
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-09

Capability delivery with fog of emergence

Chow, Wen Chong Julian

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/37601

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CAPABILITY DELIVERY WITH FOG OF EMERGENCE

by

Wen Chong Julian Chow

September 2013

Thesis Co-Advisors: Gary O. Langford
 Man-Tak Shing
Second Reader: Robert C. Harney

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704–0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 2013

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

CAPABILITY DELIVERY WITH FOG OF EMERGENCE

5. FUNDING NUMBERS

6. AUTHOR(S) Wen Chong Julian Chow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release;distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (maximum 200 words)

A proposed capability delivery ontology with fog of emergence provides a language construct to relate how
the processes and parts of a notional capability delivery system incrementally produce and refine a
capability through well-known life cycle phases. The natural propensity for capability delivery organizations
to perform these life cycle activities using intended missions and requirements instead of as-deployed
missions and emergent traits give rise to the fog of emergence that obscures the organizations perception
of the capability as it is taken through its life cycle. Through capability delivery ontology, the embedded fog
of emergence is used as a prism to separate the white light of capability performance into its constituent
colors of “as needed,” “as-planned,” “as-known,” and “as-deployed” perceived by the capability delivery
organizations.

14. SUBJECT TERMS Capability delivery system, Emergence, Capability Delivery Ontology,

Fog of Emergence

15. NUMBER OF
PAGES

171

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CAPABILITY DELIVERY WITH FOG OF EMERGENCE

Wen Chong Julian Chow
Civilian, Defence Science & Technology Agency, Singapore

B.Comp (Information Systems), National University of Singapore, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Wen Chong Julian Chow

Approved by: Gary O. Langford, PhD
Thesis Co-Advisor

Man-Tak Shing, PhD
Thesis Co-Advisor

Robert C. Harney, PhD
Second Reader

Clifford A. Whitcomb
Chair, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A proposed capability delivery ontology with fog of emergence provides a

language construct to relate how the processes and parts of a notional capability

delivery system incrementally produce and refine a capability through well-known

life cycle phases. The natural propensity for capability delivery organizations to

perform these life cycle activities using intended missions and requirements

instead of as-deployed missions and emergent traits give rise to the fog of

emergence that obscures the organizations perception of the capability as it is

taken through its life cycle. Through capability delivery ontology, the embedded

fog of emergence is used as a prism to separate the white light of capability

performance into its constituent colors of “as needed,” “as-planned,” “as-known,”

and “as-deployed” perceived by the capability delivery organizations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. CAPABILITY DELIVERY NEEDS .. 1
B. SYSTEM OF SYSTEMS AND ASSOCIATED CHALLENGES 1
C. RESEARCH QUESTIONS ... 3

D. RESEARCH CONTRIBUTION ... 3
E. THESIS ROADMAP ... 4

II. LITERATURE REVIEW .. 7

A. CAPABILITY-BASED APPROACH ... 8
B. SYSTEMS AND SYSTEM OF SYSTEMS .. 11

1. System .. 11
2. System of Systems .. 14

C. EMERGENCE IN SYSTEMS .. 19
1. Philosophical Perspective .. 19

2. Axiomatic Perspective .. 22
3. Methodological Perspective ... 25

D. SYSTEM ENGINEERING LIFE CYCLE AND PROCESS MODELS . 27
1. System Life cycle ... 27

a. Materiel Solution Analysis Phase 31

b. Technology Development Phase 32

c. Engineering and Manufacturing Development
Phase ... 34

d. Production and Deployment Phase 36

e. Operations and Support Phase 37
2. Systems Engineering Process Models 37

a. Waterfall ... 41
b. Waterfall with Feedback ... 42
c. Vee.. 44

d. Evolutionary and Incremental Vee............................. 49
e. Spiral .. 51

f. Agile ... 54
g. Wave ... 56

E. CAPABILITY DELIVERY ONTOLOGY .. 60

III. RESEARCH APPROACH ... 63
A. OVERVIEW .. 63
B. SCOPE OF THE CAPABILITY DELIVERY SYSTEM 63
C. CAPABILITY DELIVERY ONTOLOGY WITH EMERGENCE 66

D. USE OF CDS ONTOLOGY BY THE CDS ... 70
1. Narrated Walk Through ... 70
2. Diagrammatic Relation Between the Ontology and DAMS

Life cycle Phases ... 73

 viii

E. INFLUENCE OF SE PROCESS MODEL STRATEGIES ON THE
CDS .. 75
1. Waterfall DAMS Strategy ... 75

2. Vee DAMS Strategy ... 76
3. Spiral DAMS Strategy .. 79

F. INPUT, CONTROL, OUTPUT VARIABLES 81
1. Input Variables ... 81
2. Output Variables .. 82

3. Control Variables ... 83
G. IMPETUS FOR EXPLORING CAPABILITY DELIVERY SYSTEM

SIMULATOR .. 84

IV. CDSS CONCEPT .. 85
A. PURPOSE .. 85
B. SCOPE ... 86

C. REQUIREMENTS LIST .. 86
D. REQUIREMENT MODELS ... 92

1. Use Cases... 92
2. Data Attributes ... 93
3. Activity Diagram .. 95

V. CDSS PRELIMINARY SOFTWARE DESIGN .. 99
A. CDSS ARCHITECTURE .. 99

1. Functional Architecture .. 99
2. Component Architecture ... 100

VI. EXPLORATORY CDSS IMPLEMENTATION RESULTS 103
A. SIMPLIFYING ASSUMPTIONS ... 103

1. One-to-one Perfect Match Between Associated CDS
Ontological Entities ... 103

2. Strictly Sequential Execution of Program Activities 104

3. Conflation of the “As-Planned” and “As-Known”
Perspectives ... 106

4. Planning and Execution of Program Elements 106

5. Aggregated Handling of Entity Attributes 109

6. No Penalty for Doing Work Out of Phase 110
B. DISCUSSION OF KEY FEATURES OF IMPLEMENTATION 111

1. Read Input .. 111

2. Prepare Simulation .. 111
a. Initial Capability Need and As-deployed SoI 112
b. Capability Need Insertion ... 114
c. Generation of Baseline Program Activities and

Workspace ... 115

d. Determining an Optimal Life cycle Work Plan 117
e. Preparation of the CDS Event Queue Based on

SEP Model Strategy .. 118

3. Run Simulation .. 120

 ix

a. Capability Insertion Events 121
b. Program Activities and Work Completion Events .. 121

4. Record data .. 125

5. Write Output ... 125

VII. CONCLUSION .. 127
A. RESEARCH CONTRIBUTIONS... 127
B. REFLECTION ON DELIVERING THE “CDSS” CAPABILITY

USING THE CDS ONTOLOGY WITH FOG OF EMERGENCE 128

APPENDIX A. N2 CHARTS OF DAMS LIFE CYCLE PHASES 131

APPENDIX B: CAPABILITY DELIVERY SYSTEM SIMULATOR USE CASES ... 141

A. USE CASE TEMPLATES .. 141
1. “Start Simulator” ... 141
2. “Enter Simulator Mode” .. 142
3. “Run Simulator” ... 143

LIST OF REFERENCES .. 145

INITIAL DISTRIBUTION LIST ... 149

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. JCIDS deliberate staffing process (From JCIDS Manual, 2012). 9
Figure 2. JCIDS urgent/emergent staffing process (From JCIDS Manual,

2012). ... 10
Figure 3. Philosophic-level Spectrum (After Keating, 2005). 20

Figure 4. The Defense Acquisition Management System (From OUSD AT&L,
2008). ... 28

Figure 5. Requirements and Acquisition Flow of DAMS phases in
Evolutionary Acquisition (From OUSD AT&L, 2008)........................... 29

Figure 6. Waterfall SE process model (After USDoD, 1988). 41
Figure 7. Waterfall with feedback (After Royce, 1970 and USDoD, 1988). 42
Figure 8. Vee model (After INCOSE, 2010). .. 44

Figure 9. Left side of the sequential Vee (From INCOSE, 2010). 46
Figure 10. Right side of the sequential Vee (From INCOSE, 2010). 47

Figure 11. Application of System Analysis and Design Process to the Concept
Exploration phase (From Forsberg & Mooz, 1995). 48

Figure 12. Evolutionary and Iterative Vee Model (After Forsberg & Mooz, as
cited in Pyster & Olwell, 2013). ... 49

Figure 13. The Incremental Commitment Spiral Model (From Koolmanojwong,
2010). ... 51

Figure 14. ICSM phase view with DAMS phases (After Koolmanjwong, 2010). .. 53
Figure 15. Agile model (After Boehm & Turner, as cited in Pyster & Olwell,

2013 and Fruhling & Tarrel, 2008). ... 55

Figure 16. The Wave Model with the Unwrapped Trapeze Model (From
Dahmann, Rebovich, Lowry, Lane, & Baldwin, 2011). 57

Figure 17. Operational, system & program domains in CORE’s Schema (From
Vitech Corporation, 2011, used with permission). 61

Figure 18. Model of capability delivery organization in CORE’s Schema (From
Vitech Corporation, 2011, used with permission). 62

Figure 19. Conceptual scope for a Capability Delivery SoS (After OUSD AT&L,
2008). ... 64

Figure 20. Fog of Emergence. ... 67

Figure 21. Extended CDS ontology with emergence (After Vitech Corporation,
2011, used with permission). .. 69

Figure 22. Relationship between the CDS Ontology and DAMS main and sub-
Program Activities... 74

Figure 23. Application of the System Analysis and Design Process down the
left of Vee (From Forsberg & Mooz, 1995) ... 77

Figure 24. Application of the System Verification and Integration Process to
the right of Vee (From Forsberg & Mooz, 1995) 78

Figure 25. Concurrent development between iterations of spirals (From OUSD
AT&L, 2008) ... 80

 xii

Figure 26. Different types of capability needs over the SoI’s life cycle (After
OUSD AT&L, 2008). ... 86

Figure 27. High-level use cases for CDSS. ... 93

Figure 28. Swimlane activity diagram for the CDSS. ... 95
Figure 29. CDSS Functional Architecture .. 100
Figure 30. CDSS Component Architecture .. 101
Figure 31. N2 Chart of CDSS Functions and Component Grouping 102
Figure 32. One-to-one perfect match between Operational and System

Architecture Entities .. 104
Figure 33. Impact of delays for Program Activities .. 106
Figure 34. A Program Activity’s workspace comprised of Program Elements

that help accomplish it. ... 107
Figure 35. Unproductive Program Elements result in rework 108
Figure 36. Flexibility in implementation of Program Activity 116
Figure 37. CDSS generated workspace for each sub-Program Activity 117

Figure 38. Work Determination Heuristics for Program Activities 122

Figure 39. Overview of N2 Charts of DAMS Life cycle Phases. 131

 xiii

LIST OF TABLES

Table 1. Attributes of a systems-based methodology (From Jamshidi, 2009,
p. 179). ... 26

Table 2. MSA Purpose & Description (From OUSD AT&L, 2008). 31
Table 3. TD Purpose & Description (From OUSD AT&L, 2008). 32

Table 4. EMD Purpose & Description (From OUSD AT&L, 2008). 34
Table 5. P&D Purpose & Description (From OUSD AT&L, 2008). 36
Table 6. O&S Purpose & Description (From OUSD AT&L, 2008). 37
Table 7. List of common SE process model adjectives. 39

Table 8. Information artifacts for the six steps of the Wave Model (From
Dahmann et al., 2011). ... 59

Table 9. Waterfall DAMS Strategy .. 76

Table 10. Vee DAMS Strategy ... 79
Table 11. Spiral DAMS Strategy ... 81

Table 12. Additional Data attributes for CDS Ontology with Fog of
Emergence. .. 94

Table 13. Use of Aggregated Handling in Exploratory CDSS Implementation . 110
Table 14. N2 Chart Materiel Solution Analysis. ... 132
Table 15. N2 Chart Technology Development. ... 133

Table 16. N2 Chart Engineering & Manufacturing Development (From
Integrated Systems Design). .. 136

Table 17. N2 Chart Engineering & Manufacturing Development (From System
Capability & Manufacturing Process Demonstration). 138

Table 18. N2 Chart Production & Deployment .. 139
Table 19. N2 Chart Operations & Support .. 140

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AoA Analysis of Alternatives

APB Acquisition Program Baseline

COCOM Combatant Command

CDD Capability Development Document

CDR Critical Design Review

CONOPS Concepts of Operations

CPD Capability Production Plan

CTE Critical Technology Element

DAMS Defense Acquisition Management System

DoD Department of Defense

DoDAF Department of Defense Architectural Framework

DOTmLPF-P Doctrine, Organization, Training, Materiel, Leadership and
 Education, Personnel, Facilities and Policy

DT&E Developmental Test & Evaluation

EMD Engineering & Manufacturing Development

EMMI Energy, Matter, Material Wealth, and Information

FCB Functional Capabilities Board

FOC Full Operational Capability

FOT&E Follow-On Test & Evaluation

FRP Full Rate Production

ICD Initial Capability Document

INCOSE International Council on Systems Engineering

IOC Initial Operational Capability

IOT&E Initial Operational Test & Evaluation

JCB Joint Capabilities Board

JCIDS Joint Capabilities Integration and Development System

JEON Joint Emergent Operational Need

JROC Joint Requirements Oversight Council

JUON Joint Urgent Operational Need

LCSP Life cycle Sustainment Plan

 xvi

LRIP Low Rate Initial Production

MDA Milestone Decision Authority

MDD Materiel Development Decision

MoE Measures of Effectiveness

MSA Materiel Solution Analysis

O&S Operations & Support

P&D Production & Development

PEO Program Executive Officer

PDR Preliminary Design Review

QDR Quadrennial Defense Review

RAM Reliability, Availability, and Maintainability

RFP Request for Proposal

SE Systems Engineering

SEP Systems Engineering Plan

SEBoK Systems Engineering Body of Knowledge

SoI System of Interest

SoS System of Systems

TD Technology Development

TDS Technology Development Strategy

TRL Technology Readiness Level

 xvii

EXECUTIVE SUMMARY

Since the 2000 Quadrennial Defence Review, the Department of Defense (DoD)

has been re-orienting force development processes to the identification and

support of user capabilities, with an emphasis on agile compositions of systems

to meet a range of changing user needs.

Emergence is when a system does something that no subset of its parts

can do, and these emergent traits exhibited by systems and system of systems

(SoS) are tapped as military capabilities. The various architects, builders, and

users (collectively referred to as capability delivery organizations) associated with

the capability delivery’s life cycle should be aware that emergent traits could be

intentional, unintentional, desirable, or undesirable. Emergent traits beyond those

desired as requirements continue to manifest when a system is deployed even if

capability delivery organizations do not perceive it.

This thesis analyzed a notional capability delivery system (CDS) that takes

a capability conceived as a need through its life cycle till its retirement. Both

black box and white box approaches were adopted to analyze the input, output

and noise factors the CDS were subjected to by the Joint Capabilities Integration

and Development System (JCIDS) and to understand the parts and processes

that makes the CDS work respectively. A new capability delivery ontology with a

central theme of emergence was proposed after combining insights from

literature on the philosophical, axiomatic and methodological perspectives of

emergence and a Vitech CORE working implementation of the DoD Architecture

Framework.

The CDS ontology and fog of emergence provide a language construct to

relate how the processes facilitate the interaction of the parts of a CDS to

incrementally produce and refine a capability through well-known DoD 5000.02

life cycle phases. The life cycle phases were mapped to a generic problem

solving process of “analyze-design-build-test,” where analysis produces/refines

 xviii

the operational architecture, design produces/refines the system architecture,

build verifies system components to the system architecture, and test validates

system components to the operational architecture. The natural propensity for

capability delivery organizations to perform these activities using intended

missions and requirements instead of as-deployed missions and emergent traits

give rise to the fog of emergence that obscures the organizations perception of

the capability as it is taken through its life cycle.

Through capability delivery ontology, the embedded fog of emergence

could be used as a prism to separate the white light of capability performance

into its constituent colors of “as needed,” “as-planned,” “as-known” and “as-

deployed” perceived by the capability delivery organizations.

The tractability of the ontology was demonstrated through a partial

implementation of a capability delivery system simulator that embodied the

concepts put forward by the ontology to step through capability delivery from

cradle to grave according to DoD 5000.02 life cycle phases while subjected to

input and noise factors from JCIDS.

This research sets a potential stage for further exploration into developing

experiments toward understanding effects of input and control factors to

capability delivery and eventually developing a normative model of capability

delivery with emergence.

 xix

ACKNOWLEDGMENTS

This thesis is not possible without the patience, guidance, and support

from my thesis Advisor, Professor Gary O. Langford. My perspective of Systems

Engineering as a discipline has been greatly expanded in terms of horizon and

resolution through our invaluable discussions on the thesis and Systems

Engineering on the whole. It was my privilege to have been advised by Professor

Gary O. Langford, who is very much the front of Systems Engineering knowledge

with his varied and successful career as a lecturer, a practitioner, and now, a

strategic re-visioner.

I would also like to thank my thesis co-advisor, Professor Man-Tak Shing

for his guidance and encouragement. His sharp eye for details helped establish

the link between the axiomatic knowledge expounded in the thesis and the

exploratory software model developed. I would like to extend my gratitude to my

second reader, Professor Robert C. Harney, for the feedback given to me.

Many friends from the Naval Postgraduate School have also contributed in

one way or another towards the completion of this thesis, and I would like to

especially thank Leo, Winson, and Zhi Feng for their friendship and support that

made the enjoyable course in the school even more rewarding.

Finally, I would like to express my thanks to my family, especially to my

wife, Ee Wean. It is certainly not easy being the wife to someone who has track-

record of sacrificing leisure for work. Thank you for being so accommodating and

this thesis is the fruit of the love, support and encouragement you have given me

that kept me going.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. CAPABILITY DELIVERY NEEDS

The Department of Defense (DoD) has been re-orienting force

development processes to the identification and support of user capabilities, with

an emphasis on agile composition of systems to meet a range of changing user

needs since the 2000 Quadrennial Defense Review (QDR) (Dahmann, Rebovich,

& Lane, 2008).

A capability is the ability to achieve a desired effect under specified

standards and conditions through combinations of ways and means to perform a

set of activities (Deputy Chief Information Officer, 2010). A capability forms the

basis of operational activities desired by users, which when carried out allows the

users to achieve their missions.

B. SYSTEM OF SYSTEMS AND ASSOCIATED CHALLENGES

According to the Office of the Deputy Under Secretary of Defense for

Acquisition and Technology, Systems and Software Engineering (ODUSD [A&T]

SSE) (2008), there was an increasing number of military capabilities being

achieved through a system of systems (SoS) approach. An SoS is “a set or

arrangement of systems that results when independent and useful systems are

integrated into a larger system that delivers unique capabilities.” The SoS-level

capabilities are implemented by intended and desired emergent SoS-level traits

associated with the SoS-level functions that arise due to the interactions and

integration of constituent systems (Langford, 2013a).

As Rechtin (1991) described elegantly, emergence is when the system

does something that no subset of its parts can do. Based on this definition, it

follows that emergent traits could be intentional or unintentional, desirable or

undesirable. In the modern day context, intended and desirable emergent traits

of systems and SoS are tapped as military capabilities; however, the various

architects, builders, and users (hereafter referred to as capability delivery

 2

organizations) associated with the capability delivery’s life cycle should be aware

that unintended or undesired emergent properties and traits would also be

present.

A more technical definition consistent with Rechtin’s definition is that

“emergence is any effect that produces a change in intrinsic properties, traits or

attributes resulted by combining objects through interactions of objects with

energy, matter, material wealth and information” (EMMI) (Langford, 2012).

Simply put, emergence is a condition that exists when there is a change in

exhibited traits of a constituent system in the context of an interaction between a

pair of constituent systems.

The complexity of an SoS scales up faster than the increase in the

number of constituent systems due to the number of possible interactions

between constituent systems (Huynh & Langford, 2009), exacerbated by the fact

that different emergent traits could result from the same interaction realized

through different interfaces. Emergence serves to add uncertainty to the eventual

achievable performance of the SoS during capability delivery.

While the increased number of constituent systems increases the

uncertainty of system performance, the sheer length of the life cycle for an SoS-

class of systems also increases the susceptibility of the SoS to changes in user

needs precipitated by the changing face of war.

The QDR (U.S. Department of Defense [USDoD], 2001) recognized these

challenges with its stated purpose to re-orient force development with an

emphasis on composing an SoS in an agile manner and to meet a range of

changing user needs. This recognition of agility in acquisition translates to a need

for the SoS to be able to either deliver new capabilities using constituent systems

or to expand its SoS boundaries to incorporate capabilities from other systems

(legacy and new) to satisfy changing user needs.

 3

C. RESEARCH QUESTIONS

This thesis focuses on developing an ontology to model the meta-system

for capability development and delivery, which has been put in place in response

to the capability-based approach to modernize the military, and that could be

used as a handle to explore the effectiveness of the meta-system.

Research questions are developed around these concepts and modeling

of the effectiveness of capability delivery.

 What is a capability delivery system (CDS)?

 How can this meta-system of capability delivery be modeled?

 What are the input and noise factors to the CDS?

 What are the parts and processes that comprise the CDS?

 What is emergence and how can its effects be modeled?

 What are the measures of effectiveness for the CDS?

 What are the effects of the choice of SE process models,
stability of capability needs, and capability complexity on the
effectiveness of the CDS?

 What is an existing ontology suitable to describe capability
delivery?

 In what ways can the existing CDS ontology be improved to include
the fog of emergence?

D. RESEARCH CONTRIBUTION

The thesis is intended to provide the following contributions:

 Capability delivery ontology with emergence – The extension of
capability delivery ontology with a central theme of emergence.

 Capability delivery system simulator – Development and
implementation of a functional simulator of a capability delivery
system based on the new ontology to demonstrate the tractability of
the ontology and as well as threats to the validity of the ontology.

 Measures of effectiveness for capability delivery – Using the
capability delivery ontology as a prism to separate the white light of
capability performance into its constituent colors of “as needed,”
“as-planned,” “as-known” and “as-deployed.” The capability
delivery effectiveness is measured as the ability of the capability

 4

delivery system to minimize the gaps between “as-needed,’ “as-
planned,” “as-known” and “as-deployed.”

E. THESIS ROADMAP

The roadmap of this thesis is as follows:

Chapter II presents the literature review of five key concepts: (1)

capability-based approach; (2) systems and SoSs; (3) emergence in systems; (4)

system life cycles with SE process models; and (5) an ontology for capability

delivery. First, while the intricacies of the capability-based approach are not the

focus of this thesis, understanding the mechanisms for the approach helps show

the logical consequence of the increased likelihood that systems or SoSs would

have to respond to changes or insertions of capability needs. Second, the

management challenges in responding to unstable needs would be different

depending on whether the capability implementing System-of-Interest (SoI) is a

system or an SoS. Third, the complexity in managing the SoI implementation is

exacerbated due to a fog of emergence that creates a gap between the

subjective perception of emergent traits by capability delivery organizations and

the emergent traits’ objective manifestation. Many SE process models exist to

provide a guiding hand for capability delivery organizations to take a capability

through its life cycle translating capability needs into operational capabilities. The

system life cycle and SE process models do form the fourth part of the review.

The final and fifth piece of the literature review is to present an existing capability

delivery ontology that is familiar to readers who know the DoD Architectural

Framework (DoDAF).

Chapter III covers the research approach to answer the research

objectives. It covers how the capability delivery system with emergence is

developed, and how it would be modeled to explore the research objectives.

Chapter IV describes the concept behind the capability delivery simulator

that was developed for the purpose of exploring the new capability delivery

model with emergence.

 5

Chapter V describes the preliminary software design of the capability

delivery simulator.

Chapter VI provides the summary of the implementation of an exploratory

capability delivery system simulator, its features, shortcomings and how it could

be used for future experiments based on the proposed capability delivery

ontology with fog of emergence.

Chapter VII highlights the research contributions and concludes with the

use of the proposed capability delivery ontology with fog of emergence to reflect

on the thesis journey to deliver a capability delivery system simulator.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. LITERATURE REVIEW

The Systems Engineering Guide for Systems of Systems (SE Guide for

SoS) (ODUSD [A&T] SSE, 2008) states that there are an increasing number of

military capabilities being implemented through an SoS approach. An SoS is “a

set or arrangement of systems that results when independent and useful systems

are integrated into a larger system that delivers unique capabilities,” according to

the SE Guide for SoS.

