
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2002-06

A computational model and multi-agent

simulation for information assurance

VanPutte, Michael A.

Monterey, California. Naval Postgraduate School.

http://hdl.handle.net/10945/9783

Downloaded from NPS Archive: Calhoun

 NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

This dissertation was completed in cooperation with the Institute for Information Superiority and
Innovation and the MOVES Institute.

Approved for public release, distribution is unlimited.

A COMPUTATIONAL MODEL

AND MULTI-AGENT SIMULATION FOR
INFORMATION ASSURANCE

by

Michael VanPutte

June 2002

Dissertation Supervisor: Cynthia Irvine

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY

2. REPORT DATE
June 2002

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE: A Computational Model and Multi-Agent
 Simulation for Information Assurance
6. AUTHOR Michael A. VanPutte

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Chief of Naval Operations, N6
2000 Navy Pentagon
Washington, D.C. 20350-2000

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

ABSTRACT
The field of information assurance (IA) is too complex for current modeling tools. While security
analysts may understand individual mechanisms at a particular moment, the interactions among the
mechanisms, combined with evolving nature of the components, make understanding the entire system
nearly impossible.
 This dissertation introduces a computational model of IA called the Social-Technical Information
Assurance Model (STIAM). STIAM models organizations, information infrastructures, and human
actors as a complex adaptive system. STIAM provides a structured approach to express organizational
IA issues and a graphical notation for depicting the elements and interactions. The model can be
implemented in a computational system to discover possible adaptive behavior in an IA environment. A
multi-agent simulation is presented that introduces several innovations in multi-agent systems including
iconnectors, a biologically inspired visual language and mechanism for inter-agent communications.
 The computational model and simulation demonstrate how complex societies of autonomous entities
interact. STIAM can be implemented as a hypothesis generator for scenario development in computer
network defensive mechanisms.

15. NUMBER OF
PAGES

198

14. SUBJECT TERMS
information assurance, information security, computer security, security
model, modeling, agents, multi-agent system, multi-agent simulation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release, distribution is unlimited.

A COMPUTATIONAL MODEL AND MULTI-AGENT SIMULATION FOR
INFORMATION ASSURANCE

Michael A. VanPutte

Major, United States Army
B.S., The Ohio State University, 1988

M.S., University of Missouri – Columbia, 1997

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2002

Author: __
Michael A. VanPutte

Approved by:

______________________ _______________________
Cynthia Irvine Michael Zyda
Professor of Computer Science Professor of Computer Science
Dissertation Supervisor Dissertation Committee Chair

______________________ _______________________
John Hiles Rudy Darken
Professor of Computer Science Professor of Computer Science

______________________ _______________________
Neil Rowe Don Brutzman
Professor of Computer Science Associate Professor of Applied Science

Approved by: __

Chris Eagle, Chair, Department of Computer Science

Approved by: __

Carson Eoyang, Associate Provost for Instruction

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The field of information assurance (IA) is too complex for current modeling tools.

While security analysts may understand individual mechanisms at a particular moment,

the interactions among the mechanisms, combined with evolving nature of the

components, make understanding the entire system nearly impossible.

 This dissertation introduces a computational model of IA called the Social-Technical

Information Assurance Model (STIAM). STIAM models organizations, information

infrastructures, and human actors as a complex adaptive system. STIAM provides a structured

approach to express organizational IA issues and a graphical notation for depicting the elements

and interactions. The model can be implemented in a computational system to discover possible

adaptive behavior in an IA environment. A multi-agent simulation is presented that introduces

several innovations in multi-agent systems including iconnectors, a biologically inspired visual

language and mechanism for inter-agent communications.

 The computational model and simulation demonstrate how complex societies of

autonomous entities interact. STIAM can be implemented as a hypothesis generator for scenario

development in computer network defensive mechanisms.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS
I. INTRODUCTION... 1

A. HYPOTHESIS... 1
B. INTRODUCTION... 1
C. MOTIVATION.. 2

1. Complex Adaptive Systems, Agents, and Multi-Agent
Simulations... 2

2. Multi-Agent Simulation of Information Assurance 3
D. APPROACH .. 4
E. CONTRIBUTIONS OF THIS WORK.. 4
F. DISSERTATION ORGANIZATION ... 5

II. REVIEW OF RELATED WORK ... 7
A. INTRODUCTION... 7
B. INFORMATION ASSURANCE.. 7
C. MODELS AND SIMULATIONS OF INFORMATION ASSURANCE8

1. Theoretical Models.. 8
2. Empirical Models .. 9
3. Computational Models.. 10
4. Miscellaneous Models ... 12
5. IA Attacker Taxonomies and Motivations................................ 13
6. Security Taxonomies ... 16
7. Failures of Traditional Models... 16

D. COMPUTATIONAL ANALYSIS OF INFORMATION
ASSURANCE .. 18
1. Symbolic Approach – Rule-Based Systems............................... 18
2. Connectionist Approach – Artificial Neural Networks 20
3. System Dynamics – Stochastic Simulations 21
4. Multi-Agent Simulations (MAS) .. 22

E. UNIFIED MODELING LANGUAGE .. 25
F. SUMMARY.. 26

III. COMPUTATIONAL MODEL OF INFORMATION ASSURANCE (IA) ... 27
A. INTRODUCTION... 27
B. OVERVIEW .. 27
C. SOCIETY... 28
D. DOMAINS AND ELEMENTS IN A SOCIETY 30

1. Tokens .. 30
2. Infrastructures... 31
3. Organizations... 36
4. Organizational Roles... 39
5. Actors.. 42

E. SUMMARY.. 44

IV. CONNECTORS AND A CONNECTOR-BASED MODEL OF
INFORMATION ASSURANCE.. 45
A. INTRODUCTION... 45

viii

B. ICONNECTORS ... 45
1. Introduction ... 45
2. Definitions .. 46
3. Iconnectors and Entity Interfaces.. 47
4. Formalism .. 47

C. ICONNECTOR GRAPHICAL NOTATION 49
D. ICONNECTOR COMPONENTS.. 50

1. Iconnector State – Extended or Retracted................................ 50
2. Iconnector Types – Sockets and Plugs....................................... 51
3. Iconnector Cardinality.. 52
4. Iconnector Labels .. 53
5. Listening Iconnector ... 53
5. Actions .. 54

E. SOCKET AND PLUG CONNECTIONS.. 57
F. SUMMARY.. 61

V. THE STIAM CONNECTOR-BASED AGENT ARCHITECTURE.............. 63
A. INTRODUCTION... 63
B. OVERVIEW .. 63
C. CONNECTOR-BASED AGENT ARCHITECTURE 64
D. CONNECTORS AND THE INNER ENVIRONMENT...................... 66
E. ROLE SET – RI ... 68
F. GOALS - GI ... 68

1. Goal Structure ... 69
2. Goal Manager .. 73
3. Action Set – Tickets and Frames ... 74

G. AGENT TOKENS AND KNOWLEDGE SET-- CAPABILITIES 77
1. Ti – Token Set... 77
2. Ki – Knowledge Set.. 78
3. Agent Learning.. 78

H. BEHAVIOR MODERATORS... 78
1. Observable Personality ... 79
2. Skills.. 79
3. Emotional State ... 79

I. LIMITATIONS OF STIAM AGENTS ... 80
J. SUMMARY.. 80

VI. MODEL VALIDATION ... 81
A. INTRODUCTION... 81
B. INFORMATION ASSURANCE AND HYPOTHESES

GENERATORS... 81
1. Models and Simulations.. 81
2. Induction and Hypothesis Generation....................................... 82
3. STIAM.. 83

C. EMPIRICAL MODEL OF INFORMATION ASSURANCE (IA)..... 83
1. CERT/CC... 83
2. Enhanced Model.. 86

ix

D. MAPPING OF EMPIRICAL MODEL TO STIAM............................ 88
1. Actors and Objectives ... 88
2. Tools.. 88
3. Vulnerability .. 90
4. Action.. 92
5. Target ... 98
6. Result .. 98
7. Summary.. 99

E. INFORMATION ASSURANCE (IA) AS A CONCURRENT
SYSTEM .. 100

F. SUMMARY.. 102

VII. EXAMPLE SOFTWARE IMPLEMENTATION.. 103
A. INTRODUCTION... 103
B. SOFTWARE IMPLEMENTATION... 103

1. SimSecurity Package... 105
2. Entity Package ... 107
3. Actor Package.. 108
4. Connector Package.. 113
5. Scenarios Package ... 115
6. Utilities Package .. 116

C. SUMMARY.. 117

VIII. SCENARIO IMPLEMENTATION... 119
A. INTRODUCTION... 119
B. SCENARIO ONE – “ADAPTIVE ATTACKER”.............................. 119

1. Background.. 119
2. Implementation.. 120
3. Experimental results of Scenario One..................................... 125

C. SCENARIO TWO – WINDOW OF VULNERABILITY 129
1. Background.. 129
2. Implementation.. 130
3. Experimental results of Scenario Two 138

D. OBSERVATIONS ... 148
1. Model Granularity .. 148
2. Visualization of Large Societies ... 149

E. SUMMARY.. 150

IX. CONCLUSIONS AND RECOMMENDATIONS.. 151
A. CONCLUSIONS.. 151
B. RECOMMENDATIONS FOR FUTURE WORK............................. 152

1. Agent History... 152
2. Behavior Moderators .. 152
3. Dynamic Role Assignment Assignments and Organizations. 152
4. Generating Tickets, Frames, and Actions at Runtime........... 153
5. Agent Learning.. 153
6. Complex Agent Goal Assignments... 153

x

7. Discretionary Access Control Policies in the STIAM Model 153
C. SUMMARY.. 154

LIST OF REFERENCES ... 155

GLOSSARY... 165

APPENDIX A – EXECUTION OUTPUT .. 169

APPENDIX B – UML QUICK REFERENCE... 173

INITIAL DISTRIBUTION LIST .. 175

xi

LIST OF FIGURES

Figure 1. Spectrum of agent architectures.. 24
Figure 2. A Conceptual Diagram: A Society composed of.. 29
Figure 3. A Token class in UML.. 30
Figure 4. An Infrastructure composed of Resources, Interfaces, and Tokens. 32
Figure 5. UML diagram of an Interface. .. 33
Figure 6. An Organization consisting of Roles and Policies.. 37
Figure 7. A Role and its components. .. 40
Figure 8. Multiple homogeneous System Administrator roles. 42
Figure 9. Conceptual diagram of an actor entity. .. 44
Figure 10. The IBinder binds Iconnectors, which are components of Entities. 47
Figure 11. Iconnector Class Diagram... 48
Figure 12. An Actor ‘bob’, an Infrastructure ‘proprietary_network with a

 Resource ‘corp_database’ and an Organization ‘enterprise’......................... 49
Figure 13. Entities with Iconnectors added.. 50
Figure 14. Extended and Retracted Iconnectors for an Infrastructure. 51
Figure 15. Socket and Plugs depicted graphically. .. 52
Figure 16. Socket cardinality diagramming convention. ... 53
Figure 17. An Actor Plug attempting to bind to an Infrastructure Socket Iconnector. 53
Figure 18. Listening Iconnectors.. 54
Figure 19. Actor ak binding to an Iconnector and a different... 56
Figure 20. Connectors that permit Token ti or tj.. 56
Figure 21. An Infrastructure and an Actor with transfer messages. 57
Figure 22. A sequence diagram of Socket and Plug connecting and 60
Figure 23. Agents and Objects operating in an external environment. 63
Figure 24. The components of a connector-based agent and their interactions. 66
Figure 25. Connector-based agent in an external environment.. 67
Figure 26. Internal components with connectors extended into ei. 68
Figure 27. A goal receives input from ei and the outer environment, and produces a

 state, measure, and actions that effect the outer environment......................... 70
Figure 28. STIAM goal trigger and reset thresholds.. 71
Figure 29. Actor goal state transitions. .. 72
Figure 30. A snap-shot of a typical actor’s goals. .. 74
Figure 31. An example ticket. .. 75
Figure 32. A Ticket tki can dynamically bind to Actions j, but is not able to bind to

 action i. .. 77
Figure 33. Howard’s Computer and Network Attack Taxonomy, [Howard, 1997].......... 84
Figure 34. Howard and Longstaff’s Computer Security Incidents [Howard

 and Longstaff, 1998]. .. 87
Figure 35. A socket that represents flooding a resource. Successfully binding to a

 flood disconnects (retracts) other iconnectors.. 93
Figure 36. An Iconnector that replicates the authentication process. 94
Figure 37. Bypass Actions in STIAM.. 95
Figure 38. Deletion and backup on STIAM.. 97
Figure 39. The package diagram for an implementation of STIAM.............................. 105

xii

Figure 40. SimManager builds the GUI, loads a scenario, and repetitively loops
 through all of the Actors... 106

Figure 41. Scenario loading activities for SimManager class.. 107
Figure 42. The entity package contains the Entity class and two specialized

 passive entities: Infrastructure and Resource.. 108
Figure 43. The main classes in the actor package are the Actor and

 CompositeAgent classes, which inherit from the Entity class. 109
Figure 44. An activity diagram representing an agent goal selection routing................ 110
Figure 45. An activity diagram depicting the agent reevaluate goal routine. 111
Figure 46. The classes of the actor package... 112
Figure 47. The classes related to IConnectors in the connector package. 114
Figure 48. The classes related to Connectors in the connector package. 115
Figure 49. Sample XML scenario file. ... 116
Figure 50. Classes in the utilities package.. 117
Figure 51. An enterprise infrastructure, with a resource, service scan, and

 vulnerability .. 121
Figure 52. The library infrastructure, which provides information on the

 enterprise infrastructure. ... 122
Figure 53. The hackerSite infrastructure, which provides vuln103 Token if

 presented with sysType Token.. 122
Figure 54. The example hacker’s goals, tickets and actions. ... 124
Figure 55. Screen shot of Scenario One on STIAM implementation. 125
Figure 56. The elite (a) and script (b) infrastructures are identical except for the

 socket labels. ... 132
Figure 57. The enterprise infrastructure has an alert plug, a vulnerability socket,

 and a patch socket. ... 132
Figure 58. The vendor infrastructure represents the entire vendor community. 133
Figure 59. The Attacker role consists of three goals: acquire, exploit, and publish

 vulnerabilities. .. 134
Figure 60. The system administrator role... 135
Figure 61. Implementation of Scenario Two. .. 137
Figure 62. Typical exploit distribution graph shape reported by Arbaugh et al., 2000. 138
Figure 63. Results of reactive system administrators with patch released after scripts. 140
Figure 64. Reactive system administrator with accelerated publication of script and

 delayed publication of patch. .. 141
Figure 65. Reactive system administrator with patch released prior to scripts.............. 142
Figure 66. Results with proactive system administrators with patch released after

 scripts. ... 143
Figure 67. Proactive system administrators with scripts released soon after the

 elites and the before the patch. .. 144
Figure 68. Patch released prior to publication of exploit on script kiddie

 infrastructure for proactive system administrators.. 145
Figure 69. Society with large number of attackers than infrastructures; using

 reactive system administrators. .. 146
Figure 70. Example deaggregated organization... 149

xiii

LIST OF TABLES

Table 1. Cohen's Threat Actors [From Cohen 2000]).. 15
Table 2. Mapping of Howard and Longstaff’s tools to STIAM....................................... 89
Table 3. Comparison of key components in Howard and Longstaff model

 and the STIAM model... 100
Table 4. The Tokens used in Scenario One.. 120
Table 5. Sequence of steps used by Hacker to access the critical resource. 126
Table 6. The Tokens used in Scenario Two. .. 131
Table 7. Results of Window of Vulnerability Scenario ... 147

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF EQUATIONS
Equation 1. A Society of Organizations, Infrastructures and Actors. 29
Equation 2. A Token is an element in the set of all possible Tokens............................... 30
Equation 3. An Infrastructure composed of Information Resources,............................... 31
Equation 4. The components of the interface... 33
Equation 5. An Organization consisting of Roles and Policies.. 36
Equation 6. A Policy consisting of an Entity, Infrastructure, Mode, and Authorization. 38
Equation 7. A Role consists of Role Requirements, Role Goals, and Tokens................. 40
Equation 8. Role Requirements as a Collection of Sets. .. 41
Equation 9. An iconnector specification consisting of Labels, State, and Cardinality. ... 48
Equation 10. The binding of a Socket to a Plug iconnector. .. 52
Equation 11. A Resource Action definition. .. 55
Equation 12. A Connection Action definition.. 55
Equation 13. The Connector-Based Agent Specification... 65
Equation 14. Connectors consist of a Label and State. .. 67
Equation 15. A goal definition. .. 69
Equation 16. Howard and Longstaff’s Functional Model.. 101

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

Many people contributed to this dissertation. I would like to thank my committee

for their guidance and insight. I would especially like to thank Dr. Michael Zyda for his

inspiration and direction along this journey. In addition, I would like to thank Dr.

Cynthia Irvine for her continued efforts in passing on her knowledge and vision in the

security field. Also, to Don Brutzman, for passing on his wisdom on what it is to be a

computer scientist.

This dissertation would not have been possible without the intellect of Professor

John Hiles. His insight and innovation in biologically inspired multi-agent systems

provided the foundation and mechanisms upon which this dissertation is built.

This work would not have been completed without the support of the faculty,

staff, and students of the Naval Postgraduate School. Special thanks goes to Dan Warren,

Tim Levin, Michael Thompson, John Falby, Michael Capps, and Nelson Irvine.

I am indebted to my compatriots in this trek, the fellow doctoral students who

have all contributed to the research: Brian Osborn, Curt Blais, Joerg Wellbrink, Simon

Georger, and Perry McDowell.

Finally, I would like to thank my wife Linda, and daughters Ashley and Brianne,

whose love and support kept me going along this journey. It is to them that this

dissertation is dedicated.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

“The beginning of knowledge is the discovery of something we do not understand."

-- Frank Herbert

A. HYPOTHESIS

The information assurance domain at the organizational level is a dynamic, highly

connected social and technical system. Modeling this domain as a multi-agent system

can capture all of the key elements and interactions in the domain. Implementing this

model as a software system can generate validatable hypotheses of the IA domain.

B. INTRODUCTION

Information Assurance (IA) is concerned with protecting and defending

information and information systems [NSTISSC, 2000]1. The field is complex and deals

with highly interconnected social and technical components. In an attempt to understand

and explain portions of the domain, researchers have developed various security models

and simulations. While sufficient for the purpose for which they were designed, these

tools provide limited utility for researchers to infer general conclusions at the

organizational level.

The environment of IA is too complex and dynamic to be understood with our

present tools. While IA researchers and security analysts may understand the individual

mechanisms at a particular moment, the interactions that take place among the

mechanisms, combined with the constantly evolving components themselves make

understanding the entire system nearly impossible. Researchers do not have a

computational model suitable for simulation of the domain that includes the numerous

actors, objects, processes and interactions in the environment. Instead, analysts are

1 Many terms used in the fields of information assurance and agent-based

systems are ambiguous or defined in multiple ways. A glossary is provided at the end of
this dissertation that defines the key terms used in this work.

2

forced to focus on pieces of the problem without being able to envision the global

environment within which they are working.

This dissertation introduces a computational model of the IA domain. The model

proposes, at a high level of functional abstraction, the actors, objects, and processes that

interact in the IA domain. An extensible multi-agent simulation (MAS) is provided as an

implementation of that model. To implement this model as a computational simulation,

various innovations in multi-agent simulations are introduced. This computational model

and simulation demonstrate how complex societies of highly interactive, autonomous

actors and systems can combine and the security implications resulting from their

interactions and combinations.

This dissertation also presents a graphical and mathematical notation for

expressing the IA issues of an organization. While this notation can present the

instantaneous issues at a point in time, its true benefit is to view the IA issues of an

organization as they evolve. These graphical and mathematical notations permit IA

analysts to view the dynamic nature of IA in an organization.

C. MOTIVATION

1. Complex Adaptive Systems, Agents, and Multi-Agent Simulations
The purpose of simulations is to facilitate scientific study of complex systems. A

model is an abstraction of real world objects and processes that captures key aspects in

the system under investigation. A simulation is an implementation of the model. Models

and simulations permit researchers to investigate real-world systems and perform

experiments that are not possible in the real systems [Law and Kelton, 2000].

If the relationships among the objects and processes in the system are relatively

simple, then mathematics may provide an analytical solution. For domains that are more

complex, a simulation can be used to provide insight into the model and real-world

system [Law and Kelton, 2000].

Some real-world environments are complex adaptive systems (CAS), systems

involving nonlinear relationships among large numbers of highly connected, interacting,

adaptable entities. Due to the complexity of these systems, mathematical tools and

3

traditional simulations often cannot accurately represent these domains. Artificial

complex adaptive systems (ACAS), composed of autonomous, interactive software

agents are more capable for simulating such complex systems [Axelrod, 1997], [Holland,

1996]. This work applies these capabilities to the field of IA.

2. Multi-Agent Simulation of Information Assurance
IA is concerned with “…protect(ing) and defend(ing) information and

information systems by ensuring their availability, integrity, authentication,

confidentiality, and non-repudiation” [NSTISSC, 2000]. The overall system is not

restricted to technological components. A system is “a collection of entities, e.g., people

or (and) machines, that act and interact together towards accomplishment of some logical

end.” [Law and Kelton, 2000]. Clearly, IA includes human actors that interact within

this system, and any simulation that claims to model IA at the organizational level must

include human aspects of the problem.

IA deals with adaptable humans and computational devices that are

interconnected through webs of communications networks. Software and devices adapt

through human interaction or autonomously to perform tasks. Humans adapt themselves,

communication links, devices, and the software running on those devices, sometime

unknowingly, to better achieve their goals. The domain is a interconnected, dynamic

environment, where changes in one part of the environment can have cascading effects in

other parts. For example: requiring long, complex passwords composed of alphanumeric

and non-alphanumeric characters may cause legitimate system users to write passwords

down and place them in unsecured locations, such as yellow sticky labels posted on a

computer monitor or under a desk pad. The requirement for long passwords may reduce

the threat of an attacker guessing a password, but may increase the threat of an insider

finding and using the password, in effect mitigating the security enhancement that the

long password was originally meant to achieve.

The developed architecture provides an environment where investigators can

conduct research and gain insight into the area of IA. By developing a virtual IA

laboratory, IA researchers can develop and view an abstraction of the domain, ask and

4

answer questions via MAS experiments and gain insight into actual strengths and

vulnerabilities.

D. APPROACH

 A generalized computational model of the IA domain was developed through

study of previous models, simulations, and observations of trends in the IA field. A

multi-agent simulation (MAS) has been developed that is an implementation of this

model. The MAS was tested on various scenarios, and the output compared with real-

world results. The results show that it is possible to simulate the IA domain as a CAS.

While an implementation may be configured to confirm or deny a hypothesis, the

true power of the system is in its ability to discover patterns, providing insight into the

possible evolutionary patterns of the environment, which can then be carefully confirmed

or denied in the real world.

A validation of this model is provided by mapping the elements of an empirically

based model of IA to this research. Additionally, a multi-agent simulation of this model

was developed. The scenarios implemented were compared with results in the real

world.

E. CONTRIBUTIONS OF THIS WORK

This dissertation provides a fundamental new approach to examine IA issues at

the organizational level. This dissertation provides the following fundamental

new contributions:

• A formal mathematical and graphical language for representing the

entities and their interactions in organizational modeling of IA.

• An abstract computational model providing a mathematical depiction of

the social and technical aspects of the actors, objects, and processes in the

IA domain, and how these components interact.

• A descriptive model providing a graphical notation and semantics for

depicting and visualizing IA environments.

• An extensible multi-agent architecture for the simulation of the IA

environment.

5

• An extension of existing works on connectors, including both intra-agent

and inter-agent communications, providing not only lightweight

communication mechanisms, but also a graphical notation for visualizing

communications among entities.

• An implementation of an innovative composite-agent architecture that

takes advantage of the connector-based communications mechanism.

F. DISSERTATION ORGANIZATION

The remainder of this dissertation is organized as follows.

• Chapter II provides the reader with background on existing models and

simulations in the IA domain and multi-agent simulation systems.

• Chapter III introduces a computational model of IA, presenting the model

in formal mathematical notation and in the Unified Modeling Language

[Booch et al., 1999].

• Chapter IV introduces iconnectors, a graphical notation to illustrate

communications among entities and a data structure to implement

connector-based systems. The IA model presented in the previous chapter

is presented using this connector notation.

• Chapter V presents a Connector-Based Agent Architecture [Hiles et al.,

2001] that was implemented for simulating humans throughout the

simulation.

• Chapter VI provides an evaluation of the model, and discusses the

advantage of this concurrent model over functional models of IA.

• Chapter VII describes a proof of concept software implementation of the

multi-agent IA computational model.

• Chapter VIII discusses several scenarios that were implemented on the

multi-agent software, and a corresponding analysis of the scenarios. This

is followed by general observations discovered in the implementation of

the model and scenarios.

• Chapter IX provides a discussion of future work, and conclusions.

6

• A glossary is provided for reader convenience.

• Appendix A provides a listing of output from implemented scenarios.

• Appendix B is a Unified Modeling Language (UML) Quick Reference,

providing an overview of the UML notation used in this dissertation.

7

II. REVIEW OF RELATED WORK

"...you don't just solve problems, you defend against threats. If you study
hard enough, you can understand a computer problem completely,
because it's a matter of physics and electronics and software. The threat
comes from a human attacker, not a machine...Security is not a technical
problem, it's a social issue. If you treat it as a problem that can be solved
by technological means, you leave yourself open for an attack."

-- Thomas Wadlow, The Process of Network Security

A. INTRODUCTION

This chapter provides an introduction to the information assurance (IA) domain,

discusses challenges in modeling and simulating this domain, and presents previous

models and simulations that have been developed. It then introduces alternative

technologies available to simulation developers and discusses why multi-agent systems

(MAS) are the best tool for modeling IA at the organizational level. Finally, it discusses

the use of the Unified Modeling Language (UML) in this dissertation.

B. INFORMATION ASSURANCE

Information Assurance (IA) is concerned with “…protect(ing) and defend(ing)

information and information systems by ensuring their availability, integrity,

authentication, confidentiality, and non-repudiation” [NSTISSC, 2000]. This dissertation

is primarily concerned with the issues of availability, confidentiality, and integrity of the

information and information systems at the organizational level. These three

characteristics of IA are defined in [NSTISSC, 2000] as:

• availability: “Timely, reliable access to data and information services,”

• confidentiality: “Assurance that information is not disclosed to

unauthorized persons, processes or devices,”

• integrity: “…protection against unauthorized modification or destruction

of data (and processes).”

8

These three characteristics are not independent, and may overlap and even

conflict with one another. For example, strong confidentiality may adversely affect

availability [Pfleeger, 1997].

C. MODELS AND SIMULATIONS OF INFORMATION ASSURANCE

1. Theoretical Models
Theoretical models are developed to help understand a complex system under

investigation. Several researchers have attempted to create theoretical models of the IA

field to help explain the environment. Modeling the entire domain is a vast undertaking,

and “a comprehensive taxonomy in the field of computer security has been a relatively

intractable problem” [Amoroso, 1994].

Numerous formal models have been developed to demonstrate various security

principles. Bell and La Padula developed a Confidentiality Model to formally describe

the Department of Defense Multilevel Security Policy, showing in abstract terms the

authorized flows of information in secure systems [Bell and LaPadula, 1973]. This

model uses formal mathematical notation to describe which actors and processes can read

and write to an object in an abstract operating system.

The Biba Integrity Model [Biba, 1977] is based on the observation that the Bell

and LaPadula model was only developed to deal with unauthorized disclosure of

information. Biba examined the unauthorized modification of data, but ignored secrecy.

Researchers are attempting to combine the security and integrity policies to form a more

complete model.

 Graham and Denning developed a formal model of protection that consisted of

subjects, objects, rights, and an access control matrix [Graham and Denning, 1972]. This

model provided the foundation for later models. The Harrison, Ruzzo and Ullman model

[Harrison et al., 1976], based on the Graham-Denning model, proved a fundamental

limitation of automated examination of computer security systems. This model proved

that “…it is not always decidable whether a given protection system can confer a given

right” [Harrison et al., 1976]. This conclusion implies that there is no algorithm that can

prove that an arbitrary operating system will provide an arbitrary access to an arbitrary

9

data object. A system can be designed such that the access to information is decidable

(every command of the operating system must be an atomic operation), but these systems

may be restricted in functionality.

These formal state models are used to specify system protection behavior, such as

access control or the prevention of information leakage. They model a policy, and a

system implements that policy or it does not. While these models are helpful in

understanding disclosure and modification of information in formal systems, they have

limited utility in comprehensively modeling the entire domain of IA.

2. Empirical Models
Howard's dissertation was an analysis of Internet incidents from the Computer

Emergency Response Team at Carnegie Mellon over the period 1989 to 1995 [Howard,

1997]. The model was based on data collected on Internet security incidents, and

provides a useful first step in illustrating attacker intent, tools, and effects.

Howard and Longstaff updated Howard’s model, providing additional coverage of

security incidents based on their experience in the security field [Howard and Longstaff,

1998]. The model includes categories of attackers, tools, vulnerabilities, actions, targets,

results, and attacker objectives. This model, based on empirical data and experience, is

very useful for categorizing security incidents, and is discussed in detail in Chapter VI.

Building upon his foundational analysis of intentional and accidental misuse

techniques [Neumann and Parker, 1989], Neumann [1995] provides a comprehensive

discussion of the threats, vulnerabilities, and risks to computer systems based on data

collected from 1976 to 1995. Neumann’s analysis is more comprehensive than

Howard’s, including such categories as interpersonal attacks, accidents, and ignorance in

his discussion of risks to computer systems. While he doesn’t provide an overall model,

he does provide a wealth of information upon which others may base their models.

Amoroso developed a cost-effects matrix [Amoroso, 1994] describing actors and

possible actions, but not their reasoning. Landwehr's model [Landwehr et al., 1994] is a

partial classification of possible attack “mechanisms” that lacks details such as attacker's

goals and possible countermeasures that defenders may employ. See [Cohen 2000] for a

detailed discussion of these models.

10

3. Computational Models
The purpose of a computational model is to describe a domain with sufficient

expressive detail that a computational simulation can be built based on the model. The

simulation can provide insight into the field being investigated and verify the model.

a. Rowe and Schiavo
Rowe and Schiavo created a simulation to generate plans for software

representations of legitimate users and cyber attackers as a component to an automated

intrusion detection tutorial system [Rowe and Schiavo, 1998]. This planning tool used a

modified means-ends analysis [Newell and Simon, 1972] to generate plans for entities to

achieve goals. The simulation was a multi-agent system, with each entity in the

simulation an autonomous software entity. The individual agents used a top-down

planning approach to define the actor’s plans and actions. Additionally, the system took

into consideration time and probabilities, creating a realistic simulation of attacker and

user behavior in simulated system logs. While the system produced realistic, intelligent

behavior, it suffered from the same problems as all top-down rule-base systems; the

engineer must predefine the rules, based on a belief that actors behave in a certain way.

This reliance on predefined behaviors prohibits the agent from discovering innovative

ways to deal with unforeseen situations. The strengths and weaknesses of rule-based

systems are discussed in more detail in Section D.

b. Liu, Yu, and Mylopoulos
Liu et al. [2002] used the i* intentional framework [Yu, 1997] to analyze

security requirements as a social system. The framework depicts an environment under

investigation as a dependency graph among “actors” and their goals, providing a means

to analyze multiple actors and the intentional dependencies between them. By examining

the dependencies between supporting and conflicting actor goals, analysts are able to

determine potential threats to systems.

