
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2013-09

Capability delivery with fog of emergence

Chow, Wen Chong Julian

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/37601

Downloaded from NPS Archive: Calhoun



 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

CAPABILITY DELIVERY WITH FOG OF EMERGENCE 
 

by 
 

Wen Chong Julian Chow 
 

September 2013 
 

Thesis Co-Advisors:  Gary O. Langford 
                                                 Man-Tak Shing 
Second Reader: Robert C. Harney 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704–0188) Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 

 

2. REPORT DATE   

September 2013 

3. REPORT TYPE AND DATES COVERED 

Master’s Thesis 

4. TITLE AND SUBTITLE   

CAPABILITY DELIVERY WITH FOG OF EMERGENCE 

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Wen Chong Julian Chow 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943–5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 

official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   

Approved for public release;distribution is unlimited 

12b. DISTRIBUTION CODE 

A 

13. ABSTRACT (maximum 200 words)  

A proposed capability delivery ontology with fog of emergence provides a language construct to relate how 
the processes and parts of a notional capability delivery system incrementally produce and refine a 
capability through well-known life cycle phases. The natural propensity for capability delivery organizations 
to perform these life cycle activities using intended missions and requirements instead of as-deployed 
missions and emergent traits give rise to the fog of emergence that obscures the organizations perception 
of the capability as it is taken through its life cycle. Through capability delivery ontology, the embedded fog 
of emergence is used as a prism to separate the white light of capability performance into its constituent 
colors of “as needed,” “as-planned,” “as-known,” and “as-deployed” perceived by the capability delivery 
organizations.  

 
 
 
 

 
14. SUBJECT TERMS Capability delivery system, Emergence, Capability Delivery Ontology, 

Fog of Emergence 

15. NUMBER OF 
PAGES  

171 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

CAPABILITY DELIVERY WITH FOG OF EMERGENCE 
 
 

Wen Chong Julian Chow 
Civilian, Defence Science & Technology Agency, Singapore 

B.Comp (Information Systems), National University of Singapore, 2004 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ENGINEERING SYSTEMS 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2013 

 
 
 

Author:  Wen Chong Julian Chow 
 
 
 

Approved by:  Gary O. Langford, PhD  
Thesis Co-Advisor 

 
 

Man-Tak Shing, PhD  
Thesis Co-Advisor 

 
 

Robert C. Harney, PhD  
Second Reader 

 
Clifford A. Whitcomb 
Chair, Department of Systems Engineering 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 

A proposed capability delivery ontology with fog of emergence provides a 

language construct to relate how the processes and parts of a notional capability 

delivery system incrementally produce and refine a capability through well-known 

life cycle phases. The natural propensity for capability delivery organizations to 

perform these life cycle activities using intended missions and requirements 

instead of as-deployed missions and emergent traits give rise to the fog of 

emergence that obscures the organizations perception of the capability as it is 

taken through its life cycle. Through capability delivery ontology, the embedded 

fog of emergence is used as a prism to separate the white light of capability 

performance into its constituent colors of “as needed,” “as-planned,” “as-known,” 

and “as-deployed” perceived by the capability delivery organizations.  
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EXECUTIVE SUMMARY 

Since the 2000 Quadrennial Defence Review, the Department of Defense (DoD) 

has been re-orienting force development processes to the identification and 

support of user capabilities, with an emphasis on agile compositions of systems 

to meet a range of changing user needs. 

Emergence is when a system does something that no subset of its parts 

can do, and these emergent traits exhibited by systems and system of systems 

(SoS) are tapped as military capabilities. The various architects, builders, and 

users (collectively referred to as capability delivery organizations) associated with 

the capability delivery’s life cycle should be aware that emergent traits could be 

intentional, unintentional, desirable, or undesirable. Emergent traits beyond those 

desired as requirements continue to manifest when a system is deployed even if 

capability delivery organizations do not perceive it. 

This thesis analyzed a notional capability delivery system (CDS) that takes 

a capability conceived as a need through its life cycle till its retirement. Both 

black box and white box approaches were adopted to analyze the input, output 

and noise factors the CDS were subjected to by the Joint Capabilities Integration 

and Development System (JCIDS) and to understand the parts and processes 

that makes the CDS work respectively. A new capability delivery ontology with a 

central theme of emergence was proposed after combining insights from 

literature on the philosophical, axiomatic and methodological perspectives of 

emergence and a Vitech CORE working implementation of the DoD Architecture 

Framework. 

The CDS ontology and fog of emergence provide a language construct to 

relate how the processes facilitate the interaction of the parts of a CDS to 

incrementally produce and refine a capability through well-known DoD 5000.02 

life cycle phases. The life cycle phases were mapped to a generic problem 

solving process of “analyze-design-build-test,” where analysis produces/refines 



 xviii 

the operational architecture, design produces/refines the system architecture, 

build verifies system components to the system architecture, and test validates 

system components to the operational architecture. The natural propensity for 

capability delivery organizations to perform these activities using intended 

missions and requirements instead of as-deployed missions and emergent traits 

give rise to the fog of emergence that obscures the organizations perception of 

the capability as it is taken through its life cycle. 

Through capability delivery ontology, the embedded fog of emergence 

could be used as a prism to separate the white light of capability performance 

into its constituent colors of “as needed,” “as-planned,” “as-known” and “as-

deployed” perceived by the capability delivery organizations. 

The tractability of the ontology was demonstrated through a partial 

implementation of a capability delivery system simulator that embodied the 

concepts put forward by the ontology to step through capability delivery from 

cradle to grave according to DoD 5000.02  life cycle phases while subjected to 

input and noise factors from JCIDS. 

This research sets a potential stage for further exploration into developing 

experiments toward understanding effects of input and control factors to 

capability delivery and eventually developing a normative model of capability 

delivery with emergence. 
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I. INTRODUCTION 

A. CAPABILITY DELIVERY NEEDS 

The Department of Defense (DoD) has been re-orienting force 

development processes to the identification and support of user capabilities, with 

an emphasis on agile composition of systems to meet a range of changing user 

needs since the 2000 Quadrennial Defense Review (QDR) (Dahmann, Rebovich, 

& Lane, 2008). 

A capability is the ability to achieve a desired effect under specified 

standards and conditions through combinations of ways and means to perform a 

set of activities (Deputy Chief Information Officer, 2010). A capability forms the 

basis of operational activities desired by users, which when carried out allows the 

users to achieve their missions. 

B. SYSTEM OF SYSTEMS AND ASSOCIATED CHALLENGES 

According to the Office of the Deputy Under Secretary of Defense for 

Acquisition and Technology, Systems and Software Engineering (ODUSD [A&T] 

SSE) (2008), there was an increasing number of military capabilities being 

achieved through a system of systems (SoS) approach. An SoS is “a set or 

arrangement of systems that results when independent and useful systems are 

integrated into a larger system that delivers unique capabilities.”  The SoS-level 

capabilities are implemented by intended and desired emergent SoS-level traits 

associated with the SoS-level functions that arise due to the interactions and 

integration of constituent systems (Langford, 2013a). 

As Rechtin (1991) described elegantly, emergence is when the system 

does something that no subset of its parts can do. Based on this definition, it 

follows that emergent traits could be intentional or unintentional, desirable or 

undesirable. In the modern day context, intended and desirable emergent traits 

of systems and SoS are tapped as military capabilities; however, the various 

architects, builders, and users (hereafter referred to as capability delivery 
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organizations) associated with the capability delivery’s life cycle should be aware 

that unintended or undesired emergent properties and traits would also be 

present. 