Similarly, the Systems Engineering Body of Knowledge (SEBoK) (Pyster &

Olwell, 2013) acknowledges that most practitioners recognize a strong

relationship between capability and SoS; however, there is no agreed position

with regard to that relationship. There are two widely accepted views: the first

describes the relationship as that of composition whereby a capability comprises

a range of systems, processes, people, information and organization; the second

describes the relationship as that of a property whereby capability is an emergent

property of SoS. This author prefers the second relationship and in the following

sections shows that the second relationship is more broadly applicable and, in

fact, encompasses the spirit of the first.

In order to develop or extend an ontological model of the capability

delivery meta-system, we have to unravel the relationship between capability

delivery and SoS, and then understand what makes it work.

The following sections examine the literature concerning key concepts and

expand definitions that are consistent and fit for the purpose of developing the

model. We shall specifically look at the following concepts:

 Capability-Based Approach

 Systems and System of Systems

 Emergence in Systems

 Systems Engineering Life cycle and Process Models

 Capability Delivery Ontology

 8

A. CAPABILITY-BASED APPROACH

A capability is the ability to achieve a desired effect under specified

standards and conditions through combinations of ways and means to perform a

set of tasks (DCIO, 2010).

Schrader, Lewis, & Brown (2003) review the lessons on managing change

in the U.S. DoD based on two earlier QDRs performed in 1997 and 2001. The

primary motivation for such reviews has been to ensure there were sufficient

forces to execute strategies relevant to the projected threats. Schrader et al.

(2003) state that prior to the QDRs, a “mismatch” between defense strategy and

resource allocation was already recognized. A key recommendation from QDR

2001 was to adopt a capabilities-based strategy with senior military leadership

assisting the U.S. Secretary of Defense in making balanced trade-offs that cut

across services. This recommendation would allow Congress to prioritize future

capabilities and provide guidance on forces, resources and pace of change.

The JCIDS Manual, 2012 describes “detailed guidelines and procedures

for operation of the Joint Capabilities Integration and Development System

(JCIDS) and interactions with several other departmental processes to facilitate

the timely and cost effective development of capability solutions to the

warfighter” (p. 1). The JCIDS deliberate staffing process and urgent staffing

processes are shown in Figure 1 and Figure 2, respectively.

 9

Figure 1. JCIDS deliberate staffing process (From JCIDS Manual, 2012).

The JCIDS deliberate staffing process should take no longer than 83

calendar days from the time a Sponsor submits a document identifying a

capability gap to the Gatekeeper for review.

 The Gatekeeper supports the activities of the JCIDS process and
manages the flow of documents in and out of the process (JCIDS
Manual, 2012). The Gatekeeper would assign the document to the
relevant lead and supporting Functional Capabilities Board (FCBs)
within four days.

 The FCBs assesses the document to compare capability
requirements to existing capability requirements, development
programs, and fielded solutions within their respective portfolios
(JCIDS Manual, 2012). The review considers partial or whole non-
materiel changes to requirements and partner collaboration advice.
The assessment would be made available to Services, Combatant
Commands (COCOMs), and other DoD components for their
comments by the end of 21 days (JCIDS Manual, 2012).

 The Sponsor has 30 days to satisfactorily adjudicate comments
received, after which the FCB has 7 days to review the changes
and to assist the FCB chair in making a validation decision (JCIDS
Manual, 2012). A valid recommendation bears the certification by
the FCB chair that the proposed capability solution is not redundant
to existing capabilities (JCIDS Manual, 2012).

 The validation authorities could be either the Joint Capabilities
Board (JCB).or Joint Requirements Oversight Council (JROC)
depending on relevant level of interest. The JCB is a board below
the JROC. The validation authorities should not take more than 21
calendar days to reach a decision after the FCB chair submits a

 10

valid recommendation. The decision would be to either terminate
the recommended capability, to begin acquisition or to execute
DOTmLPF-P1 Change Recommendations.

Figure 2. JCIDS urgent/emergent staffing process (From JCIDS Manual, 2012).

When a capability COCOM requirement is deemed as a joint urgent or

emergent operational need (JUON or JEON, respectively), the staffing process

as shown in Figure 2 could be used to expedite validation (JCIDS Manual, 2012).

The validation process is expected to take no longer than 15 days and 31 days

respectively for JUON and JEON (JCIDS Manual, 2012).

A summary of the JCIDS as gleaned from the JCIDS Manual (2012) can

be summarized as:

In its simplest, the capabilities-based strategy provides a strategic
oversight that matches capability providers with users. The
strategic oversight recognizes the importance to strike a balance
between the instability of user requirements precipitated by the
changing face of war and the need to provide stable intermediate
forms of military capabilities to facilitate implementation
accountability and better return on investment. New user needs
would have to be validated in terms of whether any unacceptable
loss of life or critical mission failure would be incurred should the
need be left unaddressed. A validated need would then be
assessed against the capability portfolio to determine if the need

1 DOTmLPF-P stands for Doctrine, Organization, Training, Materiel, Leadership and

Education, Personnel, Facilities and Policy.

 11

could be satisfied by any existing capability provider or has to be
satisfied through the establishment of a new capability. It is also
possible for the validated need to be satisfied through a mixture of
new and existing capabilities.

For example, a sponsor with a capability gap that could not be satisfied by

capabilities in the Joint Forces could initiate a change recommendation to

establish the new capability solution within the sponsor organization.

Subsequently, a second sponsor with the same capability gap could put in a

request for forces to leverage on the existing capability solution without

reinventing the wheel. A third sponsor with the same capability gap that has to be

organically incorporated could then generate a joint change request to bring the

capability solution into its own organization.

The main benefits of the capability-based delivery are the greater strategic

involvement of senior military leadership and Congress in directing and

managing how temporally unstable user needs are satisfied by agilely composed

capability solutions. It also follows that a better return on investment would be

achieved through the use of existing capability solutions either in part or whole to

service new capability needs.

The main implication of the JCIDS on the CDS is that it could be modeled

as a source of either input or noise factors. If a valid capability need establishes a

new capability solution, this is a new capability need into the CDS as an input

factor. If a valid capability need is matched with an existing capability solution,

the capability need is inserted to the CDS as noise factors. With the focus on this

capability-based approach, it is more likely than before that a CDS would be

subjected to unstable capability needs while a capability is in the process of

being delivered.

B. SYSTEMS AND SYSTEM OF SYSTEMS

1. System

Maier & Rechtin (2009) defined a system as “a collection of things or

elements that, working together, produce a result not achievable by the things

 12

alone.” The DoD Architectural Framework (DoDAF) Glossary (DCIO, 2010)

defined a system as “a functionally, physically, and/or behaviorally related group

of regularly interacting or interdependent elements.”

The first two definitions emphasize the notion that a system is composed

of elements. These elements could be functionally, physically or behaviorally

related. These elements interact regularly to produce a result not achievable by

the elements alone.

Langford (2013a) defines a system as:

A group of adaptively stable and agile objects showing intrinsic
emergence based on interactions with other objects. The condition
for systemic behavior is a non-reciprocal change in boundary
conditions of the objects resulting in a change in the properties of
the objects. Systems are comprised of objects and processes.

This third definition by Langford (2013a) is used in this thesis because it is

both abstract enough to encompass classical definitions of a system, while still

precise enough for a practitioner to use as a litmus test differentiating a system

from its parts. The third definition is consistent with the earlier two definitions and

then goes on further to introduce the following qualifying conditions that must be

satisfied for a system (Langford 2013a):

 Composition. A system is comprised of objects and processes.

 Agile adaptation. The objects adapt their properties, traits or
attributes with each other through agile interactions.

 Stable adaptation. This interaction causes some degree of
permanence and stability in the adapted properties, traits or
attributes of a proper subset of objects of the system. Stability is
maintained through dynamic adjustments about a point that falls
within a region of stability. In other words, there are regions of
exchanges between system elements where EMMI use is self-
sustaining.

 Non-reciprocal emergence. If the observed adapted properties,
traits or attributes of these stable and agile objects (manifested as
changes in the conditions of the objects’ functional, physical and
behavioral boundaries) are non-reciprocal between their existence
as a whole and existence as individual parts, we have emergence.

 13

Hitchins (2000) said that “systems engineering appears to be all things to

all people” and proposed a five-layer model for systems engineering that

attempted to bring the divergence of SE as a practice under a common model:

 Layer 5 – Socio-economic. The stuff of regulation and government
control.

 Layer 4 – Industrial Systems Engineering or engineering of
complete supply chains/circles. Many industries make a socio-
economic system.

 Layer 3 – Business Systems Engineering. Many businesses make
an industry. At this level, systems engineering seeks to optimize
performance somewhat independent of other businesses.

 Layer 2 – Project or System Level. Many projects make a
Business. Western engineer-managers operate at this level,
principally making complex artifacts.

 Layer 1 – Product Level. Many products make a system. The
tangible artifact level. Many engineers and their institutions
consider this to be the only “real” systems engineering.

Hitchins (2000) points out that the statements associated with the five

layers are approximate, but they serve to illustrate that systems could be nested

with each lower layer contributing to the one above. Hitchins’ model showed that

the methods to be employed by the systems engineer vary depending on the

layer of interest, or here stated as the level of abstraction.

Keet, 2008 extended the concept of nesting further by introducing the

concept of granularity in which granules (objects and processes) could also be

partitioned heterarchically. A heterarchy is a system of organization replete with

overlap, multiplicity where each element shares the same horizontal positional

relationship. An important characteristic of heterarchical granularity is that these

granules may overlap in a self-adjudicated manner appropriate to the context in

which the relationship exists (Langford, 2012). The context provides the logic for

one heterarchical grouping of objects and is more than a matter of convenience

(Langford, 2012, p. 285).

 14

The concept of abstraction and granularity posits that there exists an

appropriate granularity to examine an SoI. The granularity is adjudicated by the

chosen level of abstraction and context. While there is an appropriate granularity

given abstraction and context, it is inevitable that many granularities exist as

subjectively perceived by the various capability delivery organizations across a

capability’s life cycle.

It behooves the capability delivery organizations to be cognizant of the

existence of potential incompatibility of reference abstraction and granularities

that are all correct in their corresponding contexts. Without examining the system

through the appropriate context, it is hard for capability delivery organizations to

come to know of the full suite of emergent traits exhibited by the SoI beyond what

they have designated as requirements for intended missions.

An increasing number of today’s military capabilities are being achieved

through a new system that became to be known as SoS (ODUSD [AT&L] SSE,

2008). The following section highlights the similarities and differences between a

system and the SoS-class of system, and notes the implications for managing an

SoS.

2. System of Systems

There are a number of definitions for SoS; Jamshidi (2009) reviewed

upwards of six potential definitions before putting forward his own definition that

“SoS are large-scale integrated systems that are heterogeneous and

independently operable on their own, but are networked together for a common

goal” (p. 2).

Maier (1998) argued that it was useful to distinguish SoS from various

complex and large-scale systems, allowing the grouping of distinct demands to

the design, development and operation of such a class of system. Five

characteristics of SoS that made the design, development and operation of this

taxonomical branch of system more challenging have often been attributed to

Maier (1998), who in his 1998 paper, only considered the first two characteristics

 15

to be key: (1) operational independence of component systems, (2) managerial

independence of component systems, (3) emergent behavior, (4) geographical

distribution, and (5) evolutionary development processes.

The SEBoK (Pyster & Olwell, 2013) stated that while there were no

agreed upon definitions the following definition and its implication as quoted from

the SEBoK has received substantial attention:

An SoS is an integration of a finite number of constituent systems
which are independent and operatable, and which are networked
together for a period of time to achieve a higher goal.” It should be
noted that according to this definition, formation of an SoS is not
necessarily a permanent phenomenon, but rather a matter of
necessity for integrating and networking systems in a coordinated
way for specific goals such as robustness, cost, efficiency, etc.

Langford (2012) tabulated factors that determined the systemness of a

collection of objects (pp. 199–200). With respect to distinguishing a system from

an SoS, it was said that the parts of an SoS predominantly show reversible

properties and attributes when taken apart from the whole, whereas the parts of

a system often exhibit irreversible properties and attributes when severed from

the whole (Langford, 2012). This difference between systems and SoS

accentuated SEBoK’s definition that the SoS is not a permanent phenomenon,

and that the parts must be able to revert to their original properties, traits and

attributes to execute their independently operatable purposes.

As an SoS is a system, an SoS would satisfy the definition of a system

adopted in this thesis; it would, however, be more useful for evaluating various

process models that provide for capability delivery to develop a set of qualifying

factors to help discern the SoS class of systems.

With regards to the Maier’s list of SoS characteristics, this research is

premised on the first two characteristics of operational and managerial

independence of the whole and its parts are necessary qualifiers. The third

characteristic of emergent behavior, while necessary, does not help in

distinguishing an SoS from the more generic class of systems. An SoI that

 16

exhibits the fourth and fifth characteristics of geographical distribution and

evolutionary development processes, though, might suggest an SoS is not

necessary as these were decisions made out of choice instead of necessity.

As such, geographical distribution of parts and the use of evolutionary

development processes are useful factors but not as conclusive. The

characteristic of emergent behavior has already been subsumed under the

definition of a system. For the purpose of this thesis, an SoS must exhibit the

following factors in addition to fulfilling the definition of a system as laid out in the

previous section:

 Operational independence of the parts from the whole: The parts
must be able to operate independently when severed from the
whole according to its own set of customer-operator purposes
(Maier, 1998).

 Managerial independence of the parts from the whole: The parts
are separately acquired and integrated but continue to maintain
their own operations independent of the whole (Maier, 1998).

 Property and attribute reversibility of the parts from the whole: The
parts take on different properties and attributes for the duration of
operations as a whole, but reverts when severed from the whole
(Langford, 2012, pp. 199–200).

Based on these qualifying characteristics, an Aegis cruiser is part of an

SoS when we examine the Aegis cruiser in the context of four-phased2 ballistic

missile defense; the heterarchical granularity of the SoI expands to include

ground-based interceptors, sea-based radars, a suite of radars in the United

Kingdom, Aleutian Islands, Greenland, and California (Fact sheet: The ballistic

missile defense system, 2013). At this level of granularity, the Ballistic Missile

Defense System exhibits all three qualifying factors of an SoS. The parts retain

their operational and managerial independence; for example, the ground-based

interceptors may be designated to take out other air-borne targets apart from

ballistic missiles or the Aegis cruiser could be tasked to a search and destroy

mission unrelated to the SoS-level ballistic missile defense mission.

2 Ballistic missiles follow a four-phased trajectory path: boost, ascent, midcourse, and

terminal.

 17

These qualifying factors of an SoS mean there would be greater

management issues due to potential tension between the SoS management

entity and the constituent system entities. The following list captures some of the

management issues of an SoS adapted from Osmundson, Huynh, & Langford

(2007):

 Initial agreement: Initial agreement of SoS objectives by decision
makers depends on the number of business entities involved. Top-
down mandate of objectives would be possible if the whole SoS
was under the purview of a single entity, which might not be the
case.

 Planning: The planning for an SoS has to consider the matching of
operations of constituent systems to external systems.

 Organizing: Establishment and monitoring of processes that
interface the SoS with constituent systems.

 Directing and reporting: Clear, concise and complete
communication channels must be established for the SoS and
constituent systems. Metrics must be developed, collected and
reported to the SoS-level.

 Design: Each constituent system has to balance the need to share
classified or proprietary design information against the benefits of
developing the SoS.

 Common interfaces: Interfaces must be identified and managed to
ensure interoperability between constituent systems.

 Negative emergent behavior: The SoS may exhibit unexpected
negative emergent behavior that is detrimental to the SoS and
constituent systems.

As practitioners and academics better understood the concept of SoS

through work experience and research, four types of SoS were identified based

on the type of management and technical control the SoS-level has over its

constituent systems (Dahmann et al., 2008):

 Directed SoS is one in which the integrated system of systems is
built and managed to fulfill specific purposes. The Future Combat
Systems is a directed SoS. It is centrally managed during long-term
operation to continue to fulfill those purposes as well as any new
ones the system owners might wish to address. The component
systems maintain an ability to operate independently, but their

 18

normal operational mode is subordinated to the central managed
purpose.

 Acknowledged SoS has recognized objectives, a designated
manager, and resources for the SoS; however, the constituent
systems retain their independent ownership, objectives, funding, as
well as development and sustainment approachesic Missile
Defense System is an example of an Acknowledged SoS. The
BallistChanges in the systems are based on collaboration between
the SoS and the system.

 In Collaborative SoS, the component systems interact more or less
voluntarily to fulfill agreed-upon central purposes. The Internet is a
collaborative system. The Internet Engineering Task Force works
out standards but has no power to enforce them. The central
players collectively decide how to provide or deny service, thereby
providing some means of enforcing and maintaining standards.

 Virtual SoS lacks a central management authority and a centrally
agreed-upon purpose for the system of systems. The Global
Information Grid is an example of a Virtual SoS. Large-scale
behavior emerges—and may be desirable—but this type of SoS
must rely upon relatively invisible mechanisms to maintain it.

Dahmann et al. (2008) asserted that the DoD has faced more capability

delivery challenges from acknowledged SoS than the other three types. As an

acknowledged SoS is not under the control of a single entity, it would face

greater issues of initial agreement of SoS objectives with constituent system

entities. Constituent systems might already be in development or even operation,

adding complexity to the planning, organization, direction, reporting and design of

the whole SoS (Osmundson et al., 2007). These constituent systems

acknowledge the SoS capability objectives but are needed for their original

requirements. The dual levels of management, objectives and funding create

management challenges for both the acknowledged SoS and its constituent

systems (Dahman et al., 2008).

It can be seen that the SoS-class of systems is subject to increased

friction amongst constituent system entities and creates management challenges

during capability delivery. These dynamic and competing behaviors of an SoS

have to be captured in the CDS ontology.

 19

C. EMERGENCE IN SYSTEMS

It is clear from the definitions of systems that a key reason for assembling

a system would be for the emergent behavior that would result. Emergence is a

condition when the whole is equal to the parts plus traits that are related to the

context of the interaction of the parts (Langford, 2013a). In other words, through

the interactions of the parts, the whole is able to achieve objectives greater than

the sum of its parts. Jamshidi (2009) stated that the concept of the whole being

more than the sum of its parts could be traced back to as early as Aristotle, but

the utility of emergence beyond informed thinking continues to be questioned.

As cited in Jamshidi (2009), Holland pointed out that “emergent patterns

are not adequately understood without the appreciation of the context within

which the patterns exist” (p. 174). This is especially the case of SoS, where the

context could be highly variable; “emergence has far-reaching implications for

how we think, make decisions, and interpret results related to design,

deployment, and transformation of SoS solutions” (Jamshidi, 2009, p. 174).

Jamshidi, 2009 examined the nature of emergence through three perspectives:

(1) philosophical; (2) axiomatic; and (3) methodological. The same approach to

understanding emergence was adopted for the purpose of this thesis. The

philosophical perspective deals with the commonly held worldviews on

emergence. The axiomatic perspective examines the axiomatic principles that

support a robust perspective for emergence in SoS. The methodological

perspective deals with the general methodological considerations that could be

adapted to specific contexts to account for emergence.

1. Philosophical Perspective

Jamshidi (2009) asserts the importance of understanding and appreciating

the existence of varying world views on emergence, as there is greater potential

for conflicts in SoS capability delivery organizations holding different worldviews.

These worldviews are reference frames through which we “give meaning

to actions, decisions, and events as they unfold” (Jamshidi, 2009, p. 175). He

 20

argues that the organizations’ philosophical leanings in the epistemological and

ontological frames shape how they perceive emergence. Figure 3 shows the

philosophical spectrum of these two frames. The epistemological frame relates to

how organizations’ believe they perceive, collect, and communicate knowledge,

while the ontological frame deals with the organizations’ belief in what is reality.

Figure 3. Philosophic-level Spectrum (After Keating, 2005).

A capability delivery organization leaning towards the positivism end of the

spectrum would tend to take the stance that all system emergences can be

predicted based on “absoluteness of system knowledge,” while another

organization with antipositivistic leanings would not expect absolute system

knowledge and hence accept the existence of indeterminable emergence and its

variety of interpretations (Jamshidi, 2009). Similarly, an organization that takes a

realistic view might be inclined only to accept emergence as it is measured, while

 21

a nominalistic organization would accept that the reality of emergence as

subjective to the beholder (Jamshidi, 2009).

Emergence of a system in a given context could only be commonly

discussed if the organizations examined the system at the same level of

abstraction and granularity. As indicated earlier in the discussion on abstraction

and granularity, the appropriate hierarchical and heterarchical view of the parts of

a system would be adjudicated by the context in which the emergence of interest

arises (Langford, personal communication, July 8, 2013). As such, capability

delivery organizations having different abstractions and granules in mind would

be debating the emergent properties, traits and attributes of a system that was

only common in the name of the system.

It is not the purpose of this thesis to argue the philosophical merits or

superiority of worldviews, but it could be surmised that capability delivery

organizations would stand to gain if they recognize that other organizations may

interpret emergence differently. These organizations should plan how to analyze,

measure, and discuss emergence productively.

Kasser (2012) discussed two relevant orthogonal dimensions to a

problem, the first being complexity and the second being complicatedness. On

one hand, the complexity of a problem is an external objective characteristic

“determined by the number of issues, functions, or variables involved in the

problem; the degree of connectivity among those variables; the type of functional

relationship among those properties; and the stability among the properties of the

problem over time” (Kasser, 2012). On the other hand complicatedness is

subjective to the level of competency held by the capability delivery organization

with respect to the required domain expertise to examine the problem (Kasser,

2012).

An emergent trait that exhibited in a complex operational context might be

too complicated for one capability organization, but is relatively easy for another

organization with the knowledge and tools to measure it. Emergence that could

 22

not be determined through analysis nor measured by contemporary methods and

tools would still be determinable or measurable given the advancement in theory,

measurements, and tools eventually (Langford, private communication, July 3,

2013).

The implications for the CDS ontology is that there exists a fog of

emergence clouding the capability delivery organization’s subjective perception

of the objective manifestation of an SoI’s full suite of emergent traits. This fog of

emergence is modified by the organization’s competency in the requisite

engineering domain to determine or measure the emergent trait.

2. Axiomatic Perspective

The axiomatic perspective is a view comprised of knowledge that is

regarded as established in the field. There is much development in the

knowledge that is directly applicable to systems, but not much in the way of

theories relating to emergence, despite emergence being considered axiomatic

with regard to systems3 (Jamshidi, 2009). The following section summarizes the

explications on emergence derived from “systems-based concepts that are

supportive of the emergence perspective” (Jamshidi, 2009).

1. Holism (Jamshidi, 2009) Skyttner “suggests that we cannot
understand a complex system through reduction to the component
or entity level” (p. 178). Holism is opposed to reductionism which
believes that a complex system is simply the sum of its parts and
hence could be absolutely analyzed at increasingly finder levels of
details. Holism states that organizations have to analyze a system
holistically in its context to fully comprehend associated emergent
traits. Reductionist methods could still be used to study emergence
if it could separate the parts from the whole, and “identify
nonlinearities in performances and results to quantify losses”
(Langford, 2012, p. 227).

2. Context “is the circumstances, factors, conditions, and patterns that
both enable and constrain a complex system solution” (Keating,

3 Jamshidi (2009) made the general statements with regard to emergence in particular to

SoS, but as argued by this author, emergence is a characteristic of all systems and not exclusive
to SoS.

 23

2005). The context in which the system is used adjudicates the
appropriate level of granularity and abstraction of the “whole”
through which emergence could be known (Langford, 2012). These
contexts are more often “as-deployed” than “as-intended,” and
hence it is a fundamental error to analyze a system solely based on
designed intentions (Jamshidi, 2009, p. 180). As the context is
external to the system and dependent on the military performers
that use it, there could be a multiplicity of contexts and associated
emergence beyond those envisioned by the organizations that
designed and implemented it.

3. Complementarity “suggests that any two different perspectives …
of a system will provide different knowledge of the system”
(Jamshidi, 2009, p. 180). As a logical result of holism and
multiplicity of contexts, every context in which the system is used
while being potentially incompatible would still be valid and serve to
complement the holistic impression of the system (Jamshidi, 2009).

4. System darkness “is a concept that recognizes there can never be
complete knowledge of a system” according to Skyttner (as cited in
Jamshidi, 2009, p. 181). Wolpert (2008) rigorously proved that an
organization could never infer entirely correct knowledge of the
system of which the organization is a part. This means that the
knowledge of a system from an internal perspective is incomplete
and speculative. Knowledge of a system and its associated
emergence within the contexts in which it operates unfolds together
with system operation and observations (Jamshidi, 2009).