The i* model focuses entirely on strategic relationships among actors.

System vulnerabilities and exploits are generated “ad hoc” as a specific case and placed

manually in the model. The i* model explores the relationships between actors at the

11

intentional level. As such, this framework allows analysts to determine “why” an actor

chooses a course of action that may lead to a compromise.

First, detailed technical requirements are not modeled in the i* model,

since Lie is interested in the relationships among actors and not the technical

specifications of the system. Secondly, this dissertation is interested in modeling

behavior, and not intention. It is interested in “how” a series of events may lead to a

compromise. While this dissertation is not interested in cognitive modeling, the graphical

nature of i* may provide a useful means to depict actor roles, goals, and actions in later

work.

c. Cohen
Cohen provided the first detailed computational model and simulation for

"simulating cyber attacks, defenses and consequences” [Cohen, 2000]. This simulation

consisted of a database of 37 threat mechanisms, 94 attack mechanisms, and 140

protection mechanisms along with how these mechanisms are related and their effects.

The database was used as input into a discrete event simulation. The simulator was run

repeatedly and the output was statistically analyzed. In Cohen’s model the “actors” were

simple translation tables. Successfully accessing a node in a network resulted in the

attacker being able to “pass through that node.” Success for an attacker was defined as

gaining access to a specific important node. It was not possible to show that a node was

offline or disabled. Additionally, it was not possible to show interim benefits of

compromising hosts. One such benefit is access to data files that can provide the attacker

with additional useful information. Another benefit of penetrating a host is the additional

computational capacity of the compromised host, for example, in a denial of service

attack or a distributed brute force password-cracking scheme. While this simulation was

an important first step, the system lacked actor adaptability as found in evolutionary

social systems involving humans. Additionally the simulation does not permit multiple

attackers or collaborating defenders, a necessity in simulations of a highly social yet

adversarial environment like IA.

12

4. Miscellaneous Models
The following models and systems are various attempts to model components of

the IA domain and develop computational systems based on these models. They are

included to show various other techniques used to model components of the environment.

(a) Immunology Models
Forrest et al. [1996] developed a limited security model based on the

natural immune system. She developed a limited intrusion-detection system that

performed in a manner similar to the animal immune systems response to intrusions by

disease. Her original solution to the problem led to promising results. Her work to

model a technical system as a biological system was limited to monitoring privileged

system calls, but the idea of modeling security as a biological system provides insight

into developing other biological based systems.

(b) Information Warfare (IW) Models
Anderson [1998] examined risk assessment in the IW domain, attempting

to model actual human threat actors in specific situations in order to apply resources to

counter real threats. Anderson categorized threat actors based on whether they are

enabled (have a capability to perform specific adversarial actions) and have access to

systems, information, and personnel needed to perform these actions. Combining intent

and motives provides a database of capable and motivated threats to systems. When

analysts correlate actual indications of attackers, with actors who are motivated and

enabled, they can make informed judgments regarding who is likely responsible for these

indicators. Although Anderson was not developing this architecture for simulation, his

model provides a starting point to model threat actors and intent in multi-agent systems.

(c) Network Analysis
The field of network modeling and simulation uses queueing models and

protocol analysis to analyze changes to protocols, packet size and format, and network

configurations to optimize system performance [Katzela, 1998]. Additional constraints

have been added to some models, to investigate additional aspects of a network. Network

Warfare Simulation (NETWARS) allows users to add additional constraints to a network

simulation, to see the “...unanticipated effects of full operational combat network

13

loadings.” The U.S. Department of Defense developed this communications modeling

tool to “credibly model tactical communications demands with all the stresses and

inefficiencies that combat places on communication systems” [DISA, 2001]. These

models are only able to analyze the technical aspects of networks, and do not address

social issues.

5. IA Attacker Taxonomies and Motivations
Numerous researchers have attempted to build taxonomies to classify attack

actors.

Denning [1990] limited her analysis to “non-malicious hackers,” or “someone that

experiments with systems… playing with systems and making them do things that they

were never intended to do” [Denning, 1990]. She developed five types of hacker

motives:

• access to computers and information for learning,
• thrill, excitement, and challenge,
• ethics and avoiding damage,
• public image and treatment,
• privacy and first amendment rights.

This introduces the motives of one aspect of the human threat to information

systems, but does not account for other aspects of human threats, such as insiders and

malicious attackers.

Wadlow [2000] states, “Attackers will be successful if they have sufficient skill,

motivation, and opportunity.” He goes on to state that there are three categories of

attackers:

• browsers, campers, and vandals;
• spies and saboteurs;
• and disgruntled (ex-) employees and (ex-) contractors.

Browsers, campers, and vandals are the stereotypical hackers/crackers. Browsers

want to penetrate and look around. Campers penetrate to use the superior resources of

the target, such as high-speed networks, processors, and memory. Vandals are often

campers who have been discovered; they commit service denial or damage for ego

14

gratification. Browsers, campers, and vandals are typically script kiddies – inexperienced

individuals who don’t understand what they are doing, reusing script tools developed by

others – motivated by ego and a desire to boast to friends. They are not interested in the

target system itself, rather they are interested in the resources, and will try to exploit

those if they believe they can get away with it. These attackers are not likely to use

extraordinary means. Wadlow uses the metaphor of wasps to describe their behavior:

they look for an easy way into a system, they are difficult and expensive to remove once

in, attacking them is foolish and dangerous, and ignoring them means you can never use

the resource [Wadlow, 2000].

Spies are looking for something very specific, where saboteurs want to deny you

from doing something. There are very few spies and saboteurs but they have very high

skills and are very determined. Spies may be political, freelance, or industrial. They

typically target specific individuals, corporations, and government agencies. Their

method is to collect huge amounts of information about the target system, rehearse before

an actual attack, and if they are detected before they are finished, they will walk away.

Saboteurs differ from vandals in that they target specific individuals, rather than vandals

who target anyone. Saboteurs also have a higher goal driving their damage and denial

operations.

Disgruntled (ex-)employees, and (ex-)contractors are motivated by being

displeased. They have the skills, training, and experience on the equipment that will be

targets. They have opportunity because they have access to systems, and their knowledge

is high because they know the system capabilities and vulnerabilities that provide access.

Cohen [2000] provides the most comprehensive categorization, listing 37

categories (see Table 1 -- Cohen's Threat Actors). Each of these threats has a

corresponding definition, and a very general discussion of their likely goals. These

threats are also cross-linked to the attacks they are likely to use. Although the

categorization was thorough, it is too general for sophisticated goal analysis and

planning.

15

activists foreign agents and spies nature
club initiates fraudsters organized crime
competitors global coalitions paramilitary groups
consultants government agencies police
crackers for hire hackers private investigators
crackers hoodlums professional thieves
customers industrial espionage experts reporters
cyber-gangs information warriors terrorists
deranged people infrastructure warriors tiger teams
drug cartels insiders vandals
economic rivals maintenance people vendors
extortionists military organizations whistle blowers
 nation states

Table 1. Cohen's Threat Actors [From Cohen 2000]).

Carroll [1995] analyzed computer crime using the acronym MOMM for Motives,

Opportunity, Means, and Methods. Carroll discusses four motives for computer crimes;

money, ideology, compromise (coercion), and egotism. Opportunity consists of technical

knowledge and physical and electronic access of a potential attacker. Means are the

processes used by the attacker to perform the attack; and are a general description of the

action the attacker will do to achieve his goals, such as obtaining funds by printing a

check or transferring funds to a location the attacker can access. The method is the

technical tool used to achieve the means.

Parker [1998] used the acronym SKRAM (skills, knowledge, resources, authority,

and motives) to differentiate cyber criminals based on properties or attributes that the

criminals possess, not the activities they perform. Parker’s categories of attacks include

insider, malcontents, irrational, extremists, terrorists, personal problem-solver, cyber

criminal, malicious hacker, hacker, and prankster. Although the analysis is useful, it is

not sufficiently complete for a computational simulation. For example, the attacker’s

dedication is not considered to describe the amount of time an attacker may take before

being frustrated and quitting, or the amount of risk an attacker might be willing to take to

complete a mission.

These taxonomies provide insight on threat actor motivations, but they lack

sufficient detail for building a comprehensive computational simulation of the IA

16

domain. Actors cannot be analyzed in a vacuum – and so at best, these categories

provide a snapshot of a potential attacker at a moment in time. They may capture their

skills and motivations at that moment, but they don’t help explain the ultimate aims of the

actor.

6. Security Taxonomies
There have been several attempts to build security taxonomies. In the

development of the Common Criteria [NIST, 1999] a superficial security taxonomy was

developed to help explain “security concepts and terminology... and relationships,” and

not as input into a simulation. It greatly simplified the attacker and their goals.

Several other security-related taxonomies have been introduced. Landwehr et al.

[1994] proposed a comprehensive taxonomy of software security flaws. This research

examined both “inadvertent” as well as “intentional” flaws, and built a high-level typing

of software-introduced vulnerabilities. They also provided taxonomies based on ‘time of

introduction’ and the location of the flaw introduction.

Victor Raskin is currently developing a security ontology, but it is currently

incomplete, and no security simulations based upon this ontology have yet been

developed [Raskin and Nirenburg, 2001].

7. Failures of Traditional Models
The major problem with the previous security models and simulations is that they

fail to observe that information assurance is fundamentally both a technical and social

problem and should be modeled appropriately. The U.S. Joint Chiefs of Staff state that

human actors are one of the basic sources of threats to information systems. They go on

to say that defeating information system threats requires the integration of people,

operations, and technology [DoD, 2000]. People are a component of the system, yet

people are not part of the models.

While few might argue that computer networks are social systems, little research

has been conducted on the specifics of security-related social implications. Denning et

al. point out that “If we ignore (the) social aspects (of computer security), there is the

danger of developing technologies that are not cost effective, do not address the actual

threat, or jeopardize human rights” [Denning et al., 1987]. They go on to say that there

17

are “four topics related to the social aspects of computer security: security policy

definition and awareness, user productivity, privacy, and information security.” While

their paper was a call to the security community to consider these topics in the

development of computer systems, it provides a good starting point in the consideration

of social modeling to computer security.

Rheingold examined the social structure of “cyber villages.” He states, “One of

the surprising properties of computing is that it is a social activity...” [Rheingold, 1993].

He goes on to say that the anonymity of the network permits you to extend your “circle of

friends” who have shared values and interest, and that the circle of friends provides an

"information social contract to share information, not based on reciprocity, but on a gift

economy” [Rheingold, 1993].

When we look at empirical evidence of network attacks, we see social systems

and deception in both attackers and defenders. In The Cuckoo's Egg, Cliff Stoll [1990]

discovers KGB-sponsored hackers on his network. Stoll creates and nurtures a social

group to defeat these attackers, and manipulates the attackers into performing acts

(lengthy downloads from a ‘honey pot’) that result in their apprehension. While Stoll

was somewhat more candid than his adversaries, his behavior was no less exploitive or

manipulative than that of his adversary. In Masters of Deception, Slatalla [1995]

provides insight into a social system of juvenile hackers. The social system permits the

hackers to share information and learn how to exploit systems. This social system also

results in their detection and downfall once their social group is penetrated.

These two examples illustrate that, although the field of IA involves sophisticated

technology, it is very much related to traditional warfare, spycraft, and statecraft. Both

attacker and defender are involved in various methods of intelligence, counter

intelligence and deception operations. If one were able to apply Machiavelli’s

observations on deceit and conspiracy [Machiavelli, 1515], malicious activities in the

information security domain might no longer exist. Machiavelli observed that “the

difficulties that confront a conspirator are infinite… many have been the conspiracies, but

few have been successful; because he who conspires can not act alone, nor can he take a

companion except from those whom he believes malcontent, and as soon as you have

18

opened your mind to a malcontent you have given him the material with which to content

himself…” As Donath pointed out however, the attacker can hide his real identity. This

anonymity and lack of fear of reciprocity by the “state” can motivate the attacker to

perform network “conspiracies.” Once an attacker’s organization is penetrated then one

can see the environment revert to Machiavelli’s traditional model.

So a true simulation of the information assurance domain that covers both

offensive and defensive capabilities, is a combined system that must model both human

social interactions and the technical requirements which facilitate or constrain the social

interactions.

D. COMPUTATIONAL ANALYSIS OF INFORMATION ASSURANCE

The ultimate purpose of modeling is to assess the “big picture” of a domain and

gain insight into the inner workings of the system under investigation. Prietula states that

“Organizations are complex, dynamic, non-linear, adaptive, and evolving systems” and

analytical models are a poor choice for modeling these systems [Prietula et al., 1998].

Computational analysis is a useful tool for studying these systems, but which

computational methodology is most appropriate for modeling information assurance at

the organizational level?

In an attempt to answer this question, numerous methodologies were examined.

This section examines the strengths and weaknesses of the following classes of

computational systems: symbolic systems, connectionist approach, system dynamics, and

multi-agent systems. This section is not meant to imply that these are all of the classes of

technologies available, not that these classes are mutually exclusive. This section is

meant to provide a broad overview of technologies that were examined, and a general

comparison as to the strengths and weaknesses of each class.

1. Symbolic Approach – Rule-Based Systems
The symbolic approach builds computational systems using some form of

problem solving or planning, and an internal manipulation of symbols based on a logic

system such as first-order predicate calculus. An example of a symbolic approach is a

rule-based system. A rule-based system typically consists of a start state and goal state,

19

each of which is represented as a set of facts. The system also contains a set of if-then

rules, or productions, and a reasoning, or inference engine. The reasoning engine takes

facts from the start state, and attempt to find a premise from a rule that matches these

facts. If the reasoning system finds a fact or set of facts that match the premise, it adds

the conclusion of the rule to its current fact list. This procedure continues until the goal is

discovered or no rules can fire. If the goal is discovered, the set of rules that can be

traced from the start to the goal state are a viable solution to the problem. This type of

system is derived from Newell and Simon’s General Problem Solver using means-ends

analysis [Newell and Simon, 1963].

These systems typically solve problems from the top-down; the developer creates

a static set of rules prior to run-time that represent possible problem-solving steps. The

system iterates through these rules, applies facts, and possibly sub-rules in order to

discover a solution.

Rule-based systems have several advantages. First, these systems emphasize the

engineering of processes, using a divide-and-conquer approach that may seam intuitive to

developers. Additionally, rule-based systems are capable of having an explanation sub-

system, which can explain to users, through the rules that fired, how the system arrived at

its goal. These systems excel in static, deterministic, perfect information environments.

Rule-based systems have several disadvantages in modeling IA. First, and

foremost, in traditional top-down rules-based systems the developer must predefine the

rules and actions, and therefore problem solving capabilities, limiting the system to the

imagination of developer. In a large system, an engineer may not be able to define all

contingencies and combinations a priori due to the combinatorial explosion if all

combinations were tested [Axelrod, 1997], [Weiss, 1999]. The result is that rule-based

systems cannot discover innovative solutions to unforcasted situations.

Additionally, rule-based systems do not deal well in a dynamic, stochastic, or

partially observable environments, especially in confrontational domains. In these

domains, an entity may be able to discover how a rule-based system acts in a given

situation, and therefore adapt to the rule-based system’s predictable behavior in order to

defeat it.

20

Simulation systems that are categorized as rule-based include SOAR [Laird et al.,

1987] and ACT-R [Anderson, 1993].

2. Connectionist Approach – Artificial Neural Networks
The connectionist approach models cognitive processes based on neural science.

If we think of the IA domain as a highly connected, cognitive process, then this approach

is a viable computational tool. There are numerous approached to developing

connectionist systems, but this section will concentrate on artificial neural nets (ANN).

An artificial neural net consists of a self-organizing, multi-layer network of

primitive computational elements, or nodes. The connections among nodes have weights

that are adjusted, resulting in the system learning though supervised training. The system

is given a limited set of training data, and it adapts its weights to ‘fit’ the training data.

The ANN can be considered a form of statistical inference [White, 1989].

By training an ANN to a set of training data, the system discovers what attributes

are important to categorize the training set, in effect, performing pattern matching. If the

environment is small, then a large percentage of the situations may be presented to the

ANN, resulting in the ANN memorizing the correct categories for all situations. If the

environment is very large, then the training set may represent only a very small subset of

the possible situations possible, and the system generalizes based on the ANN’s

implementation and training set.

An advantage to the ANN approach is that the engineer does not have to spend a

great deal of time with domain experts trying to enumerate what action to take in every

possible situation. The researcher collects a set of real-world examples and uses these as

the training set, training the system to generalize on the appropriate action to take. ANNs

can make the development of systems feasible where the experts are not available, but

historical case studies are available.

Several disadvantages make ANNs inappropriate for modeling IA. First, and

foremost, if examples of situations are not in the training set, then they will not be

represented internally in the ANN. Second, ANNs learn offline. In a highly dynamic

environment, where we wish to model adaptive behavior, ANNs cannot adapt during a

simulation execution. ANNs add newly encountered situations and appropriate actions to

21

their training set and are retrained offline, which can be very time consuming.

Additionally, ANNs are very good for generalizing, but may have difficulty with special

cases. These special cases may be treated as statistically insignificant noise and be

generalized away – eliminating critically important IA events. Additionally, ANNs have

no probability distributions on output; a given set of inputs produces a given output, with

no probability or explanation of the event occurring. Lastly, ANNs have no way to

explain their reasoning. Their answers are derived through the complex interactions of a

set of node and link weights, and attempting to understand the ANN’s reasoning is very

difficult, if not impossible. For these reasons, the connectionist approach was deemed

inappropriate.

3. System Dynamics – Stochastic Simulations
In the field of system dynamics, the most appropriate tool for modeling IA is

stochastic simulation. Stochastic simulations, or logic sampling, examine empirical

evidence in the form of statistical data, and build multi-connected graphs, or belief

networks. In the graph, a node represents a state, and a transition between nodes

represents a probability of transitioning between states. After building the graph the

system generates a large number of models of the domain, by starting at a root in the

graph and transitioning to a node representing a significant event. The model results are

compared, and the probability of an event occurring is the ratio of the number of times

the simulation ended on that node to the total number of simulation runs.

The major advantage of stochastic simulations is that they can provide statistical

data on the probability of events occurring. The probabilities in the belief network come

from statistical analysis of empirical data. They can also show chains of events that may

lead to important events.

A major problem with the use of stochastic simulations in modeling IA is that

reliable statistical data may not exist that covers IA at the organizational level. Since this

data may not be accurate, the belief network will be flawed, and the results of the

simulation will be invalid.

Additionally, the environment of IA is dynamic, with entities adapting to the

actions and inactions of other entities. Building a belief network that takes into account

22

all of the variables and adaptation for a large number of entities presents an intractable

problem.

Finally, stochastic simulations break down when researchers are interested in

outcomes that occur very rarely. In these cases, the simulation is run a large number of

times, discarding noninteresting outcomes. The challenge is that the fraction of

interesting, yet rare runs decreases exponentially with the number of evidence variables

[Russell and Norvig, 1995]. In any large domain, finding these critical outliers may

represent an intractable problem, since the repeated simulations may not discover these

statistically insignificant, yet very important situations. This research is interested in

those outliers, the statistically insignificant events that may have a catastrophic effect on

the security of an organization’s information and information systems. For this reason,

stochastic simulations were abandoned.

4. Multi-Agent Simulations (MAS)
While there is no commonly accepted definition for agents, Wooldridge proposes

a definition that is used throughout this dissertation, “An agent is a computer system that

is situated in some environment, and that is capable of autonomous action in this

environment in order to meet its design objectives” [Wooldridge and Jennings, 1995].

Other definitions can be found in [Ferber, 1999], [Russell and Norvig, 1995] and [Weiss,

1999].

Multi-agent simulations (MAS) operate from the bottom-up, using multiple

adaptive agents “…(as) intelligent actors, interacting among themselves by using their

defined attributes and methods, but (are) able to modify those constraints to meet the

goals assigned them by the modeler…providing real insight into how best to encourage

and take advantage of individual initiatives and adaptability.”

Researchers begin by developing the set of actors and objects in the system under

investigation, and specify how these interact. Researchers are then able to study the

interdependencies between the system components and examine how the system as a

whole evolves under varying system parameters. Intelligence emerges through the

interaction of many relatively simple autonomous agents [Weiss, 1999].

23

The socially capable autonomous agents interact within the environment, other

objects in the environment, and other agents in an attempt to achieve their own individual

goals. The autonomous agents are able to change goals and select actions that they

believe can help achieve these goals. A benefit of this bottom-up approach is the ability

to integrate new agents and objects into an existing simulation and modify system

parameters to perform what-if analysis [Ferber, 1999]. These societies of agents provide

researchers insight into the environment under investigation by creating virtual

laboratories where researchers can explore changes in the agents, environment and

society who are modeled after actual (or virtual) components found in actual or fictitious

social systems.

MASs have no centralized control -- the agent simulation is leaderless. Each

actor (agent) in the simulation independently pursues its own independent goals. Some

actors may cooperate while others compete. The result is a highly dynamic environment

where software actors, with no human intervention, can search the space of resources and

goals and develop innovative solutions for challenges discovered in the environment.

Multi-agent research has been conducted in areas ranging from artificial life

[Langton, 1988] to real worlds [Jones et al., 1999]. Varieties of MAS architectures, from

purely reactive to cognitive, have been developed to model the various environments.

Cognitive agents (or deliberative agents), from the distributed artificial

intelligence (DAI) community, are traditionally based on first-order predicate logic,

sophisticated reasoning, and rely on the internal manipulation of symbols. These agents

maintain a symbolic representation of the environment within which they operate, and

focus on communication and cooperation between agents. Most importantly, these

agents have intentions -- goals and plans to achieve goals. Cognitive agents inherit the

strengths and weaknesses of rule-based systems as discussed above.

Reactive agents, from the field of artificial life (A-Life), are reflexive -- actions

are “reactions” to stimulus regulated by perceptions and the agent’s internal state. These

agents maintain no planning, history, or symbolic representation of the world. The

simple reactive agents are combined into a society, where intelligence is seen as emergent

from the vast interactions of the agents and the environment. Refer to Figure 1--

24

Spectrum of Agent Architectures. See [Weiss, 1999] for a more detailed comparison of

cognitive and reactive agents.

Figure 1. Spectrum of agent architectures.

Unlike cognitive agents, reactive agents do not posses any internal plan or model

of the environment. They do not explore alternatives. Rather, they generate actions, and

these actions may result in fulfilling their goals. The actions that led to the agent

achieving a goal can be studied as an implied plan that emerged from the application of

simple reactive rules.

Many properties of reactive multi-agent systems make them a beneficial

architecture for the modeling of information assurance. Creating reactive agents is

simple when compared to rule-based systems. The systems are computationally tractable

and robust. The agents thrive when the environment is stable and tend to adapt rapidly to

changes [Axelrod, 1997]. Finally, and most importantly, agents apply simple reactive

rules to states and discover “what works”. The agent adjusts to the environment, and

adapts. This adaptation results in the agent discovering possible new solutions to

problems without any explicit plan or engineering bias.

Multi-agent systems are not without challenges. First, reactive agents take a local

view, with no long-term plan. This may cause agents to become caught in a ‘local

maximum’, unable to find a more global maximum. There has been little research in the

agent’s use of exploration of new actions, versus the exploitation of previous successful

actions, so agents may discover one path that is successful and abandon searching for

additional, better plans. Additionally, MAS systems may have to deal with conflicting

goals between agents, which may lead to system gridlock or goal clobbering [Ephrati and

Rosenschein, 1994].

25

From the engineer’s point of view, it can be very difficult to ‘tune’ agents to

perform properly in environments. The agent’s behavior emerges, and causing the

correct behavior to emerge may prove difficult. Finally, the dynamics between many

conflicting goals or behaviors, may be very complex and quickly overcome an engineers

ability to understand the results of these many interactions [Weiss, 1999].

The purpose of this dissertation is to model the technical and observable social

phenomena found in the field of IA. As such, we are not concerned with producing

software replicas of actual humans. We wish to create a set of agents who represent

individuals found in the IA environment, and whose observable behavior emulates those

real-world individuals. To achieve this, a composite agent architecture was created that

takes advantage of the strengths of both cognitive and reactive agent architectures [Hiles

et al., 2001].

For additional general information on agents and MASs see [Ferber, 1999],

[Weiss, 1999]. For seminal MAS architectures and simulations see SugarScape [Axtell

and Epstein, 1996], Swarm [Langton, 1997], ISAAC combat simulation [Ilachinski,

1997], and Echo simulated world [Echo, 2000].

E. UNIFIED MODELING LANGUAGE

This dissertation uses the Unified Modeling Language (UML) to formally

represent the primitives of the IA model that is introduced. The UML provides a

standard graphical notation for visualizing the components in software systems, and for

documenting conceptual organizational processes. Developers can use this formal

modeling language to express the structure and behavior of a system [Booch et al.,

1999].

As stated in [Booch et al., 1999], there are four aims in modeling:

• to help visualize a system

• to specify the structure or behavior of a system

• to give a template that guides in construction

• to document decisions made.

26

UML is used for these purposes. In addition it is “… expressive enough to model

nonsoftware systems, such as workflow…. and the design of hardware”. The UML is

used for two purposes in this dissertation. First, it is used as a graphical notation to

illustrate the model developed for this dissertation. The UML formalizes the meaning of

the language operators by providing representational rigor and software repeatability.

Second, it is used to express the structure and behavior of the software developed as an

implementation of the model.

Defining the things, relationships, and diagrams is beyond the scope of this

dissertation. A general description of the UML notation used in this dissertation is

provided in Appendix B. An excellent user guide is [Booch et al., 1999], and a

comprehensive reference manual is [Rumbaugh et al., 1999]

F. SUMMARY

The modeling and simulation of the IA domain has been an ongoing effort for

over thirty years. Numerous formal and informal models provide a wealth of information

on various portions of the domain, but fail to capture the complex, adaptive nature of IA

when it is viewed as a social system.

The next chapter uses lessons learned in multi-agent system design to develop a

computational model of IA. The UML is used as a graphical notation to illustrate the

model.

27

III. COMPUTATIONAL MODEL OF INFORMATION
ASSURANCE (IA)

A. INTRODUCTION

This chapter introduces the Social-Technical Information Assurance Model

(STIAM). STIAM is a computational model of information assurance. The model has

two components: a formal model, and a descriptive model. The formal model uses

mathematical notation to describe the elements of the model. The descriptive model

provides a graphical representation of the formal model. Combined, these two

components permit researchers to model elements of information assurance (IA) at the

organizational level.

This chapter presents STIAM in formal mathematical notation and depicted

graphically using the Unified Modeling Language (UML) [Booch et al., 1999]. Chapter

IV introduces a data structure called connectors. Connector-based models and notation

are introduced, and STIAM is presented in the connector notation.

B. OVERVIEW

The objective of this research is to examine how IA issues affect organizations as

a whole. This work does not model individual devices and connections on a network, nor

the specifics regarding how information flows through devices and nodes. Rather it

focuses on how decisions and omissions made by humans affect an organization at the

enterprise level. In order to ask and answer meaningful questions, a precise set of

definitions and relationships must be elaborated.

The term environment refers to the real-world situation being modeled. In this

research, environment is limited to relevant social organizations, people, and information

processes and technologies that are responsible for IA issues in the real world. The term

society represents an abstraction of the environment, depicting generalizations of the

entities, their structures, and their relationships within the environment.

At the highest level of abstraction, the society contains a group of organizations --

social entities that exist for a particular purpose. From an IA perspective, the components

28

of the organization are information and people. Information may exist in any format

including electronic, paper, punched cards, stone tablets, etc. People use the information

to achieve goals. Accessing and modifying information takes place through an

organizational infrastructure that contains processes that access and modify the

information, and an interface on the infrastructure to allow people to interact with the

information. Electronic technology might or might not be embedded in this

infrastructure.

From an information-centric perspective, the key components of an organization

are:

• Critical information required for the organization to perform its mission.

• Information processes that interact with the information and provide an
interface for human actors.

• Key individuals that interact with the information processes directly and
thereby interact with the information indirectly.

• Roles that individuals are assigned within the organization that guide them
in their goals and provide capabilities needed to achieve these goals.

• The policies and procedures that define the organization.

Information, processes, and roles combine to form organizations, and

organizations, infrastructures, and actors combine to form the society. These components

are the building blocks of the Social-Technical Information Assurance Model (STIAM)

presented in this chapter. The following sections examine these relationships in further

detail.

C. SOCIETY

A society is comprised of three disjoint domains with each domain containing

multiple autonomous entities. The three domains are the organizations, infrastructures,

and people, or actors. Formally, a society, s, is defined as a tuple relationship expressed

in Equation 1:

29

s = <O, I, A>
where:

O is a set of Organizations
I is a set of Infrastructures

A is a set of Actors
Equation 1. A Society of Organizations, Infrastructures and Actors.

The Organization domain contains a set of abstract representations of social

groups. The Infrastructure domain consists of a set of abstract representations of the

critical information within an organization as well as the information processes that

access and process that information. The Actor domain consists of actors, which are

abstract representations of humans critical to IA. Combined, the elements of the domains

are the entities in the society. See Figure 2 for a high-level conceptual diagram of the

model.

 defines

role member

1

*

*

*

Entity
{abstract}

Society

Organization ActorInfrastructure
*

*

*

1

 interacts with *1...*1
interacts with

Figure 2. A Conceptual Diagram: A Society composed of

Organizations, Infrastructures, and Actors2.

There are numerous relationships between the three domains of the society. For

example:

• a particular Actor may assume multiple roles in multiple Organizations,

2 This is a conceptual diagram of the IA model. This diagram depicts the major
entities, and the relationships between these entities. The components of the entities are
not depicted in this diagram to facilitate clarity. See Appendix B for a summary of the
UML notation used in this document.

30

• each Organization may have multiple roles that various Actors can
perform,

• a particular Actor may interact with many Infrastructures,
• each Infrastructure may interact with numerous Actors,
• an Organization may define one or more Infrastructures,
• an Infrastructure belongs to a single Organization.

The remainder of this chapter will describe these domains and the associations

between them.

D. DOMAINS AND ELEMENTS IN A SOCIETY

Before elaborating on the domains and the elements and associations that make up

those domains, a key concept of the model must be introduced, the concept of tokens.

1. Tokens
Tokens are an abstract representation of simple static objects that are in the

environment being modeled. Tokens allow static objects in the environment to be

modeled without significantly increasing the complexity of the model. Tokens may

represent passwords, keys, access badges, etc that are found in the environment.

 Equation 2 depicts a particular token ti as an element in the set of all possible

tokens Ts in the society s. Figure 3 entitled “The Token Class in UML” depicts a token

graphically.

ti ∈ Ts
ti = <namei>

where:
Ts is the union of all tokens in all elements in society s

<namei> is a string label for the token ti

Equation 2. A Token is an element in the set of all possible Tokens.

Token

name:String

Figure 3. A Token class in UML.
A set Ts consists of all possible tokens in the society s. Tokens are represented in

every domain in the model and is discussed as appropriate.

31

2. Infrastructures
The infrastructure domain I contains a set of infrastructures. An infrastructure

represents the aggregate of the information processing capabilities and the critical

information resources found within an organization.