A more technical definition consistent with Rechtin’s definition is that 

“emergence is any effect that produces a change in intrinsic properties, traits or 

attributes resulted by combining objects through interactions of objects with 

energy, matter, material wealth and information” (EMMI) (Langford, 2012). 

Simply put, emergence is a condition that exists when there is a change in 

exhibited traits of a constituent system in the context of an interaction between a 

pair of constituent systems. 

The complexity of an SoS scales up faster than the increase in the 

number of constituent systems due to the number of possible interactions 

between constituent systems (Huynh & Langford, 2009), exacerbated by the fact 

that different emergent traits could result from the same interaction realized 

through different interfaces. Emergence serves to add uncertainty to the eventual 

achievable performance of the SoS during capability delivery. 

While the increased number of constituent systems increases the 

uncertainty of system performance, the sheer length of the life cycle for an SoS-

class of systems also increases the susceptibility of the SoS to changes in user 

needs precipitated by the changing face of war.  

The QDR (U.S. Department of Defense [USDoD], 2001) recognized these 

challenges with its stated purpose to re-orient force development with an 

emphasis on composing an SoS in an agile manner and to meet a range of 

changing user needs. This recognition of agility in acquisition translates to a need 

for the SoS to be able to either deliver new capabilities using constituent systems 

or to expand its SoS boundaries to incorporate capabilities from other systems 

(legacy and new) to satisfy changing user needs.  
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C. RESEARCH QUESTIONS 

This thesis focuses on developing an ontology to model the meta-system 

for capability development and delivery, which has been put in place in response 

to the capability-based approach to modernize the military, and that could be 

used as a handle to explore the effectiveness of the meta-system. 

Research questions are developed around these concepts and modeling 

of the effectiveness of capability delivery. 

 What is a capability delivery system (CDS)? 

 How can this meta-system of capability delivery be modeled? 

 What are the input and noise factors to the CDS? 

 What are the parts and processes that comprise the CDS? 

 What is emergence and how can its effects be modeled? 

 What are the measures of effectiveness for the CDS? 

 What are the effects of the choice of SE process models, 
stability of capability needs, and capability complexity on the 
effectiveness of the CDS? 

 What is an existing ontology suitable to describe capability 
delivery? 

 In what ways can the existing CDS ontology be improved to include 
the fog of emergence? 

D. RESEARCH CONTRIBUTION 

The thesis is intended to provide the following contributions: 

 Capability delivery ontology with emergence – The extension of 
capability delivery ontology with a central theme of emergence. 

 Capability delivery system simulator – Development and 
implementation of a functional simulator of a capability delivery 
system based on the new ontology to demonstrate the tractability of 
the ontology and as well as threats to the validity of the ontology. 

 Measures of effectiveness for capability delivery – Using the 
capability delivery ontology as a prism to separate the white light of 
capability performance into its constituent colors of “as needed,” 
“as-planned,” “as-known” and “as-deployed.”  The capability 
delivery effectiveness is measured as the ability of the capability 
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delivery system to minimize the gaps between “as-needed,’ “as-
planned,” “as-known” and “as-deployed.” 

E. THESIS ROADMAP 

The roadmap of this thesis is as follows: 

Chapter II presents the literature review of five key concepts: (1) 

capability-based approach; (2) systems and SoSs; (3) emergence in systems; (4) 

system life cycles with SE process models; and (5) an ontology for capability 

delivery. First, while the intricacies of the capability-based approach are not the 

focus of this thesis, understanding the mechanisms for the approach helps show 

the logical consequence of the increased likelihood that systems or SoSs would 

have to respond to changes or insertions of capability needs. Second, the 

management challenges in responding to unstable needs would be different 

depending on whether the capability implementing System-of-Interest (SoI) is a 

system or an SoS. Third, the complexity in managing the SoI implementation is 

exacerbated due to a fog of emergence that creates a gap between the 

subjective perception of emergent traits by capability delivery organizations and 

the emergent traits’ objective manifestation. Many SE process models exist to 

provide a guiding hand for capability delivery organizations to take a capability 

through its life cycle translating capability needs into operational capabilities. The 

system life cycle and SE process models do form the fourth part of the review. 

The final and fifth piece of the literature review is to present an existing capability 

delivery ontology that is familiar to readers who know the DoD Architectural 

Framework (DoDAF). 

Chapter III covers the research approach to answer the research 

objectives. It covers how the capability delivery system with emergence is 

developed, and how it would be modeled to explore the research objectives. 

Chapter IV describes the concept behind the capability delivery simulator 

that was developed for the purpose of exploring the new capability delivery 

model with emergence. 
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Chapter V describes the preliminary software design of the capability 

delivery simulator. 

Chapter VI provides the summary of the implementation of an exploratory 

capability delivery system simulator, its features, shortcomings and how it could 

be used for future experiments based on the proposed capability delivery 

ontology with fog of emergence.  

Chapter VII highlights the research contributions and concludes with the 

use of the proposed capability delivery ontology with fog of emergence to reflect 

on the thesis journey to deliver a capability delivery system simulator. 
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II. LITERATURE REVIEW 

The Systems Engineering Guide for Systems of Systems (SE Guide for 

SoS) (ODUSD [A&T] SSE, 2008) states that there are an increasing number of 

military capabilities being implemented through an SoS approach. An SoS is “a 

set or arrangement of systems that results when independent and useful systems 

are integrated into a larger system that delivers unique capabilities,” according to 

the SE Guide for SoS. 

Similarly, the Systems Engineering Body of Knowledge (SEBoK) (Pyster & 

Olwell, 2013) acknowledges that most practitioners recognize a strong 

relationship between capability and SoS; however, there is no agreed position 

with regard to that relationship. There are two widely accepted views: the first 

describes the relationship as that of composition whereby a capability comprises 

a range of systems, processes, people, information and organization; the second 

describes the relationship as that of a property whereby capability is an emergent 

property of SoS. This author prefers the second relationship and in the following 

sections shows that the second relationship is more broadly applicable and, in 

fact, encompasses the spirit of the first. 

In order to develop or extend an ontological model of the capability 

delivery meta-system, we have to unravel the relationship between capability 

delivery and SoS, and then understand what makes it work. 

The following sections examine the literature concerning key concepts and 

expand definitions that are consistent and fit for the purpose of developing the 

model. We shall specifically look at the following concepts: 

 Capability-Based Approach 

 Systems and System of Systems 

 Emergence in Systems 

 Systems Engineering Life cycle and Process Models 

 Capability Delivery Ontology 
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A. CAPABILITY-BASED APPROACH 

A capability is the ability to achieve a desired effect under specified 

standards and conditions through combinations of ways and means to perform a 

set of tasks (DCIO, 2010). 

Schrader, Lewis, & Brown (2003) review the lessons on managing change 

in the U.S. DoD based on two earlier QDRs performed in 1997 and 2001. The 

primary motivation for such reviews has been to ensure there were sufficient 

forces to execute strategies relevant to the projected threats. Schrader et al. 

(2003) state that prior to the QDRs, a “mismatch” between defense strategy and 

resource allocation was already recognized. A key recommendation from QDR 

2001 was to adopt a capabilities-based strategy with senior military leadership 

assisting the U.S. Secretary of Defense in making balanced trade-offs that cut 

across services. This recommendation would allow Congress to prioritize future 

capabilities and provide guidance on forces, resources and pace of change. 

