime}$, zygomatic branch; l, auriculo-temporal: m, malar branch of l; n, buccinator; o, myk-hyoid branch; p, subcutatheus mala; q. lacrimal; r, frontal; s, infratrochlear; t, infraorbital. 1, Paramastoid process; 2, occipito-mandhbularis; 3, base of concha; 4, masseter; 6. zygomaticus; 6, scutularis; 7 , zygomatic arch; s, maxilla. (Ellenberger-Bawm, Anat. d. Hundes.)
anterior laryngeal and hypoglossal nerves. The posterior pharyngeal branch is formed lay the union of roots derived from the anterior pharyngeal nerve and the ganglion nodosum, together with filaments from the anterior cervical ganglion. It crosses the site of the pharynx behind the anterior pharyngeal and ramifies on the posterior emstrictor of the pharyns and the origin of the nesophagus. It contributes filaments to the pharyngeal phexus, commumicates with the recurrent nerve, and supplies twigs to the thyroid gland. The pharyngeal plexus is formed on the lateral surface of the pharynx by branches of the pharyngeal nerves and the communications above deseribed; branches from it imervate the muscles and mucous membrane of the pharynx. The anterior laryngeal nerve arises from the ganglion nodosum and deseends over the side of the pharynx, crossing Ieneath the carotid artery and the anterior laryngeal nerve. It passes through the thyroid noteh and ramifies in the mucous memhrane of the laryox. It communicates with the anterior cervical ganglion and the anterior pharyngeal branch of the vagus, and gives twigs to the hyo-pharyngeus musele. Immediately after its entrance into the larynx it gives off a large branch which, instead of uniting with the recurrent as in the
other animals, has a peculiar arrangement. It runs bark near the dorsal border of the thyroid cartilage, gives a braneh to the crico-arytenoideus dorsalis as it passes over that musele, and continues along the trachea medial to the reeurrent nerve. At the thoracic inlet it communicates with the posterior cervical ganglion and continues backward to unite with the vagus at or near the point of origin of the recurrent nerve. Its collateral filaments supply the trachea and concur with the posterior pharyngeal braneh in forming a plexus on the cervieal part of the œesophagus which innervates that tube. ${ }^{1}$ The recurrent nerves present no remarkable special features. The depressor nerve is a very delicate filament whieh arises usually from the anterior laryngeal nerve and is incorporated in the vago-sympathetic trunk to the thorax. Here the nerve separates from the ventral border of the vago-sympathetic trunk. The right nerve passes baekward between the anterior vena eava and the trachea, inclines to the left, and reaches the medial surface of the aortic areh. The left nerve passes backward ventral to the vagus and aeross the lateral (left) face of the aortic areh. Both nerves give filaments to the eardiae nerves and to the aorta and pulmonary artery. Their terminal branches pass between these vessels and enter the wall of the heart. The pulmonary and posterior œsophageal plexuses are highly developed.

The hypoglossal nerve gives off a long branch (R. descendens) which runs downward and backward aeross the pharynx and larynx, communieates with the ventral branch of the first eervieal nerve, and supplies the thyro-hyoid, sternohyoid, and sterno-thyroid muscles.

The spinal nerves number thirty-six or thirty-seven on either side, and comprise eight cervical, thirteen thoraeic, seven lumbar, and five or six cocevgeal.

The brachial plexus (Fig. 616) is derived from the ventral branches of the last four cervical and first thoracic nerves; the root supplied by the fifth cervical nerve is very small. The roots unite at the ventral border of the sealenus. The more important special features in the arrangement of the nerves which emanate from the plexus are as follows:

The musculo-cutaneous nerve passes between the coraco-braehialis and the brachial artery and deseends in the arm in front of the artery. At the shoulder joint it gives off branehes to the biceps and eoraco-brachialis, and in the distal third of the arm is comeeted with the median nerve by an oblique branch. It terminates near the elbow by dividing into a branch for the braehialis and a small cutaneous nerve which passes down over the medial face of the elbow and, inclining a little forward, descends over the deep fascia of the forearm to the earpus.

The radial nerve descends behind the ulnar nerve, gives branches to the extensors of the elbow, dips in between the medial head of the triceps and the aecessory head of the anconeus, winds around the arm, and divides between the brachialis and the lateral head of the triceps into two branehes. The deep branch (R. profundus) supplies the extensor and supinator muscles on the forearm. The superficial branch (R. superficialis) emerges upon the flexor surface of the elbow and divides into two branches which terminate by supplying two dorsal digital nerves to each digit, exeept the fifth, which receives its lateral dorsal nerve from the ulnar. The medial branch descends along the medial side of the cephalic vein to the carpus, where it divides into dorsal nerves for the first digit and the medial side of the second. The lateral braneh is much larger. It descends on the middle of the front of the forearm and supplies the remaining dorsal digital nerves except that to the lateral side of the fifth digit.

The ulnar nerve is as large as or larger than the median, with which it is united for some distance. At the distal third of the arm it separates from the median and passes over the medial epicondyle of the humerus. At the proximal part of

[^211]the forearm it gives off the dorsal branch (R. dorsalis), which supplies eutaneous twigs to the dorso-lateral surface of the distal part of the forearm and earpus and terminates as the lateral dorsal digital nerve of the fifth digit. Descending under cover of the flexor carpi ulnaris, the ulnar inclines medially under he tendon of insertion of that muscle and divides into superficial and deep bramehes. The superficial branch (R. superficialis) desemuls along the lateral border of the flexor tendons, gives off the lateral volar digital nerve of the fifth digit (N. dig. vol. lat. dig. V), and a branch (N. met. vol. IV) which descends in the space between the fourth and fifth metacarpal bones and unites with the deep branch. The deep branch (R. profundus) deseends in the carpal canal and divides under the deep flexor

Fig. bint.-Nerves of Distal Part of Right Forelamb of Dog; Dorshi Vien (sishematic).
b, Dorsal proper digital nerves.

Fig. 685.-Neryea of Distal Part of Right Forelimb uf Dug; Volar View (Schematic). p, Volar proper digital nerves.
tendon into its terminal branches. The smaller of these supply the volar meta(arpal museles. The larger teminals are the three volar common digital nerves (Nn. dig. col. comm. II, III, IV), which deseend along the second, third, and fourth intermetacarpal spaces, suldivide, and concur with the volar metacarpal branches of the median nerve in forming the volar proper digital nerves (N n. dig. vol. proprii).

The median nerve descends behind the brachial artery, passes over the medial epieondyle of the humerus, then under the pronator teres, and continues in the forearm under cover of the flexor earpi radialis. It gives branches below the elbow to the flexor and pronator museles, and lower down a volar loranch to the skin on the medial and volar aspect of the carpus, and terminates between the superficial and deep flexor temtons hy dividing into three volar metacarpal nerves (N. met. vol.

I, II, III). These descend in the first, second, and third intermetacarpal spaces and unite with the volar common digital nerves in forming volar proper digital nerves. The arrangement of the digital nerves is indicated in the annexed schematic figures.

The lumbo-sacral plexus is formed from the ventral branches of the last five lumbar and first sacral nerves. The more important special facts in regard to the nerves of the pelvic limb are as follows:

The saphenous nerve (Fig. 621) is relatively large, and. in fact, might be considered as the continuation of the femoral nerve. It descends at first in front of the femoral artery, then passes over the lower part of the medial surface of the thigh with the saphenous artery, continues down the leg with the dorsal branch of

Fig. 6s6.-Nerves of Distal Part of Riget Hevd Livb of Dog, Dorsal View (Schematic).
p, Dorsal proper digital nerves.

Fig. 687.-Niertes of Distal Part of Right Hind Limb of Dog, Plantar View (Schematic).
p, Plantar proper digital nerves.
that vessel, and anastomoses with branches of the superficial peroneal nerve. It supplies cutaneous twigs from the stifle to the metatarsus.

The common peroneal nerve separates from the tibial above the origin of the gastrocnemius, runs downward and forward across the lateral head of that muscle, passes between the deep flexor of the digit and the peroneus longus, and divides into superficial and deep branches. The superficial peroneal nerve descends the leg along the peroneus tertius and longus, gives off a dorsal branch to the first digit (N. cutaneus dorsalis medialis), and divjdes at the proximal part of the metatarsus into three dorsal common digital nerves (Nn. dig. pedis dors. comm. II, III, IV). These descend with the superficial dorsal metatarsal arteries and concur with branches of the deep peroneal nerve in forming dorsal proper digital nerves (Nn. dig. ped. prop. dorsales). The deep peroneal nerve passes down the leg with the anterior
tibial ressels. It gives twigs to the hoek joint and the extensor brevis musele, and divides into three dorsal metatarsal nerves (Nn. met. dors. II, III, IV); these descend with the corresponding arteries along the intermetatarsal spaces and unite with the dorsal common digital nerves in supplying the dorsal proper digital nerves.

The tibial nerve divides at the tarsus into two plantar branches. The medial plantar nerve descents along the mediat border of the superficial flexor tendon and divides near the middle of the metatarsus into two branches. Of these, the medial branch constitutes the first plantar common digital nerve (N. dig. comm. plant. I). The lateral branth deseents on the superficial flexor tendon and tivides into three plantar metatarsal nerves (Nn, met. plant. II, III, IV), which mite with the plantar common digital nerves. The lateral plantar nerve passes down between the flexor tendons, sends twigs to the museles on the plantar surface of the metatarsus, and divides into three plantar common digital nerves (Nn. dig. comm. plant. 1I, III, IY). These descend with the deep plantar metatarsal arteries in the second, third, and fourth intermetatarsal spaces, receive the plantar metatarsal nerves, and divide into plantar proper digital nerves, which pass down the opposed surfaces of the second to the fifth digits.

The sympathetic system presents few special features worthy of mention. The anterior cervical ganglion is situated belind the bulla ossea in close relation to the internal carotid artery and the ganglion nodosum of the vagus. It is fusiform and is a little less than hatf an inch (ca. I cm.) long in a dog of medium size. It forms connections directly or through the carotid plexus with the last seven cranial and first errvical nerves. The cervical trunk unites with the vagus so intimately as to form a vago-sympathetic trunk. The posterior cervical ganglion is situated at the peint where the sympathetic trunk separates from the vagus (Figs. 613, 614). It is usually distinct from the first thoracic ganglion, which is stellate and lies on the longus colli opposite the first space. The two are connected by filaments which cross each side of the brachial artery, forming the ansa subelavia. Two or three cardiac nerves proeeed from these ganglia on the left side; they pass to the lateral surface of the aortic arch, where they ramify and concur with the nerves of the right side in the formation of the cardiac plexns. On the right side one or two cardiac nerves appear to come from the vagus and one from the first thoracic ganglion. They ramify on the right side of the trachea and with those of the right side form the earliac plexus at the base of the heart. From the plexus branehes go to the heart, pericarlium, and pulmonary artory. The greater splanchnic nerve separates from the posterior part of the thoracic trunk, most often from the twelfth ganglion. It passes into the abdomen between the diaphragm and the proas minor and joins a small adrenal ganglion close to the coliae ganglion. The lesser splanchnic nerve arises from the last thoracic and first lumbar ganglia. It may be divided into two or three strands which go to the adrenal plexus.

The cœliac and anterior mesenteric ganglia are separate. The former is elongated and lies along the posterior face of the origin of the coliae artery. The latter is smaller and rounded aud is in contact with the origin of the anterior mesenteric artery. On the left side the two ganglia are eonnected by a trunk which is ganglionic in eharacter. The cœliac, anterior mesenteric, and subsidiary plexuses enlace the corresponding arteries. There is a small elongated posterior mesenteric ganglion in relation to the origin of the posterior mesenteric artery. The posterior mesenteric plexus includes left colic, anterior hæmorrhoidal, and spermatic plexuses. The lumbar trunk is deeply placed at the medial side of the psoas minor. It has seven ganglia, which are very small, with the exception of the last. There is a welldeveloped aortic plexus. The sacral trunks are close to the middle sacral artery and have each three ganglia when this part is fully developed. The caudal trunks tie on each side of the coecygeal artery; the number and arrangement of the visible ganglia are variable. The pelvic plexus is well developect and contains minute ganglia.

ÆSTHESIOLOGY

THE SENSE ORGANS AND COMMON INTEGUMENT

The organs of the senses (Organa sensumm) receive external stimuli and conduct impulses to the brain which result in sensations of sight, hearing, taste, smell, and touch. They consist essentially of specially differentiated cells (neuro-epithelium) and a conduction path which is simple in the more generalized sense organs, elaborate in those which are highly specialized-the eve and the ear.

THE SENSE ORGANS AND SKIN OF THE HORSE

The Eye

The eye or organ of vision (Organon visus) in the broader sense of the term comprises the eyeball or globe of the eye, the optic nerve, and certain accessory organs associated therewith. The accessory organs (Organa oculi accessoria) are the orbital fascix and muscles, the eyelids and conjunctiva, and the lacrimal apparatus. These structures will be considered in the order in which they may be most conveniently examined, taking the horse as a type. The bony walls of the orbit have been described in connection with the skull; the periorbita, a fibrous membrane which encloses the eyeball together with its muscles, vessels, and nerves, may be appropriately included in the account of the fasciz.

THE EYELIDS AND CONJUNCTIVA

The eyelids, upper and lower (Palpebra superior et inferior), are movable folds of

Fig. 6SS.-Left Eye of Horse.
9, Zygomatic arch; 10, supraorbital depression; 12, supraorbital process; 27 , facial crest. (After Ellenberger-Baum, Anat, für Künstler.) integument situated in front of the eyeball. When closed, they cover the entrance to the orbit and the anterior surface of the eyeball. The upper lid is much more extensive and more movable than the lower one, and its frec edge is more concave. The interval between the lids is termed the palpebral fissure (Rima palpebrarum). When the eye is closed, it is an oblique slit about two inches (ca. 5 cm .) in length; when open, it is biconvex in outline. The ends of the fissure are the angles or canthi, and are distinguished as medial or nasal, and lateral or
temporal (Angulus oculi medialis, lateralis). The lateral angle is rounded when the eye is open, hut the medial angle is narrowed and produced to form a \triangle-shapeed bay or reeess, termed the lacrimal lake (Lacus lacrimalis). In this there is a rounded pigmented prominence known as the lacrimal caruncle (Caruncula lacrimalis); it is about the size of a small pea, and is covered with modified skin, connected with that of the medial commisure, from which project a number of hairs provided with sebaceous glands. The lids unite on either side and form the commissures, medial and kateral (Commissura pahpebrarum

Fig. dis9.-iertical section of Ivterior Part of Eye of Horse, with Lids Malf Clomed.

1. Tarsal gland of upper lid; 2, palpebral conjunctiva: - fornix conjunctiva: 4. levator palpebore superioris; \quad. orbocuaris oculi: fo, rornea: γ, anterion chamber; s, iris: ". y^{\prime}, granula iridis; 10, pusterior chamber; 11, ciliary pruc"ss; 12 , viliary mumelu: 13 , ciliary zone or suspensory lig. of lens; 14, chorioit; 15, sclera; 16, lens; 17 , root of tactile hair. (After Bayer, Augenheilkunde.) medialis, lateralis). The anterior surface of the lids (Facies anterior palpebrarum) is convex and is covered with very short hair. A considerable numher of tactile hairs are scattered over the lower part of the lower lid, but on the upper lid they are very scanty. The infrapalpebral depression (Suleus infrapalpebralis) indicates somewhat indistinctly the limit of the lower lid. The upper lid is marked by two furrows when raised. The posterior surface (Facies posterior palpolrarum) is adapted to the free surface of the eyehall and is covered by the pabpebral conjunctiva. The free border of the lid is smooth and usually hack. It has a well-lefined posterior margin (Limbus palpetralis posterior), along which the ducts of the tarsal glands open. The anterior margin (Limbus palpebralis anterior) hears stiff hairs termed the cilia (eyelashes). On the upper lid the rilia are long and numerous except at its medial third, where they are very small or absent. On the lower hid the cilia are often searcely distinguishable from the ordinary hairs; in other cases they may be clearly seen exeept near the lateral canthus, and are much finer and shorter than those of the upper lid. The edge of each tid is pierced near the medial angle by a minute, slit-like opening, the punctum lacrimale, which is the entrance to the larrimal duct.
The skin of the eychids is thin and freely movahle, exerept near the free edge, where it is more firmly attached. The underlying subentaneous tissue is destitute of fat. The muscular layer consists chiefly of the elliptical bundles of the orbicularis oculi, with which are associated fibers of the corrugates supercilii in the upper lid and the mataris in the lower lid. At the medial side there is a fibrous band, the palpebral ligament, which is attached to the lacrimal tubercle and furnishes origin to some fibers of the orbicularis. At the medial commissure a bundle detached from the orlicularis passes inward behind the lacrimal sae, and is known as the pars lacrimalis (or Homer's musele). At the lateral side an indistinet palpeloral raphe occurs where fibers of the orbicularis decussate. The fibrous layer is thicker and
denser along the free edge of the hid, forming here the tarsus. The tarsus furnishes insertion to a layer of unstriped nusele known as the tarsal muscle. The tarsal glands (Glandule tarsales) ${ }^{1}$ are partly embedded in the deep faee of the tarsus, and are visible when the lid is everted if the eonjunctiva is not too strongly pigmented. They are arranged in a linear series, close together, and with their long axes perpendieular to the free edge of each lid. In the upper lid they number forty-five to fifty: in the lower, thirty to thirty-five. Each consists of a tubular duct beset with numerous alveoli, in which a fatty substance, the palpebral sebum, is seereted. The palpebral conjunctiva lines the internal surface of the eyelids.

The conjunctiva is the mucous membrane whieh lines the lids as palpebral conjunctiva (C. palpebrarum), and is reflected upon the anterior part of the eyeball as bulbar conjunctiva (C. bulbi); the line of reflection is termed the fornix conjunctivæ. The palpebral part is elosely adherent to the tarsus, but is loosely attached further back. It is papillated and is covered with stratified cylindrical epithelium in whieh many goblet-cells are present. In the formix and its vicinity there are tubular glands. Near the medial angle there are numerous lymph nodules. The conjunctiva of the lateral part of the upper lid is piereed near the fornix by the orifices of the exeretory ducts of the lacrimal gland-twelve to sixteen in number.

Fig. 690.-Piece of UPper Etelid; Inner Surface, 1. Cilia; 2, limbus palp. posterior; 3, tarsal glands. (After Elleaberger, in Leisering's Atlas.)

Fig. 691.-Cartilage of Third Eselid of Horse; Convex Strface.

1. Glandi 2, fat surrounding deep part of cartilage. (After Ellenberger, in Leisering's Atlas.)

The bulbar conjunctiva is loosely attaehed to the anterior part of the sclera and is pigmented in the vieinity of the corneo-seleral junction. On the eornea it is represented by a stratified epithelium.

When the lids are in apposition, the conjunctiva (including the epithelium of the cornea) encloses a capillary space between the lids and the eyeball, and constitutes what is known as the conjunctival sac.

The third eyelid (Palpebra tertia) is situated at the medial angle of the eye. It consists of a semilunar fold of the conjunctiva, known as the membrana nictitans, which covers and partly encloses a eurved plate of hyaline cartilage. Its marginal part is thin and usually more or less pigmented. The eartilage has an elongated quadrilateral outhine. The part of it which lies in the membrana is wide and thin. The deep part is narrower and thicker and is embedded in fat at the inner side of the eveball. Numerous minute lymph nodules oceur in the membrana netitans, and the deep part of the cartilage is surrounded by a gland which resembles the laerimal gland in structure (Clandula superficialis palpebre tertiee).

Ordinarily the third eyelid extends very little over the medial end of the cornea, but when the eyeball is strongly retracted, the membrana is protruded over it so as to measure about an inch (ca. 2-3 cm.) in its middle. This effect results from the pressure of the eyeball and its muscles on the fat whieh surrounds the deep part of the cartilage.

Vessels and Nerves.-The arteries which ehiefly supply the eyelids and con${ }^{1}$ Also known as the Meibomian glands.
junctiva are branches of the ophthalmic and facial arteries, and the blood is drained away by corresponting veins. The sensory nerves are branches of the ophthalmic and maxillary divisions of the trigemimus. The motor nerves to the orbieularis oculi, corrugator supercilii, and malaris come from the facial nerve; the levator palpobre superioris is imnervated by the oculomotor nerve and the unstriped musele of the lids by the sympathetic.

THE LACRIMAL APPARATUS

The lacrimal apparatus (Apparatus lacrimalis) comprises: (1) the lacrimal gland, which secretes the elear latrimal fluid; (2) the exeretory ducts of the gland; (3) the two lacrimal ducts or canaliculi, lacrimal sae, and naso-lacrimal luet, which receive the fluid and conroy it to the nostril.

The lacrimal gland (Clandula lacrimalis) is situated between the supraorbital process and the dorso-lateral surface of the eyeball (Fig. 563). It is flattened, oval in outline, and measures about two inches (ea. 5 cm .) transversely and an ineh or more ($2.5-3 \mathrm{~cm}$.) in the sagittal direction. Its superficial face is convex and is related to the coneave lower surface of the supraorbital process. The deep face is concave in adaptation to the eyeball, from which it is separated by the periorbita. The excretory ducts (Ductuli excretorii) are very small and are twelve to sixteen in number; they open into the lateral part of the conjunctival sae along a line a little in front of the formix conjunctives superior. In appearance and structure the gland resembles the parotid. It reeejves its blood-supply chinfly from the lacrimal artery. The sensory nerve is the lacrimal, and the secretory fibers are derived from the sympathetic.

The puncta lacrimalia are the entrances to the two lacrimal ducts. Each is a fine, slit-like opening (about 2 mm . long), situated close behint the free edge of the lid and about a third of an inch (ea. \& mm.) from the merlial canthus. The lacrimal ducts (Ductus lacrimales), upper and lower, hegin at the puncta and converge at the medial commissure to upen into the lacrimal sac. The latter (Saceus lacrimalis) may be regarded as the dilated origin of the naso-lacrimal duct. It occupies the fumel-like origin of the bony lacrimal canal, which is termed the fossa of the lacrimal sac, and leads to the naso-lacrimal duct (Ductus nasolacrimalis), which passes forward and a little downward along the outei wall of the frontal sinus and the nasal eavity and opens near the lower commissure of the nostril. Its length is about ten to twelve inches (ca. 25-30 em.). In the first part of its course it is enelosed in the osseous lacrimal canal; further forward it lies in the lacrimal groove of the maxilla, covered at first by a plate of cartilage and then by the mucous membrane of the middle meatu: (Fig. 59). The terminal part (Fig. 452) lies in the ventral turbinate fold and opens on the skin of the floor of the nostril near the transition to mucous membrane. Accessory opening. may occur a little further back.

The first part of the duct, about 6 to 7 mm . in diameter, extends in a gentle curve, eonvex dorsally, from the medial commissure toward it point just above the dew of the infraorbital foramen. The sceond part (isthmus) is narrower (ca. $3-4 \mathrm{~mm}$.) ; it extends forward and a little ventrally about to a transverse plane through the first cheek tooth and lies in the groove above the ventral tumbinate crest. Beyond this the duct inclines upwarl and widens very considerably, erosses the nasal process of the premaxilla obliqucly, and contracts at its termination. The mucous membrane may present valvalar folds, the most distinct of which is situated at the origin.

THE PERIORBITA

The periorbita ${ }^{1}$ is a conical fibrous membrane which eneloses the eyeball with its muscles, vessels, nerves, etc. Its apex is attached aroumd the optie and orbital foramina, and its base is in part attached to the bony rim of the orbit, in part con-
${ }^{1}$ Also known as the ocular sheath.
tinuous with the fibrous layer of the lids. Its medial part, which is in contact with the orbital wall, is thin; incorporated with it bencath the root of the supraorbital process is the bar of cartilage around which the superior oblique muscle is reflected. The lateral part is thicker, and is strengthened by an elastic baml which is attached to the ptervgoid crest and furnishes origin to the thim, unstriped orbital muscle. A quantity of fat (Corpus a diposum extraorbitale) lies about the periorbita, and within it is the intraorbital adipose tissue (Corpus adiposum intraorbitale) which fills the interstices between the eyeball, muscles, etc.

THE ORBITAL FASCIE AND OCULAR MUSCLES (Figs. 563, 564, 692)
The straight muscles of the eveball and the oblique muscles in part are enclosed in fibrous sheaths (Fascie musculares), formed by superficial and deep layers of fascia, which are united by intermuscular septa in the interstices between the museles. The superficial fascia is thin; it blends in front with the fibrous layer of the evelids and is attached behind around the optic foramen. The deep fascia consists anteriorly of two layers, one of which is continuous with the fibrous tissue of the lids, while the other is attached at the cornco-scleral junction.

The posterior part of the eycball is covered by the fascia bulbi, so that between them a lymph space (Spatium interfasciale) is enclosed which communcates with the subdural space along the course of the optic nerve.

The levator palpebræ superioris musele ${ }^{1}$ is a thin band about half an inch in width which lies above the rectus dorsalis. It is narrow at its origin above and behind the ethmoidal foramen and ends by an expanded tendon in the upper lid. lts action is to raise the upper lid.

The muscles of the eyeball (Mm . oculi) are seven in number-four straight, two ohlique, and a retractor.

The straight muscles (Mm . recti) are designated according to their positions as rectus dorsalis s. superior, rectus ventralis s. inferior, rectus medialis, and rectus lateralis. They are all band-like, arise close together around the optic foramen, and diverge as they pass forward to the eyeball. On reaching the latter they end in thin tendons which are inserted into the sclera in front of the equator of the eyeball.

The retractor oculi surrounds the optic nerve, and is incompletely divided into four parts which alternate with the recti. They arise around the optic nerve and are inserted into the sclera behind the recti.

The obliquus dorsalis s. superior is the longest and narrowest of the ocular muscles. It arises near the ethmoidal foramen and passes forward medial to the rectus medialis. Ender the root of the supraorbital process it is reflected almost at a right angle around a cartilaginous pulley (trochlea), which is attached to the anterior part of the inner wall of the orbit, a bursa being interposed here. The muscle is then directed outward and somewhat forward, and ends in a thin tendon which passes between the rectus dorsalis and the eyeball, and is inserted into the sclera between the dorsal and lateral recti, about half an inch behind the margin of the cornea.

The obliquus ventralis s. inferior is wide and much shorter than the recti. It arises from the medial wall of the orbit in the small depression (Fossa muscularis) behind the lacrimal fossa. It curves around the rectus ventralis and is inserted into the selera near and partly beneath the rectus lateralis.

Actions.-The dorsal and ventral recti rotate the eveball about a transverse axis, moring the vertex of the cornea upward and downward respectively. ${ }^{2}$ simi-
${ }^{1}$ This belongs to the upper evelid, but is mentioned here on account of its position and the fact that in dissection it must be dealt with before the muscles of the eyeball.
${ }^{2}$ These terms are used with reference to the axis of the eyeball, not that of the head.
larly the medial and lateral recti rotate the eyeball about a vertical axis, turning the vertex of the cornea inward and outward respectively. The oblique museles rotate the eyeball about a longitudinal axis; the dorsal oldique rases the lateral end of the pupil, while the ventral obligue lowers it. The retractor as a whole draws the eyehall backward, and its parts may separately reinforce the corresponding recti. Also the four recti acting together will retract the eyelrall.

The actual movements of the eyeball are by no means so simple as might be inferred from the foregoing general statements. Prartically all movements are produced by the coordinated actions of several museles, involving combinations which are quite complex and lifficult to analyze accurately. Further complication is caused by the fact that the recti are not inserted at equal

Fig. 692.-Vertical Axial Sectiov of Orbit of Horse.
a, Eyplids; b, fascia bulhi; c, c^{\prime}, retractor omah; d, reetus ventralis; c, obliquns ventralis (in cross-section): f. rectus dorsalis; g, levator palpebree superıoris; h, oblıquus dorsalis (in cross-section); i, lacrimal glanct; k, k^{\prime}, poriorbita; I, superficial fascia; m, depp fascia; n, skin; o, retrobulbar fat; p, extraorbital fat; q, temporalis muscle; r. supraorbital process; s, cranial wall; l, cornes, 2, selera; 3, chorioklea; f, caliary muscle; 5 , iris; 6, granula irslis; γ retma; γ^{\prime}, opte paplla; s, optic uerve; 9 , "rystalline lens; 10, capsule of lens; 11 , ciliary zone; 12, postenor chamb.r: $I 3$, anterior chamber; 14 , conjunctiva bulbi; $I \overline{5}$, vitreous body: (After Ellenberger, in Leisering"s Atlas.)
distanees from the equator and the axes of rotation of the oblique museles do not eorrespond to the longiturlinat axis of the eyeball.

Nerve-supply. - The orulomotor nerve supplies the foregoing museles, with the exereption of the reetus lateralis and oblifeus dorsalis, which are innervated by the ablucens and trochlearis respectively.

THE EYEBALL

The eyeball (Bulbus oculi) is situated in the anterior part of the orbital eavity: It is protected in front by the eyelids and comjunctiva, and in its middle by the complete orbital ring, and is related lehind to the fascia lulli, fat, and ocular muscles.

It has the form approximately of an ollate spheroid, lout is eomposed of the segments of two sheres of different sizes. The anterior transparent segment, which is formed by the cornea, has a radius of curvature of about 17 mm ., and the
posterior opaque, seleral segment one of about 25 mm . The anterior segment therefore projects more strongly, and the junction of the two seginents is marked externally by a broarl, shallow groove, the sulcus scleræ. The central points of the anterior and posterior curvatures of the eyehall are termed respectively the anterior and posterior poles (Polus anterior, posterior), and the line connecting the poles is the external optic axis (Axis oculi externa). ${ }^{1}$ The angle of divergence of the optic axes is about 137 degrees. The equator (Equator) is an imaginary line drawn around the cyeball midway between its poles, and meridians (Meridiani) are lines drawn around it through the poles.

The average transverse diameter of the cyeball is about 5 cm ., the vertical about 4.5 cm ., and the axial about 425 cm . The distance from the anterior pole to the point of entrance of the optic nerve is about 3 cm .

The eyeball consists of three concentric tunics or coats, within which three refractive media are enclosed.

The Fibrous Tunic

The fibrous tunic (Tunica fibrosa oculi) is the extermal coat and is composed of a posterior opaque part, the selera, and a transparent anterior part, the comea.

1. The sclera ${ }^{2}$ is a dense fibrous membrane which forms about fourfifths of the fibrous tumic. Thickest in the vicinity of the posterior pole (ca. 2 mm .), it thins at the equator (ca. 0.4 mm .), and increases in thickness toward the junction with the cornea (ca. 1.3 mm .). It is in general white, but may have a bluish tinge in its thinnest parts. Its external surface furnishes insertion to the ocular muscles and is covered by the conjunctiva sclere in its anterior part. The episcleral tissue, which is richly supplied with ressels and nerves, attaches the conjunctiva to the sclera; it is abundant and loosely meshed except at the junction with the cornea. The inner surface is attached to the chorioid coat by a layer of delicate, pigmented comective tissue, the lamina fusca. The anterior bor-

Fig. 693.-Left Eyeball of Horse, in sifu, After Removal of ('pper and Lower Lids.
9. Zygomatic arch: 13 . supraorbital process: 19 , orbital fat: 27 . facial crest. After Ellenberger-Baum. Anat. fïr Künstler.) der, which is oval, the long axis being transverse, is continuous with the cornea. The transition from the opaque seleral tissue to the transparent corneal substance occurs in such manner that the selera appears to form a groove (Rima cornealis), into which the cornea fits somewhat as a watch-glass in the case. Near the corneo-scleral junction there is a circular venous plexus, the plexus s. sinus venosus scleræ. ${ }^{3}$ The optic nerve passes through the posterior part of the sclera a little below and lateral to the posterior pole. The opening for the nerve is crossed ly interlacing fibrous strands, forming the lamina cribrosa scleræ. The sclera consists of interlacing bundles of white fibrous tissue, associated with which there are a few elastic fibers. The
${ }^{1}$ The term internal optic axis (Axis oculi externa) is applied to a coincident line from the posterior surface of the cornea to the anterior surface of the retina.
${ }^{2}$ Also termed the sclerotic coat, and popularly known as the "white of the eye."
${ }^{3}$ Formerly termed the canal of Schlemm.
bundles are arranged chiefly in meridional and equatorial layers. The very limited hood-supply is derived from the cilitry arteries, and the veins open into the vene vorticose and ciliary veins. The lymphatics are represented by intercommunicating eell spaces. The nerves are derived from the ciliary nerves.
2. The cornea forms the anterior fifth of the fibrous tunic. It is transparent, colorless, and non-vascular. Viewed from in front it is oval in outline, the long axis being transverse and the broad end medial; it appears more nearly circular when viewed from behind. Its anterior surface (Facies anterior) is convex and is more strongly curved than the sclera; its central part is termed the vertex corneæ. The posterior surface (Facies posterior) is coneave; it forms the anterior boundary of the anterior chamber, and is in contact with the aqueous humor. The margin (Limbus cornese) joins the selera; the latter overlaps the cornea more in front than behind, and more above and below than at the sides, thus explaining the apparent

Fig, 694. -Vertical Section of Eteball of Horse, about $\frac{2}{2}$.
The contour of the erystalline lens is dotted.
difference in outline of the two surfaces. The cornea is thimest at the vertex. The cornea consists, from before backward, of the following layers (1) The epithelium corner is continuous with that of the ronjunctiva selera, and is of the stratified squamous type. (2) The lamina limitans anterior is merely a condensation of the next layer. (3) The substantia propria forms the bulk of the cornea and is composed of intertacing lundtes of connective tissue, arranged in part in lamelle disposed parallel with the surface. In the amorphous cement substance between the lamelle are flatteneri comectivetissue cells, the corneal corpuscles. These have brancling processes which unite with those of other cells, thus forming a protoplasmi network. ${ }^{1}$ (1) The lamina elastica posterior ${ }^{2}$ is a thin and
${ }^{1}$ Adrording to l'iersol, the system of spaces and eanaliculi in the substantia propria is completely filled by the eefls and their processes, upon which the nutrition of the cornea largely depends. The lamina elastica anterior (13owman's membrane), formerly deseriberl as a distinct layer between the corneal ipithelium and the substantia propria, does not exist as such, but there is a condensation of the superficial part of the latter, which Rollett termed the anterior limiting layer; it is not elastic.
${ }^{2}$ Also known as the membrane of Descemet or Demours
practically homogeneous membrane which is less intimately attached to the sulbstantia propria than the anterior lamina. It is clear, glistening, and elastic. At the periphery the lamina divides into three sets of fibers. The anterior fibers join the selera, the middle give attachment to the ciliary muscle, while the posterior pass into the iris and form the ligamentum pectinatum iridis. (5) The endothelium of the anterior chamber (Eudothelium camere anterioris) consists of a layer of flattened polygonal cells, and is reffected on to the anterior surface of the iris. The cornea is non-vascular except at its periphery, where the terminal twigs of the vessels of the sclera and conjunctiva form loops. The nerves are derived from the ciliary nerves. They form a plexus around the periphery (Plexus annularis), from which fibers pass into the substantia propria, become non-medullated, and form the fundamental or stroma plexus. From this perforating branches go through the anterior limiting layer and form a subepithelial plexus, from which filaments pass between the epithelial cells. Other branches from the plexuses in the substantia propria end as fibrils which are in close relation with the corneal corpaseles.

The Vascular Tunic

The vascular tunic (Tuniea vaseulosa oculi) lies internal to the fibrous coat; it comprises three parts-the chorioid, the ciliary body, and the iris.

1. The chorioid (Chorioidea) is a thin membrane which lies between the sclera and retina. It is in general rather loosely attached to the selera by the lamina fusea, but is intimately adherent at the point of entrance of the optic nerve and less closely in places where the eiliary vessels and nerves pass through. The inner surface is in contact with the layer of pigmented cells of the retina, which adhere so closely to the chorioid that they were formerly regarded as a part of the latter. The general color of the chorioid is dark brown, but an extensive semilunar area a little above the level of the optic papilla has a remarkable metallic luster, and is termed the tapetum of the chorioid (Tapetum chorioidex). The appearance here varies in different individuals, but the prevailing colors in most cases are irideseent blue and green in various nuances shading into yellow. Posteriorly the chorioid is perforated by the optic nerve,

Fig. 695.-Tapetum of Horse. a, Optic papilla; b, lower border of tapetum. (Ifter Ellenberger, in Leisering's Atlas.) and anteriorly it is continuous with the ciliary body. The chorioid consists of four layers, which from without inward are as follows: (1) The lamina suprachorioidea consists of interlacing fine lamellæ of fibrous tissue, each containing a network of elastic tissue. Among these are large, branched, pigmented, connective-tissue cells. The spaces between the lamelle are lined with endothelium, and form a system of lymph-clefts which together form the perichorioid space (Spatium perichorioideale). (2) The lamina vasculosa is the outer part of the proper tissue of the chorioid. It contains the larger blood-vessels, which are supported by arcolar tissue. (3) The lamina choriocapillaris consists of an extremely rich network of capillaries embedded in an almost homogeneous matrix. Between it and the lamina vasculosa is a layer of fibro-elastic tissue, the tapetum fibrosum, which causes the metallic Iuster mentioned above. (t) The lamina basalis is very thin and transparent. It is compused of an inner homogeneous part and an outer clastic part.
2. The ciliary body (Corpus ciliare), the middle part of the rascular coat, conneets the chorioid with the periphery of the iris. In meridional section it has the form of a narrow triangle, the base of which is next to the iris. On its imer side are the ciliary processes and on its outer side is the ciliary muscle. It consists of three parts-the ciliary ring, ciliary processes, and ciliary muscle. The ciliary
ring (Orbiculus ciliaris) is the posterior zone, which is distinguished from the chorioid mainly by its greater thickness and the absence of the chorio-capillaris. Its inner face presents numerous fine meridional ridges, by the union of which the ciliary processes are formed. The ciliary processes (Processus ciliares), more than a hundred in number, form a circle of radial folds which surround the lens and furnish attachment to the zonula ciliaris (or suspensory ligament of the lens). They are small at their origin on the riliary ring and become much thicker and higher toward their central ends. The wilth of the eircle formed by them is narrower at the medial side than elsewhere. Their bases extend forward to the periphery of the iris, and their central

Firs big.-Vanular Tunif of Eyebuld of Itorab; Feont View
The cornea is removed and the selerst is reflected in flaps. 1 , sulerat: l^{\prime}, lamina fusea; 2 , clopriondea; \mathscr{A}^{\prime}, ciliury veins; 3_{2} ciliary musele; f, iris; 5, ${ }^{\prime}$, granula iridis; 6. pupil, through whull the lens is visible. (After Ellenberger, in Leisering's Atlas.) ends are close to the margin of the lens. They bear numerous secombary folds (1'lica ciliares). Their imer surface is covered by a continuation of the lamina basalis of the chorisid, on which there are two layers of epithelial cells which constitute the pars ciliaris retime. They consist of a rich network of tortuous vessels supported in pigmented comertive tissuc. The ciliary muscle (M. ciliaris) (Figs. 689, 692, 696) constitutes the outer part of the ciliary hooty, and lies between the sctera and the eiliary processes. It forms a circular band of unstriped muscle, the fibers of whicls are for the most part direeted meridionally. They arise from the inner surface of the sclera and from the ligamentum pectinatum iridis close to the cormeo-scleral junction, and run backward along the selera to be inserted into the ciliary processes aml ring. When the muscle contracts, it pulls the processes and ring forwart, thus slackening the ciliary zone of the lens, and allowing the latter to beeome more convex. This is the mechanism of aceommodation for near objects.

In man the muscle has the form of a prismatic ring which is triangular in meridional section, the base being directed toward the periphery of the iris. It consists chiefly of meridional fibers, but a ring of circular fibers forms the inner angle of its base. In the horse the musele is much less developet, and has the form of a that band; it does not contan distinetly circular fibers, but the arrangement is rendered more or less plexiform by the existence of oblique and equatorial fibers.
3. The iris (Figs. 689, 694, 695) is a museular diaphragm placed in front of the lens, and is visible through the comea. It is piereed centrally by an elliptical opening, the pupil (Pupilla), which varics in size during life and determines the amount of light admitted to act on the retina. In strong light the vertieal diameter of the pupil is very short, lout the opening is almost circular when the pupil is fully dilated. The ciliary border (Margo ciliaris) is continuous with the eiliary body and is connectal with the corneo-seldral junction by strands of connective tissue which constitute the ligamentum pectinatum iridis. The bundles of the ligament interlace and enelose spaces (spatia anguli iridis) which are lined with endothelium and communicate with the anterior chamber. The pupillary border (Aargo
pupillaris) surrounds the pupil. Its upper part bears in its middle several black masses of variable size, termed the granula iridis ${ }^{1}$; similar, but much smaller, projections may be seen on the lower margin of the pupil. The anterior surface (Facies anterior) is usually dark brown in color; it presents fine folds (Plice iridis), some of which are concentric with the pupil, others radial; they fade out near the pupil. ${ }^{2}$ The smooth, narrow, central part is termed the anmulus iridis minor, while the much broader plicated part is the annulus iridis major. The posterior surface (Facies posterior) is usually black; the color is caused by a layer of pigmented cells which is regarded as part of the retina. It presents numerons fine radial lines except at the pupillary margin. Its central part is in contact with the anterior surface of the lens, but peripherally the two are separated by a narrow space termed the posterior chamber. The iris consists chiefly of the stroma iridis, a delicate framework of conncetive tissue which supports numerous blood-vessels, and contains branched pigmented cells. The muscular tissue is unstriped and consists of a sphincter and a dilator of the pupil. The sphincter pupillæ lies in the posterior part around the pupil, with which the fibers are largely concentric. The dilatator pupillæ consists of fibers which radiate from the sphincter to the ciliary border. The anterior surface of the iris is covered by a continuation of the endothclium of the cornea. Bencath this is a condensation of the stroma, in which the cells are close together and are full of pigmente 1 granules. ${ }^{3}$ There appear to be minute clefts here by which the lymph-spaces of the stroma communicate with the anterior chamber.