5. Dynamic stability “holds that a system remains stable as long as it
can continue to produce required performance during
environmental turbulence and changing conditions” (Jamshidi,
2009, p. 182). Neither the system nor the context in which it
operates remains the same, and so stability in the system is
achieved through adjustments to disturbances in system
performance (Jamshidi, 2009). Emergence is a result of the EMMI
exchanged between objects of the system and context to achieve a
natural stable state (Langford, 2012).

6. Metasystem “provides the structure of relationships that integrates
the SoS4“ according to Beer (as cited by Jamshidi, 2009, p. 181)
and could be depicted as a three-dimensional coordinate system
with one axis running the spectrum from: (1) integration to

4 The five axioms relating to emergence were generally applicable to systems, but the axiom

regarding metasystem is more pertinent to SoS, as a non-SoS would not be subjected to tension
along the integration-autonomy axis.

 24

autonomy; (2) a second axis spanning stability to change; and (3)
the third-axis of purposeful design to self- organization (Jamshidi,
2009). An SoS is subjected to formal structural relationships, but
the “balance in tensions might shift through the life of the SoS”
(Jamshidi, 2009, p. 181). It was said that a variety of emergence
would be produced by the SoS to resolve structural tensions due to
such shifts in balance along the axes of the metasystem. (Jamshidi,
2009).

From the axiomatic perspective, dynamic stability supports emergence as

an intrinsic phenomena that results from EMMI interactions between parts of a

system to perform a function. While the impact of emergence is greatest when

unexpected, it is wrong to only associate emergence with surprise. The CDS

ontology has to reflect this intrinsic manifestation of emergent traits regardless of

whether it is known or not.

The concepts of holism, contexts, complementarity, and system darkness,

adds to the fog of emergence in the CDS ontology. The full suite of emergent

traits that manifest after system functions are performed is a complementary

result of all the as-deployed mission contexts beyond those that were intended.

System darkness posits that the capability delivery organization might not

accurately infer the full suite emergent traits because of imperfect knowledge

regarding the contexts. The fog of emergence in the CDS ontology has to

incorporate this subjective knowledge of known missions against an all-

omniscient objective list of as-deployed mission contexts. If a mission context is

intended, the emergent traits that manifest in the intended context are

determinable based on the capability delivery organization’s competencies in the

requisite engineering domain. If the mission context is unknown, the emergent

traits for that unknown context would be indeterminable, as even the most

competent organizations would not be able to determine emergent traits without

first knowing the context in which they manifest.

Finally, the concept of metasystem stresses implies that a comprehensive

CDS ontology with emergence has to model the fluctuations in the emergent

 25

traits manifested by the same SoS in the same mission context, due to

perturbations along the three axes mentioned previously.

3. Methodological Perspective

Keating (2005) suggests that the philosophic perspective would inform the

axiomatic perspective which in turn informs the methodological perspective. The

methodological perspective is concerned with “guiding frameworks that are used

to guide inquiry and gain knowledge regarding complex systems” (Keating,

2005).

Jamshidi (2009) observes that many systems engineering processes have

been developed and applied successfully, but they are insufficient to be

considered as a methodology. He opines that any combination of the following

six conditions would favor the guiding hand offered by a systems-based

methodology over prescriptive traditional systems engineering processes: (1)

turbulent environmental conditions; (2) ill-defined problem conditions; (3)

contextual dominance; (4) uncertainty for approaches; (5) ambiguous

expectations and objectives; and (6) excessive complexity (Jamshidi, 2009). The

attributes for systems-based methodologies are identified in Table 1.

 26

Table 1. Attributes of a systems-based methodology (From Jamshidi,
2009, p. 179).

Methodology
Attribute

Description

Transportable Capable of application across a spectrum of complex systems
engineering problems and contexts. The appropriateness (applicability)
of the methodology to a range of circumstances and system problem
types must be clearly established as the central characteristic of
transportability.

Theoretical and
philosophical
grounding

Linkage of the methodology to a theoretical body of knowledge as well
as philosophical underpinnings that form the basis for the methodology
and its application.

Guide to action The methodology must provide sufficient detail to frame appropriate
actions and guide direction of efforts to implement the methodology.
While not prescriptively defining “how” execution must be accomplished,
the methodology must establish the high-level “whats” that must be
performed.

Significance The methodology must exhibit the “holistic” capacity to address multiple
problem system domains, minimally including contextual, human,
organizational, managerial, policy, technical, and political aspects of an
SoS problem.

Consistency Capable of providing replicability of approach and results interpretation
based on deployment of the methodology in similar contexts. The
methodology is transparent, clearly delineating the details of the
approach for design, analysis, and transformation of the SoS.

Adaptable Capable of flexing and modifying the approach configuration, execution
or expectations based on changing conditions or circumstances –
remaining within the framework of the guidance provided by
methodology but adapting as necessary to facilitate systemic inquiry.

Neutrality The methodology attempts to minimize and account for external
influences in the application and interpretation. Provides sufficient
transparency in approach, execution, and interpretation such that biases,
assumptions, and limitations are capable of being made explicit and
challenged within the methodology application.

Multiple utility Supports a variety of applications with respect to complex SoS, including
new system design, existing system transformation, and assessment of
existing complex SoS initiatives. The methodology must provide for
higher levels of inquiry and exploration of problematic situations,
generating sufficient structuring and ordering necessary to move
forward.

Rigorous Capable of withstanding scrutiny with respect to (1) identified
linkage/basis in a body of theory and knowledge, (2) sufficient depth to
demonstrate detailed grounding in relationship to systemic
underpinnings, including the systems engineering discipline, and (3)
capable of providing transparent results that are replicable with respect
to results achieved and accountability for explicit logic used to draw
conclusions/interpretations.

The methodology perspective shall be used to assess the normative body

of knowledge developed in this thesis based on the CDS ontology with

emergence.

 27

D. SYSTEM ENGINEERING LIFE CYCLE AND PROCESS MODELS

SE is not a new discipline but has been brought to the forefront when DoD

acquisition policies mandated its use throughout a system’s life cycle in 2006

(ODUSD [A&T] SSE, 2006). A number of SE process models have been

developed over time that could be applied during a system’s life cycle.

In this thesis, the parts and processes that comprise the CDS are taken to

be the various capability delivery organizations that are responsible for the

capability at the various life cycle phases using a particular SE process model to

guide their interactions and work through these phases. The EMMI exchanges

are the flow of intellectual properties, life cycle deliverables, and resources

required for the various milestones and work packages. Hence, we began by

taking a look at the generic system life cycle model that forms the common

theme linking the variety of systems engineering process models and the

acquisition system that form a key mechanism for the system’s progress through

its life cycle.

How SE process models alter the life cycle phases could be mapped, and

as a result, codified as part of the capability delivery model based on the CDS

ontology with emergence.

1. System Life cycle

Langford (2012) offers a nuanced distinction between a system’s life cycle

and the processes it goes through during its life (emphasis added) (p. 233–234):

The systems life cycle perspective captures three issues: “(1) how
comfortably the solution reflects life cycle needs; (2) the broader
context in which the design is considered to have utility; and (3) the
flexibility to incorporate cross-disciplinary views. …Life cycle can
be seen as a structured progression from an initial beginning state
to an end state, often thought of as from inception (beginning of life)
to disposal (end of life). Life cycle is not comprised of sequential or
successive processes. Yet, life cycle discussions are appropriate to
all processes and activities. It is instructive to consider the life cycle
of the problem, the stakeholder needs, the development effort, the
product, and the product uses.

 28

A distinction would be made for this thesis with regards to systems life

cycle models and SE process models in order to examine the effects of nesting

different SE processes within a system’s life cycle.

This thesis would use the Defense Acquisition Management System

(DAMS) as a working implementation of a generic systems life cycle. The DAMS

answers “what needs to be done” to ensure standardization of terms of

references, decision points, and of well-known deliverables across key

stakeholders from an acquisition perspective (Office of Under Secretary of

Defense Acquisition, Technology & Logistics [OUSD AT&L], 2008a). The various

systems engineering process models answer “how to do it” and “for how long” to

guide the capability delivery organizations from a systems engineering

perspective.

Figure 4. The Defense Acquisition Management System (From OUSD AT&L,
2008).

The DAMS is a working elaboration of the generic life cycle model from an

acquisition perspective (OUSD AT&L, 2008). According to the Defense

Acquisition University (DAU, 2008):

The Materiel Development Decision (MDD) is the formal entry point
into the acquisition process and is mandatory for all programs. It
identifies a gap in capability and develops requirements to fill that

 29

gap. The decision is documented in the Acquisition Decision
Memorandum. The MDD consists of identification of a capability
gap, a description of related risks, and a recommendation of
whether or not to enter the acquisition process or use a non-
materiel solution.

The MDD for a materiel solution has to precede entry into the acquisition

process regardless of point of entry. The DAMS is comprised of five phases,

three major milestones and clear regulatory deliverables and acquisition

processes that had to be adhered to unless otherwise tailored by Milestone

Decision Authorities (MDAs) as shown in Figure 4 (OUSD AT&L, 2008). They

are: (1) the materiel solution analysis (MSA) phase; (2) the technology

development (TD) phase; (3) the engineering & manufacturing development

(EMD) phase; (4) the production & deployment (P&D) phase; and (5) the

operations & support (O&S) phase.

Figure 5. Requirements and Acquisition Flow of DAMS phases in Evolutionary
Acquisition (From OUSD AT&L, 2008).

 30

While the five phases could be sequential, they are not required to be

executed in sequence. In fact, DoD’s preferred acquisition strategy is

“evolutionary acquisition,” where a capability is delivered in increments with a

recognition that capability needs may change and the capability improved in the

future (OUSD AT&L, 2008). Figure 5 shows an example of how the requirements

and acquisition flows through the DAMS phases for a capability with a disciplined

approach to maturing technologies before development and its eventual

production.

The following five tables (Tables 2–6) summarize the corresponding five

phases of the Defense Acquisition Management System. Each table starts with

the purpose of the phase, its pre-conditions, and ends with the post-conditions.

The main body of the table describes the activities within the phase as well as

important exceptions (if any). These activities are labeled with a prefix based on

the abbreviations for their phase, followed by a running number that roughly

indicates the order in which the activities occur. Most of the activities describe

work packages to be done, and some describe important milestones and events.

Those activities that are events have a character “e” appended to the end of their

labels. For example, “MSA.4e” would denote the fourth activity of the MSA

phase, and that it is an activity that denotes an event.

 31

a. Materiel Solution Analysis Phase

Table 2. MSA Purpose & Description (From OUSD AT&L, 2008).

 Material Solution Analysis

Purpose

 Assess potential materiel solutions

 Determine appropriate entry phase in DAMS after current phase

Pre-
conditions

Initial Capabilities Document: preliminary CONOPS, capability needs, operational risk,
justification

 Materiel Development Decision(MDD), Analysis of Alternatives (AoA) study guidance,
Initial review date

 S/N Activity Product Organization Type

Phase
description

MSA.1

AoA study preparation to do preliminary
assessment of materiel solutions,
identify key technologies, and life cycle
costs

AoA study
Plan

Lead DoD
Component

Program
Elements

MSA.2

AoA and Materiel Solution Analysis to
develop Measures of Effectiveness
(MoEs), cost, schedule, CONOPS, and
risk of alternatives. Identify CTEs for
each materiel solution and their tech-
readiness, integration, and production
risks. AoA

Lead DoD
Component

Program
Elements

MSA.3
Prepare appropriate DAMS Mile Stone
(MS) artifacts

Depends on
corresponding
artifacts for
MS A, B, or C

Lead DoD
Component

Program
Elements

MSA.4e
Initial review of AoA and appropriate
DAMS MS artifacts, and to decide if
more reviews are needed.

MDA, Lead
DoD
Component Event

Post-
conditions Completed AoA, Approved ICD, appropriate DAMS entry phase determined

 32

b. Technology Development Phase

Table 3. TD Purpose & Description (From OUSD AT&L, 2008).

 Technology Development Phase

Purpose

 Reduce technology risk

 Determine and mature sets of technologies (CTEs)

 Demonstrate CTEs on prototypes

Pre-
conditions Completed AoA, proposed materiel solution, prepared MS A artifacts, full funding for TDP

 S/N Activity Product Organization Type

Phase
description

pre-
TDP.1

Draft Technology Development Strategy
(TDS): single-step or evolutionary
acquisition, their schedules, cost,
performance goals, exit criteria, and its
increments and number of prototypes to
be developed in this phase

MS A Artifact:
TDS

Lead DoD
Component

Program
Elements

pre-
TDP.2 Estimate cost for each AoA solutions

MS A Artifact:
Cost Estimate

Lead DoD
Component

Program
Elements

TDP.1e
MS A: Review of proposed materiel
solution, & MS A artifacts

Lead DoD
Component,
MDA Event

TDP.2
Preparation for Requests for Proposals
(RFPs) after MS A approval RFPs PM

Program
Elements

TDP.3 Production of 2 or more prototypes

System
components
(prototype)

S&T
communities

Program
Elements

TDP.4e Prototype demonstrations
PM, S&T
communities Event

TDP.5 Review life cycle costs based on demos

Life cycle
Sustainment
Plan (LCSP)s PM

Program
Elements

TDP.6

Prepare Systems Engineering Plan (SEP)
that includes Reliability, Availability, and
Maintainability (RAM) strategy and
reliability growth program for design
and development. SEPs

PM, Program
Executive
Officer (PEO)

Program
Elements

TDP.7e
Program Support Reviews (PSR): Review
SEP & LCSP

Lead DoD
Component Event

 33

TDP.8

Prepare Preliminary Design Review
(PDR) design artifacts: Candidate designs
to establish allocated baseline (hw, sw,
human), underlying architectures, and
high-confidence design.

Preliminary
designs

Lead DoD
Component,
S&T
communities

Program
Elements

TDP.9e

Perform PDR: Inform requirement
trades; improve cost estimation; identify
System-level design, integration, &
manufacturing risks.

User,
Certification
Authority,
Lead DoD
Component Event

TDP.10

Prepare MS B artifacts: Capability
Development Document (CDD) to
support initiation of acquisition
program/increment, refine integrated
architecture, and clarify how program
would lead to war fighting capability.
Includes detailed operational
performance parameters. CDD

User, PEO,
PM, and
[MDA]

Program
Elements

TDP.11e CDD Approval JROC Event

Exception
ex-

TDP.1e

If cost estimation increase by 25% over
MS A certification, PM has to notify MDA
for possible rescindment of MS A
approval PM, MDA Event

ex-
TDP.2

If evolutionary, an MDA approved TDS is
required for every increment with a MS
A

Lead DoD
Component,
MDA

Program
Elements

Post-
conditions

 Affordable program/increment of militarily useful capability has been identified

Technology and manufacturing processes for program/increment assessed and
demonstrated in relevant environment

 Manufacturing risks identified

 Program/increment can be developed for production within 5 years

 34

c. Engineering and Manufacturing Development Phase

Table 4. EMD Purpose & Description (From OUSD AT&L, 2008).

Engineering Manufacturing &
Development

Purpose

 Develop a system or an increment of a capability

 Complete full system integration

 Develop an affordable and executable manufacturing process

 Ensure & demonstrate -ilities & Human Systems Integration (HSI)

Pre-conditions
CDD with KPPs, technology maturity of materiel solution, approved requirements, and
full funding.

 System concept selected, requirements approved, and PM assigned

 Activity Product Organization Type

Phase
description

pre-
EMD.1

Capability Development Document
(CDD) to support initiation of
acquisition program/increment,
refine integrated architecture, and
clarify how program would lead to
war fighting capability. Includes
detailed operational performance
parameters

MS B Artifact:
CDD

User, PEO,
PM, and
[MDA]

Work
packages

pre-
EMD.2

 Low-Rate Initial Production (LRIP)
quantities (one unit to 10% of total),
staffing estimates, business case,
acquisition program baseline (APB)

MS B
Artifacts: LRIP,
staffing
estimate,
business case,
APB PM

Work
packages

EMD.1e
MS B: Review of MS B artifacts and
initiation of acquisition program PM, MDA Event

EMD.2

Preparation for final RFPs after MS B
approval; specifically worded to only
award to proposals based on CTEs
that have been demonstrated in a
relevant environment & offerors to
specify technology readiness levels
of CTEs Final RFPs PM

Work
packages

EMD.3

Preparation for Requests for
Proposals (RFPs) for TDP after MS A
approval RFPs PM

Work
packages

Integrated
System Design

(ISD)

EMD.4

If no PDR prior MS B, PM to plan for
PDR design artifacts: Candidate
designs to establish allocated
baseline (hardware, software,
human system integration),
underlying architectures, and high-
confidence design.

Preliminary
design
(Architecture,
component
design,
production
baseline)

PM, S&T
Communities

Work
packages

 35

Engineering Manufacturing &
Development

EMD.5e

If no PDR prior MS B, conduct
Preliminary Design Review (PDR):
Inform requirement trades; improve
cost estimation; identify System-
level design, integration, &
manufacturing risks. PDR report

PM, S&T
Communities Event

EMD.6e

If PDR conducted within EM&D
phase, conduct Post-PDR: Formal
assessment where MDA considers
PM’s assessment and PDR report

Post-PDR
assessment in
Acquisition
Decision
Memorandum PM, MDA Event

EMD.7
Prepare for critical design review
(CDR)

Critical design
(Architecture,
component
design,
production
baseline for all
configuration
item)

PM, S&T
Communities

Work
packages

EMD.8e Conduct CDR CDR Report

PM, Subject
Matter
Experts
(SMEs), CDR
Chair Event

EMD.9e Post CDR Review
Initial product
baseline PM, MDA Event

System
Capability &

Manufacturing
Process

Demonstration

EMD.10

Prepare for System Capability &
Manufacturing Process
Demonstration

System
component
(including
manufacturing
processes)

S&T
communities

Work
packages

EMD.11e

Repeated developmental test &
evaluation (DT&E) of technical
progress, operational assessments,
use of M&S to demonstrate
integration

PM, S&T
communities,
operational
users Event

EMD.12 Prepare MS C artifacts

MS C artifacts
including
Capability
Production
Document
(CPD)

PM, S&T
communities

Work
packages

EMD.13e CPD approval JROC Event

Post-
conditions Purpose achieved

 36

d. Production and Deployment Phase

Table 5. P&D Purpose & Description (From OUSD AT&L, 2008).

 Production & Deployment Phase

Purpose
Achieve operational capability that addresses mission needs, established through
operational test & evaluation (OT&E)

Pre-
conditions

Acceptable performance in DT&E, mature software capability, no significant manufacturing
risks, manufacturing processes under control, approved ICD (if MS C is program initiation),
approved capability production document (CPD), refined integrated architecture, -ilities,
phased for rapid acquisition and fully funded

 Activity Product Organization Type

Phase
description

P&D.1e

MS C: Authorize entry into LRIP;
production/procurement for non-LRIP;
limited deployment for software
intensive systems MDA Event

P&D.2

Complete manufacturing development
for initial OT&E and to establish
production base

Production
base

S&T
communities

Work
packages

P&D.3 Execute LRIP

Production-
representative
articles

S&T
communities

Work
packages

P&D.4e
Perform IOT&E to rectify deficiencies in
both articles and production base

S&T
communities,
operational
users Event

P&D.5

Prepare for FRP (demonstrate control of
manufacturing process and acceptable
reliability, collection of statistical
process control data, demonstrated
control and capability of critical
processes)

Beyond LRIP
Report

PM, S&T
communities

Work
packages

P&D.6e
Full-Rate Production (FRP) Decision
Review

FRP decision
in Acquisition
Decision
Memorandum

MDA,
Congress,
USD (AT&L) Event

P&D.7
Execute FRP and Deployment: Deliver
system and materiel to users.

Initial
Operational
Capability
System
Components

S&T
communities,
operational
users

Work
packages

P&D.8e
Perform Follow-on OT&E (FOT&E) to
assess system performance

[New
capability
requirements]

S&T
communities,
operational
users Event

P&D.9 Ensure military equipment valuation
PM, S&T
communities

Work
packages

Post-
conditions

Initial Operational Capability (IOC)
achieved

 37

e. Operations and Support Phase

Table 6. O&S Purpose & Description (From OUSD AT&L, 2008).

 Operations & Support

Purpose

Execute support system that meet materiel readiness and O&S performance in a cost-
effective manner over system’s life cycle

Pre-
conditions

Acceptable performance in DT&E, mature software capability, no significant manufacturing
risks, manufacturing processes under control, approved ICD (if MS C is program initiation),
approved capability production document (CPD), refined integrated architecture, -ilities,
phased for rapid acquisition and fully funded

 Activity Product Organization Type

Phase
description

O&S.1

Life cycle sustainment: Continual
engineering for RAM, HSI, environment,
safety, occupational health,
supportability and interoperability

PM, S&T
communities,
operational
users

Work
packages

O&S.2e Iterative reviews

PM,
operational
users Event

O&S.3 Prepare for disposal PM
Work
packages

O&S.4e Disposal

PM, S&T
communities,
operational
users Event

O&S.5e PEO annual review PEO, PM Event

2. Systems Engineering Process Models

A quote by Nogueira, Jones, & Luqi (2000), made in the context of

software engineering, mirrors the development of SE as a discipline to find the

right balance between order and chaos:

The edge of chaos is defined as “a natural state between order and
chaos, a grand compromise between structure and surprise”
(Kauffman as cited in Nogueira et al., 2000). The edge of chaos
can be visualized as an unstable partially structured state of the
universe. It is unstable because it is constantly attracted to the
chaos or to the absolute order.

We have the tendency to think that the order is the ideal state of
nature. This could be a mistake. Research … supports the theory
that operation away from equilibrium generates creativity, self-
organization processes and increasing returns (Roos as cited

 38

in Nogueira et al., 2000). Absolute order means the absence of
variability, which could be an advantage under unpredictable
environments.

Change occurs when there is some structure so that the change
can be organized, but not so rigid that it cannot occur. Too much
chaos, on the other hand, can make impossible the coordination
and coherence. Lack of structure does not always mean disorder.

When the use of SE throughout a system’s life cycle was mandated in

2006 by acquisition policies, it was believed that SE would provide “an

overarching process that the program team applies to transition from a stated

capability need to an affordable, operationally effective and suitable system”

(ODUSD [A&T] SSE, 2006). The speed with which the pendulum swung toward

greater order was further accelerated by DoD’s increasing reliance on the more

complex SoS to implement user capabilities. As a result the SE Guide for SoS

was introduced (ODUSD [A&T] SSE, 2008) as “the SE community has

recognized the need for discipline and structure in the engineering of SoS”

(Dahmann et al., 2008). However, the recent additions of agile methods to the

International Council on Systems Engineering (INCOSE) SE Handbook (2010)

indicate that the pendulum swing might have been reversed, with focus on

increased agility based on potentially chaotic interpersonal emergent processes

rather than being driven by the false comforts of an ordered plan.

Each of these revisions to DoD policies and additions to SE as a discipline

have been accompanied by more SE processes; such as the classic single-pass

Waterfall and Vee, the iterative and concurrent Dual-Vee, the evolutionary Spiral

and, the latest Agile processes to list a few more prominent ones.

A process is defined by the SEBoK (Pyster & Olwell, 2013) “as a series of

actions or steps taken in order to achieve a particular end; as a verb it is the

performing of the operations. Processes can be performed by humans or

machines transforming inputs into outputs.” Langford (2012) succinctly defines

 39

process models “as models that describe the stages in which the project team

focuses on various milestones and deliveries.” The process model signifies what

stage is next and what events constitute that stage.

According to the SEBoK (Pyster & Olwell, 2013), there are three

categories of SE processes: (1) pre-specified and sequential processes (e.g.,

single-pass classic waterfall model), (2) evolutionary and concurrent processes

(e.g., various forms of the Vee-model, spiral models, and waterfall with feedback)

and (3) interpersonal and emergent processes (e.g., agile development, scrum

and extreme programming). A list of SE process model adjectives together with

their ontological relations to other adjectives is shown in Table 7.

Table 7. List of common SE process model adjectives.

Adjective Description

Pre-specified Describes a process whereby the system requirements were predetermined and fixed

for the scope and life cycle of the system (Pyster & Olwell, 2013). It is in contrast to an

evolutionary process.

Evolutionary Describes a process where successive versions of a system are produced in response

to discoveries surfaced by earlier versions and changing requirements (Forsberg,

Mooz, & Cotterman as cited by Pyster & Olwell, 2013). It is in contrast to a pre-specified

process.

Single-pass5 Describes a process where a complete system is produced during the first iteration of

the process (Pyster & Olwell, 2013). It is in contrast to a multi-pass process.