The JCIDS Manual, 2012 describes “detailed guidelines and procedures 

for operation of the Joint Capabilities Integration and Development System 

(JCIDS) and interactions with several other departmental processes to facilitate 

the timely and cost effective development of capability solutions to the  

warfighter” (p. 1).   The JCIDS deliberate staffing process and urgent staffing 

processes are shown in Figure 1 and Figure 2, respectively. 
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Figure 1.  JCIDS deliberate staffing process (From JCIDS Manual, 2012). 

The JCIDS deliberate staffing process should take no longer than 83 

calendar days from the time a Sponsor submits a document identifying a 

capability gap to the Gatekeeper for review.   

 The Gatekeeper supports the activities of the JCIDS process and 
manages the flow of documents in and out of the process (JCIDS 
Manual, 2012). The Gatekeeper would assign the document to the 
relevant lead and supporting Functional Capabilities Board (FCBs) 
within four days. 

 The FCBs assesses the document to compare capability 
requirements to existing capability requirements, development 
programs, and fielded solutions within their respective portfolios 
(JCIDS Manual, 2012). The review considers partial or whole non-
materiel changes to requirements and partner collaboration advice. 
The assessment would be made available to Services, Combatant 
Commands (COCOMs), and other DoD components for their 
comments by the end of 21 days (JCIDS Manual, 2012). 

 The Sponsor has 30 days to satisfactorily adjudicate comments 
received, after which the FCB has 7 days to review the changes 
and to assist the FCB chair in making a validation decision (JCIDS 
Manual, 2012). A valid recommendation bears the certification by 
the FCB chair that the proposed capability solution is not redundant 
to existing capabilities (JCIDS Manual, 2012). 

 The validation authorities could be either the Joint Capabilities 
Board (JCB).or Joint Requirements Oversight Council (JROC) 
depending on relevant level of interest. The JCB is a board below 
the JROC. The validation authorities should not take more than 21 
calendar days to reach a decision after the FCB chair submits a 
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valid recommendation. The decision would be to either terminate 
the recommended capability, to begin acquisition or to execute 
DOTmLPF-P1 Change Recommendations. 

 

Figure 2.  JCIDS urgent/emergent staffing process (From JCIDS Manual, 2012). 

When a capability COCOM requirement is deemed as a joint urgent or 

emergent operational need (JUON or JEON, respectively), the staffing process 

as shown in Figure 2 could be used to expedite validation (JCIDS Manual, 2012). 

The validation process is expected to take no longer than 15 days and 31 days 

respectively for JUON and JEON (JCIDS Manual, 2012). 

A summary of the JCIDS as gleaned from the JCIDS Manual (2012) can 

be summarized as: 

In its simplest, the capabilities-based strategy provides a strategic 
oversight that matches capability providers with users. The 
strategic oversight recognizes the importance to strike a balance 
between the instability of user requirements precipitated by the 
changing face of war and the need to provide stable intermediate 
forms of military capabilities to facilitate implementation 
accountability and better return on investment. New user needs 
would have to be validated in terms of whether any unacceptable 
loss of life or critical mission failure would be incurred should the 
need be left unaddressed. A validated need would then be 
assessed against the capability portfolio to determine if the need 

                                            
1 DOTmLPF-P stands for Doctrine, Organization, Training, Materiel, Leadership and 

Education, Personnel, Facilities and Policy. 
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could be satisfied by any existing capability provider or has to be 
satisfied through the establishment of a new capability. It is also 
possible for the validated need to be satisfied through a mixture of 
new and existing capabilities. 

For example, a sponsor with a capability gap that could not be satisfied by 

capabilities in the Joint Forces could initiate a change recommendation to 

establish the new capability solution within the sponsor organization. 

Subsequently, a second sponsor with the same capability gap could put in a 

request for forces to leverage on the existing capability solution without 

reinventing the wheel. A third sponsor with the same capability gap that has to be 

organically incorporated could then generate a joint change request to bring the 

capability solution into its own organization. 

The main benefits of the capability-based delivery are the greater strategic 

involvement of senior military leadership and Congress in directing and 

managing how temporally unstable user needs are satisfied by agilely composed 

capability solutions. It also follows that a better return on investment would be 

achieved through the use of existing capability solutions either in part or whole to 

service new capability needs. 

The main implication of the JCIDS on the CDS is that it could be modeled 

as a source of either input or noise factors. If a valid capability need establishes a 

new capability solution, this is a new capability need into the CDS as an input 

factor. If a valid capability need is matched with an existing capability solution, 

the capability need is inserted to the CDS as noise factors. With the focus on this 

capability-based approach, it is more likely than before that a CDS would be 

subjected to unstable capability needs while a capability is in the process of 

being delivered. 

B. SYSTEMS AND SYSTEM OF SYSTEMS 

1. System 

Maier & Rechtin (2009) defined a system as “a collection of things or 

elements that, working together, produce a result not achievable by the things 
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alone.”  The DoD Architectural Framework (DoDAF) Glossary (DCIO, 2010) 

defined a system as “a functionally, physically, and/or behaviorally related group 

of regularly interacting or interdependent elements.” 

The first two definitions emphasize the notion that a system is composed 

of elements. These elements could be functionally, physically or behaviorally 

related. These elements interact regularly to produce a result not achievable by 

the elements alone.   

Langford (2013a) defines a system as:  

A group of adaptively stable and agile objects showing intrinsic 
emergence based on interactions with other objects. The condition 
for systemic behavior is a non-reciprocal change in boundary 
conditions of the objects resulting in a change in the properties of 
the objects. Systems are comprised of objects and processes. 

This third definition by Langford (2013a) is used in this thesis because it is 

both abstract enough to encompass classical definitions of a system, while still 

precise enough for a practitioner to use as a litmus test differentiating a system 

from its parts. The third definition is consistent with the earlier two definitions and 

then goes on further to introduce the following qualifying conditions that must be 

satisfied for a system (Langford 2013a): 

 Composition. A system is comprised of objects and processes. 

 Agile adaptation. The objects adapt their properties, traits or 
attributes with each other through agile interactions. 

 Stable adaptation. This interaction causes some degree of 
permanence and stability in the adapted properties, traits or 
attributes of a proper subset of objects of the system. Stability is 
maintained through dynamic adjustments about a point that falls 
within a region of stability. In other words, there are regions of 
exchanges between system elements where EMMI use is self-
sustaining. 

 Non-reciprocal emergence. If the observed adapted properties, 
traits or attributes of these stable and agile objects (manifested as 
changes in the conditions of the objects’ functional, physical and 
behavioral boundaries) are non-reciprocal between their existence 
as a whole and existence as individual parts, we have emergence.   
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Hitchins (2000) said that “systems engineering appears to be all things to 

all people” and proposed a five-layer model for systems engineering that 

attempted to bring the divergence of SE as a practice under a common model: 

 Layer 5 – Socio-economic. The stuff of regulation and government 
control. 

 Layer 4 – Industrial Systems Engineering or engineering of 
complete supply chains/circles. Many industries make a socio-
economic system. 

 Layer 3 – Business Systems Engineering. Many businesses make 
an industry. At this level, systems engineering seeks to optimize 
performance somewhat independent of other businesses. 

 Layer 2 – Project or System Level. Many projects make a 
Business. Western engineer-managers operate at this level, 
principally making complex artifacts. 

 Layer 1 – Product Level. Many products make a system. The 
tangible artifact level. Many engineers and their institutions 
consider this to be the only “real” systems engineering. 

Hitchins (2000) points out that the statements associated with the five 

layers are approximate, but they serve to illustrate that systems could be nested 

with each lower layer contributing to the one above. Hitchins’ model showed that 

the methods to be employed by the systems engineer vary depending on the 

layer of interest, or here stated as the level of abstraction. 