The arteries of the vascular tunic come from the ciliary branches of the ophthalmic artery. The arteries of the chorioidea are derived chiefly from the short posterior ciliary arteries. These (four to six in number) perforate the selera around the posterior pole, run forward in the lamina vasculosa, and form the rich capillary network of the choriocapillaris. The two long ciliary arteries perforate the sclera obliquely near the optic nerve; they run forward in the lamina suprachorioidea in the horizontal meridian, one on the medial, the other on the lateral side of the eyeball. On reaching the eiliary body each divides into two diverging branches; the subdivisions of these unite with each other and with twigs of the anterior ciliary arteries, thus forming near the periphery of the iris the circulus arteriosus major. From this branches go to the ciliary musele and processes and to the iris. The branches in the iris run toward the pupillary margin, and by anastomotic branches form an incomplete circulus arteriosus minor. The two anterior ciliary arteries, dorsal and ventral, form an episcleral plexus around the comeo-scleral junction. and give off branches which perforate the sclera. These supply twigs to the ciliary muscle and recurrent branches to the chorioid, and assist in forming the circulus arteriosus major. The blood is carried away from the vascular tunic chiefly by four or five venous trunks, the venæ vorticosæ, which are formed by the convergence in whorls of numerous veins from the chorioid, the ciliary body, and the iris. The venze vorticose perforate the sclera about at the equator and join the veins of the ocular muscles.

The nerves come from the long and short ciliary nerves. They form a plexus in the lamina suprachorioidea, which contains ganglion cells, and sends numerous non-medullated fibers chiefly to the blood-vessels of the chorioid. At the ciliary muscle a second plexus (P. gangliosus ciliaris) is formed, which supplies the muscle and sends fibers to the iris. The sphincter pupille is supplied by fibers derived from the oculomotor nerve, while the dilatator pupilk is innervated by the sympathetic.

[^212]
THE RETINA

The retina or nervous tumic of the cyeball is a delicate membrane which extends from the entrance of the optic nerve to the margin of the pupil. It consists of three parts. The large posterior part, which alone contains the nervous elements, including the special neuro-epithelium and the optic nerve-fibers, is termed the pars optica retinæ. It extends forward to the ciliary boly, where it terminates at an almost regular circular line called the ora ciliaris retinæ. ${ }^{1}$ Here the retina rapidy loses its nervous elements, becomes much thimer, and is continued over the ciliary body and the posterior surface of the iris by two layers of epithelial cells as the pars ciliaris retinæ; the inner stratum is non-pigmented, while the outer layer is a direct contimation of the stratum pigmenti of the pars optica. The pars iridica retinæ is a layer of pigmented eells which covers the posterior surface of the iris. In the dead subjeet the pars optica is an opaque, gray, soft membrane which

Fig. 69z.-Inser strface of Anterior Pabt of Eyeball of llorse (Equatorlal Nection).
1, Felera: 2, choriondea; st retma kiruwn away from thoriodea) ; 4 . ciliary processes; z^{2}, ersatalline lens, throngh whirh the puphl (ii) is seen. After Ellenberger, in Leisering's Allas.)

 TIOS OF EYE:BALA OF HORAE.
7 . Silera; 2, chormidea; \therefore, rotiaa (loosened); $\underset{\text { i. tapetunn: }}{ } \bar{a}_{1}$, optic papilla; 6 , optic nerve. (After Lllenberger, in Letsering's Atlas.)
can lee stripped off the chorioid, leaving most of its outer pigmentel layer on the latter. During life it is tramsparent, exepht as to its pigmented epithelium, and the reddish appearance of the funtus as viewed by the ophthalmoseope is caused by the hoot in the network of the choriorapillaris. The entrance of the optic nerve forms a slarply defined, oval, light area, the optic papilla (Papilla nervi optici), situated about 15 mm . ventral to the horizontad meridian and 3 to 4 mm . lateral to the rertical meridian. The erntral part of the papilla is slighty depressed (Excavatio papille n. optici).

[^213]The optic norve fibers converge from all parts of the pars optica to the papilla, where they collect into humbles which traverse the lamina eribrosa of the chorioidea and sedera, and constitute the optic nerve. The area centralis retinæ is a round spot, 2 to 3 mm . in diameter, situated dorso-lateral to the optic papilla; it corre-

[^214]sponds to the macula lutea of man, which is histologically more highly differentiated than the rest of the retina and is the area of most acute vision.

The structure of the retina is very complex. It consists of nervous mements which are supported in a peculiar sustentacular tissue, and are covered externally by a layer of pigmented epitheliun (Stratum pigmenti retina). The nervous eliments comprise a highly specialized neuro-epithetimm, the rods and cones; ganglioneells, the axones of which form the optic nerve; and intermediate nemrones. Ten liyers may be recognized in sections microseopically: ${ }^{1}$

The arteries of the retina are derived from the arteria centralis retiner and anastomotic branches from the short ciliary arteries. The arteria centralis conters the optic nerve a short distance behind the eyehall and runs in the axis of the nerve. It divides two or three millimeters before reaching the papilla, and gives off thirty to forty branches which radiate in the posterior part of the retina and divide dichotomously into end-arteries in the layer of nerve fibers. The veins accompany the arteries except in the capillary plexuses; their walls consist merely of a layer of endothelial cells, around which are a lymph-channel and sheath. ${ }^{2}$

CHAMBERS OF THE EYE AND AQUEOUS HUMOR

The anterior chamber of the eye (Camera oculi anterior) is enclosed in front by the cornea and behind by the iris and lens (Figs. 689, 692, 694). It communieates through the pupil with the posterior chamber of the eye (Camera oculi posterior); this is a small anmular space, triangular in cross-section, which is bounded in front by the iris, behind by the peripheral part of the lens and its ligaments, and externally by the ciliary processes. The chambers are filled by the aqueous humor (Humor aqueus), a clear fluid which consists of about 95 per cent. of water, with a little sodium chlorid and traces of alhmmin and extractives. It is carried off chiefly through the spaces in the zonula ciliaris (or suspensory ligament of the lens) into the plexus venosus selere.

REFRACTIVE MEDIA OF THE EYEBALL

The vitreous body (Corpus vitreum) is a semifluid, transparent substance situated between the crystalline lens and the retina. In front it presents a deep cavity, the fossa hyaloidea, which fits the posterior surface of the kens. It consists of a framework of delicate fibrils, the vitreous stroma (Stroma vitremm), the mesbes of which are filled by the fluid vitreous humor (Humor vitreus). The surface is covered by a condensation of the stroma known as the hyaloid membrane (Membrana hyaloidea).

The crystalline lens (Lens crystallina) is a biconvex, transparent borly which is situated in front of the vitreous body and in partial contact with the posterior surface of the iris. Its periphery, the equator of the lens (Equator lentis), is almost circular and is closely surrounded by the ciliary processes. The anterior surface (Facies anterior) is convex; it is bathed by the aqueous humor and is in contact with the iris to an extent which varies with the state of the pupil. The posterior surface (Facies posterior) is much more strongly curved than the auterior. It rests in the fossa of the vitreous hody (Fossa hyaloidea). The central points of the surfaces are the anterior and posterior poles (Polus anterior et posterior lentis), and the line which connects them is the axis of the lens (Axis lentis).

The transverse cliameter of the lens is about $2 \mathrm{~cm} .$, the vertical diameter is slightly smaller, and the axis measures about 13 mm . The radius of curvature of the anterior surface is 13.5 mm .,

[^215]and of the posterior surface, 9.5 to 10 mm . But the curvatures of its surfaces-expecially that of the anterior-vary during life according as the eye is accommodated for near or far vision.

The zonula ciliaris or suspensory ligament of the lens (Fig. (i89) eonsists of delicate fibers (Fibree zonulares) which pass in a meridional direction from the ciliary processes to the capsule of the equator of the lens. Many fibers cross each other, and the spaces between the fibers (Spatia zonularia) are filled with aqueous humor; they communieate with each other and with the posterior chamber.

The substance of the lens (substantia lentis) is enclosed by a structureless, highly clastic membrane, the capsule of the lons (Capsula lentis), and consists of a softer cortical substance (Snlstantia corticalis), and a dense central part, the nucleus of the lens (Nuclens lentis). The capsule is thickest on the anterior surface, and here it is lined by a layer of that polygonal cells, the epithelium of the lens (Epithelimm lentis). The lens substance, when hardened, is seen to consist of concentric lamine arranged somewhat like the layers of an onion, and united by an amorphous cement substance. The lamine consists of lens fibers (Fibre lentis), hexagonal in section, and of sery different lengths. Faint lines radiate from the poles and indicate the edges of layers of cement substance which unite the groups of lens fibers. These lines, the radii lentis, are three in mumber in the fortus and new-born, and form with each other angles of 120 degrees. On the anterior surface one is directed upward from the phle and the other two diserge downward; on the posterior surface one is directed dommard and the others diverge upward. The developed lems has neither vessels nor nerves.

In the foetus the lens is nearly globular, and is soft and pink in color. During part of foetal life it is surrounded by a vaseular network, the tumica vasculosa lentis. This is derived chiefly from a temporary vesiel, the hyakiol artery, which is a continuation forwarl of the arteria centralis retine through the hyaloil canal that traverses the vitreous body: In old age the lens tends to lose its elasticity and transparency; it also becomes flatter and the nucleus especially prows denser.

The Ear

The ear or organ of hearing (Organon auditus) consists of three natural divisions - external, middle, and internal.

THE EXTERNAL EAR

The external ear (Auris externa) comprises-(1) the auricula, a funnel-like organ which collects the somm waves, together with its muscles; and (2) the external acoustic meatus, which conveys these waves to the tympanie membrane, the partition which separates the eanal from the eavity of the middle ear.

The auricula or pinna is attached by its base around the external acoustic proess in surd a manner as to lo freely movable. In the following deseription it will be assumed that the opening is directed outward and that the long axis is practically vertieal. It has two surfaces, two borders, a base, and an apex. The convex surface or dorsm (Dorsum anricule) fares medially and is widest in its midule part; its lower part is amost circular in curvature, while above it narrows and flattens. The concave surface (Neapha) is the reverse of the dorsum; it presents several ridges which subside toward the apex. The anterior border is simuous; it is largely convex, but beromes concave near the apex. It divides below into two diverging parts (Crura helicis). The posterior border is convex. The apex is flattened, pointed, and curved a little forward. The base is strongly convex. It is attached to the extermal acoustic process of the petrous temporal bone, and aromd this there is a quantity of fat. The parotid gland overlaps it below and laterally. The strncture of the external ear comprises a framework of cartilages
(which are chiefly elastic), the integument, and a complicated arrangement of muscles.

The conchal or auricular cartilage (Cartilago auricule) determines the shape of the car; its form can be made out in a general way without dissection, except below, where it is concealed by the muscles and the parotid gland. The basal part is coild so as to form a tube, which encloses the cavity of the concha (Cavum conchae). This part is funnel-slaped and curves outward and a little backward. Its medial surface is strongly convex, forming a prominence termed the eminentia conchæ. The lowest part of the medial margin bears a narrow, pointerl prolongation, the styloid process. This process is about an inch long and projects dowward over the amnular cartilage; the guttural pouch is attached to its free end. Behind its base there is a foramen through which the auricular branch of the vagus passes.

The basal part of the posterior border is cut into by a noteh, which separates two irregular quadrilateral plates. The upper plate (Tragus) is overlapped by the anterior border, and is separated from the adjacent part of the posterior border (Antitragus) by a noteh Incisura intertragica). The lower plate is curved to form a half ring and partly overlaps the anterior border and the annular cartilage. Behind the noteh there is il foramen, which transmits the internal auricular artery and internal aurieular branch of the facial nerve.

The annular cartilage (Cartilago annularis) is a quadrilateral plate, curved to form about three-fourths of a ring; its ends are a little less than half an inch (ca. 1 cm .) apart medially and are united by elastic tisule. It embraces the external acoustic process and forms with the lower part of the conchal cartilage the cartilaginous part of the external acoustic meatus.

The scutiform cartilage (Cartilago seutiformis s. scutulum) is an irregular quadrilateral plate which lies on the temporal muscle in front of the base of the conchal cartilage. Its superficial face is slightly convex from side to side and its deep face is correspondingly concave. The anterior end is thin and rounded; the posterior part or base is wider and thicker, and its medial angle is prolonged by a pointed process half an inch or more in length. The cartilage moves very freely over the underlying parts.

The external acoustic meatus leads from the cavum conche to the tympanic membrane. It does not continue the gencral direction of the cavity of the

Fig. 699.-Conchal and Anselar Cartilages of Ear of Horae, External View.

1. Base of concha: 2, posterior border, S, anterior border of concha: í intertragic notch; 5 . emideptia conchæ; 6, styloid process: 7 , annular cartilage; 9 . zygomatic arch. (After Ellenberger-Baum, Auat. für liübstler.) concha, but extends medially, downward. and slightly forward. It consists of a cartilaginous part (Meatus acusticus externus cartilagineus) which is fomed by the lower part of the conchal cartilage and the amnular cartilage, and an osseous part formed by the external acoustic process of the temporal bone. These are united by elastic membranes to form a complete tube. Its caliber diminishes medially, so that the lumen of the inner end is about half of that of the outer end.

The skin on the convex surface of the concha presents no special features; it is attached to the cartilage by a considerable amount of subcutaneous tissue except at the apex. The integument which lines the concave surface is intimately ad-
herent to the cartilage and is relatively dark in color. There are three or four cutaneous ridges which run ahout parallel with the borders of the conchal cartilage, but do not extend to the apex or the cavum conchap. The upper and marginal parts aml the ridges are covered with long hairs, but the skin between the ridges and below is thim, covered sparsely with very fine hairs, and supplied with mumerous sehaceons glands. In the external acoustic meatus the skin becomes thimer; in the cartilaginous part it is supplied with mumerous large, coiled, ceruminous glands (Clandula ceruminosip), and is sparsely covered with very fine hairs; in the osseous part the glands are small and few or absent and there are no hairs.

THE AURICULAR MUSCLES

The auricular muscles may be subdivided into two sets, viz., (a) extrinsic museles, which arise on the head and adjacent part of the neek, and move the externat ear as a whole, and (b) intrinsic muscles, which are confinel to the auricula. In this comnection the sutiform cartilage may be regarded as a sesamod cartilage intercalated in the comrse of some of the museles.

The extrinsic muscles are as follows:

1. The scutularis is a thin muscular sheet situated subeutaneously over the temporalis muscle. Its fihers arise from the zygomatic arch and the frontal and parietal crests, and converge to the seutiform cartilage. It consists of three parts:
(a) The fronto-scutularis comprises temporal and frontal parts, which arise from the zygomatic arch and the frontal crest, and are inserted into the lateral and anterior borders of the seutiform cartilage respectively.
(b) The interscutularis arises from the parietal crest, ower which it is in part continuous with the musele of the opposite side. Its fibers converge to the medial border of the seutiform eartilage.
(c) The cervico-scutularis is not well defined from the preceding musele. It arises from the nuchal crest and is inserted into the medial border of the seutiform cartilage.
2. The anterior auricular muscles (Mm. auriculares orates) are four in number:
(a) The zygomatico-auricularis arises from the zygomatic arch and the parotid fascia, and is inserted into the outer face of the hase of the eonchal cartilage partly under, partly above, the insertion of the parotido-aurienlaris.
(b) The scutulo-auricularis superficialis inferior arises on the lateral part of the superficial face of the scutiform cartilage and ends on the base of the conchal cartilage with the precerling muscle.
(c) The scutulo-auricularis superficialis medius arises from the posterior part of the deep surface of the seutiform cartilage and is inserted into the dorsum of the conchal eartilage, close to the lower part of its anterior border, and above and behind the preceding muscle. It receives a slip from the cervico-sutularis.
(d) The scutulo-auricularis superficialis superior is a thin slip which is detached from the interscutularis over the medial border of the scutiform cartilage. It ends on the anterior aspect of the lower part of the dorsum of the conchal cartilage.
3. The dorsal auricular muscles (Am. auriculares dorsales) are two in number.
(a) The scutulo-auricularis superficialis accessorius is a narrow hant which is largely covered by the preceding musele. It arises from the posterior prolongation and the adjacent part of the superficial face of the sentiform cartilage, and is inserted into the convex surface of the eonehat cartilage medial to the preceding muscle, the two crossing each other at an acute angle.
(b) The parieto-auricularis is flat and triangular; it arises from the parietal crest under cover of the cervico-scutularis, runs outward and a little backward,
and is inserted by a flat tendon into the lower part of the convex surface of the concha under cover of the cervico-auricularis superficialis.
4. The posterior auricular muscles (Am . auriculares aborales) are three in number:
(a) The cervico-auricularis superficialis is a thin triangular sheet. It is wide at its origin from the nuchal crest and the adjacent part of the ligamentum nuchæ, and becomes narrower as it passes outward to be inserted into the medial side of the consex surface of the concha.
(b) The cervico-auricularis profundus major arises from the ligamentum nuchæ, partly beneath and partly behind the precerling muscle. It is directed outward and is inserted into the postero-lateral aspect of the base of the ear, partly under cover of the parotido-auricularis.
(c) The cervico-auricularis profundus minor arises under the preceding

Fig. 700.-Exterval Eab of Horse and its Mescles; Lateral View.
The cervico-auricularis superficialis has beea removed. 2, Posterior border; 3 , anterior border of auricula; 8 , scutiform cartilage; 9, zygomatic arch; n, parotido-auriculans; o, zygomatico-auricularis: o^{\prime}, scutulo-auricularis superficialis inferior: $o^{\prime \prime}$. scutulo-suricularis superficialis medius et superior; p, interscutularis; p^{\prime}, froato-scutularis (pars temporalis); q, cervico-suricularis profundus major; s, anterior ohlique muscle of head; t, splenius; y, teadon of hrachiocephalicus; x, wing of atlas. (After Elleaberger-Baum, Anat. für Künstler.)
muscle and passes downward and outward to be inserted into the lowest part of the convex surface of the concha, partly under cover of the parotid gland.
5. The parotido-auricularis (s. M. auricularis inferior) is a ribbon-like muscle which lies on the parotid gland. It is thin and wide at its origin from the fascia on the lower part of the parotid gland, and becomes somewhat narrower and thicker as it asceuds. It is inserted into the conchal cartilage just below the angle of junction of its borders.
6. The deep auricular or rotator muscles MI. auricularis profundi s. rotatores auricule), two in number, are situated under the scutiform cartilage and the base of the concha and cross each other.
(c) The scutulo-auricularis profundus major is the strongest of the auricular muscles. It is flat and is about an inch wide. It arises from the deep face of the
seutiform cartilage and passes backward to end on and below the most prominent part of the base of the eoncha (eminentia conchex).
(b) The scutulo-auricularis profundus minor lies betwem the base of the eonchat and the preeeding muscle, and is best seen when the hatter is cut and reflected. It is flat and ahout an incli in length. It arises from the posterior part of the deep faee of the seutiform cartilage and from the eervieo-seutularis, and passes downward, haekward, and outward to be inserted into the base of the eoneha under cover of the precoling musele.
7. The tragicus (or mastoido-anuricularis) is a very small musele which arises from the temporal bone just behind the external acoustic process and from the an-

Fig, $\mathbf{7 0 1}$ - Mnacles of External Ear of IIorse; Dorsal View.

 sout madaris; f. e, scutulo-aure
 cartalage: u, paricto-aturicularis; v, "erveco-aurieularis profundus major; w, merveo-aurienlaris prof, minor; $x_{2} x^{\prime}$, semtulu-auricularis prof. major et minor; y, temporalis. (Ellenberger-Baum, Anat, d. Ilaustiere.)
nular eartilage ; it passes upward to be inserted into the lower part of the anterior bonder of the comehal cartilage.

The intrinsic muscles ate very small and of little importance. They are as follows:

1. The antitragicus consists of a ferw bumdes which are attarhed to the eonchat (artilagn |ethind the junction of its two borders, and are partially blended with the insertion of the parotido-auricularis.
2. The helicis is a small muscle attached in a position opposite to the preceling on the anterior border of the comehal cartilage; it extemels also into the depression between the two divisions of the border. It is in part contimuous with the insertion of the parotido-aturicularis.
3. The verticalis auriculæ ${ }^{1}$ is a thin stratun of muscular and tendinous fibers which extends upward on the convex surface of the concha from the eminentia conchre.

Actions.-The base of the concha is rounded and rests in a pad of fat (Corpus adiposum auriculæ), so that the movements of the external ear resemble those of a ball-and-socket joint. It is noticeable that movements about the longitudinal and transerse axes are accompanied by rotation. When the ear is vertical or drawn forward (" pricked up"). the opening is usually directed forward; conversely, when the ears are "laid back," the cpening faces backward. These movements evidently result from the coördinated actions of several muscles which are very complex and camot be discussed in detail here. The scutularis acting as a whole fixes the scutiform cartilage, so that the museles which arise on the latter act efficiently on the concha. The anterior auricular muscles in general erect the ear and turn the opening forward. The interscutularis concurs in this action, causing adduction and a symmetrical position of the cars; it also acts directly on the conchal cartilage, since the scutulo-auricularis superficialis superior is in reality a couchal insertion of the interscutularis. The scutulo-auricularis superficialis accessorius draws the concha forward and turns the opeming outward. The parictoauricularis adducts the concha and inclines it forward. The cervico-auricularis superficialis is chiefly an adductor of the conchal cartilage, and directs the opening outward. The cervico-auricularis profundus major turns the opening outward and, acting with the parotido-auricularis, inclines the ear toward the poll. The cervicoauricularis profundus minor tends to direct the opening downward and outward. The parotido-auricularis draws the ear downward and backward, and acts with the cervico-auricularis profunclus major in "laying hack the ears." The scutuloauricularis profundus major chiefly rotates the concha so that the opening is turned backward. The scutulo-auricularis profundus minor assists in rotating the ear so that the opening is directed forward. The tragicus shortens the external acoustic meatus. The actions of the intrinsic museles are inappreciable.

Vessels and Nerves.-The arteries of the external ear are derived from the anterior auricular brauch of the superficial temporal. the posterior or great auricular branch of the internal maxillary, and the anterior branch of the occipital artery. The veins go chicfly to the jugular and superficial temporal veins. The nerves to the muscles come from the auricular and auriculo-palpebral branches of the facial nerve and from the first and second cervical nerves. The sensory nerves are supplied by the superficial temporal branch of the mandibular nerve and the auricular branch of the vagus.

THE MIDDLE EAR

The middle ear (Auris media) comprises the tympanic cavity and its contents, the auditive or Eustachian tubes, and two remarkable diverticula of the latter, which are termed the guttural pouches.

The tympanic cavity (Carum tympani) is a space in the tympanic and petrous parts of the temporal bone situated between the membrana tympani and the internal ear. It is an air-cavity, which is lined hy mucous membrane, and communicates with the pharymx and the guttural pouches by the auditive or Eustachian tubes. It contains a chain of auditory ossicles by which the vibrations of the membrana tympani are transmitted to the internal ear.

The carity consists of: (1) A main part or atrium, which lies immediately to the medial side of the membrana tympani; (2) the recessus epitympanicus, situated above the level of the membrane and containing the upper part of the malleus

[^216]and the greater part of the incus; (3) a relatively large bentral recess in the bulla ossea.

The lateral, membranous wall (Paries membranama) is formed largely ly the thin membrana tympani, which closes the medial ent of the external acoustic meatus, and thus forms the sept um hetween the external and midelle parts of the ear. The membrame is an oval dise, which slopes ventro-medially at an angle of about 30 degrees with the lower wall of the external acoustic meatus. The circumference is attached in a groove (Sulels tympanicus) in the thin ring of bone (Anmulus tympanicus) which almost completely surrounds it. The handle of the malleus (the outermost of the aulitory ensides) is attached to the inmer surface of the membrame and draws the contral part inward, producing a shight concavity of the onter surface. The periphery is thickened, forming the ammulus fibrosus. The membrana tympani consists of three layers. The external cutaneous layer (Stratum cutaneum) is a prolongation of the lining of the external acoustie meatus. The

Fig. - 02 .--Right Petrons Temporal Bone of llorme; Antero-medial Vien.
1, External acoustic meatus; 2_{2} anoulos tympaturns; 3, laminæ rediating from 2; f, membrana tympani; \bar{b}, malleus; G, incus; γ, stapes; S, fenestra cochleat (s, rotundum) ; 9 , facial canal; $11,11^{\prime \prime}$, semieircular canals; 11^{\prime}, vesthbule; 12 , cochlea. (Ifter Ellebberger, in Joisering's Atlas.)

Fig. 703. -Right Auditory Omicleas and Membrana Tympani, Enlargel and Viewed from Inner side and Brilow.

1. Malleus; \sim^{2}, incus; $2^{\prime \prime}, 2^{2 \prime}$, short and long processes of d; 3, stitpers; 4, tensor tympani; 5, ligament attaching Iong proerss of mallens; 6 , stapedius musche: r, fenestr: cochlear is, rotundum). (After Ellenberger, in Leisering's . Itlas.)
mittlle fibrous layer or membrana propria inclutes two chicf sets of fibers; the extemal layer (Stratum radiatum) consists of filers which radiate from the handle of the malleus, while the internal layer (stratum cireubare) is composed of circular filers which are best developed peripherally. There are alsi lnanched or dendritic filers in part of the membrane. The internal mucous layer (stratum mucosum) is a part of the general mucons membrane which lines the tympanic cavity.

The medial, labyrinthine wall of the tympanic cavity (Paries labyrinthica) separates it from the internal ear; it presents a numbre of special features. The promontory (Promontorium) is a distinct eminence near the center which corresponds to the first coil of the coehlea, and is marked by a faint groove for the superficial petrosal nerve. Alove this is the fenestra vestibuli, a reniform opening which is closed by the foot-plate of the stapes and its anmular ligament. The fenestra cochlex is situated below and behind the preceding; it is an irregularly oval opering and is closed by a thin membrane (Membrana tympani secundaria), which separates the tympanic cavity from the scala tympani of the cochlea.

The anterior, tubal wall (Paries tubaria) is narrow, and is pierced ly the slit-
like tympanie opening of the auditive tube. Ahore this and incompletely separated from it by a thin plate of bone is the semicanal for the tensor tympani muscle.

The tegmental wall or roof (Paries tegmentalis) is erossed in its medial part by the facial nerve; here the facial canal is more or less defieient ventrally, and the nerve is covered by the mucous membrane of the tympanum.

The posterior, mastoid wall (Paries mastoidea) presents nothing of importance; a tympanic antrum and mastoid cells, such as are found behind the tympanie eavity proper in man and many animals, are not present in the horse.

The tympanic wall or floor (Paries tympanica) is coneave and thin. It is crossed by delicate curved ridges, which radiate from the greater part of the annulus tympanicus.

The auditory ossicles (Ossicula auditus) form a chain which extends from the outer to the immer wall of the eavity. They are named, from without inward, the malleus, the incus, the os lenticulare, and the stapes. The first is attached to the inner surface of the tympanic membrane and the last is fixed in the fenestra vestibuli.

The malleus or hammer, the largest of the owsieles, consists of a head, neek, handle, and two processes. The bead (Capitulum mallei) is situated in the epi-

Fig. 704.--Aupitory Onstclea and Membrana Tympani, Meolal View, Enlatged.

1. Annulus tymgranicus: 2. membrada tympani: 3. malleus: 4 . incus: \bar{s}_{0} stapes. (Ifter Ellenberger, in Leisering's Atlas.)

1ig. 705.-Right Atbitory Osistcles, Enlarged as 1sdicated ay Lines Giving their Acteal Length.
a, Malleus: 1 , head; 2 , neck; 3 , handle; $\{$, lovg process; 5 , muscular process. $\mathbf{b}_{\mathbf{y}}$ lncus: 1 , body; 2 , short branch; 3 , long branch; c, os lenticulare. c, Stapes: 1 , head; 2, crus; 3 , base; 4, attachment of stapedius. (After Ellenberger, in Leisering's Atlas.)
tympanic recess. It is smooth and convex above and in front, and presents on its posteromedial aspect a concave facet for articulation with the body of the ineus. The neck (Collum mallei) is the constricted part below the head; its medial surface is erossed by the chorda tympani nerve. The handle (Manubrium mallei) is direeted downward, inward, and a little forward from the neck, and is attaehed along its entire length to the membrana tympani. On its medial surface, near the upper end, there is a slight projection to which the tendon of the tensor tympani muscle is attached. The long process (Processus longus) is a pointed spicule which projects forward from the neck toward the petro-tympanic fissure. The short process (Processus brevis) is a slight projection of the Iateral side of the neek, and is attached to the upper part of the membrana tympani.

The incus or anvil is situated chiefly in the epitympanic recess. It may be said to resemble in miniature a human bicuspid tooth with two divergent roots, and consists of a body and two processes. The body (Corpus incudis) articulates with the head of the hammer. The long process (Crus longum) projects downward from the body and then curves inward; its extremity has attached to it a small nodule of bone, the os lenticulare, which articulates with the head of the stapes. The short process (Crus breve) projects chiefly backward, and is attached to the wall of the recess by a small ligament.

The stapes or stirrup consists of a head, two crura, and a base. The head (Capitulum stapedis) is directed outward and articulates with the os lenticulare. The crura, anterior and posterior (Crus anterius, posterius), are directed inward from the head, and join the ends of the hase. The base or foot-plate (Basis stapedis) oceupies the fenestra vestibuli, to which it is attached. The space between the crura and the hase is closed by a membrane.

The articulations and ligaments of the auditory ussicles eomprise: (1) A diarthrodial joint letween the head of the mallems and the borly of the incus (Articulatio incudomalteolaris), enclosed by a (apsule. (2) An enarthrosis between the os lentieutare and the head of the stapes (Articulatio incudestapedia), also surrounded by a eapsule. (3) The base of the stapes is attached to the margin of the fenestra vestibuli by a ring of elastio filers (Lig. amnulare bascos stapedis). (4) Small ligaments attach the head of the malleus and the short (rus of the incus to the roof of the epitympanie recess. (5) The axial ligament (of llelmhottz) attaches the neck of the matlous to a small projection (Spina tympanira anterior) above and in front of the annulus tympanicus.

The muscles of the auditory ossicles are two in mumber, viz., the tensor tympani and the staperlius. The tensor tympani arises from the upper wall of the osseous Eustachian tube, and ends in a delicate tendon which bends outward and is inserted into the hamele of the mallens near its upper end. When it contracts, it draws the liande of the mallens inward and tenses the membrana tympan; it probably also rotates the malleus around its long axis. It is imnervated by the motor part of the trigeminus through the otie ganglion. The stapedius arises from a small prominence (Eminentia pyramidalis) of the posterior wall of the tympanum, runs forward on the facial nerve, and is inserted into the neck of the stapes. Its action is to draw the head of the stapes lackward and rotate the anterior end of the base outward, thus tensing the ammur liganent. It is imervated loy the facial nerve.

The tympanic mucous membrane (Tunica mucosa tympanica) is contimuous with that of the pharynx and the guttural pouch through the auditive or Eustachian tube. It is thin, closely mited with the underlying periosteum, and is reflected over the ossidles, ligaments, and muscles, the chorda tympani, and the facial nerve in the open part of the facial canal. It contains minute lymph notules and suall mucous glands (Clandule tympaniee). The epithelium is in general colummar ciliated, hat over the membrana tympani, ossicles, and promontory it is flattened.

The artery of the tympanum is the stylo-mastoind, a small vessel which arises from the posterior auricular branch of the internal maxilary arters. It enters the tympanum through the stylo-mastoid formmen, and forms a circle around the tympamic membranc. The nerves of the mucous membrane come from the tympanie plexus.

The Auditive or Eustachian Tube

The auditive or Eustachian tube (Tuba auditiva) extends from the tympanic cavity to the pharyns; it transmits air to the former and equalizes the pressure on the two surfaces of the membrana tympani. It is directed forward, downard, and stightly inward, and is four to five inches (ea. 10 to 12 em.) in length. Its posterior extremity lies at the medial side of the root of the museular process of the petrous temporal, and rommumicates with the anterior part of the tympanie cavity by the small, slit-like tympanic opening (Ostium tympanicm tube auditive). For a distance of about a quarter of an inch (ca. 6-7 mm.) in front of this opening it is a complete tule, with a eurved lumen which is little more than a capillary space. Further forward it has the form of a plate which widens anteriorly and is curved to enelose a narrow groove that opens ventrally into an extensive diverticulum termed the guttural pouch. The pharyngeal opening (Ostinm pharyngeum tulee audit-
tivar) is situated on the postero-superior part of the lateral wall of the pharynx, just below the level of the posterior nares (Fig. 349). It is a slit, about two inches (ca. 5 cm .) in length, which slopes downward and backward. It is bounded medially by the thin free edge of the tube, from the lower part of which a fold of mucous membrane (Plica salpingo-pharyngea) extends in the same direction on the lateral wall of the pharynx for a distance of a little more than an inch usually. The outer boundary of the opeming is the lateral wall of the pharynx. The basis of the tube is a plate of fibro-eartilage (Cartilago tube auditivae) which is firmly attached dorsally to the fibrous tissue which closes the foramen lacerum, the temporal wing of the sphenoid, and the pterygoid bone. ${ }^{1}$ On cross-section the cartilage is seen to consist-except at its ends-of two laminæ which are continuous with each other above (Fig. 348). The medial lamina (Lamina medialis) gradually widens toward the pharyngeal end, where it forms a broad valvular flap; this is convex medially, and its thin anterior edge forms the basis of the inner margin of the pharyngeal opening. Behind this the lamina has a thick free edge which projects ventrally from the roof of the guttural pouch. The lateral lamina (Lamina lateralis) is narrow and thin, and is related laterally to the levator and tensor palati muscles, which are in part attached to it; it does not extend to the pharyngeal end of the tube. The mucous membrane of the tube is continuous behind with that of the tympanum and in front with that of the pharynx. On either side it is reflected to form a large diverticulum, the guttural pouch. It is covered with ciliated epithelium, and contains mucous glands and lymph nodules.

The pharyngeal opening appears to be closed ordinarily. Vermeulen states that it opens during deglutition, and that this action is apparently produced by the part of the palato-pharyngeus muscle which is attached to the flap-like expanded part of the tube.

The Guttural Pouches

The guttural pouches, right and left (Figs. 349, 706), are large mucous sacs, each of which is a ventral diverticulum of the Eustachian tube (Diverticulum tubse auditive); they are not present in the domesticated animals other than the equida. They are situated between the base of the cranium and the atlas dorsally and the pharynx ventrally. Medially they are in apposition in part, but are to some extent separated by the interveming ventral straight museles of the head. The anterior end is a small cul-cle-sac which lies below the body of the presphenoid, between the Eustachian tube and the median recess of the pharynx. The posterior end lies near or below the atlantal attachment of the longus colli. The pouch is related dorsally to the base of the cranium, the atlanto-occipital joint capsule, and the ventral straight museles. Ventrally it lies on the pharynx and the origin of the esophagus. Laterally the relations are numerous and complex. They comprise the pterygoid, levator palati, tensor palati, stylo-hyoideus, occipitohyoideus, occipito-mandibularis, and digastricus muscles; the parotid and mandibular salivary glands; the external carotid, internal maxillary, and external maxillary arteries; the internal maxillary and jugular veins; the pharyngeal lymph glands; the glosso-pharyngeal, hypoglossal, and anterior laryngeal nerves. The vagus, accessory, and sympathetic nerves, the anterior cervical ganglion, the internal carotid artery, and the ventral cerebral vein are situated in a fold of the dorsal part of the pouch. The pouch is reflected around the dorsal border of the great cornu of the hyoid bone so as to clothe both surfaces of the dorsal part of the latter. It thus forms an outer compartment, which extends backward lateral to the great cornu and the occipito-hyoideus muscle; this compartment is related laterally to the parotid gland, the articulation of the jaw, the ascending part of the internal maxillary artery, the superficial temporal artery, and the facial nerve; dor-
${ }^{1}$ There is, strictly speaking, no osseous part of the tube such as occurs in man. In the horse the cartilage extends to the tympanic orifice.
sally it covers the mandibular nerve and its chief branches, and is attached to the styloid process of the conchal cartilage.

Each pouch communicates with the pharynx through the pharyngeal orifice of the Eustachian tube, and is in direct continuity with the mucous membrane of the latter.

The average capacity of each pouch is about ten fluidounces (ca. 300 c.c.); of this, the lateral compartment is about one-third.

Omo-hyoildet + sterno-hyoitci
Fha. 706. Crman-sectuon of Head of llorse
The section passes throngh the base of the "aternal uar and just behizd the posterior border of the mandible, 1 , Rectus caphts ventralis minor; 2, rectus capitis voutralis major; 3. medial walls of guttural ponelhes in apposition: 4. 4 , arytenvid cartilage, upper pee being apex; $\overline{3}$, posterior pillar of soft palate; 6 , false vocal cord; 7 , latural ventricle of larynx: S. trum vocal cord: 9 , vocal muscle; 10, thy ro-hyoideus muscle. The cavity in wheh the number st is placed is the pharynx, which was left unmarked by an oversight.

The pourh is a delicate mucous membrane which is in general rather loosely attached to the surrounding structures. It is lined with ciliated epithelium and is supplied with glands which are chiefly mucous in type.

It is worthy of note that the pharyngeal orifice of the Eustachian tube is at such a level as to provite (in the ortinary position of the head) only an overflow outlet for the eseape of fluid which may aceumulate in the pouch. The expanded part of the tube forms with the wall of the pharynx a sort of vestibuke, at the posterior part of which is the opening of the guttural pouch.

Tis.s opening is only about an inch (ca. 2.5 cm .) long. The two pouches are often unequal in size, and variations in regard to the distance which they extend backward are not uncommon. In one case, for instance, a small aged horse, the right pouch extended along the cesophagus about five inches (ea. 12 cm .) behind the ventral tuberele of the at las, and the left one a little more than two inches (ca. 6 cm .). No pathological changes were apparent, and the condition was not recognizable externally. Cases of extreme size - so-called tympanites- of the pouches occur, and are apparently congenital defects. In a case in a yearling colt, the head of which was 24 inches long, the left pouch extended about 12 inches (ca. 30 cm .) behind the tuberele of the at las, and had a capacity of sis quarts. The anterior end formed a cul-de-sac about two inches (ca. 5 cm .) long between the Eustachian tube and levator palati medially and the lateral pterygoid musele laterally.

THE INTERNAL EAR

The internal ear or labyrinth (Auris interna s. Labyrinthus) consists of two parts, viz.: (1) A complex membranous sac, which supports the auditory cells and the peripheral ramifications of the auditory nerve: (2) a series of cavities in the petrous temporal bone, which encloses the nembranous part. The first is called the membranous labyrinth, and contains a fluid, the endolymph. The second is the osseous labyrinth. The two are separated by the perilymphatic space, which is occupied by a fluid termed the perilymph.

The Osseous Labyrinth

The osseous labyrinth (Labyrinthus osseus) Fig. 702) is excavated in the petrons temporal bone medial to the tympanic cavity. It consists of three divisions: (1) a middle part, the vestibule; (2) an anterior one, the cochlea; and (3) a posterior one, the semicircular canals.