A particular infrastructure i ∈ I is defined as a tuple as shown in Equation 3:

i = <IRi, INi, Ti>
where:

IRi is a set of information resources in infrastructure i
INi is a set of all interfaces for infrastructure i

Ti is the set of all tokens stored on the infrastructure i
Equation 3. An Infrastructure composed of Information Resources,

Interfaces, and Tokens.

An organization possessing information resources must have some means to

access and process the information resources. The infrastructure represents the

information possessing capabilities of an organization in an environment. An interface

represents the prerequisite ‘handshake’ that must occur before actors and other

infrastructures are able to interact with these processes.

A set of tokens may be stored on the infrastructure. This represents critical

information that is on the infrastructure that may be acquired by actors and utilized to

achieve additional infrastructure access. This process is discussed later.

Graphically, the infrastructure relationships are depicted in Figure 4 entitled “An

Infrastructure composed of Resources, Interfaces, and Tokens”.

32

Interface1...*

Resource

Token*

*

Infrastructure

ac
ce

ss
es

Figure 4. An Infrastructure composed of Resources, Interfaces, and Tokens.

a. Information Resources
Information Resources, hereafter called Resources, are the critical

information sets whose confidentiality, integrity, and/or availability are required for the

organization to exist. Resources represent the content of information and not file objects

like data files, email, etc.

Resources will represent different information and processes for different

organizations in the environment being modeled. A government organization may be

concerned with national intelligence secrets. Financial institutions may be concerned

with banking transactions and balances. A particular corporation may be concerned with

two resources; one representing sensitive proprietary research and development

information, and another representing their customer database. The bottom line is that

the resources represent the critical information and processes within the organization,

whose disclosure, corruption, or nonavailability may cause harm to the organization or

that may be of interest to outside attackers.

b. Interface
Interactions between the infrastructure and other entities occur through an

interface. An interface is a mechanism specified by the infrastructure whereby entities

that can connect with the interface are able to affect the infrastructure and its component

33

parts. An interface contains the requirements necessary for an entity to interact with an

infrastructure and a set of actions that occur if those requirements are met. These

interactions model information services that employees, customers, or attackers may

access to cause effects on the infrastructure and resources.

A particular interface, inj, is defined by the tuple as shown in Equation 4:

inj = < nj, sj, Tj, ae, ACj >
where:

nj = name of the interface
sj is the state of the interface where sj∈ {active, inactive }

 Tj ⊆ Ts --a set of interface tokens
ae is an active entity where ae ∈ (A ∪ I)

 ACj = set of actions

Equation 4. The components of the interface.

Figure 5, entitled “UML diagram of an Interface” depicts an interface and its

components.

Consumer Producer binds
1*

type

Interface

name: String
state:Boolean
cardinality: Integer

changeState()
disconnect()
setOwner()

Token

Action

SendMessageActionAccessResourceAction ChangeStateAction

1

*

activeState == true indicates the
interface is accessible,

activeState == false indicates the
interface is not accessible

requirements*

Entity
owner

actions

*

Figure 5. UML diagram of an Interface.

34

The name of an interface is a simple string label used to refer to the

interface. The state property indicates if the interface is accessible at that moment in

time. An inactive interface cannot be accessed by another entity. The state property

permits a researcher to model the activation and inactivation of processes and services

within an infrastructure, permitting the modeling of a dynamic system over time.

Each infrastructure has a set of interfaces that prescribe how actors and

other infrastructure may interact with the infrastructure. Additionally, interfaces are used

for interacting with actors. The actor interface is discussed later. The interface owner

provides a pointer to the entity to which the interface provides access.

It is assumed in this model that an interface may permit multiple entities to

simultaneously bind at any time. The number of entities that are permitted to bind is

specified in the interface’s cardinality value.

There are two types of interfaces defined: the producer and the consumer.

The producer advertises that the infrastructure has a process or action it performs. This

may represent a web server, a help desk, database access, etc. The consumer interface

advertises that an entity is seeking a matching producer interface; the consumption of the

process or action that the producer is advertising. Infrastructures may have any

combination of producer or consumer interfaces.

The producer has prerequisites that must be met in order to utilize the

services or processes it models. These prerequisites may be something an entity must

know (password or phone number), has (a key or physical access to a location), or is

(biometric data). These prerequisites are represented as tokens that must be presented by

the consumer in order to access the producer interface. If the producer’s tokens are a

subset of the consumer’s tokens then the prerequisites have been met.

The actual mechanism for entities to assume the producer and consumer

types, and to interact with one another, is described in detail in Chapter IV. For now,

assume an entity that has a goal of consuming a service activates its interface, creates a

consumer message, and sends the message to the producer. If the producer’s interface is

active, the interface names match, and the message contains at least the producer’s

35

required tokens, the interfaces are said to connect. The connection can be thought of as a

temporary contract, where the producer wishes to provide a service, and the consumer

wishes to utilize this service. This contract, or connection, is maintained until one of the

parties discontinues the connection, at which time the interfaces, and subsequently the

owning agents, disconnect.

c. Interface Actions
A set of actions may be designated to execute on the owning entity of the

participating consumer and producer interfaces immediately upon a connection occurring,

upon a connection breaking, or upon the owning entity’s request. These actions permit

researchers to model the results of entities interacting in the environment.

There are three types of action results: changing an interface state,

accessing a resource, and having an entity send a message to the other party of the

connection. Changing an interface state causes an infrastructure to activate or inactivate

interfaces, resulting in the addition or removal of capabilities on an infrastructure. This

may represent an entity installing, activating, deactivating, or removing services on an

infrastructure. Thus, connecting to an interface may result in changing the interface

itself.

Some interface actions may result in accessing a resource. These actions

represent the actors either reading from or writing to a resource. This represents a person

successfully accessing a critical resource.

An action may send a message to the other party of the interface

connection. The message may contain tokens or tickets (tickets are discussed in chapter

V). This represents an infrastructure providing additional materials or services to other

entities in the binding. This might represent an individual defeating a poor security

interface and acquiring the password file, represented as a set of tokens, from a system.

d. Aggregating Infrastructures
An organization may have one or more infrastructures that define the

actual capabilities and limitations of that organization’s information processes. The

decision to maintain individual infrastructures or to aggregate them into a single

36

infrastructure depends on the goals of the modeler. For example, a researcher may be

examining a very large society, with numerous organizations and actors, so he may

aggregate the infrastructures in each organization onto a single infrastructure in order to

order to observe the ‘big picture’ and ensure the environment is manageable. On the

other hand, a researcher may be interested in more detailed information on a few entities,

in which case he may decide to deaggregate the infrastructures in order to model more

detail.

3. Organizations
Organizations represent social groups within the environment being modeled. As

expressed in Equation 5, an organization oi ∈ O is a collection of organizational IA

policies POi and actor roles ROi :

oi = < POi, ROi >
where:

 POi is a set of policies for an organization oi
ROi is a set of roles for an organization oi

Equation 5. An Organization consisting of Roles and Policies.

Organizations do not model actual social groups or collaborations, but are an

idealized modeling concept to facilitate insight into IA at the macro level. Organizations

range from formal enterprises such as commercial and government entities, to informal

collections of individuals with a common goal such as hacker clubs, social groups, etc.

The organization may represent a team with heterogeneous, interdependent roles, or a

group of homogeneous, interchangeable roles [Kang et al., 1998]. Figure 6, entitled “An

organization consisting of Roles and Policies” depicts an organization.

37

Organization

Role Policy

1...

*

Figure 6. An Organization consisting of Roles and Policies.

a. Policies
Policies are a set of rules specified by an organization that state the

desired restrictions to entities that can access resources, and in what access mode. The

term policy, as used here, represent the organization’s desires to protect the

confidentiality, integrity, and availability of an organization’s information resources, not

the actual implementation. The implemented technical security policy [Brinkley and

Schell, 1994] is implied in the interfaces and their subsequent actions on the

infrastructure.

Policies are not access validation rules, such as access control lists or

capability lists, used to determine access decisions on the infrastructures. The policies

are the desired and specified restrictions to resources, what Sterne calls the Security

Policy Objectives; “A statement of intent to protect an identified resource from

unauthorized use…” [Sterne, 1991]. The security of an organization can “only be said to

be ‘secure’ with regard to some specific security policy, stated in terms of controlling

access of persons to information” [Brinkley and Schell, 1994]. This being the case, the

policy set provides a means for detecting a violation of the organization’s information

security.

38

A policy pk ∈ POi is declared by the tuple:

pk = <e, irk, m, au>
where:

e ∈ (A ∪ I ∪ {*})
where * = entity wildcard character

irk∈ IRi is the resource the policy refers
m ∈ {read, write} = access mode

au ∈ {permit, forbid} = authorization

Equation 6. A Policy consisting of an Entity, Infrastructure, Mode, and
Authorization.

If a particular entity, e referred to in the security community as the subject,

accessed some resource irk in some mode m that is not permitted, or that is explicitly

prohibited by a policy, then that entity has violated the organizational security policy.

The subject of the policy, e, was deliberately chosen to be an entity, rather

than an actor. This is because, an actor a may connect to an infrastructure interface in1,

which may cause an action to execute. This action, executing on ir1, may cause ir1 to

attempt to connect to another interface on another infrastructure, in2. In this case, the

active entity making the connection to in2 is an infrastructure, not an actor.

Read and write modes are all that are required to describe rules for access

[Brinkley and Schell, 1994]. Connecting to an interface may cause the execution of a

particular action, but this action subsequently needs to access a resource in read or write

mode to cause any significant IA event. Therefore, an explicit execution mode is not

required for this model.

The policy mechanism as described above is very robust, permitting the

expression of both open and closed security policies [Lunt, 1989] using the entity

wildcard character ‘*’ literal. This character represents the union of the actor and

infrastructure sets, and allows the expression of all active entities as being permitted or

forbidden access to a specific resource.

A closed policy forbids all accesses except those that are explicitly

permitted. An open policy permits access to all resources that are not explicitly

39

forbidden. To express the former, the researcher adds policy rules forbidding all entities

access to a resource irk for both access modes:

• <*, irk, read, forbid>
• <*, irk, write, forbid>

Next, the researcher selectively adds rules to record permitted access to

resource irk to selective entities. To express an open policy the researcher explicitly

permits all access, and then add rules to selectively forbid access to certain entities.

The policies as specified create two partitioned sets of policies, those that

are permitted and those that are forbidden. These sets are independent, and may conflict

[Lunt, 1988], resulting in permitted and forbidden authorization simultaneously. These

cases may represent actual situations in the environment, and must be reconciled if they

occur. There are numerous subtleties in expressing and implementing policies, as

addressed in [Lunt, 1988], and [Brinkley and Schell, 1994].

Finally, the actual implementation of security policies are embedded in the

infrastructures. The infrastructure interfaces and actions should support the

organizational policies, but in reality, there might exist a means to bypass these policies

on the infrastructures. An entity may bind with an infrastructure using the system

capabilities in a way that is possible, but that violates the policies of the organization.

The policy system as specified provides a means to detect these violations.

b. Roles
The set of actor roles ROi is a collection of defined behaviors specified for

an organization. These roles are placeholders, initially defined but unfilled by actors.

Roles are discussed in the following section.

4. Organizational Roles
A role is a relationship between an organization and an actor. A role can be

thought of as a placeholder within the organization that an actor may fit. The role directs

specific actions on the participating actor by providing goals to the agent to pursue.

Some of the typical roles critical to an IA simulation are system users, system

administrators, managers, cyber attackers, and vendors.

40

It is assumed in this model that all goals and actions are derived from the actor’s

assigned roles. Furthermore, it is assumed that an actor commits to roles, and that roles

are voluntary.

A particular actor ak may commit to a particular role ri ∈ ROj. The role is depicted

in Figure 7 and is defined by the tuple:

ri = < RGi,, RQi, Ti>
where:

RGi is a set of Role Goals provided by the role
RQi is a set of prerequisite Role Requirements

Ti is a set of Tokens provided by the role

Equation 7. A Role consists of Role Requirements, Role Goals, and Tokens.

Role

<<interface>>
Requirement

Token Personality
Trait

Agent
Knowledge

requires >
Organization

Actor

role

provides >

Goal* *

**1

*

1

*

Figure 7. A Role and its components.

a. Role Goals
Role Goals, RG, are desires an agent pursues. Actors who commit to a

role are given goals that are then added to the actor’s goal set G. These goals represent

additional commitments that the agent must pursue. Goals have priorities, and new,

higher priority goals may eliminate older lower priority goals, thereby causing the

impression of goal elimination. Actors assign priorities, or weights, to goals to aid in

resolving goal role conflicts. Actor goals are discussed in detail in Chapter V.

b. Role Requirements
Roles have requirements that must be met prior to assuming a role. It is

assumed that any actor that fulfills these prerequisites is permitted to assume an

41

unoccupied role. These prerequisites may be tokens, prerequisite roles, or some

particular actor knowledge or personality attribute (see Chapter V for a discussion of

personality and skill sets). Roles may also have corequisites that must be maintained.

Failure to maintain corequisites may result in the role being revoked by the organization

such as being fired or thrown out of a group.

A role requirement RQi is defined formally by the tuple:

RQi = < Ri,, Ti, BMi, Ki >
where:

Ri is a set of prerequisite Roles
Ti is a set of prerequisite Tokens

BMi is a set of personality traits, referred to as Behavior Moderators
Ki is a set of agent skills or knowledge

Equation 8. Role Requirements as a Collection of Sets.

The role requirement is a collection of sets as defined in Equation 8. An

actor requesting to assume the role must possess each of the elements in each set. Roles

are discussed in detail in Chapter V.

c. Role Cardinality
Role cardinality refers to the number of actors who may simultaneously

fill a single role. Role cardinality is always one. If an organization contains multiple

homogeneous roles, then they are represented as duplicate roles to which different actors

may commit. Figure 8, entitled “Multiple homogeneous System Administrator roles,”

depicts two homogeneous roles, both being system administrators. Each role is

individually instantiated, and actors can commit to them individually.

42

corporation:
Organization

bob: Actor mary: Actor

sysadmin2: Rolesysadmin1: Role

Figure 8. Multiple homogeneous System Administrator roles.

d. Role Tokens
Tokens provided as a component of a role represent objects provided by

an organization to a role member to assist in performing the role. Tokens may represent

authority required, authorization tokens, or other physical or logical objects or properties

in the environment being modeled. Access tokens may be:

• physical, such as access to a location,
• logical, such as read and write permissions on data objects,
• social, such as the ability to interact with other actors.

Tokens may include other objects provided by the organization including

financial assets, software, devices, physical tools, etc. In some cases an organization may

not provide all of the tokens required to satisfy the goals of a role, so an actor may need

to use some other means to obtain the tokens to satisfy the goal, such as acquiring them

from other actors or infrastructures. This is discussed in Chapter VI.

5. Actors
An actor is an abstract software representation of IA-relevant humans in an

environment being investigated. Actors may represent individual humans, such as each

member of a very diverse research team, or may be an aggregate of a relatively

homogeneous set of individuals, such as all of an office’s cleaning staff. If a researcher is

modeling aggregates of individuals, then the individual roles must represent aggregated

roles.

43

Actors are “cognitively limited” [Prietula, 1998]. Since this research is not

interested in building complex cognitive representations of the human thought process,

relatively simple reactive software agents can be used.

An actor receives its capabilities and desires from the roles to which it is

committed. The roles may provide tokens to aid in the satisfaction of a goal.

Additionally, a role provides a set of one or more goals that are commitments to the

Roles. Goals need procedural knowledge so that the agent can pursue and achieve these

goals, and an action set, which are the capabilities that the actor can execute.

Figure 9 illustrates conceptually the major components of an actor. The diagram

depicts an actor defined in terms of the roles to which it has been committed. The roles

provide the actor with goals it attempts to fulfill. The procedural knowledge provides the

actor with the means to achieve the goals, utilizing the actor’s available tokens. Finally,

the actor selects actions to perform. These actions attempt to interact with other entities

through their interfaces. The actor also possesses interfaces that permit other entities to

interact with the actor. Successfully connecting to an actor’s interface may result in the

actor executing another action, possibly changing that actor’s internal components or goal

priorities. The actual agent implementation is dependent on the researcher’s goals. An

implementation of an agent that contains these capabilities is provided in Chapter V.

44

Figure 9. Conceptual diagram of an actor entity.

E. SUMMARY

This chapter introduces the Social-Technical Information Assurance Model

(STIAM). The formal and descriptive model permits researchers to investigate a society

of organizations, actors, and infrastructures, and their component elements at the

organizational level. This model permits researchers to model an environment at a

variety of abstraction level. STIAM is designed to be implemented as a computational

software system to permit researchers to investigate the society and its elements and their

interactions.

Chapter IV will translate STIAM into a multi-agent model. This is performed

using a data structure called iconnectors. The connector-based model of IA uses a special

graphical notation that is useful for clearly modeling a society, and visualizing the

dynamics of the system of elements. Chapter V provides a detailed description of a

software agent architecture that was developed to implement the actors in this model.

Goal

Role

Actor

Tokens

Procedural
Knowledge

Action

Interface

commits

possesses

 provides

 requires

provides >

 requires

re
qu

ire
s

interacts w
ith

*

*

* *

*
*

* *
*

*

*
*

*

1

de
cl

ar
es

receives

45

IV. CONNECTORS AND A CONNECTOR-BASED MODEL OF
INFORMATION ASSURANCE

A. INTRODUCTION

This chapter introduces connectors, a powerful communications mechanism for

developing computational models of complex domains, and for implementing these

models in software simulation systems. This chapter builds on the mechanisms as

proposed by John Hiles [Hiles et al., 2001] and discussed in [VanPutte et al., 2001],

[Hiles et al., 2002], and [Osborn, 2002].

This dissertation develops and implements two types of connector mechanisms.

The first, simply called ‘connectors’, was proposed by John Hiles [Hiles et al., 2001] and

first implemented by Brian Osborn as part of his dissertation [Osborn, 2002]. This

connector mechanism was extended and used strictly as an internal communications

mechanism within actors, as discussed in Chapter V. The second type of connector,

called infrastructure connector or ‘iconnector’, is used in this research as an inter-entity

communications mechanism. This chapter makes extensive use of the iconnector

mechanism.

This chapter presents the concept of iconnectors, including a formalism for

defining iconnectors and their interactions. It then provides a graphical notation for

illustrating connector-based models. Finally, it describes the components of iconnectors

in detail, and relates these components to the computational IA model presented in

Chapter III.

B. ICONNECTORS

1. Introduction
Computational systems that contain numerous autonomous entities require a

mechanism to facilitate communication between entities. Numerous communications

mechanisms have been proposed and implemented in multi-agent systems. See [Weiss,

1999] for a summary of agent communication mechanisms and protocols.

46

For purely communicating agents [Ferber, 1999] such as those proposed in the IA

model, we propose a lightweight communication mechanism called iconnectors.

2. Definitions
Iconnectors are a lightweight inter-agent communications mechanism inspired by

biology. Iconnectors resemble the mechanisms that support chemical flow through multi-

cellular membranes3. The cells of a multi-cellular organism communicate using proteins

that extend through the cell membrane walls. These proteins sense a cell’s outer

environment and allow passage of materials in and out of the cell. Carbohydrate chains

are attached to the proteins on the outer layer. A molecule external to the cell that

matches the carbohydrate tags cause a “signal” to travel through the carbohydrate into the

protein, thereby signaling a change in the cell.

The result of building iconnector-enabled agents is a biologically based

computational system. Iconnectors use a process called connecting [Hiles et al., 2002] or

binding to facilitate inter-agent communications. Communications between entities

occur via this binding, first during setup, and possibly later when using the link.

Entities create iconnector objects that represent a desire to communicate with

other entities. These iconnectors are registered with a singleton entity called ibinder.

The ibinder acts as the switchboard, attempting to find another iconnector that matches

the first. If the ibinder finds a match it registers these two iconnectors as connected, and

they are said to bind. It is at this point that the entities are said to be communicating

through the iconnectors. Thus, the iconnectors act as facilitators of communications, and

the ibinder acts as the digital switchboard binding iconnectors that match.

Figure 10 depicts the three major components in the iconnector process.

3 Based on a personal conversation with John Hiles, Naval Postgraduate School,

Monterey, California, June 2001.

47

Entity IConnector IBinder
 owner component binds manages

1...*1 1*

IConnectors
represent the

interfaces on Entities,
as discussed in
Chapter III.

Figure 10. The IBinder binds Iconnectors, which are components of Entities.

3. Iconnectors and Entity Interfaces
Iconnectors are used in the IA computational model to implement

communications between entities. The iconnectors are a simple mechanism for

implementing the functional specifications, connection setup, and communications

interfaces for the numerous entities in the model.

An iconnector is an “active object that can sense and react to the environment”

[Hiles et al., 2001]. An iconnector is not a passive property of an entity. Iconnectors

react to operations performed by the owning entities and have the potential for affecting

other entities. These effects are realized through sets of actions that can be associated

with iconnectors that execute on the owning entity upon the iconnector changing state

and bindings.

4. Formalism
An Iconnector is defined in Equation 9 and depicted graphically in UML in

Figure 11, entitled “Iconnector Class Diagram”.

48

An Iconnector ci is defined by the tuple:

ci=<li, ei, si, cai ,ACi, ty| li ∈ L, ei∈ (A∪ I), si∈ S, cai ∈ I+, ty ∈ TY>
where:

L = {n, Ti| n = name, Ti ⊆ Ts} = label
e ∈ (A ∪ I) = an active entity in the society s

S = {extended, retracted}= set of iconnector states
I+ = {0,1,2,3,...} = cardinality

ACi = set of actions
TY = {socket, plug}=set of iconnector end types

Equation 9. An iconnector specification consisting of Labels, State, and Cardinality.

Equation 9 states that an iconnector is composed of a label, owning entity, state,

cardinality, set of actions, and type designation. A label li expresses the requirements

needed to bind to an iconnector; a name for the iconnector, and tokens required to interact

with the interface. The researcher determines appropriate names for all interfaces on all

entities. These names are used to designate desired communications with other

iconnectors.

 Each iconnector has an entity pointer that indicates the entity for which the

iconnector is an interface.

Entity
{abstract}

ActorInfrastructure

ConnectedTo

AvailableTokens RequiredTokens

* *

*

0..1 0..1

1...*1

1

*
each instance of an
IConnector has a

pointer to an Entity
that the IConnector
claims is its owner

owner

component

Token

Plug Socket
consumer producer

Action

IConnector
{abstract}

name:String
isExtended:Boolean = false
cardinality: integer

Figure 11. Iconnector Class Diagram.

49

Each of the components of the iconnector are discussed in detail in the following

sections. Before presenting all of the components of iconnectors, a simple iconnector

notation is presented.

C. ICONNECTOR GRAPHICAL NOTATION

The iconnector notation is used to depict a connector-based system. The

advantages of the iconnector-based notation are brevity and clarity. The notation allows

a security analysts to depict entities and their relationships though simple diagrams, and

this notation permits security analysts to visualize the society as the states of the entity

interfaces change over time. UML diagrams can be used to append additional detail as

necessary.

In the iconnector notation, entities are depicted as in Figure 12. Actors are

circles, infrastructures are rounded rectangles, resources are triangles within the owning

infrastructure, and organizations are octagon. Name labels are provided above the

components. Goals, roles, and organizations are not depicted in the basic iconnector

notation, but are discussed in Chapter V.

Figure 12. An Actor ‘bob’, an Infrastructure ‘proprietary_network with a
Resource ‘corp_database’ and an Organization ‘enterprise’.

A simple iconnector diagram is depicted in Figure 13. This diagram depicts an

actor ‘bob’, with a plug iconnector extended and an infrastructure ‘enterprise’ with a

socket iconnector extended. Graphically, an iconnector is rendered as a solid line,

beginning within an ‘owning’ entity, and directed out of the entity, with an end symbol

depicting the type of iconnector. These iconnectors represent an implementation of the

bob proprietary_network

corp_database
enterprise

 Actor Infrastructure Organization

50

interfaces as depicted in Chapter III. The details of the iconnectors are in the following

section.

bob enterprise

corp_database

Figure 13. Entities with Iconnectors added.

The mediating ibinder object is not depicted on the diagram. The iconnectors are

drawn as if they extend and retract in the society, but in implementation, the ibinder

handles the mechanism of the binding process. Elimination of the ibinder from the

diagram improved the clarity of the drawing.

The iconnector label may be depicted on the iconnector diagram.

D. ICONNECTOR COMPONENTS

An iconnector has several properties and functionalities. A detailed discussion of

the components is provided in this section.

1. Iconnector State – Extended or Retracted
Iconnectors have a Boolean state: extended or retracted. A retracted iconnector is

inactive, and cannot connect to any other iconnector. An extended iconnector is currently

available for connecting. Extending and retracting iconnectors is a symbolic way of

saying that functionality is enabled or disabled. If a connection occurs, and one of the

iconnectors subsequently retracts, then the binding is broken, and subsequently the

remaining extended iconnector may connect to another extended iconnector. An

extended iconnector is distinguished from a retracted iconnector graphically by a small

perpendicular tick on the retraced iconnector as depicted in Figure 14.

51

c1

c2

enterprise

corp_database

tick mark indicated
the iconnector is

retracted (inactive)

Figure 14. Extended and Retracted Iconnectors for an Infrastructure.

Infrastructures have iconnectors that represent interfaces to processes on an

organizational infrastructure. Binding to one of these iconnectors may cause actions to

execute that cause other iconnectors to extend or retract representing the activation or

inactivation of processes on the infrastructure. Actors extend and retract iconnectors,

which represent actions the actor is performing in the support of goals.

Iconnectors are extended and retracted to and from both actors and infrastructures

in order to advertise or request access to either resources or actions. When an entity

advertises that it has a capability, the diagram notation indicates that it extends a socket

iconnector. When an entity requests a resource, the diagram notation indicates that it

extends a plug iconnector. If a socket accepts a plug, the two iconnectors are said to bind

and are drawn as such.

Iconnectors can extend without the owner of the connection being aware of this

event. A ‘hidden’ iconnector might represent functionality on an infrastructure that is not

an advertised capability. For example, a buffer-overflow vulnerability on a server might

be represented as a ‘hidden’ socket iconnector, with required tokens that represent

knowledge of the vulnerability and skills required to exploit the vulnerability.

Requirements to bind are always represented as tokens and are discussed below.

2. Iconnector Types – Sockets and Plugs
There are two types of iconnector ends: sockets and plugs. Sockets represent

interfaces to access resources and actions– a means to achieve goals. When an agent

52

requires a resource or action, it extends a plug iconnector and requests to bind to a socket.

If a socket exists that matches the plug parameters then the requesting agent binds to the

resource or action. The sockets and plugs match the producer and consumer types on

interfaces respectively, as discussed in Chapter III.

a plug

a socket

Figure 15. Socket and Plugs depicted graphically.

Socket labels differ from plug labels only in their use of tokens. The tokens listed

on a socket (Tsocket) are the required tokens that must be presented to bind to this socket.

The tokens listed on a plug (Tplug) are the tokens available to the owner of the plug.

Binding to a socket simulates the plug owner’s desire to access the requested

resource. The initiator must posses all of the required tokens in order to make this

binding (Tsocket ⊆ Tplug). Equation 10 depicts the requirements to bind mathematically.

Given:
 plug cp = <lp, ep, sp, cap, ACp, tp |lp = <np, TPp>>
socket cs = <ls, es, ss, cas, ACp tp |ls = <ns, TPs>>,

a binding occurs iff:
np = ns //names must match

Tp⊆ Ts
sp= ss = extended
cap > 0, cas > 0

 and neither is currently bound
tp = plug, ts = socket

Equation 10. The binding of a Socket to a Plug iconnector.

3. Iconnector Cardinality
Iconnectors have a cardinality that specifies the number of iconnectors that can

simultaneously be bound to this particular iconnector. An iconnector without a

cardinality label has a default cardinality of one. An iconnector with a cardinality of zero

represents a special type of iconnector called a Listening iconnector (see Section IV.D.5).

See Figure 16 for examples of iconnector cardinality labels.

53

3 simultaneous connections

infinite simultaneous connections

default -- one connection

3

∞

< ni, Tx>

< ni, Tx>

< ni, Tx>

listening -- zero connections 0
< ni, Tx>

Figure 16. Socket cardinality diagramming convention.

4. Iconnector Labels
Iconnectors are depicted with one end as a socket or plug iconnector and the other

end intersecting one edge of the owning entity. See Figure 17 for a depiction of an

actor’s plug iconnector attempting to bind to an infrastructure’s socket.

bob enterprise

corp_database

socket = <name, {required tokens}>plug = <name, {available tokens}>
Figure 17. An Actor Plug attempting to bind to an Infrastructure Socket

Iconnector.

If a plug iconnector with all of the prerequisite tokens is presented to a socket

iconnector, then they bind and actions may result.

5. Listening Iconnector
A listening iconnector is used in situations where an infrastructure or actor wants

to be notified that a iconnector exists in the society, but does not wish to bind to this

iconnector. This may occur, for example, when an agent wants to know if a particular

resource exists and is available on an infrastructure. If a listener iconnector discovers the

requested iconnector, the owning actor is notified of the iconnector on the entity, without

the entity being notified of the actor’s query.

54

Listener iconnectors can be distinguished from other iconnectors by the

cardinality label of zero. Figure 18 (a) depicts a listener plug iconnector that notifies the

actor if a socket becomes available that matches the listener’s label. Figure 18 (b) depicts

an infrastructure that will extend a iconnector cy if an entity extends a plug that matches

the socket iconnector cx. The mediating ibinder (not shown) takes care of the underlying

listening iconnector mechanism.

r1

<r1, {ti}> e,∅ r

cx

0

<r1, {tj}>

cy
<r1, {tk}>

cw
0

(a) (b)
Figure 18. Listening Iconnectors.

5. Actions
Actions represent the effects of successfully accessing an infrastructure or actor

through an interface. There are three types of actions:

• resource action
• connection action
• message transfer

Resource actions represent the access of a critical information resource.

Connection actions represent a modification to the interface of an infrastructure.

Message transfers represent an entity providing potentially additional capabilities to other

entities. All actions are depicted graphically as dashed, directed lines, called action lines.

a. Resource Action
Resource actions are depicted graphically as dashed lines that intersect an

owning iconnector inside an owning entity with an arrowhead on the other end of the

action line pointing to a resource inside the infrastructure. The resource action line has a

label lra:

55

lra = <mode|mode∈ {r,w}>
where r = read access and w = write access

Equation 11. A Resource Action definition.

When an entity binds to an iconnector that has a resource action attached,

the iconnector is now accessing the resource in the mode indicated by the action label.

When the entity disconnects from the iconnector it is no longer accessing the resource.

This action represents an entity accessing information resources.

b. Connection Action
Connection actions are depicted graphically as dashed lines that intersect

an iconnector inside an owning entity with the arrowhead on the other end of the action

line pointing to the iconnector that is affected by the binding. The connection action line

has a label lca:

lca =<s1, s2> where s1, s2 ∈ {∅ , e, r}
where ∅ = no action, e= extend, r = retract

Equation 12. A Connection Action definition.

A label is placed by the arrowhead with the double <s1, s2>. The value of

s1 is the effect to the iconnector pointed to, when the owning iconnector becomes bound.

Likewise, s2 is the effect on disconnecting, where the effect is null, extends, or retracts

respectively. An iconnector that is given the action to extend or retract, and is already

extended or retracted respectively, will not perform any action. The action connection

represents a modification to an infrastructure interface that can occur when an entity

successfully connects to the infrastructure.