Multi-pass Describes a process whereby either the whole or a subset of the process model is

repeated during the system’s life cycle (adapted from Pyster & Olwell, 2013). It is in

contrast to a single-pass process.

Iterative Describes a process whereby either the whole or a subset of the process model is

repeated during the system’s life cycle (adapted from Pyster & Olwell, 2013). It is

synonymous to multi-pass and is in contrast to a single-pass.

Incremental An incremental process is an iterative process with the additional condition that the

system requirements were contiguously partitioned and delivered in successive

versions of increments in features and functions (adapted from Mooz, Forsberg, &

Cotterman as cited by Pyster & Olwell, 2013).

Sequential Describes a process where versions of a system is defined and developed strictly in

sequence one after another (Pyster & Olwell, 2013). Note that the adjective is used to

describe the sequential nature of the pre-production phases of the process and does

not imply that the whole process has to be sequential. A sequential process model has

5 Pyster and Olwell (2013) use the words “Single-step” and “Multi-step” to distinguish

between a process that takes only a single pass to produce a complete system and another
process that takes multiple pass to produce a complete system. The word “step” might be
confounded with the steps that comprise a process model. As such, the word “pass” is used.

 40

Adjective Description

the lowest overlap (in fact, no overlap) of pre-production phases when compared to

opportunistic and concurrent process models.

Opportunistic Describes a process where subsequent versions of a system after the first is defined

and developed contingent on the presentation of a sufficiently attractive opportunity,

such as maturing desired technology or availability of key personnel (Pyster & Olwell,

2013). An opportunistic process model has higher overlap of pre-production phases

compared to a sequential process model, but less overlap compared to a concurrent

one.

Concurrent Describes a process where subsequent versions of a system after the first is defined

and developed concurrently. While not necessary it is recommended to ensure

concurrently produced versions of the system are contiguous parts of the system with

low modular coupling (adapted from Pyster & Olwell, 2013). A concurrent process

model has the highest overlap of pre-production phases compared to sequential and

opportunistic process models.

Unconstrained Describes a process where a system is produced through an unconstrained order of

phases.

Ordered Describes a process where a system is produced through a well defined order of

phases.

In the following subsections, these seven process models are examined in

detail: (1) Waterfall; (2) Waterfall-with-feedback; (3) Vee; (4) Evolutionary and

Incremental Vee; (5) Spiral; (6) Agile; (7) and Wave. By understanding the

individual characteristics and principles behind each process model, codified

strategies for each SE process model are developed to guide the customized

allocation of DAMS phases to be put through the CDS model. These SE process

model strategies affect the execution of work packages and milestones through

the DAMS phases and evolve the capability expressed as an instance of the

CDS ontology in a different manner.

 41

a. Waterfall

Figure 6. Waterfall SE process model (After USDoD, 1988).

The Waterfall is a pre-specified, single-pass, sequential and

ordered SE process model, also known as the traditional waterfall model. For the

rest of this thesis, we use the term “Waterfall” to mean this traditional version.

The Waterfall process model could be visualized as an ordered flow

of steps, overlaid on the DAMS life cycle phases as shown in Figure 6. The key

characteristic of the Waterfall process model is that it follows a strict progression

through the life cycle stages without revisiting earlier steps (Pressman, 2010).

It is best used when the requirements for a problem are well

understood in a context that is stable, therefore making it possible to capture all

requirements and complete analysis before design starts. However, in the

 42

modern context characterized by increasing system complexity and shifting

context, the Waterfall’s rigidity limits its application.

Modern systems are rarely implemented in a single-pass ordered

flow, making it difficult to identify and freeze requirements at the start of

programs. Even if requirements could be identified and frozen early, they could

be invalid or irrelevant by deployment if the process execution takes a long time

(Center for Technology in Government, 1998).

For the purpose of this thesis, a purist perspective was adopted

and therefore, the Waterfall process model was treated as one that is totally

insulated from changing requirements once the functional baseline has been

established. Rework encountered would be due to errors in design or

implementation that is only discovered during testing based on the set frozen

requirements (Langford, private conversation, July 15, 2013).

b. Waterfall with Feedback

Figure 7. Waterfall with feedback (After Royce, 1970 and USDoD, 1988).

 43

The classic Waterfall process model is often mistakenly attributed

to Royce (1970), but Royce was not a proponent of the classic Waterfall. His

1970 paper was actually about a Waterfall-with-feedback model and criticized the

use of the classic waterfall. The waterfall-with-feedback adds the feedback

arrows as shown in Figure 7. It is a marked deviation from the Waterfall process

model and is, in essence, as interpreted based on contemporary SE process

terminology, an evolutionary, iterative, sequential, and unconstrained process

model (Royce, 1970).

The model shows that at any part along the waterfall, the capability

delivery organization could revisit an earlier step to rectify any unforeseen

insufficiencies. Royce (1970) anticipated that unforeseen difficulties encountered

after design might be so disruptive that the design has to be revisited bypassing

the immediate steps preceding it. Likewise, the design change could be so

drastic that it warrants a revisiting of the requirement steps (Royce, 1970).

The Waterfall-with-feedback process model has five guiding

principles that further address the weaknesses of the classical Waterfall (Royce,

1970):

 Design first: The departure from the cascading ordered steps of the
classic Waterfall shows up in the first guiding principle to start with
design. To be more specific, a preliminary design is done together
with system conceptualization and requirements analysis (Royce,
1970). The intent was to ensure that conceptualization and analysis
were performed with a clearer appreciation of the consequences
(Royce, 1970).

 Document the design: Focus on a disciplined approach to produce
documents at every step (Langford, 2013b and Royce, 1970).
Royce (1970) justifies the emphasis on design documentation as a
tangible mean to track design progress, establish requirements
traceability and is a key document referred to by downstream steps.

 Do it twice: If the system is an original concept, arrange it so that
the system is only delivered on the second iteration of the whole
waterfall-with-feedback process (Royce, 1970). The first iteration
allows for experimentation to produce a prototype whose usage
would provide feedback to all subsequent steps of the second
iteration (Royce, 1970).

 44

 Plan, control and monitor testing: Prioritize testing related
activities, as formal testing occurs late in the process and
consumes program resources (Royce, 1970). Capability delivery
organizations shall build test models to uncover problems even
before the formal test phase (Royce, 1970). The focus on ensuring
correctness of implementation according to specifications is
reflected in the updated waterfall models as embedded verification
activities before the test phase (Langford, 2013b).

 Involve the user: Involve the user as early as possible and
minimally during (1) systems requirements, (2) preliminary design
review, (3) critical design review, and lastly (4) final system
acceptance review (Royce, 1970). The frequent user involvement
provides a means to evolve the requirements and system design
continually and as early as practicable to avoid propagating invalid
requirements and incorrect design/ implementation.

c. Vee

Figure 8. Vee model (After INCOSE, 2010).

 45

The original Vee model introduced by Forsberg and Mooz in 1991

is a pre-specified, single-pass, sequential, and ordered process like the Waterfall

model, but with three differences: (1) a greater focus on systems engineering

activities; (2) continual need to verify and validate; and (3) evolving baselines of

the system that is decomposed and defined as it moves down the left of the Vee

and integrated and verified up the right of the Vee as shown in Figure 8 (Pyster &

Olwell, 2013; and INCOSE, 2010). Kasser (2010), states that the Vee is a

rearranged waterfall view “for use as a management tool showing the

relationship between design activities and test activities” (Forsberg and Mooz, as

cited in Kasser, 2010).

The Vee model corresponds to the DAMS phases, as shown in

Figure 9, starting with solution-agnostic system conceptualization during the

materiel solution analysis phase before moving down the left-Vee, to

demonstrate and validate system concepts in the technology development

phase. Engineering and manufacturing development occurs at the base of the

Vee. Production and deployment take place along the right-Vee, and end with

operations and support at the tip of the right-Vee.

 46

Figure 9. Left side of the sequential Vee (From INCOSE, 2010).

The Vee model is able to show an extremely high level snapshot of

the system’s passage of time, maturity, baselines as well as upward vertical

validation and downward vertical investigations. According to the INCOSE

(2010):

In the Vee model, time and system maturity proceed from left to
right. The core of the Vee (i.e., those products that have been
placed under configuration control) depicts the evolving baseline
from user requirements agreement to identification of a system
concept to definition of elements that will comprise the final system.
With time moving to the right and with the system maturity shown
vertically, the evolving baseline defines the left side of the core of
the Vee, as shown in the shaded portion of Figure 3–5 (Figure 10 in
this thesis).

 47

As entities are constructed, verified and integrated, the right side of
the core of the Vee is executed (as shown in Figure 11). Since one
can never go backward in time, all iterations in the Vee are
performed on the vertical “time now” line. Upward iterations involve

the stakeholders and are the in‐process validation activities that

ensure that the proposed baselines are acceptable. The downward

vertical iterations are the essential off‐core opportunity and risk

management investigations and actions. In each stage of the
system life cycle, the SE processes iterate to ensure that a concept
or design is feasible and that the stakeholders remain supportive of
the solution as it evolves.

Figure 10. Right side of the sequential Vee (From INCOSE, 2010).

A problem with the Vee-model is that “practitioners tend to forget,

or are unaware, that the Vee is a three-dimensional view as shown in Figure 11

and in its two-dimensional representation it is only an overview of some of the

 48

aspects of the project cycle relating to the development to test and evaluation at

the various phases of the system life cycle while abstracting out all other

information” (Kasser, 2010). A third dimension of the Systems Analysis and

Design Process has to be applied when going down the left-Vee and when

coming up on the right-Vee a System Verification and Integration Process has to

be applied (Forsberg & Mooz, 1995).

Figure 11. Application of System Analysis and Design Process to the Concept
Exploration phase (From Forsberg & Mooz, 1995).

The Vee-model, being a derivative of the classic Waterfall, suffers

from the same weakness of being unable to consider changes in customer needs

during development of the solution system (Kasser, 2010).

 49

d. Evolutionary and Incremental Vee

Figure 12. Evolutionary and Iterative Vee Model (After Forsberg & Mooz, as cited
in Pyster & Olwell, 2013).

 50

The Evolutionary and Iterative Vee is, as the name implies, is an

updated variant of the Vee model with evolutionary and iterative features as

shown in Figure 12. According to Pyster & Olwell (2013), it is used when:

(1) rapid exploration and implementation of part of the system is
desired; (2) the requirements are unclear from the beginning; (3)
funding is constrained; (4) the customer wishes to hold the System
of Interest open to the possibility of inserting new technology at a
later time; or (5) experimentation is required to develop
successive prototype versions.

The Evolutionary and Iterative Vee differs from the Vee model in

that it need not be plan-driven and increments could be opportunistic in nature,

contingent on maturing technology or changes in needs or requirements (Pyster

& Olwell, 2013). As shown in Figure 12 the capability delivery organizations use

increments to develop parts of the system first, but the system cannot function as

a whole until all increments are completed and a system-level test readiness

review (TRR) is conducted. The resulting system could be deployed and

operated providing new system requirements or changes in requirements for the

next evolutionary iteration of the system.

The requirements and architecture framework, within each

evolutionary iteration, is taken to be stable to facilitate the partitioning of

contiguous requirement sets for increments based on some criteria as follows

(Fairley, as cited in Pyster & Olwell, 2013): (1) priority of features; (2) safety-

critical first; (3) user-interface first; and (4) kernel first followed by utilities.

The benefits of the Evolutionary and Iterative Vee are: (1) each

increment has a tight build-verify-validate-demonstrate cycle which is quick to

identify rework and fix defects (Pyster & Olwell, 2013); (2) flexibility to incorporate

in-scope changes to requirements in subsequent iterative builds (Pyster & Olwell,

2013); and (3) long-term flexibility to incorporate scope-changing requirements in

subsequent evolutions.

 51

e. Spiral

Figure 13. The Incremental Commitment Spiral Model (From Koolmanojwong,
2010).

The Spiral model is considered a primarily evolutionary and

concurrent process model (Pyster & Olwell, 2013; Langford 2013b). Boehm was

credited with the introduction of the Spiral model to SE in 1998, which has since

been updated to the Incremental Commitment Spiral Model (ICSM) with the six

risk-based decision reviews shown in Figure 13 (Koolmanojwong, 2010). For the

purpose of this thesis, the Spiral process model refers to this updated ICSM

model. The Spiral Model in Boehm’s (2000) words with emphasis intact:

The spiral development model is a risk-driven process model
generator. It is used to guide multi-stakeholder concurrent
engineering of software intensive systems. It has two main
distinguishing features. One is a cyclic approach for incrementally
growing a system’s degree of definition and implementation while
decreasing its degree of risk. The other is a set of anchor point
milestones for ensuring stakeholder commitment to feasible and
mutually satisfactory system solutions

 52

The main benefit of the Spiral model, apart from its ability to evolve

a system based on changing stakeholder needs, is being able to lower cost by

eliminating infeasible solutions earlier and avoiding rework (Boehm, 2000;

Langford, 2013b).

Risks are “events that can cause the system to fail to meet its

goals” (Boehm, 2000), and are ranked in terms of their combined impact and

likelihood. Risks are addressed by prototyping, modeling, and trade-studies.

During risk analysis, key characteristics of the system are determined and

referred to as process drivers (Langford, 2013b).

The Spiral model is a process model generator, which allows

capability delivery organizations to embark on either “an incremental, waterfall,

evolutionary prototyping, or other subsets of process elements in the spiral

model” (Boehm, 2000) based on the risk patterns identified. The process model

generated would inform the organizations what should be done next and for how

long (Boehm, 2000).

 53

Figure 14. ICSM phase view with DAMS phases (After Koolmanjwong, 2010).

The Spiral model is the first concurrent process model encountered

in this thesis, and it differs from the sequential process model in that life cycle

issues are considered together instead of considering them sequentially, and so

any stakeholder or engineer interested in providing a requirement or design input

can do so at any point in the process (Langford 2013b) as shown in Figure 14.

A successfully executed Spiral process model would invariantly

display the following six characteristics (Boehm, 2000): (1) concurrent rather than

sequential determination of artifacts; (2) consideration of spiral elements6 in each

spiral cycle; (3) level of effort for activities commensurate with risk; (4) level of

6 Spiral elements are (1) critical-stakeholder objectives and constraints; (2) product and

process alternatives; (3) risk identification and resolution; (4) stakeholder review; and (5)
commitment to proceed (Boehm, 2000).

 54

detail for artifacts commensurate with risk; (5) managing stakeholders’ continued

commitment through three anchor point milestones7; and (6) emphasis on life

cycle rather than initial development.

f. Agile

The Agile method is not a process in itself, but a method to be

employed within a defined SE process model (Pyster & Olwell, 2013). The Agile

method could be used in an evolutionary process model (Pyster & Olwell, 2013).

The process model employing the Agile method could also be sequential,

opportunistic or concurrent depending on the system partitioning needs and

technical competency of the capability delivery organizations with the agile

process (Fruhling & Tarrel, 2008).

The INCOSE SE Handbook (2010) states that project execution

methods can be described on a continuum from “adaptive” to “predictive” and

agile methods are on the “adaptive” end. Despite being adaptive in nature, agility

is neither “unplanned” nor “undisciplined” (INCOSE, 2010). It is guided by four

key values in the Agile Manifesto (Bent et al., 2001):

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

An Agile process flow usually follows a Scrum method, as depicted

in Figure 15, where there are two main threads of SE activities at a given point in

time.

7 Three anchor point milestones: (1) Life Cycle Objectives (LCO), (2) Life Cycle Architecture

(LCA), and (3) Initial Operational Capability (IOC).

 55

Figure 15. Agile model (After Boehm & Turner, as cited in Pyster & Olwell, 2013
and Fruhling & Tarrel, 2008).

The first thread is the Scrum thread that starts as a list of system

backlog requirements is allocated by the system owner and scrum master to the

team for a sprint (usually thirty days) (Fruhling & Tarrel, 2008). These allocated

requirements are frozen for the duration of the sprint (Fruling & Tarrel, 2008).

The scrum master expands the requirements into discrete tasks to be further

allocated to the team which would then implement them with a daily rhythm that

involves a scrum meeting (Pyster & Olwell, 2013). The meeting called by the

scrum master allows every team member to provide a short update on what has

been done, what problems they have, and what they would do before the next

meeting (Fruhling & Tarrel, 2008; Pyster & Olwell, 2013). The Scrum thread ends

with the sprint, and usually results in the delivery of a system with incremental

functionality.

 56

The second thread is the System backlog management thread

(depicted by the orange arrows in Figure 15). The system owner controls the

backlog through the scrum master, and ensures the central and continual re-

prioritization of the requirements (Fruling & Tarrel, 2008). The requirements could

be changed or added due to the requirements being deemed invalid through

hands-on with the incremental version of the system or as discovered by the

team during scrum sprints (Fruling & Tarrel, 2008).

These two threads could either happen sequentially or

concurrently, depending on the team’s grasp of the requirements. If the

requirements are not well-defined, the team should perform these threads

sequentially to leverage on the down-time between sprints to seek clarity on the

requirements (Fruhling & Tarrel, 2008). Advanced teams, could perform these

threads concurrently, and may even have multiple Scrum threads developing

multiple incremental versions of the system concurrently (Fruhling & Tarrel,

2008).

With respect to the DAMS life cycle phases, the Agile method is

suitable to be used within SE processes during the Technology Development

phase and the Engineering & Manufacturing Development phase as the frequent

and rapid builds would be too expensive during and after the Production &

Deployment phase.

g. Wave

The Wave process model is a meta-process model view of the

Trapeze model developed specifically for use with the delivery of acknowledged

SoS capabilities. Dahmann et al. (2011) pointed out that many other SE process

models were predicated on the capability delivery organization’s ability to “define

boundaries and requirements clearly and to control the development environment

so that requirements can be optimally allocated to components,” a premise that is

no longer valid in an SoS environment.

 57

The Trapeze model is an SE model for SoS and identified seven

core SoS SE elements (ODUSD [A&T] SSE, 2008): (1) translating capability

objectives, (2) understanding systems and relationships, (3) assessing

performance to capability objectives, (4) developing and evolving an SoS

architecture, (5) monitoring and assessing changes, (6) addressing requirements

and solution options, and (7) orchestrating upgrades to SoS.

The Wave model shown in Figure 16 is a process-space

visualization, with the model showing the time-sequenced steps overlaid on the

needed SoS SE elements from the unwrapped Trapeze model on the left

(Dahmann et al., 2011). “The arrows between the wave model elements depict

the normal process flow, and the embedded circles in the arrows indicate that

there may be and usually is back-and-forth iteration between these elements”

(Dahmann et al., 2011).

Figure 16. The Wave Model with the Unwrapped Trapeze Model (From Dahmann,
Rebovich, Lowry, Lane, & Baldwin, 2011).

Dahmann et al. (2011) suggest that the Wave model is suitable for

SoS SE as it has several characteristics that reflect the attributes of SoS: (1)

multiple overlapping iterations of evolution; (2) ongoing analysis; (3) continuous

input from external environment; (4) architecture evolution; and (5) forward

movement with feedback.

 58

Table 8 shows the additional information artifacts required by the

Wave meta-process model as the capability delivery organizations go through

the six steps of the model: (1) initiate SoS; (2) conduct SoS analysis; (3) develop

and evolve SoS architecture; (4) plan SoS update; (5) implement SoS update;

and (6) continue SoS analysis.

 59

Table 8. Information artifacts for the six steps of the Wave Model (From
Dahmann et al., 2011).

 60

E. CAPABILITY DELIVERY ONTOLOGY

The U.S. DoDAF is an “overarching, comprehensive, and conceptual

model” that supports six core processes pertaining to capability delivery: (1)

JCIDS process that ensures warfighters receive the capabilities required to

execute their assigned missions successfully; (2) the DAMS management

framework that translates mission needs into operational capabilities through a

series of milestones; (3) the use of Systems Engineering that is required by DoD

acquisition policies to establish a holistic life cycle perspective of the SoI; (4)

program management processes; (5) Portfolio Management through architectural

description; and (6) business & mission operations (DoD Chief Information

Officer, 2012).

Vitech’s CORE 8 Architecture Definition Guide describes a working

ontological model based on DoDAF Version 2.0 (Vitech, 2011). This section

reviews a subset of the model selected for the purpose of describing the key

concepts relating to JCIDS’s capability needs, DAMS life cycle phases, Systems

Engineering and Program Management through the use of SEP models

strategies to guide capability delivery.

In order to describe how a capability is taken through its life cycle by the

capability delivery organizations, the ontology captures the three complementary

domains relating to the: (1) capability’s operational architecture; (2) system

architecture; and (3) program management as shown in Figure 17. The

operational architecture documents the envisaged capability’s operational

concepts through its activities, tasks, and military performers. The system

architecture records the corresponding requirements on the functions of a

physical component.8 The program management domain tracks the program

activities needed as per the capability’s life cycle phase and the program

8 A component in the CORE ontology is recursive composite entities that represent an SoS

or system type (Vitech, 2011).

 61

elements9 needed to accomplish it. The three domains are intricately woven

together, with the operational architecture defining solution-agnostic functions to

support their capability needs, the systems architecture defining the system

components that would perform these functions, and the program management

executing the program elements needed to supply the system components.

Figure 17. Operational, system & program domains in CORE’s Schema (From
Vitech Corporation, 2011, used with permission).

The program management domain could be further elaborated as

shown in Figure 18, whereby a capability delivery organization could be

responsible for the various ontological entities as shown. Of particular interest to

this thesis is the organization’s assigned responsibility for a program activity

(such as a DAMS life cycle phase or step in a process model), and the

9 The program element in the CORE ontology is a recursive composite entity that represents

either a program, project, work package or task (Vitech, 2011).

 62

organization’s assigned program elements (work packages) to implement the

architecture or the physical components (parts and whole of an SoI) of a

capability.

Figure 18. Model of capability delivery organization in CORE’s Schema (From
Vitech Corporation, 2011, used with permission).

The CORE 8 ontology represents a working ontology that has been

rigorously improved and used for model-based systems engineering. The CORE

8 ontology is chosen as the base over which an extended CDS ontology would

be proposed because it is familiar to both defense academics and practitioners.

The CDS ontology with emergence developed in this thesis would be more

readily adapted or extended in part or whole to other DoDAF compatible

research.

 63

III. RESEARCH APPROACH

This chapter discusses the scope of the research pertaining to the

capability delivery system, and the overall approach to achieve the research

objectives provided in Chapter I.

A. OVERVIEW

 Section B scopes the CDS and identifies inputs and noise factors to
which the CDS is subject.

 Section C presents an extended capability delivery ontology with
the central theme of emergence.

 Section D describes how the ontology would be used by the CDS
through the DAMS life cycle phases.

 Section E specifies how a subset of the SE process model
strategies would influence the generic flow of DAMS events and
work packages.

 Section F elaborates on the potential input, control and output
variables for a CDS Simulator (CDSS).

 Section G explains the impetus behind developing a CDSS based
on the proposed ontology with emergence.

B. SCOPE OF THE CAPABILITY DELIVERY SYSTEM

The earlier sections covered the capability-based approach towards force

modernization supported by the JCIDS, the differences between systems and

SoS, how desired capabilities are implemented based on desired emergent traits

of the SoI, the DAMS working model of a system’s life cycle, and the use of a

variety of SE processes to help manage the complexity of delivering modern

systems.

Figure 19 shows a high level map of how the various concepts come

together to form a meta-model of capability delivery. A capability need is

conceived by its sponsors and put through the JCIDS. JCIDS would assist the

JROC and the corresponding MDA to decide if this need is valid and warrants a

materiel solution. If so, the MDA would then decide the appropriate entry

 64

milestone depending on the technological and operational maturity of the

materiel solution. The capability enters the DAMS at the milestone designated by

the MDA after a positive MDD and is taken through its life cycle, gradually

maturing the SoI that would implement the capability until its deployment. The

SoI would be realized by many capability delivery organizations that change

along its life cycle as depicted at the bottom of the figure. The organizations

interact with each other based on the chosen SE process to satisfy DAMS

requirements. The black block that separates these organizations from the

maturing SoI represents the organization’s fog of emergence that could influence

the perception of the system’s achieved performance and their engineering

decisions.

Figure 19. Conceptual scope for a Capability Delivery SoS (After OUSD AT&L,
2008).