1. The vestibule (Vestibulum) is the central part of the osseous labyrinth, and communicates in front with the cochlea, behind with the semicircular canals. It is a small, irregularly ovoid cavity, which is about 5 to 6 mm . in length. Its lateral wall separates it from the tympanic cavity, and in it is the fenestra vestibuli, which is occupied by the base of the stapes. The medial wall corresponds to the fundus of the internal acoustic meatus. It is crossed by an oblique ridge, the crista vestibuli, which separates two recesses. The anterior and smaller of these is the recessus sphæricus, which lodges the saccule of the membranous labrrinth. In its lower part there are about a dozen minute foramma which transmit filaments of the restibular nerse to the saccule. The posterior and larger depression is the recessus ellipticus, which lodges the utricle of the membranous labyrinth. The crista vestibuli divides below into two divergent branches, which include between them the small recessus cochlearis; this is perforated by small foramina, through which nerve-bundles reach the ductus cochlearis. Similar foramina in the recessus ellipticus and the crista vestibuli transmit nerve filaments to the utricle and the ampullæ of the dorsal and lateral semicircular ducts. The anterior wall is pierced by an opening which leads into the scala vestibuli of the cochlea. The posterior part of the restibule presents the four openings of the semicircular canals. The inner opening of the aquæductus vestibuli is a small slit behind the lower part of the crista vestibuli. The aquæductus passes backward in the petrous temporal bone, and opens on the medial surface of the latter near the middle of its posterior border; it contains the ductus endolymphaticus.
2. The osseous semicircular canals (Canales semicirculares ossei), three in number, are situated behind and above the vestibule. They are at right angles to each other, and are designated according to their positions as dorsal, posterior, and lateral. They communicate with the vestibule by four openings only, since the inner end of the dorsal and the upper end of the posterior canal unite to form a common canal (Crus commune), and the ampullate ends of the dorsal and lateral canals have a common orifice. Each canal forms about two-thirds of a circle, one end of which is enlarged and termed the ampulla. The dorsal canal (Canalis semicircularis dorsalis) is nearly vertical and is placed obliquely with regard to a
sagittal plane, so that its outer limb is further forwarl then than the inner one. The antero-lateral end is the ampulta and opens into the vestibule with that of the lateral canal. The opposite non-dilated end joins the adjacent end of the pesterior canal to form the crus commune, which opens into the dorso-medial part of the vestilule. The posterior canal ('analis semicircularis posterior) is also nearly vertical. Its ampulta is ventral, and opens into the vestilule directly, while the non-dilated end joins that of the dorsal canal. The lateral canal (Canalis semicireularis lateralis) is nearly horizontal. Its ampulla is external and opens into the vestibule with that of the dorsal canal.
3. The cochlea is the anterior part of the hony labrinth. It has the form of a short bhunt cone, the base of which (Basis cochlear) corresponds to the anterior part of the fundus of the internal acoustic meatus, while the apex or cupola (Cupola) is directed outward, forward, and downwarl. It measures alout 7 mm . across the base and about 4 mm . from base to apex. It consists of a spiral canal (Canalis spiralis (cochlese), which forms two and a half turns around a central column termed the modiolus. The modiolus diminishes rapidly in diameter from loase to apex. Its hase (Basis monlioli) corresponds to the area cochlece of the fundus of the intemal aconstic meatus, and its apex extends nearly to the cupola. Projecting from the moxliolus like the thead of a serew is a thin plate of lone, the lamina spiralis ossea. This legins between the two froestre and ends near the cupola as a hook-like process (Ilamulus lamine spiralis). The lamina extends about half-way to the periphery of the corhlea and partly divides the cavity into two passages; of these, the upper one is termed the scala vestibuli, and the lower the scala tympani. The membrana basilaris extends from the free marsin of the lamina to the lateral wall of the coclleat and completes the septum between the two sealee, but they communicate through the opening at the cupola (Helicotrema). The modiolus is traverved hy an axial canal which transmits the nerves to the apical coil, and by a spiral canal (Canalis spiralis modioli), which follows the attached lrorder of the lamina spiralis, and contains the spiral ganglion and wein. Close to the beginning of the seala tympani is the immer orifice of the aquæductus cochleæ, a small canal which opens behind the internal aconstic meatus, and establishes a communication between the scala tympani and the sularachoid spare.

The internal acoustic meatus has been (lescribed in part (vide Osteology). The fundus of the meatus is divided by a ridge (C'rista transwersa) into upper and lower parts. The anterior part of the upper depression (Area n. facialis) presents the internal opening of the facial canal; and the posterior part (Area vestibularis superior) is perforated ly foramina for the passage of nerves to the utricle and the ampulle of the dorsal and lateral semicircular clucts. The anterior part of the inferior depression (Area coclalere) presents a central formen and a spiral tract of minute foramina (Tractus spiralis foraminosus) for the passage of nerves to the cochea. Behind these is an area of small openings which tramsmit nerves to the sarcule (Area vestihularis inferior), and the foramen singulare for the passage of a nerve to the ampulla of the posterior semicirenlar duct.

The Membranous Labyrinth

The membranous labyrinth (Labrrinthas membranaceus) lies within, but does not fill, the osseoms labyrinth. It is attacheri to the latter loy delicate traberule which traverse the perilymphatic space. It conlorms more or less closely to the bony labyrinth, but consists of fon divisions, since the vestibule contains two membranous sacs - the utricle and saceule.

1. The utricle (Itriculus), the larger of the two sacs, lies in the posterosuperior part of the vestibule, largely in the recessus cllipticus. It receives the openings of the semicircular ducts, and the small ductus utriculo-saccularis leads from its lower part to the ductus emdolymphaticus.
2. The saccule (Gacculus) is situated in the recessus sphæricus of the vestibule. From its lower part the ductus reuniens proceeds to open into the ductus cochlearis, a little in front of the blind end of the latter. A second narrow tube, the ductus endolymphaticus, passes from the posterior part of the saccule, and is joined by the ductus utriculo-saccularis; it then traverses the aqueductus vestibuli, and terminates under the dura mater on the posterior part of the medial surface of the petrous temporal bone in a dilated blind end, the saceus endolymphaticus.
3. The semicircular ducts (Ductus semicirculares) ${ }^{1}$ eorrespond in general to the osseous canals already deseribed, but it may be noted that while the ampullie of the ducts nearly fill those of the osseons canals, the other parts of the ducts only occupy about one-fourth of the bony cavities.
4. The cochlear duct (Ductus cochlearis) is a spiral tube situatefl within the cochlea. It begins by a blind end (Cecum vestibulare) in the cochlear recess of the vestibule, and ends by a second blind end (Crecum cupulare), which is attaehed to the cupola of the cochlea. The vestibular part is comnected with the saccule by the duetus remiens. The duct is triangular in cross-section, and it is usual to regard it as having three walls. The vestibular wall or roof, which separates the cochlear duct from the scala vestibuli, is formed by the very delicate membrana vestibularis (of Reissner), which extends obliquely from the lamina spiralis ossea

Fig. 707.-Left Membrayots Libyrlnta (Exlarged).

1. Cochlea; 2, fenestra vestibuli; 3. fenestra cochleæ: 4 . duetus endolymphsticus; \bar{s}, dorsal, 6 , lateral, $\tilde{7}$, ventral, duct. After Ellenberger, iu Leiscring's Atlas.)

2.

IG. TOK.-Schematic Rectional Vizw of Labybinth Finlarged).

1. 2, 3, Dorsul, lateral, aud ventral ducts; if. utricle; 5 , sace:3le; 6 , cochlea; \tilde{i}, acoustic nerve. (After Ellenberger, ia Leisering's Atlas.)
to the outer wall of the cochlea. The tympanic wall or floor intervenes between the cochlear duct and the scala tympani; it is formed by the periosteum of the marginal part of the lamina spiralis and the membrana basilaris, which stretches between the free edge of the lamina and the outer wall of the cochlea. The outer wall consists of the fibrous lining of the cochlea, which is greatly thickened to form the ligamentum spirale cochleæ.

Structure. ${ }^{2}$ - The membranous labyrinth consists in general of an outer thin fibrous layer, a middle transparent tunic, and an internal epithelium, composed of flattened cells. But in certain situations special and remarkable structures occur, among which are the following: (1) The maculæ acousticæ appear as small whitish thickenings of the inner walls of the saccule and utricle. The epithelium here consists of two kinds of cells, viz., supporting cells and hair cells. The latter are flask-shaped and are surrounded hy the fusiform supporting cells. The free end of each hair cell bears a stiff, hair-like process composed of a bundle of cilia. Fibers of the saccular and utricular branches of the vestibular nerve form arborizations about the basal parts of the hair cells. Adherent to the surface of the maculie

[^217]are fine crystals of lime salts, embeded in a mucoid substance, and termed otoconia.
(2) The cristæ acusticæ are linear thiekenings of the wall of each ampula of the semicircular ducts. Their structure is similar to that of the maculse. (3) The spiral organ of (orti (Organon spirate) is an epithelial elevation which is situated upon the inner part of the membrana basilaris, and extents the entire length of the ductus cochlearis. It is very complicated in structure, but consists essentially of remarkable supporting eells and hair cells. Fibers of the cochlear nerve ramify about the basal parts of the hair cells.

Vessels and Nerves.- The artery of the internal ear is the internal auditory artery, a very small vessel which usually arises from the posterior cerebellar artery, and enters the internal aconstic meatus. The veins go to the ventral petrosal simus. The vestibular nerve is distributed to the utride, saceule, and semicireular ducts, and meliates equilibration. The cochlear nerve gives a branch to the saceule and enters the eentral canal of the modiolus. Along its course it gives off fibers whieh radiate outward betwem the two plates of the lamina spiralis ossea, and ramify about the hair cells of the organ of Corti. The ganglion spirale is sitnated in the spiral camal of the modiolus near the fixed border of the lamina spiralis. The cochlear nerve mediates the semse of hearing.

The Common Integument

The common integument (lategumentum commune) is the protective covering of the bocly, and is continuone at the natural openings with the mueous membranes of the digestive, respiratory, and urogenital tracts. It consists of the skin (Cutis), together with certain appendages or modifications thereof, as hair, horn, feathers, etc. It contains peripheral ramifications of the sonsery nerves, and is thus an important sense organ. It is the principal factor in the regulation of the temperature of the bocty, and by means of its glands it plays an important part in sesertion and excretion. Fome of its special homy morlifications or appendages are used as organs of prehemsion or as weapons.

The thickness of the skin varies in the different species, on different parts of the lrody of the same animal, and aloo with the breed, sex, and age. The color also varies greatly, but this is masked in most places by the covering of hair or wool. The skin is in general highly elastic and resistant.

Permanent folds of the skin (Plice cutis) oceur in certain situations, and in some places there are cutancous pouches or diverticula (Sinus cutis).

The skin is attacherl to the unterlying parts by the subcutaneous tissue or subcutis (Tela subeutanea). This consists of ponnective tissue eontaining elastic fibers and fat. When the fat forms a layer of considerable thickness, it is termed the panniculus adiposus. Over a considerable part of the borly the subcutis contains striped muscle, the m. cutaneus or panniculus carnosus; in some regions the fibers of the muscle are inserted into the skin, and their contraction twitches the skin or produces temporary folds. ${ }^{1}$ The amount of subcutanoms tissue varies widely; in some places it is abmulant, so that the skin can be rased considerably; in other situations it is praetically absent and the skin is closely adherent to the subjacent structures. Subcutaneous bursæ often develop over prominent parts of the skeleton where there is much pressure or friction, e.g., at the olecranon, tuber coxie, tuber calcis.

Structure.-The skin consists of two distinct strata, viz., a superfieial epithelial layer, the epidermis, and a deep comective-tissue layer, the corium. The epidermis is a non-vascular, stratified epithelium of varying thickness. It presents

[^218]the openings of the cutaneous glands and the hair-follicles, and its deep surface is adapted to the corium. ${ }^{1}$ It is divisible into a superficial, harder, drier part, the stratum corneum, and a deeper, softer, moister part, the stratum germinativum. The cells of the latter contain pigment, and ly their proliferation eompensate the loss by desquamation of the superficial part of the stratum corneum. In many places further subdivision into strata is evident on properly prepared cross-seetions. The corium consists essentially of a feltwork of white and elastic fibers. It is well supplied with vessels and nerves, and contain the cutaneous glands, the hair-follicles, and unstriped muscle. The deeper part of the corium, the tunica propria, consists of a relatively loose network of coarse bundles of fibers, and in most places there is no elear line of demareation between it and the subcutis. The superficial part, the corpus papillare, is of finer texture and is free from fat. Its superficial face is thickly beset with bunt conical prominences, the papillæ, which are received into corresponding depressions of the epidermis. They contain vascular loops and nerves, or, in certain situations, special nerve-endings. ${ }^{2}$

The glands of the skin (Glandulae cutis) are chiefly of two kinds, sudoriferous and schaceous. The sudoriferous or sweat glands (Clandulie sudorifere) consist of a tube, the lower, secretory part of which is coiled in the deep part of the corium or in the subcutis to form a round or oval ball (Corpus glandule sudorifere). The excretory duct (Ductus sudoriferus) passes almost straight up through the corimm, but pursues a more or less flexuous course through the epidermis, and opens into a hair-follicle or by a funnel-shaped pore (Porus sudoriferus) on the surface of the skin. The sebaceous glands (Cilandule sebaceæ) are in great part associated with the hairs, into the follicles of which they open. Their size varies widely, and is in general in inverse ratio to that of the hair. The larger ones are easily seen with the naked eye, and appear as small, pale yellow or brownish bodies. In certain situations (e.g., the labia, vulve, anus, prepuce) they are independent of the hairs and are well developed. In form they may be branehed alveolar, simple alveolar, or even tubular in type. They secrete a fatty substance, the sebum cutaneum, which serves as a protective against moisture, and may also (by its aromatic constituents) play an important part in the sexual life of amimals.

Abstract

The two kinds of glands deseribed above are those which are most widely distributed, but many special types oceur. Some of these are to be regarded as modified sweat glands, ϵ, g., the naso-labial glands of the ox, the glands of the snout of the pig, and the glands of the digital cushion of the horse. Others, $\epsilon: g$., the tarsal glands of the eyefids, are modified sebaceous. Still others are not yet classified satisfactorily. Some of these special types have been referred to in previous chapters, and others will receive attention in the special descriptions which follow. The mammary glands are highly modified cutaneous glands, which are intimately associated in function with the genital organs, and have been deseribed with the latter.

Vessels and Nerves.- The arteries of the skin enter from the subcutis, where they communicate freely. In the deeper part of the corium they form a plexus, and another network is formed under the papilie. Small vessels from the deep plexus go to the fat and sweat glands, and the subpapillary plexus sends fine branches to the papillie, hair-follicles, and sebaceous glands. The veins form two plexuses, one beneath the papille, and another at the junction of the corium and subcutis. The lymph vessels form subpapillary and subeutaneous plexuses.

The nerves vary widely in number in different parts of the skin. The terminal fibers either end free in the epidermis and in certain parts of the corium, or form special microseopic corpuscles of several kinds.
${ }^{1}$ To prevent a possible misapprehension, it may be stated that the epidermis primarily molds the corium, and that the glands and hair-follicles are invaginations of the epidermis.
${ }^{2}$ The papillee are best developed where the epidermis is thick and hairs are small or absent. On thiekly haired regions they are small or even absent. On certain parts of the body (anus, vulva, prepuce, scrotum, eyelids, etc.) the corium contains pigment in its connective-tissue cells.

THE APPENDAGES OF THE SKIN

The appendages of the skin are modifications of the epidermis, and comprise the hairs, hoofs, claws, homs, ete.

Tha hairs (Pili) corer almost the entire surface of the borly in the domesticated inammats, and some parts which appear at first sight to be bare are found on close inspection to be provided with sparse and very fime hair. The hairs are constantly heing shed and replaced, hut at certain periocls in the horse, for example, they fall out in great numbers, constituting the shedding of the coat. It is customary to distinguish the ordinary hairs (the eoat), which determine the color of the animal, from the spectal varieties found in eertain places. Among the latter are the long

 Kunstler.)
tactile hairs about the lips, nostrils, ame wes; the eyelashes or cilia; the tragi of the external ear; and the vibrissæ of the nostrils. Other special features will be noted in the discussion of the skin of the various speries. The hairs are directed in such it way as to form more or less definito hair-streams (Flumina pilorm), and at certain points these converge to form vortices (Vortices pilorum).

The part of the hair above the surface of the skin is the shaft (scapus pili), while the root (Radix pili) is cmbedded in a depression termed the hair-follicle (Follicuhus pili). I vaseular papilla (Papilla pili) projects up in the funclus of the follicle and is capped by the expanded end of the root, the bulb of the hair (Bullous pili). The hair-follices extend obliquely into the corimen to a varying depth; in the case of the long tactile hairs they reach to the underlying musele. Most of the folliches have attached to them small unstriped museles known as the arrectores pilorum; these are attached at an acute angle to the under side of the deep part
of the follicle, and their contraction causes erection of the hair and compression of the sebaceous glands, one or more of which open into the follicle.

The hairs are composed of epidermal cells, and consist from without inward of three parts. The cuticle is composed of horny, seale-like cells which overlap like slates on a roof. The cortex consists of horny fusiform cells which are packed close together and contain pigment. The medulla is the central core of softer, cubical or polyhelral cells; it contains some pigment and air-spaces.

The hair-follicles, being invaginations of the skin, are composed of a central epidermal part and a peripheral layer which corresponds in structure to the corium. The follicles of the tactile hairs have remarkably thick walls which contain blootsinuses between their outer and inner layers; in ungulates the sinuses are crossed by trabeculie and assume the character of cavernous or erectile tissue.

The hoofs, claws, horns, and other horny structures consist of closely packed epidermal cells which have undergone comification. In structure they might be compared to hairs matted together by intervening cpidermal cells. They cover a specialized corium from which the stratum germinativum derives its nutrition.

THE SKIN OF THE HORSE

The thickness of the skin of the horse varies from one to five millimeters in different regions, and is greatest at the attachment of the mane and on the tail.

The glands are numerous and are larger than those of the other domesticated animals. The sebaceous glands are specially developed on the lips, the prepuce, mammary glands, perineum, and labia of the vulva. The sweat glands are vellow or brown in color. They occur in almost all parts of the skin, but are largest aud most numerous in that of the lateral wing of the nostril, the flank, mammary glands, and free part of the penis.

In addition to the ordinary and tactile hairs certain regions present coarse hairs of great length. The mane (Juba) springs from the dorsal border of the neek and the adjacent part of the withers; its anterior part, which covers the forehead to a variable extent, is termed the foretop (Cirrus capitis). The tail, with the exception of its ventral surface, bears very large and long hairs (Cirrus caudie). The tuft of long hairs on the flexion surface of the fetlock (Cirrus pedis) gave rise to the popular name of this region.

The development of these special hairs varies widely, and is in general much greater in the draft breeds than in others. In shire and Clydesdale horses, for instance, the hair on the posterior aspect of the metacarpus and metatarsus and fetlock is often so long and abundant as to account for the term "feather," which is commonly applied to it by horsemen.

Subcutaneous bursæ (Burse subcutanea) may be present at various prominent points, e. g., the olecranon, the tuber coxa, the tuber calcis, the mithers, etc. They are not present in the young subject and appear to be the result of traumatism.

THE HOOF

The hoof (Ungula) is the horny covering of the distal end of the digit. It is convenient to divide it for description into three parts, termed the wall, sole, and frog.

1. The wall (Paries ungulæ) is defined as the part of the hoof which is visible when the foot is placed on the ground. ${ }^{1}$ It covers the front and sides of the foot, and is reflected posterioriy at an acute angle to form the bars. The latter (Pars inflexa medialis, lateralis) ${ }^{2}$ appear on the ground surface of the hoof as convergent
${ }^{1}$ The term foot is used here in the popular sense, i.e., to designate the hoof and the siructures enclosed within it.
${ }^{2}$ The term "pila ungule" has been suggested by Schmaltz for the part popularly known as the "bar."
ridges, which sulside in front and are fused with the sole; they are united with each other hy the frog. For topographic purposes the wall may be divided into an anterior part or "toe" (Paries mgula dorsalis), medial and lateral parts or "quarters" (Paries unguke medialis, lateralis), and the angles or " heels" (Anguli parictales). It presents two surfaces and two borders. The external surface is convex from side to side and slopes obtiquely from edge to edge. In front the angle of inchation on the gromd plane is alout 50° for the fordimb, 55° for the hind limb; on the sides the angle gradually increases and is about 100° at the heels. The curve of the wall is wider on the lateral than on the medial side, and the slope of the mediat quarter is steeper than that of the fateral one. ${ }^{1}$ The surface is smooth and is crossed by more or less distinct rulges, which are parallel with the coronary border and indicate rariations in the activity of the growth of the hoof. It is also marked ly fine parallet strixe, which extend from border to

Fig. Tlo.-Digit of Horse, Showing sterface Relations of Bones and Johsts. The Cabthlage in Labgely 1.xposed.
a, First 1,halanx: h, semond phalanx: c, third platanx: d, curtilage, ', distal M'sitmaid or navicular bone: f. pastern joint; g. coffin joint: h^{\prime}. cut edge of wall of leoof (h) : l, laminar corium. (After Ellenbereser, in Leisering's Atlas.) borker in an almost rectitinear manner and indieate the direction of the horn tubes.

The internal surface is eoneave from side to side, and bears about sis humdred thin primary laminæ, which extend from the coromary groove to the hasal border of the wall. Fach bears a hundred or more secondary laminæ on its surfaces, so that the arrangement is pemate on cross-section. These horny lamine are continued on the inner surface of the bars, and dovetail with corresponding laminae of the the corium. The coronary border (Margo coronarius) is thin. Its outer aspect is covered by a layer of soft horn known as the periople (Limbus comeus); this appears as a ring-like prominener alove and grathally fades out bekw; at the anglo it forms a wile cap or bulb and blends centrally with the frog. The inner aspect of the loorder is exavated to form the coronary groove (Sulcus coronarius ungulx), which contains the thick coronary corium. The groove is deepest in front, namows on the sides, and is wide and shallow at the herks. ${ }^{2}$ It is perforated by inmmerable small, funnel-like openings which are occupied loy the papilte of the cormary corim in the natural state. Between the border of the wall proper and the periople there is a small groove which contains the corium of the periople. At the heel this groove is merged with the coronary groove. The basal or ground border (Xargo hasilaris) of the unshod hoof comes in contact with the ground. Its thickness is greatest in front amb derreases comsiderably from before lackward on the sides, hat there is a slight increase at the angles. Its imer face is united with the periphery of the
${ }^{1}$ The slope of the wall varies considerably in apparently normal hoofs. Lungwita found by careful meaturements of nif fore and 36 hind fort the following atrage angles:

	Fore fout	Hisd Foot
${ }^{\text {Tou }}$	17.266°	$54.1{ }^{\circ}$
Nlediad angle	101.57	(11.) $)^{\circ}$
Lateral angle	101.37°	90.1

The wall of the for foot may exen be more upright than that of the hind, and may have an angle of 60°. The length of the wall at the tor, quarters, and heels is in the ratio of about $3: 2: 1$ in the fore foot and about $2: 1^{1}{ }_{2}: 1$ in the lind hoof.
${ }^{2}$ The wide groove at the heels, however, contains chiefly the corium of the periople.
sole by horn of lighter color and softer texture, which appears on the ground surface of the hoof as the so-called white line (Zona lamellata).

Fig. 711.-Cross-sectios of Foot of Horse, Cet Parallel mite the Corosary Border. The wall appears much thicker at the angles than it actually is, because it is cut very oblicguely.

In the ease of unshod horses at liberty the wall is usually worn off to the level of the adjacent sole, but if the ground is too soft the wall is likely to become unduly long and split or break or undergo deformation. On very hard or rough ground, on the other hand, the wear may be in ex-

Fig. -12.-Half of Hoof of Horse: Internal Scrface.
cess of the growth. In the case of shod horses it is necessary to remove the excess of growth of the wall at each shoeing. The thickness of the wall at the toe, quarters, and heels is about in the ratio of $1: 3: 2$ for the fore foot and about $3: 21 / 2: 2$ for the hind foot.
2. The sole (Basis s. solea ungula) forms the greater part of the ground sur-
face of the hoof. It is somewhat crescentic in outline, and presents two surfaces and two borders. The internal surface is convex, and slopes with a varying degree of obliquity downward to the eonvex border. It presents numerous small fumel-like openings which contain the papilla of the sole corium in the natural stats. The external or ground surface is the converse of the preceding. It is normally arehed-and more strongly in the hind than in the fore foot-but the curvature is suljeet to wide variation; in heavy draft horses the sole is commonly less curved tham in the lighter breets and may even be flat. The surface is usually rough, since the horn exfoliates here in irregular flakes. The convex border is joined to the wall hy relatively soft horn, previonsly raferred to as forming the white line on the ground surface of the hoof. The angle of junction is rounted internatly and presents a

Fic. 713.-Right More: Ifonf of llurse; Grotno Surface.
 line (juneton of wat atul sole); z, alpex of frog; s, central sulcus of frog, $9, y$, wollateral sulei between frog and bars; 10. 10, bullss of hoef.
number of low ridges and specially large openings for the papille of the eorium. There is frequently a ridge of lagerer size at the twe. The concave border has the form of a deep angle which is occupied by the bars and frog. It concurs in part with these in forming two pronomed ridges in the interior of the foot. The parts of the sole between the wall and hars are termed its angles (Anguli soleæ).
3. The frog (Cuneus ungute) is a wedge-shaped mass which occupies the angle bounded by the hars and sole, and extends considerably bekw these on the ground suriace of the foot. It may lo described as having four surfaces, a base, and an apex. The internal surface bears a eentral ridge, the spine or "frog-stay" spina (rmei ungukir), which is high posteriorly and subsides abruptly in front. On either side of this there is a deep ctepression, which is homnded outwartly by the rounded
ridge formed by the junction of the frog with the har and sote. This surface presents fine strix and openings for the papille of the corium. The external or ground surface presents a central sulcus (sulcus cunei), which is hounded by two ridges or crura (Crura cumei). The medial and lateral surfaces (Facies medialis et lateralis) are united at the upper part with the hars and sole, but are free below and form the central wall of the deep collateral sulci (Sulei paracuneati), which are bounded outwardly hy the bars. The base (Basis comei) is depressed centrally and prominent at the sides, where it unites with the angles of the wall: the junction here is covered by the expanded periople and constitutes the bulb of the hoof (Pulvinus digitalis). The apex (Apex cunci) ocrupies the central angle of the concave borter of the sole, and forms a blunt, round prominence a little in front of the middle of the ground surface of the hoof.

Structure of the Hoof.- The hoof is composed of epithelial cells which are more or less completely keratinized except in its deepest part, the stratum germinativum; here the cells

Fig. 714.-Section of Hoof of Horse.
The suction is cut just above the ridges of the frog and bars and parallel with the ground surface. 1. Wall; α, sole; S. spine of frog or "frog-stay"; 4. ridge formed by junction of frog and bar: \bar{i}, central furrow over apex of frug; 6 , lamine of wall; \tilde{i}, lamine of bar. have not undergone cornification, and by their proliferation maintain the growth of the hoof. The cells are in part arranged to fom tubes (Cylindri cornei) whels are united by intertubular epithelium, and enclose metullary

Fig. f15.-Frontal section of Hoof of Horse, Posterior Part Viewed froni in Front,
1, Wall; 2, sole; 3, bar: 4 , frog; $\overline{5}$, central ridge of frog; 0 , lateral ridge formed by junction of frog and bar; $\tilde{\sim}$ lamine of bar: 8 , lanine of wall; 9 , coronary groove; 10 , periople of heel. cells and air-spaces. The wall may be regarded as consisting of tirree layers. The external layer consists of the periople and the stratum tectorium. The pericple is composed of soft, non-pigmented, tubular horn, and becomes white when the hoof is soaked in water. It is continbous with the epidermis of the skin above, and extends downward a variable distance. Tsually it forms a distinct band somewhat less than an inch wide, except at the heels, where it is much wider, and caps the angle of inflection of the wall. The stratum tectorium is a thin layer of horny scales which gives the outer surface of the wall below the periople its smooth, glossy appearance. The middle layer (Stratum metium) forms the bulk of the wall, and
is the densest part of the hoof. Its horn tubes run in a straight direction from the coronary to the basal border. In dark hoofs it is pigmented exeept in its deep part. The laminar layer (stratum lamellatum) is internal; it consists of the horny laminæ (Lamellæ corneæ), and is nom-pigmented. The primary laminar are narrow and thin at their origin at the lowrr margin of the coronary groove, but become wider and thicker distally. At the junction of the wall and sole they are united by interlaminar horn to form the white line. Only the erntral part of the lamine beeomes fully keratinized. They are composed of non-tubular horn in the normal state.

The sole consists of tubular and intertubular horn. The tubes run parallel with those of the wall and vary much in size.

The frog is composed of relatively soft horn, which is much more elastic than that of the wall or sole, and is not fully keratinized. The horn tubes in it are slightly flexuous.

The hoof is nom-vascular and receives its mutrition from the corium. It is also destitute of nerves.

THE CORIUM OF THE HOOF

The corium of the hoof or pododerm (Corium ungula) is the specially morlified and highly vascular part of the corium of the common integument which furnishes nutrition to the hoof. It is convenient to divide it into five parts which nourish corresponding parts of the hoof. ${ }^{1}$

1. The perioplic corium or ring (Corium limitans) is a hand 5 to 6 mm . in width which lies in a groove between the periople and the coronary border of the wall. It is continuous above with the corium of the skin, and is marked off by a groove from the coronary corimm. At the heels it widens and bends with the corium of the frog. It bears very fine, short papille which curve downward and are received in depressions of the priople, to which it supplies mutrition.
2. The coronary corium (Corium coromarim) is the thick part of the coriun which occupies the coronary growe, and furnishes nutrition to the bulk of the wall. It diminishes in width and thickness posteriorly, and along the upper border of the bar it is not clearly defined from the corimm of the frog. The convex superficial surface is thickly covered with filiform papille 4 to 6 mm . in length, which are received into the fumel-like openings of the coronary groove. At the heeds and along the bars the papille are arranged in rows, separated by fine furrows. The deep surface is attached to the extensor temen and the cartilages of the third phalanx by an abondant suboutis which contains many elastic fibers and a rich venous plexus.
3. The laminar corium (Corimm lamellatum) bears primary and secondary lamine which are interleaved with the horny lamine of the wall and bars in the natural state. ${ }^{2}$ It is attached to the dorsal surface of the third platanx by modified periosteum (Stratum periosteale) which contains a close-meshed network of vessels, and to the lower part of the cartilages by a subcutis which contains a rich venous plexus. The lamine are small at their origin above, become wider below, and end in several papille 4 to. 5 mm . in length. They supply nutrition to the horny lamine and to the interlaminar horn of the white line.
4. The corium of the sole (Corium soleare)-also termed the sensitive solecorresponds to the horny sols, to whish it supplies nutrition. It is often more or less pigmented and bears long papilter, which are speciatly large along the convex
${ }^{1}$ In some veterinary works the statement is macke that the various parts of the "orium "secrete" corresponting parts of the hoof. The statement is, of course, luticrons, as the relationship here, both anatomieally and physiofogically, is the same as in the case of the corium and epidermis of the skin. Hence the terms "kerategenous mombrane" and " matrix" should be dropped.
${ }^{2}$ The laminte of the eorium are commonly termed "sensitive" lamine to distinguish them from the "horny" lamine, which are, of course, insensitive.
border and at the angles. Centrally it is continuous with the corium of the frog and bars. The deep surface is attached to the sole surface of the third phalanx by a modified and highly vascular periosteum.

Fig. 716.-Lateril View of Foot of Horse After Removil of Hoof and Part of Sein. (After Schmaltz, Atlas d. Anat. d. Pferdes.)

Dotted lines in front of navicular bone indicate position of coffin joint.
5. The corium of the frog (Corium cuneatum)-also called the sensitive frogis moulded on the deep surface of the frog and bears small papillæ. Its deep face is

Fig. 717.-Groend Surface of Foot of Horse After Removal of Half of Hoof to Show Coritm. (Aftet Schmaltz, Atlas d. Anat. d. Pferdes.)
blended with the digital cushion. The germinal cells of the frog derive their nutrition from this part of the corium.

The digital cushion (Torus digitalis) is a wedge-shaped mass when overlies the frog. It presents for deseription four surfaces, a bese, and an apex. ${ }^{1}$ Its deep surface faces upward and forward and is comected with the distal fibrous sheath of the deep bexor tendon. The superficial surface, covered by the corium of the frog, is moulded on the upper face of the frog. The sides are related chiefly to the cartilages of the third phalanx; distally the cushion is closely attaehed to the eartilages, but higher up a rich venous plexus intervenes. The hase, situated posteriorly, is partly subeutancous, and is divided by a central depression into two rounded prominenees termed the bulls of the eushion. The apex lies below and is atherent to the terminal part of the deep flexor temdon. The enshion is poorly supplied with vessels. It consists of a feltwork of fibrous trabecula and elastie fibers, in the meshes of which are masses of fat. The bulbs are soft and loose in

Fig. 718,-Section of Digit of Hurse at Coroniry Border of Hoof.

1. Extunso process of third phalanx: 2, dastal emd of sucond phalanx; 3, distal sesamoid or wavicular bone; 4, deep flexor tendon; 5, digital rushion; 6, cartilage of third phalanx; 7, 7, cavity of coffin joint; $火$, podotrochlear or navicular buras; !3, digital vesedn; 10, digital nerve.
texture and contain a relatively large amount of fat, but toward the apex the cushion becomes lenser and more purely white fibrous in structure. Branched coil glands oeerur chictly in the part of the cushion which overlies the emtral ridge of the frog. Their cluets pursue a slightly flexuous eourse through the corium and pass in a spiral manner through the frog. Their secretion contains fat.

Vessels and Nerves.-The eorium is richly supplied with blowd by the digital arteries. The veins are valveless, and form remarkahn plexuses which commmicate freely with earh other and are drained ly the digital veins. The lymph vessels form sulpapillary plexuses in the corim of the sole and frow, and a wider-meshed plexus at the base of the digital eushon, A lymph vessel lies in the attached edge of cach of the lamine. The nerves are branches of the digital nerves; some fibers end in lamellar "orpuseles and (millablos.

[^219]
The Ergot and Chestnut

The ergot is a small mass of horn which is situated in the tuft of hair at the flexion surface of the fetlock. It is commonly regarded as the vestige of the second and fourth digits of extinct equidx, since it is ahsent in cases in which these digits are developed. A small fibrous band, 3 to 5 mm . in width, extends downward and slightly forward from the fibrous hasis of the ergot on each side, crosses over the digital ressels and nerves very obliquely, and blends below with the digital fascia and the digital cushion. It is known as the ligament or tendon of the ergot (Fig. 572).

The term chestnut is applied to the masses of hom which occur on the medial surface of the forearm, about a handbreadth above the carpus, and on the distat part of the medial face of the tarsus. They have an elongated oval form and are flattened. They are regarded usually as vestiges of the first digit. That of the hind limb is absent in the donkey and very small in the mule.

Abstract

These horny excrescences are quito variable in form and size and are correlated with the fineness or coarseness of the integument in gencral. The supracarpal chestnut is about $1^{1}, 1_{0} 2^{1}, 2$ inches long, oval in outline, the proximal end being pointed; it overdics the flexor carpi radialis at a quite variable distance abose the earpus, and hence shoukl not be nsed as a surgical landmark. The tarsal chestout hes at a point belind the lower part of the medial ligament of the hock. When well developed it is about $\frac{2}{}$ to 212 inches long, broad below and produced above to form a long pointed end, with a short blunt anterior process. They are composed of horn somewhat like that of the frog.

Organ of Smell

The peripheral part of the olfactory apparatus or organ of smell (Organon olfactus) is that part of the nasal mucous membrane which was referred to in the description of the nasal eavity as the offactory region; this (Regio olfactoria) is limited to the ethmoturbinates and the adjacent part of the dorsal turbinate and the septum nasi, in which the fibers of the olfactory nerve ramify: It is distinguished by its yellow-brown color, thickness, and softness. It contains characteristic tubular olfactory glands, which are lined be a single layer of pigmented cells, and a neuro-epithelium, the olfactory cells, the central processes of which extend as non-medullated fibers to the olfactory bulb.

Abstract

The epithelium is non-ciliated and is covered by a structureless limiting layer. It consists essentially of three kinds of cells, supporting, basal, and olfactory. The suppoiting cells are of long columnar form above and contain pigment granules; below they taper and often branch, and their central processes unite with those of aljacent cells to form a protoplasmic network. The basal cells are branched and lie on a basement membrane. The olfactory cells are situated between the supporting cells; they have the form of long narrow rods, with an enlaryed bower part which is occupied by the nncleus. The peripheral end pierees the limiting membrane and bears a tuft of fine, hair-like cilia (olfactory hairs). A central process extends from the sucleated pole of the cell to the olfactory bulb as a non-medullated olfactory nerve-fiber.

The vomero-nasal organ (Fig. 452) lies along each side of the anterior part of the lower border of the septum nasi. It commmicates with the nasal cavity through the naso-palatine canal. It consists of a tube of hyaline eartilage lined with mucous membrane; a small part of the latter atong the medial side is olfactory in character.

The Organ of Taste

The peripherai part of the gustatory apparatus (Orgauon gustus) is formed by the microscopic taste buds (Calyculi gustatorii), which oecur especially in the foliate, fungiform, and vallate papilte, in the free edge and anterior pillars of the soft palate, and the oral surface of the epiglottis. The taste buds are ovoid masses,
which oceupy eorresponding recesses in the ordinary epithelium; each presents a minute opening, the gustatory pore. The huds consist of fusiform supporting cells grouped around central gustatory cells. The latter are long and marow; the peripherat end of each hears a small filament, the gustatory hair, whieh projects at the gustatory pore; the central end is produced to form a fine process which is often branched. The taste buds are imnervated by fibers of the glosso-pharyngead nerve and the lingual lranch of the trigeminus.

THE SENSE ORGANS AND COMMON INTEGUMENT OF THE OX

THE EYE
The eyelids are thick, prominent, and less pliable than those of the horse. The lower lid bears a considerable number of cilia, which are, lowever, finer than those of the upper lid. Thee tarsal glamds are more deeply embedded

Lower cyelid
 kunstler.) and therefore not so evident. The conjunctiva of the lower lid presents folds or ridges, and one or two prominences which eontain numerous leukoeytes; the conjunctival epithelium is transitional in type. The superficial part of the eartilage of the third eyelid is leaf or showel-shaped and thicker than in the horse; the edge bears a narrower proecss, on which there is a tramsverse bar, giving the arrangement some resemblance to an anchor. The gland of the third eyelid is very large-an inch or more in lengthand may be divided into two parts. The deep part is pink and eonsists of lorese lobules, but the much larger superficial part is more compact. There are two large and several smaller exeretory ducts. The subronjunctival tissue of the third eyedid contains lymph nodules, which are specially numerous on the bulbar side.

The lacrimal gland is thick and distinetly lobulated. It is more or less clearly divided into a thick upper and a thimer lower part (Clandula lacrimalis doesalis, ventralis). There are six to eight larger excretory ducts and several smaller ones. The naso-lacrimal duct is shorter than in the horse, and is almost straight. Its terminal part is enelosed between two plates of cartilage, and it opens near the nostril on the lateral wall of the vesti-

Fig. 720.-Left Eyeball of Ox in situ.
10. ()rbital fat, (After Elleoberger-Baum, Anat, für künstler.) bule of the nasal eavity; the orifice is placed on the medial side of the alar fold of the ventral turbinate, and is therefore not easily found.

The eyeball resembles that of the horse in shape, but is considerably smaller. ${ }^{1}$ The sclera is often more or less pigmented; where non-pigmented, it may have a bluish tinge. The point of entrance of the optic nerve is about 2 mm . lateral to the vertical meridian, and about 7 mm . below the horizontal meridian. ${ }^{2}$ The cornea is thicker than that of the horse. The tapetum of the chorioid is extensive at the outer side, but is a narrow strip medially. It has a metallic luster, shading from a brilliant greeu to a deep blue; centrally it has a reddish sheen. The iris is usually very dark colored. The granula form a continuous series of small nodules along the upper margin of the pupil and are most prominent centrally; they are very small on the lower margin. The optic papilla is much smaller and is not so sharply defined ou ophthalmoscopic examination as that of the horse. Several relatively large retinal arteries radiate from the center of the papilla to the periphery of the retina. They may be seen to wind spirally around the veins, which are very large. The vitreous body is less fluid than that of the horse.

The arteria centralis retimæ arises from a posterior ciliary artery and divides close to the optic papilla into three branches usually; the upper one is larger than the two lateral branches. The retina is more vascular than that of the horse; it has a round area centralis at the medial side, which is continued outward by a narrow strip of a similar histological structure.

THE EAR

The external ear is inclined outward. The middle part is much wider and less curved than in the horse. The apex is also wide and does not curve formard. The lower part of the anterior border is bent backward and bears long hairs. The posterior border is thiu and is regularly convex, except below, where it is indented. The opening is wide and the concave surface presents four ridges; the convex surface presents corresponding depressions. The styloid process of the conchal cartilage is short and blunt. The edges of the annular cartilage are in contact at the medial side and the upper border is notched laterally. The scutiform cartilage is a very irregular quadrilateral plate; it is situated on the lateral aspect of the cranium, with its concave surface in contact with the fat and temporalis muscle. The osseous external acoustic meatus is directed practically straight inward; it is about twice as long as that of the horse, and tapers very gradually from without inward. The chief special characters of the auricular muscles are as follows: (1) The scutularis blends with the frontalis muscle. The interscutularis arises from the base of the processus cornus (or the corresponding area in polled cattle) and from the frontal crest. (2) The cervico-scutularis arises from the posterior surface of the cranium below the frontal eminence, and receives slips from the parieto-auricularis and cervico-auricularis superficialis. (3) The zygomaticoauricularis and scutulo-auricularis superficialis ventralis are fused. (t) The scutuloauricularis superficialis dorsalis is distinct from the interscutularis; it arises from the superficial face of the scutiform cartilage. (5) The cervico-auricularis superficialis arises from the ligamentum nuche and ends on the convex surface of the conchal cartilage. (6) The parieto-auricularis arises from the nuchal surface of the frontal bone, the adjacent part of the parictal bone, and the ligamentum uuchæ; it is inserted below the preceding muscle. (7) The scutulo-auricularis superficialis accessorius arises from the superficial face of the scutiform cartilage and is inserted by a round tendon into the anterior part of the convex surface of the conchal cartilage. (8) The cervico-auricularis profundus minor consists of two fasciculi: the medial, narrow part is deep red in color, and arises from the fascia of the cervical muscles lateral to the occipital attachment of the ligament nuchæ; the lateral

[^220]wider part is pale, and arises beneath the cervioo-auricularis superficialis indireetly from the seutiform eartiage. The two unite and are inserted into the lower aspect of the base of the conchal cartilage. (9) The seutule-aurieularis profundus minor arises from the temporal crest above the extermal acoustic meatus and is inserted into the anterior part of the deep face of the seutiform eartilage.