Keet, 2008 extended the concept of nesting further by introducing the 

concept of granularity in which granules (objects and processes) could also be 

partitioned heterarchically. A heterarchy is a system of organization replete with 

overlap, multiplicity where each element shares the same horizontal positional 

relationship. An important characteristic of heterarchical granularity is that these 

granules may overlap in a self-adjudicated manner appropriate to the context in 

which the relationship exists (Langford, 2012). The context provides the logic for 

one heterarchical grouping of objects and is more than a matter of convenience 

(Langford, 2012, p. 285). 
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The concept of abstraction and granularity posits that there exists an 

appropriate granularity to examine an SoI. The granularity is adjudicated by the 

chosen level of abstraction and context. While there is an appropriate granularity 

given abstraction and context, it is inevitable that many granularities exist as 

subjectively perceived by the various capability delivery organizations across a 

capability’s life cycle. 

It behooves the capability delivery organizations to be cognizant of the 

existence of potential incompatibility of reference abstraction and granularities 

that are all correct in their corresponding contexts. Without examining the system 

through the appropriate context, it is hard for capability delivery organizations to 

come to know of the full suite of emergent traits exhibited by the SoI beyond what 

they have designated as requirements for intended missions. 

An increasing number of today’s military capabilities are being achieved 

through a new system that became to be known as SoS (ODUSD [AT&L] SSE, 

2008). The following section highlights the similarities and differences between a 

system and the SoS-class of system, and notes the implications for managing an 

SoS. 

2. System of Systems 

There are a number of definitions for SoS; Jamshidi (2009) reviewed 

upwards of six potential definitions before putting forward his own definition that 

“SoS are large-scale integrated systems that are heterogeneous and 

independently operable on their own, but are networked together for a common 

goal” (p. 2). 

Maier (1998) argued that it was useful to distinguish SoS from various 

complex and large-scale systems, allowing the grouping of distinct demands to 

the design, development and operation of such a class of system. Five 

characteristics of SoS that made the design, development and operation of this 

taxonomical branch of system more challenging have often been attributed to 

Maier (1998), who in his 1998 paper, only considered the first two characteristics 
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to be key: (1) operational independence of component systems, (2) managerial 

independence of component systems, (3) emergent behavior, (4) geographical 

distribution, and (5) evolutionary development processes.   

The SEBoK (Pyster & Olwell, 2013) stated that while there were no 

agreed upon definitions the following definition and its implication as quoted from 

the SEBoK has received substantial attention:  

An SoS is an integration of a finite number of constituent systems 
which are independent and operatable, and which are networked 
together for a period of time to achieve a higher goal.”  It should be 
noted that according to this definition, formation of an SoS is not 
necessarily a permanent phenomenon, but rather a matter of 
necessity for integrating and networking systems in a coordinated 
way for specific goals such as robustness, cost, efficiency, etc. 

Langford (2012) tabulated factors that determined the systemness of a 

collection of objects (pp. 199–200). With respect to distinguishing a system from 

an SoS, it was said that the parts of an SoS predominantly show reversible 

properties and attributes when taken apart from the whole, whereas the parts of 

a system often exhibit irreversible properties and attributes when severed from 

the whole (Langford, 2012). This difference between systems and SoS 

accentuated SEBoK’s definition that the SoS is not a permanent phenomenon, 

and that the parts must be able to revert to their original properties, traits and 

attributes to execute their independently operatable purposes. 

As an SoS is a system, an SoS would satisfy the definition of a system 

adopted in this thesis; it would, however, be more useful for evaluating various 

process models that provide for capability delivery to develop a set of qualifying 

factors to help discern the SoS class of systems.   

With regards to the Maier’s list of SoS characteristics, this research is 

premised on the first two characteristics of operational and managerial 

independence of the whole and its parts are necessary qualifiers. The third 

characteristic of emergent behavior, while necessary, does not help in 

distinguishing an SoS from the more generic class of systems. An SoI that 
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exhibits the fourth and fifth characteristics of geographical distribution and 

evolutionary development processes, though, might suggest an SoS is not 

necessary as these were decisions made out of choice instead of necessity. 

As such, geographical distribution of parts and the use of evolutionary 

development processes are useful factors but not as conclusive. The 

characteristic of emergent behavior has already been subsumed under the 

definition of a system. For the purpose of this thesis, an SoS must exhibit the 

following factors in addition to fulfilling the definition of a system as laid out in the 

previous section: 

 Operational independence of the parts from the whole:  The parts 
must be able to operate independently when severed from the 
whole according to its own set of customer-operator purposes 
(Maier, 1998). 

 Managerial independence of the parts from the whole:  The parts 
are separately acquired and integrated but continue to maintain 
their own operations independent of the whole (Maier, 1998). 

 Property and attribute reversibility of the parts from the whole: The 
parts take on different properties and attributes for the duration of 
operations as a whole, but reverts when severed from the whole 
(Langford, 2012, pp. 199–200). 

Based on these qualifying characteristics, an Aegis cruiser is part of an 

SoS when we examine the Aegis cruiser in the context of four-phased2 ballistic 

missile defense; the heterarchical granularity of the SoI expands to include 

ground-based interceptors, sea-based radars, a suite of radars in the United 

Kingdom, Aleutian Islands, Greenland, and California (Fact sheet: The ballistic 

missile defense system, 2013). At this level of granularity, the Ballistic Missile 

Defense System exhibits all three qualifying factors of an SoS. The parts retain 

their operational and managerial independence; for example, the ground-based 

interceptors may be designated to take out other air-borne targets apart from 

ballistic missiles or the Aegis cruiser could be tasked to a search and destroy 

mission unrelated to the SoS-level ballistic missile defense mission.   

                                            
2 Ballistic missiles follow a four-phased trajectory path: boost, ascent, midcourse, and 

terminal. 
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These qualifying factors of an SoS mean there would be greater 

management issues due to potential tension between the SoS management 

entity and the constituent system entities. The following list captures some of the 

management issues of an SoS adapted from Osmundson, Huynh, & Langford 

(2007): 

 Initial agreement: Initial agreement of SoS objectives by decision 
makers depends on the number of business entities involved. Top-
down mandate of objectives would be possible if the whole SoS 
was under the purview of a single entity, which might not be the 
case. 

 Planning: The planning for an SoS has to consider the matching of 
operations of constituent systems to external systems. 

 Organizing: Establishment and monitoring of processes that 
interface the SoS with constituent systems. 

 Directing and reporting: Clear, concise and complete 
communication channels must be established for the SoS and 
constituent systems. Metrics must be developed, collected and 
reported to the SoS-level. 

 Design:  Each constituent system has to balance the need to share 
classified or proprietary design information against the benefits of 
developing the SoS. 

 Common interfaces: Interfaces must be identified and managed to 
ensure interoperability between constituent systems. 

 Negative emergent behavior: The SoS may exhibit unexpected 
negative emergent behavior that is detrimental to the SoS and 
constituent systems. 

As practitioners and academics better understood the concept of SoS 

through work experience and research, four types of SoS were identified based 

on the type of management and technical control the SoS-level has over its 

constituent systems (Dahmann et al., 2008): 

 Directed SoS is one in which the integrated system of systems is 
built and managed to fulfill specific purposes. The Future Combat 
Systems is a directed SoS. It is centrally managed during long-term 
operation to continue to fulfill those purposes as well as any new 
ones the system owners might wish to address. The component 
systems maintain an ability to operate independently, but their 
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normal operational mode is subordinated to the central managed 
purpose. 