Figure 19(a) depicts a condition where an iconnector cy is by default

retracted, and therefore the resource r1 is not accessible. If a successful binding occurs to

iconnector cx, then the connection action on cx will execute, causing cy to extend. This

state is depicted in Figure 19(b). If an entity binds to cy at this point, cy will execute its

resource action resulting in read access to resource r1. On disconnecting from cx, the

iconnector cy will retract and any entity connected to cy will be forced to disconnect.

56

r1
e,r r

cy

cm

cx

ii

r1
e,r r

cy
cm
cx

ii

(a) (b)

ak

ak

Figure 19. Actor ak binding to an Iconnector and a different

Iconnector reacting by extending.

Multiple iconnectors can be combined to react to each other as in Figure

20. This diagram depicts a condition where, if either socket iconnector is bound, the

other retracts. This example depicts a binding to resource ri if token ti or tj is presented.

Upon binding to one of the sockets the other socket retracts through the iconnector

action command. In this example, if an entity extended a plug with ti and tj tokens, the

plug can bind to either one of the sockets (a stochastic choice make by the ibinder), and

the other socket then retracts.

<r1, {ti}> <r1, {tj}>

enterprise
r1

r r

r,e

r,e

Figure 20. Connectors that permit Token ti or tj.

57

c. Message Transfer
In some situations, an iconnector binding causes an entity to transfer an

object to the other party of the binding. The transfer message, hereafter referred to as a

message, facilitates the exchange of tokens and capabilities between entities. A transfer

message is depicted graphically as a ‘lightning bolt’ arrow, with the base of the arrow

touching a token or ticket that is transferred, and the head of the arrow pointing toward

the destination entity of the message.

A transfer message is a one-way, directed communication between

entities. A source entity specifies the destination entity and the contents of the message,

consisting of tokens and/or tickets (discussed in Chapter V).

Figure 21 (a) depicts an example of a message from an infrastructure. If

an entity binds to socket c1, an action causes the message containing ticket tk1 to be sent

to the entity that bound to c1. Figure 21(b) is similar. If an entity binds to c2, the actor

sends the token T1 to the binding entity.

Infrastructure

c1

T1
tk1

Actor

c2
m1

m2

Figure 21. An Infrastructure and an Actor with transfer messages.

Messages convert the owner of a message into a vendor, who can transfer

tokens and tickets to other entities. The receiver of the message can choose to accept this

message, in which case the receiver now possesses this new capability, or ignore the

message.

E. SOCKET AND PLUG CONNECTIONS

The socket and plug mechanism can best be explained by an example.

58

Figure 22 is a sequence diagram that depicts the interactions that take place

between two entities that extend iconnectors to the ibinder, and then later one of the

iconnectors retracts. The diagram depicts the following high-level events:

1. entity1, an Entity creates a Socket, and calls its extendConnector

method() which changes the Socket’s state to extended.

2. The Socket notifies the IBinder that its state has changed, and the IBinder

registers the Socket as an active socket connector.

3. entity2 creates a Plug, and calls it’s extendConnector method() which

changes the Plug’s state to extended.

4. The Plug notifies the IBinder that it’s state has changed, and the IBinder

registers that Socket as an active plug connector. Next, the IBinder checks

if the two sockets are compatible, which they are.

1. The IBinder calls the Socket’s connect() method, notifying the

Socket that it has connected to Plug.

2. The Socket calls all of its actions that execute once a connection has

been made.

3. The IBinder calls the Plug’s connect() method, notifying the Plug

that it has connected to the Socket.

4. The Plug calls all of its actions that execute once a connection has

been made.

5. At this the point two entities are bound through their respective

iconnectors. These entities may now communicate directly.

6. Next after some activity, entity1 decides that it no longer needs to be

connected, and calls the Socket’s retractConnector() method.

7. The Socket changes it’s state to retracted, and notifies the IBinder.

8. The IBinder removes the Socket as an active iconnector and notifies the

Iconnector that the Socket is no longer connected, by calling the Socket’s

disconnect() method.

• The Socket calls all of its actions that execute when a connection is

broken.

59

9. The IBinder notifies the Plug that the Plug is no longer connected, by

calling the Plug’s disconnect() method.

• The Plug calls all of its actions that execute when a connection is

broken.

10. The IBinder attempts to reconnect the Plug to an existing the Socket

whose label matches the Plug.

60

s:Socket ibinder:IBinder p:Plug

connectorChanged()

Time

Objects

Sequence of Time: Socket and Plug extending, then Socket retracting

connect(p:Plug)

actionsOnConnect

entity1:Entity

extendConnector() changeStatus

onExtend

connectorChanged()

changeStatus

onExtend

makeConnection

onConnect

connect(s:Socket)

actionsOnConnect

onConnect

retractConnector()

connectorChanged()

changeStatus

onRetract

disconnect()

retractConnector

receiveSocket

receivePlug

actionsOnDisconnect

disconnect

actionsOnDisconnect

onDisconnect

onDisconnect

removeSocket

bindPlugIfPossible

entity2:Entity

extendConnecto()

messagePassing possible

Figure 22. A sequence diagram of Socket and Plug connecting and

disconnecting over time.

61

F. SUMMARY

This chapter introduced the concept of iconnectors. Throughout the chapter the

actors and infrastructures, as depicted in Chapter III, were presented in the iconnector

notation. The concept of iconnectors permits the model depicted in Chapter III to

implemented as a software simulation system.

The infrastructure components were presented in this chapter in a connector

notation. Actors were presented at the interface level, but their reasoning is still a black

box.

The subsequent chapter describes an implementation of actors for a multi-agent

implementation of the computational model of IA. This implementation presents a

connector-based agent architecture that permits the software actors to reason and interact

with elements in the society.

Next, an evaluation of this model is conducted by mapping the connector-based

model to an empirical IA model. This is followed by a detailed discussion of mapping

actual and theoretical IA incidents to this model, and a description of their

implementation in a multi-agent simulation.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

V. THE STIAM CONNECTOR-BASED AGENT ARCHITECTURE

A. INTRODUCTION

This chapter introduces agent technology. Agents are used in this dissertation to

represent actors in the IA model. Next, the connector-based agent architecture is

introduced. This is followed by an introduction to the agent’s internal mechanisms,

followed by the agent’s role set and goal structure. Finally, the agent’s capability set and

behavior moderators are introduced.

B. OVERVIEW

Multi-agent simulations consist of numerous high-level autonomous software

entities, called agents, operating in a common, shared environment. The agents in this

“outer environment” interact with one another and the objects in the environment. They

sense their environment, interpret the sensory input and make decisions as to what actions

to perform. These actions in turn affect the environment either directly through agent-to-

environment interactions or indirectly through agent-to-agent interaction. Figure 23

depicts these situated autonomous agents that interact with other agents and objects in an

external environment [Hiles et al., 2001], [VanPutte et al., 2002].

Environment

Agent
Objects

Figure 23. Agents and Objects operating in an external environment.

When building macro-level simulations with these agents, researchers are not

interested in modeling cognitive behavior per se; they are interested in how the

environment operates as a whole, i.e. as the sum of many parts. Complex, cognitive

agents that simulate human reasoning are not appropriate for this level of abstraction

[Axelrod, 1997]. Instead, “cognitively limited” [Prietula, 1998] software agents whose

64

scope is restricted and whose outward behavior appears intelligent are employed. This

abstraction allows researchers and analysts to gain insight into the evolutionary pattern of

the entire simulation environment, while making a complex domain, such as IA, tractable

and manageable.

This chapter introduces the agent architecture developed for STIAM. These

agents combine the Composite Agent architecture proposed by John Hiles [Hiles et al.,

2001] with connectors. In Chapter IV iconnectors are shown to be an inter-agent

communications mechanism, in contrast to connectors which are an intra-agent

communications mechanism that allows software agents to bring appropriate actions to

bear at the right time and in the proper context. The connector-based agent architecture

facilitates the building of relatively simple agents with the following characteristics:

1. They can perform actions that appear intelligent.

2. They can interact with objects.

3. They can interact with each other.

Thus, connector-based agents are used to simulate the actors in the society, as

discussed in Chapter III and IV.

C. CONNECTOR-BASED AGENT ARCHITECTURE

There are six defining characteristics of the connector-based agent architecture:

1. Agents are reactive, in that they respond to inputs from the environment

without any deep reasoning.

2. Agent goals, actions, and tokens are a function of the roles the agent is

assigned.

3. Agent decision-making is performed through a dynamic goal management

apparatus that allows each agent to prioritize its goals and perform actions

to pursue its highest priority goal or goals based on its perception of the

environment.

4. Procedural problem solving and action selection are handled by a request-

response mediation structure called tickets. This structure not only

permits the utilization of doctrinally correct procedures, but also allows

65

dynamic binding of actions based on context using strongly and

semantically typed connectors.

5. All sensors and effectors for the agent are performed through iconnectors

and resource messages as discussed in Chapter IV. All actions and

messages within the agent are performed through a data structure called

connectors.

6. A set of behavior moderators has been added to create outwardly

observable differences in agent behavior among otherwise homogeneous

agents.

The connector-based agent ai, developed to obtain the above six characteristics,

has the following components:

ai = < ei, Ri, Gi, Ti, Ki, BMi >
where:

ei – A dynamic internal environment of connectors
Ri – Role set

Gi– Goal set with appropriate tickets and actions
Ti – Token set

Ki –Knowledge set of dynamic tickets
BMi – Behavior Moderators

Equation 13. The Connector-Based Agent Specification.

66

Refer to Figure 24 for a depiction of the components of the connector-based agent

architecture.

Actor ai

Ti

Ki

capabilities BMi

ei

Gi

Sensed
Outer

Environment

Actions

messages

Ti token set (resources and access rights)
Ki knowledge set
BMi behavior moderators
Gi set of goals
ei Actor’s inner environment

Role ri

External iconnectors

Messages

Internal connector

Figure 24. The components of a connector-based agent and their interactions.

D. CONNECTORS AND THE INNER ENVIRONMENT

Just as entities in a society share a common outer environment, components

within an agent share a common inner environment, ei. Similarly, as entities in a society

communicate using iconnectors, entities within the agent communicate with a similar, yet

simpler mechanism, connectors. In implementation, a Binder object is created that

performs a similar purpose as the iBinder in Chapter IV.

67

Figure 25. Connector-based agent in an external environment.

Connectors are active objects that sense and react to an environment, just like

sockets and plugs in the outer environment. As the agent’s inner environment changes,

the connectors sense the changes and activate by extending (or deactivate by retracting)

in ei. By attaching connectors to various elements within the agent, the connectors signal

the element’s state of readiness and level of fitness in the current context to other

interested internal elements.

Connectors are significantly simpler than iconnectors. Connectors don’t have a

concept of producers or consumers, nor sockets and plugs. A connector extends into ei

and broadcasts a value. Another connector may extend into ei listening for a value. If the

broadcaster and listener match, then they bind. The connector is defined by:

ici = < l, s | l∈ L, s∈ S>
where:

L={l, v | l = connector label, v = connector value}
S = {extended, retracted}

Equation 14. Connectors consist of a Label and State.

The role of ei is not unlike iBinder; meaning that it acts like an internal

switchboard that transcends and binds all agent internal components through these

68

connectors. Components within an agent create connectors, which they extend into ei.

Each connector has a label that declares its symbolic type. This extension into ei of a

connector with a label therefore signifies an interest in this label. If two components

extend connectors with matching labels, then the connectors are of the same type, and the

connectors are said to bind. When connectors bind, the agent components that created

the connectors are notified of the binding and the other component that is party to the

binding. The components are also notified whenever the connectors’ state or value

changes. This simple notification mechanism is a powerful tool for binding the internal

components of the agent.

ei

agent
internal
components

connector
ends

Figure 26. Internal components with connectors extended into ei.

Connectors bind all of the internal components of the agent, as discussed

throughout this chapter.

E. ROLE SET – Ri

The set Ri is the set of all Organizational Roles to which an agent ai is committed

at a moment in time. Each role is defined by a set of one or more goals and capabilities

that are specific to the role’s behavior or function. As depicted in Figure 24, when an

agent commits to a role, it receives a set of goals and capabilities that are then added to

the actor’s current sets.

F. GOALS - Gi

A goal represents an activity an agent performs to further a role. The set Gi is the

set of all goals from all roles assigned to Actor ai.

69

At any given time there are numerous goals competing for the agent’s attention.

Just as humans have multiple, sometimes conflicting goals, an agent too has multiple

goals it wishes to satisfy. In human decision-making goals are constantly shifting in

priority based on the person’s context and state. Klein (1989) showed that experts spend

little time generating and analyzing possible courses of action. Rather, they focus on

situational awareness, and once a situation is recognized, they execute actions in a

reactionary manner. Agents can mimic the flexibility and substitution skills of human

decision-making using a variable goal management apparatus within the agent. It is from

this goal apparatus where contextually appropriate, intelligent behavior emerges.

1. Goal Structure
A goal has five components:

gi = < s, mm, w, tp, AC>
where:

s = state ∈ {inactive, critical, ready, active}
mm = measurement method

w = weight
tp = threshold pair

AC = action set for achieving the goal

Equation 15. A goal definition.

Each of these components is discussed below.

a. Goal state
The goal state indicates the current condition of the agent’s goal. The goal

state may be one of these four enumerated values:

• Inactive – the goal is currently not considered important to work
toward.

• Critical – the goal is considered important, but there are no actions
that can be performed to pursue the goal.

• Ready – The goal is critical, and there are actions the agent can
perform to pursue this goal, but the goal has not been selected for
execution.

• Active – the goal is critical and an action is currently being performed
to pursue the goal.

The use of goals and goal state transitions are discussed in detail in

Chapter V. Section F.1.e. entitled “Goal Action Set. ”

70

b. Measurement Method
Agents need a way to determine if a goal is critical, i.e., should the agent

spend resources pursuing the goal. This is accomplished through the measurement

method. The measurement method translates the sensory input received by the goal into

a quantifiable measure of the “criticality” of a goal at that instant in time. The

measurement method typically uses an algebraic formula and returns a measurement

value. The lower the measurement value, the less the agent is satisfying that goal, and

the more important the goal is to the agent at that moment in time. This dynamic

measurement of goal satisfaction permits prioritization and adjustment of goal states

based on context.

Goals can be conceptually thought of as active entities. These entities

may have connectors listening to ei that observe the internal state of the actor. These

entities may also have external sockets, plugs, or listener iconnectors that extend into the

outer environment. From these internal and external connectors the goal measurement

method returns its perceived criticality, as shown in Figure 27.

Measurement
Method()

outer
environment

ei

measure

state

goal

Figure 27. A goal receives input from ei and the outer environment, and produces a

state, measure, and actions that effect the outer environment.

c. Weight
The goal weight is a relatively static, quantifiable value indicating the

importance of the goal to the agent over time. For example, a particular system

administrator agent may believe that a goal of “protecting organizational information” is

more important than “providing user functionality,” and therefore the first goal will have

a higher weight than the second.

71

Goal weights may be modified by having special goal actions adjust the

goal weights. This may simulate an agent attending training, or experience in a field.

For example, a system administrator agent may perform an action of attend security

training that reinforces the importance of security in day-to-day activities, so the agent’s

goal weight of protecting organizational information may be increased.

To contrast, a measurement value is highly dynamic, possibly changing at

every simulation cycle. The measurement value is a measure of the actor belief that this

goal currently needs attention.

d. Trigger Threshold and Reset Threshold
The threshold pair consists of a trigger threshold and a reset threshold.

Figure 28 depicts an example where a goal measurement value drops below the trigger

threshold at (a), changing the goal state to critical. The goal remains critical until it

passes above the reset threshold at (b), where it becomes inactive once more.As

demonstrated in Figure 28, when a goal’s measurement value drops below the trigger

threshold, the goal becomes critical. The goal remains critical until the value rises above

the reset threshold. This threshold pair provides a simple means for an actor to commit to

a goal [Wooldridge, 2000]. Commitment provides a simple implementation of intent, or

attention holding, in completing a goal.

time
0

trigger
threshold

reset
threshold

(a)

(b)

goal
measurement

value

critical
Figure 28. STIAM goal trigger and reset thresholds.

72

e. Goal Action Set
Tied to each goal is a set of actions that an agent can follow for achieving

the goals. Actions are prioritized based on the current perception of the environment.

When an appropriate goal is selected for pursuit, appropriate actions are selected for

execution. The actual method used for action selection can vary and is discussed later.

When a goal becomes critical, it indicates that the actor needs to pay

attention to this goal. The goal apparatus examines the goal’s action set. If an action

exists that can be fired immediately, then the goal state becomes ready. If the goal is

actually selected for execution, the goal state becomes active and actions are executed

attempting to fulfill the goal.

The allowed goal states and their state transitions are depicted in Figure 29

state transition diagram.

inactive

active

ready

critical

below trigger
threshold

above reset
threshold

above reset threshold
goal completed

above reset threshold

action completed
action failed

action not ready

interrupted action initiated

action ready

Figure 29. Actor goal state transitions.

Goal switching based on a dynamically changing environment can produce

innovative and adaptive behavior [Hiles et al., 2001]; however, it is desirable to constrain

goal switching with doctrinally correct and appropriate actions. This constraint is

achieved through the encoding of procedural knowledge in a data structure called tickets.

Tickets are procedural problem solving steps that are encoded into goals, and are

discussed later.

73

2. Goal Manager
Goals are managed through an Actor Goal Manager (AGM). During each

simulation cycle the AGM polls the goals and receives the set of goals that are in the

ready state. For each ready goal received, the AGM examines its weight and then

executes the next action of the ready goal having the highest weight.

A goal may have more than one action that must be performed sequentially to

satisfy the goal and have it return to an inactive state. In this case, the goal becomes the

active goal, and continues to execute actions during the agent’s execution cycles until it

has no further action to perform, is no longer critical, or is interrupted. An example

implementation of an AGM with its corresponding goal selection procedure activity

diagram is presented in Chapter VII, Section B.3.

The AGM may cause an interruption in the currently active goal and that goal’s

active action. A goal may preempt the currently active goal and action if the AGM

determines that this new goal has a higher weight than the currently active goal.

The action set can be thought of as a set of possible solutions for achieving the

goal. Thus, when an agent has committed to a goal, it must then select the best means for

pursuing that goal.

Figure 30 depicts a snapshot of an AGM’s state at a moment in time. Each row in

the table represents a goal and the last entry in the row, labeled Action Tickets, contains

pointers to action objects. The actions tied to each goal have a Boolean ready label

indicating whether the action’s prerequisites have been met. Goal G4 is the active goal.

Prior to becoming the active goal, it had the highest weight of any goal that was in the

critical state, and had a ready action in its action set. Goal G1 is ready, in that it is

critical and has a ready action it can perform if given the opportunity. Goal G5 is critical,

but does not have an action it can perform at this time. Goals G2 is inactive: it has an

action it can perform, but G2 is not a critical goal. Goal G3 is above the trigger and reset

values and is inactive.

74

T

F

T
T

F

T = true – prerequisites for action met
F = false – prerequisites for action not met

.51.26.4.6InactiveG3

.28.45.6.8InactiveG2

.45.45.2.4CriticalG5

.46.29.4.2ReadyG1

.65.60.6.5ActiveG4

Action
Tickets

Reset
Value

Trigger
ValueWeightMeasureState

Goal
Name

T
F

Figure 30. A snap-shot of a typical actor’s goals.

3. Action Set – Tickets and Frames
In order to provide agents with a rich base of procedural knowledge while flexibly

supporting adaptive behavior, a data structure called tickets was developed [Hiles et al.,

2001]. Tickets allow agents to apply procedural knowledge in context. Tickets define

the agent’s action set, i.e., its means to achieve its goals. They are used to organize

procedural knowledge and provide the ability to balance doctrinal behavior with adaptive,

innovative action, resulting in enriched problem-solving behavior.

The actions tied to the agent’s goals are actually tickets that define how to achieve

the goal. Tickets are composed of one or more frames. A frame can be thought of as a

container that holds a problem-solving step for a ticket. The frame may hold another

ticket, an action to perform, or can be a slot that can dynamically link to an action or

ticket at runtime. Tickets are depicted graphically as a sequence of squares arranged

horizontally, where each square represents a frame within the ticket. As shown in Figure

31, actions are depicted as independent squares, with connectors and iconnectors possibly

extending from the action.

75

 action

cy
cX

dynamic
frame

outer environment

capabilities

inner ticket

outer ticket

iconnectors

Figure 31. An example ticket.

Tickets may have prerequisites or co-requisites that must be met in order for a

ticket to be active. The prerequisites are specific to each ticket, and may include

connector values, possession of tokens, or external iconnectors that must be bound.

When the AGM is determining a goal’s state, it queries the goal’s tickets to see if they are

able to execute. The ticket prerequisites are checked to determine if it is able to execute

at that instant. This may require a recursive call since tickets may need to check member

frames that may themselves be composed of tickets, as depicted in the center “inner

ticket” frame of Figure 31. The prerequisite function checking returns true if the

prerequisites of the ticket have been met.

Each ticket has a measurement method. This method returns a zero value if the

ticket determines that its prerequisites have not been met. If the prerequisites have been

met, the ticket cycles through its frames and selects the next frame to execute, returning

the measurement value of that frame.

Tickets have a weight reflecting their perceived usefulness in solving the goal.

The agent examines the set of tickets that have their prerequisites met, and selects the one

with the highest weight.

Tickets can have two types of frames: static and dynamic.

76

a. Static Frame
A static frame is a hard-coded, predefined problem-solving step within a

ticket. These frames can be thought of as a phase in a doctrine, tactic, or procedure to

solve a problem. A static frame is functionally equivalent to a production, or if-then

action rule, that may execute the conclusion (action) if the premise (prerequisite)

evaluates to true.

A static frame may hold a ticket or an action. A ticket within a frame can

represent a sub ticket, or a sub problem step within a larger problem. An action in a

frame is a behavior, activity, or tool execution that is performed by the actor. These

actions may cause effects to the agent, or another entity in the outer environment. All

actions are connectors or iconnectors that are extended or retracted from the action.

b. Dynamic Frame
Simply encoding procedural knowledge and linking it to various goals is

not sufficient for creating robust behavior. The desire is to apply the most appropriate

procedures for a given situation. In a dynamic, concurrent system, the “given situation”

not only changes constantly, but also is complex, so the system designer can’t necessarily

conceive of (or account for) every possible combination. Therefore, the mechanism for

determining the “most appropriate” procedures must be flexible and able to support the

same level of complexity as the changing contexts of the dynamic system. The ability to

reference an action commensurate with the situation is provided by allowing connectors

as components of dynamic frames.

Connectors are created by dynamic frames and extended into the inner

environment, ei. The connector’s value represents requirements that must be met in order

to bind a problem-solving step to a frame in a ticket. This permits the ticket to

dynamically bind an appropriate action at runtime based on the simulation context. The

tickets and actions that bind to these dynamic frames are stored in the agent’s Knowledge

Set, and are discussed later.

As an example, Figure 32 depicts a frame within a ticket tk1 that requires

two connectors labeled c1 and c2. Action i does not contain both prerequisite connectors,

77

so it can not bind. Action j contains both prerequisite connectors so it may bind. If ticket

tk1 was selected for execution then action j is executed, resulting in iconnector c4 being

extended into the outer environment.

c1
c2

tk1

c1
c2

c2 i

j

ei

c3

c4

outer
environment

inner
environment

Figure 32. A Ticket tki can dynamically bind to Actions j, but is not able to bind to

action i.

With the connectors continually reacting to the environment, behavioral

and procedural knowledge (tickets) can bind at runtime to fit the context as it develops.

This binding is based not only on the state of the environment, but also on the goals of

the agent, its capabilities, and its social interactions with other agents. In this way, the

correct procedural knowledge can be brought to bear in the appropriate situation.

G. AGENT TOKENS AND KNOWLEDGE SET-- CAPABILITIES

In addition to tickets attached to goals, the actor has several toolboxes from which

additional resources may be retrieved. These toolboxes consist of the token set and the

knowledge set. The elements in these toolboxes extend connectors into ei advertising

their existence to the actor. Dynamic frames are then able to bind to these capabilities in

order to achieve their goals.

1. Ti – Token Set
The Actor’s tokens Ti represent the collection of all initial tokens, tokens received

from roles, and tokens received from messages. If a frame requires a token it extends a

connector into the ei that will return an appropriate token if one exist in Ti. Additionally,

goals have access to the entire set of tokens for attaching to plug connectors being

extended into the outer environment (as described in Chapter IV).

78

2. Ki – Knowledge Set
The knowledge set Ki represents procedural problem solving capabilities and

declarative knowledge that are able to bind to dynamic frames of agent tickets. This

knowledge set provides the actor with tickets and actions to be used to achieve a goal.

Unlike the action sets defined with a ticket, the knowledge set elements bind to frames

dynamically at runtime. This is accomplished when a frame extends connectors into ei,

and the inner environment ei returns an action from the knowledge set that matches the

connectors.

3. Agent Learning
In some instances, we may wish to simulate an actor learning new skills or

acquiring new capabilities. Actor learning can be simulated through the dynamic

addition of tickets and tokens during execution. Adding tickets and tokens has the effect

of increasing the agent’s capabilities and knowledge. Learning is simulated by sending a

message to an agent with the additional capabilities within the message. The actor parses

the message and adds the capabilities to the agent’s token set or knowledge set.

In other cases, we may want an agent to autonomously improve its performance

over time. In this case, agents can discard tickets that do not further their goals, and

increase the use of tickets that have proved successful in reaching goals. This can be

accomplished by observing ticket behavior and adjusting ticket weights when the agent

observes that tickets succeed or fail. This behavior serves as a simple reactive learning

system where the agent learns from the environment, based on “what works” with no

human expertise or intervention [Holland, 1996].

H. BEHAVIOR MODERATORS4

The behavior moderators (BMs) are subtle differences in individual agents,

represented as values that can cause changes in an actor’s behavior. The rationale for

including behavior moderators is to capture a variety of attributes needed for describing

human actors in an IA environment. The BMs are used by the goal apparatus to

4 The term behavior moderator is borrowed from [NRC, 1998].

79

“personalize” the agent’s goal prioritization, thus creating outwardly observable

differences in actor behavior. Researchers can adjust the agent’s personality, skill, and

emotion values and observe how this changes the agent’s behavior.

Three categories of BMs are included in a STIAM agent: observable personality,

skills, and emotional state.

1. Observable Personality
The agent’s Observable Personality values represent a relatively static set that

defines that actor’s long-term behavior. These values include propensities for risk,

loyalty to organizations, ethics, and ambition.

2. Skills
Skills represent a highly abstract set of ability values that an actor possesses.

These skills include organizational, social, information technology, security, and

management skills.

3. Emotional State
The actor’s emotional state consists of a set of attributes that represent the actor’s

current internal state or feelings at any instant in time. These attributes include the

agent’s feeling of loneliness, security, self-worth, excitement, and fatigue.

Behavior moderators are initialized when an actor is created. These moderators

are implemented as connectors, and are extended into the actor’s inner environment. An

actor may have actions that modify the BMs based on sensor input, thereby simulating

education, changes to emotions, etc. These modified connectors alert components that

are listening to the connector, causing effects internal to the agent.

The primary use of the behavior moderators are as coefficients to specific goal

and ticket weights. BMs may bind to goals and tickets thereby modifying the actor’s goal

and action selection, creating observable differences in otherwise homogeneous actors.

The moderators selected do not represent a scientific coverage of possible

moderators. This is left for future work.

80

I. LIMITATIONS OF STIAM AGENTS

The STIAM agent architecture as presented has several limitations: the effects of

linear problem solving and an inability to learn from success and failures.

The early history of artificial intelligence produced numerous systems that

suffered from linear problem solving, such as GPS [Newell and Simon, 1963] and

STRIPS [Filkes and Nilsson, 1971]. These systems divided problems into sub problems

and solved each sub problem. Difficulties occur when a later sub problem undoes the

effect of a previously solved sub problem. ABSTRIPS overcame the difficulties of linear

problem solving using a procedural net, where “a plan is a partial ordering of actions

with respect to time” [Sacerdoti, 1974]. Since actions were not ordered sequentially, they

could be executed in a way that overcame the linear problem. Likewise, Sussman

defined the “Prerequisite_Clobbers_Brother_Goal”, where a prerequisite of one goal

causes the failure of another [Sussman, 1974]. Tickets and reactive actions have the

potential to cause gridlock within a single agent or between two agents, whose actions

cancel the effects of previous actions. This difficulty was not addressed in the current

connector-based model.

Additionally, there is no learning or historic element in the STIAM agents. This

ability would permit the agent to learn from success and failure, and improve its

capabilities over time. Both of these challenges are left as future work.

J. SUMMARY

The connector-based architecture facilitates the creation of complex agent

behavior through relatively simple components. In later chapters, it is demonstrated that

this relatively simple, reactive agent architecture can bring rich, complex adaptive

behavior to the computational model of IA. The simplicity of the agent allows

researchers to focus their attention on the environment being simulated, and not on the

implementation mechanism.

Chapter VII provides implementation details of actors created for the

computational model. Actual scenarios are implemented and analyzed in Chapter VIII.

81

VI. MODEL VALIDATION

A. INTRODUCTION

This chapter provides a validation of the STIAM computational model as a

hypothesis generator for organizational level IA. While a hypothesis generator cannot

predict with accuracy what will occur in an environment, they can be used to generate

sequences of events that may possibly occur, and these sequences can be used to perform

inductive reasoning about the environment under investigation.

To validate STIAM, this chapter demonstrates that the STIAM model captures all

of the vital characteristics to the field of IA. A mapping of the elements and relationships

of a security model based on empirical data of computer security incidents to STIAM is

performed.

Next, this chapter discusses the shortcomings of functional models and the

advantages of the concurrent computational STIAM model.

This chapter provides a validation of the computational model, demonstrating that

the elements of the information assurance field can be adequately represented in STIAM.

B. INFORMATION ASSURANCE AND HYPOTHESES GENERATORS

1. Models and Simulations
The term ‘model’ means different things to different people. To some model

refers to a physical reproduction of an entity or environment, such as a toy ship or a

diorama. To others, model represents an analytical specification of assumptions,

definitions, and equations used to discuss a particular phenomenon or theory [Nelson,

1998], such as Newtonian mechanics or computer system security properties [Bell and

LaPadula, 1973], [Biba, 1977], and [Graham and Denning, 1972].

For the remainder of this chapter, the term model refers to a computational model.

A computational model is a specification of the key entities in an environment, along

with their behaviors and interactions, which can be represented by a computer program to

explore specific aspects of the environment. A ‘simulation’ refers to a computer software

82

implementation of the model to observe an abstraction of the environment as specified in

the model.

2. Induction and Hypothesis Generation
A hypothesis generator is a simulation that reveals possible events and situations

that may occur in an environment based on assumptions in the model [Hodges and

Dewar, 1992]. The hypothesis generator is a simulation using software representations of

entities found in the real world that simulates how these entities interact. A researcher

uses inductive logic, reasoning from the specific to the general to generate theories about

the world. He examines the output of the simulation, looks for patterns, and generates

hypotheses about the real world [Axelrod, 1997]. The researcher might then examine the

real world to confirm or deny these hypotheses.

Many of the generated hypotheses may be obvious. When others cause the

researcher “to be moved to learn something about the world, the model may then be said

to provide insight by poking him (the researcher) to go look at something …” [Hodges

and Dewar, 1992].