The cavum tympani is small; it commmicates ventrally with the air-eells of the bulla ossea. The tympanic membrane is nearly "ircular and is not so oblique as in the horse. The aulitory ossicles are smaller than those of the horse; the malleus is more curved, the borly of the incus is longer, and there is a small prominenme on the front of the head of the staps for the attarhment of the stapedius muscle.

The auditive or Eustachian tube is small and is only about two inches long. The pharyngeal opening is small and is situated on the side of the formix of the pharynx cluse to the base of the eranium. There is no flap-like expansion of the eartilage, but the mediat horder of the orifice is formed by

Fig. 721.-Claws of Ox; Volar Amper't. After Ellemberger-Batum, Anat. fur Fünstler.)

COMMON INTEGUMENT

The thickness of the skin of the ox is greater than that of any of the other domesticated animals; in general it is about three or four millimeters, but at the root of the tail and the point of the hock it is about five millimeters and on the brisket six or seven millimeters. The variably developed prominenee at the anterior part of the pectoral region known as the brisket consists of a fold of skin (Pliea eotli rentratis longitudinalis), which contains posteriorly a mass composed of coarse fibrous trabecule and fat.

The cutaneous glands are fewer and less developed than in the horse. Exwept about the natural openings, at the point of the hook, and the flexion surface of the fetfork, the sweat glands do not form a eoil, hut are enlarged at the derpend and arevariably flexuous. The sebaceous glands are hest developed about the matural openings and on the mbler, but there are none on the tats. The naso-labial glands form atherk layer under the bare skin of the muzzle. They are compound tulnula glands and are lined with cubieal epithelimm. The openings of the ir exeretory ducts are easily seen.

The hairs are extromoly variable in color and sizo in the rifferent breeds and in different individuals. The hair of the frontal reqiom is often emrly, expecially in the bull. There is no mane, and the long hairs of the tail oceur only at the end, where they form the "lorush" ("irrus cande).

The claws, four in mumber on each limb, eover the ends of the digits. Those of the chief cligits comform in a general way to the shape of the third phalanges, and each maty be rogarled as having three surfares. The aboxial surface is convex from side to side, and is marked by ridges parallel with the eoronary border. Its anterior part is conc:ave from edge to edge, and the angle which it forms with the gromol is alout 30°. The interdigital surface is conowe and grooved; it touches the opposite chaw only at its ends. The basal or gromed surface eonsists of two parts, viz., a shighty concave sole, which is pointed in front and widens behind, and a prominent bulb of soft thin horn, whirh is rontimous ahove with the skin. The claw may be regarded as consisting of three parts-periople, wall, and sole. The
periople surrounds the coronary border in the form of a flat band, which is about half an inch wide, except at the heels, where it widens to cover the entire surface. The wall forms most of the abaxial part of the claw and is reflected in front upon the interdigital surface. It thins out toward the bulb or hecl, which appears, as stated above, to consist of the thin expansion of the periople. The sole occupies the angle of inflection of the wall; it is continuous without demarcation with the periople of the bulb. The perioplic corium bears relatively long papillie. The coronary corim is much less developed than in the horse and its papillæ are short. The lamine are nueh narrower and are more numerous than in the horse: seeondary lamine are not present. The corium of the sole is not marked off behind from that of the periople; its papillæ are very small and elose together. The corium of the bulbs

Fig. i22.-Sagittal Section of Distal Part of Forelmb of Ox.
is separated from the flexor tendon by a mass of elastic, fatty tissue, which is analogous with the digital cushion of the horse. The papille here are long and often compound.

The accessory digits bear short conical horn capsules which resemble in a general way those of the chief digits, and have a similar corium, which eovers one or two nodular vestigial phalanges. From these a fibrous band descends obliquely on the volar aspect of each chief digit and is attached below to the distal phalanx and sesamoid bones, sending fibers also to the elastic pad of the heel.

The horns (Cornua) enclose the horn processes of the frontal bones (exeept in the polled breeds). They vary very greatly in size, form, and curvature. The root or base of the horn (Radix cornus) has a thin edge which is continuous with the
ordinary epidermis. It is covered by a thin layer of soft horn similar to the periople of the hoof of the horse. Near the root the horn is encireled by variable rings. Toward the apex (Apex cornus) the thickness of the horn increases till it becomes practically a solid mass. The horn consists mainly of tubes which are very close together, except at the rings, where there is more intertubular horn. The corium of the horn (Corium cornus) is united to the horn process by periosteum which is traversed by numerous blool-vessels. The corium at the root of the horn is thick and bears long, slender papillar; in the body of the horn it becomes thin and the papillæ are smaller, but increase in size apically. Rudimentary papillated laninæ also occur.

The skin of the sheep varies in thiekness from 0.5 to 3 mm ., but differs greatly in fineness and in other respects in various breeds. In Merinos large folds occur on the neck. Cutaneous pouches (Sinus cutis) are constantly present in certain situations. The infraorbital or lacrimal pouch (Sinus cutaneus infraorbitalis) is an invagination alout half an inch in depth, which is situated in front of the medial angle of the eye. It bears scattered fine hairs, into the follicles of which large compound sebaceous glands open; coil glands are also present. The secretion of the glands is fatty and forms a yellow, sticky eovering on the skin when dry. The inguinal (or mammary) pouch (Sinus cutaneus inguinalis) is much more extensive, and is situated in the inguinal region in both sexes. The skin of the pouch bears scattered fine hairs and contains well-developed sebaceous glands and exceedingly large coil glands. The interdigital pouch (Sinus cutaneus interdigitalis) is a peeuliar tubular invagination of the integument which opens at the anterior part of the interdigital cleft. On sagittal section it appears as a bent tube, an inch or more (ca. 2.5-3 cm.) in length, and about a fourth of an inch (ca. $6-$ 7 mm .) in diameter. The pouch extends downward and backward, and then curves sharply upward hetween the distal ends of the first phalanges. Its deep blind end is somewhat ampullate. The subcutis forms a capsule around it. The skin of the pouch is thin and pale; it bears fine colorless hairs, the follicles of which receive the secretion of several sebaceous glands. The coil glands here are compound and very large; they open into the hair-follicles or directly into the pouch. The secretion of the glands is a colorless fatty substance. The skin is covered in great part by wool, which is similar in structure to hair, but is finer, curly, and usually contains no medullary cells. The follicles of the wool are curved, and are arranged more or less distinctly in groups of ten or a dozen, several of which open in common on the surface. A considerable part of the face and the limbs is covered with short, stiff hair. and long hairs occur more or less interspersed among the wool. The claws resemble those of the ox. The horns, when present, are more or less prismatic, distinctly ringed. and vary in length and curvature in different breeds. Their structure is similar to those of the ox.

The olfactory and gustatory organs resemble in general those of the horse.

THE SENSE ORGANS AND COMMON INTEGUMENT OF THE PIG

 THE EYEThe posterior part of the orbital margin is formed chiefly by the orbital ligament, which extend: from the extremedy short supraorbital process to the small eminence at the junction of the malar and the zygomatic process of the temporal.

Cilia occur only on the upper eyelid. The medial canthus is prolonged by a groove on the infraorbital region. The tarsal glands are very short and curved. The conjunetival epithelium is of the transitional type, with many goblet cells.

The decp part of the cartilage of the third eyelid is broad and spoon-like, the superficial part somewhat anchor-shaped. In addition to the gland which surrounds the deep part of the cartilage, there is a deeper one, often termed the gland of Harder (Clandula palpebrex tertix profunda), which is surrounded by a distinet capsule and a blood-sinus. This gland is brownish or ycllowish-gray in color, elliptieal in outline, and about an inch ($2-3 \mathrm{~cm}$.) in length. It is situated deeply below the attachment of the ventral oblique muscle.

The caruncula laerimalis has the form of a ridge; it divides into two branches which join the skin at the medial commissure. It is red in color and contains numerous large coil glands.

The lacrimal gland is mucous in type. There is no lacrimal sac, and the two lacrimal ducts pass through separate opouings at the infraorbital margin. The naso-lacrimal duet is usually short and opens into the ventral nasal meatus at the posterior end of the ventral turbinate. ${ }^{1}$ The eyeball appears small, partly on account of the narrowness of the palpebral opening; it closely approaches the spherical form. The cornea, although in reality ahnost eircular, appears oval when viewed from the front, the medial end being much the broader. The chorioid has no tapetum. The iris is usually dark grayish-brown or yellowish-brown, but sometimes has a blue tinge. The pupil is a transverse oval in ordinary light, but almost circular when dilated; granula are not present. The optic papilla is nearer the posterior pole than in the horse and ox, and has a distinet central artery and vein.

THE EAR

The external ear differs considerably in size, thickness, and position. It may be carried vertically, inclined inward, or hang downward. It is relatively wide and is little curved except at the base. The concave surface presents several cutaneous ridges which correspond approximately with the long axis of the ear. The anterior border of the coneha is strongly recurved in its lower part, and divides into two branches, one of which passes almost horizontally backward in the cavum conchæ, while the other contimues the general direction of the border. The posterior border is slightly coneave above, strongly convex below, forming a prominence somewhat analogous to the lobule of the human ear. The osseous external acoustic meatus is very long and is directed ventro-medially. The tympanic membrane is almost circular. The tympanic cavity proper is small, but it is contimuous with the numerous cells of the large bulla ossea. The auditive or Eustachian tube is short; its pharyngeal opening is situated in the upper part of the wall of the pharynx, immediately behind the posterior nares. It is somewhat infundibular, and is bounded medially by a thick fold of mucous membrane (Torus tubarius).

THE SKIN AND APPENDAGES

The thickness of the skin in improved breeds is 1 to 2 mm . Fat usually accumulates in the subcutis and forms a distinct and often extremely thick panniculus adiposus over the greater part of the body. The sebaceous glands are in general small and mueh fewer than in the other animals. The sweat glands, on the other hand, are large, yellow or brownish in color, and are in many places visible to the naked eye. At the medial side of the carpus there are small eutaneous diverticula, the so-called carpal glands, into which numerous compound coil glands open. Large glands also occur in the skin of the digits and interdigital space. Compound tubular glands are present in the skin of the snout. Large sebaceous and sweat

[^221]glands are found at the entrance to the preputial diverticulum. The hairs are sparsely seattered in improved breeds-indeed, in some cases the skin is almost bare. The long hairs or hristles are arranged usually in groups of three. They are most developed on the neck and baek. The bristles about the snout and the chin are sinus hairs.

The claws and their corium resmble those of the ox, hat the bulbs are more prominent and form a greater part of the ground surface; they are also better defined from the sole, which is small. The claws of the afcessory digits are more developed and their parts better differentiated than those of the ox.

The olfactory region is extensive in correlation with the large size of the olfactory bulbs; the musous membrane here is brown in color.

THE SENSE ORGANS AND COMMON INTEGUMENT OF THE DOG THE EYE

The posterior margin of the orbit is formed by the orbital ligamont, as in the pig. The orhital axes if produced backward would include an angle of about 79°, the optic axes an angle of about 92.5° (Koschel). The kower eyelid has no distinct eilia. The medial angle is wide, the lacus lacrimalis shallow, and the carmouta lacrimalis small and yellowish-brown. The ronjunctival epithelium is eylindrical, with many goblet cells. The gland which sumounds the deep end of the cartilage of the third eyelid is large and pink; it is a mised gland.

The lacrimal gland is flat and lics chofly under the orbital ligament. It is pink in color and mised in structure. The ntio-lacrimal duct is variable in arrangement and may differ on the two sides. It may open into the ventral meatus immediately after its emergence from the osseous lacrimal eanal; thence it continues forward and opens on the lateral wall of the nostril below the ventral turbinate fold.

The eyohall is almost spherical and is relatively large, especially in the small breeds. The selera is thick in the ciliary region, where it contains a wedt-developed venous plexus; in the vicinity of the equator it is thin, and the chorioid shows through it. The emmea is almost circular. The thorioid is riehly pigmented, and presents a well-defined tapetum cellulosum; this is somewhat triangular in outline and has a metallic luster. Its color is often gollen green, shating to bhe peripherally, lat the blue tone may prodominate, and in other cases it is mainly golden yollow or reddish-yellow. The apmarance is due to several layers of peruliar flattened polygonal cells. The ciliary musele is more developed than in the other speeies. The iris is commonly light or yellow brown, but not rarely has a blue tinge; the color often differs in the two exes. The pupil is round; its edge is either smooth or bears minute round prominences. The retina presents a round area centralis lateral to the optic papilla. The latter is variable in outline; commonly it has the form of a triangle with the angles rounded off, but is often round or oval. Branches of the eentral vessels of the retina radiate from the middle of the papilla. The surfares of the lens are not so strongly rurved as in the other domestic animals, and there is little difference in the radius of curvature of the two surfaces.

THE EAR

The external ear differs greatly in size and form in the various breeds; in most it is relatively wide and thin and the greater part of it hangs down ovel the opening.

The anterior border has a prominence (Spina helicis) at its lower part, and below this it divides into two branches (Crura helicis). One of these continues down to a bhunt point, while the other turns into the cavity of the concha. The posterior border forms a pouch below its middle, and is thick and rounded in its hasal part. Here the conchal cartilage bears a pointed process (Processus uncinatus), which projects npward and backward. The outer wall of the cavime eonchæ is supported by a quadrilateral plate (Tragus) above and a semi-ammlar cartilage below. The concave surface presents several cutancous fokls, and in the cavum conche there are ridges and irregular prominences. There are long hairs on the borders, apex, and the fotds of the coneave surfare, but the skin of the carum conchee is bare. The anmular cartilage is a complete ring. The osseous external acoustic meatus is wide and extremely short.

The auricular muscles are thin. The scutularis is extensive and is divisible into intersentularis and fronto-scutularis. It partly cosers the occipitalis musele, which is oval and mpaired and ends in the fascia of the frontal region. The scutulo-auriculares superficiales, ventratis et accessorius, and the cervico-seutularis are not differentiated as separate muscles. The cervico-auricularis superficialis and the paricto-auricularis both bifurcate and are inserted into the base of the concha and the sentiform cartilage. The parotido-auricularis is narrow and almost long enough to meet the opposite muscle. The tragieus consists of two parts; of these, the lateral one is long and arises from the border of the mandible above the angular process. The helicis and the verticalis auricule are well developed.

The tympanic cavity is very roomy, extending ventrally into the large but simple cavity of the bulla ossea. The tympanic membrane is extensive and oval. The promontory is very promounced. The auditory ossicles are large. The auditive or Eustachian tube is short, and has a fibrous lateral lamina. Its pharyngeal opening is an oblique slit situated on the lateral wall of the naso-pharyngeal meatus, and is margined medially by a thick mucous foll. The cochlea has three and a half turns and is more sharply pointed than in the ungulates.

THE SKIN AND APPENDAGES

The skin varies greatly in thiekness in different breeds. It is remarkably loose on the dorsal aspect of the neck and trunk, where it can be raised in extensive folds. The coat is also subject to extreme variation in length, thickness, color, ete. The hairs are arranged in groups of three to a large extent. The sebaceous glands are best developed in the short and rough haired breeds. They are largest and most numerous at the lips, anus, dorsal surface of the trunk, and sternal region. The sweat glands are relatively better developed in the long and fine haired breeds. The largest are found in the digital pads. Coil glands occur in the skin of the perineum and the paranal ponches. In the muzzle glands are absent or very scanty. ${ }^{1}$

On the flexion surface of the carpus and digit there are hairless, cushion-like pads. The carpal pad (Torus carpatis) is situated medial and distal to the aecessory carpal bone. The metacarpal and metatarsat pack (Torus metacarpalis, metatarsalis) are the largest and are situated behind the distal ends of the metacarpal or metatarsal bones and the greater part of the first phalanges. They are somewhat heart-shaped, with two unequal tateral lohes. and the apex distal. The metaporliophalangeal joints rest on them when the paw supports the weight. The digital pads (Toruli digitales) are oval and are much smaller: they similarty support the second digital joints. That of the first digit is small on the forelimb, and usually absent from the hind limb. Each receives two suspensory bands from the tubereles
${ }^{1}$ Trautmann has shown that the secretion which appears on the muzzle comes from the lateral nasal gland, which is well developed.
at the distal end of the corresponding second phalanx. The pads have a basis of fibro-elastic tissue and fat, which is intimately adherent to the skin and is comected by trabeeulæ with the bones and tendons. The epidermis is thick and largely keratinized, and is studded with numerous rounded papille which are readily seen

Fig. t23.-Pads of Right Fore Paw of Dog.

Fig. 724.-Paos of Right Hind Paiy of Dog.

1-5, Digital pads; 6,6, metacarpal and metatarsal pads; 7, earpal pad.
with the naked eye. The corium has large papilke, and contains sweat glands and lamellar sorpuseles.

The claws (Ungues) correspond in form to the ungual part of the distal phalanges, whiel they enelose. The horn of the elaw eonsists of a louly or wall and a sole. The former is strongly curved in both directions, and is compressed laterally.

Fig. 725.-Ilalf of Claw ge Dog; Inner Surface.
a, a^{\prime}, Coronary part; b, volar part of wall; c, sole; d, section of c; f, section of wall; 1 , coronary border; 2 , apex; 3. dorsal surface. (From Leisering's Atlas.)
lts coronary border fits into the depression under the bony collar or ungual crest of the third phalans and is covered by skin. The lateral borders converge and enclose the sole anteriorly. The corium presents a coronary part which bears papillie only near the eoronary border. On the dorsal surface it is thickened to form a ridge, and the corresponding part of the horny covering is thick and main-
tains the pointed character of the claw. The corium of the sides of the wall bears small lamine which converge to the corium of the sole. The latter is papillated. When the flexor museles are inactive, the distal phalanges and the claws are maintained in dorsal flexion by two elastic ligaments. These arise from the tubereles at the proximal end of the second phalanx and converge to the dorsal aspect of the ungual crest of the third phalanx.

OLFACTORY AND GUSTATORY ORGANS

The olfactory region lies above the lamina transversa, which separates it from the naso-pharyngeal meatus. The mucous membrane is distinguished by its thickness and yellow color, and is very extensive. It covers about half of the large ethmoturbinates, and one-third to one-half of the septum nasi. The ethmoturbinate which projects into the frontal sinus and the adjacent inner wall of the sinus are olfartory in character. Olfactory nerve-fibers ramify in the vomero-nasal organ.

The gustatory apparatu presents no special features of importance.

INDEX

Abdomex，lymph vessels of， 701
Abdominal aortic plexus，s33 cavity，410， 452
inguinal ring，290，292
part of sympathetie system， $\rightarrow 32$
plexuses， 832
tunic，245， 361
Abomasum， $453,456,47 \pm$
Accessory organs， 385
pancreatic duct， 434
parotid glands， $4>2$
spleens， 441
thyroids，536， 553
Acetabular angle， 106,109
fosia， 109
Acoustic meatus，external， 61， 870,57
internal，62，くら2
process，external，61， 74
Aditus laryngis， $406,40 \overline{4}, 521$ ossophagi， 107
Adrenal bodies， $563,566,567$ ， 569， 570
plexuses，$\$ 34$
Adventitia of ductus deferens， 545
of Fallopian tubes， 599
of seminal resicles， 575
Esthesiology， 857
Aggregated norlules of large intestine， 431
of small intestine， $4+2$ ， 457， 501
Alæ nasi， 505
Alar canal，54，75，78
cartilages，509， 53.7
fold， 509
noteh，1st
Alimentary canal， 385
Alveolar border of premaxille， 65
ducts of lungs， 534
periosteum of teeth， 395
tuberosity，64， 75
Atyeoli， 71
dental， 64
of mammary glands， 605
of thyroid gland， 536
Alveus， 7 が
Amphiarthroses，210， 211
tmpulla ductus deferentis， 545
of semicircular eanals，S．1
of uterus， 613
recti， 429
Amygdaloid nucleus， 792
Anal saes， 502
Anastomosis of arteries， 614
Anatomy， 17
comparative， 17

Anatomy，gross， 17
macroscopic， 17
microseopie， 17
philosoplical， 17
special， 17
systematic， 17,15
topographic， $1 \overline{7}, 15$
veterinary， 17
Angiology， 614
Angle，acetabular，106， 109
duodenal， 433
of mandible，T0，71
of rib， 27
splenic， 433
Angular process of mandible， 195
Annular cartilage of ear，sil
Ansate fissure， 49
Antrum pyloricum， 416
Anus， 432
Aortic plexus，abdominal，s33 thoracie， 831
orifice of heart， 626
valve， 626
Aperture，posterior，of pelvis， 111
A pex of hoof， 591
Ipica？lobe of lung，540，547， 54，5．51， 553
Aponeurosis， 253
of obliquus abdominis ex－ ternus muscle，2ss
of transversus abdominis muscle， 291
pharyngeal， 407
Appendages of skin，586，901， 903
Appendix epididymidis， 573
testis， 5.1
ventriculi laryngis， 522
Aquarductus corhlere， 852 vestibuli， C ：
Aqueduct of cerelorum，780
Aqueous humor， 869
Arachnoid granulations， 763
Arachnoilea， 762
cerebral． 762
spinal， 763
Arbor medullaris， 77
Areh，distal volar，657
hemal，1ss
lumbo－costal，2s，
of aorta， 629
of cricoid cartilage， 515
plantar，deep，697， 721
distal，67S，697， 719
proximal，675，679， 719
subcarpal， 657
venous， 692
zygomatic，60， 73
Arcuate fibers，external，ins， 7.4

Arcuate fibers，internal， 174
of cerebellum， 77
Area acustica， 779
centralis retine，s6s
cribrosa，55ј
parolfactoria． 7 IN
Arteria profunda penis， 673
Arteries or artery，611，629， 706，736， 74
abdominal，anterior， 635
pnsterior，675， 752
subcutaneous， 675
adrenal，563， 66 ；6
adrentitia of， 615
alveolar，inferior，647，737， 747
anastomosis of， 614
angular， 709
of eve．644， 710
antibrachial，volar， 749
aorta， $629,736,74$
abdominal，630，661，713， 750
ascending， 629
brachiocephalic，trunk， 631
thoracic，630，660， 713,750
asternal， 635
auricular，anterior，646，709， 747
great， 747
posterior，644，709， 736
basilar， 640
bicipital， 749
brachial，650，707，710，736， $735,744,747$
deep，651，710， 749
left． 632
right， 631
brachiocephanic，631，736， 74
bronchial，534，535，660，713， 737
broncho－resophageal，535， 660,750
buceinator，649，710，737
cercal，737， 751
lateral， 665
merlial， 665
carotid．common，635，707， $736,744,746$
left， 1237
right， 636
external，641，709，736， $7 \pm$
internal，640，736， 74
rentral，of retina， $6+9$
cerehral，anterior，641， 747 deep， 641
middle， 641
posterior， 640
eerebrospinal，640， 747

Arteries, cervical, deep, 633, 707, 736,745
dorsal, 745
inferior, 635, 707, 736, 746
chorioid, anterior, 641
eiliary, 649
circulus arteriosus, 641
major, s67
minor, $36 \overline{7}$
circumflex, anterior, 748 , 749
of humerus, 651
external, 718
lateral, 752
of thigh, 673
of coronary cushion, 660
of scapula, 651
posterior, 710, 749
of humerus, 651
clitoridis, 717
coats of, 615
coccygeal, latcral, 672, 717
midule, 672, 717
superficial lateral, 754
cocliae, 662, 713, 737, 750
colic, 751
dorsal, 666
midlle, 666, 715, 737, 751
right, 737, 751
rentral, 665
communicating, posterior, 640
condyloid, 639, 708, 747
coronary, $628,630,631,707$, 74
costo-cervical. 632
cremasterie, 674
digital, 659, 651, 739, 740, 594
common, 659, 739, 749
dorsal, 712, 719
plantar, 719
volar, 712
lateral, 719
volar, 712
medial, 719
volar, 712
plantar, 754
proper, 739, 749
volar, 712
dorsal, 632, 707, 736, 745
dorsalis penis, 717
end, 614
ethmoidal, 649
external coat, 615
facial, $6+2$
transverse, 646, 673, 674, 709, 747
femoral, $717,740,752$
anterior, 675, 718,752
deep, 675, 71s, 739, 752
posterior, 676, 754
first, of small colon, 666
frontal, 710
gastrif, 535, 662, 750
gastro-duok enal, 662, 750
gastro-epiploie, 750, 751 left, 6.63
right, 662
gastro-hepatic, 737
gastro-splenic, 751
gluteal, anterior, 672, 717, 754
posterior, 672, 717

Arteries, hamorrhoidal, anterior, 666
middle, 67̄0, 754
hepatic, 435, 662, 713, 750
hypogastric, 669
iteal, 665, 737, 751
ileo-схсо-colic, 716, 737
iliac, circumflex, 673, 752
external, 673, 717, 752
internal, 669, 717, 754
iliaco-femoral, 673, 717
ilio-lumbar, 672, 717, 739, 754
incisor. 647
infraorbital, 649, 710, 737, 747
intercarotid, 640
intercostal, 660, 713, 737, 750
aortic, 660
internal coat, 615
interosseous, common, 654, 711, 749
dorsal, 656, 711
recurrent, 656,711
volar, 655,749
intima of, 615
labial, inferior, 643, 709
superior, 643, 709
lacrimal, 649
laryngeal, 637, 707, 746
lingual, $642,705,736,747$
lumbar, 668, 669, 717, 738, 750
malar, 650, 710
mamnary, 675,718
masseteric, 641, 709
maxillary, external, 642,708, 736, 747
internal, 646, 710, 736, 747
median, 654, 711, 735, 745
medullary, 22
meningeal, anterior, 641
middle, 64x, $710,737,747$
posterior, 639, 709, 747
mental, 647
mesenteric, anterior, 665, 715, 737, 751
posterior, 666, 716, 737, 752
metacarpal, 711, 712, 739, 749
dorsal, 657, 712
lateral volar. 657
medial volar, 6.54
metatarsal, 678, 719, 740, 753, 754
dorsal, 6s0
great, 6 61
plantar, deep, 753
superficial, 753
middle coat, 615
inusculo-phrenic, 635
nasal, 709
dorsal, 641, 710
lateral, 643, 710
nutrient, of fenmur, 676
of humerus, 654
of tibia, 676
obturator, 673, 717, 718
oceipital, $660,162,713,737$, 7.50
(asophageal, 660, 662, 713, 737, 750

Arteries of bladder, 562
of bone, 22
of brain, 792
of bull, 670,754
of clitoris, 670
of corpus callosum, 641
of digital cushion, 659
of ductus deferens, 505
of external ear, 875
of eye, 859
of Fallopian tubes, 509
of first phatans, $6.5!$
of internal ear, sst
of pelvic limb, 673, 717
of penis, 582, 754
anterior dorsal, 675
deep, 754
dorsal, 754
of rete earpi volare, 657
of retina, s69
central, 649
of second phalamx, 659, 660
of skin, $\mathrm{SN5}$
of small intestine, 665
of third phalanx, $6(0)$
of thoracie limb, 650, 710
of tympanum, 57 S
of uterus, 601
of ragina, 602
of vascular tumic of eye, 867
omaso-abomasal, 713
ophthalmic, 710
external, 64!), 747
internal, 747
ovarian, 598,668
palatine, 737
greater, 650, 710
lesser, 650
pancreatic, 662
pancreatico-duodenal, 662, 750
parotid, 635, 736
inferior, 70.7
superior, 709
pericardiaco-phrenif, 635
perineal, 670, 754
periosteal, 22
peroneal, 675
pharyngeal, 642, 708, 709, 746
phrenic, 661, 713
phrenico-abdominal, 737, 751
plantar, 678,753
lateral, 719
medial, 719
popliteal, $673,676,717,740$, 754
prepubic, 675
profunda penis, 717
pterygoid, 647
pudic, external, 575,675 , 717, 740,752
internal, $669,717,754$
pulmonary, 534, 614, 629, 736
pylorie, 662
radial, 712, 738, 749
anterior, 654
collateral, 710
distal collateral, 749
posterior, 654
proximal collateral, 749
ramus collateralis, 716

Arterics, renal, 560, 666, 717, 737, 751
ruminal, 713
sacral, lateral, 670, 717 middle, 629, 717, 750
saphenous, $675,718,740$, 753
spermatic, $573,575,717$, 737, 751
external, 674
internal, 666
spinal, ventral, 640
splenic, 662, 715, 737, 751
structure of, 615
stylomastoid, 645
subcostal, 633, 707, 736, 745
sublingual, 642, 709
submental, 642
subscapular, 651, 710, 74
supraorbital, 649
suprascapular, 651
systemic, 614, 629
tarsal, lateral, $677,715,753$ medial, 678, 718
perforating, 675, 719, 710 recurrent, 677
temporal, deep, 747
anterior, 645, 710 posterior, 645
superficial, 646, 709, 737, 747
terminal, 614
thoracic, external. 635., 707, 736, 746
internal, 634, 707, 736, 746
thoracico-dorsal, 651, 710
thoraco-acromial, 746
thymic, 635
thyroid, 707
anterior, 637, 746 posterior, 63s, 736, 746
thyro-laryngeal, 637
tibial. anterior, 675, 719, 740.754
posterior, 676, 719, 740, 754
recurrent, 67 s
tracheal, 746
tympanic. 648
ulnar, $654,712,738,749$
proximal collateral, 710 , 749
umbilical, 670, 704, 717, 754
uterine, 754
anterior, 66 s
middle, 67t. 717
posterior, 670, 717
utero-ovarian, 66s, 717.751
vena cava, anterior. 755
vertebral, 634, 707, 736, 745
vesical, 6 - 0
vesico-prostatic, 670
Arthrodia, 210
Arthrology, 207
comparative, 244
Articular cartilages, 20 S
Articulations, 207. See also Joints.
Arytenoid cartilages of larynx, 517, 53ヶ, 546, 550
Atlantal bursa, 213

Atlanto-occipital membrane, dorsal, 215
ventral, 215
Atrio-ventricular bundle, 628 orifice, left, 625, 626 right, 621, 623
Atrium of heart, left, 625 right, 620
openings in, 620
ventriculi, 453, 45 S
Auditive tube, 57s, 898
Auditory ossicles, 877
tube, osscous, 63
Iuricle, 620, 870
Auricular cartilage, 871
plexus, anterior, 803
Axis of lens, 869
of orbit, 74
of pelvis, 111
optic, external, S63

Bands, longitudinal, of cæcum, 424
of great colon, 428
of small colon, 429
moderator, of right ventricle, 625
recto-coccygeus, 431
Bars of hoof, SSi
Basal border of hoof, SSS
Basilar plexns, 6S9
tubereles of occipital bone, 51
Basis pedunculi, 780
Bicipital groove of humerus, 89
Bicuspid valve, 626
Bifurcation of trachea, 525
Bile duct, $463,468,457,490$, 501
common, 476
Bladder, 415, 554, 561, 566, 569, 570
fixation of, 561
lateral ligament of, 414
middle ligament of, 414 structure of, 562
Blind sacs of rumen, 454
Blood-vasrular system, 614, 617, 705
Blood-vessels, 614
Body, ciliary, 865
geniculate, medial, 781,835 , 847
mammillary, 769, 7ヘ2, 47
pineal, $7 \leq 1,835$
pituitary, 769, 780, 782, 835 , 817
restiform, 773
vitreous, \$69, 897
Bone or bones, acetabulum, 109, 152, 181, 202
arromion. 146, 197
arteries, 22
atlas, $35,162,184$
auditory, 5%
axis, 36, 163, 1St
basihyoid, 72
breast-, 28
carpal, 29, 93, 98, 148, 160, 179. 200
accessory, 94
first, 95

Bone, carpal, fourth, 96
intermediate, 94.
radial, 94
second, 95
third, 96
ulnar, 94
carpus, 29
cartilage, 23
chemical composition, 24
cherron, 185
clavicle, 29, 197
collar-, 29
compact substance, 21
condyle, of mandible, 71
coracoid, 29
cranial, 2s, 49, 131, 166, 188
descriptive terms, 25
development and growth, 23
digital, 29, 30, 31, 161
digits, 29, 30, 31, 149, 180, 201
diploë, 21
endosteum, 22
endoturbinates, 56
epihyoids, 73
ethmoid, 54 4, 134, 157, 170, 191
ethmo-turbinates, 55
facial, 25, 63, 170, 191
femur, 31, 112, 152, 160, 182, 203
fibula, 31, 117, 154, 160, 183, 204
fibular tarsal, 120. 155
flat, 20
frontal, $59,135,15 \overline{5}, 168$, 189
gelatinous marrow, 22
hip, 31
hock, 11.
humerus, 29, 85, 146, 176, 198
hyoid, 72, 140, 173, 195
ilium, 31, 105, 151, 160, 180, 200
incus, 57
imominate, $30,105,160$, 180
interparietal, 56, 134, 167, 159
irregular, 20
ischium, 31, 107, 151, 160, 1 11,202
keratohyoid, i?
knee, 29
knee-cap, 31
lacrimal, 68, 139, 159, 172, 194
lenticulare, $5:-7$
long, 20
lymph-vessels, 22
malar, 65, 139, 194, 159, 172
malleus, 87
mandible, $70,139,159,172$, 194
marrow, 21, 22
spaces, 21
maxilla, 63, 137, 158, 170, 191
inferior, 70
maxillo-turbinal, 69
medullary arteries, 22
cavity, 20, 21
membrane, 23

Bone, mesosternum, 2S
metacarpal, 29, 30, 98, 149, 180.200
large, 95, 160
smatl, 99, 160
thirel, 98
metatsternum, :3
metatarsal, $31,123,161$, 1>4, 205
fourth, 124
large. 123, 155
literal, 124
medial, 12t
sercond, 12t
small, 124, 155
thirel, 123
na* $\underbrace{}_{2} 1,67,139,171,194$
naso-turbinal, 69
navicular, 10.5
nerves, 21, 22
number, 20
occipital, 49, 131, 157, 166, 1si
comelyle, 50, $7 \mathrm{5}, 79$
development, º 2
of arm, 24
of cranium, 131
of forearm, $29,63,137,15 \mathrm{~s}$
of log, 31
of mathus, 29
of pelvie limb, 30, 10.5, 151,
$160,150,202$
of skull, 25, $49,73,173,154$, 19%
of thoracic limb, 29, 86,145 ,
$160.176,197$
of thorax, $2 x, 49$
ossa corclis, 70.5
palatine, $66,13 \mathrm{~s}, 159,171$, 1!3:
pariotal, 57, 134, 157, 167, $15!$
patella, 31, 115, 15.5, 161 153, 204
pelvis, 110
periosteal arteries, 22
periostemm, 21
phatanges, 30, 100, 125, 149,
150. $150,160,1 \times 0,1>4$, 200
first, 100
secont, 30, 102
thirel. 30. 102
physical properties, 24
pnemmatic, 21
premaxilla, $65,138,159$, 170. 193
prenasal, 172
presternum, 2s
ptervgoid, 67. 139, 159, 171, 193
pubic, $31,109,151,160,151$, 202
ratins, $29,90,14 \overrightarrow{7}, 160,177$, $1!5$
red marrow, 22
ribs, 27. 45, 130, 156, 16.5, 1s
angle, 27
anterior borlers, 27
astemal, 27, 45
costal groove, 27
development, 27
extremities, 27

Bone, ribs, floating, 2-
head, 27
intercostal spaces, 27
lateral surfacee, 27
medial surface, 27
neck, 27
posterior borders, 27
slaft. 2^{-7}
sternal, 27, 45
extremity, 27
tubercle, 2-
vertebral extremity, 27
sacrum, 41, 129, 156, 164, 1×7
seapula, 29, St, 145,176 , 160,197
sesamoil, 30, 104, 12.5, 151,
$156,160,180,201,203$, 204
distal, 30
proximat, 30
short. 20
shoukder-blade, 29
sinuses, 21
spheroitl. 5̀2, 132, 154, 170, 190)
spongy substance, 21
stapers, $\times 7 \overline{7}, \mathbf{N}_{\mathbf{\prime}}$
sternum, $24,45,131,157$,
$166,16 \mathrm{~S}$
struetire, 21
stylohyoins: 73
 20.5
central, 121, 155
fibular, 120,155
first, $122,15 \%$
fourtli, 123, 155
second, $122,15 \%$
third, 122, 15\%
tibial, 1:0, 155
temporial, 60, 137, 158, 169, 159
condyle of, 60
thigh, 31
thorax, 49, 131, 166, 188
thyrohyouls, 72
tilia, 31, 114, 153, 160, 182, 203
condyles of, 116
tibial tarsal, 120, 155
tissue, 21
turlinate, 68, 139, 159, 172, . 4.5
dorsal, 194
ventrul, 1!14
ulna, 29, 92, 14s, 175, 199
veins of, 22
vertelire, 25, 33, 125, 156, 161,144
accessory processes, 26
anticlinal, it
arch, 26
artienlar processes, 26
borly, 26
cervical, 25, $34,156,161$, 1 St
coccygeal, 25, 43, 129, 156, 164,187
diaphragmatic, 44
false, 25
fixed, 25
foramelz, 26
hemmal arelz of, 26

Bone, vertebræ, joints of, 244
ligaments of, 211,244
lumbar, 25, 39, 12s, 156, 164,157
mammillary processes, 26
movable, $2 \overline{5}$
notehes, 26
ossification of, 26
sacral, 25, 41, 15 6
spinous process, 26
thoracic, 25, 37-39, 127, $156,163,1 \times 6$
transverse processes, 26
true, 25
Ventral spine, 26
Vessels, 21, 22
vomer, $70,139,159,172$, 194
yellow marrow, 22
zygomatic, 6x
Brachial plexus, $S 14, S 10$, >46, $\times 53$
Brachyo(ephalic skull, 195
Brain, TiN, 834, S43, St7
bloot-vessels of, 792
Bronchi, 525, 534,540. 546, 5.50
interlobular, 534
structure of, 534
Bronehial branches of lungs, 534
Bronchioles, lobular, 534
respiratory, 53 t
Buls, taste, 895
Bulb of lair, Ss6
of uretlira, $581,585,593$, 59.5
olfactory, $769,771,787, \$ 38$, $S \pm 4,8.50$
Bulbar conjumetiva, s.ig
Bulbus aort:e, 629
glandis of penis. 594
restiluuli, 60:3
Bulla, lacrimal, 139
ossea, 6:3
Bundle, atrio-ventricular, 628
Bursa, atlantal, 213
bicipital, 302
intertuheral, of biceps brat chii, 302
navicular, of deep digital flexor. 316
of bieeps femoris, 323
of common digital extensor, 307
of gastronemius, 338
of lateral rigital extensor, 309
of obturator internus, 329
of reetus femoris, 329
of semimembranosus muscle, 325
of semitendinosus muscle, 323
of tibialis anterior, 337
of triceps brachii muscle, 303
ovarica, 599
ovarii, 612
potlotrochlearis, 316
subcutancous, $25 \frac{4}{4}, 854,8 \times 7$ of superficial digital flexor, 339
subfascial, 254

Bursa, supraspinous, 213
synovial, 253
of infraspinatus muscle, 299
of superficial digital flexor, 339
of teres minor muscle, 299
trochanteric, 322
C.ecal mpression of liver, 435

Cæсо-colic fold, $124,42 \mathrm{~S}$
orifice, 424
Cæсит, $422,465,475,457,502$
Calcarine fissure, 8.50
Caliber of great colon, 427
Callosal suleus, 786
Calloso-marginal fissure, 785, $837,544,850$
Calyees majores, 565
minores, 565
Canal, alar, jt, 75 , is
alimentary, 385
carotid, 190
carpal, 306
central, of spinal cord, 766 cervical, 607
condyloid, 131
dental, superior, 65
facial, 62
femoral, 326
infraorbital, 65
inguinal, 292
lacrimal, 82
osscous, 65
mandibular, 71
of Gartner, 607
of tarsus, 123
palatine, 64
parieto-temporal, 63
petro-basilar, 190
pterygoid, 5-4, 67
sacral, 43
semicireular, osseous, SSI
semilunar, of third phalanx, 103
spiral, of cochlea, 852
suhsphenoidal, 54
supraorbital, 137
temporal, 63, S1
vertebral, 4
vidian, 54
Canine teeth, 394, 398, 448, 479, 493
deciduous, 403
Canthi of eye, 857
Capillaries, 614
Capsula adiposa, 557
Capsule, external, 992
fibrous, of adrenal bodies, 563
of kidney, 558
of liver, 438
internal, $\% 1,792$
of kidney, 559
of lens, 570
of lymph nodule, 616
of prostate, 579
of spleen, 4.41
Cardia of rumen, 45 S
of stomach, 472, 495
Cardiac impression of lung, 531