 Acknowledged SoS has recognized objectives, a designated 
manager, and resources for the SoS; however, the constituent 
systems retain their independent ownership, objectives, funding, as 
well as development and sustainment approachesic Missile 
Defense System is an example of an Acknowledged SoS. The 
BallistChanges in the systems are based on collaboration between 
the SoS and the system. 

 In Collaborative SoS, the component systems interact more or less 
voluntarily to fulfill agreed-upon central purposes. The Internet is a 
collaborative system. The Internet Engineering Task Force works 
out standards but has no power to enforce them. The central 
players collectively decide how to provide or deny service, thereby 
providing some means of enforcing and maintaining standards. 

 Virtual SoS lacks a central management authority and a centrally 
agreed-upon purpose for the system of systems. The Global 
Information Grid is an example of a Virtual SoS. Large-scale 
behavior emerges—and may be desirable—but this type of SoS 
must rely upon relatively invisible mechanisms to maintain it. 

Dahmann et al. (2008) asserted that the DoD has faced more capability 

delivery challenges from acknowledged SoS than the other three types. As an 

acknowledged SoS is not under the control of a single entity, it would face 

greater issues of initial agreement of SoS objectives with constituent system 

entities. Constituent systems might already be in development or even operation, 

adding complexity to the planning, organization, direction, reporting and design of 

the whole SoS (Osmundson et al., 2007). These constituent systems 

acknowledge the SoS capability objectives but are needed for their original 

requirements. The dual levels of management, objectives and funding create 

management challenges for both the acknowledged SoS and its constituent 

systems (Dahman et al., 2008). 

It can be seen that the SoS-class of systems is subject to increased 

friction amongst constituent system entities and creates management challenges 

during capability delivery. These dynamic and competing behaviors of an SoS 

have to be captured in the CDS ontology. 
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C. EMERGENCE IN SYSTEMS 

It is clear from the definitions of systems that a key reason for assembling 

a system would be for the emergent behavior that would result. Emergence is a 

condition when the whole is equal to the parts plus traits that are related to the 

context of the interaction of the parts (Langford, 2013a). In other words, through 

the interactions of the parts, the whole is able to achieve objectives greater than 

the sum of its parts. Jamshidi (2009) stated that the concept of the whole being 

more than the sum of its parts could be traced back to as early as Aristotle, but 

the utility of emergence beyond informed thinking continues to be questioned. 

As cited in Jamshidi (2009), Holland pointed out that “emergent patterns 

are not adequately understood without the appreciation of the context within 

which the patterns exist” (p. 174). This is especially the case of SoS, where the 

context could be highly variable; “emergence has far-reaching implications for 

how we think, make decisions, and interpret results related to design, 

deployment, and transformation of SoS solutions” (Jamshidi, 2009, p. 174). 

Jamshidi, 2009 examined the nature of emergence through three perspectives: 

(1) philosophical; (2) axiomatic; and (3) methodological. The same approach to 

understanding emergence was adopted for the purpose of this thesis. The 

philosophical perspective deals with the commonly held worldviews on 

emergence. The axiomatic perspective examines the axiomatic principles that 

support a robust perspective for emergence in SoS. The methodological 

perspective deals with the general methodological considerations that could be 

adapted to specific contexts to account for emergence.   

1. Philosophical Perspective 

Jamshidi (2009) asserts the importance of understanding and appreciating 

the existence of varying world views on emergence, as there is greater potential 

for conflicts in SoS capability delivery organizations holding different worldviews. 

These worldviews are reference frames through which we “give meaning 

to actions, decisions, and events as they unfold” (Jamshidi, 2009, p. 175). He 
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argues that the organizations’ philosophical leanings in the epistemological and 

ontological frames shape how they perceive emergence. Figure 3 shows the 

philosophical spectrum of these two frames. The epistemological frame relates to 

how organizations’ believe they perceive, collect, and communicate knowledge, 

while the ontological frame deals with the organizations’ belief in what is reality. 

 

Figure 3.  Philosophic-level Spectrum (After Keating, 2005). 

 

A capability delivery organization leaning towards the positivism end of the 

spectrum would tend to take the stance that all system emergences can be 

predicted based on “absoluteness of system knowledge,” while another 

organization with antipositivistic leanings would not expect absolute system 

knowledge and hence accept the existence of indeterminable emergence and its 

variety of interpretations (Jamshidi, 2009). Similarly, an organization that takes a 

realistic view might be inclined only to accept emergence as it is measured, while 
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a nominalistic organization would accept that the reality of emergence as 

subjective to the beholder (Jamshidi, 2009). 

Emergence of a system in a given context could only be commonly 

discussed if the organizations examined the system at the same level of 

abstraction and granularity. As indicated earlier in the discussion on abstraction 

and granularity, the appropriate hierarchical and heterarchical view of the parts of 

a system would be adjudicated by the context in which the emergence of interest 

arises (Langford, personal communication, July 8, 2013). As such, capability 

delivery organizations having different abstractions and granules in mind would 

be debating the emergent properties, traits and attributes of a system that was 

only common in the name of the system. 

It is not the purpose of this thesis to argue the philosophical merits or 

superiority of worldviews, but it could be surmised that capability delivery 

organizations would stand to gain if they recognize that other organizations may 

interpret emergence differently. These organizations should plan how to analyze, 

measure, and discuss emergence productively.   

Kasser (2012) discussed two relevant orthogonal dimensions to a 

problem, the first being complexity and the second being complicatedness. On 

one hand, the complexity of a problem is an external objective characteristic 

“determined by the number of issues, functions, or variables involved in the 

problem; the degree of connectivity among those variables; the type of functional 

relationship among those properties; and the stability among the properties of the 

problem over time” (Kasser, 2012). On the other hand complicatedness is 

subjective to the level of competency held by the capability delivery organization 

with respect to the required domain expertise to examine the problem (Kasser, 

2012). 

An emergent trait that exhibited in a complex operational context might be 

too complicated for one capability organization, but is relatively easy for another 

organization with the knowledge and tools to measure it. Emergence that could 
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not be determined through analysis nor measured by contemporary methods and 

tools would still be determinable or measurable given the advancement in theory, 

measurements, and tools eventually (Langford, private communication, July 3, 

2013). 

The implications for the CDS ontology is that there exists a fog of 

emergence clouding the capability delivery organization’s subjective perception 

of the objective manifestation of an SoI’s full suite of emergent traits. This fog of 

emergence is modified by the organization’s competency in the requisite 

engineering domain to determine or measure the emergent trait. 

2. Axiomatic Perspective 

The axiomatic perspective is a view comprised of knowledge that is 

regarded as established in the field. There is much development in the 

knowledge that is directly applicable to systems, but not much in the way of 

theories relating to emergence, despite emergence being considered axiomatic 

with regard to systems3 (Jamshidi, 2009). The following section summarizes the 

explications on emergence derived from “systems-based concepts that are 

supportive of the emergence perspective” (Jamshidi, 2009). 

1. Holism (Jamshidi, 2009) Skyttner “suggests that we cannot 
understand a complex system through reduction to the component 
or entity level” (p. 178). Holism is opposed to reductionism which 
believes that a complex system is simply the sum of its parts and 
hence could be absolutely analyzed at increasingly finder levels of 
details. Holism states that organizations have to analyze a system 
holistically in its context to fully comprehend associated emergent 
traits. Reductionist methods could still be used to study emergence 
if it could separate the parts from the whole, and “identify 
nonlinearities in performances and results to quantify losses” 
(Langford, 2012, p. 227). 