A hypothesis generator may not actually create a hypothesis in the strict

mathematical sense. It may produce a series of events that the researcher can examine,

and from this, the researcher can conjecture as to the likelihood of the events. The

researcher can then examine the real world and attempt to prove the conjecture, adding

these new theories to the researcher’s collection of domain knowledge. These theories

may then be used by the researcher to further understand the environment [Axelrod,

1997].

It is important to contrast a predictive simulation with a hypothesis generator.

The outputs from a validated predictive simulation are potentially observable events or

quantities where their predictive accuracy can be measured in a real environment

[Hodges and Dewar, 1992]. For example, a validated predictive astronomy simulation

may state that a planet X will be at position Y at time T. A hypothesis generator on the

other hand “does not give power to see into the actual situation, only into the assertions

embodied in the model…it does so not by revealing truth about the world, (but) by

83

revealing key features of it’s own assumptions and thereby causing its user to go learn

whether those key assumptions are true.” [Hodges and Dewar, 1992].

3. STIAM
As stated earlier, STIAM is a hypothesis generator, not a predictive simulation.

STIAM provides a means to create a computational system representing relevant IA

characteristics that will help security analysts generate hypotheses and theories about the

IA domain.

The next section provides a mapping of a security model based on empirical data

of computer security incidents to STIAM. This mapping demonstrates that STIAM

contains all of the elements and relationships contained in the empirical model. This

validates that STIAM can adequately model all of the elements found in the IA domain.

C. EMPIRICAL MODEL OF INFORMATION ASSURANCE (IA)

Various agencies and organizations collect data on information system security

and cyber-crime incidents. The most comprehensive, open-source collection of

information has been compiled by the CERT/CC.

1. CERT/CC
The Computer Emergency Response Team/Coordination Center (CERT/CC) is a

federally funded research and development center responsible for the study and handling

of Internet security vulnerabilities and incidents [CERT, 2002]. Government and

commercial entities report information system security incidents to the CERT/CC, and

receive assistance in dealing with these incidents.

Howard conducted an analysis of Internet incidents reported to the CERT/CC

from 1989 to 1995. He categorized the incidents, and from this developed a Taxonomy of

Computer and Network Attacks [Howard, 1997]. This taxonomy provided coverage of all

incidents in the CERT/CC database.

The model he developed from this analysis is summarized in tabular form in

Figure 33. This model demonstrates how an attacker uses tools to provide access

creating unauthorized results that furthers the attacker’s objectives.

84

D
at

a
Ta

p

D
is

tri
bu

te
d

To
ol

To
ol

ki
t

A
ut

on
om

ou
s

A
ge

nt

Sc
rip

t o
r

Pr
og

ra
m

U
se

r
C

om
m

an
d

T
oo

ls

V
an

da
ls

Pr
of

es
si

on
al

C

rim
in

al
s

C
or

po
ra

te

R
ai

de
rs

Te
rr

or
is

ts

Sp
ie

s

H
ac

ke
rs

A
tt

ac
ke

rs

C
on

fig
ur

at
io

n
V

ul
ne

ra
bi

lit
y

Im
pl

em
en

ta
tio

n
V

ul
ne

ra
bi

lit
y

D
es

ig
n

V
ul

ne
ra

bi
lit

y

U
na

ut
ho

riz
ed

U

se

U
na

ut
ho

riz
ed

A
cc

es
s

D
at

a
in

Tr

an
si

t

Fi
le

s

Th
ef

t o
f

R
es

ou
rc

es

D
en

ia
l o

f
Se

rv
ic

e

C
or

ru
pt

io
n

of

In
fo

rm
at

io
n

D
is

cl
os

ur
e

of

In
fo

rm
at

io
n

U
na

ut
ho

ri
ze

d
R

es
ul

t

D
am

ag
e

Fi
na

nc
ia

l G
ai

n

Po
lit

ic
al

 G
ai

n

C
ha

lle
ng

e,

St
at

us
, T

hr
ill

O
bj

ec
tiv

es
A

cc
es

s

Pr
oc

es
se

s

Figure 33. Howard’s Computer and Network Attack Taxonomy, [Howard, 1997].

85

Howard’s research was based on the Internet incident data of the CERT/CC. As

such, his taxonomy provides complete coverage of the CERT/CC database, but the

database did not provide complete coverage of security incidents. Any incidents that

were not shared with the CERT/CC, did not involve the Internet, or that were not

technical in nature were not included in the CERT/CC database.

It has been observed that a large number of cyber attacks against government

agencies and corporate organizations are not reported [Minehart, 1998]. For many

organizations, reporting successful cyber attacks can damage the perception of the

organization in the eyes of customers and clients. In commercial enterprises, the

“personal relationship with the customer is the most cherished asset”, [Minehart, 1998]

and so reporting successful attacks against a corporate information infrastructure may

damage the reputation of the corporation, and under most circumstances harm the

corporate bottom line. Additionally, reporting security incidents can provide useful

feedback to an attacker, possibly releasing additional technical details to the attacker

[Minehart, 1998], and even inviting “copycat” attacks.

The CERT/CC data also fails to account for the professional attacker.

Professionals are differentiated from amateurs by the effort, cost, and sophistication of an

attack5. A professional can expend the funds and afford to wait for the right moment to

attack, using sophisticated and nearly undetectable methods, such as the subversion6 of

software. For examples of this professional threat see [Myers, 1980], [Karger and Schell,

1974], and [Anderson, 2002]. These attacks are nearly impossible to discover, and

therefore are unlikely to be reported to the CERT/CC.

In an effort to develop a more complete taxonomy of security incidents, Howard

and Longstaff developed a model based not only on empirical data, but also on general

observations and experience in the field of IA.

5 From a personal conversation with William Murray at the Naval Postgraduate

School, Monterey, California, December 2001.

6 Subversion refers to the “covert and methodical undermining of internal and
external controls over a system lifetime to allow unauthorized and undetected access to
system resources and/or information.” [Myers, 1980].

86

2. Enhanced Model
Howard and Longstaff updated Howard’s original work to develop a “Common

Language for Computer Security Incidents” [Howard and Longstaff, 1998]. This work

developed a ”taxonomy of high-level terms and relationships to classify security

incidents” [Howard and Longstaff, 1998]. This work added elements to Howard’s

original work and provided additional coverage of security incidents based on their

experience in the security community. They added the ability to model physical and

social attacks, rather than just logic-based attacks7. They also modified the model,

increasing its usefulness and complexity, by adding action and target categories.

Howard and Longstaff’s goal was to “develop a minimum set of ‘high level’

terms, along with a structure indicating their relationships (a taxonomy), which can be

used to classify and understand computer security incident information” [Howard and

Longstaff, 1998]. Certainly any model that claims to represent IA must include these

elements. By mapping these elements to STIAM, an evaluation of the STIAM model can

be conducted.

7 Physical attacks refer to the theft, destruction, and/or damage of materials.

Social attacks refer to manipulating individuals to achieve a goal. Logical attacks refer to
manipulating data in an electronic format.

87

D
at

a
Ta

p

D
is

tri
bu

te
d

To
ol

To
ol

ki
t

A
ut

on
om

ou
s

A
ge

nt

Sc
rip

t o
r

Pr
og

ra
m

U
se

r
C

om
m

an
d

In
fo

rm
at

io
n

Ex
ch

an
ge

Ph
ys

ic
al

A

tta
ck

T
oo

l

In
ci

de
nt

A
tt

ac
k(

s)

E
ve

nt

V
oy

eu
rs

V
an

da
ls

Pr
of

es
si

on
al

C

rim
in

al
s

C
or

po
ra

te

R
ai

de
rs

Te
rr

or
is

ts

Sp
ie

s

H
ac

ke
rs

A
tt

ac
ke

rs

C
on

fig
ur

at
io

n

Im
pl

em
en

ta
tio

n

D
es

ig
n

V
ul

ne
ra

bi
lit

y

Sp
oo

f

R
ea

d

C
op

y

St
ea

l

D
el

et
e

M
od

ify

B
yp

as
s

A
ut

he
nt

ic
at

e

Fl
oo

d

Sc
an

Pr
ob

e

A
ct

io
n

C
om

po
ne

nt

In
te

rn
et

w
or

k

N
et

w
or

k

C
om

pu
te

r

D
at

a

Pr
oc

es
s

A
cc

ou
nt

T
ar

ge
t

Th
ef

t o
f

R
es

ou
rc

es

D
en

ia
l o

f
Se

rv
ic

e

C
or

ru
pt

io
n

In
fo

rm
at

io
n

D
is

cl
os

ur
e

of

In
fo

rm
at

io
n

In
cr

ea
se

d
A

cc
es

s

U
na

ut
ho

ri
ze

d
R

es
ul

t

D
am

ag
e

Fi
na

nc
ia

l G
ai

n

Po
lit

ic
al

 G
ai

n

C
ha

lle
ng

e,

St
at

us
, T

hr
ill

O
bj

ec
tiv

es

Figure 34. Howard and Longstaff’s Computer Security Incidents [Howard and
Longstaff, 1998].

88

D. MAPPING OF EMPIRICAL MODEL TO STIAM

The following is a mapping of the elements of the Howard and Longstaff model,

as shown in Figure 34, to STIAM. This will demonstrate that STIAM contains a superset

of the elements of this empirical model.

1. Actors and Objectives
Howard and Longstaff’s attackers and objectives represent a subset of the actors

and goals in the IA environment. Particularly, they are the individuals who perform

malicious actions against computer systems. As stated earlier, Howard and Longstaff’s

seven ‘attackers’ provides a simple means/motive label at an instant in time.

STIAM may include any actor goals that a researcher may feel is important, and

as such, Howard and Longstaff’s attackers and objectives are included in STIAM.

Additionally, actors not listed by Howard and Longstaff may perform actions that

affect an organization’s information and systems. An example is a benevolent individual

who performs some action out of ignorance that inadvertently affects organizational

information security adversely. Thus, STIAM can model any malevolent actor (attacker),

as well as a wide variety of other actors, goals, and actions that can affect the IA of an

organization.

2. Tools
Tools represent the means at the actor’s disposal to exploit an infrastructure or

actor capability. These can be represented in STIAM by tickets and frames in an actor’s

knowledge pool that can extend iconnectors from the actor. If an actor has a ticket or

frame and a desire to utilize this ticket or frame within the context of an active goal, the

actor extends the appropriate iconnector into the environment, representing the use of the

tool.

All of the tools are defined and discussed in Table 3 entitled “Mapping of Howard

and Longstaff’s tools to STIAM”. This table demonstrates how to model each tool

discussed in Howard and Longstaff directly to a STIAM ticket or frame.

89

Means Definition8 Implementation in STIAM
Physical
Attack

A means of physically stealing or
damaging a computer, network, its

components, or its supporting systems
(such as air conditioning, electrical

power, etc)

An infrastructure that is susceptible to a physical
attack has a socket with tokens indicating

appropriate physical proximity. An actor who
has these tokens and the desire and capability to

perform a physical attack may extend a plug
connector, causing the bound socket to effect the

infrastructure. A researcher may model a
physical attack against another actor using a

similar method.

Information
Exchange

A means of obtaining information
either from other attackers (such as

through electronic bulletin boards), or
from the people being attacked

(commonly called social engineering)

These are modeled as a plug connector that
binds to an actor or infrastructure. The binding
results in a message being sent to the attacker
that contains the newly acquired information.

This information may be access rights, as tokens,
or procedural knowledge, as tickets.

Commands,
Script or
Program,
Toolkit

Exploiting a vulnerability by entering
commands to a process through direct

user input …(or) through the
execution of a file of commands

(script) or a program at the process
interface. This also includes software

packages, which contain scripts,
programs, or agents to exploit

vulnerabilities.

These are modeled as a socket or plug connector
between an actor and an infrastructure. This

may result in an infrastructure-to-infrastructure
message or binding.

Autonomous
Agent

A means of exploiting a vulnerability
by using a program, or program

fragment, which operates
independently from a user (includes

viruses and worms).

An actor spawns a new ‘logical’ actor whose life
span may be limited. This child actor executes

tickets assigned by the parent actor.

Distributed
Tool9

A tool distributed to multiple hosts,
which can then be coordinated to

anonymously perform an attack on the
target host simultaneously after some

delay.

Infrastructure(s) have sockets representing
distributed tools. A master sends a message to

the zombie sockets causing a plug to extend
representing the distributed tool. This plug
contains a token representing the number of

simulated zombies participating in the attack.

Data Tap A means of monitoring the
…emanations from a computer or
network using an external device.

A socket on the infrastructure represents
emanations; a plug from an actor represents the

desire to monitor. The binding causes a message
to be sent from an infrastructure to an actor

representing the interception of the new data,
such as tokens.

Table 2. Mapping of Howard and Longstaff’s tools to STIAM.

8 The definitions are taken directly from [Howard and Longstaff, 1998].

9 A distributed attack typically has a ‘master’ who centrally controls multiple
‘zombies’ on compromised hosts. At the direction of the master, the zombies perform a
coordinated attack against a designated ‘target’ host.

90

In addition to the malicious tools discussed in Howard and Longstaff, STIAM

must deal with tools used by benign actors to simulate individuals performing non-

malicious actions. Thus, Howard and Longstaff’s tools are a subset of all tools available

to actors that can be represented in STIAM.

It is important to realize that tools represent the means to an action, not the action

itself. As such, the tools represent a way to place an action on a target. An action has

utility only if a compatible connector for the action exists on the target.

3. Vulnerability
Infrastructures have an interface composed of iconnectors to which actors, having

the appropriate iconnectors, can bind to perform actions. This interface and the

subsequent actions that occur upon binding to this interface define the functionality of the

infrastructure. Some of these capabilities are deliberate and known. Others capabilities

represent ‘unspecified functionalities’ or vulnerabilities -- “a weakness in a system

allowing unauthorized actions” [Howard and Longstaff, 1998]. In the case of STIAM,

vulnerabilities represent a subset of the sources of socket connectors. Howard and

Longstaff define three types of system vulnerabilities: design, implementation, and

configuration of systems; similar to the design, implementation, and maintenance

vulnerabilities described in [Myers, 1980].

A special hybrid vulnerability is a capability in a system caused by an incorrect

policy specification. The incorrect policy specification may cause an incorrect

implementation or configuration of a system, creating a capability in the system not

intended by the management, had they known of the inconsistency a priori. While this

incorrect specification might be caused by ignorance on the part of the management of

the organization, we have chosen to place this vulnerability under design vulnerability.

A design vulnerability is “a (capability) inherited in the design or specification

of the hardware or software whereby a perfect implementation results in this

(capability).” [Howard and Longstaff, 1998]. These vulnerabilities are typically

attributed to engineers. Real world examples include poorly written protocols, such as

the TCP/IP protocol suite [Bellovin, 1989] and the wired equivalent privacy (WEP)

protocol [Walker, 2000].

91

An implementation vulnerability is “a (capability) that results from an error

made in hardware or software implementation of a satisfactory design.” [Howard and

Longstaff, 1998]. These vulnerabilities may be the result of a coding or manufacturing

error that accidentally introduces a flaw in the system [Karger and Schell, 1974]. As

discussed earlier, professional attackers will try to deliberately subvert hardware or

software at some point in a system’s lifecycle in order to install unspecified functionality

to the system [Karger and Schell, 1974], [Brinkley and Schell, 1994], [Myers, 1980].

A configuration vulnerability is a “(capability) resulting from a configuration of

the system” [Howard and Longstaff, 1998]. These vulnerabilities may arise due to an

end user not modifying the default settings such as a default account or password,

vulnerable services enabled or installed, or global write permissions on newly created

files [Atkins et al., 1996]. Additionally these vulnerabilities may be introduced by

system administrators or users who incorrectly install or configure software on a system

such as accidentally inactivating protective measures and misconfigured routers or

firewalls.

When a researcher or analyst is building a model of a real enterprise

infrastructure, they determine what the critical resources are within the enterprise. Next,

they examine the interfaces of both the resources and infrastructure, and determine how

actors and other infrastructures can bind to this infrastructure, thereby defining the

capabilities of the infrastructure. Some of the interfaces and their effects on the model

are deliberately planned in the real-world system. Others are not, and these unplanned

capabilities correspond to the vulnerabilities as defined by Howard and Longstaff.

Howard and Longstaff’s three categories provide a catalyst to the researcher’s

thought process. These vulnerabilities can be modeled in STIAM to help show the

researcher the effect on the organization if these vulnerabilities are realized.

While STIAM provides complete coverage of Howard and Longstaff’s

vulnerabilities, Howard and Longstaff’s model fails to provide coverage for social

92

engineering10. In STIAM, as discussed in Chapter IV, an ignorant actor will extend

connectors out of ignorance and manipulative actors can take advantage of this ignorance

to achieve their goals. Thus, a fourth vulnerability is ignorance.

4. Action
An action represents a “step taken by a user or process in order to achieve a

result” [Howard and Longstaff, 1998]. In STIAM, an actor executes a tool from within a

frame that extends an iconnector, and may bind to a targeted iconnector. This binding

may result in an action performed by the owner of that target iconnector. Thus, tools are

executed by the attacker, iconnectors may bind, and the resulting action is executed on

another entity in the environment.

 Howard and Longstaff define eight actions of interest in IA. Due to the level of

abstraction of STIAM, two of these actions, probe and scan, are combined.

a. Probe/Scan
Since the infrastructure represents the aggregate of all information

processing capabilities and resources, probe and scan are combined to ‘determine

characteristics of an infrastructure’. A probe or scan of an infrastructure is modeled

using a listening connector. An actor extends the listening connector, and the actor is

notified when a matching iconnector is discovered. A probe/scan is initiated by an actor

and operates on a society.

b. Flood
A flood is an overloading of an infrastructure capability, resulting in a

potential denial of service (DOS). Floods are modeled by a socket iconnector on an

infrastructure, typically called a flood socket. If an actor has the prerequisite tool that

produced the appropriate plug connector, he can bind to this flood socket causing the

retraction of appropriate iconnectors in the infrastructure, representing resources and

processes that are no longer available. It is important to keep in mind that when the actor

10 Social engineering refers to using nontechnical interpersonal deception to

manipulate individuals into providing information in order to bypass security controls.
See [Winkler, 1997] or [Parker, 1998].

93

disconnects from the flood socket and discontinues flooding the infrastructure,

appropriate restoration and reinitialization actions must take place on the infrastructure to

reestablish capabilities as appropriate. Figure 35 represents an infrastructure where an

actor is able to perform a flood by binding to the flood socket. This binding to the flood

socket causes the resource socket to retract. In this example, when the actor stops

flooding, i.e. disconnects from the flood socket, the resource socket extends and the

resource is available.

enterprise

r,e

r

flood socket

resource socket

Figure 35. A socket that represents flooding a resource. Successfully binding to a
flood disconnects (retracts) other iconnector.

c. Authenticate
Authentication represents “providing identification to a process (or actor)

in order to have an identity verified in order to access a target” [Howard and Longstaff,

1998]. While all bindings can be thought of as an authentication, this action refers to

authenticating an actor’s identity in order to receive additional access capability. This

can be modeled by an actor presenting some tokens to an authentication iconnector. If

the tokens are accepted, i.e. the actor actually binds to the iconnector, then the iconnector

sends a message to the actor, providing an additional token that represents the successful

authentication as in Figure 36. Of course, an actor may provide false tokens to the

authentication process thereby authenticating a false identity, as in spoofing, discussed

below.

94

enterprise

Ti
 socket

token message

Figure 36. An Iconnector that replicates the authentication process.

d. Bypass
A bypass is “avoiding (the) security process by exploiting a vulnerability”

[Howard and Longstaff, 1998]. Bypasses can be modeled in STIAM as an interface to a

resource or infrastructure that does not require the typically necessary tokens. An actor

can bypass normal security if a vulnerability exists on the infrastructure, such as an

operating system vulnerability, that can be exploited by a socket.

Figure 37(a) illustrates a normal access method as modeled in STIAM.

An actor binds to connector c1 to replicate the authentication process. The infrastructure

provides token Ti that can then be used with connector c2 to access resource r in the

‘normal’ (i.e. authorized) manner of access.

Figure 37 (b) illustrates a bypass action in STIAM. An example of an

operating system vulnerability is connector c3, that permits any actor read or write access

to resource r, if they posses a token Tj, knowledge of the vulnerability.

Figure 37(b) also illustrates a backdoor. Typically, a backdoor must first

be activated before it can be exploited. The activation requires an individual to have

special knowledge about activating the backdoor. After the backdoor has been activated,

an attacker needs special knowledge as to the process of accessing the backdoor to access

the critical resources. Connector c4 represents a backdoor installed in subverted software

as an intentional, yet hidden socket that requires token Tl – knowledge of the backdoor.

The backdoor is initially hidden, and cannot be accessed until an actor binds to c5, which

requires token Tk, knowledge of backdoor activation method, to activate the backdoor.

Both of these demonstrate the ability to model a variety of bypass actions in STIAM.

95

r
c2, requires Ti

c1

token message Ti r r
c4, requires Tl

c3, requires Tj

r

c5, requires Tk

e,r

r

(a) (b)

Figure 37. Bypass Actions in STIAM.

e. Spoof11
A spoof is nearly identical in implementation on STIAM as an

authentication. The only difference is that an entity uses tokens on a connector in an

unauthorized manner in order to authenticate a false identity, thereby ‘tricking’ an

authentication process.

STIAM can model the four fundamental methods of spoofing:

• Actor-to-Actor – An actor presents false tokens to another actor,
thereby the attacker tricks the recipients of the spoof into believing the
attacker is a different actor. This may represent an example of social
engineering.

• Actor-to-Infrastructure – An actor presents false tokens to an
infrastructure claiming to be another person in order to receive the
other person’s access rights. This may represent falsifying a system
authorization process with acquired passwords or sending ‘spoofed’
email with a false ‘from’ address.

• Infrastructure-to-Actor – A system claims to be another system to an
actor. A real world example is a computer system that does not have a
trusted path12 implemented and permits a process to ‘pretend’ it is a
legitimate logon screen in order to capture the user’s authentication
tokens.

11 While there are conflicting definitions for spoofing, it is used here to mean “an

active security attack in which a machine on the network masquerades as a different
machine” [Howard and Longstaff, 1998].

12 A trusted path is a “mechanism by which a person at a terminal can
communicate directly with the (system protection mechanisms). This mechanism can
only be activated by the person or the (system protection mechanisms) and cannot be
imitated by untrusted software” [NSTISSC, 2000].

96

• Infrastructure-to-Infrastructure – This represents a device spoofing
another device. This might represent a DNS spoof13, or configuring a
false machine identity, such as an IP address.

f. Read
Reading is “obtain(ing) the content of data in a storage device...”

[Howard and Longstaff, 1998]. In STIAM, reading is equivalent to binding to a resource,

thereby obtaining the contents of the resource. Reading a token or ticket is performed by

binding to a socket and having a token or ticket sent to the actor by a message.

g. Copy
Copying is similar to reading, except that the act reproduces the data and

leaves the original unchanged. There are two fundamental types of copying. The first is

copying a ticket or token, which is performed by binding to a iconnector and receiving a

message that contains the ticket or token.

The second is copying a resource which is also similar to reading in that

an actor binds to a iconnector, except here the actor receives a special token through a

message. This new token permits the actor to bind to a newly created resource socket

that requires this new token.

h. Delete
Deleting a token or ticket results in the object being removed from the

entity. Deleting a resource causes all iconnectors to be retracted from the resource.

Since no active iconnectors remains, the resource is no longer available. While it may

seem that the resource should be removed from the infrastructure, this action is not

supported in the basic STIAM model, and in some instances may cause problems. For

example, Figure 38 below depicts an infrastructure that supports both delete and backup.

When an actor binds to connector c1 a backup is performed on the resource and the actor

receives token Ti. When an actor binds to c2 the resource is deleted, perhaps maliciously,

13 A Domain Name Server (DNS) spoof is performed by sending a network router

false network-address data, causing the device to route traffic incorrectly and undetected.

97

resulting in retraction of the resource iconnector c3. If an actor has the token Ti, then he

can bind to c4 and restore the resource from the backup, causing the resource connector

to extend.

r

token message Ti r

r,∅

e,∅

c1

c2

c3

c4, requires Ti

Figure 38. Deletion and backup on STIAM.

i. Steal
Stealing is similar to a copy with an additional action – all other resource

sockets that connect to a resource are retracted. In effect, the actor has made a copy of

the resource and forbids all others from binding. Examples of a stealing action are

copying data to a floppy disk and deleting the data from a system or stealing a notebook

computer with a critical resource. Stealing a token can be represented by copying the

token, then deleting it from the original source. Stealing a resource can be represented by

copying the resource, then deleting the resource, as in (j) below, but retaining the new

extended resource iconnector that was established by the copy.

j. Modify
Modifications occur when an actor writes (binds in a write mode) to a

resource, in effect changing the version of a resource. Some modifications are authorized

and proper; other modifications are malicious. While this is easy to implement in

STIAM, there is no easy way to distinguish an unauthorized modification from an

authorized modification. The only way to determine this is to examine the actor’s goals.

98

5. Target
Targets are entities to which actions are directed. While Howard and Longstaff

defined seven types of targets (account, process, data, component, computer, network,

internetwork), they also declare, “The first three are ‘logical’ entities and the other four

are ‘physical’ entities”. This matches nicely to STIAM’s concept of resources and

infrastructures, respectively.

In STIAM, ‘logical’ targets (account, process, data) are represented as resources,

and ‘physical’ targets (component, computer, network, internet) as infrastructures.

Howard and Longstaff imply that “logical entities” are computer accounts, computer

programs in execution, and electronic data found on computer systems. In STIAM, these

are resources, and the STIAM concept of resources in not limited to electronic format.

Resources may be in an electronic format, paper, human memory, or other formats.

Thus, Howard and Longstaff’s logical entities are a subset of all resources in a society

that can be represented in STIAM.

Howard and Longstaff indirectly include social attacks. A social attack against an

ignorant individual may have an indirect goal of obtaining account information, but the

target of the attack itself is on an individual, with the result being increased access. Thus,

a third category of target in STIAM is an actor.

6. Result
Howard and Longstaff define the “logical end of a successful attack” as the

unauthorized result. Example results follow.

a. Increased Access
Increased access results in an actor having the ability to bind to additional

actors, infrastructures, or resources. This can occur because of additional sockets that

have extended due to an action, or an actor receiving additional tokens or tickets from

messages that permit additional bindings.

b. Disclosure of Information
This results in an actor actually binding to a resource for which he may be

capable but not authorized.

99

c. Corruption of Information
This results in modifying information – an unauthorized write mode

binding to a resource. An organization may have means in place to detect the corruption

of information and resources. This may be done with a cryptographic checksum, where a

sender computes a checksum value for the information or resource, the receiver computes

a checksum, and a comparison of these two values can determine if the information or

resource has been modified.

As stated earlier, an actor may desire and perform an act that causes an

unauthorized write to a resource, but the effect may not be readily apparent from the

graphical diagram, since authorized actors may perform unauthorized write actions that

change data in an unauthorized way.

Detecting this result requires the researcher to examine the actor’s goals

and actions. As stated earlier, if a researcher is modeling accidents in his scenarios, it

may be impossible to distinguish some accidents from malicious acts by examining

outward STIAM diagrams. In the real world, it may be impossible to tell from

observable evidence if an authorized end user incorrectly enters input values or

accidentally deletes a corporate database. Likewise, it may not be possible to tell if an

actor corrupts an enterprise resource or performs a denial of service without examining

the agent’s goal structure and actions.

d. Denial of Service (DOS)
This results in the retraction of socket connectors; thereby no other actor is

capable of accessing the resource.

e. Theft of Resources
This results in an actor binding to an infrastructure when not authorized.

The act could use the resource or tokens as a jumping off point for further attacks.

7. Summary
The sections above demonstrate that all of the elements of a security model based

on empirical data, and modified to take into account additional observations in the IA

100

environment, can be are mapped into the STIAM model. Additionally, numerous

additional elements have been identified that are modeled in STIAM, but are not

described in the enhanced empirical model. Thus, Table 4 shows that STIAM is a

superset of the Howard and Longstaff model, and as such, contains all of the elements of

this model.

Key
Components

Howard and Longstaff STIAM

Actors “Individuals who attack a
computer to achieve a
(malicious) objective”

Includes all relevant actors in the
environment, including benign actors.

Objectives “The purpose or end goal
of an incident” driven by
the actor type...static

Includes relevant goals an actor may have
based on various assigned roles. These
change over time as the actors state and
roles change.

Tools “Means of exploiting a
computer or network
vulnerability”

These tickets and frames are means to
access an actor or infrastructure to achieve
their goals.

Vulnerability “A weakness in a system
allowing unauthorized
actions”

Includes all sources of capabilities on an
actor or infrastructure, including ignorance.

Action “A step taken by a user or
process in order to
achieve a result”

An event that occurs as the result of a
binding includes malicious acts as well as
routine actions that affect the actors,
resources, and infrastructures of a society.

Target “A computer or network
logical entity or physical
entity”

Includes all of these targets, in addition to
social targets (other actors).

Result “The logical end of a
successful attack”

These are the high level interpretations of
bindings and messages that result from tools
being deployed.

Table 3. Comparison of key components in Howard and Longstaff model and the
STIAM model.

E. INFORMATION ASSURANCE (IA) AS A CONCURRENT SYSTEM

Howard and Longstaff's taxonomy accepts a static finite set of inputs and

provides a mapping to a static finite set of outputs.

101

F(i) = o
where :

i ∈ {attacker × objective × tool × system vulnerability}
o ∈ {action × target × result}

Equation 16. Howard and Longstaff’s Functional Model.

Systems like these are referred to as functional, or relational, systems

[Wooldridge, 2000].

Concurrent systems on the other hand cannot be expressed by a function [Pnueli,

1986]. In a concurrent system, each entity in the system can sense and independently

react to the environment, which consists of other reacting entities [Pnueli, 1986]. Unlike

a function that computes some value from a set of inputs and halts, the concurrent

system’s collection of autonomous entities react to each other continuously. Thus, for a

given input, it may not be possible to determine an output a priori. The entities in a

concurrent system must be described in relation to the entity’s current state and the state

of the surrounding environment.

The IA environment is thus a concurrent system. Actors operate continuously,

choosing local actions to perform based on their perception of the environment.

Infrastructures and resources are modified by individual actors without other actors’

knowledge, providing functionality unknown to the users of the resources.

While at any point each actor has a finite set of actions it can choose from, the

actor bases the choice of which action to perform on the observed actions of other actors,

and its beliefs about the actions of other actors. The actor can then adjust beliefs and

choose another action to perform based on his chosen actions, and the actions and

reactions of the other actors [Wooldridge, 2000]. Therefore, a comprehensive model of

IA should not be expressed as a functional model.

STIAM provides an expressiveness not found in functional models. First, STIAM

provides a graphical representation of the instantaneous states of the actors and the

environment. This instantaneous state description provides the value of the infrastructure

and resource state, in direct comparison with the actor’s goals and actions. Second, by

viewing the changes in the environment over time, an analyst can get a clearer picture of

the dynamic environment. This graphical discovery over time allows the observation of

102

the evolutionary patterns in the environment. These patterns may provide further insight

into where observers need to look in the real environment.

Thus, STIAM can provide a graphical expressiveness with concurrency support

that is not possible in sequential functional models. These strengths aid in understanding

not only the elements and their interactions, but also where the environment capabilities

and vulnerabilities may evolve as a whole.