 65

Figure 19 shows a high level map of how the various concepts come

together to form a meta-model of capability delivery. A capability need is

conceived by its sponsors and put through the JCIDS. JCIDS would assist the

JROC and the corresponding MDA to decide if this need is valid and warrants a

materiel solution. If so, the MDA would then decide the appropriate entry

milestone depending on the technological and operational maturity of the

materiel solution. The capability enters the DAMS at the milestone designated by

the MDA after a positive MDD and is taken through its life cycle, gradually

maturing the SoI that would implement the capability until its deployment. The

SoI would be realized by many capability delivery organizations that change

along its life cycle as depicted at the bottom of the figure. The organizations

interact with each other based on the chosen SE process to satisfy DAMS

requirements. The black block that separates these organizations from the

maturing SoI represents the organization’s fog of emergence that could influence

the perception of the system’s achieved performance and their engineering

decisions.

The red box shows the scope of the Capability Delivery System (CDS).

The JCIDS is considered to be out of scope, but it provides important: (1) initial

inputs; and (2) noise factors to the CDS. The initial inputs are the capability

needs, available technology, and resources for the CDS. A necessary and logical

outcome of a capability-based approach facilitated by the JCIDS means that the

changing face of war, political landscape, and technologies could trigger a

modification, invalidation, or insertion of requirements even while the SoI was

undergoing development. These enter the CDS as noise factors that are beyond

the control of the CDS, but must be dealt with in order to ensure that the

capability as-deployed matches the relevant capability requirements at the time.

These input and noise capability factors are assumed to be accompanied by a

positive MDD. Any capability need that is unable to obtain the MDD would not be

able to enter the CDS and hence will not be a factor.

 66

The systems engineering processes selected by the organizations to help

realize the SoI, would help them decide what to do and for how long in

accordance to DAMS deliverables, as well as analyze, detect, and know about

the SoI’s full suite of emergent traits.

C. CAPABILITY DELIVERY ONTOLOGY WITH EMERGENCE

The CORE 8 ontology reviewed in Chapter II was extended to reflect the

axiomatic concepts regarding the fog of emergence; specifically the difficulty

experienced by capability delivery organizations to know the actual extent of an

SoI’s many emergent traits due to both the indeterminate nature of some

emergent traits, multiplicity of contexts (especially divergence between context

designed for and the actual contexts in which the SOI would be deployed), and

system darkness.

The fog of emergence as shown in Figure 20 is a representation of the

organization’s knowledge of emergence as a state transition diagram. Simply put

this diagram shows that a capability delivery organization’s knowledge of any

emergent trait is subjective and runs a gamut of no knowledge to full knowledge

against an external objective manifestation of that same trait, which is intrinsically

exhibited by the functions performed by a SoI component.

 67

Figure 20. Fog of Emergence.

Figure 20 shows that an initially “Unknown” emergent trait exhibited by a

function performed by a given component (part or whole of a SoI) could be

classed as either an “Unexpected Indeterminable” or “Unexpected Determinable”

emergent trait. Recall that due to system darkness and multiplicity of contexts for

the as-deployed SoI, where on one hand, an emergent trait that is

“Indeterminable” is one that could only be detected together with the operation of

the SoI in its multiple as-deployed operational contexts. “Determinable”

emergent traits, on the other hand, arise due to the interaction of SoI parts in the

intended Mission context.

If an emergent trait is assigned as a desirable functional requirement or

analyzed in its as-intended context, it becomes “Partially Expected.” A “Partially

Expected” emergent trait could occasionally become “Fully Expected” through a

 68

successful and complete analysis of the mechanisms through which the

emergent trait arises.

After the component is integrated, the fog of emergence for that emergent

trait automatically transits the various states of expectation to the corresponding

states of knowledge as shown in Figure 20. The inherent simplifying assumption

here is that we assume that when an emergent trait is expected, the

organizations would be in a position to employ the appropriate methods, tools,

and measures to detect and hence know about it after the component is

integrated.

Similarly, the transition from a lower state of knowledge of an emergent

trait to a higher state knowledge of emergent trait occurs when the organization

detects more of the exhibited emergent trait through the testing or operation of

the component.

Finally, Figure 20 shows that the fog of emergence may never be lifted

fully when the SoI is deployed, especially if the various organizations are no

longer actively seeking to discover and measure potentially unknown emergent

traits until these traits result in a delayed systemic failure of the system.

The transitions from lower states of knowledge to higher states of

knowledge are influenced by the competency level of the organization to analyze

and detect this trait using the appropriate methods, tools and measures.

Specifically, for each emergent trait, there is an engineering sub-domain and a

corresponding level of competency in that domain to be able to analyze and

detect it. An organization that has a low level of competency would logically have

a lower chance of analyzing or detecting the emergent trait even if the trait was

manifested and experienced during operation.

The extended CDS ontology with emergence that is consistent with the

narrative of how the fog of emergence could be lifted by Organizations during

capability delivery is shown in Figure 21. The new entities of Fog of Emergence,

Emergent Trait, Mission Context, and their associated links are highlighted in red.

 69

Figure 21. Extended CDS ontology with emergence (After Vitech Corporation,
2011, used with permission).

An Organization’s perception of the SoI’s performance (achievement of

Requirements for Functions performed by Components) is always obscured by

the Fog of Emergence. The dotted lines between: (1) Emergent Trait and

Requirement; and (2) Mission Context and Intended Mission, show a proper

subset relationship. The set of Requirements desired of an SoI’s Function is a

proper subset of the full suite of Emergent Traits exhibited by the same Function.

The Intended Mission is a proper subset of the multiplicity of Mission Context that

 70

the SoI would be tasked to undertake in its lifetime regardless of design

intentions. An Organization’s natural propensity to focus on the Requirements

and Intended Missions give rise to the Fog of Emergence, where the

Organization only sees a subjective view of the objective reality.

D. USE OF CDS ONTOLOGY BY THE CDS

1. Narrated Walk-Through

The following narrative walks through how the CDS ontology with

emergence would be used to capture the evolving products and SoI components

of the capability and its delivery by the organizations responsible, with the entities

of the ontology capitalized bolded for emphasis.

During the early phases of capability delivery, the JCIDS match capability

needs to capability providers. The input for the CDS comes in the form of an

Operational Architecture. The Operational Architecture captures the

Capability needed which forms the basis for an Operational Activity to be

performed by a military Performer to achieve an Intended Mission.

The CDS starts with the MSA Program Activity, where the Program

Elements comprise conceptualization of operations and developing a value

system for the stakeholders to perform an Analysis of Alternatives (AoA). These

are represented by the refinement of Operational Activities and Intended

Mission contexts, which helps identify the implementing Functions. The

stakeholders would then define a measure for the satisfactory performance of the

Function as a Requirement. The Analysis of Alternatives would use these

Requirements to evaluate alternative Components in their performance of

these Functions and culminates in a sub-Program Activity that reviews the

readiness to complete MSA and proceed to TD Program Activity.

The TD Program Activity starts with the Milestone A sub-Program

Activity. During the TD phase, the main Program Elements would involve

refining the System Architecture by building a number of competing prototype

Components. Using these prototypes during demonstrations, users could

 71

identify insufficiencies in Operational Activities and Intended Missions, and

competing vendors could assess how their prototype Components would

perform when operated by the users against the desired Requirements. The

System Architecture would continually be refined until a high-confidence

system-level design of the baselined system is produced and captured in the

Preliminary Design Review (PDR) report Product. The PDR report would be

reviewed at the PDR sub-Program Activity, after which the Capability

Development Document (CDD) Product would be prepared for the eventual

transition to the EMD Program Activity.

The Milestone B sub-Program Activity starts the EMD Program Activity.

There are two main threads of Program Elements, with the first being the

Integrated System Design Program Element and the second being the System

Capability & Manufacturing Process Demonstration Program Element. The

Integrated System Design Program Elements straddle the design-review sub-

Program Activities, where the capability delivery Organization would have a

chance to analyze both their design Products and prototype Components for

insufficiencies. With the design review sub-Program Activities completed, the

System Capability & Manufacturing Process Demonstration Program Element

begins. The Program Elements to build both the mission and support

Components straddle the repeated DT&E sub-Program Activities. Through

these activities, the capability delivery Organization, together with the user,

would have a chance to assess the performance of the developed Components,

and also identify new Operational Activities and new Intended Missions for

the next iteration. When the Systems Architecture and developed

Components were demonstrated to meet Requirements of Functions that

implement the needed Operational Activities of a Capability for the Intended

Missions during a DT&E Program Activity, a Program Element to produce the

Capability Production Document (CPD) Product would begin.

The P&D Program Activity begins with the Milestone C sub-Program

Activity to authorize entry into LRIP. The Program Elements to prepare the

 72

minimum production baseline and production-representative Components would

lead up into an IOT&E sub-Program Activity where the mission and support

Components would be evaluated in their Intended Mission contexts. A

satisfactory IOT&E sub-Program Activity would lead to preparation of a

“Beyond LRIP10“ Product and FRP Decision Review sub-Program Activity.

Program Elements to execute FRP and deployment of Components would

follow and lead up to successive FOT&E sub-Program Activities. When the full

SoI Components have been evaluated satisfactorily against the Requirements

of Functions that implement the needed Operational Activities of a Capability

for the Intended Missions, Program Elements to perform military equipment

valuation would begin to transit to the O&S Program Activity.

The O&S Program Activity is marked with continual SoI Component

operations and support Program Elements and broken up by occasion repeated

review sub-Program Activities. This is where the previously unintended

Mission Contexts would start emerging and where previously unanticipated

Emergent Traits would manifest. However, even if the Emergent Traits

manifest, they might not be detected as the capability delivery Organizations

only know about these traits through a competency dependent Fog of

Emergence.

Appendix A describes the same flow of Program Activities, sub-Program

Activities, Program Elements, Products, Systems Architecture and SoI

Components as described above in an N2 chart format. This table shows the

specific deliverables, and focus on different parts of the ontology through the

various life cycle phases with processes such as Program Activities and

Program Elements forming the diagonal spine of the N2 chart, and objects such

as Products, Systems Architecture and SoI Components as the output and

input to the diagonal spine.

10 A “Beyond LRIP Report” provides the knowledge to support the MDA’s decision to

proceed beyond LRIP. The report captures knowledge that demonstrated control of
manufacturing process and reliability.

 73

Throughout the various Program Activities of the Capability’s life cycle,

the higher the Organization’s competency level in the requisite engineering

competencies to measure the Emergent Trait, the greater the chance to pick up

on it. During Program Activities prior to any SoI Component being tested in its

intended environment, the Organization has a chance to know of determinable

Emergent Traits arising from analysis of design Products. After the SoI

Component is built and tested in its operating environment, the Organization

has a chance to know of previously indeterminable Emergent Traits arising from

the use of the SoI Component both in its Intended Mission environment as well

as as-deployed Mission Contexts.

2. Diagrammatic Relation Between the Ontology and DAMS Life
cycle Phases

By aggregating the CDS ontological entities into the Operational

Architecture, System Architecture, implemented SoI Component, we could map

how these aggregated entities are affected by DAMS life cycle phases (which are

main and sub-Program Activities) as shown in Figure 22.

The five DAMS life cycle phases and key sub-Program Activities are

captured as rows. The column headers follow a generic problem solving process,

where we: (1) analyze the problem to determine requirements; (2) design and

architect a solution to those requirements; (3) develop and acquire a

system to the design; and (4) integrate and test the system developed. The fifth

column shows the main outcome for each corresponding row’s flow through of

the generic problem solving process.

These Program Activities result in the production and refinement of the

corresponding CDS ontological entity in the final row; (1) Sub-Program Activities

to perform Analysis and Requirements would produce or refine the Operational

Architecture; (2) Design & Architecture sub-Program Activities would produce or

refine the System Architecture; (3) Development & Acquisition sub-Program

Activities would produce SoI Components built according to the System

 74

Architecture; and (4) Integration & Test would result in SoI Components being

validated against the Operational Architecture. The fifth column shows that the

Fog of Emergence is the main outcome when these sub-Program Activities are

performed with a focus on Intended Missions and Requirements instead of As-

Deployed Mission Contexts and Emergent Traits.

Figure 22. Relationship between the CDS Ontology and DAMS main and sub-
Program Activities

 75

Certain mapping of sub-Program Activities such as LRIP and FRP to

“Design & Architecture” remains contrived, however, the overall mapping falls

naturally in place and allows a reader to quickly grasp how each the DAMS life

cycle phases would increasingly refine a Capability’s Operational Architecture,

System Architecture and SoI Components through a process of analysis-design-

build-test.

E. INFLUENCE OF SE PROCESS MODEL STRATEGIES ON THE CDS

While seven SE process models have been reviewed, the SE process

model strategies were encoded and used to influence the sequential or

concurrent allocation of DAMS life cycle main and sub-Program Activities to

deliver a capability using three common SE process models in this exploratory

research: (1) the classic Waterfall, (2) the classic Vee, and (3) the Spiral.

1. Waterfall DAMS Strategy

As reviewed in Chapter II, the Waterfall SE process model is a pre-

specified, single-pass, sequential and ordered process model. The allocation of

DAMS life cycle main and sub-Program Activities (previously discussed in Figure

22) to the Waterfall process model would be a straightforward affair, where each

program activity would happen in the sequence as captured with no additional

SEP model-specific Program Activities.

A unique behavior of the Waterfall model would be that it is insulated from

changing Capability needs, and the only type of rework it allows for would be for

verification-type rework. Verification type rework would be rework due to

erroneous work done for requirement engineering, system design, development

and acquisition that cannot be verified against a precedent Program Activity

artifact (for example erroneous requirements developed derived from capability

needs captured in the MDD, or wrong implementation of a design based on an

Integrated System Design document).

 76

The DAMS life cycle Program Activity allocation strategy and SEP model

specific behaviors are tabulated in Table 9.

Table 9. Waterfall DAMS Strategy

 Waterfall DAMS Strategy

Description Pre-specified, single-pass, sequential and ordered

Sequential or
Concurrent

Allocation of
DAMS activities

Sequential and one is to-one mapping of DAMS
Program Activities for capability delivery

Behavior

Goes through corresponding DAMS phases in strict
order

Verification-type rework: Only does rework for
erroneous work packages based on a fixed initial set of
requirements derived from Capability needs.

2. Vee DAMS Strategy

The Vee model as reviewed in Chapter II is taken to be a pre-specified,

sequential and ordered process model much like the Waterfall model, but with

greater focus on the use of Systems Engineering, Verification and Validation

(V&V), Decomposition along its process.

The DAMS life cycle Program Activities would be allocated in a one-to-one

manner, with the flow between activities to be strictly sequential and in order.

However, as there is additional focus on V&V by the Vee model, corresponding

Program Activities would be added when going down the left of the Vee (Figure

23) and coming up the right of Vee (Figure 24).

When going down the left of the Vee, the Vee model follows a System

Analysis and Design process to develop the Concepts of Operation and “Build

To” specifications. When coming up the right of the Vee, the Vee model follows a

System Verification and Integration process to verify correctness of

implementation of sub-components to the specifications before approving the

integration of sub-components into an aggregated component.

 77

Figure 23. Application of the System Analysis and Design Process down the left
of Vee11 (From Forsberg & Mooz, 1995)

11 Figures 23 and 24 were cropped from Forsberg & Mooz 1995 paper. The truncation of text

within text boxes was inherent from source.

 78

Figure 24. Application of the System Verification and Integration Process to the
right of Vee (From Forsberg & Mooz, 1995)

Additional Vee model specific behavior is that it recognizes validation-type

rework. Validation type rework is work done to rectify shortcomings in initial

Capability Needs and intended Mission contexts.

 79

The DAMS life cycle Program Activity allocation strategy and SEP model

specific behaviors for the Vee model are tabulated in Table 10.

Table 10. Vee DAMS Strategy

 Vee DAMS Strategy

Description
Pre-specified, sequential, and ordered like waterfall
with greater focus on SE, V&V, and
decomposing/integration of system baselines

Sequential or
Concurrent

Allocation of
DAMS activities

Sequential and one is to one mapping of DAMS
Program Activities for capability delivery.

Additional SEP model specific Program Activities
would be added for going down the left of the Vee
and coming up the right of the Vee.

Behavior

Goes through corresponding DAMS phases in strict
order

Does verification-type rework for erroneous work
packages based on a fixed initial set of requirements.

Allows validation-type rework if SoI does not work
according to newly discovered mission contexts.

3. Spiral DAMS Strategy

The Spiral model as reviewed in Chapter II is an evolutionary and

concurrent process model with greater focus on risk-based decision reviews.

The allocation of DAMS life cycle Program Activities for capability delivery

can be templated based on Figure 25. The total CDS ontological entities could be

partitioned into three contiguous sets to be delivered in three iterations. The

Program Activities of the Spiral model has to arranged sequentially with some

concurrent overlaps between iterations. The concurrent nature of the spiral

model is not limited to overlaps between iterations, and as reviewed in Chapter II,

manifests as overlaps between Program Activities within an iteration as shown in

Figure 14.

A unique behavior of the Spiral model is its process generation behavior,

which means that when the context suits the use of another process model, the

 80

Organization could choose to deliver a particular increment using another

process model.

The DAMS life cycle Program Activity allocation strategy and SEP model

specific behaviors for the Spiral model are tabulated in Table 11.

Figure 25. Concurrent development between iterations of spirals (From OUSD
AT&L, 2008)

 81

Table 11. Spiral DAMS Strategy

 Spiral DAMS Strategy

Description Evolutionary (multi-pass) and concurrent (with overlaps of
activities between and within iterations)

Sequential or
Concurrent

Allocation of DAMS
activities

Partition CDS Ontological entities into three contiguous
sets to be delivered iteratively

First iteration to perform all DAMS Program Activities:
MSA1, TD1, E&MD1, P&D1, and O&S1. for the first set of CDS
ontological entities

Second incremental iteration to perform TD2, E&MD2,
P&D2, O&S2 for the second set of CDS ontological entities.
TD2 to kickstart during E&MD1 and to be executed
concurrently. (Refer to Figure 25)

Third incremental iteration to perform TD3, E&MD3, P&D3,
O&S3 for the second set of CDS ontological entities. TD3 to
kickstart during E&MD2 and to be executed concurrently.

Within-iteration concurrent execution of Program
Activities that match those specified in Figure 26.

Additional risk-based Program Activities to be added. Even
though typical DAMS Program Activities have included risk-
based reviews, in order to differentiate Spiral from the
other two SEP models, the Spiral model should exhibit a
greater focus on their characteristic risk-based reviews.

Behavior

The Spiral Model is a process generator and may choose to
execute a particular iteration using another SEP model
when the context is suitable.

Ordered, but concurrent flow through the model.

Detected emergence can be factored into next increment’s
TD.

F. INPUT, CONTROL, OUTPUT VARIABLES

1. Input Variables

The following describes the list of User defined input parameters to the

CDS Simulator (CDSS).

 Initial State. A set of parameters representing the initial capability
needs, described by the Capability, its set of Functions, associated
Requirements, associated Emergent Traits, performing
Components and responsible Organizations at the start of
simulation.

 82

 Final State. A set of parameters representing the as-deployed
emergent traits, described by the Capability, its set of Functions,
associated Requirements, associated Emergent Traits, performing
Components and responsible Organizations at the start of
simulation.

 Transitive States. A set of parameters representing the insertion of
capability needs, described by (1) new Components, with their set
of Functions, associated Requirements and Emergent Traits and
(2) existing Components, with their set of updated Functions,
associated Requirements and Emergent Traits. The set of
parameters is tagged with a numerical value corresponding to a
simulation time during which they would be inserted.

 Choice of SEP models. A list of SEP models to be loaded for the
simulation.

2. Output Variables

Conventional wisdom posits that there are gaps between capability

performance articulated as-needed (i.e., what the joint staff wanted), the

performance based on system architecture as-planned (i.e., what the lead DoD

component planned), and the capability of an SoI as-deployed (i.e., what the end

user got and how the end user actually uses the capability). The CDS ontology

with Fog of Emergence allows us to add another set of attributes to a CDS, the

capability performance as-known (i.e., what we know the users would get and

how they use the capability). The four sets of attributes for the CDS are as

elaborated below:

 The as-needed attributes are measured off the set of requirements
associated with capability needs for its Intended Missions from its
initial state towards the end of the capability’s life cycle with
changes due to JCIDS insertion of needs, changing face of war,
politics or appearance of disruptive technologies.

 The as-planned attributes are measured as a proper subset of the
as-needed attributes that a Lead DoD component has recognized
and planned for delivery through the CDS.

 The as-deployed attributes are simply the summation of the full set
of emergent traits (beyond those desired as requirements)
exhibited by the functions performed by the SoI components in all
Mission Contexts.

 83

 The as-known attributes are measured off the organizations’
subjective knowledge of the as-deployed attributes as perceived
through the Fog of Emergence. The capability delivery
organizations as well as end-users could only make use of as-
known attributes in their decision making and plans with respect to
capability delivery. The as-known set of attributes can only be
grown through successful analysis of how the SoI would work for
successful detection of the emergent traits exhibited by the SoI in
its operational contexts (which is a subset of all Mission Contexts
but more than the Intended Mission). The as-known is always less
than the as-deployed.

It should also be said that the as-deployed set of attributes is a theoretical

construct as it is predicated on omniscience regarding the set of Emergent Traits

associated with the SoI in all Mission Contexts. However, this as-deployed set of

attributes is meaningful in the context of this thesis as a common benchmark to

examine the CDS performance measure through attributes as-needed, as-

planned, and as-known. The most important contributions of this thesis are: (1) to

provide a CDS ontology that could act as a prism to separate the white light of

capability performance into its constituent colors of “as needed,” “as-planned,”

“as-known” and “as-deployed;” and (2) to gather insights into how capability

delivery Organizations could try to expand their “as-known” perspective as much

as practicable.

3. Control Variables

The following are the variables that the User of the CDSS could control to

explore the effects on the Measures of Interest.

 SEP models provide different strategies toward allocating the
DAMS life cycle phases and toward clearing the Fog of Emergence.

 Variability of capability needs could be directly manipulated through
the number of capability needs inserted into the CDSS during
simulation.

 Complexity of capability implementation could be indirectly
manipulated by varying the number of dummy work packages to be
inserted into the work space. A highly complex SoI is likely to result
in greater rework, as a consequence of relatively lower requirement
engineering, SE, and domain-specific engineering competencies
with respect to the inherent complexity of the SoI

 84

G. IMPETUS FOR EXPLORING CAPABILITY DELIVERY SYSTEM
SIMULATOR

As part of the research approach, a conceptual Capability Delivery System

Simulator (CDSS) and its critical functionalities would be explored. There are four

reasons behind the inclusion of the CDSS.

First, a deeper understanding on the tractability and shortcomings of the

proposed CDS ontology with fog of emergence can be gained from

conceptualizing and exploring the development of critical CDSS functionalities.

Second, the encoded logic within the exploratory CDSS would serve as a

less ambiguous extension of the prose captured in the main paper of this thesis

and facilitate further discussion and improvement of the body of knowledge

regarding capability delivery with emergence.

Third, the measures of effectiveness for capability delivery, as particular

regards to the “as-deployed” attributes, are theoretical constructs that are best

discussed with assistance of a simulator that is built on the CDS ontology with

fog of emergence. This exploratory CDSS is the first step toward developing a

full-fledged simulator system.

Finally, the concepts and software functionalities developed could be also

applied into other capability delivery software applications apart from simulation.

In the following chapters, we would elaborate on the conceptualization of

the CDSS requirements, functionalities and preliminary design before a summary

of the insights gained from the implementation of key CDSS functionalities.

 85

IV. CDSS CONCEPT

As the CDSS is a simulation model based on the CDS ontology with

emergence, which in turn is extended from Vitech’s CORE 8 ontology, the CDSS

might be implemented in Vitech CORE. While the subsequent exploratory

implementation of the CDSS was in JAVA programming language, the CDSS

concepts captured in this chapter would be implementation agnostic in nature.

A. PURPOSE

The purpose of the CDSS is to model the CDS to explore the effects of SE

process models on how the CDS would adaptively change its as-needed, as-

planned and as-known capability needs/requirements given the same as-

deployed capability and noise factors.

The CDS would take in a User defined as-deployed capability and a set of

initial capability needs. The noise factors would include instability of capability

needs provided as capability needs that would be inserted at User-defined

intervals. These inputs are analogous to what the JCIDS would be subjecting the

CDS.

While the CDSS’s primary purpose is to measure the as-needed, as-

planned and as-known capability needs/requirements, the CDSS should also

provide some means to determine the cost and time-taken as the capability

proceeds through its life cycle toward deployment.