2. Context “is the circumstances, factors, conditions, and patterns that 
both enable and constrain a complex system solution” (Keating, 

                                            
3 Jamshidi (2009) made the general statements with regard to emergence in particular to 

SoS, but as argued by this author, emergence is a characteristic of all systems and not exclusive 
to SoS. 
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2005). The context in which the system is used adjudicates the 
appropriate level of granularity and abstraction of the “whole” 
through which emergence could be known (Langford, 2012). These 
contexts are more often “as-deployed” than “as-intended,” and 
hence it is a fundamental error to analyze a system solely based on 
designed intentions (Jamshidi, 2009, p. 180). As the context is 
external to the system and dependent on the military performers 
that use it, there could be a multiplicity of contexts and associated 
emergence beyond those envisioned by the organizations that 
designed and implemented it. 

3. Complementarity “suggests that any two different perspectives … 
of a system will provide different knowledge of the system” 
(Jamshidi, 2009, p. 180). As a logical result of holism and 
multiplicity of contexts, every context in which the system is used 
while being potentially incompatible would still be valid and serve to 
complement the holistic impression of the system (Jamshidi, 2009). 

4. System darkness “is a concept that recognizes there can never be 
complete knowledge of a system” according to Skyttner (as cited in 
Jamshidi, 2009, p. 181). Wolpert (2008) rigorously proved that an 
organization could never infer entirely correct knowledge of the 
system of which the organization is a part. This means that the 
knowledge of a system from an internal perspective is incomplete 
and speculative. Knowledge of a system and its associated 
emergence within the contexts in which it operates unfolds together 
with system operation and observations (Jamshidi, 2009).   

5. Dynamic stability “holds that a system remains stable as long as it 
can continue to produce required performance during 
environmental turbulence and changing conditions” (Jamshidi, 
2009, p. 182). Neither the system nor the context in which it 
operates remains the same, and so stability in the system is 
achieved through adjustments to disturbances in system 
performance (Jamshidi, 2009). Emergence is a result of the EMMI 
exchanged between objects of the system and context to achieve a 
natural stable state (Langford, 2012). 

6. Metasystem “provides the structure of relationships that integrates 
the SoS4“ according to Beer (as cited by Jamshidi, 2009, p. 181) 
and could be depicted as a three-dimensional coordinate system 
with one axis running the spectrum from: (1) integration to 

                                            
4 The five axioms relating to emergence were generally applicable to systems, but the axiom 

regarding metasystem is more pertinent to SoS, as a non-SoS would not be subjected to tension 
along the integration-autonomy axis.   
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autonomy; (2) a second axis spanning stability to change; and (3) 
the third-axis of purposeful design to self- organization (Jamshidi, 
2009). An SoS is subjected to formal structural relationships, but 
the “balance in tensions might shift through the life of the SoS” 
(Jamshidi, 2009, p. 181). It was said that a variety of emergence 
would be produced by the SoS to resolve structural tensions due to 
such shifts in balance along the axes of the metasystem. (Jamshidi, 
2009). 

From the axiomatic perspective, dynamic stability supports emergence as 

an intrinsic phenomena that results from EMMI interactions between parts of a 

system to perform a function. While the impact of emergence is greatest when 

unexpected, it is wrong to only associate emergence with surprise. The CDS 

ontology has to reflect this intrinsic manifestation of emergent traits regardless of 

whether it is known or not. 

The concepts of holism, contexts, complementarity, and system darkness, 

adds to the fog of emergence in the CDS ontology. The full suite of emergent 

traits that manifest after system functions are performed is a complementary 

result of all the as-deployed mission contexts beyond those that were intended. 

System darkness posits that the capability delivery organization might not 

accurately infer the full suite emergent traits because of imperfect knowledge 

regarding the contexts. The fog of emergence in the CDS ontology has to 

incorporate this subjective knowledge of known missions against an all-

omniscient objective list of as-deployed mission contexts. If a mission context is 

intended, the emergent traits that manifest in the intended context are 

determinable based on the capability delivery organization’s competencies in the 

requisite engineering domain. If the mission context is unknown, the emergent 

traits for that unknown context would be indeterminable, as even the most 

competent organizations would not be able to determine emergent traits without 

first knowing the context in which they manifest. 

Finally, the concept of metasystem stresses implies that a comprehensive 

CDS ontology with emergence has to model the fluctuations in the emergent 
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traits manifested by the same SoS in the same mission context, due to 

perturbations along the three axes mentioned previously. 

3. Methodological Perspective 

Keating (2005) suggests that the philosophic perspective would inform the 

axiomatic perspective which in turn informs the methodological perspective. The 

methodological perspective is concerned with “guiding frameworks that are used 

to guide inquiry and gain knowledge regarding complex systems” (Keating, 

2005). 

Jamshidi (2009) observes that many systems engineering processes have 

been developed and applied successfully, but they are insufficient to be 

considered as a methodology. He opines that any combination of the following 

six conditions would favor the guiding hand offered by a systems-based 

methodology over prescriptive traditional systems engineering processes: (1) 

turbulent environmental conditions; (2) ill-defined problem conditions; (3) 

contextual dominance; (4) uncertainty for approaches; (5) ambiguous 

expectations and objectives; and (6) excessive complexity (Jamshidi, 2009). The 

attributes for systems-based methodologies are identified in Table 1. 
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Table 1.   Attributes of a systems-based methodology (From Jamshidi,  
2009, p. 179). 

Methodology 
Attribute 

Description 

Transportable Capable of application across a spectrum of complex systems 
engineering problems and contexts. The appropriateness (applicability) 
of the methodology to a range of circumstances and system problem 
types must be clearly established as the central characteristic of 
transportability. 

Theoretical and 
philosophical 
grounding 

Linkage of the methodology to a theoretical body of knowledge as well 
as philosophical underpinnings that form the basis for the methodology 
and its application. 

Guide to action The methodology must provide sufficient detail to frame appropriate 
actions and guide direction of efforts to implement the methodology. 
While not prescriptively defining “how” execution must be accomplished, 
the methodology must establish the high-level “whats” that must be 
performed. 

Significance The methodology must exhibit the “holistic” capacity to address multiple 
problem system domains, minimally including contextual, human, 
organizational, managerial, policy, technical, and political aspects of an 
SoS problem. 

Consistency Capable of providing replicability of approach and results interpretation 
based on deployment of the methodology in similar contexts. The 
methodology is transparent, clearly delineating the details of the 
approach for design, analysis, and transformation of the SoS. 

Adaptable Capable of flexing and modifying the approach configuration,  execution 
or expectations based on changing conditions or circumstances – 
remaining within the framework of the guidance provided by 
methodology but adapting as necessary to facilitate systemic inquiry. 

Neutrality The methodology attempts to minimize and account for external 
influences in the application and interpretation. Provides sufficient 
transparency in approach, execution, and interpretation such that biases, 
assumptions, and limitations are capable of being made explicit and 
challenged within the methodology application. 

Multiple utility Supports a variety of applications with respect to complex SoS, including 
new system design, existing system transformation, and assessment of 
existing complex SoS initiatives. The methodology must provide for 
higher levels of inquiry and exploration of problematic situations, 
generating sufficient structuring and ordering necessary to move 
forward. 

Rigorous Capable of withstanding scrutiny with respect to (1) identified 
linkage/basis in a body of theory and knowledge, (2) sufficient depth to 
demonstrate detailed grounding in relationship to systemic 
underpinnings, including the systems engineering discipline, and (3) 
capable of providing transparent results that are replicable with respect 
to results achieved and accountability for explicit logic used to draw 
conclusions/interpretations. 