F. SUMMARY

This chapter explains that it is possible to produce a hypothesis generator and

validate this against empirical evidence and experience in the field. The STIAM model

accounts for the information assurance elements as identified by empirical evidence. As

such, this chapter provides validation of the hypothesis that the STIAM model and

simulation can model the IA environment at the organizational level.

Additionally, STIAM is more general purpose than technology-centric models.

This generality provides STIAM with the ability to model benign actors, ignorance, and

other aspects of organizations, and to examine how these can adversely affect the

assurance of an organization’s information and information systems.

The descriptive model provides a means of graphically representing the highly

complex domain of IA as a concurrent model. This graphical representation provides

additional expressiveness not found in traditional functional models, and aids in

examining much more complex environments than possible using functional models.

The next chapter presents an implementation of STIAM as a computational

system. This system provides researchers with an artificial environment in which to

examine the effects of various system and personal vulnerabilities on the information and

information systems of an organization. This chapter presents an implementation of

several situations that can be encountered in the IA domain. These situations were

implemented in STIAM as a proof of principle to demonstrate the utility of the STIAM

model.

103

 VII. EXAMPLE SOFTWARE IMPLEMENTATION

A. INTRODUCTION

This chapter presents a proof-of-principle implementation of STIAM. Using this

implementation, several small scenarios were developed and encoded to evaluate the

model and the software system. Developing the software system provided an abundance

of insight into the challenges of IA modeling and multi-agent system (MAS)

development.

This chapter begins by introducing the software packages and diagrams, and the

system flow for key algorithms. This includes a simulation engine and utilities that were

developed to manage the objects and agents in this multi-agent simulation. It also

includes the specification of the entities, actor agents, and scenarios needed to run the

simulation.

Chapter VIII introduces scenarios that were implemented, an analysis of these

scenarios, and a discussion of the significant insight gained from their implementation.

Package and class diagrams are provided in UML. Names of packages and

classes are annotated with fixed-width font. Class diagrams are presented

graphically using Jvision, version 1.2 from Object Insight (http://www.object-

insight.com).

B. SOFTWARE IMPLEMENTATION

This implementation of STIAM was developed as a Java application. Java was

chosen because of its platform independence, memory management, strict type checking,

and object-oriented design, making it a good prototype language.

A total of six packages were developed. The packages are:

• simsecurity – contains the simulation engine called SimManager that

loads simulation scenarios, build the GUI, and executes the main

simulation thread. This package also contains the Token class that is used

across all packages.

104

• entity – contains the Entity class, along with the specialized child

classes: Infrastructure and Resource.

• actor – contains the Actor class and its component classes, such as

Role, Goal, Ticket.

• connectors – contains the Connector and IConnector classes, along

with their respective Binder, IBinder, Socket and Plug, and

Action classes.

• scenarios – contains XML scenario files and specialized Actor and

Infrastructure classes for use in these scenarios.

• utilities – contains basic programming utilities, and data structures

necessary for the simulations

Each of these packages are presented below in Figure 39. In this implementation,

organizations were not explicitly implemented; rather, roles were assigned to actors and

the actors retained the roles throughout the simulation.

105

Figure 39. The package diagram for an implementation of STIAM.

1. SimSecurity Package

The simsecurity package contains the scenarios, connector, and

entity package, as depicted in Figure 39. Since all of the packages use tokens, the

Token class is a component of the simsecurity package.

SimManager is a singleton class that manages the simulation. The SimManager

creates the graphic user interface (GUI), loads a scenario file, instantiates all of the

entities declared in the scenario file, and executes the simulation as a single thread. This

process is represented in Figure 40.

simsecurity

entity

entity

utilities

scenarios

actor

connectors

<<uses>>

<<uses>>

<<uses>>

SimManagerToken <<uses>>

<<uses>>

<<uses>>
<<us

es>
>

<<uses>>

106

SimManager Actor

halt = false

loop through all
Actors

takeTurn

update halt flag
is [number of iterations

> maxNumberIterations]

[halt = false]

[halt = true]

build GUI

load scenario

Figure 40.SimManager builds the GUI, loads a scenario, and repetitively loops
through all of the Actors.

Scenarios represent defined societies that are represented within the simulation

software. Scenarios files are encoded using a customized document type-definition

schema for the Extensible Markup Language (XML). Actor and Infrastructure objects

are loaded dynamically based on the entity’s name matching an existing, compiled class

file. See Figure 41 for the activities of the scenario loader.

In this implementation, specific infrastructures are specializations of the

Infrastructure class and are prewritten and compiled with their component Token,

Resource and Iconnector components. If a Token is declared in the constructor of

107

an Infrastructure that has not been previously instantiated, an exception is thrown

indicating an illegal configuration.

Individual actors are declared as specialization of the CompositeAgent class.

These actors declare their component Token, IConnector, Goal, and Ticket elements

in their constructor call. Some of their components may reference specific Token and

Infrastructure objects. If these referenced objects have not been previously

instantiated, an illegal configuration exception is thrown.

The simulation is run as a single thread. During each simulation cycle the agents

are polled, and provided the opportunity to reevaluate their goals and actions. The loop

continues until it has executed a predetermined number of steps or is halted by the user.

Goal selection and Action execution are discussed below.

load scenario file

load scenario

xml scenario file

instantiate
infrastructure and

components

instantiate
tokens

i: Infrastructure
[for each infrastructure i]

instantiate actor
and components

[for each actor a]
a: Actor

t: Token[for each token t]

Figure 41. Scenario loading activities for SimManager class.

2. Entity Package

The entity package contains the Entity class, which is the parent class of all

entities in the simulation. It also contains two key passive entities that are specializations

108

of the Entity class: Infrastructure and Resource. These are passive entities

indicating that they cannot initiate actions; rather they react to actions initiated by other

entities. Active entities are discussed in the actor package.

Figure 42. The entity package contains the Entity class and two specialized
passive entities: Infrastructure and Resource.

3. Actor Package

The actor package contains the active entities and their component classes. An

active entity is an entity that the SimManager permits initiating actions. The abstract

Actor class is the parent of all active entities. The CompositeAgent class extends

Actor, and therefore implements the abstract methods of Actor.

109

Figure 43. The main classes in the actor package are the Actor and CompositeAgent
classes, which inherit from the Entity class.

When an Actor’s takeTurn() method is called by the SimManager, the actor

executes its goal selection routine, depicted in Figure 44. Each actor loops through its

goal set G and determines which goal to execute next. If the next goal to execute is not

the current executing goal, then the current goal is interrupted, resulting in that goal’s

onInterupt() actions being executed.

If no goal has been selected then the agent’s performNoGoal() method is

executed, ensuring any management functions are handled on the Agent. If a goal has

been selected for execution then the goal executes its onExecute() actions, and the goal

is recorded as the current activeGoal.

Researchers may customize their own agent architecture and implement it via

STIAM by extending the abstract Actor class and registering them with SimManager.

SimManager alerts an Actor that it may initiate actions by calling its

110

EntitytakeTurn() method. An agent must also provide a toString() method and

a report() method to report the agent’s status as text. The paintComponent()

method is called by the SimManager to force the agent to paint itself on the GUI. The

isPointContainedWithin() method returns a Boolean value indicating if the Point

passed as an argument is contained within the Entity on the GUI display. The

getReportPanel() returns a JPanel object representing a report of the current status of

the actor, which is displayed in the simulation if a user clicks on the actor on the GUI as

indicated by the isPointContainedWithin() method.

reevaluate goals

interrupt
activeGoal

execute next
active goal

[activeGoal = ∅]

takeTurn

nextActiveGoal : GoalactiveGoal : Goal

[nextActiveGoal = activeGoal]

[activeGoal ≠ ∅]

[nextActiveGoal = ∅]

do no goal

activeGoal : Goal record active goal

results in the
goal's onInterupt()

Actions being
executed

results in the
goal's onExecute()

Actions being
executed

Figure 44. An activity diagram representing an agent goal selection routing.

111

Figure 45 depicts the algorithm an Agent uses to reevaluate its goals. The Agent

loops through each of the Goals that are currently evaluated to be critical. The agent

selects the critical goal with the greatest weight that has an active ticket.

examine next
critical goal

get goal's weight

reevaluate goals

g: Goal
[critical]

record best goal

evaluate goal's
tickets

[no active ticket]

nextActiveGoal

[not best goal examined]

[best goal examined]

[has an active ticket]

[has critical goal]

[no critical goal]

Figure 45. An activity diagram depicting the agent reevaluate goal routine.

Figure 46 illustrates the relationship between roles, actors, goals, and tickets.

CompositeAgents are assigned to roles. Roles provide the assigned agent with a set of

112

goals. Goals have tickets that are its procedural problem-solving step. The frames within

a ticket may be filled with any object that extends the Frameable abstract class: sub

tickets, actions, or slots. Slots contain connectors (not depicted) that allow it to

dynamically bind to appropriate knowledge pool items at runtime. Complex problem

solving can be implemented through creative use of tickets. Illustrated in Figure 46 is the

base Ticket class. This class is extended to a SequentialTicket that always starts in

the first frame and executes the frames sequentially, until the last frame is executed,

where it is flagged as completed. The ContinualLoopSequentialTicket class

extends the SequentialTicket class, overriding the onCompletion() method,

causing the ticket to loop back to the first frame and continuing indefinitely.

Frameable

frameName
-knowledgeLinks

KnowledgePool

-knowledgePool

CompositeAgent

#behaviorModeratorSet
#eInner
#eOutter
#goalSet
#roleSet
-tokens

Actor

-actor

Role

#goals
#name
#tokens

Goal

#goalName
-isCritical
#measure
-resetThreshold
#status
#tickets
-triggerThreshold
#weightContinualLoopSequentialTicket

nextTicket()
onCompletion()

SequentialTicket

nextTicket()

Ticket
-currentFrame
#frames
#initialExecution
#ticketComplete
#weight

Action Slot

uses

uses

assigns

 assi gned to

uses

us
es

personalKnowledge

Figure 46. The classes of the actor package.

113

4. Connector Package
The connector package contains all of the necessary classes for implementing

Connector and IConnector systems.

a. IConnectors and IBinders

The IConnector is discussed in detail in Chapter IV. In this

implementation both the Socket and Plug classes are extended to include Connector,

Listener, and Resource subclasses, where:

• Connector: only executes Actions on other IConnector, and is
not directly related to a Resource.

• Listener: passively reports on existing matching IConnectors.
• Resource: are linked to a particular Resource within an

Infrastructure and represents an interface to a particular
Resource.

Each IConnector is able to designate specific IConnectorAction

objects to execute upon the IConnector connecting, disconnecting, or being interupted.

An IConnectorAction object has the potential to modify an infrastructure’s interface.

In this implementation, SimManager has a single instance of IBinder,

which acts as an outer environment, and handles all inter-agent communication between

IConnector objects.

114

IConnector

#actionsOnConnect
#actionsOnDisconnect
#owner
-status
#tokens
#typeConnector
+STATE_EXTENDED
+STATE_RETRACTED
#TYPE_PLUG
#TYPE_SOCKET

Plug Socket

ConnectorPlug

ListeningPlug

ResourcePlug

Resource

ConnectorSocket

ListeningSocket

ResourceSocket

Resource

IBinder

-name
-plugs
-sockets

uses
IConnectorAction

*

modifies

Figure 47. The classes related to IConnectors in the connector package.

b. Connectors and Binders

Each CompositeAgent has a single Binder object that represents the

actor’s inner environment. Connector objects are implemented using the same

architecture as Java event listeners [Horstmann and Cornell, 2000], and was first

implemented using this technique by [Osborn, 2002]. CompositeAgent component

objects implement the ConnectorChangeListener interface, and register with the

Binder any Connectors that they are interested. Connectors also register

themselves with the Binder. The Binder notifies registered components of matching

Connectors when the connector extends into the Binder, change value or change

state. The notification occurs through a ConnectorChangeEvent which is passes to

the ConnectorChangeListener using the connectorChanged() method. The

ConnectorChangeEvent object contains a reference to the Connector that is

signaling the component. Connectors are discussed in Chapter V.

115

Figure 48. The classes related to Connectors in the connector package.

5. Scenarios Package

The scenarios package contains specific scenario files in XML. Figure 49

depicts a sample XML scenario file. Entities defined in a scenario file are specializations

of base entity classes that are placed in this package, permitting SimManager to find

them at runtime and dynamically bind to the classes.

116

<!—

Actor names must start with capital letter and must match
the class name exactly.
The actor and infrastructure .class files must exist in the
simsecurity/scenarios/ directory
-->

<scenario>
<tokens>

<token> dbPassword </token>
<token> officeAccess </token>
<token> malice </token>
<token> vulnerability103 </token>
<token> systemPatch103 </token>

</tokens>
<infrastructure>

<class> EnterpriseInfrastructure </class>
<name> enterprise </name>

</infrastructure>
<actor>

<class> UserCompositeAgent </class>
<name> user1 </name>

</actor>
<actor>

<class> UserCompositeAgent </class>
<name> user2 </name>

</actor>
<actor>

<class> UserCompositeAgent </class>
<name> user3 </name>

</actor>
<actor>

<class> HackerCompositeAgent </class>
<name> hacker1 </name>

</actor>
</scenario>

Figure 49. Sample XML scenario file.

6. Utilities Package

The utilities package contains the basic utilities needed for the simulation.

This includes a clock that maintains the current simulation cycle. Assert is a singleton

debug class that has a single method with two arguments. Assert prints an error

message to the standard output and halts the application if the first argument passed in

the method does not evaluate to true. ReadScenario and LoadClasses are used by

117

the SimManager for reading the XML scenario files and loading classes dynamically at

runtime. BucketHashtable and ConnectorHashtable are all specialized data

structures and algorithms for dealing with connectors and tickets.

Figure 50. Classes in the utilities package.

C. SUMMARY

This implementation of STIAM was as a single Java application running a single

simulation thread. The actors were polled, giving each an opportunity to execute actions.

The architecture proved to be modular and robust, facilitating the testing of new

components and ideas without extensive modification of existing code.

The following chapters introduce several scenarios that were developed using this

software, and the results obtained from their implementation.

118

THIS PAGE INTENTIONALLY LEFT BLANK

119

VIII. SCENARIO IMPLEMENTATION

A. INTRODUCTION

This chapter introduces several scenarios that were developed using the software

implemented in this dissertation. The first scenario is a demonstration of an attacker

actor who adapts to the environment and discovers successful attack sequences that are

not encoded in the agent. The second scenario models system exploit propagation, and

illustrates how STIAM can be used as a virtual laboratory to illustrate complex IA

domains. Combined, these scenarios provide an introduction into some of the IA

scenarios that are possible using this implementation of the STIAM model. By

comparing the data obtained in the later scenario with observations in the IA field, a

validation of the hypothesis generation capability of STIAM is provided.

B. SCENARIO ONE – “ADAPTIVE ATTACKER”

The implementation of this scenario has several purposes:

• to provide a proof of principle of basic model elements,

• to show that an actor is able to discover an attack sequence that it was not

previously aware when the simulation started,

• to demonstrate how attackers adapt.

1. Background
The society of this scenario contains one actor and three infrastructures. The

single actor is called Hacker14. The Hacker goals are to increase knowledge of computer

systems, expand access to systems, and earn fame within the hacker community. The

infrastructures consist of a data library, a hacker community, and an enterprise

infrastructure. The library is a simple repository of information, which responds to

queries, providing data to whomever requests it. The hacker community is a repository

of system vulnerabilities, providing the means to access identified systems. The

14 The term Hacker, as used in this chapter, refers to “a malicious or inquisitive
meddler who tries to discover information by poking around … possibly by deceptive or
illegal means…” [Steele et al., 1983].

120

enterprise is a corporate infrastructure, consisting of a critical resource called database,

and numerous infrastructure interfaces. One interface permits users to access the

database resource. Other interfaces represent means to gather information about the

corporation, and vulnerabilities that exist on the infrastructure.

Assumptions: A clock cycle represents an arbitrary unit of time (though fairly

short) corresponding to the duration of simulation events.

2. Implementation
The Society is defined as five types of tokens, three infrastructures, and one

actor.

a. Tokens
The tokens in this scenario represent the knowledge that an actor has, or

needs, to achieve his goals. The tokens are:

Token Name Initially Possessed By Description
dbPassword enterprise This token represents the current password

needed to access the corporate database.
enterprise hacker This token represents the identity of a particular

corporate enterprise.
vuln103 hackSite An actor possessing this token has the

knowledge required to exploit a technical
vulnerability numbered 103.

enterpriseService enterprise This token represents general-purpose
information on computer processes and services
that may be operating on an infrastructure.

sysType enterprise This token represents technical information
about the information technology operating in
the infrastructure, and accessible through an
interface.

Table 4. The Tokens used in Scenario One.

b. The Infrastructures
There are three infrastructures. The first is depicted in Figure 51. It

depicts a critical resource labeled ‘database’ that is accessible for read access if an entity

presents an database plug with the token ‘dbPassword.’ This represents the ability to

access a corporate information resource via a password.

 A second interface is accessible via an enterprise plug with token

‘enterpriseService.’ This interface represents the ability of an entity to see what

121

information services are operating on an infrastructure. In real networks, this represents a

means to identify what services or processes are running on nodes in a network. To

simplify the model, this scenario only models one service or process, which is called

‘systype’, and knowledge of this service is represented by the token ‘systype.’ Thus,

binding to this enterprise socket results in the entity that caused this binding to receive a

token labeled ‘systype’, indicating that the entity now “knows the type of system running

on the infrastructure.”

The last interface on the enterprise infrastructure is a system vulnerability.

Binding to this vulnerability socket requires an entity to posses token ‘vuln103’, i.e.

knowledge of the exploit for this particular vulnerability. Successfully binding results in

the binding entity receiving the password to the resource, depicted as the ‘dbPassword’

token.

database:Resource

database, {dbpassword}

enterprise:Infrastructure

r

enterprise, {enterpriseService}

Tsystype

enterprise, {vuln103}

TdbPassword

Figure 51. An enterprise infrastructure, with a resource, service scan, and

vulnerability

The second infrastructure, depicted in Figure 52, represents a traditional

library, a source of publicly available, open-source information. The library has one

interface and simple functionality. Binding to the interface is performed through the

library socket that requires a single token called ‘enterprise.’ Successfully binding to this

122

interface results in a token labeled ‘enterpriseService’ being transmitted to the entity on

the other end of the plug. This capability represent the ability of any person going to a

public source, presenting the name of the entity, and receive public information on the

enterprise.

library, {enterprise}

If an Entity binds to this
socket, that Entity receives
a Message containing the

depicted Token

TenterpriseService

library:Infrastructure

Figure 52. The library infrastructure, which provides information on the
enterprise infrastructure.

The hackerSite infrastructure is similar to the library, and is depicted in

Figure 53. This infrastructure represents a very simplified version of the hacker

community, and its vulnerability-exploit sharing process. In this infrastructure, an entity

may present system information and receive, in the form of a token, an exploit for the

particular system.

hackerSite, {sysType}

Tvuln103

hackerSite:Infrastructure

Figure 53. The hackerSite infrastructure, which provides vuln103 Token if
presented with sysType Token.

123

c. Actors
There is one actor class, called Hacker. The hacker begins with only one

token, the enterprise token, indicating that the hacker has a designated target, the

enterprise. The hacker’s goal components are illustrated in Figure 54. This class

diagram shows that a hacker has three goals;

1. Gather intelligence: this goal is for the hacker to gather information on

targets that it believes are important. To achieve this goal the hacker has

three processes:

a. Conduct library research: the hacker presents tokens to the library

in the hopes that the hacker will receive important public

information.

b. Scan an Enterprise infrastructure: the hacker scans an

infrastructure, and attempts to retrieve any system data on from the

infrastructure.

c. Research System Vulnerabilities: the hacker takes any system

information it may receive and presents it to the hacker community

in the hopes of receiving exploits against the particular systems.

2. Expand personal powerbase: The hacker takes exploits against a

particular system and executes the exploits, achieving access to the inner

workings of the penetrated infrastructure.

3. Earn fame: The hacker takes critical infrastructure information and the

ability to penetrate an infrastructure, and accesses the critical resources of

the infrastructure.

The goals have an implied priority based on their weights. This indicates

that it is more important to earn fame then expand the power base, or gather intelligence.

This is by no means a comprehensive hacker goal structure, so additional goals, tickets,

and actions can be added to hacker actors to explore their implications.

124

hacker:
CompositeAgent

earnFameGoal : Goal
weight int = 0.9

expandPowerbaseGoal :
Goal

weight int = 0.8

gatherIntelGoal: Goal
weight int = 0.7

IntelGatherTicket

VulnMappingTicket

ScanningTicket

ConductLibrary
ResearchAction

ScanEnterprise
WithDataAction

ResearchSys
VulnerabilityAction

ExploitVulnTicket

ExploitSysAction

AchieveFlagTicket

AccessResource

Figure 54. The example hacker’s goals, tickets and actions.

Figure 55 presents a screenshot of this scenario in execution. In this

implementation of STIAM, the actors are always depicted as circles, vertically along the

left edge of the screen. Infrastructures are depicted as ovals along the right edge.

Resources are depicted as triangles contained within their respective infrastructures.

Figure 55 depicts an actor, labeled “hacker” bound to a socket of the “enterprise”

infrastructure.

125

Figure 55. Screen shot of Scenario One on STIAM implementation.

3. Experimental results of Scenario One

a. Observations
The sequence of key actions that occur in this scenario are listed in Table

5. Appendix A contains the complete list of actions that occurred in this scenario.

The scenario begins with the actor in possession of only one token; the

enterprise token. The actor attempts to solve its highest priority goal that has an

action that it can perform.

126

Clock
Cycle Output from simulation Explanation
1 Hacker: hacker executing goal Goal: GatherIntelGoal

executing frame: Action: ConductLibraryResearchAction
Socket Binding -- hacker to library
Hacker: hacker received message: message:

from: 0: Infrastructure library
token: Token: enterpriseService
memo: receive information on enterprise

Hacker: hacker added token: Token: enterpriseService

The hacker accesses the
library and requests
information on
enterprise, which it
received in the form of a
new
enterpriseService
token.

2 Hacker: hacker executing goal Goal: GatherIntelGoal
executing frame: Action: ConductLibraryResearchAction

The hacker tries the new
enterpriseService
token at the library, which
fails

3 Hacker: hacker executing goal Goal: GatherIntelGoal
executing frame: Action: ScanEnterpriseWithDataAction

Socket Binding -- hacker to enterprise
Hacker: hacker received message: message:

from: 4: Infrastructure enterprise
token: Token: sysType
memo: receive detailed information on systems

running on environment
Hacker: hacker added token: Token: sysType

The hacker tries the
enterpriseService
token against the
enterprise
infrastructure, which is
successful, returning a new
sysType token.

4 Hacker: hacker executing goal Goal: GatherIntelGoal
executing frame: Action: ConductLibraryResearchAction

The hacker tries the
sysType token at the
library, which fails.

5 Hacker: hacker executing goal Goal: GatherIntelGoal
executing frame: Action: ScanEnterpriseWithDataAction

The hacker tries the
sysType token at the
enterprise
infrastructure, which fails.

6 Hacker: hacker executing goal Goal: GatherIntelGoal
executing frame: Action: ResearchSysVulnAction
Socket Binding -- hacker to hackersite

Hacker: hacker received message: message:
from: 2: Infrastructure hackersite

token: Token: vuln103
memo: receive exploit for 'vuln103' on system

'systype'
Hacker: hacker added token: Token: vuln103

The hacker tries the
sysType token at the
hackerSite, which is
successful, resulting in
receiving a new vuln103
token

7 Hacker: hacker executing goal Goal: ExpandPowerbaseGoal
executing frame: Action: ExploitSysAction

Hacker: hacker received message: message:
from: 4: Infrastructure enterprise

token: Token: dbPassword
memo: receive password to access Resource:database

Hacker: hacker added token: Token: dbPassword

The hacker uses the
vuln103 token on the
enterprise
infrastructure, which results
in the hacker receiving a
new token dbPassword

8 Hacker: hacker executing goal Goal: EarnFameGoal
executing frame: Action: AccessResourceAction

** success **

Hacker uses the dbPassword
token on the enterprise
infrastructure and
successfully access the
critical resource.

Table 5. Sequence of steps used by Hacker to access the critical resource.

127

b. Discussion
While this scenario may appears simple, it is important to understand that

the hacker actor does not possess an explicit plan on how to access the ‘database’

resource prior to the run of the simulation. Nor does the attacker generate a plan prior to

the execution of an action. The Actor fired the highest priority goals whose prerequisites

were met, and discovered the sequence of steps that led to accessing the resource. The

actor sensed the environment that it was presented, and used its limited abilities to

discover what works.

Not all of the hacker’s actions were successful. In clock intervals 2,4 and

5 the hacker presented iconnectors to infrastructures that failed to bind. These

unsuccessful actions were the results of the actor attempting to solve the

GatherIntelGoal by presenting new information tokens that it had received, to any

intelligence source. Cycle 2 and 4 represent the hackers unsuccessfully research of

information at a library, and cycle 5 represents unsuccessfully research at the enterprise.

In cycle 5 the hacker presented information tokens to the infrastructure

that ‘obviously’ will not produce any results. In the real world, security analysts say this

is an indication of a script kiddie, or unskilled attacker. Script Kiddies may try anything

in an attempt to access information system, without understanding the underlying

technology [The Honeypot Project, 2002].

c. Lessons Learned
The actors presented in this dissertation generate plans through reactive

interactions within the environment that they are placed. This can be contrasted with the

method traditional rule-based systems use to generate their plans.

On can think of traditional rule-based systems as starting at the root of a

search tree and generating the tree15. A node on the tree represents a state, and a

transition on the tree represents a subgoal or action taken by the agent. The leaves of the

15 This represents a forward chaining search. An agent could also perform a
backward chaining search where it starts at the goal and generates the tree back toward
the current state [Russell and Norvig, 1995].

128

tree represent goal states. The shape of the tree is specified and constrained by the rules

contained within the agent. Once the tree has been generated, the agent selects an action

to perform that leads the agent down the tree to the desired goal. In many domains,

generating the entire tree may be intractable, so the agent must stop at some point and

select an action to perform that appears promising.

In this dissertation, an agent does not perform a search for a goal, nor

generate a plan tree. Rather, it selects the highest goal that has an action ready for

execution and executes the action. During the execution of the simulation, an implied

search tree is created by the actions the agent selects and the goals that are achieved.

This can be thought of as dynamically generating implied plans during runtime.

The tree generated by the agent during runtime does have human bias. A

static weight is applied to the goals and tickets when they are input into the agent. These

weights act as a heuristic, aiding the agent in achieving goals. The heuristics act as a

means to prune the search tree as the agent runs through the simulation.

The advantage of this reactive planning is that the agent is able to deal

with unspecified environments. Additionally, there is no time-consuming search, which

is beneficial to real-time system. Additionally, with the addition of weight adjustment, an

agent could discover what works, and what doesn’t work, in never before seen

environments, and adjust the weight of tickets appropriately. This is left for future work.

There are several disadvantage of the reactive planning. First, the agent

may suffer from the effects of linear problem solving as discussed in Chapter V. Second,

the agent only has a local perspective, possibly resulting in the “horizon problem”

[Russell and Norvig, 1995] where the agent commits to a path based on a local

perspective, leading to a future unavoidable failure. This problem may be solved by a

look-ahead planning algorithm, but this would fundamentally change the behavior of the

actor, and may prove detrimental to the innovative reactive plans desired.

129

C. SCENARIO TWO – WINDOW OF VULNERABILITY

This scenario examines information system exploit propagation. An information

system flaw is an unspecified functionality on a particular information system that results

from poor system design, implementation, or maintenance [Myers, 1980]. Once a flaw

has been discovered, and there exists a potential to exploit the flaw causing undesirable

consequences on the part of the defender, then the flaw becomes a vulnerability. When a

flaw has been identified, a vendor may provide a patch or other means to remove or

mitigate the flaw or the effects of the flaw. A vulnerability or exploit may also be

publicized resulting in a rapid propagation of exploits throughout the society. In addition,

the vulnerability may become scripted, so that less sophisticated attackers, script kiddies,

may exploit the more complex vulnerabilities without sophisticated technical knowledge.

This sequence of actions is called the “window of vulnerability” [Arbaugh et al., 2000].

This section discusses the window of vulnerability. It presents a model that

generates the sequence of actions in a virtual society. The results of this scenario are

compared with the results obtained by Arbaugh et al. [2000]. This section validates the

claim that STIAM can produce hypothesis that are comparable to what is observed in the

IA environment.

1. Background
To model a widely distributed vulnerability, a larger and more complex society

was created.

The society contains seventeen actors:

• two sophisticated hackers,
• five script kiddies,
• ten system administrators.

Also, the society contains thirteen infrastructures:

• an elite infrastructure,
• a script kiddie infrastructure,
• a vendor infrastructure,
• ten enterprise infrastructures.

130

The enterprise infrastructures are a homogeneous set of infrastructures that have

the same, single vulnerability. There is one system administrator actor responsible for

each enterprise infrastructure. The system administrators have goals of discovering

vulnerabilities and exploits against their infrastructures and keeping their infrastructures

patched. The vulnerability on each infrastructure will let any entity who possesses a

special token, “vuln1” to bind to the infrastructure. This binding is the goal of the

attackers, and an action the defenders wish to prevent.

In addition, this scenario models the hacker community. An attacker is modeled

as someone who is capable of discovering vulnerabilities and exploits, and distributing

knowledge of these to the rest of the hacker community via hacker infrastructures. These

infrastructures can be accesses by less sophisticated attackers, called script kiddies, who

can obtain these exploits. The script kiddies are then able to exploit vulnerabilities

without possessing the technical skill to develop the exploits themselves. The hackers

have a higher skill level than script kiddies, but otherwise possess identical goal and

action sets.

Finally, we wish to model the vendor community. System administrators report

to a vendor when the infrastructure for which the system administrator is responsible has

been attacked. The vendor creates a patch, which is published to the society, and may be

retrieved as a token by system administrators. The system administrators then install the

patch on their system, resulting in the elimination of the appropriate vulnerability.

By varying properties of the infrastructures and actors, a virtual laboratory exists

whereby security analysts may examine the results of changes to the society and observe

how these changes affect the society. Results obtained from various experiments are

presented in a later section.

2. Implementation
The society is defined as four tokens, four types of infrastructures, and three types

of actors.

131

a. Tokens
The tokens in this scenario are:

Token
Name

Initially
Possessed By

Description

vuln1 none An actor possessing this token has the knowledge required to
exploit the technical vulnerability on the enterprise infrastructure.

patch1 none An actor possessing this token has the knowledge and tools to
patch or mitigate the effects of the vuln1 vulnerability.

notify sysadmins This token represents a message from a system administrator to a
vendor that the system administrator’s infrastructure has been
exploited (by vuln1).

sysadmin enterprise
infrastructures

This token is used by the enterprise infrastructure to indicate that
a message (iconnector) is designated for a system administrator
only. This may represent a trusted communication channel or
confidentiality method that is used between the infrastructure and
the administrator.

Table 6. The Tokens used in Scenario Two.

b. The Infrastructures
The four types of infrastructures are defined as the elite, script, and vendor

infrastructure, and multiple enterprise infrastructures.