The measures of effectiveness for the CDS would be to minimize gaps

between as-needed, as-planned, and as-known. Figure 26 shows how the

capability needs for the capability could change over time and values “x” and “y”

represent the gaps. The as-known line in Figure 26 is lower than the rest, due to

negative emergent traits that decreased the achieved performance of a

requirement from what was planned. The opposite could happen in the case that

emergent traits are known to help raise achieved performance of requirements.

 86

Figure 26. Different types of capability needs over the SoI’s life cycle (After OUSD
AT&L, 2008).

B. SCOPE

The scope for the CDSS is shown in Figure 19; specifically it excludes

modeling of the JCIDS. The inputs and noise factors from the JCIDS would be

made available to the CDSS as user-defined data.

The choice of SE process models and the maturing SoI over the DAMS

life cycle phases as supplied by the capability delivery organizations are within

scope.

C. REQUIREMENTS LIST

The following section captures the list of software requirements derived

from the conceptual model and would be refined iteratively along with the spiral.

They are to be read in totality along with the requirement models that follow in

Section 4 to gain a holistic understanding of the requirements.

1) The CDSS shall model system life cycle phases as Program
Activities based on the Defense Acquisition Management System.

 87

a) The CDSS shall initialize workspaces (comprising of
Program Elements) for each Program Activity and allocate
them to Organizations responsible for them

b) A Program Element is a representation of work that when
performed would contribute to the supply of an operational
architecture artifact, a system architecture artifact, or a SoI
component.

c) A workspace is a collection of Program Elements under the
same Program Activity.

d) The CDSS shall use these Program Activities as the list of
discrete events to drive an event-based simulator.

2) The CDSS shall allow the User to specify a Systems Engineering
Process (SEP) model to be loaded for the simulation (refer to
Chapter III).

3) The CDSS shall adapt the initialization of the phased work
packages and events according to the selected SEP models as
documented in Chapter III.

4) The CDSS shall implement the CDS ontology model as described
in Chapter IV Section. D.2 of this chapter to model how a capability
is matured over its life cycle due to SEP model-specific interactions
amongst the three domains of operational architecture (capability
needs), system architecture (capability implementing system with
emergent traits), and program management (work packages and
events) across the life cycle phases.

a) The CDSS shall allow the User to specify two sets of
capabilities performances for an SoI:

i) As deployed capabilities: The full set of capability
needs, associated SoI, and all emergent traits as
represented in the ontological format from Figure 21.

ii) Initial capability needs: A subset of the capability
needs, parts of SoI and emergent traits representing
what is initially known to the capability delivery
organizations at the start of simulation.

b) The CDSS shall allow the User to specify the values for the
following attributes based on the data table in Table 12:

i) Capability Delivery Organization: A User defined list
of engineering competencies and the level of
competency for each competency possessed by the
organization.

 88

ii) Emergent Trait: A User defined set of engineering
competencies and level of competency needed to
analyze or measure this trait.

c) The CDSS shall allow the User to specify the simulation time
during which the difference in capability needs and SoI
between the initial and as-deployed capabilities would be
inserted into the CDS as noise factors:

i) Consistency of specified time across different runs:
The CDSS shall allow the User to specify in a
consistent manner as to when a particular capability
need and associated parts of SoI is to be inserted
during simulation time.

ii) Consistency refers to the ability to specify this
insertion at the same unit of simulation time across
different runs involving the same sets of capabilities
as defined in Requirement 4.a. The consistency
across runs ensures a common base of comparison
across SEP models.

d) The CDSS shall be able to create random workspaces filled
with the appropriate and work packages for each life cycle
phase satisfying the following sub-requirements:

i) The randomly generated workspaces shall be
validated against the as-deployed capability needs to
ensure that there exist a set of work packages
(program elements) that would supply the needed
Operational Architecture, System Architecture
Artifacts and SoI components that would exhibit as-
deployed emergent traits that satisfies the as-
deployed capability needs.

ii) When a workspace is validated, a random number of
dummy work packages would be randomly inserted
into the workspace. These dummy work packages
would have the same attributes as the true work
packages except that they would fail a verification
check. Dummy work packages represent work
performed that does not contribute productively
towards the supply of any artifacts of SoI
components.

5) The CDSS shall be able determine a pair of estimated cost and
schedule needed to perform a set of work packages is sufficient to
produce the corresponding capability architecture artifact, system

 89

architecture artifact or system component that satisfies the
capability needs within a life cycle phase.

a) Consistency of estimated cost and schedule: The CDSS
shall apply a repeatable cost and schedule estimation
heuristic so that the same cost and schedule would be
calculated for different runs involving the same workspace.

b) The heuristic shall be applied on the initial capability needs
to determine the estimated time and budget for each life
cycle phase.

6) The CDSS shall maintain a time-sorted queue of events comprising
of DAMS Program Activities and SEP-model process generated
events.

7) The initial DAMS and SEP-model process events shall be inserted
into the queue using the time determined in Requirement 5.b.

8) The CDSS shall allow for at least three types of events as listed in
the following sub-requirements:

a) DAMS Program Activity events. They have associated work
packages that when performed help accomplish these
milestones and events.

b) Work Completion events. When the planned work packages
could be completed before their associated event, a “work
completion event” shall be created and inserted into the
time-sorted event queue. This event could potentially be
used to keep track of the amount of slack-time from work
completion to next event.

c) Capability needs insertion events. These are events that
where capability needs are inserted to the CDS at simulation
time specified under Requirement 4c.

9) The CDSS shall process the earliest event in the queue with the
following basic outcomes:

a) As the simulation is event-driven, the time tagged on the
earliest event denotes the effective simulation time. If there
is any cumulative schedule slippage (refer to Requirement
9.k), the effective simulation time shall be the sum of the
time tagged on the event and the cumulative schedule
slippage.

b) The CDSS shall perform a verification check of all work
packages performed up till the effective simulation time and
reveal any dummy work packages inserted according to
Requirement 4.d.ii.

 90

c) The CDSS shall determine how many artifacts and system
components have been supplied based on the current set of
valid work packages performed.

d) The CDSS shall randomly determine if the corresponding
capability delivery organizations would be able to increase
their knowledge of the emergent traits and mission contexts
associated with the set of completed artifacts and SoI
components.

i) The CDSS shall model the possible increase in
knowledge of emergent traits according to the state
transition diagram shown in Fog of Emergence,
Figure 20.

ii) The CDSS shall ensure that organizations could only
lift the fog of emergence on mission contexts during
Requirement & Analysis sub-Program Activities. This
lifting of fog is because organizations responsible for
the operational architecture would be more focused
on identifying concepts of operations.

iii) The CDSS shall ensure that organizations could only
lift the fog of emergence on emergent traits that
manifest in intended missions and are expected as
requirements during the Design and Architecture sub-
Program Activities. This lifting of fog is because of the
tendency for design organizations to design to
requirements for intended missions.

iv) The CDSS shall ensure that organizations could only
lift fog of emergence on emergent traits that manifest
in intended missions during Development and
Acquisition sub-Program Activities. This lifting of fog is
due to the tendency for builder organizations to be
only concerned with building a SoI component to work
in intended missions.

v) The CDSS shall allow organizations to lift the fog of
emergence for mission contexts and for emergent
traits that manifest outside of intended missions
during Integration and Test sub-Program Activities.
This lifting of fog is because integration organizations
would be concerned with how the system would be
used instead of what it was designed for.

vi) The random mechanism shall take in to account the
differences between the required competency level
and the competency level possessed by the

 91

organization to adjust the probability of successful
analysis or detection.

(1) If the required competency level is lower than
the organization’s competency level, the
probability of success is one.

(2) If the required competency level is higher than
the organization’s competency level, the
probability of success should be reduced.

e) Undesirable emergent traits shall be modeled by assigning a
negative value.

f) The achieved performance of a requirement is the
summation of all emergent traits that contribute to it.

g) The CDSS shall reveal work packages corresponding to any
newly known negative emergent trait that does not affect any
desired requirement.

i) Such negative emergent traits represent traits that
arise due to the multiplicity of the as-deployed
operational context and have a real impact on the
performance of the SoI despite being unanticipated.

ii) Even though not associated with any SoI requirement,
such negative emergent traits should be ideally
reduced to zero by going through due diligence to
perform corresponding work packages that would
contribute to their suppression.

h) The CDSS shall calculate an organization’s latest knowledge
emergent traits exhibited by the current set supplied of
artifacts and SoI components as viewed through the Fog of
Emergence.

i) The CDSS shall determine if the latest subjective knowledge
of emergent traits satisfy the latest capability needs.

i) If the traits satisfy the needs and does not have any
known negative emergent traits, this event does not
need to be rescheduled.

ii) If the traits do not satisfy the needs or have known
negative emergent traits, this event has to be
rescheduled.

j) If the event does not have to be rescheduled, the CDSS
shall proceed to process the next event.

k) If the event has to be rescheduled, the CDSS shall apply the
cost and schedule heuristic in Requirement 5 to determine a

 92

new set of work packages to be performed and then to
process the event again but with a new effective simulation
time based on the new estimated time needed.

l) If the event has to be rescheduled, the CDSS shall keep
track of the cumulative schedule slippage in simulation time
units, to allow the existing events in the queue to be offset by
the appropriate amount of simulation time, without a need to
update each and every event in the queue.

10) The CDSS shall allow SEP-model strategies to alter the event
processing basic outcomes listed in Requirement 9 according to the
following sub-requirements. Where conflict arises, this Requirement
shall take precedence over Requirement 9. The list of SEP-model
strategies can be found in Tables 9 through 11 in Chapter III.

a) Addition to Requirement 9.i: The SEP-model strategy may
specify how and when the CDSS would allow capability
delivery organizations to receive new capability needs (if
any) at that given effective simulation time.

b) Addition to Requirement 9.j: If an event does not have to be
rescheduled after being processed, the CDSS shall check to
see if this event is a “work completion event.” The SEP-
model strategy may specify how the CDSS could handle
early completion of work ahead of a scheduled event.

c) Addition to Requirement 9.k: If an event has to be
rescheduled after being processed, the CDSS may use an
SEP-model strategy-specific modification of the cost and
schedule heuristics (Requirement 5) to determine a new set
of work packages to be performed and whether the resulting
updated event could be directly processed or inserted into
the time-sorted event queue.

D. REQUIREMENT MODELS

1. Use Cases

Three use cases for the CDSS are listed as shown in Figure 27. The User

is expected to “Start simulator” which would draw inputs from an Input File.

Thereafter the User could decide either to run in “event trail mode” or “no trail

mode” with the former use case constantly writing to the Console to provide a

textual update on the simulation progress. Both modes would use the “Run

simulator” use case, which in turn prints the final results of the simulation to

Console and to an Output File.

 93

User

1. Start simulator

Capability Delivery System Simulator

Input File

Console

Output File

3. Run simulator
2. Enter

simulation mode

*

*
*

*

*

*

«uses»
*

*

*

*

Figure 27. High-level use cases for CDSS.

For the details regarding the use cases, refer to Appendix B.

2. Data Attributes

This section captures the additional data attributes for the CDS

ontology with Fog of Emergence shown in Figure 20. For the full set of data

attributes, please refer to the CORE 8 Architecture Definition Guide.

 94

Table 12. Additional Data attributes for CDS Ontology with Fog of Emergence.

S/N Attribute Description

Organization

1 Competencies A list of Strings indicating the engineering
competencies that the organization possesses.

Competency levels Competency levels: A list of numerical values (0–1)
indicating the corresponding levels of competency.

Emergent Trait of a Function

2 (Primary Key) Name A String that identifies the name of an emergent trait.
If an emergent trait is desired as a Requirement, this
field has to match the corresponding Name field of the
Requirement.

(Primary Key)
Function

A String that identifies the corresponding Function
that exhibits this emergent trait.

Value A numerical value that can be either negative or
positive denoting the contribution of this emergent trait
arising from the associated Function.

Determinable A numerical value that can be either negative or
positive denoting the contribution of this emergent trait
arising from the associated Function.

Requisite engineering
competencies

A list of String values indicating the requisite
engineering competencies needed to analyze or
measure this emergent trait.

Requisite competency
levels

A list of numerical values (0–1) indicating the
corresponding levels of competencies needed to
analyze or measure this emergent trait.

Fog of Emergence

3 (Foreign Key)
Organization

A String value indicating the name of an Organization.

(Foreign Key)
Emergent Trait

A pair of Emergent Trait-Function String values
identifying the indicating the name of an Emergent
Trait of Function.

State A String value representing the associated
Organization’s state of knowledge for the associated
emergent trait.

Subjective Knowledge A numerical value that shows the Organization’s
extent of knowing the actual contribution for an
associated Emergent Trait.

Function

4 Emergent Traits A numerical value that shows the Organization’s
extent of knowing the actual contribution for an
associated Emergent Trait.

 95

3. Activity Diagram

Output File

Input FileUser Interface Capability Delivery System Simulator

Load waterfall strategy Load waterfall w feedback strategy Load vee strategy Load spiral strategy

Create lifecycle workspace

Read input file

[Waterfall] [Waterfall w feedback] [Vee] [Spiral]

Create event queue

Start simulator

Display status

Prompt for mode
Run simulation

[mode entered]

Periodical update

Pop earliest event

[Has event]

Process event based on strategy

Update time-sorted event queue

[New events created]

[No new events]

End simulation

[No events left]

Print event

[Sim continue & 3 sec passed]

[mode = event trail]

[mode = event trail]

End print

[Sim ended]

[mode = no trail]

Compile results

Display summary

Write report

Update lifecycle workspace

[Changes to work packages]

[No change]

[mode = no trail]

[mode = no trail]

[mode = event trail]

Figure 28. Swimlane activity diagram for the CDSS.

 96

The User starts the simulator using a command through the user interface,

and the CDSS reads the corresponding input file to load an appropriate strategy

for the SE process model and to initialize its internal representation of the

capability life cycle workspace. Using the SE process strategy, a time-sorted

event queue based on the DAMS life cycle events and the SE process model

events would be created. The CDSS displays a summary status of what it has

been initialized with and prompts the user for a simulation mode. The CDSS

notes of the selected mode and begins to run the simulation. If the mode is set to

“no trail,” a parallel update thread for the user interface is created. The main

discrete event processing thread is entered for both cases of “no trail” or “event

trail” mode.

The discrete event processing thread on the right side of the diagram

picks the earliest event from its queue of time-sorted events and processes the

event according to the selected SE process model strategy.

If the mode is set to “event trail,” the simulation thread would print the

details of this event to the user interface, allowing the User to be apprised of the

current as-needed, as-planned, and as-known capabilities. Depending on the

strategies there might be updates due to either the life cycle work packages or

creation of new events.

The thread checks the time-sorted event queue for more events to

process, and if there is an event to be processed, the event processing sequence

is repeated. This discrete event processing thread transitions to end simulation

when there are no more events to be processed.

The “no trail” user interface update thread runs in parallel to the discrete

event simulation thread. The thread simply prints a period to the user interface

every three seconds as a visual indicator to the User that the discrete event

processing thread is still running. This user interface update thread transitions to

end print when the discrete event processing thread ends.

 97

If a “no trail” user interface user interface update thread was created, this

update thread would rejoin the main discrete event processing thread. The CDSS

then compiles the results of the simulated run and writes a full report to the

output file before printing a summary to the user interface and exiting.

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

V. CDSS PRELIMINARY SOFTWARE DESIGN

A. CDSS ARCHITECTURE

The CDSS is a software-intensive system developed using the Java

Platform, Standard Edition 7 without using any Operating System (OS) specific

libraries. The Java Platform provides a Java Runtime Environment that abstracts

the underlying hardware and OS away from the Developer. As long as the User

obtains the appropriate Java Runtime Environment12 for their computers, the

Java Platform would execute the CDSS in the same manner across different

hardware and OSs.

The following section articulates the functional and component

architectures that illustrate all requisite functionality have been implemented.

1. Functional Architecture

Figure 29 shows the CDSS Functional Architecture, up to four-levels of

decomposition of the functions required to implement the requirements of the

CDSS. The leaf functions have been numbered 1 to 21.

The top level functions are:

 Read input: To read the external input file into the CDSS.

 Prepare simulation: To prepare the simulation according to the
inputs received.

 Run simulation: To run the discrete event simulation.

 Record data: To record data to memory.

 Write output: To write data to Excel.

12 Please access http://java.com/en/download/index.jsp to download the latest version of the

Java Runtime Environment appropriate for your hardware and OS.

 100

Figure 29. CDSS Functional Architecture

2. Component Architecture

The Component Architecture allocated with the requisite functions is

shown in Figure 30. The CDSS Executive uses the Initializer, Runner, and Util

components to initialize the simulation before running the simulation, supported

by the utilities of an XML reader, data recorder, and Excel writer.

 101

Figure 30. CDSS Component Architecture

The allocation of functions to components was derived from performing a

N2 chart analysis of the functions, and then grouping the functions through the

heuristics of increasing module-internal cohesion and decreasing module-

external coupling.

As shown in Figure 31, functions 2 through 8 (annotated leaf functions on

page 88), form the Initializer component; functions 9 through 19 make up the

Runner component; and lastly functions 1, 20, and 21 form the Util component.

The Initializer component is broken into the CapabilityInit and EventQInit

components responsible for creating the baseline Capability Architecture and

time-sorted event queues respectively.

The Runner component is broken into three sub components, with

function 9 (queue updating based on SEP strategy) being kept at the parent

component-level as function 9 have coupling with functions from two sub-

components. The EventProcessor component processes the oldest event, the

CapabilityUpdater component updates the Capability Architecture, and the

 102

WorkPlanner component take stock of progress and updates work plans if

required.

The Util component comprise of three sub-components, the XmlReader,

the DataRecorder, and ExcelWriter. These sub-components are highly coupled

with the other components, and hence were kept as an external high-level

component to be re-used instead of redundantly duplicated.

Figure 31. N2 Chart of CDSS Functions and Component Grouping13

13 A “1” in a cell of x-th row and y-th column denotes information flow from the corresponding

function on the x-th row to a function on the y-th column.

 103

VI. EXPLORATORY CDSS IMPLEMENTATION RESULTS

A. SIMPLIFYING ASSUMPTIONS

Although the exploratory CDSS developed as part of this thesis is not fully

functional for the purpose of running experiments, it current form is capable of a

complete normative simulation run.

The normative simulation run takes a specifiable capability need through

all DAMS life cycle activities of MSA, TD, E&MD, P&D, and O&S, driven by a

class Waterfall SE process model, subjected to unstable capability needs that

change during simulation. The fog of emergence for a single capability delivery

organization was implemented and could be dynamically lifted at run-time to

reconcile the organization’s perceived “as-needed,” “as-planned” and “as-

deployed” attributes of a capability as it steps through the capability delivery life

cycle.

While, the exploratory implementation CDSS’s is facilitated by many

simplifying assumptions the underlying software wireframe maintains the

ontological relationships between the CDS ontological entities according to the

proposed CDS ontology with Fog of Emergence. In this section we cover the key

simplifying assumptions. The discussion in the main paper of the thesis shall use

prose and diagrams as much as possible but code snippets will be included

where useful.

1. One-to-one Perfect Match Between Associated CDS
Ontological Entities

In typical systems engineering, the Operational Activities to achieve

Intended Missions of an Operational Architecture are represented as operational

flow blocks that are further refined into Functional flow blocks and Component

hierarchies in the System Architecture. While systems architecting heuristics

advise a one-to-one allocation of function to form, in practice, it is often

unrealistic to ensure that a component is only allocated a single function.

 104

In this thesis, however, we apply this heuristic and assume a perfect

match for associations between CDS ontological entities of the same architecture

type and across architecture types as shown in Figure 32.

For CDS ontological entities such as the Performer, Capability, and

Operational Activity, they would refer to the same set architecture flow blocks.

For CDS ontological entities such as the Component, Requirement, and

Function, they would refer to the same set of hierarchical blocks.

Figure 32. One-to-one perfect match between Operational and System
Architecture Entities

The result of simplification facilitated: (1) greater ease for user input (as

we only need to specify two sets of blocks for the whole CDS ontology); (2)

automated translation of Operational Architecture entities into their corresponding

System Architecture entities; and (3) reduces computing resource usage when

many CDS entities share the same reference to either a recursively

decomposable network of flow blocks or hierarchical blocks.

2. Strictly Sequential Execution of Program Activities

The CDSS is a discrete event simulation, which queues CDS events such

as Program Activity, work completion and capability need insertion using a time-

 105

tag determined using a time-allocation heuristic based on perfect knowledge of

all as-deployed Capability needs, Emergent Traits and Program Elements.

Intuitively, we know that perfect capability delivery is impossible and we

expect a capability delivery Organization that is obscured by the Fog of

Emergence to take a longer time to deliver the same Capability when everything

else is held equal. During the simulation, Program Activities are expected to be

delayed as Organizations encounter rework or choose a less a non-optimal plan

of Program Elements to accomplish the Program Activities.

This means that the CDSS has to dynamically recalculate the time tags for

CDS events when schedule slippages occur. This was circumvented by keeping

track of a single cumulative schedule slippage value. Instead of using CPU

cycles to recalculate the time tags for all CDS events in the queue every time a

schedule slippage occurs, we simply determine that the effective simulation time

is the sum of the original time-tag and this cumulative schedule slippage value.

Unfortunately, even though the exploratory implementation of Program

Activities supports recursive and dynamic flow composition, the work-around

prevented us from leveraging on that behavior. Referring to Figure 33, assuming

we have four Program Activities labeled 1,2,3, and 4 that each activity is

expected to 1,2,3, and 4 days to complete respectively. A delay by one day for

activity 2 would impact the completion dates of all activities that follow it in the

sequential activity flow, but not for the concurrent activity flow where activity 2 is

not on the critical path. A mechanism that only tracks a single cumulative

schedule slippage would not be able to help determine the schedule impact to

non-sequential ordered Program Activities.

 106

Figure 33. Impact of delays for Program Activities

3. Conflation of the “As-Planned” and “As-Known” Perspectives

The CDS ontology and the Fog of Emergence facilitate the discussion of

the divergence between what was “as-planned” and “as-known” by the capability

delivery Organizations. However, in the implementation of the CDSS, it was

assumed that when not subjected to constraints in maximum time and cost for

the overall life cycle, the capability delivery Organization would always plan

based on what they know.

Future work could incorporate the concept of Risk into the CDSS to model

how capability delivery Organizations might choose to plan differently from what

they know.

4. Planning and Execution of Program Elements

Referring to Figure 22 in Chapter III, each sub-Program Activity such as

the Materiel Development Decision, Analysis of Alternatives, or Initial Operational

Test & Evaluation comes with their own set of Program Elements to evolve the

CDS ontological entities. The planning and execution of Program Elements to

accomplish Program Activities are obscured by the Fog of Emergence, namely

due to a capability delivery Organization’s propensity to focus on intended

 107

missions and requirements when delivering a capability instead of looking

beyond that to uncover more mission context and emergent traits the as-

deployed capability would deal with. Furthermore, the Organization is also

subjected to unstable capability needs that may be allocated to the SoI during its

life cycle. These factors combine to make the planning and execution of Program

Elements an interesting challenge to be modeled.

In the exploratory implementation of the CDSS, each cell in Figure 22

comes with a work space of Program Elements. The workspace is a 2-

dimensional box filled with randomly located Program Elements that would

contribute towards producing a deliverable that helps the accomplishment of the

associated Program Activity as shown in Figure 34. When the Organization lifts

more of the Fog of Emergence during simulation time, the accompanying

Program Elements associated with the newly discovered Mission contexts or

Emergent Traits would also be revealed. Furthermore, to model the relative

complexity of the workspace for the Organization, there is a chance that some of

the Program Elements in the workspace are unproductive. That is when an

unproductive Program Element is performed; it does not contribute toward the

accomplishment of the deliverables of the Program Activity.

Figure 34. A Program Activity’s workspace comprised of Program Elements that
help accomplish it.

 108

This representation facilitates the modeling of an Organization’s optimizing

behavior toward planning and execution of Program Elements where they are

expected to try and do enough using the least time and money. To be more

specific, the Organization’s optimizing behavior was implemented using an

analogy of the minimum spanning tree, which is a tree that covers a required set

of nodes with the shortest span of the edges. The span of the edges corresponds

to the time and money expended by the Organization to perform that Program

Element.

In this example, Program Activity requires the production of three

deliverables (green, blue, and orange) and each of the deliverables require two

Program Elements to be performed. Figure 34 shows a minimum spanning tree

that satisfies these conditions. When an Organization performs the planned

Program Elements, they would be able to know if the Program Element was

productive or not. Figure 35 shows a scenario where one of the planned Program

Element turned out to be unproductive (white node), triggering the Organization

to incur more time and money (red edge) to rework a needed Program Element.