Cardiac lobe of lung, 540,547 , 545, 551,553
notch of lung, 533
opening of stomach, 416
plexus, 831
sphineter, 417
Cariniform cartilage, 48
Carnassial teeth, 494
Carotid canal, 190
foramen, 190
noteh, 54
plexus, sot external, \$30 internal, 830
Carpal articular surface, 92
canal, 306
sheath of deep digital flexor, 315
of superficial digital flexor, 313
Carpo-metacarpal sac, 222
Cartilage, alar, 509, 537, 538
annular, of ear, sil
articular. 208
arytenoid, of larynx, 517 , $535,546,550$
auricular, 5.1
bones, 23
eariniform, is
conchal, 871
costal, 27, 47
ericoid, 515,550
of larymx, 53s, 546
euneiform, of larynx, 550
epiglottic, 516
epiphyseal, 24
interarytenoid, of larynx. $546,5.50$
marginal, 209
of larynx, 515
of spptum nasi, 510
of third phalanx, 104
parictal, of nasal eavity, 510, 537
scutiform, 871
thyroid, $515,53 \Omega, 546,550$
xiphoid, 2., 49
Caruncle, lacrimal, 858
Caruncula sublingualis, 390 , 405
Cauda equina, 764
Caudal part of sympathetic system, 832, 8.56
Caudate lobe of liver, $434,46 \mathrm{~s}$, 455, 503
nucleus, 792
process of liver, 434
Cayernous plexus, $\therefore 30,834$ sinuses, 688
Cavity, abdominal, 410, 452
articular, 209
costal, of sternum, 45
cranial, SI, 142, 159, 1ヶ̄, 19^{7}
glenoid, 60, 73. 78, si
nasal, 52, 143, 159, 175, 197,
$508,537,545,518$
of larymx, 521
of mouth, $38.5,44$
of rumen, 456
of tunica vaginalis. 576
of uterus, 601
omental, 442
pelvic, $152,412,453$

Cavity, peritoneal, 411
pleural, 5:6
pulp, of teeth, 395
thoracic, 525, 540
tympanic, 875
Cavum tympani, 898
Cecum, 422, 465, 475, 487, 502
Cell, nerve-, 760
ethmoid, 55
gustatory, 596
olfactory, 895
Cement of teeth, 395
Center, tendinous, of diaphragm, 2s7
Central canal of spinal cord, 766
Cephalic part of sympathetic system, s29
Cerebellar peduncles, 775
anterior, 176
middle, -76
tract, direct, 7.7
Cerebello-olivary fasciculus, 774
Cerebellospinal fasciculus, 75 , descending, 7π
Cerebellum, $771,776,835,843$, 847
Cerehral arachnoidea, 762
dura mater, 761
hemispheres, $7 \div 1,7 \times 3,836$, S43, \$49
peduncles, $769,750,835,843$
pia mater, 763
Cerebrospinal fasciculus, 776
Cerebrum, S 43
Cervical r'inal, 60^{-7}
enlargement, 764
ganglion, anterior, 830,842 , S46, 8.56
middle, 8.4
posterior, $\mathrm{S} 30,542$
part of sympathetic system,
$830,842,-47,858$
plexus, dorsal, \$12
ventral, 812
Cervix uteri, 601, 606
Chambers of eye, >69
Cheek teeth, 394. 399, 400 , $401,448,471,4 \mathrm{~N} 0,494$
Cheeks, 414, 471, 477, 492
Chemical composition of bone, 24
Chestnut, \$95
Chiasm, optic, 769,783
Choana, 75,512
posterior, 406
Chordia tendinex, 624
Chorioid, s i
plexuses, $763,780,783,787$, 792
of fourth ventricle, 773
Chyle. 615
ressels, 615
Cilia, 855 8.866
Ciliary body, $\$ 65$
border of iris, S66
ganglia, 829
ganglion, 796. §3S
processes, 866
ring, 866
Circle, coronary, 660
Circulation, fæetal, 704

Circulation，pulmonary， 704
Circulatory system， 734,742
Circulus arteriosus， 641
Cisterna chyli，697，722， 756
Cistems，subarachnoid， 762
Claustrum， 792
Claws， 902,904
Cleft，vulvar， 603
Clinoid processes，anterior， 190
posterior，170， 190
Clitoris，604，60s，610，611， 613 prepuce of， 604
Coccygeal ganglia， 832 ganglion， 832
Cochlea，881，882
Cochlear duct， 883
Coeliac ganglia， 8.56 ganglion， 842 plexus，832，\＄43， 856
Coliaco－mesenteric ganglia， 833
Colic impression of liver， 435
mesentery，412， 429
plexus， $\mathbf{5} 56$
Collateral fissure， 849
sulci of hoof， 891
ressel， 614
Colliculus facialis， 779 seminalis， 585,590
Collum glandis of penis， 581
Colon，465．475，455， 502
great， 42.5
small， 429
Color of skin，ss 4
Columns，gray，of spinal cord， 767
of fornix， 790
renal， 5 s
white，of spinal cord，767， 764
Commissure，anterior，of cere－ brum， 783
gray，of spinal cord， 766
hippocampal， 757
of nostrils， 50 s
of vulva， 603
optic，769
posterior，of cerebrum， $7 \$ 2$ ， 7．3
white，of spinal cord，Tof
Compact substance of bone， 21
Comparative anatomy， 17
Concave borler of hoof，syo
Conchal cartilage， 571
Condyloil canal， 131 crest， 90 fossa，50， 2 s
Conical papille of mouth， 444 of tongue， 447
Conjugate diameter of pelvis， $110,112,152$
Conjunctiva， 559,546 bulbar，＜ 59 palpehral． 8.59
Conjunctival sac，$\$ 59$
Conus arteriosus， 623 medullaris，764， 76.5
Convex burter of hoof．$\$ 90$
Coracoid process，ss
Core，horm， 136
Corium，sh4，s55 coronary，シサ2

Corium，laminar， 892
of hoof， 892
of sole， 892
perioplic， 892
Cornea，s6t，s97
Cornu，anterior，of thyroid cartilage， 515
of nostrils， 50 ，
posterior．of thyroid carti－ lage， 516
Cornua，great，of horse， 73
middle， 73
of uterus， 600,606
small， 12
thyroid， 72
Corona glandis of penis， 580
radiata， 792
Coronal fissure， $837.844,849$
Coronary border of hoof，ASis
circle， 660
corium， s 92
groove of heart， 619
of hoof，sis
pillars of rumen， 457
plexus，692， 831
sinus，6is 1， 754 opening of， 621
Coronoil fossa of humerus， 90 process of mandible， 71
Corpora quadrigemina，iso， st7
Corpus albicans s．fibrosum， 595
callosum，7S4，755，759，\＄36
carernosum，615
of penis， 581
urethree，5S1
clitoridis， 604
luteum， 598
papillare， $8: 55$
rubrum， 598
striatum， 792
trapezoideum， 773,847
Corpusele，renal，55x， 559
Cortex of thymus gland， 536
Cortical substance， 77
of lymph nodule， 616
Corticopontile fibers， 7.6
Costal arch， 28
cartilages，27，47
cavities of sternum， 4,
facets of thoracic vertehre， 37,35
groove， 27
pleura，526
Cotyleelons，uterine， 607
Granial eavity，A1，142，159， 175， 197
region， 73, is
sutures， 217
（rest，condyloid， 90
facial， 64, ， 5 s， 7
frontal， 73 external， 59
intervenous， 622
nasal，65．）46， 22
nuchal，51， 79
oceipital， 51
parietal， 135
external，51，57， 73
intermal，ぶ，৬1
petrosal， 122, ， 1
pterygoid， 54
renal，sin， 559

Crest，sacral，lateral， 129 median， 129
semilunar．of third phalanx， 103
spheno－occipital， 53
supracondyloid，lateral，of femur， 112 medial，of femur， 112
temporal， 137
tibial， 116
turbinate，dorsal， 67
ventral， 64
urethral， 5 is
Cribriform plate of ethmoid， 54
Cricoid cartilage，515， 550 of larynx， $53 \mathrm{~s}, 546$
Crico－thyroid membrane， 518
Crico－tracheal membrane， 518
Crista acustica，sist
galli， $55,56,82$
terminalis， 622
vestibuli， 8 s 1
Crown of tooth， 395
Cruciate fissure， $837,844,850$
Crura fornicis， 790 of clitoris， 604
Crus laterale dextrum， 287 sinistrum，2si
mediale dextrum， 287
sinistrum，2s7
of formix， 792
penis， $5<1$
Cryptorchism， 5 \％
Crystalline lens， 869
Cuneiform cartilages of laryns， 550
processes， 517
Cupola，siz
Cushion，lligital，S94
Cuticle，＜n 7
Cystic duct， 468

Dartos of scrotum，5\％ 4
Deciduous teeth，394， 403
Decussation of anterior pe－ duncles， 7 is
of fillet， 74
pyramidal，7－3， 774
Deferential fold of testicles， 507
Deltoid tuberosity， 8 S
Dental alveoli，of
canal，superior， 65
plexus，maxillary， 798
Dentine， 305
Descent of testicles， $50 /$
Descriptive terms， 15
Diagonal fissure， 37,844
Diameter，eonjugate，of pel－ vis， $110,112,152$
transverse，of pelvis，110， 112,152
Dimphragma scllee， 762
Diaphragmatic flexure， 125
line of pleural reffection， 530
lohe of lung，540，547，5．51， 5.53
pleura， 526
Diarthroses， 20 N
Diencephalon， 781
Digestive system 385,444 ， $4 \% .47,4!1$

Digital cushion, S94 symovial sheath of deep digital flexor, 316
of superficial digital flexor, 314
Dilatator pupillie, 867
Diploë, 21
Diverticulum, cutaneous, 884 duodeni, 421
nasi, 50 s
pharyngeum, 482
preputial, 593
suburethral, 607
ventriculi of stomach, 483
Dolichocephalic skull, 195
Dorsum linguæ, 390
Duct or ducts, alveolar, of lungs, 534
bile, $463,46 \mathrm{~S}, 487,490,501$
common, 476
cochlear, sis3
cystic, 46 s
excretory, $383,57 \mathrm{~S}$
of bulbo-urethral glands, 580
hepatic, 438
lacrimal, 860
lactiferous, 605, 609
lymphatice, 725
right, 615,698
tracheal, 725,756
mandibular, 405, 496
maso-lacrimal, 509, 860, 896 of bulbo-urethral glands, 5 55
of epididymis, 573
of mammary glands, 605
of testicles, 573
pancreatic, $434,463,487$, 491, 501, 506
accessory, 434
parotid, 404, 474, 482, 492, 495
prostatic, 579, 585, 589
semicircular, membranous, 88.3
sublingual, 405, 496
sulmaxillary, 405
thoracic, $615,697,722,740$, 756
tracheal, 700
Ductuli aberrantes, 573
Ductus arteriosus, 629, 704
deferens, 575,587
deferentes, 571
endolymphaticus, 883
incisivus, $387,445,514$
reuniens, 883
sublinguales minores, 482
sublingualis major, 4ऽ2
utriculo-saccularis, 882
venosus, 46s, 704
Duodenal angle, 433
impression of liver, 435
Duodeno-rolic fold, 429
Duodenum, 419. 463, 486, 500
Dura mater, 761
cerebral, 761
simuses of, 687
spinal, 762

Ear, Sio, 901, 902
extermal, $\mathrm{si0} 0,897$

Ear, internal, ss1, s9s middle, $\$ 75$
Ectolateral fissure, 849
Ectomarginal fissure, 785, 837 , s 44,849
Eetosylvian hissure, s49
Ejaculatory orifice, 575
Elastic membrane of trachea, 525
Embryology, 17
Eminence, frontal, 136
ilio-pectineal, 109
intercondyloid, of tibia, 116
Eminentia conchre, 871 medialis, 779
Enamel of teeth, 395
Enarthrosis, 210
Encephalon, 768
Enel-brain, 783
Endocardium, 621, 62S
Endolymph, s81
Endoskeleton, 20
Endosteum, 22
Endothelium of eye, 865
Entomarginal fissure, 785, 837 , S44, S49
Epicardium, 617, 627
Epicondyle, lateral, of femur, 114
of humerus, 90
medial, of femur, 114
of humerus, 90
Epidermis. ss 4
Epididymis, 571,573,586
structure of, $5 \overline{7} 2$
Epidural space, 762
Epigastric zone, 411
Epiglottic cartilage, 516
Epiglottis, 535, 546, 550
Epiphyseal cartilage, 24
Epiphysis cerelri, 781
Epiploic foramen, 442, 461
Epithelium, 383
cornere, 864
of lens, 870
Equator of eve, $\$ 63$ of lens, 869
Erectile tissue of urethra, 545
Ergot, 89.5 tendon of, 306
Eruption of teeth, 403, 450, $471,481,495$
Esophagus, 409. 451, 472, 453 , 497
Ethmoid cell, 55
Ethmoidal foramen, 53, 55, 75, $s 2$ fossa, 55,82
meatuses, 55,512
sinus, 86
Eustachian tube, 878, 898 osseous, 63 pharyngeal orifices of, 406
Excretory duct, 383, 575 of bulbo-urethral glands, 580
Extensor fossa of femur, 114
Eye, 557, 896, 900, 902
Eyeball, $\times 62, \times 97$
Eyclashes, 886
Eyelids, 857, \$96
third, 859, 896

Facet, anterior, of larynx, 515 costal, of thoracic vertebre, 37, 38
of tibia, 116
posterior, of laryns, 515
Facial canal, 62
crest, $64,68,77$
mucleus, 801
tuberosity, 137
Fallopian tubes, 596, 599, 606, $609,610,612$
False nostril, 260,508
voeal cords, 522,550
Falx cerebri, 761
Fascia, 254
abdominal, 287
buecal, 255
bulbi, 861
carpal, 305
coccygeal, 279
common, of leg, 318
cruris, 31s
deep, 254
of abdomen, 28s
of forearm, 305
of head, 255
of neck. 266
of shoulder and arm, 298
of metacarpus and digit, 306
of thigh, 317
digital, 31 S
endothoracic, 530
femoral, medial, 318
gluteal, 317
iliac, 317
lata, 318
lumbo-dorsal, 276
metatarsal, 318
of back, 276
of forearm, 305
of head, 255
of loins, 276
of mammary glands, 604
of manus, 305
of neek, 266
of pelvic limb, 317
of tail, 279
orbital, 861
pectoral, 295
petvic, 317,413
perineal. 413
pharyngeal, 255
propria of neck, 266
scrotal, 5-4
superficial, 254
of aldomen, 2s7
of forearm. 305
of gheteal region, 317
of head, 25.5
of metacarpus and digit, 306
of neek. 266
of shoulder and arm, 298
of thigh, 317
tarsal, 31s
temporal. 255
transversalis of transversus abdominis muscle, 291
Fasciculus, cerebello-olivary, 774
cerebellospinal, 775, 777
descending, 77
cerebrospinal, 776

Fasciculus cuneatus, 765
dorsal longituclinal, 76
nucleo-cerebellar, 777
pyramidal, 776
Femoral canal, 326
lamins of external oblique abdominal musele, 290
Fenestra cochler, 56
vestibuli, 7 - $6,5 \mathrm{~s} 1$
Fibers, corticopontile, 76 of heart, 62 s
of stomach, 117
Fibro-cartilages, intervertebral. 211
of patella, 11s
Fibrous capsule of adrenal boulies, 5063
of kidney, 5.5s
of liver, tiss
cont of kidncy, 559
of ureters, 561
of viscera, Set
layer of pericardium, 617
membranes. 3-1
rings of heart tize^{2}
of intervertebral fibrocartilage, 211
sheath of temton, 254
tunic of eye, Nfi3
Filiform papilla of tongue, 391
Fillet. 7.5
lateral, 776
medial, 776
Filum terminale, 764. 76.5
Fimbria of hrain, 75, 791, 792
of Fallopian tubes, 599
of ovary, is!
Fissure, 537
ansate, s 49
calcarine, sion
calloso-marginal, is.5, .33, S44, hio
collateral, s 49
coronal, $837,844,819$
cruciate, $37, \$ 14,8.50$
diagonal, $33 \pi, 44$
ectolateral, st!
ectomarginal, $7 \mathrm{~s} 5,837,514$, 849
ectosylvian, s+9
entomarginal, $5 \mathrm{~S} .5,537,844$, 819
genual, s37, $814, ~ s 50$
hippocampal, nio
interbobar, of lung, 540
lateral, $-55,437,843,519$
of cerphrum, 47
longiturlinal, of brain, 769 , 771
of cercbrum, TS4
marginal, 75.5, s37, 844
medilateral, 49
naso-maxillary, 85
oecipito-temporal, sino
palatine, titi, 75, 82
palpebral, s.st
petrot ympanie, 63
portal. 434, 16is
prestlvian, 785, s44, 849
splenial, 84.650
sublimbir, 7.s6
suprasplenial, 850
suprasylvian, $785,837,844$, S49

Fissure, transverse, 786, 837 of brain, 77 of cerebrum, int
umbilieal, 435
ventral median, $76 \overline{5} .766$
llexure, liaphragmatic, 425
sigmoil, है>!
stemal, 4.2.)
Floccular fossa, 190
Floor of mouth, 390
Futal circulation, 704
lung. 531
Folil, alar, 500
(aeco-colic. 124. 42,
deferential, of testicles, 5π
duodeno-colic, 42?
gastro-pancreatic, 417
genital, 414
glosso-epiglottic, 391
ileo-cacal, 421
of mucous membrane, 35.3
of skin, 4×4
of rena cava, 226
rumino-reticular. 45%
serous, 3 s 4
spiral, of abomasum, 460
sublingual, 390
turbinate, dorsal, 513 ventral, 513
umbilical, lateral, 414 merlian. 414
ralvular, of c"trom, 124
Foliate papilla of tongue, 391
Follicle, hair-, sut
lingual, 392
lymph, 616
of thyroid gland. 5336
Folliculi oiphori, sim
Formen alare parvim, 54. 5
("xecum, - 5
(arotid, 190
epiploie, 442, 461
ethmoidal, 53, $5,5,7,2$
hypoglossal, 50, 7s, e2
incisivum, 6, 73,7
infraorbital, 6.t, 7
intervertebral, 2t; 125, 12s, 703. 891
lacerum, 51, 63, 7.
lacrimal, 172
magnum, 50, 7s, 79
mandibular, 71
mastoit, (i2
maxillary, 6.5, 76
mental, 70
nutrient, 22
of femur, 112
of humertes, sis
of ilium, 1 to
of metacarpus, 99
of tibia, 1 It
obturator, 109, 112, 152, 202
optic, $53,-6, \mathrm{~s}, 2$
orbital, 53, 75
arbito-rot undum, 134
(wale, 134, 622, 704
palatine. 76
anterior, 66
posterior, 65
postglenoid, 60
pterygoid, it
rotundum, 53, 75
sacral, 41
rentral, 129

Foramen, sciatic, greater, 231 lesser, 231
spheno-palatine, 65, 65, 76, 2
st ylo-mastoid, 62
stipraorbital, 59, 73
supratrochlear, 19x
temporal, 54
trochlear, 54, 75
vena caver, 24
vertebral, 26
volatr, of thime phalanx, 103
Fore-foot, 29
Formatio reticularis, 767
Fornix, - <5, 790
conjunctivax, 859
raginax, 602
Fonsit, acetabular, 109
anterior, of skull, -2
clitoritis, 603
condyloir, 50, 2
coronoil, of humerus, 90
ethmoilal, 5.5. 心2
extensor, of femur, 114
Horeular, 190
ghandis of penis, 5—l
hyaloilea, كi9
hypophyseal, 33
infratemporal, is
intercondyloid, of femur, 114
of tibia, 116
interpeduncular, 769,750
lacrimal, external, 159
lateral, 769
of cerebrum, is 1
masseteric, 195
misdlle, of skull, 52
wertanon. 9\%
(v:alis, 622.20 .4
orulation, 597
pituitary, 53
posterior, of skull, s2
pterygoid, 170
pterygo-palatine, 67, 76
rhomboidsa, 77
supracondyloid, of femur, 112
synovial, 20s
temporal, 73
trochanteric, of femur, 113
Fourh ventricle, 75
Fovea, anterior, of fourth ventricle. 729
capitis of femur, 113
dentis, 36
Fremula labii, 3at
Frenum linguæ, 390, 391
preputial, 5×3
Frog of hoof, 490,592
Frog-stay, 990
l'rontal crest, 73
external, 59
eminconce, 136
propess, 191
region of skull, 73
sinus, $59,8.5,143,175,197$ suture, 10
Fronto-lacrimal sutures, 60
Frouto-maxillary opening, is suture, fif
Fronto-palatine suture, 60
Fronto-turbinate sinus, 85
Fundus reticuli, 456

Fundus uteri, 601
Fungiform papilla of tongue, 391

Gall-bladder, 468, 490, 505
Ganglia, 760, se9
ciliary, s29
coccygeal, 832
colliae, 8.56
coeliaeo-mesenteric, $33 ;$
lumbar, 832
mesenteric, anterior, s.5;
of sympathetic trunk, s29
otic, s2,
peripheral, 829
saeral, \$32
sphenopalatine, 797, 29
thoracie, s31, 42
Ganglion, cervical, anterior, $830, N+2,-46,-56$
midille, 817
posterior, \$30, S42, S5i
ciliary, 796, \$38
cocevgeal, 332
ecoliac, St 2
geniculate, s01
intercaroticum, $\mathbf{v}^{0} 4$
jugular, s05, 439, s.5. 451
mesenteric, anterior, 842 posterior, \$33
nodosum, $\mathbf{2 0 5}, 839,845, .5 .51$
otic, 799,838
petrous, sot
semilunar, 795
spinal, \ll
spirale, sst
splanchnic, 832
stellatum, 830
restibular, s03
Gartner, canals of, 600^{7}
Gastric impression of liver, 434 plexus, $\$ 33$
anterior, 852
posterior, $\mathbf{S 5}^{2} 2$
Gastro-pancreatic fold, 417
Giastro-splenic omentum, 412, 117, 411
Gelatinous marrow of bone, 22
Geniculate body, merlial, 7×1, 535,47
ganglion, s01
Genital fold, 414
organs, 5 5 4
female, 596, 60.5, 609, 610, 612
male, 551, 5×6, 591, 593
Genn of corpus callosim, 789
Genual fissure, $837, s \not 4$, 850
Ginglymus, 210
Girdle, petvic, 30, 105
shoukler, 29
Glands or gland, 382
adrenal, $563,566,567,569$, 570
alveolar, 383
alveolo-tubular, 383
anal, 502
buccal, 357, 445, 477
bulbo-urethral, 571, 579, 589, 592, 594
ducts of, 585
cardiac, of stomach, 419
ceruminous, 5.2

Glands, circumanal, 502
coil, of digital cushion, 894
componed, 383
cutaneous, 898
duct of, 3×3
duetless 439
duodenal, 501
fumblus, 3s:3
of stomach, 419
gastric, 41 N
hamolymph, 616
labial, 3ς 亿. 444
lacrimal, 860,596
laryngeal, 52:
lingual, 392
liver, $434,465,475,488,503$
structure of, 43 s
lobules of, :3s.)
lymph, 616. 722, 733
abomasal, 731
anal, 703, 742
atlantal, 724,733
atrial, 730
axillary, 703, 72S, 711, 757
bronehial, 700, 727, 741, 757
secal, $702,731,742$
cervical, anterior, 699, 724, 7.56
mildle, 699, 224,741, 756
posterior, 699, 724, 725, 741, 756
superficial, 699, 756
corliae, 725
colic, $702,731,742,759$
costo-ecrvical, 725
fosal, 733
cubital, 703, 757
duotenal, 731
epigastrie, 720
gastrie, 702, 730, 712
hepatie, $702,732,742$
hyoid, 724
iliae, external, 701, 729, 742,75
infraspinatus, 72
inguinal deep, 703
iliac, internal, 701, 72S, -12, 75
inguinal, superficial, T01, 729, $734,742,759$
intercostal, $700,725,757$
ischiatic, 701, 730, 742
jejuno-ile:al, $7: 31$
lumbar, $701,725,742,754$
mammary, 701, 734
mandibular, 69ऽ, 722, 733. 740,756
mediastimal, 741, 757
anterior, 700,726
diaphragmatic, 726
dorsal, 726
posterior, 700, 726
rentral, 726
mesenteric, 702, 731, 733, 742,759
of abdomen, 701
of head, 69 s
of pelvic limb, 703
of pelvis, 701
of thoracie limb, 703
of thorax, 700
of neck, 695

Glands, lymph, omasal, 731
pancreatic, 702
pancreatico-intestinal, 732
paralumbar, 729
parapharyngeal, 609, 724
parietal, 701
parotid, 723, 733, 740, 756
pericardiae, 727
pharyngeal, 699
popliteal, 703, 733, 742, 759
portal, 758
prefemoral, 703, 732, 733, 742
prepectoral, 699, 741
prescapular, 699, 725, 741, 756
pterygoil, 724
pulmonary, 727, 757
reetal, 702, 732
renal, 701, 72S, 759
retieular, 731
rhomboid, 725
ruminal, 730,731
sacral, 701, 730, 758 external, 730
internal, 730
splenic, 702,742
sternal, 727, 733, 741, 757
anterior, 727
subiliac, 703,732
submaxillary, 698
supramammary, 729, 759
snprapharyngeal, 699,722, 733, 740,756
tarsal, 742
thoracie, 711
visceral, 701, 702
mammary, 596, 604, 609, $610,611,613$
mandibular, 404, 451, 482, 496
mucous, of pharynx, 408
nasal, 514
naso-labial, 44, 898
of duodenum, 421
of kidneys, 559
of large intestine, 431
of skin, 855,857
of small intestine, 421
of third eyclid, 896
olfactory, 514, 895
palatine, $3 s$ s!
pancreas, 432,468 , 470,476 , 491, 505
parathyroids, 536, 544, 553
paroticl, 404, 451, 452, 495
accessory, 452
preputial, 5 , 3
prostate, 571, 578, 589, 592, 593
pyloric, of stomach, 419
renal, 742
salivary, 404, 451, 471, 495
sebaceous, 885,894
simple, 383
spleen, 439, 476, 491, 506
sublingual, 405, $451,4 \times 2,496$
submaxillary, 404, 4s?
sudoriferous, 885
sweat, 185, s95
tarsal, ± 59
thyroid, $535,536,544,54 \mathrm{~s}$, 553

Clands, thyroid, accessory, 536, 544, 553
trachend, 525
tubutar, 3:3
tubalo-alveolar, 383
urethral, $5.5 \overline{3}$
lateral, 585
ntrerine, 607
zygomatic, 496
Cilandulit vestibulares majores, 603, 60 s minores, 603, n0s
Clans clitoridis, 603,604
penis, 580, 589, 594
Glenoid cavity, 60, 73, is, 57 noteh, 87
Cilomerulus of kidney, 559
(Blosso-epiglottic fold, 391
(hlottis, 52.
Ciluteal line, 105
Gomphosis, 208
Ciranula iridis, 867
Gramulations, arachnoid, 763
Gray columns of spinal cord, 767
commissure of spinal cord, 766
matter of nervous system, 760)
of spinal cord, 766
rami, s'29
Great colon, 425
Greater omentum, 442, 461, 499
Groove, bieipital, of humerus, 89
coronary, of heart, 619 of hoof, sss
dorsal intermerliate, 766 median, 765
florso-lateral, 765
intertuberal, of humerus, 89
laerimal, 64
longitudimal, of heart, 619
museulo-spiral, 88
asophageal, 45s, 473
of rumen, 454, 455
of tibia, 116
optic, 53
rumino-reticular, 454
supraorbital, 137
palatine, 65, is
pubic, 109
Gross anatomy, 17
Ground horder of hoof, SSS
(inbernaculum testis, $5: 7$
chums, 357
Gustatory cells, 896
orgins, mos
Guttural pouches, 879
region, is
Gyri, $\times 37$
cerebellar, 777
cerebri, 771, 785
Gyrus dentatus, 786
subcallosal, 7 SS

II Emorrboidal plexus, S34 anterior, 856
Hair-follicle, sx
Hairs, SN6, SN7, 898
tactile, sso
1lair-streans, 8S6

Hamulus pterygoideus, 67
Hard palate, 75,357 , 415 , 470, 477, 492
Head, lymph vessels of, bits
Heart, ti14, 617, 705, 734, 735, 742,713
structure of, 627
llemat arches, 188
Hemispheres, cerebral, 751, $7 \mathrm{~S} 3,836,843,849$ of ecrebellum, 771,776
of urethra, 595
Hepatic cluct, 435 plexus, 139, 833
Hiatus anortiens, 2×7 asophageus, 25 T
Hitus of lung, 531
of ovary, 597 of spleen, $440,470,477$ renal, 555
Hippocampal commissure, 7 s 7 fissure, 850
Hippoeampus, 786, 792
Ilistology, 17
Hock, 31
Hoof, ssi
Homs, 899
core, 136
of female uterus, 610
of lateral ventricle, 791
of spinal cord, $76 \mathrm{ci}^{7}$
of uterus, 600
Ilorny lamina of Hoof, 892
tlumeral articular surface, 92
Ilumor, aqueots, s69 vitreous, 369
Hyaloid membrane, 869
Ilydatides terminales, 599
lymen, 602
Hyoid processe, 62
Hypogastric zone, 411
Hyporlossal foramen, 50,78 , s
11 ypophyseal fossa, 53
Ilypophysis, $769,750,752$, 835, 817
Hypothalamic nusleus, Tsl tegmental region, 7 Al

Ileo-remal fold, 421
orifice, 424
valve, 421
Heo-colic orifice, 501 valve, 501
Ileum, +20
Iliace lamina of external obligue abolominal muscle, 290
llio-pectineal eminence, 109 line, 105
Tmpression, etecal, of liver, 435 cardiar, of lung, 531
colic, of Jiver, 435
duodemal, of liver, 435
grastrice, of liver, 434
Incisive foramen, $65,73,78$
Incinor teeth, 394, 397, 44s, $471,479,-193$
merichous, 403, 448
Jnfruorbital vanal, 65 foramen, i4, 77 pouch, 900
Infratemporal fossa, is
Infundibular recens, 7×3

Infundibulum, 769, 780, 782, 836
of incisor tecth, 397
tubæ uterine, 599
Inguinal canal, 292
pouch, 900
ring, abdominal, 290, 292
extcrnal, 2sis, 292
internal, 290, 292
subcutancous, 258, 292
Inlet of orlital cavity; 76
of thoracic eavity,, 25
pelvic, $152,160,1 \times 1,202$
Jnscriptionss tendinese of rectus alnlominis muscle, 291
Interalveolar septa, 64
space, 64, 65, 71, 75
Interarytenoid cartilage of larymix, 546,550
Inter-brain, z 1
Interearpal sac, 222
Interavernous sinus, 688
Intercondyloid eminence of tibia, 116
fossa of femur, 114
of tibit, 116
spaces, 27
Interdental space, 64
Interdigital pouch, 900
Jnterlobar fissures of lung, 540
Interlobular bronchi, 534
tissue, 3 s 3
Intermediate zone of kidney, 550
Jntermuscular septa, 254
of forearm, 305
of gluteal region, 317, 318 of leg, 31:
of shouliler, 298
Interosseous membrane of tibio-fibular articulation, 239
space of leg, 3I, 116 of raclius, 91
tendon, 225
Interpeduncular fossa, 769, 780
Intertarsal sac, 240
Intertuberal groove of humerus, s:
Interventricular foramen, 783 , 701
septum, 627
Intervertebral fibro-eartilages, 211
foramen, 26, 125, 128
Intestine, $443,475,486,500$
large, $422,465,4 \times 7,502$
structure of, 430
small, $419,463,475,456$, 500
Intraosseous plexis, 692
Iris, N6f, s! 7
Ischiatic spine, 106,107
Jsthmus faucium, $390,496,446$
(esophagi, $4!7$
of male urethra, 585
of prostate, 579
of thyroid gland, 535, 553
pharyngeal, 40 s

Jeiu No-lleum, 420,486
Joints, 207, 211

Joints, abluction of, 210
adduction of, 210
angular movernents, 209
antilrachio-carpal, 221
arteries of, 209
atlanto-axial, 214
atlanto-occipital, 214
basi-cornual, 218
capsule of, 205
carpal, 221, 246
carpo-metacarpal, 221
cartilages of, 208
cavity, 209
chondro-sternal, 216
circumduction of, 210
coccygeal, 2 13
coffin, 228
costo-emtral, 215
costo-chondral, 216
costo-transverse, 216
costo-s-rtebral, 215
crico-arytenoid, 517
crico-thyroid, 517
dises of, 20 ?
clbow, 219, 246
extension of, 209
femoro-patellar, 232
femoro-tibial, 235
fetlock, 224
fibrous layer, 208
flexion of, 209, 210
folds of, 20S
gliding movements, 209
hip, 231, 250
hock, 239, 2.51
hyoidean, 218
intercarpal, 221
intercentral, 211
intercornual, 218
intermetacarpal, 223, 247
interneural, 212
interphalangeal, 248 distal, 22 S
proximal, 22s
intersternal, 245
intertransverse, 213
knee, 221
lymph-vessels of, 209
mandibular, 217
metacarpo-phalangeal, 224, 247
morements of, 209
nerves of, 209
of auditory ossicles, 578
of larynx, 517
of pelvic limb, 229, 250
of skull, 217
of thoracic limb, 218, 245
of thorax, 215, 245
of vertebræ, 244
pastern, 22 s
radio-carpal, 221
radio-ulnar, 221, 246
rotation of, 210
sacral, 213
sacro-iliac, 229, 250
shoulder, 218,245
sternal, 217
stifle, 232, 250
surfaces of, 208
synorial layer, 208
temporo-hyoid, 218
temporo-mandibular, 245
thyro-hyoid, 518

Joints, tibio-fibular, 239, 2.51
tibio-tarsal, 239
reins of, 209
villi of, 20 s
Jugular ganglion, S05, \$39, 845, S31

Kidneys, 554, 564, 566, 567. 569
capsule of, 559
cortical sulustance of, 558
fibrous capsule of, 55 s coat of, 5.59
fixation of, 557
glomerulus of, 559
intermediate zone of, 55s
left, 5555, 565,569
lobules of, 559
lymph-ressel: of, 560
medullary substance, 55 S
mucous coat of, 5.59
muscular coat of, 559
right, 554, 564, 569
stroma of, 559
structure of, 55 s
ressels and nerves, 560
weight and size of, 557
Kinee, 29

Labla vulve. 603
Labyrinth, membranous, SS1, 5 S 2
of ethmoid bone, 55
osseous, SS1
Labyrinthine wall, sic 6
Lacrimal apparatus, 860
bulla, 139
canal, 82
osscous, 68
caruncle, 558
ducts, $\$ 60$
foramen, 172
fossa, external, 159
groove, 64
lake, mis
pouch, 900
process, 194
sac, s60
tubercle, 68
Lacteals, 615
Lactiferous ducts, 605, 609
sinus, 605, 609
Lake, lacrimal, 858
Lamina basalis, 865
choriocapillaris, 86.5
cribrosa scleræ, $\$ 63$
elastica posterior, S64
externa, 21
fusca, 863
horny, of hoof, 892
interna, 21
lateralis of ethmoid bone. 55
layer of hoof, 892
limitans anterior, S64
medullary, 777
of cricoid cartilage, 515
of hoof, SSS
of nostrils, 509
of thyroid cartilage, 515
omasi, 460
propria, 383

Lamina spiralis ossea, 3×2
suprachorioidea, 865
terminalis, 7 s 3
transversalis of ethmoid bone, 170,191 of palatine bone, 171
vasculosa, 165
Laminar corium, $\mathrm{x92}$
Laryngeal saccule, 522,550
Larynx, 514, 53s, 546, 550
arytenoid cartilages, 517, 538, 546, 550
cartilages of, 515
cavity of, 521
cricoid cartilage of, $515,53 \mathrm{~S}$, 546, 550
cuneiform cartilages, 550
facets, 515
interarytenoid cartilage of, 546, 550
lateral rentricle, 522, 539, 5.50
membranes of, 517
middle ventricle, 522
mucous membrane, 523
posterior compartment, 523
vessels and nerves, 523
vestibule of, 522
Layer, fibrous, of pericardium, 617
laminar, of hoof, 592
parietal, 381, 412
serous, of pericardium, 617
visceral, 3 $4 \frac{1}{2}, 412$ of pericardium, 617
Lemniscus, 774
Lens, crystalline, S69
fibers, 870
Lenticular nucleus, 792
papillæ of tongue, 44
Ligament or ligaments, 209
accessory, of hip joint, 232
of prepubic tendon, 292
alar, 244
annular, 254
digital, distal, 306
proximal, 306
dorsal, of carpus, 305
of leg, 318
of radius, $2+6$
volar, of carpus, 306
of fetlock, 306
arytenoid, transverse, 51 s
atlantal, lateral, 215
atlanto-axial, dorsal, 214
ventral, 214
broad, of uterus, 415,601 , 607,612
carpal, dorsal, 222
volar, 222
caudate, of liver, 437
check, 240
inferior, 222, 315
of deep dixital flexor, $3+1$
subcarpal, 315
superior, 313
collateral, 209
of coffin joint, 228
of fetlock joint, 224
of meiacarpo-phalangeal joints, 247
of pastern joint, 22S
conjugal, 215
coronary, 437, 488

Jigament, costo-sternal, radiate, 216
costo-transverse, dorsal, 216
cruciate, of stifle joint, 238
dorsal, of hoek joint, 241
of interphalangeal joints, 250
dorso-scapular, 276
ralciform, 437,4 ,
femoro-patellar, 233
gastro-phrenic, 416
hepato-renal, 437
ilio-lumber, 231
inferior check, 315
inguinal, 2se
interchondral, 216
interdigital, 245
eruchate, 249
listal, 249
interosseous, 209
of forearm, 221
of tibial and fibular tarsal boness, 242
intersesthoidean, 224
interspinous, 214
intra-articular, 209
lateral, left, of liver, 437
of haulder, 414, 562
of carpal joints, 222
of elbow joint, 221
of hock joint, 240
of stifle joint, 238
right, of liver, 137
longitudinal, clorsal, 211 ventral, 211
medial, of carpal joints, 222
of elhow joint, 221
of hork joint, 241
of stifle joint, 237
metacarpal, interosscons, 223
midills, of hladder, 414, 562
navicular, distal, 229
suspensory, 229
odmitoil, 214
of anditory ossicles, 878
of cartilages of third pha$\operatorname{lanx}, 2 x$.
of wothin joint, 225
of dens, 214
of ergot, 306
of cibular tarsal bone, 242
of hock joint, 240,242
of larynx, 517
of liver, 437, 468
of nerek, 215
of ovary, 597, 612
of pelvie girdle, 230
of peritoncum, 412
of stifle jeint, 233,237
of tibial tarsal bone, 242
of vertelmer, 211, 244
palpelral, sis
patellar, 233, 231
periarticular, 209
perieardiaco-phrenic, 72
phalango-sesamoidean, 229)
plantar, of hock joint, 241
pulmonary, 526
radial, 313
radiate, 215
eosto-stemal, 216
roumel, of blakler, 414,562 of hip joint, 231

Ligament, roumt, of liver, 437 , 490
of utcrus, 601, 607, 612
sacro-iliac, dorsal, 230
lateral, 230
ventral, 230
sacro-sciatic, 230
scrotal, 57.4
serous, $3 \mathrm{~S}_{4}$
sesamoidean, 204
eollatural, 224, 229
eruciate, 227
deep, 297
distal, 226
midulle, 226
short, 29
straisht, 220
supurficial, 226
suspensory, 317
sternal, internal, 217
sterno-pericardiae, 705
subcarpal, 22:
check, 315
subtarsal, 240
superior check, 313
supraspinous, 212
su*pensory, 225
navicular, 229
of anus, 432
of penis, 5×0
of spleen, $4+1$
sescimoidan, 317
thyro-piglottir, 51 s
tracheal :mnular, 525
transverse, of atlas, 21.5
of carpus, 306
of ratio-mhar articulation, 2?1
vaginal, 254
ventricular, 51s
vocal, 51s
volar, of pastum joint, 228
Ligamenta hava, 212
Ligamentum arteriosum, 629, 704
Ienticulatum, 764
nucher, 213
pectimatum iridis, s65, s66 spirale cochlea, s,3
Line, diaphragmatie, of wlural reflection, 530
gluteal, 105
ilio-pectineal, 10.5
mylo-lyyoid, 70
of plemal refleetion, 530
popliteal, of tilis., 115
sternal, of plemal reflection, 530
terminal, 110, 410
vertelral, of pleural refleetion, 530
white, of hoof, sxi?
Linea alha, 24s
lingual follicles, 392
process, 72
Limgula, 776
Lips, 355, 444, 470, 477, 491
I iepuor follieuli, 59 s
pericarlii, 617
plaura, 530
Lole or lobes, apieal, of hing, 510, 517, 54א, 551, 55 3 eardiac, of ling, 516, 547, $5.1 \mathrm{~s}, 5.5 \mathrm{~J}, 5.53$