The elite and script infrastructures are identical in functionality and

represent the information system used by criminal attackers. The elite infrastructure

accepts messages containing a token from another actor. When the message arrives, it is

added to the infrastructure’s token set. Additionally a socket is extended that allows any

actor to bind who presents a plug iconnector labeled “elite”. Binding to this socket

results in a token being sent by message to the owner of the plug. This socket binding

represents the ability of anyone in the hacker elite community to bind to the elite

infrastructure to receive any tokens possessed by the infrastructure. Figure 56 (a)

represents an elite infrastructure that contains a single token, “vuln1”. The “script”

infrastructure is identical to the “elite” infrastructure except that the socket is labeled as

“script” rather than “elite”. Exploits are published to elite sites first and later scripts sites,

representing the ability of elite hackers to exploit systems earlier than the script kiddies.

Figure 56 (b) represents the “script” infrastructure, which is identical to the elite, except

for the socket label.

132

elite, {}

Tvuln1

elite:Infrastructure

script, {}

Tvuln1

script:Infrastructure

 (a) (b)
Figure 56. The elite (a) and script (b) infrastructures are identical except for the

socket labels.

In this scenario, there are ten nearly identical enterprise infrastructures.

The only difference between the instantiations of the infrastructures is the enterprise label

on a plug and socket connector. These labels are identifies as enterprisen where n ranges

from 1 to 10, representing the identity of the infrastructure.

An enterprise infrastructure has a vulnerability labeled “vuln” which

requires one token, “vuln1”, which represents the ability to exploit the vulnerability.

Upon exploiting the vulnerability a plug is extended that has the potential to alert the

system administrator that the infrastructure was exploited. This represents an abstraction

of “after-the fact” alert mechanisms, such as intrusion detection systems. Additionally, a

socket labeled “enterprisen, {patch1}” exists that represents the ability of a system

administrator to patch the vulnerability. Binding to this socket results in the vulnerability

socket retracting permanently.

enterprisen, {patch1}

enterprisen:Infrastructure

vuln, {vuln1}

e,∅

r,∅

enterprisen, {vuln1, sysadmin}

Figure 57. The enterprise infrastructure has an alert plug, a vulnerability socket,

and a patch socket.

133

The vendor infrastructure depicted in Figure 58 represents the entire

vendor community. The vendor infrastructure consists of a single active socket. System

administrators bind to this socket to notify the vendor that their systems have been

exploited. The first actor that binds to this socket causes the extension of another socket

representing the availability of a patch for the vulnerability “vuln1”. If an entity binds to

this second socket, it will receive a message from the vendor containing the patch1 token,

which represents a patch to the vulnerability vuln1.

vendor, {vuln1}

Tpatch1

vendor:Infrastructure

vendor, {notify}

e,∅

Figure 58. The vendor infrastructure represents the entire vendor community.

c. Actors
As discussed earlier, hackers (elites) and script kiddies (scripts) were

modeled identically except for higher skill value provided to elites and their ability to

bind to their respective infrastructures. The goal structures are presented below in Figure

59. Each attacker has a goal of acquiring vulnerabilities. If a new exploit is not available

on the hacker websites, the attacker will try to generate a new exploit. The probability of

an attacker generating an exploit on any simulation cycle is the skill level of the attacker;

this value ranges from 0.0 to 1.0 for scripts, and 0.5 to 1.0 for elites.

If an attacker discovers an exploit, in the form of a new token, the attacker

will publish the exploit. The first turn with the exploit the attacker will publish the

exploit to the elite infrastructure. The attacker will delay for a preset number of turns,

then publish the exploit on the script website. This represents the attackers desire to

publish exploits to the elite site first, in order to gain fame within the hacker community.

134

While the attacker is waiting to publish on the script site, and after it

publishes on the script site, the attacker will use the exploit against infrastructures. This

represents the hacker using exploits it has discovered against targets of interest.

AttackerRole:
CompositeAgent

ExploitVulnGoal: Goal

weight int = 0.8

AquireVulnGoal

weight int = 0.7

ExploitTicket

ExploitVulnerability
ActionReceiveVulnAction

PublishGoal: Goal

weight int = 0.9

PublishActionDiscoverExploitAction

FindNewVulnerabilityTicket

weight int = 0.7

ReceiveVulnTicket

weight int = 0.8

PublishAction

PatchTicket(elite)

weight int = 0.8

PatchTicket(script)

weight int = 0.7

Figure 59. The Attacker role consists of three goals: acquire, exploit, and publish

vulnerabilities.

The system administrator role, as depicted in Figure 60, has two goals;

discover any exploits occurring on the system it is assigned, and patch exploits that are

discovered. The system administrator has a socket extended from the

DiscoverExploitAction. When the actor’s infrastructure is exploited, the

infrastructure binds to this socket, notifying the actor of the exploit. This action is then

marked as completed, and the next frame in the DiscoverExploitTicket executes,

notifying the vendor through an iconnector that the system administrator’s infrastructure

has been exploited.

During each turn, the GetPatchAction extends a plug, awaiting

notification of new patches from the vendor. If a vendor has extended a socket

advertising a new patch, the GetPatchAction binds, resulting in the actor receiving the

patch through a message. The existence of this new patch causes the

135

ApplyPatchAction to fire the next turn, resulting in the actor patching the

vulnerability on its infrastructure.

SysAdminRole:
CompositeAgent

PatchVulnGoal: Goal

weight int = 0.9

DiscoverExploitedSysGoal: Goal

weight int = 0.8

PatchVulnTicket

GetPatchAction

ApplyPatchAction

DiscoverExploitTicket

DiscoverExploitAction

NotifyVendorAction

Figure 60. The system administrator role.

A security analyst can model proactive system administrators versus

reactive system administrators very easily. In its current configuration, the system

administrator actor will bind to the vendor and patch its infrastructure as soon as a patch

is available, representing a proactive system administrator. This may be misleading,

since this implementation of the system administrator does not have any other conflicting

goals. To cause the system administrator to be reactive, an internal connector labels

“exploited” is placed in the system administrator actor. The GetPatchAction can then

be forbidden to execute until the internal connector extends. The connector will be

extended by the DiscoverExploitAction after detection of the infrastructure being

exploited.

136

Alternatively, a reactive systems administrator could be modeled with a

single goal and a single sequential RespondTicket. This ticket would have discover,

notify, receive patch, and apply patch actions placed in a sequential order.

Future work could include more goals that conflict with a system

administrator’s priorities, such as upgrading systems, fixing user problems, and general

system maintenance. This is left as future work.

Figure 61 is a screen shot of the Window of Vulnerability scenario at the

start of execution. The hackers and script kiddies are represented vertically along the left

edge. The system administrators under the attackers, labeled “enterprise1” through

“enterprise10”, represent the system administrators for the similarly labeled

infrastructures. Sockets are represented as hollow circle connector ends, and plugs are

filled circle connector ends. Retracted connectors are to the right of the infrastructures.

All other connectors are extended.

137

Figure 61. Implementation of Scenario Two.

138

3. Experimental results of Scenario Two
Arbaugh et al. [2000] provided the first quantitative analysis of the window of

opportunity phenomena. They discovered that the number of incidents reported to the

Computer Emergency Response Team Crisis Center (CERT/CC) Incident Team, when

plotted over time, is positively skewed toward the beginning of the vulnerability

reporting, as depicted in Figure 62. Arbaugh et al. discovered that after an exploit is

discovered there is a small increase in the number of exploit incidents. This is followed

by a tremendous jump in the number of exploit incidents as the exploits are published to

the general community and scripts are developed for the exploits. After patches are

released, the number of exploits begins to drop, and continues to drop slowly, sometimes

over a period of years, as system administrators apply patches to their systems [Arbaugh

et al., 2000].

time

N
um

be
r o

f I
nc

id
en

ts

cumulative number of exploits

number of exploits

Figure 62. Typical exploit distribution graph shape reported by Arbaugh et al.,
2000.

139

Furthermore, Arbaugh et al. discovered that patches were normally available

simultaneously to, or shortly after public disclosure of a vulnerability, i.e. before the

largest number of reported exploits. This can be attributed to the system’s administrators

being unaware of, or not responsive to, installing patches and other mitigating means to

infrastructures [Arbaugh et al., 2000]. The real catalyst for the increased of incidents

observed is the scripting of exploits. Scripting involves creating a tool that requires very

little technical skill, typically facilitating an unsophisticated attacker to use more

sophisticated means.

Arbaugh et al. acknowledges that the data used in their analysis was not complete,

and pointed out several reasons for this inadequacy. STIAM, therefore, can provide a

virtual laboratory to perform hypothesis generation, and to adjust system and actor

parameters to observe the effects to the IA of an organization, or the society as a whole.

a. Observations
Seven separate sub-scenarios were implemented and analyzed. The results

of these simulation runs are presented.

In the first run, the system administrator agents were encoded to react to

their system being attacked. These agents represent reactive system administrators who

do not apply patches until after their systems have been attacked. Figure 63 depicts the

results of this scenario. The character labels on the graph represent:

a) Initial exploit – this represents the first time an attack is executed
on a system.

b) Publication of exploit on elite site – this is the first indication that
the exploit has been published, but only to a limited community.

c) Publication of exploit on script site – at this point the exploit has
been scripted and has a widespread distribution.

d) Publication of patch – here a vendor publishes a patch for the
vulnerability and systems should begin being secured.

Reactively applying patches results in an exploit existing in the society for

a longer period. Attackers are able to exploit the initial infrastructures, followed by the

system administrators of these infrastructures discover that their systems are

compromised and begin the process of acquiring and installing patches. As these initial

140

infrastructures are patched, the attackers move on to other infrastructures that have not

been patched. This sequence continues until all of the infrastructures have been attacked

and subsequently patched. The result is that all (100%) of the infrastructures are

exploited

The constant slope of the cumulative line from turn 9 to turn 19 in Figure

63 is caused by the constant number of attackers successfully exploiting infrastructures

during those turns. Additionally, the simulation provides perfect situational awareness,

resulting in an analyst receiving all of the reports for all exploits, something not possible

in a real environment.

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Turns Since Discovery

Nu
m

be
r o

f I
nc

id
en

ts

cumulative number of exploits

number of exploits
(a) (b) (c) (d)

Figure 63. Results of reactive system administrators with patch released after

scripts.

141

The next example uses reactive system administrators also. Here, the

script is released with the elite exploit. There is a very rapid rise in the number of attacks

(c). The number of attacks stays constant even after the patch (d) is published, because

the attackers simply jump to an infrastructure that has not been attacked, and therefore

not patched. There is a slight decrease in the number of incidents and the lifetime of the

exploit because the attackers are able to exploit systems quickly at the beginning of the

lifeline, and therefore the systems administrators get a chance to patch their systems

quicker. The result is still 100% of the infrastructures penetrated.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Turns Since Discovery

Nu
m

be
r o

f I
nc

id
en

ts

(a) (b)
(c)

(d)

cumulative number of exploits

number of exploits

Figure 64. Reactive system administrator with accelerated publication of script and

delayed publication of patch.

In the next example the reactive system administrators have access to the

patch before the script is released. Seven infrastructures are quickly exploited, and the

system administrators rapidly respond, patching their systems. As systems are patched,

other systems are exploited, causing an oscillation in the number of exploits over time.

Eventually all systems are exploited, and then patched, and the vulnerability dies.

142

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Turns Since Discovery

Nu
m

be
r o

f I
nc

id
en

ts
cumulative number of exploits

number of exploits

(a)
(b)
(c)
(d)

Figure 65. Reactive system administrator with patch released prior to scripts.

In the next run, the system administrators apply patches as soon as a patch

is available from a vendor, representing proactive system administrators. The results are

depicted in Figure 66. As shown, an attacker discovers the exploit at (a). There is a

small increase in exploits, representing the hackers receiving the exploit after it is posted

to the elite site, and then attacking the infrastructures (b). Next, the script kiddies receive

the exploit after it is posted to the script website, which causes a large increase in the

number of exploits (c). After a delay the vendor releases the patch (d), all system

administrators, whether their systems have been attacked or not, request and apply the

patch, whereby the number of exploits drops to zero.

In Figure 66 the vulnerability dies very quickly when compared to reactive

scenarios. The result is that far fewer incidents occur, and only half of the infrastructures

were compromised. Although the vendor has a long delay in getting the patch to the

system administrators, the initiative of the system administrators quickly makes up for

this delay by securing both exploited and vulnerable but nonexploited systems.

143

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

Turns Since Discovery

Nu
m

be
r o

f I
nc

id
en

ts

cumulative number of exploits

number of exploits

(a) (b) (c) (d)

Figure 66. Results with proactive system administrators with patch released after

scripts.

In the next run, the exploit is released to elites and scripts simultaneously

(b)(c), as depicted in Figure 67. The patch is published after the scripts (d). The result is

that, although the lifetime of the vulnerability is identical to the previous scenario, there

is a 50% increase in the number of incidents, and all of the infrastructures are exploited,

representing a 100% increase. This scenario illustrates that delaying the release of scripts

may have a significant impact on the number of systems exploited.

144

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Turns Since Discovery

Nu
m

be
r o

f I
nc

id
en

ts
cumulative number of exploits

number of exploits

(a)
(b)
(c) (d)

Figure 67. Proactive system administrators with scripts released soon after the
elites and the before the patch.

In this next example, Figure 68, proactive system administrators receive

the patch for a vulnerability prior to publication of the exploit to script kiddies. This

represents a vendor’s ability to quickly create a patch once a vulnerability is discovered,

or the security communities willingness to wait for a patch to be published before

publication of exploits to the script kiddies and the general public.

The number of exploits per turn reaches a maximum of two. This is due to

the fact that the exploit was published to the elites, and every elite could then exploit the

systems. Once the patch was released, the vulnerability dies before the scripts could

exploit systems.

145

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Turns Since Discovery

Nu
m

be
r o

f I
nc

id
en

ts

cumulative number of exploits

number of exploits

(a)
(b) (c)(d)

Figure 68. Patch released prior to publication of exploit on script kiddie

infrastructure for proactive system administrators.

In this last example the number of script kiddies is increased from five to

eleven, giving a total of 13 attackers. In this example the attackers “out number” the

infrastructures, so once the exploit is published there is a large number of exploits

recorded. The systems are rapidly patched.

146

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Turns Since Discovery

Nu
m

be
r o

f I
nc

id
en

ts
cumulative number of exploits

number of exploits

Figure 69. Society with large number of attackers than infrastructures; using

reactive system administrators.

b. Discussion
The results of the scenarios presented in the section above are summarized

in Table 7.

The first observation, and generated hypothesis, is intuitively obvious.

The largest contribution to securing systems in this scenario is for the system

administrator to be proactive in “hardening” their systems, before they are attacked.

When the systems administrator agent reacted to being attacked, it was already too late.

First, the reactive scenarios resulted in all of the systems being exploited, an obvious

conclusion. Second, the system administrator agents needed to acquire the patch, and

install the patch, which took time. This reaction time in installing the patch resulted in

attackers being inside a system for long periods of time. Once the system was hardened,

the attackers moved on. The result is that the vulnerability timeline were very long for

reactive system administrator scenarios.

The second observation, and generated hypothesis, is that patched need to

published prior to the publication of vulnerabilities and scripts to the general public.

147

Being proactive in installing patched is of no use if a large number of attackers have a

means into a system before a patch is available.

As supported by empirical results, “automation (of attacks) is the catalyst

for wide spread intrusions” [Arbaugh et al., 2000]. Delaying the distribution of these

automated exploits until a patch is published results in far fewer incidents.

Title of Scenario Total Number
of Incidents

Lifetime of
Vulnerability

Number of Systems
Exploited

Reactive Sysadmin
patch released after script 102 21 100% (10/10)

Reactive Sysadmin
script and elites released together
patch released after script

94 17 100% (10/10)

Reactive Sysadmin
patch released before script 103 20 100% (10/10)

Proactive Sysadmin
patch released after script 20 8 50% 5/10)

Proactive Sysadmin
script and elites released together
patch released after script

30 8 100% (10/10)

Proactive Sysadmin
patch released before script 10 7 40% (4/10)

Table 7. Results of Window of Vulnerability Scenario

Numerous factors were not included in this proof-of-principle scenario,

and are left as future work. Some of these factors are:

• Collaboration among attackers who “know” each other and can share

discovered exploits without releasing them to the general public.

• Competition among attackers, so hackers will install a “backdoor” on

compromised system, and then patch the vulnerability that allowed the

attacker into the system. The backdoor will provide later access to the system,

and patching the system will deny the system to other hackers.

• System administrators may shut down a system if it is compromised. The

system may stay “offline” until a patch exists and the system is returned to a

safe state. The result should be a shorter lifeline for an exploit, since attackers

148

would simply move on to other systems when a compromised system is no

longer available.

• Conflicting priorities for a system administrator’s time, such as maintaining

systems, and responding to other actor’s demands. An example of conflicting

priorities is the system administrator’s desire to shut off a compromised

system versus a user’s desire to perform work activities on the system.

If a system administrator doesn’t report an attack against its systems, the

vendor may be delayed in being notified and start working on the patch. A way around

this is for the vendors to monitor the hacker sites, and begin working on the patch as soon

as the exploits are posted. This technique works only if vendors covertly monitor hacker

sites, and allegedly occurs within the security community. The hacker groups try to

defeat this technique by limiting membership and authenticating potential members

[Taylor, 1999].

c. Lessons Learned
Often, we wish to model the effect of time on the simulation. Time is not

a component of the basic STIAM model. To consider the effects of time, a delay was

placed on the extension and retraction of connectors. For example, when a systems

administrator agent binds to the vendors agent to notify the vendor of an exploit, there

could be a delay imposed on the extension of the patch distribution sockets. This issue is

included in the future work section of Chapter IX.

D. OBSERVATIONS

1. Model Granularity
The decision to model individual actors and infrastructures, or aggregate them

into relatively homogeneous entities, depends on the desires of the researcher. Modeling

an organization as a single individual and a single infrastructure is relatively simple, but

may provide limited insight. Large organizations can be modeled as sets of smaller sub

organizations and their respective infrastructures to provide more detailed results, but this

adds to the simulation complexity.

149

To increase the granularity of a model and simulation:

1. deaggregate the organization into important sub organizations, including
appropriate roles.

2. deaggregate an infrastructure into separate infrastructures.
3. add additional tokens as appropriate to infrastructure connectors and roles
4. add additional connectors for the interfaces required.

Figure 70 depicts a single organization and infrastructure that was deaggregated

into three organizations and three infrastructures.

R&D Engr AcctOrganizations

Roles

Actors

Connections

Infrastructures

Org

Figure 70. Example deaggregated organization.

2. Visualization of Large Societies
As the size of societies increase, the ability to present the society in a meaningful,

visual way decreases. The analyst’s screen becomes cluttered, and the ability to infer

what is occurring in real-time decreases. This difficulty can make the analysis of the

society very difficult, resulting in the analyst having to abandon the real-time interface

and graphical notation of STIAM, and reverting to traditional analysis of reams of output

or statistical analysis.

This lack of scalability in the current implementation of STIAM can be resolved

by implementing a ‘scenario recorder’ that records the simulation run. This capability

would permit the analysts to pause a simulation, and ‘rewind’ to examine what occurred

at a particular point in time. This ability would also allow an analyst to ‘record’ a

simulation, and examine the simulation graphically after execution. This is left as future

work.

150

E. SUMMARY

This chapter demonstrates that scenarios found with the IA domain can be

adequately simulated using a biologically based implementation of STIAM. This

demonstrates that implementations of STIAM can be used as virtual IA laboratories to

investigate portions of the IA domain that may not be easily observable. The

observations and hypothesis generated from these scenarios are validateable with

observations in the real environment.

The real strength of these scenarios is as a hypothesis generator, to cause security

analysts to go to the real environment and seek answers to confirm or deny observations

discovered in the implementation of the STIAM model. If an observation is confirmed,

then these observations become theories to aid in the security analyst’s understanding of

the complex domain of IA. If the observations are denied, then the scenarios are adjusted

and rerun to take into consideration elements and interaction that the researcher failed to

consider previously. The procedure is repeated, causing a gradual increase in

understanding of the IA environment.

151

IX. CONCLUSIONS AND RECOMMENDATIONS

This final chapter provides a summary of the major contributions of this

dissertation. While this dissertation provides contributions to the field, it also raises new

questions. Therefore, this chapter concludes with recommendations for future work.

A. CONCLUSIONS

STIAM provides a fundamental new approach to examining information

assurance issues at an organizational level. The computational model provides a formal

and descriptive notation for depicting the IA environment. Iconnectors provide a

graphical notation that allows researchers to present the computational model in terms of

a society in a connector notation, which aids in clarity. Iconnectors also provide a

mechanism to implement graphical models as computational systems, and a

communications mechanism to facilitate inter-entity interactions. The connector-based

agent architecture provides researchers with composite agents constructed from relatively

simple components that are capable of complex behavior.

 The computational model and simulation permit researchers to select various

levels of abstraction, and investigate particular properties in IA. This abstraction permits

researchers to examine specific challenges in information assurance without extensive

modeling of hardware and software details.

The proof-of-principle software architecture demonstrates the feasibility of this

model. The components of the model capture the pertinent elements of the domain, and

allow researchers to examine equivalence classes of vulnerabilities and exploits found in

an environment, and implement a computational model of these as case studies.

Additionally, researchers can model the social interactions that are facilitated and

constrained by technology. The model simulates the challenges in the domain; such as

the inability to discover an agent’s identity, location, means, or intent.

The computational model and simulation of the information security domain may

provide valuable insight into current problems, as well as discover new challenges and

solutions as they are revealed by the adaptive, evolutionary nature of the multi-agent

system.

152

B. RECOMMENDATIONS FOR FUTURE WORK

Due to its modular design, STIAM provides a useful test bed for examining a

variety of issues in information assurance, social and organizational modeling, and multi-

agent system design. Below are some of the possible areas for additional research.

1. Agent History
Connector-based agents do not have an explicit history component. Rather, an

implied history may be stored in the agent’s tickets. History could be embedded in a

connector-based agent using data objects, connectors, and frame pointers that may be

stored in tickets. Actors could also retain a perception database to remember previous

interactions with other agents, and the effect of actions on specific entities within the

society. An important research area is the effect of agent histories on the behavior of

agents in the STIAM system.

2. Behavior Moderators
The behavior moderators for STIAM agents were selected through a review of IA

literature. A more thorough investigation of the moderators can be done, followed by

research into how varying these values affect an agent and the society.

3. Dynamic Role Assignment Assignments and Organizations
In this implementation, agents are assigned roles and receive the role’s component

goals. A more dynamic implementation would allow actors to enter and exit roles and

organizations throughout the simulation.

There are latency issues is dynamic role and organization assignments. After an

actor leaves an organization, and the roles are broken, he still may have, or have the

potential to have, bindings to infrastructures of that organization. These “ghost” or

“phantom roles” demonstrate the danger of static tokens on security.

The duration and continuity of an organization may range from relatively static,

such as incorporated conglomerates, to quite dynamic. Static organizations have to deal

with actors whose goals change over time, and thus the organizations should adapt over

time. Dynamic organizations force actors to adapt. STIAM is ideal for investigating

dynamic organizations and actors.

153

4. Generating Tickets, Frames, and Actions at Runtime
Ticket sets provide a limited set of options to achieve a goal. An extension is to

dynamically generate tickets and frames at runtime. This could be implemented as a

genetic algorithm that tries new methods to achieve goals, and in effect investigates

potentially innovative means to attack or defend entities in the pursuit of goals.

Researchers may use this line of research to examine the coevolution of attackers and

defenders.

5. Agent Learning
Agent learning was not implemented in the basic connector-based agents of

STIAM. Learning, or autonomously improving an actor’s behavior over time, may be

implemented by modifying the weights to tickets and actions that have proven to be

useful in the past, and throwing away tickets and actions that are not useful. This would

provide an exciting advancement to STIAM. The basic research may result in the

improvement of agent performance over time. A more interesting research area is in

manipulating agents into learning a behavior, and then exploiting that behavior.

6. Complex Agent Goal Assignments
The actors that were implemented in the current version of the STIAM model had

limited goals, and as such limited opportunities for internal conflict. More research needs

to be conducted on the scalability of reactive, ticket-based agents and connector-based

systems.

7. Discretionary Access Control Policies in the STIAM Model
In the current model, policies are static and cannot be changed by entities.

Additionally, actors cannot grant or deny entities access to resources during execution of

the STIAM model. Implementing the capability to modify agent access policies and

interfaces during runtime would provide a tremendous improvement over enumerating all

interfaces prior to runtime. This capability would represent a more dynamic environment

and permit security analysts to accurately represent discretionary access control policies.

154

C. SUMMARY

This chapter presented the significant contributions of this dissertation. There are

significant areas for future work – in both extending the model, and using the model and

implementation for gaining insight into the IA domain. The connector-based simulation

work provides a fruitful area of exploration, extending the insight gained from this

dissertation into other research domains.

Chapter VI provided a validation that the elements found in the IA domain can be

adequately represented in STIAM. Additionally, Chapter VIII demonstrates that an

implementation of STIAM can generate scenarios and representable data that is found in

the real world. Combined, these two results confirm the hypotheses of this dissertation.

155

LIST OF REFERENCES

Amori, R. D., “An Adversarial Plan Recognition System for Multi-Agent Airborne
Threat,” Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing, vol.
1, pp 497-504, March 1 - 3, 1992.

Amoroso, E.G., Fundamentals of Computer Security Technology, Prentice-Hall
Publishers, Upper Saddle River, NJ, 1994.

Anderson, E., A Demonstration of the Subversion Threat: Facing the Critical
Responsibility in the Defense of Cyberspace, Masters Thesis, Naval Postgraduate School,
Monterey, CA, March 2002.

Anderson, J.K., Rules of the Mind, Hillsdale, NJ, Lawrence Erlbaum, 1993.

Anderson, K., “Intelligence-Based Threat Assessments for Information Networks and
Infrastructures,” http://www.aracnet.com/~kea/Papers/threat-white-paper.shtml (4 Nov
1998).

Applegate, C., Elsaesser, C., and Sanborn, J., “An Architecture for Adversarial
Planning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no 1,
January/February 1990.

Arbaugh, W.A., Fithen, W.L., and McHugh, J., “Windows of Vulnerability: A Case
Study Analysis”, IEEE Computer, vol. 22, no. 12, pp. 52-59, December 2000.

Arthur, B., “Inductive Reasoning and Bounded Rationality,” American Economic
Association Papers, vol. 84, pp. 406-411, 1994.
http://www.santafe.edu/arthur/Papers/El_Farol.html (1 Sept 2001).

Atkins, D., Buis, P., Hare, C., Kelley, R., Nashenberg, C., Nelson, A. B., Phillips, P.,
Ritchey, T., and Steen, W., Internet Security Professional Reference, New Riders
Publishing, IN, 1996.

Axelrod, R., The Evolution of Cooperation, Basic Books, 1984.

Axelrod, R., The Complexity of Cooperation, Princeton University Press, 1997.

Axtell, R., and Epstein, J.M., Growing Artificial Societies: Social Science from the
Bottom Up, The Brookings Institute, Washington, D.C., 1996.

Barber, K.S., Liu, T.H., Goel, A., and Martin, C.E., “Conflict Representation and
Classification in a Domain-Independent Conflict Management Framework,” University
of Texas – Austin, 1998.

156

Bell, D., and La Padula, L., “Secure Computer Systems: Mathematical Foundations and
Model,” MITRE Report, MTR-2547 vol. 2, November 1973.

Bellovin, S.M., “Security Problems in the TCP/IP Protocol Suite,” Computer
Communications Review, vol. 19, no. 2, pp 32-48, April 1989.

Biba, K., “Integrity Considerations for Secure Computer Systems,” U.S. Air Force
Electronic Systems Division Technical Report, 76-372, 1977.

Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

Brewer, D. and Nash, M., “The Chinese Wall Security Policy,” Proceedings IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, pp 206-214, 1989.

Brinkley, D. L. and Schell, R. R., “Concepts and Terminology for Computer Security,”
ed. Abrams and Jajodia and Podell, Information Security: an Integrated Collection of
Essays, IEEE Computer Society Press, Los Alamitos, CA, 1994.

Brinkley, D. L. and Schell, R. R., “What is There to Worry About? An Introduction to
the Computer Security Problem,” ed. Abrams and Jajodia and Podell, Information
Security: an Integrated Collection of Essays, IEEE Computer Society Press, Los
Alamitos, CA, 1994

Carley K. M. and Newell, A., “The Nature of the Social Actor,” Journal of Mathematical
Sociology, vol. 19(4), pp. 221-262, 1994.

Carroll, J. M. “A Portrait of a Computer Criminal,” p42, Information Security – The Next
Decade, Editors: J. H.P. Eloff and S. H. vonSolms, Chapman & Hall, UK, 1995.

Castelfranchi, C., Falcone, R., and de Rosis F., “Deceiving in GOLEM: How to
Strategically Pilfer Help,” Autonomous Agent '98: Working notes of the Workshop on
Deception, Fraud and Trust in Agent Societies, 1998.

Clark, P.C., Supporting the Education of Information Assurance with a Laboratory
Environment,5th National Colloquium for Information System Security Education,
George Mason University, Fairfax, Virginia, May 2001

Computer Emergency Response Team (CERT), CERT Coordination Center, Software
Engineering Institute, Carnegie Mellon, http://www.cert.org. (January 2002).

Cohen, F., "Computer Viruses: Theory and Experiments,” Computers and Security, vol.
6, pp. 22-35, 1987.

Cohen, F., “Simulating Cyber Attacks, Defenses, and Consequences,”
http://all.net/journals/ntb/simulate/simulate.html, (7 Sept 2000).

157

Coveney, P. and Highfield, R., Frontiers of Complexity: The Search for Order in a
Chaotic World, Fawcett Books, 1995.

Denning, D., “Concerning Hackers Who Break into Computer Systems,” Proceedings of
the 13th National Computer Security Conference, pp. 653-664, Washington, D.C.,
October 1-4, 1990.

Denning, D., Information Warfare and Security. Addison-Wesley Publishing, 1998.

Denning, D., Neumann, P., and Parker, D., “Social Aspects of Computer Security,” in
Proceedings 10th National Computer Security Conference, pp. 320-325, September
1987.

U.S. Department of Defense (DoD) CJCSI 3210.01, Joint Information Warfare, U.S.
Department of Defense, January 1996.

U.S. Department of Defense (DoD) Joint Chiefs of Staff, Information Assurance Through
Defense in Depth, U.S. Department of Defense, February 2000.

U.S. Department of Defense, Defense Information Systems Agency (DISA), NETWARS,
U.S. Department of Defense, http://www.disa.mil/D8/netwars/about/index.htm,
(November 2001).

Donaldson, T., “A Position Paper on Collaborative Deceit,”
http://citeseer.nj.nec.com/107418.html, (November 2000).

Dougherty, J.E. and Pfaltzgraff, R.L. Jr. Contending Theories of International Relations,
Harper and Row, NY, 1981.

Donath, J., Identity and Deception in the Virtual Community, November 12, 1996,
http://persona.www.media.mit.edu/judith/Identity/IdentityDeception.html, (Nov 2000).

Echo, John Holland’s Echo, 2000, http://www.santafe.edu/projects/echo, (30 July 2000.)

Encyclopedia Britannica, http://www.britannica.com, (Dec 2000).

Ephrati, E., and Rosenschein, J., “Divide and Conquer in Multi-Agent Planning,”
Proceedings of the 12th National Conference on Artificial Intelligence, July-August,
1994.