Figure 35. Unproductive Program Elements result in rework

 109

The advantage of such a model is that there is no inherent bias towards

any particular SEP model. A SEP model that delivers the capability in increments

may partition the workspace into standalone workspaces and tackle them

incrementally. Another SEP model that delivers a capability in a single-pass

might try to tackle the whole workspace at once.

Conventional Graph Theory implies that a SEP model takes into account

the whole workspace at once, which always yields a better minimum spanning

tree. However, in our model, both the incremental or single-pass SEP models

would be equally obscured by the Fog of Emergence, initially. This obscuration

means the single-pass SEP model might be expending more cost and time to lift

the Fog of Emergence than an incremental SEP model that focused on Program

Elements producing a subset of the deliverables. Hence, incremental SEP model

has a chance of lifting the Fog of Emergence more rapidly.

5. Aggregated Handling of Entity Attributes

The proposed CDS ontology with Fog of Emergence specifies that each

Organization has their own unique set of engineering competencies and

competency levels, and each Emergent Trait has their own corresponding

requisite engineering competency level. This means that an Organization might

be good at analyzing or measuring a particular Emergent Trait while being

relatively poorer at doing the same for another Emergent Trait.

However, in our exploratory implementation, we use a single competency

level and a single requisite engineering competency level for the Organizations

and Emergent Traits. This means that in the normative CDSS run, when an

Organization is given the chance to analyze or measure Emergent Traits, the

Organization would have same probability of success across all Emergent Traits.

The Table 13 captures the use of aggregated handling of attributes that should

have been specified and handled individually.

 110

Table 13. Use of Aggregated Handling in Exploratory CDSS Implementation

S/N Aggregated handling Implication and Mitigation

1

Single competency value and requisite
competency levels to lift the Fog of
Emergence, instead of setting
corresponding values for each Emergent
Trait and each Organization

This means the Organization would always be
equally competent in analyzing and detecting
all Mission Contexts and Emergent Traits
within a single simulation run.

2

Single Requirement threshold value
applied to all Functions

The manifested Emergent Traits for a Function
in a particular Mission Context is set
individually. This means the CDSS still has the
level of resolution to differentiate SEP models ‘
ability to lift the Fog of Emergence between
runs.

3

Single complicatedness and complexity
factor applied to CDS ontological entities of
the same Architecture type.

For example, Capability, Performer, and
Operational Activity fall under the
Operational Architecture while
Requirement, Component and Function fall
under System Architecture.

These values are used to generate the
corresponding DAMS sub-Program Activity
workspaces.

A more complicated workspace is one with a
bigger breathe, allowing a greater dispersion of
Program Elements in the workspace and
hence possibly causing the Organizations
more time and money to do the same Program
Elements than in a less complicated
workspace.

A more complex workspace is one with more
unproductive Program Elements, representing
the Organization’s inability to have a proper
grasp on the workspace resulting in more
probable rework.

This means all Program Activities are equally
complicated and complex if they deal with the
same Architecture type. This should not be the
case as a Technological and Prototype
Demonstration Program Activity that deals with
the building of Components to the Systems
Architecture should not be as complicated and
complex as the Follow-on Integration Test &
Evaluation of a produced SoI.

6. No Penalty for Doing Work Out of Phase

As an Organization lifts the Fog of Emergence or is subjected to Capability

needs inserted into the CDS, it might be triggered to perform Program Elements

associated with a Program Activity that has already been passed. Currently there

is no additional penalty for doing work out of phase. As a recommendation

 111

for future work, the appropriate DAMS life cycle phase for this capability need

could be inserted according to the DoD 5000.02 directive. A penalty function

would need to be developed.

B. DISCUSSION OF KEY FEATURES OF IMPLEMENTATION

This section discusses the result of the exploratory implementation of the

CDSS using the functional architecture described in Chapter V. The top level

functions remain the same, but as not all functions were fully explored some sub-

functional headings were renamed where appropriate to better reflect what was

done.

1. Read Input

While the User does not have the ability to specify user inputs in text or

XML format yet, the current CDSS does provide application programming

interfaces into passing important User inputs to the CDSS.

The two sets of User specified inputs to the CDSS are (1) Initial Capability

need and as-deployed SoI with the full Set of Mission and Emergent Traits, and

(2) when Capability Needs are inserted into the CDSS (if there is a difference

between the Initial Capability need and as-deployed SoI). The application

programming interfaces to set these parameters are elaborated in the next

section.

2. Prepare Simulation

Before the simulation is performed, a number of functions must be

performed to set up the simulation. The following subsections would discuss

what was implemented to: (a) translate User specified start (Capability need) and

end state (as-deployed SoI with full mission sets and Emergent Traits); (b) how

to insert transitive states (Capability need insertion) consistently across runs of

the same capability but using different SEP models; (c) generate baseline

 112

Program Activities and workspaces; (d) determine optimal life cycle workplan;

and (e) how to allocate Program Activities given the strategies of SEP models.

a. Initial Capability Need and As-deployed SoI

In order to specify an as-deployed Operational Activity for a

Capability need similar to that in Figure 33, the code to do that is as listed below

(with redaction). After instantiating the individual flow blocks, the flow relationship

between the blocks are easily set up by calling a function to add the parent-child

relationship or a precedent and antecedent relationship. A sample of the software

code is shown to illustrate the simplicity of setting up the relationship through the

Application Programming Interface.

// Setting up the as-deployed Operational
OperationalArchitecture asDeployedOa = new OperationalArchitecture("A",
 10.0, 40.0, 0.1);

// Setting up flow blocks referenced by the CDS Operational Architecture
// entities
OperationalArchitectureFlowBlock A = new OperationalArchitectureFlowBlock(
 "A");
OperationalArchitectureFlowBlock one = new OperationalArchitectureFlowBlock(
 "1");

...
OperationalArchitectureFlowBlock a = new OperationalArchitectureFlowBlock(
 "a");
OperationalArchitectureFlowBlock b = new OperationalArchitectureFlowBlock(
 "b");

A.addChild(one);
...
a.addFollowingBlock(b);
...
// Auto translate from flow blocks to hierarchical blocks
SystemArchitectureHiBlock asDeployedHiBlock = FunctionFlow2HierarchyMapper

 .translate(A);

// Setting up the as-deployed System Architecture
asDeployedSa = new SystemsArchitecture("A",
 asDeployedOa.getCapabilityThreshold(), 80.0, 0.2,

 asDeployedHiBlock);

// Setting up the list of Missions that the SoI has to achieve
ArrayList<Mission> fullMissions = new ArrayList<Mission>();
fullMissions.add(“M1”);
fullMissions.add(“M2”);

asDeployedOa.setMissions(fullMissions);

 113

// Setting up the Fog of Emergence with what is the end state (asDeplyedSa,
// fullMissions) and the initial state (asPlannedSa)
FogOfEmergence foe = new FogOfEmergence(
 asDeployedSa.getTopLevelHiBlock(),
 asPlannedSa.getTopLevelHiBlock(), fullMissions,
 initialMissions, 0.5, 0.8,

 asDeployedSa.getRequirementThreshold());

// Setting objective and subjective Emergent Traits that manifest in Mission
// contexts, for a set of Functions
foe.setObjectiveEmergentTraits("M1", "Requirements", "All", 0.0);
foe.setObjectiveEmergentTraits("M1", "Requirements", "1,2", -2.0);
foe.setObjectiveEmergentTraits("M2", "Requirements", "All", -1.0);
foe.setObjectiveEmergentTraits("M2", "X", "1", -4.0);

The code in the snippet above shows how a flow block network is

translated into hierarchical structure through a helper class that performs the

translation. Only the top-level flow block has to be specified, as the helper class

would navigate through the parent-children and precedent-antecedent

relationships automatically translate the whole flow network into a hierarchical

structure.

Of interest would be how the Emergent Traits are set into the Fog

of Emergence through the setObjectiveEmergentTraits method that accepts the

following four parameters:

 Mission name: For example “M1” and “M2”

 Emergent Trait type: “Requirements” imply that the Emergent Trait
is expected as a Requirement and would take the same name as
the Requirement. Anything else, such as “X” imply that the
Emergent Trait is not desired as a Requirement.

 Applicable Functions: “All” imply that this Trait manifest in all
functions and anything else implies that this Trait manifests only in
functions listed such as “1, 2.” Note that “All” is usually used with
Emergent Traits expected as Requirements, as by definition all
Requirements of Functions are desired Emergent Traits.

 Manifestation delta: A numerical value that denotes how this
Emergent Trait would manifest with respect to a threshold value. If
this is a Requirement, this delta value would be applied to a
Requirement threshold. If this is not a Requirement, this delta value
represents a negative Emergent Trait that has to be suppressed by
bringing its value up to zero.

 114

Another point of interest would be the setting of a pair of values

representing the complicatedness and complexity associated with the

Operational Architectures and System Architecture. As mentioned earlier under

the discussion on how we aggregated the handling of CDS entity attributes, this

was a quick work around to generate workspaces that work on the associated

Operational and System Architectures instead of setting a unique pair of values

for each workspace.

b. Capability Need Insertion

The exploratory CDSS allows for Capability needs to be injected by

specifying the name of the Capability need block (which is the same as the name

of the Flow Blocks referenced by all Operational Architecture CDS ontological

entities), and a positive numerical value. This value is used to calculate the

actual simulation unit time by which the Capability need is made known to the

Organization.

 // ###
 // TIME-TAGGED INSERTION OF CAPABILITY NEEDS INTO THE EVENT Q
 // ###
 // Here we insert cap need "2" and "3" at 0.1 and 0.4 sim time
 // respectively.
 // The sim time for insertion is calculated using the best solution
 // lifecycle. This also ensures that the cap need would be inserted at
 // the same time across different runs of the same capability
 eventQ.add(new CapabilityNeedInsertion("2", 0.1 * lifecycleSpan));
 eventQ.add(new CapabilityNeedInsertion("3", 0.4 * lifecycleSpan));

The code snippet above shows how Capability needs “2” and “3” are

inserted into the discrete event queue at a simulation unit time of 0.1 and 0.4 of a

value called the life cycleSpan. The life cycleSpan value is derived from pre-

simulation calculation of how long an omniscient Organization would take to

deliver the capability from MSA to O&S. Using this as a common benchmark

allows the CDSS to insert the Capability need at the same simulation unit time

across runs involving the same capability, but different SEP model.

How the Organization deals with it is dependent on the SEP model

employed. If the Organization chooses to take up the new Capability needs, the

 115

corresponding Program Elements would appear in the workspaces for the

Organization and hence affect their planning and execution of work.

c. Generation of Baseline Program Activities and
Workspace

The Program Activity was implemented as a composite data

structure that can have a single parent, many children, precedent and antecedent

Program Activities. The flow heuristic follow two simple rules (1) a parent activity

is considered complete only when all its children is completed and (2) an

antecedent activity could only begin when all its precedent activities are

completed. Referring to Figure 37, parent activity A is only considered completed

when children activities from 1 through 6 are competed. Antecedent activity 6

could only begin after both precedent activities 4 and 5 are completed. Following

this heuristic, both activities 4 and 5 could happen in parallel. Likewise the two

separate children branch of {1, 2} could happen in parallel with the children

branch of {3, 4, 5, 6}.

The current implementation of the Program Activity could support

concurrency but as discussed in Chapter VI.A, the implementation decision

regarding how schedule slippages were tracked effectively rendered the

concurrency feature of the Program Activity to a backseat. The baseline Program

Activities generated in the exploratory implementation of the CDSS is based on

the five main DAMS Program Activities (MSA, TD, E&MD, P&D, and O&S) 20

sub-Program Activities (refer to Figure 22) and is set up in a strict sequential

manner as shown in Figure 36. This strict sequential behavior is enforced

because TD cannot begin until MSA is completed, and MSA is not complete until

all its sequential flowing children of MDD, CD, MBSE and AoA is completed.

 116

Figure 36. Flexibility in implementation of Program Activity

With the 20 sub-Program Activities set up, the CDSS would then

generate the Program Elements needed to accomplish these Program Activities.

Figure 37 captures the heuristics employed to generate these workspaces based

on User specified inputs. Recall that for each Architecture type, there was an

associated pair of complicatedness and complexity numbers. The

complicatedness would be used to bound the workspace. For each CDS

ontological entity (depicted as Hierarchical blocks in Figure 37) and negative

Emergent Trait in the corresponding architecture being evolved by the sub-

Program Activity, a number of Program Elements would be generated (shown as

nodes with the same color). Program Elements to produce the required entities

are shown as circles, while Program Elements to suppress negative Emergent

Traits are shown as triangles. In this example, 16 productive Program Elements

were randomly scattered in an 80 by 80 workspace. The number of unproductive

Program Elements (circles or triangles with dashed borders) to be inserted is

calculated using the complexity figure and rounded down to the nearest integer

value. The unproductive Program Elements are randomly generated, so it is

 117

possible to end up with all four newly inserted unproductive Program Elements to

be for entity 1 or to suppress a single Emergent Trait associated with entity 1.

Figure 37. CDSS generated workspace for each sub-Program Activity

It is important to note that in our implementation we ensure that

even though the locations of Program Elements were random, no two Program

Elements would fall on exactly the same point. This discordance is because we

do not want to have an edge that costs the Organization no effort to traverse.

d. Determining an Optimal Life cycle Work Plan

With the 20 Sub-Program Activity workspaces generated, the

CDSS then determines the optimal life cycle work plan by following the minimum

spanning tree heuristics described in Chapter VI, Section A.3. In this optimal life

cycle work plan determination stage, we take the perspective of an Organization

that is omniscient and avoids unproductive Program Elements and knows the full

 118

suite of Program Elements associated with the as-deployed Capability needs,

Mission contexts and Emergent Traits.

All 20 workspaces would be solved and the respective spans used

to set the corresponding planned start and end times for each Program Activity.

The total life cycle span is also recorded.

e. Preparation of the CDS Event Queue Based on SEP
Model Strategy

The preparation of the CDS discrete event queue for each SEP

model strategy is performed after the determination of the optimal life cycle work

plan. Unfortunately, the current implementation of the CDSS only covers the

Waterfall process model which uses a one to one assignment of optimal life cycle

work plan into the CDS event queue. The other strategies as described in

Chapter III Section E were not been implemented yet.

At this point, Capability Need Insertion events would be created

and inserted into the CDS event queue using the heuristics described in Chapter

VI, Section B.2.b.

The final step in the preparation of the CDS Event Queue would be

to determine the Organization’s work plan based on their subjective knowledge of

the Capability as viewed through the Fog of Emergence. The same minimum

spanning tree heuristics as described in Chapter VI, Section A.3 is applied with

one difference. Instead of applying it on the as-deployed SoI with full Mission

Contexts and Emergent Traits, this time it is applied on the initial Capability need

with partial knowledge of Intended Missions and Emergent Traits that are desired

as Requirements.

Regardless of the starting state, a work plan calculated based on

the Fog of Emergence is guaranteed to be shorter or equal to that of the optimal

work plan. This minimized work plan results even if an Organization starts with

full knowledge of the Mission Context and Emergent Traits. There are still

unproductive Program Elements embedded in the workspace. These additional

 119

Program Elements are still considered valid during planning and may give the

Organization an even shorter minimum spanning tree. For Organizations starting

with a smaller subset of Capability need, Intended Missions and Emergent Traits,

the Organizations have a smaller set of Program Elements in their workspace

and hence a shorter minimum spanning tree than the optimal.

However, starting with a shorter plan than optimal is only a

transient condition because during the simulation, the transitive states would

cause the Organization to pick edges that are either unproductive or not on the

optimal minimum spanning tree, and incurs more and more cost in terms of its

span to perform the needed set of Program Elements to accomplish the Program

Activity. The only time when an Organization could complete a capability delivery

at a faster rate than the optimal plan, is when it ignores Capability need inserted

or failed to pick up enough negative Emergent Traits and hence deliver a sub-

standard Capability.

It is inevitable that the CDSS has to prepare for a start state with a

work plan shorter than the optimal, and in this implementation where we insert

Program Activities into the CDS event queue based on the optimal schedules, we

run into a problem where Organizations would complete their work at hand

before the Program Activity is popped from the event queue for processing. As

such, based on the newly calculated work plan, we insert Work Completion

Events just before the scheduled Program Activities. This would allow

Organizations to assess the work done and have a chance at lifting the Fog of

Emergence at that point in simulation time.

Future work shall implement the other strategies, as well as varying

the ratio of allocation. A one-to-one assignment of the optimal life cycle work plan

could be overly generous for a Capability that starts off simple, or extremely tight

for another Capability that starts off with high knowledge of Emergent Traits and

Mission Contexts.

 120

3. Run Simulation

With the CDS event queue being prepared, the simulation is ready to be

run. The simulation is run simply by always popping the time sorted queue at the

zeroth-element. The CDSS wraps a CdsEvent interface around the JAVA

Comparable interface to allow the Java Virtual Machine to perform the time-

sorting as shown in the code snippet below. This ensures that the zeroth-element

of a time sorted queue is always the one with the smallest planned end in

simulation time units.

public interface CdsEvent extends Comparable<CdsEvent> {

 /**
 * @param pa
 * @return -1 if this CdsEvent ends before event, 0 if ends at the same time, 1
 * if this CdsEvent ends after event
 */
 public abstract int compareTo(CdsEvent event);

 /**
 *
 * @return the planned end date in simulation time units corresponding to
 * this event
 */
 public abstract double getPlannedEnd();

}

In the current implementation there are three types of CDS events that

implement the CdsEvent Interface. They are the Capability Insertion Events,

Program Activity, and Work Completion Events. The simulation ends when the

queue is empty.

It is also worthwhile to recall that the CDSS uses a cumulative schedule

slippage variable as a a simplifying work around described in Chapter VI Section

A.2 to avoid going through the queue to update the CDS events every time a

schedule slippage occur.

 121

a. Capability Insertion Events

(1) Update Fog of Emergence and Workspace. Recall

that a Capability Insertion Event is specified by the User as described in Chapter

VI Section B.2.b using the name for the Capability need to be inserted. When this

event is processed, the CDSS updates the Organization’s Fog of Emergence to

reflect a change in the as-needed Capability.

Depending on the SEP model strategy, the Organization can

choose to ignore the need, attend to it immediately, or attend to it at the next

incremental iteration of the Capability. Should the Organization take up the

capability need, the CDSS updates the Organization’s as-planned Capability.

This update triggers the unveiling of the relevant Program Elements in the

various workspaces.

The current implementation of the CDSS uses the Waterfall

process model which ignores changes in Capability Need. Therefore, a

recommendation for future work is to incorporate the SEP models that allow for

changes in Capability Need.

b. Program Activities and Work Completion Events

(1) Determine Work Done. When a Program Activity or

Work Completion Event is popped from the CDS event queue, the CDSS

determines how much of the current workspace has been completed.

The Work Completion Event is a special CDS event that is

created to signify completion of Program Elements based on an Organization’s

work plan. Hence, when a Work Completion Event is processed, all the Program

Elements in its work plan are considered done.

For the Program Activity, an additional check is performed to

determine how much work was done. Consider an example workspace with the

required Program Elements as indicated shown in Figure 38. The optimal

solution would be the green minimum spanning tree with a span of 16 units.

 122

Hence, the CDSS would have entered this Program Activity into the CDS event

queue with a planned end of 16 simulation time units. However, an Organization

that does not know which Program Element is unproductive, would plan to

perform the blue minimum spanning tree which seems to satisfy the same

requirements while costing only 11 units of simulation time. The CDSS would

have scheduled that as a Work Completion Event.

Figure 38. Work Determination Heuristics for Program Activities

However, when the Work Completion Event popped at 11

units of simulation time, the Organization would discover that it has a shortfall of

one blue circle, one orange circle and one green triangle. A new work plan would

be an extended minimum spanning tree that incorporates the red edges. This

means that the new completion time for this work plan would be at 20 simulation

time units. There is a scheduled Program Activity at 16 time units between now

(11 units) and then (20 units). The implemented heuristics in the CDSS when it

 123

encounters such a situation would be to update the work plan but not insert a

new Work Completion Event. It would allow the upcoming Program Activity to

pop and do a stock-take then.

When the Program Activity pops at 16 units of simulation

time, the CDSS will use a greedy algorithm to determine which of the red edges

have been performed. In other words, the algorithm tries to hit the most Program

Elements based on the time that elapsed since the previous Work Completion

Event. In this example, 5 units of simulation time would have elapsed, and using

the greedy algorithm just described, the CDSS would determine that the three

Program Elements that could be performed with just 3 units of simulation time

are completed.

(2) Attempt to Lift Fog of Emergence. When the Program

Elements that were completed were determined for Program Activities and Work

Completion Events, the CDSS would check if those Program Elements were

productive or not. Using the subset of productive Program Elements that were

completed, the CDSS can then determine which CDS ontological entities

(Operational Activities, Function, Components for example) were produced using

the relationship described in Chapter VI, Section B.2.c. This successful

production would be followed by a random lifting of the Fog of Emergence, as

appropriate for the sub-Program Activity type using the Organization’s

competency and the Mission/Emergent Trait’s requisite competency levels as

described in Chapter VI, Section A.4.

In the current implementation of the CDSS, if the sub-

Program Activity is of the type “Requirements and Analysis,” this activity would

need all CDS ontological entities known to the Organization to be produced

before the CDSS randomizes the discovery of more unintended Mission

Contexts.

If the current sub-Program Activity type is “Design and

Architecture,” the CDSS would allow the Organization a chance to analyze the

 124

manifestation of Emergent Traits that are desired as Requirement for known

Intended Missions for corresponding CDS ontological entity produced.

If the current sub-Program Activity type is “Development and

Acquisition,” the CDSS would allow the Organization a chance to measure the

manifestation of Emergent Traits beyond those expected as Requirements for

known Intended Missions for corresponding CDS ontological entity produced.

If the current sub-Program Activity type is “Integration and

Test,” the CDSS would allow the Organization a chance to record new Mission

Contexts that were previously unintended and also for the manifestation of

Emergent Traits beyond those expected as Requirement for known Intended

Missions for corresponding CDS ontological entity produced.

Any newly known Mission contexts and Emergent Traits

would be entered into the Organization’s subjective view through the Fog of

Emergence and be utilized in their planning of future work.

(3) Update Work Space. As described before, when a

new Mission or Emergent Trait is known, the corresponding Program Elements

(including unproductive ones) are added to the Organization’s work space.

(4) Update Work Plan. Based on the new knowledge of

Emergent Traits, the CDSS allows the Organization to determine a new work

plan, similar in manner to the one described in Figure 39. That is an extended

minimum spanning tree shall be calculated to cover the Program Elements

needed to produce new CDS ontological entities or to suppress new Emergent

traits.

It should be noted that even if an Organization did not

successfully lift any of the Fog of Emergence during this event, the Organization

may still need to update its work plan if it had performed unproductive Program

Elements.

If the current CDS Event is a Work Completion Event, and

the new work plan is scheduled to complete before the corresponding Program

 125

Activity, a new Work Completion Event is created and inserted into the CDS

event queue using that scheduled end time. If the new work plan is scheduled to

complete after the corresponding Program Activity, no new CDS event would be

created.

4. Record data

The current CDSS implementation uses a simple singleton Data Recorder

that could be retrieved during run-time through a static accessor method. This

Data Recorder allows the CDSS to record data in to separate in-memory files

through a simple function call, as shown in the code snippet below.

 DataRecorder.getInstance().record("Debug", -1.0,
 "Accessing godsViewActivityMap: "
 + godsViewActivityMap.get(key).getDescription());

The example above shows the CDSS writing a debug message to a

Debug file, with a customized message that examines the description of a

Program Activity that has an omniscient knowledge of the workspace it holds.

5. Write Output

The current implementation does not support writing of data records to

XML file, but it does support the writing of data to the console as shown in a

snippet of the console output below.