The methodology perspective shall be used to assess the normative body 

of knowledge developed in this thesis based on the CDS ontology with 

emergence. 
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D. SYSTEM ENGINEERING LIFE CYCLE AND PROCESS MODELS 

SE is not a new discipline but has been brought to the forefront when DoD 

acquisition policies mandated its use throughout a system’s life cycle in 2006 

(ODUSD [A&T] SSE, 2006). A number of SE process models have been 

developed over time that could be applied during a system’s life cycle.   

In this thesis, the parts and processes that comprise the CDS are taken to 

be the various capability delivery organizations that are responsible for the 

capability at the various life cycle phases using a particular SE process model to 

guide their interactions and work through these phases. The EMMI exchanges 

are the flow of intellectual properties, life cycle deliverables, and resources 

required for the various milestones and work packages. Hence, we began by 

taking a look at the generic system life cycle model that forms the common 

theme linking the variety of systems engineering process models and the 

acquisition system that form a key mechanism for the system’s progress through 

its life cycle. 

How SE process models alter the life cycle phases could be mapped, and 

as a result, codified as part of the capability delivery model based on the CDS 

ontology with emergence.  

1. System Life cycle 

Langford (2012) offers a nuanced distinction between a system’s life cycle 

and the processes it goes through during its life (emphasis added) (p. 233–234): 

The systems life cycle perspective captures three issues: “(1) how 
comfortably the solution reflects life cycle needs; (2) the broader 
context in which the design is considered to have utility; and (3) the 
flexibility to incorporate cross-disciplinary views.  …Life cycle can 
be seen as a structured progression from an initial beginning state 
to an end state, often thought of as from inception (beginning of life) 
to disposal (end of life). Life cycle is not comprised of sequential or 
successive processes. Yet, life cycle discussions are appropriate to 
all processes and activities. It is instructive to consider the life cycle 
of the problem, the stakeholder needs, the development effort, the 
product, and the product uses. 
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A distinction would be made for this thesis with regards to systems life 

cycle models and SE process models in order to examine the effects of nesting 

different SE processes within a system’s life cycle. 

This thesis would use the Defense Acquisition Management System 

(DAMS) as a working implementation of a generic systems life cycle. The DAMS 

answers “what needs to be done” to ensure standardization of terms of 

references, decision points, and of well-known deliverables across key 

stakeholders from an acquisition perspective (Office of Under Secretary of 

Defense Acquisition, Technology & Logistics [OUSD AT&L], 2008a). The various 

systems engineering process models answer “how to do it” and “for how long” to 

guide the capability delivery organizations from a systems engineering 

perspective.   

 

Figure 4.  The Defense Acquisition Management System (From OUSD AT&L, 
2008). 

The DAMS is a working elaboration of the generic life cycle model from an 

acquisition perspective (OUSD AT&L, 2008). According to the Defense 

Acquisition University (DAU, 2008):  

The Materiel Development Decision (MDD) is the formal entry point 
into the acquisition process and is mandatory for all programs. It 
identifies a gap in capability and develops requirements to fill that 
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gap. The decision is documented in the Acquisition Decision 
Memorandum. The MDD consists of identification of a capability 
gap, a description of related risks, and a recommendation of 
whether or not to enter the acquisition process or use a non-
materiel solution. 

The MDD for a materiel solution has to precede entry into the acquisition 

process regardless of point of entry. The DAMS is comprised of five phases, 

three major milestones and clear regulatory deliverables and acquisition 

processes that had to be adhered to unless otherwise tailored by Milestone 

Decision Authorities (MDAs) as shown in Figure 4 (OUSD AT&L, 2008). They 

are: (1) the materiel solution analysis (MSA) phase; (2) the technology 

development (TD) phase; (3) the engineering & manufacturing development 

(EMD) phase; (4) the production & deployment (P&D) phase; and (5) the 

operations & support (O&S) phase. 

 

 

Figure 5.  Requirements and Acquisition Flow of DAMS phases in Evolutionary 
Acquisition (From OUSD AT&L, 2008). 
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While the five phases could be sequential, they are not required to be 

executed in sequence. In fact, DoD’s preferred acquisition strategy is 

“evolutionary acquisition,” where a capability is delivered in increments with a 

recognition that capability needs may change and the capability improved in the 

future (OUSD AT&L, 2008). Figure 5 shows an example of how the requirements 

and acquisition flows through the DAMS phases for a capability with a disciplined 

approach to maturing technologies before development and its eventual 

production. 

The following five tables (Tables 2–6) summarize the corresponding five 

phases of the Defense Acquisition Management System. Each table starts with 

the purpose of the phase, its pre-conditions, and ends with the post-conditions. 

The main body of the table describes the activities within the phase as well as 

important exceptions (if any). These activities are labeled with a prefix based on 

the abbreviations for their phase, followed by a running number that roughly 

indicates the order in which the activities occur. Most of the activities describe 

work packages to be done, and some describe important milestones and events. 

Those activities that are events have a character “e” appended to the end of their 

labels. For example, “MSA.4e” would denote the fourth activity of the MSA 

phase, and that it is an activity that denotes an event. 
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a. Materiel Solution Analysis Phase 

Table 2.   MSA Purpose & Description (From OUSD AT&L, 2008). 

    Material Solution Analysis 

Purpose 

  Assess potential materiel solutions 

  Determine appropriate entry phase in DAMS after current phase 

Pre-
conditions 

  
Initial Capabilities Document: preliminary CONOPS, capability needs, operational risk, 
justification 

  
 Materiel Development Decision(MDD),  Analysis of Alternatives (AoA) study guidance, 
Initial review date 

  S/N Activity Product Organization Type 

Phase 
description 

MSA.1 

AoA study preparation to do preliminary 
assessment of materiel solutions, 
identify key technologies, and life cycle 
costs 

AoA study 
Plan 

Lead DoD 
Component 

Program 
Elements 

MSA.2 

AoA and Materiel Solution Analysis to 
develop Measures of Effectiveness 
(MoEs), cost, schedule, CONOPS, and 
risk of alternatives. Identify CTEs for 
each materiel solution and their tech-
readiness, integration, and production 
risks. AoA 

Lead DoD 
Component 

Program 
Elements 

MSA.3 
Prepare appropriate DAMS Mile Stone 
(MS) artifacts 

Depends on 
corresponding 
artifacts for 
MS A, B, or C 

Lead DoD 
Component 

Program 
Elements 

MSA.4e 
Initial review of AoA and appropriate 
DAMS MS artifacts, and to decide if 
more reviews are needed.   

MDA, Lead 
DoD 
Component Event 

Post-
conditions   Completed AoA, Approved ICD, appropriate DAMS entry phase determined 
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b. Technology Development Phase 

Table 3.   TD Purpose & Description (From OUSD AT&L, 2008). 