Lobe, caudate, of liver, 434, $+6 \mathrm{n}, 1 \mathrm{~ns}, 503$
rerebellar, 74
diaphragmatic, of lang, 540,
547, 551, 5.53
intermediate, of lung, 540, $534,517,551$
of liver, 13S, 45s, 190,503
of lung, 510, 547, 551
of mammary glands, to 5
of prostate, 579
of thymus gland, 536
of thyroid gland, 535, 536, 5.3
of urethra, 505
piriform, $7 \leq 1,75 s, 850$ of lerain, 769
Lobmlar bromblioles. 534
Lolmatation of lungs, 534, 544
Lobules of kirlney, 5is
of liver, tos
pulmonary, 534
Lumbar enlargement, 765
ganglia, N゙32
part of sympathetic system, 856
Lumbe-costal arch, 2x7
Lumbo-sacral plexus, s゙2 $4, \times 11$,
S46, 855
Lung, 530, 540, 544, 517, 551
alvoolar duets of, 534
apex of 533,531
apieal lobe of, 540, 547,548, is. 1,553
hasal border of, 533
base of, 533
body of, 534
loronchial branches of, 534
rardiae impression of, 531
lolse of, 540, 547, 544, 551, 5.53
not ch of, 533
color of, 531
costal surface of, 531
diaphragmatic lobe of, 540, $547,551,553$
dorsal horder of, 532
fortal, 531
form of, 531
hilus of, 531
interlobar fissures of, 5.40
intermediate lobe of, 534, 540, 547, 551
lobes of, $540,547,551$
lobulation of, 53.1, 544
lymph-tessels of, 53-1. 535
metliast inal surface of, 531
root of, $5: 3 \mathrm{H}$
ventral border of, 533
vessels and nerves of, 534
Lymph, 616
ducts, tracheal, 725,756
follicles, 616
norles, 616
notules, 816
sinus, eentral, 616
peripheral, 616
spaces, 616
vessels, 615
of abdomen, 701
of adremal looties, 564
of hladder, 562
of bone, 22

Lymph reasels of corium of hoof，al：
of F：llopian tubes， 599
of head and neek，69a
of heart，62n
of kidneys， 560
of lung，534， 535
of orary， 599
of pelvic limb， 703
of pelvis， 701
of penis，ぶ2
of skin．\so
of spermatic cord， 576
of testicles， 5.4
of thoracic limb， 703
of thoras， 700
of uterus， 602
of ragina， 602
Lymphatic duct， 725
right， 615,695
system， $615,697,722,740$ ， 756
Lymphocytes， 616
Lyssa， 493

Macroscopic anatomy； 17
Maculæ acusticæ，No
Malleolus，lateral，of titia， 117
medial，of tibia， 117
of tibia， 117
Mammillary body， $769,7.2$ ， $\checkmark 4$
processes，26，45． 163
Mandibular canal， 71
duet，405， 496
foramen． 71
notch， 71
space， 70
teeth， 401
Manubrium sterni，25，4s
Marginal cartilage， 209
fissure，$-75,537,-44$
pole， $\mathbf{3 6}$
Margo plicatue，41s
Marrow of bone，21，22
spaces， 21
Masseteric fossa of mandible， 195
Mastoid border of occipital bone， 52
foramen， 62
process，61．7t
Maxillary dental plexus，79．
foramen，65． 76
process， 194
region， 76
sinus， $84,144.175,197$
inferior， 84
superior，s 5
teeth． 400
tuberosity， 6.5
Meatus，acoustic，external， 61, －70， sil
internal．62，882
common，of nose， 69
dorsal，of nasal cavity， 545 of nose，69． 83
ethmoidaI，55， 512
middle，of nasal cavity， 545 ， 5.50
nasal，common， 511 dorsal， 511
middle，69，s3， 511

Meatus，nasal，ventral，69，N3， 511
ventral，of nasal cavity， $3 f(\mathrm{i}$ ， 550
Medial epicondyle of femur， 114
mallen）us of tibia， 117
supracondyloid erest of $\mathrm{fe}-$ hur， 112
Mediastinal pleura，52ti
Mediastinum thoracis， 52.5
Medilateral fissure， 49
Merlulla oblongata，769，71， $773.534,843.85$
of thymus gland， 536
cavity，20， 21
Medullary cords， 616
lamina， $7 \overline{1}$
substance． 77 of adrenal borlies， 563
velum， 7.76
anterior， 779
posterior， 59
Membrana basilaris，as3
nictitans， 5.59
propria of middle car，$\$ 76$
tympani， 5 － 6
vestibularis． 4,3
Membrane，atlanto－occipital． dorsal， 21.5
atlanto－occipital．ventral． 215
crico－thyroid，51s
crico－tracheal， 51 s
elastic，of trachea， 525
fibrous，354
hyaloid．S69
interosseous，of tibio－fibular articulation， 239
obturator， 231
of laryne， 51%
serous， 354
synovial，of carpal joints． 222
of elbow joint， 219
of hip joint． 232
thyso－hyoid， 51 s
Membranous labyrinth，s81， い2
Meninges， 701
Meniscus，209， 235
Mental foramen， 70
Meridians of eve，s63
Mesaticephalic skull． 195
Mesencephalon．ivo
Mesenteric ganglion，anterior， ＋12． 50
posterior．\＄33，$\$ 43$
plexus，anterior， 43,856 posterior，\＄33，4．56
Mesentery， 412
colic， 412,429
great．412， 420
Mesocolon， 502
Mesoduodenum，419． 500
Mesogastric zone． 411
Mesorchium，57．6．5．7
Mesorectum，413， 429
Mesosalpinx．599，612
Mesotendon． 253
Mesothelium．3n 4
Mesovarinm， 597
Microscopic anatomy， 17
Mid－brain， 750

Moderator hands of right ventricle， 625
Morliolus，$\times 2$
Nolar teeth，394， 399
Morphology， 17
Motor fibers，son
nueleus，dorval，son of fifth nerve， 7 Ti rentral，sos
root of fifth nerve． $\mathbf{- 7} 6$
Mouth，3 5 5，44，47－ 491
cavity of， $3 \wedge 5,44$
floor of， 390
mucous membrane of， $3 \$ 5$
Mucous coat of bladiler， 562 of Fallopian tubes， 599
of kidney， 5.59
of small intestine． 121
of stomach， 41 ，
of vagina， 602
membranes， 3×3
of abomasum． 462
of ductus deferens， 55
of large intestine， 431
of larynx． $5 \geq 3$
of mouth．3＞5
of nose， 512
of cesophagus． 410
of omasum， 462
of pharynx， 407
of reticulum of stomach， 462
of rumen． 45 s
of seminal vesicles， 57
of small intestine， 121
of tongue， 390
of trachea， 525
of ureters． 5 til
of urethra， 5.5 .604
of uterus，601，607
of rulva， 603
tympanic．sis
Mисиіs，3．3
Muscle or muscles．252．254
abdominal，2，7．349，361， 3%
abluctor cruris posterior， 375
digiti quinti．3×1
hallueis，352
pollicis hrevis et opponens pollicis， 375
longus， 3.3
arcessory structures． 253
action of， 2.53
adductor， $326,356.365$
digiti quinti，37̄
secundi． 37.5
femoris．3ヶ0
hallueis，3：2
of second and fifth digits， 351
pollicis． 37.5
anconcus， 30 －4． 363
antitragiens， 5 － 4
arrectores pilorum．© 6
articularis genu， 355
arytenoideus transversus， 520
attachments of， 252
auricular，$\sqrt[-2]{ }-2.597$
anterior． $5: 2$
deep．-7
dorsal，4i2

Muscle, auricular, posterior, 873
belly of, 253
biceps, 351
brachit, 302, 363, 372
femoris, $322,355,365,37 \mathrm{~s}$
bipennate, 253
biventer corvicis, 376
blood supply of, 253
brachialis, 302, 363, 373
brachiocephalicus, 294, 351, 360, 362, 371
brachioradialis, 30s, 373
buccinator, 258, 345, 368
bulho-cavernosus, 586, 589, 59.5
capsularis, 301, 333, 351, $355,363,365,3 \times 0$
cervical cutameous, 347,376
cervicalis ascendens, 269
cervico-auricularis profundus major, 5.3
minor, 873
superficialis, 873
cervico-scutularis, 872
chondro-pharyngens, 407
ciliary, $\$ 66$
eleido-cervicalis, 371
cleido-mastoideus, 351, 362, 371
cleido-oecipitalis, 351,362
coceygens, 279,377
complexus, 273, 361, 376 major, 3.6
constrictor vestibuli, 603 vulya, 603
coraco-brachialis, 300, 351, 363, 371
corrugator supercilii, 260
cremaster, external, 291, $361,576,557,591$
crico-arytenoideus dorsalis, 519
lateralis, 519
crico-pharyngeus, 407
crico-thyroideus, 519
cutaneous, 252, 254, 343, $360,368,854$
colli, 254
faciei, 254
łabiorum, 254
omo-brachialis, 254
trunci, 254
deltoid, 351, 362, 371
deltoideus, 298
depressor labii inferioris, $258,344,359,364$
superioris, 344
rostri, 359
diaphragm, 285, 349, 361
digastric, 253
digastricus, $264,346,359$, 370
digital extensor, common, 307, 352, 363, 373
lateral, 308, 335, 352, $356,363,367,373$, 3s0
long, 333, 354, 366, 3×0 medial, 352, 356
of second digit, 363 short, 356
flexor, deep, 315, 339, 354, $364,367,371,351$

Nuscle, digital flexor, long, 340
superficial, 313, 339, 353, 364, 367, 374, 351
dilatator naris apiealis, 345 Jateralis, 255, 345, 359
extensor carpi obliquus, 310 , 352, 363, 373
radialis, $306,352,363$, 373
brevis, 373
longus, 373
ulnaris, 374
digitalis brevis, 343,367 , 380
hallucis longus, 367, 380
of fifth digit, 374
of first and second digits, 373
of third and fourth digits, 373
facial eutancous, 359
flexor carpi radialis, 310, 364, 374
nlnaris, 310, 364, 374
deep, 359
digitalis longus, 365 pedis longus, 3 si
hallueis, 341, 368
brevis, 352
Jongus, 381
pollicis brevis, 375
superficial, 359
frontalis, 343
fronto-scutularis, 872
gastroenemius, 33s, 359, 367, 341
gemellus, 329, 356, 365, 378 genio-glossus, 394
genio-hyoideus, 265, 347
gluteus accessorius, 322
medius, $321,355,365,378$
profundus, $322,355,365$, 37
superficialis, $321,365,37 \mathrm{~s}$
gracilis, $325,356,365,3 \times 0$
head of, 253
helicis, 874
hyo-epiglotticus, 519
hyo-glussus, 392
hyoid, 264, 347, 359, 370
hyoideus transversus, 265, 347,359
hyo-pharyngeus, 407
iliaens, $320,354,37 \mathrm{~s}$
ilio-1soas, 319, 37s
incisivus inferior, 257, 344 superior, 257
infraspinatus, 299, 351, 362, 371
insertion of, 252
intercostal, external, 2\&3, 349, 361, 376
internal, 2×3, 349, 361
interosseous, $317,343,365$, 36is, 375, 381
interosseus medius, 354
interscutularis, 872
interspinales, 349,362 , 376, 37.
inturt ranswersales, 347, 349, 361, 312, 376,377 caudita, 2×1
colli, 270
Jumborum, 279

Mluscle, ischio-cavernosus, 582, 549,604
ischio-urethral, $5 \times 6,595$
kerato-hyoideus, 265,347 , 359
kerato-pharyngeus, 407
lateralis nasi, 259
dorsal part, 345
ventral part, 345
latissimus dorsi, 295,351 , 362
levator labii superioris proprius, 256, 344, 359,368 nasolabialis, $255,25 s$, 343, 359, 368
palati, 3×9
palpebree superioris, 260, 861 rostri, 359
levatores costarum, 2\$1, 349,361, 376
lingual, 392
longissimus atlantis, 876 eapitis, 376
et atlantis, 271, 361, 376
costarum, 275, 349, 362, 377
dorsi, 278, 349, 371, 377
longus colli, $270,347,360$, 376
lumbricales, $317,343,354$, $365,36 \mathrm{~s}, 375,381$
malaris, 260, 345
mandibular, 260, 316, 359, 370
masseter, 261, 346, 359, 370
mentalis, 258
multifilus, 362
cervicis, 273
dorsi, 279
multipennate, 253
myto-hyoideus, 261, 347, 359, 370
nasal, 36s
nerve supply of, 253
non-striated, 252
obliquus abdominis externus, 288, 349, 361, 37
internus, 290, 350, 361, 377
capitis anterior, 275
posterior, 273, 361
dorsalis s. superior, 861
ventralis s. inferior, \$61
obturator, 378
externus, 329, 356, 365
internus, 32.), 356, 365
occipito-hyoideus, 265, 347, 3.59
oceipito-mandibularis, 262, 346, 370
ocular, sis1
of abiomen, 257, 349, 361, 377
of timus, 132
of arm, 302, 351, 363
of auditory ossieles, 878
of back, 349, 361, 376, 377
of cheeks, 255
of digit, 343
of eyeball, 861
of eyelids, 260

Muscle of face, 343, 359, 36s
of foot, 333,356
of forearm, 305, 352, 363
of head, 2.55
ventral, 360
of hip, 365
lateral, 320, 355
of larynx, 518
extrinsie, 518
intrinsie, 519
of leg, 333, 356, 366
of lips, 255
of loins, $276,349,361,377$
of manus, $305,352,363$
of metatarsus, 343
of neek, $266,34 \overline{7}, 360,376$
lateral, 271
ventral, 266
of nostrils, 25 S
of pelvic limb, 319, 354, 365, 378
of penis, 582
of pharyns, 40^{7}
of shoulder, 298, 351, 362
girdle, 293, 350, 362
of soft palate, 389
of tail, $279,349,362,377$
of thigh, 365
anterior, 329,355
lateral, 320, 355, 356
medial, 325
of thoracic limb, 293, 350, 362, 370
of thorax, 251, 349, 361, 376
of tongue, 392
omo-hyoideus, 268, 347, 359 , 360
omo-transversarius, 360,351 , 362, 370
orbicularis oculi, 260, 345
oris, $255,343,359,368$
origin of, 252
palatinus, 359
palato-pharyngeus, 407
palmaris brevis, 375
longus, 374
palpebral, 365
panniculus carnosus, 254, 884
parieto-auricularis, 872
parotido-auricularis, 873
pectineus, 326,356 , 365 , 380
pectoral, 295
deep, 296, 351, 371 anterior, 296, 362 posterior, 296, 362
superficial, 295, 351, 371 anterior, 295, 362 posterior, 296, 362
peroneus brevis, 380 longus, 356, 366, 380 tertius, 335, 356, 366, 386
piriformis, 37 S
poplitens, $343,367,381$
preputial, anterior, 590 posterior, 590
pronator quadratus, 375 teres, $354,364,374$
protractors, 590
psoas major, $319,354,365$, 378
minor. $319,354,365,37 \mathrm{~S}$
pterygoideus lateralis, 262, 346, 359, 370

Muscle, ptervgoideus medialis, 261, 346, 359
pterygo-pharyngeus, 407
quadratus femoris, $32 \mathrm{~s}, 356$, 365, 37s
lumborum, 320, 354, 365, 37.
planta, 381
quadriceps femoris, 329,355 , 365, 379
reeti capitis dorsales, 361
rectus abdominis, 290, 350 , 361, 379
capitis dorsalis major, 275 minor, 276
lateralis, 270, 317, 376
ventralis major, 269, 347, 376
minor, 269, 347, 376
dorsalis s. superior, 861
femoris, 329, 379
lateralis, 861
medialis, 461
thoracis, 2s3, 361
ventralis s. inferior, S61
relations, 253
retractor, 590
ani, 432, 502
costæ, 2 23,361
oculi, 861
penis, 582, 589
rhomboideus, 293, 351, 371 , 362
cervicalis, 293, 371
thoracalis, 293,371
rotator, 873
sacro-coceygeus, 362, 377
accessory, 374
dorsalis, 280
lateralis, 280
ventralis, 281
sartorius, 325, 356, 365, 380
scalenus, 26.
dorsalis, $347,360,376$
ventralis, $347,360,376$
seutularis, 872
scutulo-auricularis profundus major, 573
minor, 874
superficialis accessorius, 872
inferior, 872
medius, 872
superior, 872
semimembranosus, 324,365 , 355,379
semitendinosus, 323, 355, 365, 379
serratus cervicis, 297
dorsalis anterior, 277, 349, 361,377
posterior, 277, 349, 361, 37.
thoracis, 297
ventralis, $297,351,362$, 371
shape of, 252
skeletal, 252
soleus, $359,339,367$
sphincter, 252
ani externus, 432
internus, 432
vesicæ, 562
spinalis, 273

Nusele, spinalis et semispinalis, 362
splenius, 271, 377, 361, 376
stapedius, 578
sterno-cephaticus, 266, 347, 360,376
sterno-hyoideus, 359, 370
sterno-mandibularis, 347
sterno-mastoideus, 347
sterno-t hyro-hyoideus, 26 S , $34 \overline{7}, 360,370$
sterno-thyroideus, 370
striated, 252
struct ure of, 253
st ylo-glossus, 392
stylo-hyoideus, 265, 347, 370
stylo-pharyngens, 407
sublumbar, $319,354,365$
submultifidus, 376
subseapularis, $300,351,363$, 371
supinator, 364, 374
supraspinatus, 29s, 351, 362, 371
synovial membranes of, 253
temporalis, $261,346,370$
tendinous inseriptions, 253 intersections, 25.3
tensor fasciae antibrachii, 303, 352, 363, 373
latæ, 320, 355, 365, 37s palati, 390
tympani, sis
teres major, $300,351,363$, 371
minor, 299, 351, 362, 3.1
thyro-arytenoideus externus, 521
thyro-hyoideus, 51 S
thyro-pharyngeus, 40
tibialis anterior, 336,357 , 366, 3м0
posterior, 340, 367, 381
trachealis, 525
tragicus, 574
transversus abdominis, 291, 350, 361, 378
nasi, 259, 359
thoracis, 255, 361
trapezius, 293, 350, 362, 370 cervicalis, 293
thoracalis, 293
triceps. 352, 363, 373
brachii, 303, 304
ulnaris lateralis, 313, 364, 37.4
unipennate, 253
urethral, $5>6,590,593,595$, 604
vastus intermerlins, 333,379 lateralis, 330, 379
medialis, 331,379
ventricularis, 520
verticalis auriculx, 875
visceral, 252
vocalis, 520
zygomatico-auricularis, 872
zygomaticus, 257, 344, 359, 368
Muscular coat of abomasum, 462
of bladder, 562
of ductus deferens, 575

Muscular coat of Fallopian tubes，599
of kidney， $5 \overline{5}$ ）
of large intestine， 430
of a＇sophagus， 409
of omasum， 46
of reticulim of stomach， 462
of rumen，till
of seminal vesicles，57s
of small intestine， 421
of stomach， 417
of ureters， 561
of urethra， 60.4
of uterus，601， 607
of vaginat， 602
of viscera，3st
process of temporal bone， 63
tissuce， 384
Muscularis mucose， 353
of small intestine， 421
Musculi papillares of left ven－ tricle， 627
of right ventricle， 624,625
pectinati of right atrium， 621
Nusculo－spiral groove，SS
Myenteric plexus， 33
Mylo－liyoid line， $\mathbf{7} 0$
Myocardium，62s
Myology，252

Nares，posterior，78，406， 512
Nasal cavity，バ2，143，159，175， $197,50 \mathrm{~s}, 537,538,545$ ， 515
common meatus， 511
dorsal meatus， 511,545
ethmoidal mentuses， 512
meatuses， 511
middle meatus，511，545， 550
parictal cartilage， 510
rentral matus，511，546， 550
vessels and nerves， 510
crest，65， 66,12
promss．，（6．5
region， $7: 3$
septum， 82,84
spine，josterior， 193
Naso－frontal suture，60，fis
Naso－lacrimal duct， 509,860 ， 496
groove for，s2
orifiee，50s
snture，is
Niaso－maxillary fissure， 8.5
notch， 67
opening， 511
suture， 67
Neck．lymph vessels of，69s of tooth， 395
Nerve or nerves， 760
abluecht，720，sol
acoustic， $770,80: 3$
alveolar，infırior， 851
mantibul：ar，soo
maxillary，70，
middle， 7 gs
posterior． 79 s
articular， 761

Nerve，auricular， 805
unterior， 803
internal， 502
posterior，so2， 812
auriculo－palperbral，802，839， 851
axillary， 815,816
bronehial，sos
buccal，503，－339，S45， 551
buccinator， 799
cardiac， $804,531,854$
cercbral， 793
cervical， $803,812,851$
eighth，s13
fifth， 813
first， 12
fourth，s13
second，s12
seventh，$\$ 13$
sixth，S13
thirs，s13
chorla tympani， 801,802
ciliary，long， 8.50
short， 79
coccygeal，so9
cochlear， 503, SS4
cramial， $793, \times 35,84.1,850$
cutancous，lateral，of leg， 826
of neek，s 13
of thigh， 523
posterior，of leg， 826 of thigh， 825
dental， 79 s
depressor，807， 853
digastric， 102
Cligital，S19，841，846，853， $854,85.5$ ，Sity
lateral volar，of fifth digit， 854
dorsalis penis，s2s
eighth， 720
eleventh， 771
ethmoidal， 7 IMs，s．50
facial，770，801，s39， 850
femoral，s24
fifth， 770
fourth， 20
frontal， $796,838,845,850$
glosso－pharyngeal，771，773， ． 04
ghteal，antcrior， 824 posterior， 824
harmorrhoidal，pesterior， N゙ロン
hypoglossal，771，763，810， $840,45,553$
ilio－hypogastric，222
ilio－inguinal，ネ2ュ
inframbital， $795,845,850$
infratrochlear， 796,850
intercostal， s 20
interosscous，\＄19
lalbial，s50 superior， 798
lacrimal， $795, \mathrm{S3s}, 845,850$
laryngeal， 552
anterior， 807
lingual， 800 ， $105,85 \mathrm{I}$
lumbar，s22
fifth， 823
first， 82 ？
fourth， S 23
second，s22

Nerve，Jumbar，sixth， 823 third，s： $2: 3$
mandibular， $798,500, \infty 35$ ， 845,850
masseteric， 799
maxillary，T96，s45， 850 incisor，798
median， $214,818,841,846$ ， 854
metacurpal， 819 volar， 254
metatarsal，clorsal， 856
muscule－cutaneous， 514,815 ， $8[9,153$
mylo－liyoid， 800,850
nasal，anterior， 70 s external，795，s50 posterior， 797,850
naso－ciliary， $796,33 \mathrm{~S}, \mathrm{~S} 45$
ninth， 771
obturator，set
weulomotor，769，733，750， 794，sot，sos，s3s
asophageal，ilorsal， 539 ventral，s40
of adremal bodies， 564
of corium of hoof，s！ 4
of cornea， 865
of chectus deferens， 57.5
of external car， 8.5
of eye，$\times 59$ ， 80
of l＇allopian tubes， 599
of heart， 629
of kidneys， 560
of penis，5s2
of pterycoid canal， 798
of skin， 885
of spermatic cord， 5 －6
of testicles， 574
of uterus， 602
of vagina，tioz
of vascular tumic of eye，S67
of veins， 615
olfactory， 793
ophtlatmic，795， 850
optic，769， 793
palatine， 8.50
anterior， 798
greater， 79 S
lesser，7！ 5
posterios， 798
pectoral，s14， 815
peroneal， 206
common， 855
deep， $826,841,846,855$
superficial，s26，841，846， 85.5
petrosal， 802
pharrongeat， $804,807, \mathrm{~S} 39$ ， $\wedge 52$
phrenic，A13
plantar，ses，S46
digital，st1
leteral，st1， 856
mectial，s＋1，s56
metatarsal， 856
pterygoid， 790
pudir，ses
pulmonary， 534,535
ratial，s15，s16，841， 846 ， 8．33
recurrent， 807,853
sacral，N2S
saphenous，s24， 855

Nerve，sciatic，great， 825
seconti， 769
seventh， 7.0
sixth， 770
spermatic，external， 523 internal， 833
sphenopalatine，797， 850
spinal， $810,>40, s 45,>53$
accessory，771．808，s 40
splanchnic，great， $331,-42$ greater，s．56
lesser，$\$ 56$
small， 332,52
staperial， 802
subscapular，N14
suprascapular，s14，\＄15
sympathetic， 629
temporal，80：3 deep， 799
superficial， $800,835, ~ \$ 45$, 8.50
tenth， 71
third， 769
thoracic， 820
anterior，sl4
external，：15
long， 81.5
posterior， 815
thoraco－lorsal， 815
tibial， $27,841,846,856$
tracheal．sos
trigeminal， $760,795,83 \mathrm{~h}$
trochlear，$\overline{7 T}, 780,794$
twelfth，$\pi 1$
tympanic，sot
ulnar， $814,817, \$ 41,846$ ， 853
vagus，629，771，773，805， 839，845， 851
left，S06
riyht，S0－5
vestibular，803， 884
volar，s19． 41
lateral．s19
medial，s19
zygomatic，796，$\times 50$
Nervecell， 760
Nerve－fibers，olfactory， 769
Nerve－plexus， 761
Nervous system， 760,764, s34， S 43,54
sympathetic， 829,842 ， 846，\＄55
Nersus dorsalis penis，s2s
transversarius， 830
Neuroglia， 760
Neurology， 760
Neurone， 760,829
Nippers， 395
Norles，lymph， 616
Nolules，aggregated，of large intestine， 43
of small intestine， $42 ?$ ， おぶフ， 501
lymph， 616
of thyroid tissue， 536
solitary，of large intestine， 431
of small intestine， 422 ， 457
splenic， 441
Nolulus． 766
Nostrils，504，537，545，545
false，260，508

Nostrils，true． 50 s
Notch，alar，isf
cardiae，of lung， 533
carotid， 54
mandibular， 71
naso－maxillary， 67
asophageal， 435
oval， 54
popliteal，of tibia， 116
sciatic，greater， 106
lesser， 105
semilunar，of ulna， 93
sphenoidal， 60
spinous， 54
Nuchal crest， 79
of skull， 51
Nucleo－cercbellar fasciculus， 7π
Nucleus ambiguus， 808
amygdaloid， 792
caudate， 792
cuneatus， 774
dorsalis， 767
facial，$\$ 01$
gracilis， 7.4
hypothalamic，TS1
lenticular， 792
motor，dorsal，sos
of fifth nerve， $7: 6$
ventral．sos
of lens，$s 70$
of origin of nerves， 760,714
of solitary tract，s0s
olivary，anterior， 776
posterior， 74
pulpy，of intervertebral fibro－cartilage， 211
red． 7 な1
sensory，dorsal，sos
terminal，of nerves， 760,74
Nutrient foramen， 22
of femur， 112
of humeris， 88
of ilium， 106
of metacarpus， 99
of tibia， 116

Obex， 7,9
Obturator foramen，109，112， 152,202
membrane， 231
Occipital condyles， 50
crest， 51
protuberance，external，51， 79
internal， 57
sinuses，65
Occipito－mastoid suture， 32
Occipito－temporal fissure，$\$ 50$
Esophageal groove，455， 473
not ch， 435
plexus，S0×，831，ऽ．33
（Esophagus，409，451．472，483， 497
Olecranon fossa， 90
Olfactory bulh，769，771，757， 835， 544,500
cells， 995
nerve－fibers， 769
organs，905
strix，769，78s
tract， $769,755,844$

Olivary nucleus，anterior， 76 posterior， 314
Olivo－cerebellar fibers， 7%
Omaso－ahomasal orifice， 460
Onasum，453，456，474
Omental cavity， 442
Omentum， 412
gastro－splenic，412，417，441
greater，412，417，42，44il， 499
lesser，412，417，456，460， 499
Ontogeny， 17
Optic axis，external，$\downarrow 63$
chiasm， $769,7.3$
commissure， 769
foramen， $53,75, \times 2$
groove， 53
papilla， 46
recess， 7×3
tract，769，740，783， 835
Ora ciliaris retinæ，$\$ 68$
Orbit， 74
Orbital foramen，53， 75 internal， 53
region， 74
wings， 53
Organ，spiral，of Corti，\S\＆
vomero－nasal，51f，＞95
Organs of senses， $857,896,900$ ， 902
Orifice，aortic，of horse， 626
atrio－ventricular，left，625， 626
right，621， 623
ceco－colic， 424
ejaculatory， 575
ileo－cxeal， 424
ileo－colic， 501
naso－lacrimal， 50 s
omaso－abonasal， 460
preputial， $5 \$ 3$
pulmonary，of right ventri－ cle， 624
reticulo－omasal， 459
rumino－reticular， 45 S
ureteral， 562
internal， 562
urethral，external，female， 603， 607
male， $5 \times 5,589$
internal，male， $5 \backslash 5$
Orificium externum uteri， 601
internum uteri， 601
Os acetabuli， 110
penis， 594
fostri， 545
Osscons labyrinth，8．81
Ossicles，auditory， 377
Ossification， 23
center of， 23
endochondral， 23
intramemiranous， 23
Osteoblasts， 23
Osteoclasts， 23
Osteogenesis， 23
Osteology， 20
Ostium abdominale tulue， 599
uterinum tubæ， 599
Otic ganglia，$\times 29$
ganglion， 799,83
papilla， 897
Outlet of pelvis，111，112， 113
Ova， 598

Oval notch, 5 t
Ovaries, 59\%t, 605, 609, 610, 612
Ovisacs, 598
Ovulation, 595
fossa, 597

Palate, hard, 78, 357, 445, $470,477,492$
soft, 3<内, 46, 477. 4!2
Palatine canal, 64
fissure, 66, 7. $5, x_{2}$
foramen, anterior, 66
posterior, 65, 76
groove, $65,7 \mathrm{~s}$
process of maxilla, 64, 65 of promaxilla, 66
region, 7s
simus, 137,145
suture, median, 7 s
transverse, 79
Pallium, 7×5
1alpebral conjunctiva, 859
fissure, 85.5
sehum, N 59
Pampiniform plexus, 693 of testicles, 574
Panereatic duct, $134,463,487$, $491,501,506$
accessory, 434
Panniculus adiposus, S84
Papilla, 353
filiform, of tongue, 391
foliate, of tongue, 391
fungiform, of tongue, 391
hair, sse
incisiva, 347
of haril palate, 445
of checks, 445
of lips, 444
of nammary gland, 604
of skin, 885
of tongue, 391, 447
optic, $\mathbf{N} 68$
otie, 897
renal, 565
vallate, of tongue, 391
Paradidymis, 573
Paramastoic] process, 50, 7s, 79
Paranasal simuses, St
Parenclyyma of adrenal bodies, 563
of Jiver, 438
of mammary glands, 604
1 estis, 572
Parietal border of oceipital bone, 52
cartilage of nasal eavity, 510, 537
crest, 135
external, 51, 57, 73
internal, 5s, s1
layer, 344, 412
pleura, 526
radicles, 693
region of skull, 73
suture, 57
Parieto-frontal suture, 57, 60
Paripto-necipital suture, 52,57
Parieto-temporal canal, 63
Paroöphoron, 599

Parotil duet, 404, 475, 482, 492,495
plexus, s03
Pars ciliaris retime, s6s
disseminata, 5x9, $5 \% 2$
iridica retinse, sos
longa glandis, 594
optica retinae, stis
Patches, Peyer's, 422, 487, 501
Precten ossis pubis, 10 !
peduncles, anterior, deeussation of, 7as
cerebellar, 707
anterior, 776
middle, $7 \pi /$
ceremal, 769, $250,835,843$
mithlle cerebellar, 776
Pelvic cavity, 152, 412, 453
Livide, 30, 105
inlet, 152, 160, 1N1, 202
limb, lymph vessels of, 703
outlet, 413
part of sympathetic system, S32
peritoneum, 413
plexus, 832,834 , 856
Pelvis, lymph vessels of, 701 renal, 559
symphysis, 231
Penis, 5>0, 5n9, 592, 594
collum glandis of, 5x1
coronat glandis, jo
corpus cavernosum, 581
fossa glandis of, 5isl
glans, $550,559,594$
structure of, 5s1
suspensory ligaments, 550 trabecula of, 5kl
tunica albugnea, 581
vessels and nerves of, 5×2
Pericardiac pleura, 506
Pericardium, 617, 705, 734, 742
Perilymph, Ss 1
Perilymphatic space, sis
Perimysium, 252
Periople, S.5S, 591
Perioplic corium, 892
Periorhita, stio
Periosteum, 21
alveolar, of teeth, 395
Periphoral ganglia, $\$ 29$
Peritoneal cavity, 111
Peritoneum, 411, 441 pelvic, 413
Permanent teeth, 394, 396
Petro-basilar canal, 190
Petrosal crest, 62, 81
sinuses, dormal, 658 ventral, 6SS
Petrotympanic fissure, 63
Petrous ganglion, s04
Peyer's pitehes, $422,4 \times 7,501$
Pharyngeal aponeurosis, 407
isthmus, 10)
opening of Eustachian tube, 875
orifices of Eustachian tubes, 406
plexus, 407, 852
recess, 107
Pharymx, 105, 451, 472, 482, 19
Philosophical anatomy, 17

Phrenico-costal sinus, 530
Phy logeny, 17
Pia mater, 763 cerebral, 76 spinal, 763
Pillar, posterior, of soft palate, 405°
Pillars of rumen, 45
Pilomotor fibers, se9
Pinchers, 39.5
Pineal body; inl, s3.5
recess, is3
 of brain, 769
recess, 40s
Pituitary hooly, 769, 7n0, శ心2, 835,34
fossa, 53
Plantar arch, deep, 697, 721 distal, fī̆s, 697, $71!$) proximal, 675, 649, 719
Plate, ribriform, of ethmois, 54
Pleura, 526, 540, 547
costal, 52fi
cliaphragmatic, 526
mediastimal, 526
parictal, 526
pericardiar, 526
pulmonary, 526
visceral, 526
Pleural cavity, 526
reflection, diaphragmatie line of, 533
lines of, 530
sternal reflection of, 530
vertebral line of, 530
Plexus, abdominal, 832
adrenal, 834
aortic, abdominal, 833
thoracie, 831
auricular, anterior, 803
basilar, 689
brachial, $\$ 14,840,846, \$ 53$
cardiac, 831
carotid, sot
external, 830
internal, s 30
cavernons, s30, s.34
cervieal, dorsal, 812
ventral, s12
chorioid, 763, $780,783,757$, 792
of fourtli ventricle, 173
rocliac, $832,843,856$
eolic, $\$ 56$
coronary, 692, 831
dental, maxillary, 798
dorsal, 692
gastric, S33
anterior, 852
posterior, 852
hemorrhoidal, 834
anterior, 556
hepatic, 439, 833
intraosscous, 692
lumbosacral, $824,841,846$, 855
mesenterie, anterior, $\$ 33$, 8.56
posterior, \$33, \$56
myenteric, 833
nerve-, 761
osophageal, S08, \$31, \$53

Plexus, pampiniform, 693 of testicles, 574
parotid. 803
pelvic, $832, \$ 34, \$ 56$
pharyngeal, $\times 07,852$
prostatic, $\$ 34$
pulmonary, $808,831,853$
renal, 834
s. sinus venosus sclere, $\$ 63$
spermatic, 574, 834, 856
splenic, 833
submucous, 833
subsidiary, 856
tracheal, sos
tympanic, S04
utero-ovarian, S34
utero-vaginal, S34
vascular, 614
renous, 614
resical, 834
volar, 692
Plica pterygomandibularis, 390
Porloderm, 892
Pons, $769,775, ~ \$ 35, ~ S 43, ~ S 47$
Popliteal line of tibia, 115
notch of tibia, 116
Portal fissure, $434,46 \mathrm{~s}$
ring, 433
system, 614
Postglenoid foramen, 60
process, 60, 73
Pouch, cutaneors, SS4
guttural, 5 :9
infraorbital. 900
inguinal, 900
interdigital, 900
lacrimal, 900
recto-genital, 415
recto-vesical, 414
vesico-genital, 415
Premaxillary region, 73
Premolar tecth, 394, 399 deciduous, 403
Preorbital region of horse, 76
Prepubic tendon, 292
Prepuce, 552, 590, 503, 595 of clitoris, 604
Preputial diverticulum, 593
frenum, $5>3$
orifice, $5 \$ 3$
ring, 583
Presylvian fissure, 785, S14, 849
Process, acoustic, external, 61, 74
angular, of mandible, 195
caudate, of liver, 434
ciliary, $\$ 66$
clinoid, anterior, 190
posterior, 170, 190
coronoid, of mandible, 71
cuneiform, 517
frontal, 191
hyoid, 62
lacrimal, 194
lingual, 72
mammillary, 45, 163
mastoid, 61, 74
maxillary, 194
muscular, of temporal bone, 63
nasal, 65
palatine, of maxillæ, 64,65

Process, palatine, of premaxillie, 66
paramastoid, 50, 7s, 79
postglenoid, 60, 7.3
pterygoid, 54, 171
spinous, of lumbar vertebres, 129
of thoracic vertcbræ, 128 of vertebres, 44
styloid, 63, 871
of radius, 199
of ulna, 1ts
supraorbital, 59, 73
urethral, 581
vocal, 517
zygomatic, of frontal bonc, 59
of malar bone, 68
of maxillary bone, 65
of temporal bone, 60
Processus anconæus, 93
cornus, 136
urethrar, 585
vaginalis, 577
Projection fibers, 792
Promontory, 8.6
Prostatic rlucts, $579,585,589$ plexus. 834
Protuberance, occipital, external, 51, 79 internal, 57
Proventriculi of stomach, 453
Psoas tubercle, 106
Pterygoid canal, 54, 67
crest, 54
foramen, 54
fossa, 170
process, 54, 171
Pterygo-palatine fossa, 67, 76
Pubic groove, 109
Pulmonary circulation, 704
lobule, 534
orifice of right rentricle, 624
pleura, 526
plexuses, S05, S31, 853
valve, 625
Pulp cavity of tecth, 395
of tooth, 395
spleen, 441
Pulpy nucleus of interverte-
bral fibro-cartilage, 211
Puncta lacrimalia, 860
Punctum lacrimale, s5S
Pupil, $\$ 66$
Pupillary border of iris, $\$ 66$
Pyloric opening of stomach, 416
sphincter, 417
valve of stomach, 419
Pyramid of medulla oblongata, 773
renal, 55s, 565
Pyramidal decussation, 773, 774
fasciculus, 766
tracts of oblongata, $\pi / 4$

Radiation of corpus callosum, 790
Radicles, parietal, 693
visceral, 693
Radii lentis, sio
Radio-carpal sac, 222

Rami communieantes, \$29
of lower jaw, 70
Ramus communicans, 811 gray, $\$ 29$
Raphé of oblongata, 764
pharyngis, 107
praputii, 583
seroti, 574
Recess, infundibular, 183
optic, 783
pharyngeal, 407
pineal, 783
piriform, 408
Recessus cochlearis, S81
ellipticus, S81
sphæricus, SS1
Recto-coccygeus band, 431
Recto-genital pouch, 415
Recto-vesical pouch, 11 t
Rectum, 429, 458, 465, 502
Red nucleus, 781
Refractive media of cyeball, S69
Region, cranial, 73, 78
frontal, of skull, 73
guttural, is
maxillary, of horse, 76
nasal, 73
orbital, 74
palatine, is
parietal, of skull, 73
premaxillary, 73
preorbital, 76
Renal columns. 558
corpuscles, 558, 559
crest, 558, 559
hilus. 555
papilla, 565
pelvis, 559
plexuses, S34
pyramids, 558, 565
sinus, 555
tubules, 559
Respiratory bronchioles, 534
system, 505, $537,545,54 \mathrm{~S}$
Restiform bodies, 7.73
Rete carpi dorsale, 657
mirabile, 614, $70{ }^{7}$
cerebrale, 710
testis, 556
Retia vasculosa, 614
Reticulo-omasal orifice, 4.59
Reticulum of lymph nodule, 616
of stomach, $453,455,473$
Retina, S6S
Retractor ani, 432
Rhombencephalon, 773,785 , 787
Rhomboideus capitis, 371
Ridge, trochanteric, of femur, 113
Rima glottidis, 522, 539, 546 oris, 4T/, 491
Ring, ciliary, $\$ 66$
fibrous, of heart, 625
of intervertebral fibrocartilage, 211
inguinal, abdominal, 290, 292
external, 285, 292
internal, 290, 292
subcutaneous, 285, 292
portal, 433

Ring, preputial, 583
of trachea, 525
vaginat, $290,576,587$
Root of hail, >S6
of tongue, 390
of tooth, 395
Rostrum of corpus callosum, 749
suis, 545
Rubro-spinal tract, 75
Rumen, 453,45
blind stes of, 454
carlia of, 455
eavity of, 456
dorsal eurvature of, 459
grooves of, 454, 4\%
longitudinaf grooves of, 45-1
mucous membrane of, tis
muscular coat of, 461
pillars of, 457
scrous coat of, 460
ventral eurvature of, \$54
Rumino-reticular fold, 45%
groove, 4 in
orifice, 45

Sar, amal, 502
blind, of rumen, 454
(:upo-metacarpal, 222
conjunctival, 8.59
intercarpal, 222
intertarsal, 240
lacrimat, sio
ratio-carpal, 222
synovial, of hoek-joint, 240
tarso-metatarsaf, 240
tibio-tarsal, 240
Saceulations of cacum, 424
suceule, 8 Si 3
laryngeal, 522, 550
Sacerns exerus. 416
Sacral canal, 43
crest, lateral, 129
medion, 129
foramen, ${ }^{1}$
ventral, 129
ganglia, sise
part of sympathetie system, 8.56

Sagittaf pole, $\$ 36$
simus, 6isi, tins
Seata tympani, s 82
vestibuif, ss2
Sciatic formen, greater, 231 lessor, 23]
noteh, greater, 106 lesser, 10s
Sclera, stiz, s97
Scrotum, 574, 566, 591, 593
Scutiform cartifage, 87
Sedum cutaneum, sis
palpobrat, 859
Secretory fibers, 229
Sectorial teeth, 494
Somicircular canals, osseons, SSI
ducts, membranous, 853
somilunar canal of thirel phalanx, 103
crest of third plalans, 103
ganglion, 79.5
notel of ulna, 93