249.83805327776446 [CDS Event]: Processing Conceptual Design of type
DESIGN_AND_ARCHITECTURE
312.72378550398514 [CDS Event]: Processing Work Completion Event for MBSE
312.72378550398514 [CDS Event]: Considering productivity of packages 2 & 3
312.72378550398514 [CDS Event]: Setting workspace [3] as a known dummy
312.72378550398514 [CDS Event]: Considering productivity of packages 3 & 6
312.72378550398514 [CDS Event]: Considering productivity of packages 3 & 4
312.72378550398514 [CDS Event]: Work done up till work completion event for MBSE
 A Threshold = 10.0 Done = 6.288255432302714
 1 Threshold = 10.0 Done = 11.574258507211669
-1.0 [CDS Event]: Already known Emergent Trait exhibited by Function 1 in Mission M2:
Trait Description = 1 successfully closed gap between subjective 8.103260893602503 and
objective 8.0 by 1.8967391063974963
354.14581346649095 [CDS Event]: Inserting Cap Need 2
415.7735546678426 [CDS Event]: Processing MBSE of type DEVT_AND_ACQUISITION
490.81460380617693 [CDS Event]: Processing Work Completion Event for AoA

 126

490.81460380617693 [CDS Event]: Considering productivity of packages 0 & 2
490.81460380617693 [CDS Event]: Considering productivity of packages 2 & 4
490.81460380617693 [CDS Event]: Considering productivity of packages 4 & 3
490.81460380617693 [CDS Event]: Work done up till work completion event for AoA
 A Threshold = 10.0 Done = 10.626537330780224
 1 Threshold = 10.0 Done = 12.162147241828698

 1_suppress_1 Threshold = 1.8967391063974972 Done = 0.0

 127

VII. CONCLUSION

A. RESEARCH CONTRIBUTIONS

In summary, this thesis proposed a capability delivery ontology with the

central theme of emergence and developed a CDSS prototype. Using this

capability delivery ontology, the embedded fog of emergence could be used as a

prism to separate the white light of capability performance into its constituent

colors of “as needed,” “as-planned,” “as-known” and “as-deployed.”

While it was lamentable that the scope of research had to be reduced due

increased complexity that came with the large scope captured in the literature

review and time constraints encountered, the tractability of the ontology was still

demonstrated through a CDSS prototype that had a partial implementation of the

functionalities required of a full-fledged simulator. The CDSS prototype embodied

the concepts put forward by the ontology to step through capability delivery

starting with JCIDS capability need inputs and noise factors and carried it

through the DAMS life cycle phases up till O&S.

This research is the first of the many steps to come, the proposed CDS

ontology with Fog of Emergence provides the language construct that shows

promise when used to discuss Systems Engineering issues that arise due to

emergence, and also sets the stage for future designs of experiments to

determine main and interaction effects between the various input and control

parameters of capability delivery to determine a normative model of capability

delivery with emergence. A copy of the source code for the CDSS prototype is

available on request (contact Professor Gary Langford).

Future research should be mindful that the systems engineering process

models are models of what their creators believe are important in the process to

deliver a product, a system, or a capability. Actual capability delivery by the

various organizations would inevitably pursue whatever activities needed to

 128

deliver their system regardless of which systems engineering process they

picked.

Nevertheless, experiments based on these models could uncover relative

philosophical advantages or disadvantages between these models, and these

insights could be used develop a normative model for capability delivery with

emergence.

B. REFLECTION ON DELIVERING THE “CDSS” CAPABILITY USING THE
CDS ONTOLOGY WITH FOG OF EMERGENCE

One of the research objectives of this thesis to develop a CDSS could be

compared to an organization charged with delivering a capability need. The

following section concludes this thesis by examining the part of the thesis journey

to deliver a “capability delivery simulation” capability need, using the language

constructs afforded by the CDS ontology with fog of emergence.

The capability delivery organizations involved initially assessed that the

“capability delivery simulation” capability was sufficiently contained and

uncomplicated and had planned to take the capability rapidly through DAMS life

cycle phases of TD and E&MD to produce a working simulator capable of being

used for experiments on capability delivery.

The initial analysis and requirements in Chapter III helped defined the

Operational Architecture comprised of the Operational Activities, Function Flows,

and Intended Missions (Use Cases) and were similar to the activities performed

in preparation for the Milestone A Review of the TD phase. The quality and the

comprehensiveness of the Operational Architecture were affected by the

Organization’s lack of requisite competency in the Discrete Event Modeling and

Simulation domain. The work planned to implement the CDSS ignored a

multitude of Mission Contexts (how CDS events were not just Program Activities

as initially envisioned but included work completion events and capability

insertion events) and unforeseen Emergent Traits (The CDS ontology with

emergence has many points of articulation and each interaction between specific

 129

instances of an entity may require some logic to be encoded) that have been

lurking in the background from the very day this topic was selected.

As the Organization progressed into the Prototype Preliminary Design

activities of the TD life cycle phase, the Organization completed more Program

Elements and produced corresponding CDS ontological entities such as the

Functional view and Component view of the Systems Architecture. With the

entities produced, the Organization had the opportunity to lift the Fog of

Emergence obscuring its view of the SoI. More Program Elements were revealed

to the Organization with regard to more work needed to improve the preliminary

design to suppress newly discovered negative Emergent Traits. An example of

the negative Emergent Trait was the design choice to use a cumulative schedule

slippage mechanism which effectively nixed the ability for the current CDSS

prototype to allow concurrent Program Activity execution despite the fact that the

Program Activity itself was fully composable as described in Chapter VI Section

A.2.

In the development of the prototype, a number of Program Elements were

found to be unproductive and resulted in reworked (the Component Architecture

developed in Chapter V, Section A.2 was quickly found to be too rigid and hence

not followed in the development). Faced with an increasing minimum spanning

tree, but limited time, the original plan to take the “capability delivery simulation”

capability up till the E&MD life cycle phase to produce a simulator usable for

experiments, was scaled back to focus on TD activities of developing a prototype

that explored the important functionalities of the CDSS to facilitate future work

that involved the running of experiments. The fog of emergence had obscured

the Organization’s perception of Emergent Traits in the as-deployed Mission

contexts, resulting in what proved to be an overly-optimistic plan.

The saving grace was that through these ordeals, the Organization

verified the tractability of the proposed CDS ontology with emergence twicefold,

firstly through the CDSS, and secondly through the journey to deliver a “CDSS

capability.”

 130

THIS PAGE INTENTIONALLY LEFT BLANK

 131

APPENDIX A. N2 CHARTS OF DAMS LIFE CYCLE PHASES

Figure 39 below shows the high level overview of the N2 chart of the five

DAMS life cycle phases: (1) Materiel Solutions Analysis (MSA); (2) Technology

Development (TD); (3) Engineering & Manufacturing Development; (4)

Production & Deployment (P&D); and (5) Operations & Support (O&S).

Figure 39. Overview of N2 Charts of DAMS Life cycle Phases.

 132

The diagonal spine of the chart is formed by the generic sequence of

program elements (in green cells) required to produce products, systems

architecture and SoI components (as input and output arrows) needed to

accomplish program activities (in yellow cells). The following five tables follow the

same convention and provide a zoomed in view of each DAMS life cycle phase in

more detail.

Table 14. N2 Chart Materiel Solution Analysis.

Initial
Capability
Doc,
MDD,
AoA
Study
Guidance

 Materiel Solution Analysis

Define
CONOPS

[O&M]
Operational
Activities

Functional
Decomposition

[F]Functions [F] Functions

Value System
Development

[R] MoEs,
Requirements

Component
Allocation

[SA]
Component
allocation
for
multiples
alternatives

Refined
CONOPS

Refined
Functions

Refined
MoEs,
Requirements

Recommended
Alternative

Analysis of
Alternatives

[SA] AoA:
CONOPS,
MoEs, Cost,
Schedule,
CTEs, Risk,
Recommended
options to ICD
needs

 133

Initial
Capability
Doc,
MDD,
AoA
Study
Guidance

 Materiel Solution Analysis

 Prepare TDS

[SA] TDS:
Tech
development
strategy,
single-step
or
evolutionary,
schedules,
cost, goals,
increments,
prototypes
needed

Feedback Feedback Feedback Feedback Feedback Feedback
MSA Review
Milestone

[SA] AoA
completed,
options for ICD
capability
needs
recommended,
and TDS ready
for Milestone
A

Table 15. N2 Chart Technology Development.

[SA] AoA
completed,
options for ICD
capability
needs
recommended,
and TDS ready
for Milestone
A

 Technology Development

Milestone A
Review

[SA]
Options
for ICD
needs

Planned in
TDS

Cost growth >
25%

RFP
process

[SA]
Proposal
selected and
awarded

 134

[SA] AoA
completed,
options for ICD
capability
needs
recommended,
and TDS ready
for Milestone
A

 Technology Development

Cost growth >
25%

Build
Prototypes

[C]
Refined SA
(Especially
Function &
Process)
and
Production
of
Prototypes

Cost growth >
25%

Demonstrate
again: Not
affordable,
militarily
useful,
mature
technology

Demo
Prototypes

[O&M + C]
Demonstrated:
Develop LCSP,
SEP (includes
RAMS) based
on candidate
designs

 [SA] SEP

 135

Cost growth >
25%

Prepare for
PDRs

[SA] PDR
Report:
Hw, Sw
and HIS
baseline,
refined SA
with high
confidence
design at
system-
level

 [SA] CDD Approved
by JROC = {Tech &
manufacturing
processes for
program/increment
identified and SoI
can be developed
for production
within 5 years
(usually), contains
key operational
performance
parameters},
Refined Integrated
Architecture,
Clarification plan to
become a
warfighting
capability, LRIP
quantities (one unit
to 10% of total)

Cost growth >
25%

Insufficient
confidence
for design

Insufficient
confidence for
design

PDR

[SA]
Successful
PDR Report
with
requirement
trades, cost
estimation

Cost growth >
25%

Prepare
CDD

 136

Table 16. N2 Chart Engineering & Manufacturing Development (From
Integrated Systems Design).

[SA] CDD Approved
by JROC = {Tech &
manufacturing
processes for
program/increment
identified and SoI
can be developed
for production
within 5 years
(usually), contains
key operational
performance
parameters},
Refined Integrated
Architecture,
Clarification plan to
become a war
fighting capability,
LRIP quantities
(one unit to 10% of
total)

 PDR Report

 PDR Report Engineering and Manufacturing Development

Milestone B Review

[SA]
Acquisition
Strategy +
Acquisition
Program
Baseline
(APB) =
Acquisition
program
initiated,
Minimal LRIP
quantities

 137

RFP process
(ensure no
award to
offerors using
CTEs not
demoed in
relevant
environment
+ no TRL)

[SA]
Proposal
selected
and
awarded

Integrated System Design

Post-PDR
Assessment

[SA] MDA
inform PM
of required
remedial
actions

Prepare
sub-system
CDR

[C] Sub-System
designs & building
of some components

[C] Sub-
system
components
built

Prepare System-level
CDR

[C} CDR
Report:
System-level
design & list
of
components
built

PM direct
to redo
CDR

PM direct to redo
CDR

CDR

[C] Post CDR
Report: SME
& CDR Chair,
Description
of product
baseline and
%age of
built-to
packages
completed,
issues and
actions for
closure, risk
assessment
against exit
criteria

MDA direct
PM to
address
resolution
/
mitigation
plans

MDA direct PM to
address
resolution/mitigation
plans

Post CDR
Assessment

[SA] MDA
approved
CDR &
Initial
Product
Baseline

 138

Table 17. N2 Chart Engineering & Manufacturing Development
(From System Capability & Manufacturing Process Demonstration).

[SA] MDA
approved CDR
& Initial
Product
Baseline

System Capability & Manufacturing Process
Demonstration

Build
Components
(System +
Manufacturing)

[C] Components

New capability
needs

Unable to
meet approved
requirements
in intended
environment
and industrial
capabilities are
not available

DT&E
[O&M+C] Satisfied user needs
in terms of mission capability
and operational support

 Prepare CPD

[C] Approved by JROC: CPD
= {Operational
requirements informed by
EMD results, expected
performance of production
system}, Acceptable -ilities,
Refined integrated
architecture

 139

Table 18. N2 Chart Production & Deployment

[C] Approved
by JROC: CPD
=
{Operational
requirements
informed by
EMD results,
expected
performance
of
production
system},
Acceptable -
ilities,
Refined
integrated
architecture

 Production & Deployment

Milestone C
Review

[SA]
Authorized
entry into LRIP

Authorize
production &
procurement

Execute LRIP,
build
minimum
production-
representative
articles

[C]
Components
(System &
Production)

Not ready for
FRP

IOT&E in
mission
context

[C&OA]
Ready for
FRP

If (skip
beyond LRIP
& FRP
decision
review)
Congress,
USD(AT&L)
approve

Prepare
for beyond
LRIP

[C] Beyond
LRIP Report:
Demonstrate
control of
manufacturing
process,
acceptable
reliability,
collection of
statistical
process
control data,
demonstrated
control and
capability of
critical
processes

 140

FRP Decision
Review

[C] MDA’s
FRP Decision

Execute FRP
&
Deployment

[C]
Components
(System &
Production)

 FOT&E

[O&M+C]
Mission
performance
assessment

Military
Equipment
Valuation

Table 19. N2 Chart Operations & Support

[SA] Initial Operational
Capability

Operations & Support

Life cycle sustainment:
Continual engineering for
RAMS, HSI, environmental
safety, occupational health,
supportability, and
interoperability

[O&M+C] Full
Operational Capability

 Iterative reviews
[O&M+C] Full
Operational
Capability

 PEO Annual reviews
[O&M+C] Full
Operational
Capability

Prepare for
Disposal /
Repurpose

[O&M+C] Full
Operational
Capability

Disposed /
Repurposed

 141

APPENDIX B: CAPABILITY DELIVERY SYSTEM SIMULATOR
USE CASES

A. USE CASE TEMPLATES

1. “Start Simulator”

Use Case: Start simulator

Primary actor: User

Goal in context: To start the simulator and load the input file.

Preconditions:

 CDSS must be compiled and the executable set on the computer’s
PATH variable

 Input file specifying input and control parameters must be well-
formed

 Destination folder must exist and with “write” permission enabled

 User has brought up the command line interface

Trigger: Intention to use the CDSS.

Scenario:

 The user enters command to run program with two parameters
specifying the location of input file and the destination folder/name
of output file:

 Java CDSS [input file location] [output file destination]

 The software loads the input file and displays a summary on the
input and control parameters read in.

Exceptions:

 Incorrect number of command parameters. The software displays
an example of an expected command and exits.

 Input file is not well formed.

Priority: Moderate priority, to be implemented as second increment.

When Available: Prototype 2

Frequency of use: High frequency

 142

Channel to actor: Via PC-based command line interface to link the

software with input files.

Open Issues:

 What input format would facilitate less error-prone specification of
input and control parameters?

 What output file format would facilitate ease of analysis through a
separate spreadsheet program such as Excel?

2. “Enter Simulator Mode”

Use Case: Enter simulator mode

Primary actor: User

Goal in context: To set simulator mode to either print event trail on the

console or to just run with no event trail.

Preconditions:

 User has already performed Use case “Start simulator.”

Trigger: The CDSS presents the user with three options as listed below:

“1 – Exit simulator; 2- Display event trail on console; [Anything else] - No

event trail on console.”

Scenario:

 If user enters “1,” the CDSS shall skip simulation and exits.

 Else if user enters “2,” the Console displays “Event trail mode set”
and begins to run the simulator.

 Else if user enters anything else (including empty return), the
Console displays “Mode: No Event Trail” and begins to run the
simulator.

Exceptions: NA

Priority: Moderate priority, to be implemented as second increment

When Available: Prototype 2

Frequency of use: High frequency

 143

Channel to actor: Via PC-based command line interface to link the

Software with input file

Open Issues: NA

3. “Run Simulator”

Use Case: Run simulator

Primary actor: User

Goal in context: To run simulator and to generate output file containing

simulation results based on provided input and control parameters.

Preconditions:

 User must has already performed use case “Set simulator mode”

Trigger: The CDSS received a simulation mode.

Scenario:

 The CDSS starts the discrete event simulation.

 If “Event Trail,” the CDSS display status update on the Console for
every discrete event until simulation is over.

 Else if “No Event Trail,” the CDSS insert a period .”“on the Console
display every 3s to indicate that it is running until simulation is over.

 The software writes the full event trail and results into the Output
File.

 The software displays a summary of the output parameters via the
Console and terminates.

Exceptions:

Output destination does not exist. Software shall inform the user via the

console and attempt to write output file to local folder as “Output.csv.”

Priority: Top priority, to be implemented immediately.

When Available: Prototype 1

Frequency of use: High frequency

 144

Channel to actor: Via PC-based command line interface to link the

software with input file.

Open Issues:

What output file format would facilitate ease of analysis through a

separate spreadsheet program such as Excel?

 145

LIST OF REFERENCES

Bent, K., Grenning, J., Martin, R. C., Beedle, M., Highsmith, J., Mellor, S., &
Marick, B. (2001). Manifesto for Agile software development. Retrieved Jul
2013, from http://agilemanifesto.org/.

Boehm, B., & Lane, J. A. (2007). Using the incremental commitment model to
integrate system acquisition, systems engineering, and software
engineering. CrossTalk, 20(10), 4–9. Retrieved on date, from
http://www.crosstalkonline.org/storage/issue-
archives/2007/200710/200710–0-Issue.pdf.

Boehm, B. (2000). Spiral development: Experience, principles, and refinements.
W.J. Hansen (Ed.). Retrieved from Carnegie Mellon University, Software
Engineering Institute website: Retrieved Jul 2013, from
http://www.sei.cmu.edu/library/abstracts/reports/00sr008.cfm.

Center for Technology in Government (CTG) (1998). A survey of system
development process models (CTG. MFA - 003). Retrieved from State
University of New York at Albany website: Retrieved May 13, from
http://www.ctg.albany.edu/publications/reports/survey_of_sysdev/survey_
of_sysdev.pdf.

Dahmann, J., Lane, J. A., Rebovich, G., & Baldwin, K. J. (2008). A model of
systems engineering in a system of systems context. Paper presented at
the Sixth Conference on Systems Engineering Research (CSER).
Retrieved May 2013, from http://www.acq.osd.mil/se/docs/2008–04–
04_CSER-Paper_Dahmann-etal-SoS.pdf.

Dahmann, J. S., Rebovich Jr., G. R., & Lane, J. A. (2008). Systems engineering
for capabilities. Retrieved Jun 2013 from Crosstalk: The Journal of
Defense Software Engineering website:
http://www.crosstalkonline.org/storage/issue-
archives/2008/200811/200811-Dahmann.pdf.

Dahmann, J., Rebovich, G., Lowry, R., & Baldwin, K. (2011). An implementer’s
view of systems engineering for systems of systems.
doi:10.1109/SYSCON.2011.5929039.

Defense Acquisition University (DAU) (2008). Materiel development decision.
Retrieved Jul 2013, from http://acc.dau.mil/ils_mdd.

Deputy CIO (2010). DoDAF glossary. Retrieved Jun 2013 from U.S. Department
of Defense website:
http://dodcio.defense.gov/dodaf20/dodaf20_glossary.aspx.

http://agilemanifesto.org/

 146

DoD CIO (2012). DoDAF version 2.0 plenary. Retrieved Jul 2013 from U.S.
Department of Defense website:
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_v2–
02_web.pdf

Fact sheet: The ballistic missile defense system. (2013). Fort Belvoir, Virginia:
Missile Defense Agency.

Forsberg, K., & Mooz, H. (1995). The relationship of systems engineering to the
project cycle. Cupertino, California: Center for Systems Management.

Fruhling, A. L., & Tarrel, A. E. (2008). Best practices for implementing Agile
methods: A guide for Department of Defense software developers.
Retrieved from IBM Center for the Business of Government website:
http://www.businessofgovernment.org/report/best-practices-implementing-
agile-methods-guide-department-defense-software-developers

Hitchins, D. K. (2000). World class systems engineering‒the 5-layer model.
Retrieved Jul 2013, from http://www.hitchins.net/systems/world-class-
systems-enginee.html

Holland, J. H. (1998). Emergence: From chaos to order. Reading, Mass:
Addison-Wesley.

International Council on Systems Engineering (INCOSE) (2010). Systems
engineering handbook v3.2. Hampton, VA: INCOSE.

Jamshidi, M. (2009). System of systems engineering: Innovations for the 21st
century. Hoboken, NJ: Wiley.

JCIDS Manual. (2012). Retrieved Jun 2013 from
http://jitc.fhu.disa.mil/jitc_dri/pdfs/jcids_manual_19jan12.pdf

Kasser, J. E. (2012). Complex solutions for complex problems. Retrieved May
2013 from Third International Engineering Systems Symposium, CESUN
2012, Delft University of Technology, June 18–20, website:
http://cesun2012.tudelft.nl/images/3/33/Kasser.pdf

Kasser, J. E. (2010). Seven systems engineering myths and the corresponding
realities. Retrieved Apr 2013 from Proceedings of the Systems
Engineering Test and Evaluation Conference (SETE 2010), Adelaide,
Australia website:
http://www.therightrequirement.com/pubs/2010/myths%20of%20systems
%20engineering-5.pdf

 147

Keating, C. B. (2005). Research foundations for system of systems engineering.
In Proceedings of IEEE International Conference Systems on Man and
Cybernetics, 3 (pp. 2720–2725). doi:10.1109/ICSMC.2005.1571561

Keet, M. K. (2008). A formal theory of granularity. (Doctoral dissertation).
Retrieved Aug 2013 from http://www.meteck.org/PhDthesis.html

Koolmanojwong, S. (2010). The incremental commitment spiral model process
patterns for rapid-fielding projects. (Doctoral dissertation). Retrieved Aug
2013 from
http://csse.usc.edu/csse/TECHRPTS/PhD_Dissertations/files/Koolmanojw
ong_Dissertation.pdf.

Langford, G. O. (2012). Engineering systems integration: Theory, metrics, and
methods. Boca Raton: CRC Press.

Langford, G. O. (2013a). SE4151 Systems Engineering Integration [PowerPoint
slides].

Langford, G. O. (2013b). SE3100 Fundamentals of Systems Engineering
[PowerPoint slides].

Maier, M. W., & Rechtin, E. (2009). The art of systems architecting (3rd ed.).
Boca Raton: CRC Press.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems
Engineering, 1(4), 267–84.

McBreen, P. (2002, February 8). Software Development: Dismantling the
Waterfall | Some Flaws | InformIT. Retrieved from
http://www.informit.com/articles/article.aspx?p=25272

Nogueira, J. C., Jones, C., & Luqi (2000). Surfing the Edge of Chaos:
Applications to Software Engineering. Retrieved Aug 2013 from Command
and Control Research and Technology Symposium, Naval Postgraduate
School, Monterey, CA website:
http://www.dodccrp.org/events/2000_CCRTS/html/pdf_papers/Track_4/07
5.pdf

Office of Deputy Under Secretary of Defense for Acquisition & Technology,
Systems and Software Engineering (2006). Guide for integrating systems
engineering into DoD acquisition contracts version 1.0. Washington, DC:
ODUSD (A&T) SSE.

Office of Deputy Under Secretary of Defense for Acquisition & Technology,
Systems and Software Engineering (2008). Systems engineering guide for
systems of systems version 1.0. Washington, DC: ODUSD (A&T) SSE.

 148

Office of Under Secretary of Defense for Acquisition, Technology, and Logistics
(OUSD AT&L) (2008). Department of Defense Instruction Number
5000.02. Washington, DC.

Osmundson, J. A., Huynh, T. V., & Langford, G. O. (2007). System of systems
management issues.

Pressman, R. S. (2010). Software engineering: A practitioner’s approach. New
York: McGraw-Hill Higher Education.

Pyster, A., & Olwell, D. H. (2013). The guide to the systems engineering body of
knowledge (SEBoK), v.1.1.2. The Trustees of the Stevens Institute of
Technology [Hoboken, NJ]. Retrieved Jun 2013 from www.sebokwiki.org

Quadrennial defense review report. (2001). Washington, D.C.: U.S. DoD.

Rechtin, E. (1991). Systems architecting: Creating and building complex
systems. Englewood Cliffs: Prentice Hall.

Royce, W. (1970). Managing the development of large software systems.
Proceedings of IEEE WESCON, 26, 1–9. Retrieved Aug 2013 from
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

Schrader, J. Y., Lewis, L., & Brown, R. A. (2003). Quadrennial defense review
2001: Lessons on managing change in the Department of Defense. Santa
Monica, CA: RAND.

United States Department of Defense (USDoD) (1988). DoD-STD-2167A, Military
standard: Defense system software development. Retrieved Jul 2013 from
http://www.everyspec.com/DoD/DoD-STD/DoD-STD-2167A_8470/

Vitech (2011). CORE 8 architecture definition guide. Retrieved Jul 2013 from
Vitech Corporation website:
http://www.vitechcorp.com/support/documentation/core/800/ArchitectureD
efinitionGuide.pdf

Wolpert, D. H. (2008). Physical limits of inference. Physica D-nonlinear
Phenomena, 237(9), p. 1257–1281. Retrieved Aug 2013 from
dx.doi.org/10.1016/j.physd.2008.03.040

 149

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