Ferber, J., Multi-Agent Systems, an Introduction to Distributed Artificial Intelligence,
Addison-Wesley Publishers, 1999.

Ferraiolo, D. and Kuhn, R., “Role-Based Access Control”, Proceedings of the 15th
National Computer Security Conference, pp. 554-563, Baltimore, MD, October 1992.

158

Filkes, R.E., Nilsson, N.J., “STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving”, Artificial Intelligence, vol. 2, pp. 189-208, 1971.

Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T., “A Sense of Self for Unix
Processes,” In Proceedings of the 1996 IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, Los Alamitos, CA, pp. 120–128, 1996.

Geddes, N.D., “A model for intent interpretation for multiple agents with conflicts,”
Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, San
Antonio, Texas, vol. 3, pp. 2080 –2085, October 2-5, 1994.

Geddes, N.D., “Large-scale models of cooperative and hostile intentions,”
Proceedings of the 1997 workshop on Engineering of Computer-Based Systems, pp. 142–
147, 1997. http://computer.org/proceedings/ecbs/7889/78890142abs.htm, (Nov 2000).

Geddes, N.D., Smith, D.M., and Lizza, C.S. “Fostering collaboration in systems of
systems,” 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 1,
pp. 950–954, 1998.

Gmytrasiewicz, P.J., and Durfee, E.H., “Toward a Theory of Honesty and Trust Among
Communicating Autonomous Agents,” Group Decision and Negotiation 2:237-
258, 1993.

Goguen, J. A., Meseguer, J. "Security Policies and Security Models,” in Proceedings of
the 1982 IEEE Symposium of Security and Privacy, pp. 11-20, April 1982.

Graham, R. and Denning, P. “Protection – Principles and Practices,” Proceedings AFIPS
Spring Joint Computing Conference, v. 40, pp. 417-429, 1972.

Taylor, P.A., Hackers - Crime and the Digital Sublime, Routledge, 1999.

Harrison, M., Ruzzo, W.L. and Ullman, J., “Protection in Operating Systems,”
Communications of the ACM, vol. 19, no. 8, pp. 461-471, August 1976.

Hiles, J., VanPutte, M., Osborn, B., Zyda, M., Innovations in Computer Generated
Autonomy at the MOVES Institute, Technical Report NPS-MV-02-002, Naval
Postgraduate School, Monterey, California, 2001.

Hiles, J., Lewis, T., Osborn, B., Zyda, M., VanPutte, M., StoryEngine: Dynamic Story
Production Using Software Agents That Discover Plans, Technical Report NPS-MV-02-
TBA, Naval Postgraduate School, Monterey, California, 2002.

Hodges, J. and Dewar, J., Is it You or Your Model Talking? A Framework for Model
Validation, R-4114-AF/A/OSD, RAND, Santa Monica, CA, 1992.

Holland, H., Hidden Order – How Adaptation Builds Complexity, Perseus Press, 1996.

159

The Honeypot Project (ed), Know Your Enemy – Revealing the Security Tools, Tactics,
and Motives of the Blackhat Community, Addison-Wesley, 2002.

Horstmann, C., Cornell, G., Core Java 2, Volume 1: Fundamentals 5th edition, Prentice
Hall Publishers, Upper Saddle River, NJ, December 2000.

Howard, J.D., An Analysis of Security Incidents on the Internet, 1989-1995, Engineering
and Public Policy Dissertation, Carnegie-Mellon University, April 7, 1997.

Howard, J.D. and Longstaff, T.A., A Common Language for Computer Security
Incidents, (SAND98-8667), Livermore, CA: Sandia National Laboratories, 1998.
http://www.cert.org/research/taxonomy_988667.pdf, (Mar 2002).

Ilachinski, A. Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artificial-Life
Approach to Land Warfare, Center for Naval Analysis Research Memorandum CRM 97-
61.10 August 1997, Center for Naval Analysis, Alexandria, VA, 1997.

Irvine C., and Levin, T., "Teaching Security Engineering Principles," Proceedings
Second World Conference on Information Security Education, Perth, Australia, pp. 113-
127, July 2001.

Irvine, C. E., "The Reference Monitor Concept as a Unifying Principle in Computer
Security Education," Proceedings of the First World Conference on Information Systems
Security Education, Stockholm, Sweden, pp.27-37, June 1999.

Irvine, C. E., "Amplifying Security Education in the Laboratory," Proceedings of the
First World Conference on Information Systems Security Education, Stockholm, Sweden,
pp. 139-146, June 1999.

Irvine, C. E., Warren, D.F., and Clark, P.C., "The NPS CISR Graduate Program in
INFOSEC: Six Years of Experience," Proceedings of the 20th National Information
Systems Security Conference, Baltimore, MD, pp.22-30, October 1997.

Irvine, C. E., Chin, S., and Frinke, D., "Integrating Security into the Curriculum", IEEE
Computer, vol. 31, no. 12, , pp.25-30, 1998.

Jones, R. M., Laird J.E., Nielsen P.E. Coulter, K.J., Kenny P.G. and Koss F.V.,
“Automated Intelligent Pilots for Combat Flight Simulation,” AI Magazine, vol. 20(1),
pp. 27-42, 1999.

Kang, M., Waisel, L.B., Wallace, W.A. “Team Soar – A Model for Team Decision
Making,” Simulating Organizations, AAAI Press, 1998.

Karger, P. A. and Schell, R. R., Multics Security Evaluation: Vulnerability Analysis,
ESD-TR-74-193, Vol. II, Headquarters Electronic Systems Division, Hanscom Air Force
Base, MA, June 1974.

160

Katzela, I., Modeling and Simulating Communications Networks: A Hands-on Approach
Using OPNET, Prentice Hall, 1998.

Klein, G., Source of Power, How People Make Decision, MIT Press, 1999.

Krsul, I. V., Software Vulnerability Analysis, Ph.D. Dissertation, Computer Sciences
Department, Purdue University, Lafayette, IN, May 1998.

Laird, J.E., Newell, A., Rosenbloom, P.S., “SOAR: An Architecture for General
Intelligence”, Artificial Intelligence, vol. 33, pp. 1-64, 1987.

Landwehr C.E., Bull, A.R., McDermott, J.P., and Choi, W.S., “A Taxonomy of
Computer Security Flaws,” ACM Computing Surveys, vol. 26, no. 3, pp. 211-254,
September 1994.

Langton C., Artificial Life, Addison-Wesley, 1988.

Langton, C. (Ed), Artificial Life: An Overview, The MIT Press, Cambridge, MA, 1997.

Law, W. and Kelton, W., Simulation Modeling and Analysis, McGraw Hill, 2000.

Liu, L., Yu, E., Mylopoulos, J., Analyzing Security Requirements among Strategic
Actors, to appear at Second Symposium on Requirements Engineering for Information
Security, Raleigh, North Carolina, October 2002.

Lunt, T., “Access Control Policies for Database Systems,” Database Security, II: Status
and Prospects -- Result of the IFIP WG 11.3 Workshop on Database Security, Kingston,
Ontario, Canada, 5-7 October, 1988, North-Holland, pp. 41-52, 1988.

Machiavelli, N., The Prince, Bantam Classics Publishing, (reissue Sept 1984), 1515.

Meritt, J.W., “A Method for Quantitative Risk Analysis,” 22nd National Information
System Security Conference, Arlington, VA, October, 1999.

Minehart, R., The Information Assurance Seminar Game, Center for Strategic
Leadership, U.S. Army War College, Carlisle Barracks, PA, 1998.

Myers, P., A., Subversion: The Neglected Aspect of Computer Security, Masters Thesis,
Naval Postgraduate School, Monterey, California, June 1980.

National Institute of Standards and Technology (NIST), U.S. Department of Commerce,
1993-10-04 "Glossary of Computer Security Terms" Version 1, 10/21/88 - Rainbow
Series, http://csrc.ncsl.nist.gov/secpubs/rainbow/tg004.txt, (March 2002).

National Institute of Standards and Technology (NIST), U.S. Department of Commerce,
An Introduction to Computer Security: The NIST Handbook, Special Publication 800-12,
1996.

161

National Research Council (NRC), Modeling Human and Organizational Behavior,
National Academy Press, Washington D.C., 1998.

National Security Telecommunications and Information System Security Committee
(NSTISSC), NSTISSI No. 4009 - National Information Systems Security (INFOSEC)
Glossary, September 2000.

Nelson, P., The Penguin Dictionary of Mathematics, David Nelson (ed), 2nd ed., Penguin
Press, London, 1998.

Neumann, P. and Parker, D., “A Summary of Computer Misuse Techniques,” In
Proceedings of the 12th National Computer Security Conference, pages 396–407,
Baltimore, Maryland, USA, Oct. 10–13, 1989.

Neumann, P., Computer-Related Risks, ACM Press and Addison-Wesley, 1995.

Newell, A., and Simon, H.A., “GPS – A Program that Simulates Human Thought,” in
Computers and Thought, Feigenbaugh E.A. and Feldman, J., eds., McGraw-Hill
Publishing, New York, New York, 1963.

Osborn, B., “An Agent-Based Architecture for Guiding Interactive Stories,” Ph.D.
Dissertation, U.S. Naval Postgraduate School, Monterey, California, expected completion
September 2002.

Parker, D., Fighting Computer Crime, John Wiley & Sons, 1998.

Picault S. and Collinot A., "Designing Social Cognition Models for Multi-Agent Systems
Through Simulating Primate Societies,” Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS'98), IEEE Press, 1998.

Pfleeger, C., Security in Computing, Prentice-Hall Publishing, 1997.

Pnueli, A., Specification and Development of Reactive Systems, In Information
Processing’86, pp. 845-858, Elsevier Press, North Holland, 1986.

Prietula, M. J., Carley, K.M., Gasser, L., “A Computational Approach to Organizations
and Organizing,” Simulating Organizations, AAAI Press, 1998.

Raskin, V., Nirenburg, S., “Ontology in Information Security: A Useful Theoretical
Foundation and Methodological Tool,” Proceedings of the New Security Paradigm
Workshop 2001, September 2001, Cloudcroft, NM, 2001.

Rheingold, H., The Virtual Community, Homesteading on the Electronic Frontier.
Addison-Wesley Publishing, 1993.

162

Roddy, K.A. and Dickson, M.R. “Modeling Human Organizational Behavior Using a
Relation-Centric Multi-Agent Design Paradigm,” Master’s Thesis, U.S. Naval
Postgraduate School, Monterey, California, Sept 2000.

Rowe, N. and Schiavo, S., “An Intelligent Tutor for Intrusion Detection on Computer
Systems”, Computers and Education, vol. 31, pp. 395-404, 1998.

Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language Reference
Manual, Addison-Wesley, 1999.

Russell, D., and Gangemi, G.T., Computer Security Basics, O’Reilly & Associates,
Sebastopol, CA, 1991.

Russell, S. and Norvig, P., Artificial Intelligence, A Modern Approach, Prentice Hall,
1995.

Sacerdoti, E.D., “Planning in a Hierarchy of Abstraction Spaces”, Artificial Intelligence,
vol. 5, pp. 115-135, 1974.

Schillo, M. and Funk, P., “Learning From And About Other Agents In Terms Of Social
Metaphors,” Proceedings of the ``Agents Learning About, From and With Other Agents'
Workshop, 1999, http://jmvidal.ece.sc.edu/alaa99/schillo.ps, (Jan 2001).

Schneier, B., Managed Security Monitoring: Closing the Window of Exposure,
http://www.counterpane.com/window.html, (Mar 2002).

Schwartau, W., Information Warfare-Cyberterrorism: Protecting your Personal Security
in the Electronic Age, Thundermouth Press, 1994.

Schwartau, W., Information Warfare-Chaos on the Electronic Superhighway,
Thundermouth Press, 1996.

Schwartau, W., Time Based Security, Interpact Press, 1999.

Slatalla, M., and Quittner, J., Masters of Deception – The Gang that Ruled Cyberspace,
Harper Collins Publishing, 1995.

Steele, G., Woods, D., Finkel, R., Crispin, R., Stallman, R., Goodfellow, G., The
Hacker’s Dictionary, Harper & Row, NewYork, 1983.

Sterne, D. F., On the Buzzword “Security Policy,” Proceedings of the 1991 IEEE
Computer Society Symposium on Research in Security and Privacy, May 1991.

Stoll, C., The Cuckoo’s Egg – Tracking a Spy Through the Maze of Computer Espionage,
Pocket Books, 1990.

Summers, R.C., Secure Computing – Threats and Safeguards, McGraw-Hill, 1997.

163

Sussman, G.J., “The Virtuous Nature of Bugs”, ed. Allen, J., Hendler, J., Tate, A.,
Readings in Planning, Morgan Kaufmann Publishers, 1990.

Tecuci G., Hieb, M.R., Hille, D. and Pullen, J.M., “Building Adaptive Autonomous
Agents for Adversarial Domains,” Proceedings of the AAAI Fall Symposium on Planning
and Learning, November 1994.

Thompson, K., “Reflections on Trusting Trust,” Communications of the ACM, vol. 27,
no. 8, pp. 761-763, August 1984.

VanPutte, M., Osborn, B., Hiles, J., A Composite Agent Architecture for Multi-Agent
Simulations, Proceedings of the Eleventh Conference in Computer Generated Forces and
Behavior Representation, May 2002.

Von Clausewitz, C., (eds) Howard, M., and Paret, P., On War, Princeton University
Press, 1989.

Wadlow, T.A., The Process of Network Security, Addison-Wesley, 2000.

Wagner, T., Shapiro, J., Xuan, P. and Lesser, V., “Multi-Level Conflict in Multi-Agent
Systems,” Proceedings of the 1999 AAAI Workshop on Negotiations in Multi-Agent
Systems, 1999, http://www-net.cs.umass.edu/~jshapiro/, (Nov 2000).

Walker, J., “Unsafe at Any Key Size: An Analysis of the WEP Encapsulation,”
Technical Report 03628E, IEEE 802.11 Committee, October 2000.
http://grouper.ieee.org/groups/802/11/Documents/DocumentHolder/0-362.zip, (March
2002).

Weiss, G., (ed), Multiagent Systems, A Modern Approach to Distributed Artificial
Intelligence, MIT Press, 1999.

Wellman, M. P., entry for The MIT Encyclopedia of the Cognitive Sciences,
http://vulture.eecs.umich.edu/faculty/wellman/pubs/multiagent-ECS.text, (Oct 2000).

White, H., “Learning in Artificial Neural Networks: A Statistical Perspective,” Neural
Computation, vol. 1, pp. 425-464, 1989.

Wildberger, A. M., “AI & Simulations,” Simulations (Magazine), pp. 171, September
2000.

Willmott, S., Bundy A., Levine, J., and Richardson, J., Adversarial Planning in Complex
Domains, http//ailab.hyungpook.ac.kr/Seminar/20000216/fullpaper.html, (Nov 2000).

Winkler, I., Corporate Espionage: What it is, Why it is Happening in Your Company, and
What You Must Do About it, Prima Publishing, 1997.

164

Wooldridge, M., and Jennings, N.R., “Intelligent Agents: Theory and Practice,” The
Knowledge Engineering Review, vol. 10(2), pp. 115-152, 1995.

Wooldridge, M. Reasoning about Rational Agents. MIT Press, July 2000.

Yu, E. Towards “Modelling and Reasoning Support for Early-Phase Requirements
Engineering”, Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering (RE’97), Washington D.C., pp. 226-235, January 6-8, 1997.

165

GLOSSARY

actor – a synthetic representation of IA relevant people who interact in the environment
and are therefore represented in the society.

agent – an active entity in the society generally representing a person or autonomous
process.

attack – “A series of steps taken by an attacker to achieve an unauthorized result”
[Howard and Longstaff, 1998].

attacker – An actor who attempts to achieve an unauthorized result16.

authenticate – To verify the identity of a user, user device, or other entity, or the
integrity of data stored, transmitted, or otherwise exposed to unauthorized
modification in an information system, or to establish the validity of a
transmission [NSTISSC, 2000].

availability – “Timely, reliable access to data and information services” [NSTISSC,
2000]. See confidentiality, integrity.

confidentiality – “Assurance that information is not disclosed to unauthorized persons,
processes or devices” [NSTISSC, 2000]. See integrity, availability.

control/countermeasure – those things which are implemented to prevent exposure to
the threat in the first place, detect if the threat has been realized against the
system, mitigate the impact of the threat against the system, or recover/restore the
system [Meritt, 1999] .

denial of service – A type of incident resulting from any action or series of actions that
prevents any part of an information system from functioning [NSTISSC, 2000].

distributed attack – typically has a ‘master’ who centrally controls multiple ‘zombies’
on compromised hosts. At the direction of the master, the zombies perform a
coordinated attack against a designated ‘target’ host.

entity – any element in the set of actors, organizations, or infrastructures.

environment – a real world situation or system being modeled. A society is a highly
abstract representation of a particular environment.

exploit – Events that occur that cause undesirable consequences on the part of the victim.
Actors possess exploits, and use these against infrastructures and other actors in
the hope of exploiting a vulnerability.

16 Adapted from [Howard and Longstaff, 1998].

166

firewall – an access control mechanism that is designed to defend against unauthorized
access to or from a private network [NSTISSC, 2000].

hardening system – installing patches and removing unused system services in order to
eliminate vulnerabilities from a system.

information assurance (IA) – “…protect(ing) and defend(ing) information and
information systems by ensuring their availability, integrity, authentication,
confidentiality, and non-repudiation” [NSTISSC, 2000]

information resource – see resource.

information warfare – “Actions taken to achieve information superiority by affecting
adversary information, information-based processes, information systems, and
computer-based networks while defending one’s own information, information-
based processes, information systems, and computer-based networks [DoD, 1996]

infrastructure – the key information and information systems that exist for an
organization.

integrity – “…protection against unauthorized modification or destruction of data (and
processes)”. [NSTISSC, 2000]. See confidentiality, availability.

logical attack – refers to manipulating data in an electronic format. See physical attack
and social attack.

object – A passive entity that exists in the society. See agent.

organization – an abstract representation of social entities that exist for a particular
purpose.

patch-and-penetrate – technique used in the 1970s and 1980s in the hopes of building a
trustworthy IT system. It consisted of patching known vulnerabilities in a system,
then breaking into the system again, and reiterating until the engineers could no
longer break in.

penetration – “the successful act of bypassing the security mechanisms of the system”
[NIST, 1988] in order to gain access past the security protection.

physical attack – refers to the theft, destruction, and/or damage of materials. See social
engineering and logical attack.

policy/security policy – a set of rules specified by an organization that describe who
may access a certain resource, and for what purpose.

process – a computer program in execution [NIST, 1988].

protocols – A series of steps taken by two or more parties to accomplish same task.

167

resource – critical information or processes whose confidentiality, integrity, or
availability is required for an organization to exist.

risk – the possibly that a particular threat will adversely impact an information system by
exploiting a particular vulnerability [NSTISSC, 2000].

script kiddie – “…(a person) with limited technical expertise using easy-to-operate, pre-
configured, and/or automated tools to conduct disruptive activities against
networked systems” [Steele, 1983].

simulation – a method, usually involving hardware and software, for implementing a
model to play out the represented behavior over time [NRC, 1998].

social engineering – using nontechnical interpersonal deception to manipulate
individuals into providing information in order to bypass security controls. Also
referred to as perception management. See physical attack and logical attack.

society – an abstract representation of the critical entities, structures, and relationships
found in an environment. A society is comprised of sets of organizations,
infrastructures, and actors.

spoof – “An active security attack in which a machine on the network masquerades as a
different machine” [Howard and Longstaff, 1998].

subversion – the “covert and methodical undermining of internal and external controls
over a system lifetime to allow unauthorized and undetected access to system resources and/or
information.” [Myers, 1980].

threat – Any circumstance or event with the potential to cause harm to a system in the
form of destruction, disclosure, modification of data and/or denial of service
[NIST, 1988]

token – an abstract representation of static objects that are found in the environment
being modeled.

Trojan horse – a small piece of malicious code hidden within an attractive legitimate
program.

user (end user) – an actor for whom information systems are developed.

vulnerabilities – a weakness in an entity allowing actions that are undesirable for
legitimate users.

worm – autonomous self-replicating program that spreads from one system to another
exploiting holes in the system

zombie – a compromised host computer that has functionality added by an attacker that
allows the attacker (master) to control the host. Typically, masters will send
orders to zombies to attack other machines, as in denial of service attacks.

168

THIS PAGE INTENTIONALLY LEFT BLANK

169

APPENDIX A – EXECUTION OUTPUT

This appendix is provided to allow a detailed analysis of the results of Scenario

One. It begins with the loading of the scenario into the simulation. Next, it runs in

chronological order, listing the goals and actions of each actor. The output is halted after

the attacker successfully accesses the resource on the enterprise infrastructure.

SCENARIO ONE –ADAPTIVE ATTACKER

// LOADING THE SCENARIO INTO THE SIMULATION ENGINE
creating new IBinder: environment // ibinder named ‘environment’ is created
Adding new Token: enterprise // all tokens are registered in environment
Adding new Token: enterpriseService
Adding new Token: sysType
Adding new Token: vuln103
Adding new Token: dbPassword
Adding new Token: malice
IConnector Changed -- iconnector(library) // begin constructing library infrastructure

library extended(true)
Infrastructure added: 0: Infrastructure library // library infrastructure created
IConnector Changed -- iconnector(hackerSite) // begin constructing hacker
infrastructure
hackerSite extended(true)

Infrastructure added: 2: Infrastructure hackersite// hacker infrastructure created
IConnector Changed -- iconnector(enterprise) // begin constructing enterprise
infrastructure
enterprise extended(true)

IConnector Changed -- iconnector(enterprise)
enterprise extended(true)

Adding new resource database
IConnector Changed -- iconnector(database)

database extended(true)
Infrastructure added: 4: Infrastructure enterprise// enterprise infrastructure created
Hacker: hacker received message: message: // begin creating hacker actor

from: null
token: Token: enterprise
memo: initial token

Hacker: hacker added token: Token: enterprise // hacker received ‘enterprise’ token
Actor added: Hacker: hacker //hacker created

//SIMULATION BEGINS
*** Clock time now: 1
Hacker: hacker executing goal Goal: GatherIntelGoal

executing frame: Action: ConductLibraryResearchAction
IConnector Changed -- iconnector(library)

library extended(true)
Socket Binding -- hacker to library

Hacker: hacker received message: message:
from: 0: Infrastructure library

token: Token: enterpriseService
memo: receive information on enterprise

Hacker: hacker added token: Token: enterpriseService
IConnector Changed -- iconnector(library)
library extended(false)
library disconnecting from Socket: library

*** Clock time now: 2
Hacker: hacker executing goal Goal: GatherIntelGoal

executing frame: Action: ConductLibraryResearchAction
IConnector Changed -- iconnector(library)

library extended(true)
IConnector Changed -- iconnector(library)
library extended(false)

*** Clock time now: 3

170

Hacker: hacker executing goal Goal: GatherIntelGoal
executing frame: Action: ScanEnterpriseWithDataAction

IConnector Changed -- iconnector(enterprise)
enterprise extended(true)

IConnector Changed -- iconnector(enterprise)
enterprise extended(false)
IConnector Changed -- iconnector(enterprise)

enterprise extended(true)
Socket Binding -- hacker to enterprise

Hacker: hacker received message: message:
from: 4: Infrastructure enterprise

token: Token: sysType
memo: receive detailed information on systems running on environment

Hacker: hacker added token: Token: sysType
IConnector Changed -- iconnector(enterprise)
enterprise extended(false)
enterprise disconnecting from Socket: enterprise

*** Clock time now: 4
Hacker: hacker executing goal Goal: GatherIntelGoal

executing frame: Action: ConductLibraryResearchAction
IConnector Changed -- iconnector(library)

library extended(true)
IConnector Changed -- iconnector(library)
library extended(false)

*** Clock time now: 5
Hacker: hacker executing goal Goal: GatherIntelGoal

executing frame: Action: ScanEnterpriseWithDataAction
IConnector Changed -- iconnector(enterprise)

enterprise extended(true)
IConnector Changed -- iconnector(enterprise)
enterprise extended(false)

*** Clock time now: 6
Hacker: hacker executing goal Goal: GatherIntelGoal

executing frame: Action: ResearchSysVulnAction
IConnector Changed -- iconnector(hackerSite)

hackerSite extended(true)
Socket Binding -- hacker to hackersite

Hacker: hacker received message: message:
from: 2: Infrastructure hackersite

token: Token: vuln103
memo: receive exploit for 'vuln103' on system 'systype'

Hacker: hacker added token: Token: vuln103
IConnector Changed -- iconnector(hackerSite)
hackerSite extended(false)
hackerSite disconnecting from Socket: hackerSite

*** Clock time now: 7
Hacker: hacker executing goal Goal: ExpandPowerbaseGoal

executing frame: Action: ExploitSysAction
IConnector Changed -- iconnector(enterprise)

enterprise extended(true)
Socket Binding -- hacker to enterprise

Hacker: hacker received message: message:
from: 4: Infrastructure enterprise

token: Token: dbPassword
memo: receive password to access Resource:database

Hacker: hacker added token: Token: dbPassword
IConnector Changed -- iconnector(enterprise)
enterprise extended(false)
enterprise disconnecting from Socket: enterprise

*** Clock time now: 8
Hacker: hacker executing goal Goal: EarnFameGoal

executing frame: Action: AccessResourceAction
IConnector Changed -- iconnector(database)

database extended(true)
Socket Binding -- hacker to enterprise

IConnector Changed -- iconnector(database)
database extended(false)
database disconnecting from ResourceSocket: database

*** Clock time now: 9
Hacker: hacker executing goal Goal: GatherIntelGoal

executing frame: Action: ConductLibraryResearchAction
IConnector Changed -- iconnector(library)

171

library extended(true)
IConnector Changed -- iconnector(library)
library extended(false)
IConnector Changed -- iconnector(library)

library extended(true)
IConnector Changed -- iconnector(library)
library extended(false)

172

THIS PAGE INTENTIONALLY LEFT BLANK

173

APPENDIX B –UML QUICK REFERENCE

This appendix summarizes the graphical notation for elements of the Unified

Modeling Language (UML) that are used in this dissertation. See [Rumbaugh et al.,

1999] for a comprehensive reference manual.

A B

italicized class name = abstract class

A B

A B

dependency relationship
Class A "uses" Class B.
 Class A uses class B as an operation argument
 Changing B will result in changes in A.

aggregation relationship
 A form of association, where the aggregate (B) may possess an
 instance of a component (A)
 If the aggregate is destroyed the component is destroyed also.

composition relationship
 A form of aggregation, where the aggregate (B) can not exist
 without an instance of the component (A).
 If the aggregate is destroyed the component is destroyed also.

A B
generalization relationship
"A is a specialization (child) of B"

A B realization relationship
A implements an interface B

A B
association - "navigatable"
 Class A has a connection (pointer) to B
 If the arrowhead is omitted then the association is bidirectional.

dependency

associations --structural relationships between objects

generalizations

Entity

attribute:Type = initialValue

operation(arg list):return type

Property and Method Prefixes
- protected
+ = public
- = private

Package Name

Package Name

[object]:Class
objects titles are
only on instances

of the class

Package Notation

Class Notation

174

THIS PAGE INTENTIONALLY LEFT BLANK

175

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Research Office, Code 09

Naval Postgraduate School
Monterey, CA

4. Dr. Michael Zyda

Director, MOVES Institute
Naval Postgraduate School
Monterey, CA

5. Dr. Cynthia E. Irvine

Computer Science Department
Code CS/IC
Naval Postgraduate School
Monterey, CA 93943

6. Professor John Hiles
MOVES Institute
Naval Postgraduate School
Monterey, CA

7. Dr. Don Brutzman

Department of Computer Science
Naval Postgraduate School
Monterey, CA

8. Dr. Rudy Darken

Department of Computer Science
Naval Postgraduate School
Monterey, CA

9. Dr. Neil Rowe
Department of Computer Science
Naval Postgraduate School
Monterey, CA

10. Major Michael VanPutte

MOVES Institute
Naval Postgraduate School
Monterey, CA

176

11. Commander, Naval Security Group Command

Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585
San Diego, CA 92110-3127

12. James P. Anderson

James P. Anderson Co.
140 Morris Drive
Ambler, PA 19002

13. Dr. Mike Bailey - Director
Marine Corps Combat Development Command (MCCDC)
Doctrine Division (C42)
3300 Russell Road
Quantico, VA 22134-5001

14. Philip Barry, Ph.D.

Associate Technology Area Manager
Intelligent Information Management and Exploitation
The MITRE Corporation
1820 Dolley Madison Blvd. MS W640
McLean, Virginia 22102 USA

15. CAPT Richard Bump

Director, N6M
Navy Modeling & Simulation Management Office (NAVMSMO)
2000 Navy Pentagon PT 5486
Washington, DC 20350-2000

16. George Bieber
Human Resources and Training Division Chief
Defense-wide Information Assurance Program
Office of the Secretary of Defense

17. Ms. Elaine S. Cassara

Branch Head, Information Assurance
United States Marine Corps
HQMC, C4
2 Navy Annex
Washington, DC 20380

18. Ms. Louise Davidson,
N614
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

19. Mr. William Dawson
Community CIO Office
Washington DC 20505

177

20. LCDR Scott Dipert
N614
Presidential Tower
2511 South Jefferson Davis Highway
Arlington, VA 22202

21. Mr. Richard Hale
Defense Information Systems Agency, Suite 400
5600 Columbia Pike
Falls Church, VA 22041-3230

22. Dr. Harold L. Hawkins
Program Officer
Office of Naval Research Code 342
800 N. Quincy St.
Arlington, VA
22217-5660

23. Maj David Laflam

HQDA, DCS G3, (DAMO-ZS)
400 Army Pentagon
Washington, DC 20310-0400

24. CAPT Mike Lilienthal, USN - DMSO

Defense Modeling & Simulation Office
1901 N. Beauregard Street, Suite 500
Alexandria, Virginia, 22311-1705, USA

25. W. H. (Dell) Lunceford, Jr

Director, Army Model and Simulation Office
HQDA, DCS G3, (DAMO-ZS)
400 Army Pentagon
Washington, DC 20310-0400

26. Dr. Douglas Maughan
DARPA
3710 Fairfax Avenue
Arlington, VA 22203

27. VADM Richard Mayo
CNO, N6
2000 Navy Pentagon
Washington, DC 20350-2000

28. CAPT Dennis McBride, USN (ret)

VP, Potomac Institute
Potomac Institute for Policy Studies
901 N. Stuart Street, Suite 200,
Arlington, VA 22203

178

29. Ms. Deborah Phillips

Community Management Staff
Community CIO Office
Washington DC 20505

30. LTC John Quigg
Chief, NSIP
HQDA(SAIS-IAS)
2511 Jefferson Davis Hwy
Arlington, VA 22202

31. LCDR Dylan Schmorrow, USN

DARPA / IPTO
3701 Fairfax Drive
Arlington, VA 22203-1714

32. Dr. Randall Shumaker

Director, University of Central Florida, Institute for Simulation & Training
University of Central Florida
3280 Progress Drive, Orlando, FL 32826

33. Dr. Ralph Wachter

Office of Naval Research
Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660

34. Jim Weatherly
Deputy Director NAVMSMO
2000 Navy Pentagon
Washington, D.C. 20350-2000

35. CAPT Robert A. Zellman

CNO N6
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