Seminal vesicles, 571, 57-5, 5ی7, 591, 593
Seminiferous tubules of testiefes. 572
Sense organs, $\times 57,596,900$, 902
S'ensory fibers, sos
mucfous, domsal, sos
root of tifth nerve, 76
Shiptum, dorsal, median, 766
interalveolar, 64
intermuscular, 254
of forearm, 30:5
of gluteal region, 317, 31s
of $\log , 31 \mathrm{~s}$
of shoulder, 295
interwentricular, 627
nasi, se2, $4.5,510$
eartilage of, 510
pellucidum, 791
penis, 5x9, 594
seroti, 574
sorous coat of bladeler, 562
of Faltopian tubes, $5 \% 9$
of large intestine, 4.30, 46.5
of liver, 43M
of rumen, 460
of smalf intestine, 421
of spleren, 441
of stomarh, 417,499
of nterus, 601
folds, 304
fayer of perieardinm, 617
membrancs, 3-4
Shaft of hair, sso
sheath, carpai, of decp digital flewor, 315
of surerficial digitaf flexor, 313
fibrous, of tenton, 254
synovial, 253
digital, of deep digital flexor, 316
of superficial digital ftexor, 314
of fommon digital extensor, 367
of coraco-brachiafis mus(1). 300
of (extcnsor carpi abliquus, 310 radialis, 306
of flowor carpi rablialis, 310 of lateral digitaf extensor, 3099, 335
of long digital extensor, 33.7
flexor, 340
of tibialis anterior, 337
of unaris fateraiis, 313
tarsal, of derp digital flexor, 342
Shoulder girdle, 29
Silkbone, 104
Sigmoid flexure, 589
Simus, cavernous, 6.5
commumicans, tiss
coronary, 681, 754
opering of, 621
ethmoidaf, sf
frontal, 59, 85, 143, 175, 197
fronto-turbinate, 85
intereavernous, 688
lactiferous, 605, 609

Simus, longiturlinal, dorsal, 6 , 7 ventral, tish
tymph, central, 616 peripheral, 616
maxillary, $84,144,175,197$ inferior, 84 superior, 85
oreipital, tixis
of torta, 630
of bone, 21
of dura mater, 657
of lymph nodule, 616
of pulmonary artory, 629
pafitine, 137, 145
paranasal, 14
petrosal, dersal, fiss ventral, fisis
phrenico-costal, 530
renal, 5.5.5

sphemoidal, 53, 145, 175
sphenopatatine, 53, 67, 86
straight, fisc
tarsi, 120
tonsillar, $\$ 16$
transverse, 65S
of perisardium, 617
wetimal, 5s)
urogenital, 1003
venarom of right atrium of heart, 120
whous. 81.5
vertcbral, fongitutimal, bS9
Skeleton, 20, 32, 32., 156, 161, 1.5.
appendicufar, 20
axial, 20
flat hones, 20
irregular bones, 20
tong bomes, 20
medullary cavity, 20
number of bones, 20
short bones, 20
splanchnie, 20
viscerat, 20
Skim, sct, $887,508,900,901$, 00.3
appendages of, S86,901, 90.3
of concha, $8 \overline{1} 1$
of eyelids, 858
of mammary glames, 604
of nostrils, 504)
skulf, brachyepplatic, 195
dotichoemphatic, 195
mesaticephatic, 195
synarthroses of, 217
synchondroses of, 218
Smegma praputii, 5-i3
Smefl, argan of, 595
Smout, 545
Sift palate, $357,416,477,192$
sin", Sc9, s02
Folitary norlules of targe intestine, 431
of small intestine, 122, 157
Spare, epichural, 762
interalveolar, 64, 65, 71, 78
interdental, 64
interossoms, of leg, 116
of radius, 91
mandibular, 70
peritymphatie, SSI
subarachnoid, 762

Space，subdural， 762
submaxillary， 70
special anatomy， 17
Spermatic cord，575，5＊6，591， 593
plexus， 574,834 ，s56
Spheno－frontal suture， 60
sphenoidal notel， 60 sinus， $33,14.5,175$
Spheno－occipital crest， 53
splienopalatine foramen，（i．5， $67,76,82$
ganglia，797， 29
simus，53，67， 86
Spheno－squamous suture， 61
Sphincter ani externus， 432 internus， 432
cardiae， 417
ilei， 424
of mammary gland， 60.5
pupillie，sot
pyloric， 416,417
vesice， 562
Spinal arachnoitea， 763
cord， $764,534.843,847$
dura mater， 762
ganglion， 11
pia mater， 763
root of fifth nerve， 705
Spine，ischiatic，106， 107
nasal，posterior， 193
of hoof， 590
of tibia， 116
ventral， 26 of cervical vertebrex， 125
Spinous notch， 54
process of cervical vertebres， 125
of Jumbar vertebre， 129 of thoracic vertebree， 128 of rertebrex， 41
Spiral canal of cochlea， 5,52
folds of abomasum， 460
organ of Corti，SS 4
s planchnic fibers，afferent， 829 efferent， 829
ganglion． k 32
Splenial fissure， 844,850
splenic angle， 433
nodules，$\$ 11$
plexus， 833
Splenium，TS9
Spongy substance of bone， 21
Siquamous suture，5ヵ，60， 61
temporal bone， 60
Sternal flexure， 425
line of pleural reflection， 530
Stomach， $415,453,472,4 \times 3$. 497
cardiac opening of， 416,472 ， 495
fibers of， 117
greater curvature of， 416
lesser curvature of． 416
mucous coat of， 418
pyloric extremity， 416
opening， 416
serous coat of，417， 499
structure of，417
Stop of face， 196
Straight sinus， 658
Stratum corncum，S．5
germinativum， 835 of boof， 891

Stratum granulosum， 598
tectorium of hoof，s91
Stria，lateral，769，7s
medial，769，Tns
medullaris， 7 T 1
olfactory， 769,75
terminalis，7S1， 792
Stroma iridis，sta 7
of kirney， 559
of ovary，5！）
of thyroid gland， 536
vitreous， N 69
Styloid process，63，571
of radius， $19: 3$ of ulna， 14 s
Stylo－mastoil foramen， 62
Subarachnoid cisterns， 762 space． 762
Subcallosal gyrus，たーか
Subearpal arch，fōa
Subcutaneous inguinal ring， 24x， 292
tissue，3s4
Nubcutis，s－4
Subdural space， 762
sublimbic fissure，TN6
sublingual duct，40．5， 496 fohd， 390
Submaxillary duct， 405 space． 70
Submucous plexnes，S33 tissuc，3：3
Subserous tissue，3－1
Subsidiary plexus，s．5f
subsphenoidal canal． 54
Substantia gelatinosia of spinal cord． 767
perforata posterior，769，7s0 nigra， 7×0
propria， 664
Suburethral diverticulum， 607
Succus entericus， 421
Sulcus，callosal， 7 s 6
central．of hoof，s91
cerebellar， 77
collateral．of hoof， 591
intertubercularis，$\vee 9$
limiting，of fourth ventricle， 7.9
median，of fourth ventricle， 779
muscularis of tibia， 117
of brain， 771
omasi， 460
rhinalis．785，837，844， 850
sclers， 863
Supracondyloid crest，lateral， of fenur， 112
medial．of femur， 112
fossa of femur， 112
Supraoceipital part of skull， 51
Supraorbital canal， 137
foramen，59， 73
groove， 137
process，59， 73
Supraspinous bursa． 213
suprasplenial fissure，s．50
Suprasylvian fissure， $785,537$.
$\therefore 44,-49$
suprat rochlear foramen， 19 s
Suspensory ligaments of penis， $5 \div 0$
Sustentaculum tali of fibular tarsal bone， 121

Sutura harmonia， 207
serrata， 207
squamosa， 207
Suture 207
cranial， 217
frontal， 60
fronto－lacrimal， 60
fronto－maxillary，fo
fronto－palatine， 60
naso－frontal， 60,67
naso－lacrimal， 67
naso－maxillary， 67
occipito－mastoid， 52
palatine，median， 7 S
transwerse， 79
parietal， 57
paricto－frontal．57， 60
parieto－occipital，52， 57
spheno－frontal， 60
spheno－squamous， 61
squamous，55，60， 61
Sympathetic nervous system，
S29， $42, ~>16, ~ 8.54$
trunk，s：29
Symphysis， 207
mandibuke， $72,21 々$
pelvis， 231
Synarthroses， 207
of skull，217
Synchondrosis， 207
of skull，21，
Syndesmosis， 207
Synorial bursa， 253
fossar， 204
menlrane of carpal joints， 22
of elbow joint， 219
of hip joint， 232
saes of hock joint． 240
sheath，2．33
digital，of deep digital flexor， 316
of superficial digital flexor， 314
of common digital ex－ tensor， 307
of coraco－braclualis mus－ cle． 300
of extensor carpi ob－ liquus， 310
radialis， 30 fi
of flexor carpi radialis， 310
of lateral digital extensor， 309， 335
of long digital extensor， 33.5
flesor， 340
of tibialis anterior， $33 \overline{7}$
of ulnaris lateralis， 313
systematic anatomy，17，1s

Tabtea vitrea， 21
Tactile hairs．SQ6
Tienia thalami，TS3
Tapetum， 897
cellulosum． 902
fibrosum． 6.5
of chorioid， 565
Tarsal sheath of deep digital flexor， 342
Tarso－metatarsal sac， 240

Tarsus of eye, 859
Taste buds, wis)
organ of, 895
Teat of mammary glands, ti04, 609, 613
Teeth, 39.4, 396, 448, 171, 475, 479, 493
alveolar periosteum of, 395
canine, $344,395,445,479$, 493
deciduous, 403
carnassial, 191
cement of, 395
clieek, 394, 399, 448, 471, $450,19-1$
lower, 401
upper, 460
crown of, :395
deciduons, 344,403
enamel of, 395
eruption of, $403,4.70,471$, $4 \times 1,495$
incisor, 394, 397, 445, 471, 479, 493
deciduons, 40:3, 448
mandibular, 401
maxillary, 400
molar, 394, 399
neck of, 395
nippers, 395
permanchet, 394, 396
pinchers, 395
premolar, 394, 399
deridueses, 403
pulp of, 395
cavity of, 395
root of, 395°
sectorial, 4:4
structure of, 395
temporary, 394
wolf, 64, 71, 395, 400
Tegmentmm, $\mathbf{i v o}$
Tela choriviclea, $763,773,779$, 783, 7×7
Telencephatom, 783
Temporal canal, 63, 81
crest, 137
foramen, 54
fossa, 73
wings of horse, 53
Temporary tewth, 304
Tendinous ernter of diaplaragm, 247
Tendo Achitlis, 338 calcanmes, 33 s
Tendon, 252
interosserous, 225
of ergot, 304
prepubic, 292
Tentorium cerebelli, 762 osselum, sl
Teres tuberosity, sis
Terminal line, 110,410 nuclei of nerves, $760,7 \pi 5$
Testicles, $571,546,591,593$
deferential fold of, 574
dessent of, 577
ducts of, 573
lymph-vessels of, 574
pampiniform plexus of, 564
parencliyma of 572
seminiferous tubules, 572
structue of, $5 \pi^{2}$
tunica albuginea of, 572

Testicles, tumiea vaginalis propria of, 572
vessels of, 573
Thalamo-cortical fibers, 778
Thalamus, TSi
Theca folliculi, 594
Thickness of skin, sul
Third eyelid, 859 , s! 96 ventricle, 783
Thoracic aortic plexus, 83 B
cavity, $2 x, 525, i+4$
duct, 645, 697, 722, 740, 756
ganglia, si31, s 42
limb, lymph vessels of, 70.3
part of sympathetic system, 831
Thorax, 547
lymph vessels of, 700
Thyro-hyoid membrane, 518
Thyroid cartilage, 535, 546, 515. 550 -

согии:, 72
T'ibial crest, 116
Tibin-tarsal sac, 240
Thisue, interlobular, 383
muscular, 3st
subserous, 3s.t
Tongue, 390. 447, 471, 475, 493
Tonsil, 388, 471, 478, 193
Tonsillar sinus, 46
'Topographic anatomy, 17, 15
Torus pyloricus, 4.5
Trabeculae camese of right ventricie. 625
of lymph notule, 616
of penis, 5N1
splenic, 441
Trachea, $523,540,546,550$
Tracheal ducts, 700
lymph ducts, 725,756
plexis, sos
Tract, olfactory, $769,785,844$ optie, $780,783,835$
pyramid:ul, 774
rubro-spinal, 775
Tractus centratis of thymus gland, 536
Tragus, sv6
Tricuspial valve, ti24
Trigonum olfactorium, 769, 74, 785
vesict, 562
Trochanter major of femur, 113
minor of femur, 112 tertius, 112
Trochanteric fossa of femur, 113
ridge of femmr, 113
Trochlea of femur, 113
of tibial tarsal homs, 120
Trochlear foramen, 54, 75
Trochoid, 210
True mostril, 50 s
vocal cords, 522, 550
Truncus bicaroticus, 635 intestinalis, 737
of corpus callostm, 7 K 9
Tuber calris of fibular tarsal bone, 121
cinereum, $769,752,547$
cosie, 106
ischii, 108

Tuber sacrale, 106
seapula, 87
spinar, 86
Tuberele, anterior, of thalamus, 781
lacrimal, tis
panas, 106
'Tuberculum cinereum, 773
faciale, 773
olfactorimm, 84
pubicum, 10!?
Tuberosity, aitreolar, 64, 78
leltoid, Sis
facial, 137
maxillary, 65
of tibis, 116
Tubulw of mammary glands, 605
renal, 559
scminiferous, of testicles, 572
uriniforous, 559
Tunie, atclominal, 2ss, 361
filrous, of eye, 56 :
vascular, of cye, s65
T'unc'a albuginea, 572, 589 of penis, 581
propria of skin, 8×5
vaginalis, 576, 546, 593
rommunis, 576
parietal layer of, 574, 576
propria, 572
visertal layer of, 576
Turbinate eresit, dorsal, 67 ventriul, 64
fold, dorsal, 513
ventral, 513
Tusks, 179
Tympanic cavity, 875
miteots membrane, s-s
opening of Enstachian tube, 875
plexins, s04

Umbilical fissure, 435
fokl, lateral, 114
median, 111
Ureteral orifice, 562 internal, 562
Ureters, 554, 561, 566, 569, 570
Urethra, 554
bull of, 5. 81
female, 604, 609, 611
malr, 571, 554, 590, 593, 595
Urethral crest, 585
orifice, external, female, 603, 607
male, 5s5, 589
intermal, male, 585
process, 5ill
sinue, 5si
Urinary blauldes. See Bladder organs, 54, 564, 567, 569
Uriniterous tubules, 559
Urogenital sinus, 603 system, 50.1
Uterime cotyledons, 607
tubes, 59%, 599, 606, 609, 640, 1412
Ttero-ovarian plexuses, 834
Vtero-vaginal plexus, 834
Uterus, broad ligament of, 415

Uterus, female, $596,599,606$, $609,610,612$
masculinus, $579,5.9,592$, 593,594
Utricle, <2
Cvula, 47

Vagina, $596,602,607,610$, 613
Vaginal ring, 290, 576, 5s7
Vallate papillaz of tongue, 391
Valve, aortic, 626
bicuspid, 626
ileo-cæcal, 421
ileo-colic, 501
pulmonary, 625
pyloric, of stomach, 419
tricuspid, 624
Valvular fold of caecum, 424
Vas deferens, 575,576,591
Vasa vasorum, 615
Vascular plexus, 614 tunc of eye, $\times 65$
Vasomotor fibers, $\$ 29$
Vein or veins, $614,681,719$, $-10,754$
abdominal, posterior, 696
subcutaneous, 696,721
adrenal, 563,693
alveolar, inferior, 684
auricular, great, 685
brachiocephalic, 755
bronchial. 683, 690, 755
buccinator, $6 \times 6,740$
cardiac, 681
great, 6×1, 755
lesser, 75.5
middle, 6S1
small, 6s2
central, of adrenal bodies, 563
cephalic, $6 \mathbf{S}_{\mathbf{7}}, 690,705$
accessory, 690, 720, 755
cerebellar. dorsal, 689
ventral, 689
cerebral, 6×7, 689
ascending, 6S9
basal. 649
deep, 6-9
descending, 659
dorsal, 685
great, 6×9
internal, 689
ventral, 655, 720
cervical, deep, 652
inferior, 6.5'
circumflex, lateral, 695
coats of, 615
condyloid, 685
coronary, 628
left, 6S1
right. 6×1
dental, 654
digital, 692, 721, 756
common, 692
dorsal, 720, 7.55
lateral, 720
medial, 720
volar, 720,755
common, 120
diploic, 657, 659
dorsal, 652

Vein or veins, emissarium, 615
emissary, 6s7
facial, anterior auricular, 654
transverse, 6.55, 686
femoral, 695, 756
anterior, 696
deep, 695
posterior, 696
frontal, 720
gastric, anterior, 695
posterior, 695
gastro-duodeaal, 695
gastro-epiploic, right, 695
hepatic, 439, 693
hypogastric, 695
iliac, circumflex, 695
common, 695
external, 695, 756
internal, 695, 756
iliaco-femoral, 695
ilio-lumbar, 695
infraorbital, 6-6
intercostal, dorsal, 683 ventral, 6. 2
internal coat, 615
interosscous, common, 692
jugular, 6>3, 719, 75̄
external, 720,755
internal, 719,755
labial, 65.5
common, 685
superior, -20
lingual, 686
dorsal, 683
lumbar, 693, 695
masseteric, 685
maxillary, external. 655, 740
internal, 683, 755
median, 691
meningeal, 6>7, 6>9
middle, 684
mesenteric, 693
anterior, 694
posterior, 694
metacarpal, 692, 720,755
metatarsal, 697, 721, 756
middle coat, 615
nasal, dorsal, 720,740
obturator, 695
occipital, 6.55
cesophageal, 683, 68"
of bladder, 562
of bone, 22
of brain. 793
of corium of hoof, 894
of cranium, 659
of ductus deferens, 575
of external ear. $\frac{-5}{5}$
of Fallopian tubes, 599
of head, 6న3
of internal ear, 88 4
of mammary glands, 721
of neek, 6.83
of ovary, 598
of pelvic limb, 695
of penis, 582
of retina, 869
of skin. 45
of thoracic limb, 690, $\because 20$
of uterus. 602
of vagina, 602
of vascular tunic of eye, $\$ 67$
ophthalmic, 6.56

Vein or veins, orbital, 720
palatine, great, 656
pancreatic, 695
panereatico-duodenal, 695
parotid, 6.57
perineal, 721
phrenic, 693
plantar, 697
pophteal, 696, 756
portal, 435, 693, 222,75
pterygoid, 681
pudic, external, 696, 721
internal, 575
pulmonary, 534, 535, 614, $625,6 \mathrm{~S} 1$
radial, 755
anterior, 692
renal, 560,693
sacral, middle, 721
saphenous, $696,721,756$
satellite, 614
spermatic, 50゙4, 506
internal. 693
sphenopalatine, 6s6
spinal, 689
splenic, 693, 694
structure of, 615
sublingual, 657, 720
submental, 655
tarsal, perforating, 697, 721
recurrent, $696,721,756$
temporal, posterior, deep, 654
superficial, 6at
thoracic, external, 690
internal, 65:
thoraco-dorsal, 690
thyroid, 657
tibial, anterior, 696, 756
posterior, 697, 756
recurrent, 696
tracheal, 6к-
ulnar, 692, 755
umbilical, 704
utero-ovarian, 693
valves of, 615
vena azygos, 621, 682,755
cava, 614
anterior, 6×2
opening of, 620
posterior, 692, -20.755 opening of, 620
hemiazygos, 6\&3, 719, 755
reflexa, $686,720,-10$
rhinalis posterior, 6.89
vertebral, 652,659
Velum, medullary, 776
anterior, 779
posterior, 7.9
Vena comitans, 614
Venæ rorticosæ, 967
Venous arch, 692
plexuses, 614
sinuses, 615
Ventricle, fourth, 7.5
lateral, $78.5,791$
of larynx, 522,539,550
middle, of larynx. 522
of heart, left. 625
right, 623
of olfactory bulb, 757
third, 783
Vermis cerebelli, 771,776
Vertebral canal, 26, 44

Vertebral column, 25, 125, $156,161,184$
curves, 129, 165
foramen, 26
formula, 2.5
line of pleural reflection, 530 notches, 26
sinuses, longiturlinal, 6.59
Vertex cornete, sit
Verticalis auricular, 875
Vesical plexus, 834
Vesicles, seminal, 571, 578, $5 \times 7,591,593$
Vesico-genital pouch, 415
Vesicule seminales, $571,57 \mathrm{~S}$, 5~7, 591, 593
Vestibular ganglion, 803
Vestibule of ear, ssI
of lirynx, 522
of omental cavity, 442
Veterinary inatomy, 17
Vibrissex, 886

Vidian canal of horse, 54
Visceral layer, 384,412 of pericardium, 617 pleura, 526
radicles, 693
Vitreous body, 269,897
humor, s69
stroma, 869
Vocal cords, 521,539,546,550 false, 522, 550
true, 522
process, 317
Yomero-nasal organ, 514, 895
Vortex cordis, 624
Vulva, 596, 603, 607, 610, 611, 613
Vulsar eleft, 603

Wall of hoof, SS7, k91
White eolumns of spinal cord,

White commissure of spinal cord, 76
line of hoof, ss9
matter of nervous system, 760
of spinal corl, 767
Wolf tooth, $64,71,395,400$

Niphoid eartilage, 2s, 49

Zone, epigastric, 411
hypogastric, 411
intermediate, of kidney, 55 S
mesogastrie, 411
Zonula ciliaris, sto
Zygomatic arch, 60, 73
process of frontal bone, 59 of malar bones, tis of maxillary bone, 65 of temporal bone, 60

$$
\because \text { ルणTA! }
$$

BINDINGA SEu: ~UI 4 ± 1977

```
                                    tmye siay ar igran!
```



```
    FAlE=
```



```
    E就㗭
```



```
    -2.2101 05% ?
    DufE=
```


\vdots
8

[^0]: ${ }^{1}$ This term is usually limited in its application to the earlier phases of development during which the tissues and organs are formed. The term ontogeny is used to designate the entire development of the individual. The ancestral history or phylogeny of the species is constituted by the evolutionary changes which it has undergone as diselosed by the geological record.

[^1]: It may be noted here that the diaphragm (which forms the partition between the thoracie and abdominal cavities) does not follow the eostal arches in its posterior attachment, so that the posterior ribs enter also into the formation of the abdeminal wall.

[^2]: ${ }^{1}$ It is unfortunate that there is no popular name for this part of the limb. The term "forefoot" is sometimes applied to it, bnt this leads to confusion, since the word "foot" has long been used in a different sense.
 ${ }^{2}$ The term "knee" as applied to this region is unfortunate, but the nsage is very firmly established and there is no other popular name.

[^3]: ${ }^{1}$ Also known as the exorripitals.
 ${ }^{2}$ Also known as the styloid or jugular process.
 ${ }^{3}$ Also termed the basi-occipital or basilar process.

[^4]: ${ }^{1}$ This foramen might well be called a canal, since it is an inch or more in length.
 ${ }^{2}$ The cavity so formed may be termed the sphenopalatine sinus. The sphenoidal sinus may be a separate cavity which communicates only with the ventral ethmoidal meatuses; this arrangement exists in about a third of the cases according to Paulli.
 ${ }^{3}$ Also called the internal orbital foramen.

[^5]: ${ }^{1}$ The term "ethmoid cell," borrowed from human anatomy, should not be retained, since it comnotes an entirely erroneous conception of these structures in macrosmatic animals, such as those under consileration.

[^6]: ${ }^{1}$ According to Martin, there are originally four centers, two anterior and two posterior (smaller) ones, which fuse in a variable manner.

[^7]: ${ }^{1}$ This is also known as the superior dental canal.
 ${ }^{2}$ This foramen is somewhaf variable in position, but is commonly opposite the corner incisor. smaller inconstant foramina are often present.

[^8]: ${ }^{1}$ This bone is also commonly called the inferior maxilla.
 ${ }^{2}$ In the Stutgart Anatomical Nomenclature (s. N. A. the body (Corpus) is the part which bears the teeth, and is divided into a pars incisiva and a pars molaris. The ramus is the rest of the bone. This mode of description is copied from the Basel Nomina Anatomira. It does not seem to the author to be well adapted to comparative purposes.

[^9]: ${ }^{1}$ This is also commonly called the inferior maxillary foramen.
 ${ }^{2}$ This is also termed the inferior dental canal.

[^10]: ${ }^{1}$ These correspond to the great cornua of man.

[^11]: ${ }^{1}$ Formerly termed the bicipital tuberosity.

[^12]: ${ }^{1}$ The name "intertuberal" is designative of the position of the groove. while the term "bicipital" has reference to its occupation by the tendon of the biceps brachii. The term "sulcus intertubercularis" is also in common use.

[^13]: ${ }^{1}$ Also known as the smaphoid.
 2 Also known as the semilunar or lunar.
 ${ }^{3}$ Also known as the cunciform.
 4 Also known as the pisiform and erroneously as the trapezium.

[^14]: ${ }^{1}$ Also known as the trapezium, and oiten erroneously called the pisiform.
 ${ }^{2}$ Also known as the trapezoid.

[^15]: ${ }^{1}$ Also known as the os magnum or capitatum.
 ${ }^{2}$ Also known as the unciform or hamatum.

[^16]: The small metacarpal bones vary much in length, thickness, and currature. In the majority of cases the medial bone is the longer; in other subjects the lateral one is the longer or there is no material difference. Sometimes the curvature is very pronounced, so that the distal end causes a decited projection. The distal end is very variable in size and may be a mere point; in other cases, esperially in large draft horses, it may present a prolongation which is regarded as the vestige of the digital skeleton.

[^17]: ${ }^{1}$ This bone is also called the small pastern bone or os coronar.
 ${ }^{2}$ This bone is also called the os pedis or eoffin bone.

[^18]: ${ }^{1}$ Formerly termed the pyramidal process. $\quad{ }^{2}$ Formerly termed the preplantar groove.
 ${ }^{3}$ Formerly termed the plantar groove and foramen.

[^19]: ${ }^{1}$ The upper and lower tivisions of the angle are sometimes termed the basilar and retrossal processes respectively.
 ${ }^{2}$ These are usually called the lateral eartilages, but this designation could not be retained. They have the same relation to the third phalanx that the cartilage of the scapula has to the latter bone, and are here named in similar fashion.

[^20]: ${ }^{1}$ Formerly called the os innominatum.

[^21]: ${ }^{1}$ The pelvic surface of the pubis is quite variable. In the mare and in geldings which have been castrated early the two pubic bones form a central depresion of variable depth and curvature. This depression is bounded posteriorly by two oblique convergent lines or ridges, to which the obturator internus muscle is attached. Xot rarely small eminences may be present along the symphysis.

[^22]: ${ }^{1}$ Also termed the astragatus or talus. ${ }^{2}$. Also termed the calcaneum or os calcis.

[^23]: ${ }^{1}$ Also termed the cuneiform parvum. ${ }^{2}$ Also termed the cuneiform magnmen s , tertium.

[^24]: ${ }^{1}$ Also termed the cuboid.

[^25]: ${ }^{1}$ The number of foramina here is variable. In exceptional cases the foramen which opens into the condyloid eanal is very small or absent; much oftener there are two, and sometimes three. In some cases there are two hypoglossal foramina. Thus as many as five foramina may be present here.

[^26]: ${ }^{1}$ This is termed the lacrimal sinus by some authors. It is similar in location and in the position of its orifice to the turbinate part of the frontal sinus of the horse with the important difference that it does not communicate with the frontal sinus in the ox.

[^27]: ${ }^{1}$ In the following descriptions of the separate bones an intermediaie type e. g., a fox terrier, -is selected, and the most striking differences in the brachycephalic and dolichocephalic breeds will be considered in the seetion on the skull ats a whole.

[^28]: ${ }^{1}$ The third bone was termed the phacoid in the eat by Strauss-Durckeim, and is regarded by some authors as the vestige of an additional digit, the prepollex.

[^29]: ${ }^{1}$ Also termed the inferior common ligament.
 2 Also termed the superior common ligament.

[^30]: ${ }^{1}$ In dissecting-room subjects these bursxe and the adjacent structures are commonly the seat of pathological changes. They appear to be the starting-point of "poll evil" and "fistulous withers." Subcutancous burse may be found over the ligament at the mithers.
 ${ }^{2}$ No natural line of demareation exists between the ligamentum nuchat and the lumbo-dorsal part of the supraspinous ligament, since the change from the elastic to the white fibrous structure is gradual.

[^31]: The capsule is further strengthened by a layer of oblique fibers which pass over the collateral ligament on fither side and end on the extensor tendon and the proximal extremity of the first phalanx. It may properly be regarded as fascia rather than ligament.

 Movements.-These are of the nature of flexion and extension, the axis of motion passing through the proximal attachments of the collateral ligaments. In the ordinary standing position the joint is in a state of partial dorsal flexion, the articular angle (in front) being about 140° to 150°. (In the hind limb it is about 5° greater.) Diminution of this angle (sometimes termed "overextension") is normally very limited on account of the resistance offered by the sesamoidean apparatus, but it varies considerably in amount in different subjects. Volar flexion is limited only by contact of the heels with the metacarpus. During volar flexion a small amount of transverse movement is pussible.

[^32]: ${ }^{1}$ These are termed the postero-lateral ligaments by M'Fadyean. Functionally they are suspensory ligaments of the navicular bone.

[^33]: ${ }^{1}$ Also termed the calcaneo-metatarsal ligament

[^34]: ${ }^{1}$ This seetion consists necessarily only of a brief statement of the most important differences in the joints of the other :mimads.

[^35]: ${ }^{1}$ These movements are best seen in man, in whom the back of the hand may be turned forward (pronation) or backward (supmation). In the dog the rotation is much restricted and is freest when the elbow is flexed.

[^36]: a, Superficial flexor tendon; b, deep flexor teudon; b^{\prime}, branches of b to accessory digits; c, c^{\prime}, amnular ligaments; $d-d^{\prime \prime \prime}$, ligaments of accessory digits; e, cruciare interdigital ligaments: f, f^{\prime}, spiral band around the flexor tendons of the accessory digits; g, abductor of accessory ,digit. (Ellen-berger-Baum, Anat. d. Haustiere.)

[^37]: ${ }^{1}$ Also known as the levator menti.

[^38]: ${ }^{1}$ Also known as the dilatator naris inferior.

[^39]: ${ }^{1}$ This muscle is also known as the stylo-maxillaris, stylo-mandibularis, etc.

[^40]: ${ }^{1}$ Also known as the transversus mandibule.

[^41]: ${ }^{1}$ Also termed the trachelo-mastoideus.

[^42]: ${ }^{1}$ This muscle is also known as the long costal, ilio-costalis, or transversalis costarum. The name given above was introduced by the International Commission for the Reform of Myological Nomenclature and appears worthy of general adoption.
 ${ }^{2}$ The lumbar part of this muscle is subject to variation. It may, in quite exceptional cases, extend as far as the ilium, and sometimes, on the other hand, it does not arise quite as far back as given above. In some subjects the origin can be traced distinctly to the tips of lumbar transverse processes.

[^43]: ${ }^{1}$ The muscle as here described includes the longissinnus dorsi et cervicis and the spinalis and semispinalis components, as the separation of these is largely artifieial in the horse.

[^44]: ${ }^{1}$ Also termed the erector coccy-

[^45]: The muscles in connection with the costal cartilages are sometimes distinguished as Mm . intercartilaginei; their direction is similar to that of the internal intercostal, and they cover the cartilages of the asternal rils more or less. At the ventral ends of some of the intercostal spaces there is a layer of longitudinal muscle.
 4. Retractor costæ.-This is a small triangular musele which lies behind the last rib, chiefly under cover of the serratus dorsalis.

 Origin. - The transrerse processes of the first three or four lumbar vertebre by means of the lumbar fascia.

 Insertion.- The posterior border of the last rib).
 Aetion.-To retract the last rib.
 Structure.-The musele arises by a thin aponeurosis. Its fibers are parallel to those of the adjacent internal oblique.

 Relations.-Superficially, the serratus dorsalis and external oblique; deeply, the transversus abdominis.

 Blood-supply.-Lumbar arteries.
 Verre-supply.-Lumbar nerves.
 5. Rectus thoracis.-This is a thin muscle which lies under cover of the deep
 ${ }^{1}$ The function of the intercostal muscles is still a subject of much discussion. The statements made above seem to represent the view most commonly held in regard to their action.

 - Also known as the transversus costarum or lateralis sterni.

[^46]: ${ }^{1}$ Formerly termed the foramen sinistrum. $\quad{ }^{2}$ Formerly termed the foramen dextrum.
 ${ }^{3}$ In order to get a clear idea of the relative positions of these foramina and of the form of the diaphragm, the thoracic surface of the latter should be examined in properly preserved subjects while the abdominal viscera remain in situ. It will be observed that the distances of the hiatus cesophageus and foramen renæ cav:ie from the vertebral column vary according to the fulness of the abdominal sisecra and the degree of contraction of the diaphragm. The statements given above are averages.

[^47]: ${ }^{1}$. Also commonly known as Poupart's ligament-based on a false historical allusion. It is in no proper sense a ligament, but is the inguinal part of the aponeurosis of the obliquus externus; it might therefore well be termed the lamina inguinalis.
 ${ }^{2}$ It is narrow and slit-like in the natural condition, but may appear oval in the dissectingroom, especially if the hind limb is drawn back and abducted.

[^48]: ${ }^{1}$ As might be expected, the cremaster usually undergoes more or less atrophy and is paler in the castrated subject. In the mare the muscle is very small, and ends in the connective tissue in the inguinal canal.

[^49]: The two rings do not correspond in direction, but diyerge laterally, so that the length of the canal varies greatly when measured at different points. The medial angles of the two rings are separated only by a distance equal to the thickness of the prepubic tendon (about a centimeter), lout the latcral angles are about seven inches (ca. 17.5 cm .) apart. The distance measured along the spermatie cord is about four inches (ca. 10 cm .). The medial angle of the subeutaneous ring is well defined and distinctly palpable at the side of the prepulic tendon; from here the direetion of the ring is traceable.

[^50]: ${ }^{1}$ The term canal is somewhat misleading; it is rather a slit-like passage or space between the two oblique muscles, since the inguinal ligament is that part of the aponeurosis of the external oblique musele which stretches between the tuber coxx and the prepubic tendon.
 ${ }^{2}$ The obliquity of the tendon and the angle which it forms with the pelvic floor are of elinieal importance in regard to manipulation of the fortus in olstetrieal cases. The slope varies in different subjects. In some cases the tendon forms about a right angle with the pubic bones.

[^51]: ${ }^{1}$ Also termed the pectoralis transversus or pars sternocostalis.
 ${ }^{2}$ Also termed the pectoralis parvis or pars prescapularis.
 ${ }^{3}$ Also known as the pectoralis magnus.

[^52]: ${ }^{1}$ Formerly termed the serratus magnus.
 ${ }^{2}$ It has been commonly stated that these muscles form a sort of sling in which the trunk is suspended. This is not quite correct as the two muscles do not meet ventrally. The arrangement is admirable, since the pull of the thorax on the muscles presses the scapulæ against the body wall.

[^53]: ${ }^{1}$ Also termed the coraco-humeralis.

[^54]: ${ }^{1}$ Also known as the coraco-ratialis or flexor brachii.
 ${ }^{2}$ In some cases the bursa communicates with the cavity of the shoukder joint.
 ${ }^{3}$ Also known as the humeralis obliquus s. externus and as the brachialis anticus.

[^55]: ${ }^{1}$ M'Fadyean and Vaughan term this musele the scapulo-ulnaris, while Arloing and Lesbre term it "Anconé accessoire dn grand dorsal." The above name seems to agree best with the chief insertion and action, although it certainly arises largely from the tendon of insertion of the latissimus dorsi.

[^56]: ${ }^{1}$ Ako known as the anconeus lateralis s. externus or caput medium.
 ${ }^{2}$ Also known as the anconæus medialis s. internus or caput parvum.

[^57]: ${ }^{1}$ Also commonly terined the extensor metacarpi magnus.

[^58]: ${ }^{1}$ Termed also the anterior extensor of the phalanges or extensor pedis.
 : This (formerly called the muscle of Phillips) is considered to represent the part of the common extensor for the fourth and fifth digits.
 ${ }^{3}$ Martin considers that this muscle (formerly termed the muscle of Thiernesse) represents the extensor indicis proprius and the part of the common extensor for the second digit.

[^59]: ${ }^{1}$ Aso known as the extensor metaearpi obliquus.
 ${ }^{2}$ Also known as the flexor earpi s. metacarpi internus or radialis volaris.
 ${ }^{3}$ Also known as the flexor carpi (s. metacarpi) medius or ulnaris medialis.

[^60]: ${ }^{1}$ Also known as the flexor carpi (s. metacarpi) externus or extensor carpi ulnaris. Morphologically it belongs to the extensor group.

 - Also commonly known as the flexor perforatus or superficial flexor of the phalanges.

[^61]: ${ }^{1}$ Also commonly known as the flexor perforans or deep flexor of the phalanges.
 ${ }^{2}$ This might appropriately be termed the carpal head (caput carpale) or tendinous head (caput tendineum). At its upper end it is broad, occupying the entire width of the space between the small metacarpal bones; below it becomes narrower and thicker. It is related in front to the suspensory ligament, and its posterior face, which is related to the deep flexor tendon, is covered by the deep layer of the carpal sheath.

[^62]: ${ }^{1}$ By most anatomists the portion inserted into the crest is termed the ghtue accessorius, Jut Lesbre considers this to be the deep glutens, homologous with the ghateus minimus of man. The portion inserted into the trochanteric ridge apparently represents the piriformis of man.
 ${ }^{2}$ Lesbre considers this to be the scansorius.
 ${ }^{3}$ Apparently the musele represents the biecps, together with part of the clateus superficialis of man. Itence the names, gluteo-biceps and paramero-biceps have been suggested.

[^63]: ${ }^{1}$ This muscle was incorrectly designated the adductor magnus hy Pereivall and Strangeways. Its name, however, is not at all descriptive of its strueture in the domesticated animals.

[^64]: ${ }^{1}$ This has been termed by various authors the adductor parvus or brevis.
 ${ }^{2}$ Termed by various authors the adductor magnus or longus.

[^65]: ${ }^{1}$ Aso known as the ischio-femoralis.

[^66]: ${ }^{1}$ The iliac head has been deseribed as a separate musele, and termed the piriformis. This does not seem desirable, especially since it is probable that the homologue of the piriformis of man is that portion of the middle gluteus which is inserted into the trochanteric ridge.
 ${ }^{2}$ The name is based on the arrangement in man, in whom the musele usually consists of two fascieuli forming a groove between them for the tendon of the obturator internus. In the horse it is usually undivided at its origin, but toward the insertion the upper part is separated from the rest of the muscle or is readily isolated. The musele is subject to much variation in size. When well developed, the insertion extends from the proximal end of the trochanterie fossa to a point just above the femoral attachment of the biceps femoris; in such eases the upper part, which occupies the space behind the hip joint between the gluteus profundus and obturator externus, is much thicker than the remainder, which covers the latter musele. The gemellus may be regarded as the extrapelvic head of the obturator internus (Gegenbaur).

[^67]: ${ }^{1}$ IIso known as the peroneus or the lateral extensor of the phalanges. Lesbre considers it to be the homologue of the peroneus brevis of mau and other pentadactyls.
 ${ }^{2}$ It seems inadvisable to retain the old term, tendinous part of the flexor metatarsi, since it is inapplicable to other domesticated animals in which the musele is well developed e. g.. pig). Schmaltz uses the term tendo femoro-tarseus, and Varaldi and Lesbre designate it the femorometatarsal cord. The name peroneus anterior has also been proposed.

[^68]: ${ }^{1}$ In surgical works the medial branch is termed the cunean tendon; it is sometimes resected for the relief of bone spavin.

[^69]: ${ }^{1}$ The soleus is sometimes included with the two heads of the gastrocnemius under the name triceps sure.
 ${ }^{2}$ This is also known as the flexor pedis perforatus or superficial flexor of the phalanges.
 ${ }^{3}$ This musele is also commonly termed the flexor pedis perforans.

[^70]: ${ }^{1}$ The sternal part is clearly separable from the costal part. The costal attachment is mueh higher posteriorly than in the horse, thus diminishing the capacity of the thorax in comparison with that animal. The last digitation is thus some seven or cight inches (ca .1 s to 20 cm .) above the corresponding digitation of the transversus abdominis. There are small intermediate digitations at the last two intercostal spaces.

[^71]: ${ }^{1}$ It may be remarkel that, in addition to the extension action, the common extensor approximates the digits, while the others tead to abduct them.

[^72]: ${ }^{1}$ Movements of individual digits are specified with regard to the axis of the manus (par), and not to the median plane of the body.

[^73]: ${ }^{1}$ The term viscus is applied in general to the organs which are contained in the body cavities. It is usual to exclude the heart, except when considering the thoracie organs topographically. Certain other organs which do not belong to these systems are usually considered with them as a matter of convenience.
 ${ }^{2}$ But unicellular glands are recognized in lower forms, and in higher forms the goblet-cells of many mucous membranes have the same function. Other organs which are not epithelial in structure are commonly classed as glands; such, for example, are the lymph glands and nodules, the thymus, and the spleen. They are usually termed ductless or vascular glands, and are described with the organs with which they are associated anatomically.

[^74]: ${ }^{1}$ The term "mouth" is commonly used to signify either the cavity (Cavum oris or the entrance to it (Rima oris).

 25

[^75]:

[^76]: A small muscular hand sometimes arises on the thyroid cornu of the hyoid bone and ends on the tendon of origin of the stylo-glossulu. In some eases a similar band arises higher up, with and on the hyo-glosius.
 2. Hyo-glossus.-This is a wide, flat muscle, somewhat thicker than the pre-
 ${ }^{1}$ This distinction is more or luss conventional. It is evident that much of what may appear on cross-sections of the tongue to be intrinsic musele is in reality a part of the extrinsic musculature. The arrangement is further complicated by the esistence of bundics rumning in various directions, intercrossing of bundles, and the breaking up of the systems by masses of fat.

[^77]: ${ }^{1}$ It may be possible to recognize in this muscle three parts, which would eorrespond to the basen-, kerato-, and chondro-glossus of man.
 ${ }^{2}$ They are also popularly spoken of as "milk" tecth.

[^78]: ${ }^{1}$ Ellenberger found, as the result of extensive observations sook subjects . that ahout 2 to 3 per cent. of mares have erupted canines in both jaws; that 6 to $\overline{7}$ per cent. have them in the upper jaw; while 20 to 30 per cent. have them in the lower jaw. The numerical variation in the above formula restults from the fact that the first premolar ("wolf-tooth" is often absent and further that it is doubtful to what set it belongs when present. It is commonly not included in the enumeration.

[^79]: ${ }^{1}$ The student is advised to amplify these very general statements by the examination of heals of subjects of varying ages. It may also be noted that the position of the septum between the two divisions of the sinns varies much.

[^80]: ${ }^{1}$ In some eases there is a well-marked triangular facial process, which covers the temporomandibular joint, the facial nerve, and the transverse facial vessels.
 ${ }^{2}$ Formerly known as Stenson's or Steno's duct.
 ${ }^{3}$ The term "submaxillary," although firmly established by usage, is a misnomer.

[^81]: ${ }^{1}$ Formerly known as Wharton's duct.

[^82]: ${ }^{1}$ This method of division, although long in use, is practically valueless for accurate description. It is mentioned here chiefly because agrement on a more useful topographic method has not been arrived at.
 ${ }^{2}$ Only a general account of the arrangement of the peritoneum is given in this section, since a detailed description cannot be understood withont a knowledge of the viscera concerued.
 ${ }^{3}$ It is neressary not to confuse the peritoncal cavity with the abdominal cavity. The organs are all extraperitoneal and the peritoneal cavity contains only the scrous fluid.

[^83]: ${ }^{1}$ Also known as the gastro-hepatic omentum.
 ${ }^{2}$ Also known as the gastro-colic omentum.

[^84]: ${ }^{2}$ The position of the cardia varies of eourse with the exeursion of the diaphragm. It is usually an inch or more (ca, 3 cm .) to the left of the median plane and ventrad to the vertebrat end of the fourtoenth rib. When the diaphrasm is eontracted the cardia may be six inches (ca. 15 cm .) below the level of the spine; when the diaphragm is retaxed, theintervat may be reduced to about two inches (ea. 5 cm.)

[^85]: ${ }^{1}$ This occlusion is usually so complete that distention of the stomach hy air or fluid forced in through the pylorus may be carricd far enough to rupture the stomach without ligating the eesophagus.

[^86]: ${ }^{1}$ No natural line of demarcation exists, but there is a marked increase of the thickness of the wall toward the terminal part. Other differences will be noted in the further description.
 : The duodenum commonly curves around the periphery of the right kidney. from which it is separatel by the base of the cocum, but in some caser it is in contact with the rentral surface of the kidney: It may cross the median plane ventral to the second lumbar vertebra or further back, depending apparently on the fulness of the cecum.

[^87]: ${ }^{1}$ It will be noticed that the mesoduotenum is not continuous with the great mesentery, but ends by a free edge. The mesentery hegins on the opposite surface of the end of the duodeuum. so that the bowel is attached by two peritoneal folds at this point.

[^88]: ${ }^{1}$ The forward extent of the base of the cæcum is subject to some variation. It may be noted that the blind end is not the most anterior part.

[^89]: ${ }^{1}$ The anatomical arrangement gives no support to the view which is sometimes expressed that ingesta may pass directly from the ileum to the colon.

[^90]: ${ }^{1}$ The position of the origin of the great colon is variable, and one may easily get a wrong impression on account of the peculiar arrangement of the bowel here. The colon usually presents a saccular dilatation at the lesser currature of the base of the cexum, which may he mistaken for its origin. The real origin is a constricted part or neck anterior to the sacculation. Thus the colon passes at first backward and then curves sharply downward and forward. Schmaltz has proposed the name "restibulum coli" for this sacculation.

[^91]: ${ }^{1}$ Abnommal displacement, c. If, torsion of the left parts, is not rare, and is liable to produce death if not promptly reduced.
 ${ }^{2}$ The length of the left parts yaries and this appears partly to account for the differenees to be found in the arrangement of their posterior parts and the pelvic Hexure. In subjects in which these parts of the colon are relatively long, their posterion ends are usually bent to the right aconsi the pelvic inlet so that the prelvic flexure lies to the right of the inket. In few cases the left parts of the colon seem relatively short and the provice flexure lies at the pelvie inlet. Other dispositions are encountered.

[^92]: ${ }^{1}$ The position of the funnel-shaped termination of the great colon and the origin of the small colon is fixed, and this fact is of climeal importance in regard to impaction, which is not rare here. In horses of medium size this part of the bowel ean be palpated per rectum when distended.
 ${ }^{2}$ There is no natural line of demarcation between the small colon and rectum: the plane of the pelvie inlet is selected as the division for conrenience of description.

[^93]: ${ }^{1}$ The anturior part of the reetum is variable in position and relations. The amount eovered by peritoneum dorsally ath laterally is very variable, and appears to be in inverse proportion to the fulness of the bowel.

[^94]: ${ }^{1}$ This corresponds to the head of the pancreas of man.

[^95]: ${ }^{1}$ Formerly termed the canal of Wirsung.
 ${ }^{2}$ Formerly called the ductus pancreaticus minor or duct of Santorini.

[^96]: ${ }^{2}$ These impressions are not evident on the soft organ. In hardened material they are clearly mapperl out, althongh, of course, variable in size, in conformity with the degree of fulness of the various hollow viscera. The cecal impression may not be evident if, as often happens in old horses, the right lobe of the liver is much atrophied.

[^97]: ${ }^{1}$ Flower ant Ruge describe the mammatian liver as being primarily divided by the umbilical fissure into two parts, the right and left lobes. Socondary fiswures on cither sile may suldivide each of these primary lobes. (on this basis we may recognize in the liver of the horse right lateral, right central, left central, and left lateral lobes. In the young foal these four lobes are distinetly recognizable. The two central lobes would correspond to the central or middle lobe of the foregoing description, and the right central tobe would be the equivalent of the gualrate lobe of man.

[^98]: ${ }^{1}$ The hepatic veins may be recognized on section from the fact that they remain open, being connected elosely with the parenchyma.
 ${ }^{2}$ The ductless glands are organs which elaborate snbstances that pass directly into the veins or lymphatics, instead of being conveyed away by ducts. This process is termed internal secretion. The ductless glands include the lymph glands, which are described with the organs of cireulation; the thyroid and thymus bodies, deseribed usuatly with the respiratory organs; the adrenal or suprarenal bodies, deseribed with the urinary organs; the pineal and pituitary bodies, deseribed with the brain; and the spleen, deseribed with the digestive system as a matter of convenience. The spleen is not, strictly speaking, a gland at all: it is not epithetial in origin or structure, but is mesenchymatous.

[^99]: ${ }^{1}$. Inso known as the foramen of Winslow.
 ${ }^{2}$ The passage is subject to a good deal of variation in caliber and is sometimes occluded.

[^100]: ${ }^{1}$ In dissecting-room subjects (which are usually aged) the omentum often exhibits pathological changes, such as adhesions, rents, tumors, formation of twisted strands, etc.

[^101]: ${ }^{1}$ It has been customary to term the sass left and right respectively, but these do not represent the relations as they exist in situ and as they are presented on frozen sections. When the stomach is removed in the soft state, it loses its shape and the torsal and ventral sues of the rumen betome left and right.

[^102]: ${ }^{1}$ The relative size of the omasum is subject to considerable variation. It may extend back to a point opposite the ventral fourth of the twelfth rib. The ventral curvature is usually opposite to the ninth, tenth, and eleventh costal cartilages, but in some suljects it faces chiefly forward and is opposite to the ventral third of the eighth or ninth rib.
 ${ }^{2}$ The greater eurvature may be in contact in part with the eostal arch, but is chiefly medial and ventral to it. It usually bends dorsally near the last costal cartilage and runs upward and forward to the eleventh intereostal space.
 ${ }^{3}$ Adhesion of the retieulum to the diaphragm is frequently present, but is pathological; the same is true in regard to adhesion to the liver.

[^103]: ${ }^{1}$ The position of this fold naturally varies with the degree of fulness of the reticulum. When the latter is full, it may extend back in part to the eighth intercostal space.

[^104]: The arrangement is in fact by no means so simple as might be inferred from the above brief statement, and mueh variation from the typical disposition is present. Along the furrows the fibers of the external layer are disposed more or less obliquely or even vertically in part: a superficial part of the layer bridges over the furrows (with the fat and ressels eontained thercin), while the deeper fibers extend into the pillars. The fibers of the inner layer on approaching the furrows change to an oblique or even horizontal direction. On entering the ehief pillars this layer becomes

[^105]: ${ }^{1}$ In formalin-hardened material there is sometimes a constriction in front of the termination of the ileum. This might be regarded as the demarcation between the cecum and colon. The opening of the ileum is directly forward, so that material from it enters the origin of the colon. The posterior free part of the cæcum is naturally variable in position; it may be bent ventrally, so that the blind end faces forward.

[^106]: ${ }^{1}$ The liver of the ox might be regardel as consisting of dorsal, ventral, eaudate, and papilary lobes. Pathologieal adhesions of the ventral part of the liver to the diaphragm and reticulum are often present in dissecting-room subjeets.

[^107]: Permanent
 1 to $1^{1}{ }_{2}$ year:
 11.2 to 2 years 212 to 3 years :3 3 , to 4 years

 112 to 2 years
 3 months (lower), 5 months (upper
 9 to 12 months
 112 to 2 years

[^108]: ${ }^{\text { }}$ The canines of the pig are "permanent pulp" teeth and therefore capable of eontinued growth, and are without roots in the strict sense. The convex surface is eovered with enamel, the concave with cement.
 ${ }^{2}$ It is often absent in the lower jaw.

[^109]: ${ }^{1}$ It is usually stated that the cardiac end is funnel-shaped, but it is not so in formalin-bardened cadavers nor in frozen sections. The hiatus cesophagus is a long slit in the right crus of the diaphragm, and the terminal part of the asophagus, which lies in it, is flattened transversely.

[^110]: ${ }^{1}$ Also known as the orbital gland.

[^111]: ${ }^{1}$ In large dogs ($f . g$. . St. Bernard or (ireat Dane) the ceecum may rearh a length of 45 cm . (measured along its curves) and a diameter of 3 cm . Its pesition is somewhat rariable. It may be closer to the lateral wall, or mere medial than is stated above. Its anterior end is usually in a transverse plane through the ventral end of the last rib if the stomach is not very full.
 ${ }^{2}$ The arrangement of the colon is variable. The transverse part may be quite long and exteml aross from the angle of junction of the two branches of the panereas to the dorsal end of the spleen. On the other hand, a transverse part may be absent, the colon forming instent an acute angle or flexure. When the stomach is empty and contracted, the transverse part of the colon may be separated from the ventral wall by the omentum only.

[^112]: ${ }^{1}$ A nose (Nasus extermus). such as exists in man, forming a projection distinctly marked off from the rest of the face, does not exist in the domesticated animals.
 ${ }^{2}$ These terms should be abandoned, as they tend unncessarily to complicate the description as well as to miseonception with regard to function.

[^113]: 1, Mylo-hyoideus: 2, stylo-glossus; 3, hyo-glossus; 4 . genio-glossus; 5 , liggual process of hyoid bone. An arrow points to the assomaxillary opening. The projecting edge just above the arrow point is the aaterior margin of the fronto-maxillary opening.

[^114]: ${ }^{1}$ Commonly known as the organ of Jacolson.

[^115]: ${ }^{1}$ Caleareous deposits are present in the body of the thyroid eartilage even before adult age is reached. Scheier (by use of X-rays) found complete ealcification of the thyroid in two mares eight and ten years of age; in the former the process also involved a large part of the lamina and the adjacent part of the arch of the cricoid.

[^116]: ${ }^{1}$ At its origin the trachea is almost circular in cross-section and the average diameter is ahout two and a quarter inches (ca. 5.5 cm . . It soon becomes flattened dorso-ventrally, so that the transverse diameter may be nearly three inches (ca. 7 cm .) and the dorso-ventral about two inches (ca. 5 cm .). In the thorax the diameters become more nearly equal, and sometimes the dorso-ventral diameter is the greater; this is the case where the aorta crosses the trachea.

[^117]: ${ }^{1}$ The stutent should liear in mind that these terms are employed simply as a matter of convenience in description; all the parts of each pleural sac, though differently named, furm a continuous whole.
 ${ }^{2}$ Here the mediastinal pleura does not extend continuously from the dorsal to the ventral wall, but eonsists of dorsal and ventral parts.

[^118]: ${ }^{1}$ The apertures do not exist in the fortus, and are sometimes absent in the adult subject. Some of them are doubtles produced in dissection by the necessary disturbante of the parts. The character of the pleura here probably explains the dinical observation that in the horse fluid exudate resulting from unilateral plearisy is usually pocent in both pleural sacs in like amount.

[^119]: No idea of the natural form and size of the lung can be obtained from a specimen in this state, nor can an accurate conception be gained by examination of the soft inflated organ. The lungs should be hardened in situ for this purpose, and if the process has been successful they coniorm in every detail to the structures with which they were in contact.

[^120]: ${ }^{1}$ The ventral and basal borders may be taken together under the term margo acutus.

[^121]: ${ }^{1}$ It must not be inferred from the neressarily brief account here given that the two sets of ressels are quite distinct. On the contrary, competent observers state that numerous small branches of the bronchial arteries anastomose with pulmonary vessels.

[^122]: ${ }^{1}$ The cervicat part of the gland is very variable. The thoracic lobe of one side may have no cervical continuation; the other lobe may then give off a single prolongation which hifurcates. The thoracic part in the new-horn foal occupies most of the space which is later taken up by the apices of the lungs. Its two lobes are in contact, and its deep surface is molded on the anterior part of the pericardium and the large vessels. In excoptional cases a considerable remnant of the thymus is present in adult or even old subjects; this is usually true only of the thoracic part, but it may extend into the neek a short distance; but a large lymph gland must not be mistaken for thymus.

[^123]: The diaphragmatic line of pleural reflection differs considerably from that of the herse in conformity with the differenee in the costal attachment of the diaphragm. It begin orer the space between the seventh and eighth costak eartilages, crosess the wentrak end of the eighth rib, and extends in a very slight curve upward and backward, so that it crossers the twelfth rilh a little alove its midele and reaches to the last rib a short distance from its vertebral end.

 The pleura forms a cul-de-sac alongside of the body of the last thoracic vertebra. The right pleural sae extends forward on the deep face of the scatenus a short distanec beyond the first rih).

[^124]: ${ }^{1}$ It has been eustomary to consider the cardiac lobe to consist of two parts, as shown in Fig. 479. But the apical bronchus diviles into two branches, the posterior of which gees to that division of the lung which has been regarded as bebonging to the eardiac lobe; furthermore, these parts of the lung are sometimes fused. It therefore appears tesirable to include both as apieal lole.

[^125]: ${ }^{1}$ The costal attachment of the diaphragm is lower than in the other animals, thus further increasing the capacity of the thorax (vide diaphragm).

[^126]: ${ }^{1}$ The dorsal surface, being largely in contact with the diaphragm, slopes downward in front; thus its anterior part is about three inches (ca. 6-8 cm.) ventral to the dorsal part of the seventeenth rib.
 ${ }^{2}$ In exceptional cases a considerable area-as much as the outer and posterior third-of the surface may have a peritoneal covering. In the new-horn foal a large part is so covered; this is apparently due to the small size of the cxcum and the small area of attachment of its base.

[^127]: ${ }^{1}$ The amount of perirenal fat varies; in animals in good condition it may entirely conceal the sidneys: in such cases the impressions produced by contact of the kidney with contiguous structures may be indistinet.

[^128]: ${ }^{1}$ The occurrence of acessory renal arteries is not at all rare. They may come from various branches of the arta ($c . g$. , posterior mesenteric, spermatic, circumflex iliac) and enter the posterior part of the gland.

[^129]: From the standpoint of comparative anatomy the term "adrenal" is decidedly preferable to "suprarenal."

[^130]: The right kidney measures about 8 or 9 inches (ea. 20-22.5 em.) in length, 4 to 5 inches (ca. $10-12 \mathrm{~cm}$.) in width, and $2^{1} 2$ to 3 inches (ea. 56 cm .) in thickness. The left kidney is one or two inches (ca. 2 to 5 cm .) shorter, hat its posterior part is much thicker than the right one.

[^131]: ${ }^{1}$ When the rumen is full, the left kidney (which is attached by a short mesentery) usually lies entirely to the right of the median plane, and is ventral to the third, fourth, and fifth humbar transwerse processes. The primitive dorsal surface has become ventro-medial, and is somewhat flattened by contaet with the rumen.

[^132]: At the anterior extremity there is often a sessile or peduneulated sac which contains a elear fluid; this is the appendix testis, from which a thread-like process extends baekward toward the ductus deferens. It is regarded as a remnant of the Müllerian duct of the embryo.

[^133]: It has been customary to describe thre layers of fascin, in conformity with the acomonts given in text-bows of human anatomy. These are: (1) The intecolummar or spermatic faseris, derived from the margin of the extemal ingumal ring; (2) the ermasteric fascia, derivet from the internal obliquic muscle; (3) the infundibuliform fisema, derived from the fascia transversalis. The first 1 wo ennot be distinguished by tissection and the third is (in the serotum) fused with the pariotal peritonemo of the tumea vaginalis.
 (4) The parietal layer of the tunica vaginalis.-This is a fibro-sorous sac which is contimuse with the parietal peritonem of the alolomen at the internal inguinal ring. It is thin above, but is thick in its serotal part, where it is strengthened by fibrons tissue (Lamina fibrosa) derived from the transversalis faseia. It will be described further under the caption tunica vaginalis. ${ }^{2}$
 ${ }^{1}$ This is a remnant of the gulsernaculam test is of the fortus.
 ${ }^{2}$ The tunica vaginalis is not a part of the scrotum in the strict or narrow sense of that term, but is induled here om pratetical grounds.

[^134]: ${ }^{1}$ The term "ampulla" is not entirely satisfactory, since it is likely to be interpreted to mean a dilatation. There is no increase here in the lumen of the tube, and the increase in size is caused by a thickening of the wall, due to the presence of numerous branched tubular glands. The term "par. glandularis," suggested by schmaltz, seems worthy of adoption.

[^135]: Confusion has arisen from the use of the term abdominat or internal inguinal ring in two senses. The term is userd to designate the abdominal opening of the inguinal canal, but it is also often applied to the opering of the cavity of the tumiea vaginalis. It shoudd not be used in the latter sense. The peritoneal ring at which the eavity of the tuniea vaginalis opens into the general peritoneal sar is distinguished by the name vaginal ring. It is four or five inches (ea. 10 to 12 cm .) from the linea abba, and two or three inches (ca. 6 to 5 cm .) in front of the ilio-pectineal eminence. In stallions it will usually admit the end of the finger readily, but it may be

[^136]: ${ }^{1}$ Gometimes one or both of the vesiculte are very large in the gelding. The writer has sedn four eases in the dissecting room, three of which were bilateral, the ot her unilateral. The vesicula resembled the urinary bladder in appearance aul contained about at quart of thick, amber-colored secretion.

[^137]: ${ }^{1}$ It has heen shown that the eavernous spaces of the glans penis receive blood exchusively from veins which rome from the penile baver of the prepuce. This may areount for the fact that the glans reaches its extreme size during crection later than the corpus cavernosum penis.
 ${ }^{2}$ Also termed the crector penis.

[^138]: ${ }^{1}$ In the sheep and sometimes in the ox there is a m. ischio-bulbosus which eonsists of fibers that extend across the initial part of the hulbo-eavernosus. Fibers which extend from the ischial arch over the bulbourethral gland form the m . ischio-glandularis. A urethro-eavernosus muscle is sometimes present; it consists of fibers which arise on the urethra near the origin of the bulbocavernosus and end on the latter and the ischio-cavernosus.

[^139]: ${ }^{1}$ These muscles are subject to a good deal of variation. The retractor may be absent. Many fibers come in from the cutaneus on either side, dip under the protractor, and are inserted into the skin just behind the preputial opening. The homologue of the protractor is present in the cow.

[^140]: ${ }^{1}$ When hardencl in situ, they are in great part three sided, with rounded edges. They are it contact with each other to a eonsiderable extent and cover the urethra dorsatly and laterally: The wrethral musele partly eovers their lateral surfaces.

[^141]: ${ }^{2}$ These terms apply properly only when the adjacent viscera are removed and the ovaries are actually "suspended" by the broad ligaments. When the orary is in its natural position, the surfaces are usually dorsal and ventral, the former corresponding to the "lateral" surface if the free border is directed" outward, to the "medial" if the free edge is medial.

[^142]: ${ }^{1}$ Also known as (iraation follicles.

[^143]: ${ }^{1}$ Hess gives the folloring average measurements of the oraries of 95 cors: Length of right, 4.3 cm. ; of left, 3.51 cm. ; width of right, 2.8 cm .; of left, 2.36 cm . Zieger found that the right one was larger than the left in 65 out of $\overline{i 5}$ cases.

[^144]: ${ }^{1}$ Also known as caruneulæ uterinæ.
 ${ }^{2}$ These tubes are remnants of the Wolffian duets, and, like other fotal vestiges, are very variable. Röder states that the right canal was absent in over 52 per cent., the left in only 22 per cent., of the cows examined by him. In some cases they may be traced in the broad ligaments for a variable distance toward the ovary. They are of clinical interest in that eysts frequently form along their course.

[^145]: ${ }^{1}$ It should be noted, howeser, that the lungs also receive arterial blood through the systemic bronchial arteries. This blood is returned in part by the bronchial veins to the right atrium (indirectly), in part by the pulmonary wins to the left atrimm.

[^146]: ${ }^{1}$ The term chyle is often applied to the hymph carried by the efferent vessels of the untestine when it contains products of digestion, and these vessels may be designated accordingly as lacteals or chyle vessels.

[^147]: The exact relationship hetween the lymphatic capillaries and the tissue spaces is still a matter of controversy: It is held by some that the lymph vessels are in direet communication with the tissuc spaces, while others maintain that the lymphatics are complete closed tubes. Communication between the spaces and vessels is in gencral very free. Mall has slown that grannles injected into the hepatic artery are returned by the lymphatics as well as by the veins, and intramuscular injections will enter the lymph vessels of the tendon in spite of the alsence of lymphatirs in muscle.

[^148]: ${ }^{1}$ Also termed the atrio-ventricular or auriculo-ventricular groove.
 ${ }^{2}$ Also termed the interventricular grooves.

[^149]: ${ }^{1}$ Also termed the right auricle.
 ${ }^{2}$ Nlso temed the auricular appendix.

[^150]: The number and the arrangement of the pulmonary veins are variable. They may be five to nine in number. The largest vein is posterior: it is formed by the union of veins from both lungs. Esually three veins of considerable size, which lie above the posterior vena cava, enter close together on the right, and three or four open close to the ridge which projects from the roof at the base of the auricle.

[^151]: ${ }^{1}$ In some cases there are four cusps, and very rarely only two.
 ${ }^{2}$ These are also known as the sinuses of Valsalva.
 ${ }^{3}$ Also termed the left auricle. ${ }^{4}$ Also termed the auricular appendix. 40

[^152]: ${ }^{1}$ These nodules are also termed the corpora Arantii.

[^153]: ${ }^{1}$ These vesseds will be described later in their systematic order.

[^154]: ${ }^{1}$ There is a depression in the interior of the artery which corresponds to the attachment of the lig. arteriosum, and in some cases the latter has a very small humen.

[^155]: ${ }^{1}$ In some cases the artery is tou low to toum the exsophagus.

[^156]: ${ }^{2}$ The artery sometimes emerges through the second intercostal space.
 ${ }^{2}$ In some eases the last cervical transverse process has a formen transversarium, through which the artery passes.

[^157]: ${ }^{1}$ In very rare cases there is no truncus hicaroticus. The two carotid arteries then arise separately from the brachiowphatie, the left one first, and the right one an inch or more further forward.
 ${ }^{2}$ A small nodule is present in the angle of division. This is the carotid body or glomus caroticum.

[^158]: ${ }^{1}$ The relation to the guttural pouch is not constant. In some eases especially when the head and neck are extended-the artery lies behind the pouch. The backward extension of the latter is variable.
 ${ }^{2}$ The branch to the mandibular gland (A. glandule mandibularis dorsalis) may come from the external carotid or the posterior meningeal artery.
 ${ }^{3}$ It is also known as the prevertebral; it often comes from the posterior meningeal artery.
 ${ }^{4}$ Also termed the mastoid artery.

[^159]: ${ }^{1}$ The infraorbital artory is usually small at its emergence upon the face, but in some cases it is rather large and may partially replace the superior labial and lateral nasal arteries.
 ${ }^{2}$ The term axillary is often applied to the artery from the first rib to the point of origin of the subscapular artery, and the name brachial is given to the artery beyond this.

[^160]: ${ }^{1}$ This vessel may be double, or be represented by one or more branches of the inferior cervical artery:
 ${ }^{2}$ Also termed the prehumeral artery:

[^161]: ${ }^{1}$ This vessel is also termed the large or palmar metacarpal artery.
 ${ }^{2}$ The terminal part of the digital artery has been termed the plantar artery.
 ${ }^{3}$ Also termed the perpendicular artery.

[^162]: ${ }^{1}$ The olliteration in the adult extends a variable distane from the vesical end toward the origin, but usually involves completely only a small part.

[^163]: ${ }^{1}$ Also termed the ischatic artery.

[^164]: ${ }^{1}$ The artery may be double in part or throughout. It may join the popliteal artery. The S-shaped curve may be absent and the medial tarsal be the direct rontinuation of the recurrent tibial artery.
 ${ }^{2}$ The part of the arterial trunk which is on the dorsal surface of the tarsus may be distinguished ly the term A. dorsalis pedis.
 ${ }^{3}$ In some cases the peroneal artery is larger than usual and forms an anastomotie arch with the lateral tarsat in the distal part of the leg.

[^165]: ${ }^{1}$ Most of the veins are depieted in the illustrations of the section on the arteries, to whieh referenfe is to be made. Many satellite veins which are homonsmous with the arteries which they aecompany, and present no important special features, are not deseribed here.

[^166]: ${ }^{1}$ In Chauveau-Arloing-Lesbre the statement is made that " the bronchial veins, which ramify on the bronchi like the arteries of which they are satellites, open into the great coronary vein very near its mouth, after having united to form a single vessel, which sometimes opens directly into the atrium." The arrangement is not illustrated. Ellenberger and Baum state that the bronchial and oesophageal veins open into the vena azygos separately or by a common trunk. Martin describes a short broncho-osophageal trunk, but the vein which he figures as the bronchial does not come from the lungs, but is a small mediastinal vessel. The author finds such a vessel usually entering the terminal part of the asophageal vein, but no distinct bronchial vein in the horse. The statement and figure in Bossi's recent work agree substantially with those of the German authors.
 ${ }^{2}$ There is usually only one jugutar vein on each side in the horse, but in some cases there is an internal or deep jugular vein which accompanies the carotid artery and ends at the confluence of the external jugulars. N'Fadyean records a case in which the vein lay on the deep face of the omo-hyoideus with the carotid artery. This would appear to be an instance of remarkable development of the internal jugular in place of the usual external jugular vein.

[^167]: ${ }^{1}$ On account of the existence of this cranial affluent the term cranio-occipital has been proposed for the venous trunk.
 ${ }^{2}$ The venous angle formed by this junction indicates the position of the thyroid gland.

[^168]: ${ }^{1}$ It is also termes the vena corporis callosi major.
 ${ }^{2} \mathrm{~A}$ small anterior intereavernous sims may monneet the two cavernous simuses in front of the pituitary gland. Nohiliostates that he has seen the cavernous simus having a blind anterior end, the ofhthalmic vein passing laterally to the ventral petrosal sinus.
 ${ }^{3}$ These are termed the subsphenoidal confluents by Chauveau and M'Fadyean.

[^169]: $\Gamma{ }^{1}$ The place and mode of termination are quite variable. It may disappear from the surface of the thigh at any point ahove the distal third. In some cases it passes through the anterior part of the gracilis insteasl of dipping in between that muscle and the sartorius, and more rarely it joins the external pudic vein at the origin of the gracilis.

 2 The arrangement here is subject to variation. Some authors regard the ascending branch of this description as the trunk, and the connection with the saphenous as an anastomotic branch. The latter is usually, so far as size is concernet, the trunk.
 ${ }^{3}$ The Jarge size of this vein, the thimess of its wall, and the fact that it is separated only by a thin layer of muscle (lateral part of tibialis anterior) from the deep peroneal nerve should be noted with reference to section of that nerve. The vein is sometimes markedly varicose in the proximal part of the leg.

[^170]: ${ }^{1}$ The lymph vessels of these organs appear to vary considerably in their mode of termination, and the arrangement newds further study. Some lymph vessels from the stomach, liver, and spleen open direetly into the cistem.

[^171]: ${ }^{1}$ Much confusion exists in the terminology used in regard to these glands and the next group. The terms here recommended appear to the author to be the best, all things considered. The pharyngeal and anterior cervical glands are all subparotid in the horse.
 ${ }^{2}$ Abscess here can be reached readily by an incision between the vein and the omo-hyoideus.

[^172]: ${ }^{1}$ In rare cases two or three of these glands are found behind the ring.

[^173]: ${ }^{1}$ It is difficult to make the arrangement of these ressels clear in a loricf textual description, but a reference to the sehematic figure will explain the main facts.

[^174]: ${ }^{1}$ This vessel may arise instead from the rete tarsi dorsale.
 ${ }^{2}$ Most of the differences in the veins of the ox are correlated with those of the arteries of which they are satellites, and will not be described. The account here given consists chiefly of those differential features which could not be deduced from a knowledge of the arteries.

[^175]: Many other vatriations have been dessribed. In the anterior mediastinum there may he thete or even four ducts (with comecting brauches), which usually unite just before the lym-phatico-venous opening, but may open separately.

[^176]: ${ }^{1}$ Also commonly termed the retropharyngeal glands.

[^177]: ${ }^{1}$ Baum notes the curious fact that in many cases in which he injected the lymph vessels of the diaphragmatic lobes the vessels went around the dorsal gland without entering it.
 ${ }^{2}$ Attention was recently drawn to this gland by Stroh, who designated it the xiphoid gland. I_{1} is not always present.

[^178]: ${ }^{1}$ Baum distinguishes those alone the pessels as log. Jumbales aortices. and terms those in the intertransyerse spaces lgg. lumbales proprix, and regards them as corresponding to the dorsal mediastinal and intereostal glands respectively.

[^179]: ${ }^{1}$ This gland, designated by Chauveau-Lesbre as external iliac, is here named in accordance With the observations of Baum, who found that it, together with the deep femoral gland, derives its afferent vessels from substantially the same region as the deep inguinal glands of the horse.
 ${ }^{2}$ When enlarged, they can easily be felt, and when much enlarged, may produce a prominence.

[^180]: ${ }^{1}$ These glands are often difficult to fand in the large mass of fat in which they are usually embedded; they are not always present.

[^181]: ${ }^{1}$ Limitations of space and the purpose of this work preclude consideration of the finer strueture of the nervous system, for which ample literature is available.

[^182]: ${ }^{1}$ In the horse the posterior part of the falx cerehri does not extend to the corpus callosum, and the cerebral hemispheres are here in contact and adherent to each other over a small area. In the other animals the falx does not descend so far as in the horse.

[^183]: ${ }^{1}$ They are also known as Pacchionian bodies.

[^184]: ${ }^{1}$ These are also known as the columns of Goll and of Burdach respectively.

[^185]: ${ }^{1}$ Formerly termed the valve of Vieussens.

[^186]: ${ }^{1}$ In the new nomenclat ure the torm lamina quadrigemina is applied to the dorsal mass of the mid-brain, and the four eminences which it bears are the corpora quadrigemina.
 ${ }^{2}$ In man a distinct superior brachium connects the superior pair with the lateral geniculate body, but in the domesticated amimals the union with the optic thalamus is too direct to allow of any definite arm being recognized.
 ${ }^{3}$ Also termed the crura eerebri.
 ${ }^{4}$ Also termed the aqueduct of sylvius.

[^187]: ${ }^{1}$ On a strictly embryological basis the optic part of the hypothalamus, comprising the anterior part of the third ventricle and the structures associated with it, belongs to the telencephalon, but will be considered here as a matter of convenience.
 ${ }^{2}$ This backward projection of the thalamus is equivalent to the pulvinar and lateral geniculate body of man, which are not superficially divided in the horse.

[^188]: ${ }^{1}$ These are commonly termed Gudden's and Meynert's commissures respectively.
 ${ }^{2}$ Also commonly termed the velum interpositum. ${ }^{3}$ Also termed the foramen of Monro.

[^189]: ${ }^{1}$ The homologies and terminology of many fissures of the brain in the domesticated animals are still in a chaotic state. Only a few of the most important and constant ones are given here.
 ${ }^{2}$ Termed by Lesbre the parietal fissure and by M'Fadyean the great oblique fissure.

[^190]: ${ }^{1}$ From the morphological point of view other structures should be included, but in descriptive anatomy it is usual to limit the application of the term to the parts enumerated above.

[^191]: ${ }^{1}$ Commonly termed the peduncle.

 - Commonly termed the tracts.
 ${ }^{3}$ An intermediate or middle stria has been deseribed; its presence eannot be demonstrated in the horse.

[^192]: ${ }^{1}$ It is generally bolieved that these constitute an olfactory path.
 ${ }^{2}$ Also known as the anterior pillars.
 ${ }^{3}$ Also termed the posterior pillars.

[^193]: ${ }^{1}$ Also known as the trifacial nerve.
 ${ }^{2}$ Formerly termed the Gasserian ganglion.

[^194]: ${ }^{1}$ This is also termed the superior maxillary branch.

[^195]: ${ }^{1}$ Also known as the Vidian nerve. ${ }^{2}$ This is also called the superior dental nerve.
 ${ }^{3}$ This is also termed the inferior maxillary branch.

[^196]: ${ }^{1}$ Also termed the inferior dental nerve.

[^197]: ${ }^{2}$ This ganglion appears to be equivalent to the jugular or superior and petrous ganglia of man.

[^198]: ${ }^{1}$ Also commonly termed the pneumogastric nerve.
 ${ }^{2}$ There is formed thus a vago-sympathetic trunk.

[^199]: a, a^{\prime}, Brachiocephalicus; b, anterior superficial pectoral muscle; c, cervical cutaacus; d, sterno-cephalicus; c, omo-byoideus; f, sterno-thyro-byoideus; g, trachea; $h, h^{\prime}, h^{\prime \prime}$. tendons of splenius, brachiocephalicus, and longissimus atlaotis: i, trapezius cervicalis; k, supraspinstus; l, anterior deep pectoral muscle; m, rhomboideus cervicalis; n, serratus cervicis: o, splenius, upper and lower borders of which are indicated by dotted lines; p, parotid gland; q. parotido-auricularis muscle; r, wing of atlas; s, spine of scapula; 1 , external maxillary vein; 2,3 , jugular vein; ;. carotid artery; 5 , desceading branch of inferior cervical artery; 6 , cephalic vein; $\gamma-11$, ventral branches of second to seventh cervical nerves; 12 , cutaneous branch of second cervical nerve; 13 , cervical branch of facial nerve; 14 , terminal branches of dorsal divisions of cervical nerves; 15 , dorsal branch of spinal accessory aerve. (After Ellenberger-Baum, Top. Anat. d. Pferdes.)

[^200]: The fibers of the nerve arise from the hypoglossal nuckeus, an clongated group of large multipolar cells situated chiefly under the posterior part of the floor of the fourth ventricle, close to the modian plane. The two nuclei are connected by commissural fibers. The other central connections inctule: (o) remmunications by the medial longitudinal fascieulus with the nuclei of termination of other eranial nerves; (b) cortico-nuclear fibers which come from the cortex by way of the internal capsule and the pyramids and go largely to the nucleus of the opposite side; (c) fibers which join the dorsal longitudinal bundle of schütz, a tract which underlies the floor of the fourth ventricle and is traceable forward below the cerebral aqueduct.

[^201]: ${ }^{1}$ In order to examine the plexus and the origins of its chief branches conveniently and with as little disturbance of relation as possible, the subjer should be suspenderl in imitation of the natural position and the forelimb abrlucted as much as is necessary. In doing this sume disturbance of the position and relations of the nerves and vessels takes place. The brachial vessels are drawn away from the chest-wall so that their lateral surface now faees forward, and the nerves are similarly affecters.
 ${ }^{2}$ The loop may be absent or double.

[^202]: ${ }^{1}$ In veterinary works these are frequently termed plantar nerves, which is an unfortunate misnomer.

[^203]: ${ }^{1}$ Anastomoses are established between the digital branehes, and the areas innervated by them are not well defined, but really overlap each other. In certain diseased conditions, however, in which the lesions are confined to the volar structures, relief from pain may be afforded by section of the volar branches only.

[^204]: ${ }^{1}$ Also known as the external popliteal nerve.
 ${ }^{2}$. Ako termed the peroneal cutaneous nerve.
 ${ }^{3}$ Also termed the masculo-cutaneous nerve.
 ${ }^{4}$. Ikso termed the anterior tibial nerve.

[^205]: ${ }^{1}$ Also termed the posterior tibial nerve.

[^206]: ${ }^{1}$ The special statements of this description refer to the system of the horse. A few important differential features will be mentioned in the account of the nervous system of the other animals.

[^207]: ${ }^{1}$ In some cases there exists a more or less distinct middle eervical ganglion which reecives the filanents from the vagus and is cennected with the posterior cervical ganglion by a trunk. It occurs oftenest on the right side and given man two cartiac nerves.

[^208]: ${ }^{1}$ The right and left plexuses communicate with each other, so that both lungs receive fibers from both vagi.

[^209]: ${ }^{1}$ Also known as the solar plexus.

[^210]: ${ }^{1}$ Only the most salient differences as compared with the horse will be mentioned.
 ${ }^{2}$ Also known as the foramen of Magendie.

[^211]: ${ }^{1}$ Lesbre terms this the traeheo-cesophageal branch, and considers that it must be regarded as an accessory or internal reeurrent nerve.

[^212]: ${ }^{1}$ Also known as corpora nigra.
 ${ }^{2}$ Some of these folds are permanent, while others are temporary, i. e., produced by contraction of the iris.
 ${ }^{3}$ In albinos the pigment is absent here, as elsewhere, and the iris is pink in color.

[^213]: The transverse diameter of the papilla is about 6 to 7 mm ., and the vertical about 4 to 5 mm . It is commonly situated a little below the margin of the tapetum, but the latter may extend down somwhat on cither side of the papilla. The lower margin is often indented a little. In inspection of the fumdus with the ophthalmoscope numerous fine branches of the arteria centralis retine are seen radiating from the periphery of the papilla.

[^214]: ${ }^{1}$ In man the line is finely serrated and is termed the ora serrata.

[^215]: ${ }^{1}$ For the minute structure of the retina reference must be made to histological works.
 ${ }^{2}$ Martin states that in the horse a capillary plexus does not exist, but that the arteries communicate with the veins by closely wound loops.

[^216]: ${ }^{1}$ Ellenberger and Baum regard this as the homologue of the transversus and obliquus auricule of man.

[^217]: ${ }^{1}$ Also termed the membranous semicircular canals.
 ${ }^{2}$ For the finer structure referenee is to be made to the histological literature.

[^218]: ${ }^{1}$ This muscle has been describerl in the Myology.

[^219]: ${ }^{1}$ The cushion is to be regardod as a spectal modification of the subcutaneous tissue, bearng on its superficial face the corium of the frog. It is an important factor in diminishing concussion.

[^220]: ${ }^{1}$ The average transverse diameter is about 42 mm ., the vertical diameter, 41 mm ., and the axis, 36 mm . The angle between the optic axes is about 119°.
 ${ }^{2}$ The thickness of the sclera is about 2 mm . at the vosterior pole, 1 mm . at the equator, and 1.2 to 1.5 mm . near the cornea.

[^221]: ${ }^{1}$ The lower punctum laerimale is frequently absent and the corresponding duct therefore blind. There is often a duct or its remnant which opens below the ventral turbinate fold, but is not connected behind with the functional duct.