    Technology Development Phase 

Purpose 

  Reduce technology risk 

  Determine and mature sets of technologies (CTEs) 

  Demonstrate CTEs on prototypes 

Pre-
conditions   Completed AoA, proposed materiel solution, prepared MS A artifacts, full funding for TDP 

  S/N Activity Product Organization Type 

Phase 
description 

pre-
TDP.1 

Draft Technology Development Strategy 
(TDS): single-step or evolutionary 
acquisition, their schedules, cost, 
performance goals, exit criteria, and its 
increments and number of prototypes to 
be developed in this phase 

MS A Artifact: 
TDS 

Lead DoD 
Component 

Program 
Elements 

pre-
TDP.2 Estimate cost for each AoA solutions 

MS A Artifact: 
Cost Estimate 

Lead DoD 
Component 

Program 
Elements 

TDP.1e 
MS A: Review of proposed materiel 
solution, & MS A artifacts   

Lead DoD 
Component, 
MDA Event 

TDP.2 
Preparation for Requests for Proposals 
(RFPs) after MS A approval RFPs PM 

Program 
Elements 

TDP.3 Production of 2 or more prototypes 

System 
components 
(prototype) 

S&T 
communities 

Program 
Elements 

TDP.4e Prototype demonstrations   
PM, S&T 
communities Event 

TDP.5 Review life cycle costs based on demos 

Life cycle 
Sustainment 
Plan (LCSP)s PM 

Program 
Elements 

TDP.6 

Prepare Systems Engineering Plan (SEP) 
that includes Reliability, Availability, and 
Maintainability (RAM) strategy and 
reliability growth program for design 
and development. SEPs 

PM, Program 
Executive 
Officer (PEO) 

Program 
Elements 

TDP.7e 
Program Support Reviews (PSR): Review 
SEP & LCSP   

Lead DoD 
Component Event 
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TDP.8 

Prepare Preliminary Design Review 
(PDR) design artifacts: Candidate designs 
to establish allocated baseline (hw, sw, 
human), underlying architectures, and 
high-confidence design. 

Preliminary 
designs 

Lead DoD 
Component, 
S&T 
communities 

Program 
Elements 

TDP.9e 

Perform PDR: Inform requirement 
trades; improve cost estimation; identify 
System-level design, integration, & 
manufacturing risks.   

User, 
Certification 
Authority, 
Lead DoD 
Component Event 

TDP.10 

Prepare MS B artifacts: Capability 
Development Document (CDD) to 
support initiation of acquisition 
program/increment, refine integrated 
architecture, and clarify how program 
would lead to war fighting capability. 
Includes detailed operational 
performance parameters. CDD 

User, PEO, 
PM, and 
[MDA] 

Program 
Elements 

TDP.11e CDD Approval   JROC Event 

Exception 
ex-

TDP.1e 

If cost estimation increase by 25% over 
MS A certification, PM has to notify MDA 
for possible rescindment of MS A 
approval   PM, MDA Event 

ex-
TDP.2 

If evolutionary, an MDA approved TDS is 
required for every increment with a MS 
A   

Lead DoD 
Component, 
MDA 

Program 
Elements 

Post-
conditions 

  Affordable program/increment of militarily useful capability has been identified 

  
Technology and manufacturing processes for program/increment assessed and 
demonstrated in relevant environment 

  Manufacturing risks identified 

  Program/increment can be developed for production within 5 years 
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c. Engineering and Manufacturing Development Phase 

Table 4.   EMD Purpose & Description (From OUSD AT&L, 2008). 

    
Engineering Manufacturing & 
Development       

Purpose 

  Develop a system or an increment of a capability 

  Complete full system integration 

  Develop an affordable and executable manufacturing process 

  Ensure & demonstrate -ilities & Human Systems Integration (HSI) 

Pre-conditions   
CDD with KPPs, technology maturity of materiel solution, approved requirements, and 
full funding. 

  System concept selected, requirements approved, and PM assigned 

    Activity Product Organization Type 

Phase 
description 

pre-
EMD.1 

Capability Development Document 
(CDD) to support initiation of 
acquisition program/increment, 
refine integrated architecture, and 
clarify how program would lead to 
war fighting capability. Includes 
detailed operational performance 
parameters 

MS B Artifact: 
CDD 

User, PEO, 
PM, and 
[MDA] 

Work 
packages 

pre-
EMD.2 

 Low-Rate Initial Production (LRIP) 
quantities (one unit to 10% of total), 
staffing estimates, business case, 
acquisition program baseline (APB) 

MS B 
Artifacts: LRIP, 
staffing 
estimate, 
business case, 
APB PM 

Work 
packages 

EMD.1e 
MS B: Review of MS B artifacts and 
initiation of acquisition program   PM, MDA Event 

EMD.2 

Preparation for final RFPs after MS B 
approval; specifically worded to only 
award to proposals based on CTEs 
that have been demonstrated in a 
relevant environment & offerors to 
specify technology readiness levels 
of CTEs Final RFPs PM 

Work 
packages 

EMD.3 

Preparation for Requests for 
Proposals (RFPs) for TDP after MS A 
approval RFPs PM 

Work 
packages 

Integrated 
System Design 

(ISD) 

EMD.4 

If no PDR prior MS B, PM to plan for 
PDR design artifacts: Candidate 
designs to establish allocated 
baseline (hardware, software, 
human system integration), 
underlying architectures, and high-
confidence design. 

Preliminary 
design 
(Architecture, 
component 
design, 
production 
baseline) 

PM, S&T 
Communities 

Work 
packages 
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Engineering Manufacturing & 
Development       

EMD.5e 

If no PDR prior MS B, conduct 
Preliminary Design Review (PDR): 
Inform requirement trades; improve 
cost estimation; identify System-
level design, integration, & 
manufacturing risks. PDR report 

PM, S&T 
Communities Event 

EMD.6e 

If PDR conducted within EM&D 
phase, conduct Post-PDR: Formal 
assessment where MDA considers 
PM’s assessment and PDR report 

Post-PDR 
assessment in 
Acquisition 
Decision 
Memorandum PM, MDA Event 

EMD.7 
Prepare for critical design review 
(CDR) 

Critical design 
(Architecture, 
component 
design, 
production 
baseline for all 
configuration 
item) 

PM, S&T 
Communities 

Work 
packages 

EMD.8e Conduct CDR CDR Report 

PM, Subject 
Matter 
Experts 
(SMEs), CDR 
Chair Event 

EMD.9e Post CDR Review 
Initial product 
baseline PM, MDA Event 

System 
Capability & 

Manufacturing 
Process 

Demonstration 

EMD.10 

Prepare for System Capability & 
Manufacturing Process 
Demonstration 

System 
component 
(including 
manufacturing 
processes) 

S&T 
communities 

Work 
packages 

EMD.11e 

Repeated developmental test & 
evaluation (DT&E) of technical 
progress, operational assessments, 
use of M&S to demonstrate 
integration   

PM, S&T 
communities, 
operational 
users Event 

EMD.12 Prepare MS C artifacts 

MS C artifacts 
including 
Capability 
Production 
Document 
(CPD) 

PM, S&T 
communities 

Work 
packages 

EMD.13e CPD approval   JROC Event 

Post-
conditions   Purpose achieved 
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d. Production and Deployment Phase 

Table 5.   P&D Purpose & Description (From OUSD AT&L, 2008). 

    Production & Deployment Phase 

Purpose   
Achieve operational capability that addresses mission needs, established through 
operational test & evaluation (OT&E) 

Pre-
conditions   

Acceptable performance in DT&E, mature software capability, no significant manufacturing 
risks, manufacturing processes under control, approved ICD (if MS C is program initiation), 
approved capability production document (CPD), refined integrated architecture, -ilities, 
phased for rapid acquisition and fully funded 

    Activity Product Organization Type 

Phase 
description 

P&D.1e 

MS C: Authorize entry into LRIP; 
production/procurement for non-LRIP; 
limited deployment for software 
intensive systems   MDA Event 

P&D.2 

Complete manufacturing development 
for initial OT&E and to establish 
production base 

Production 
base 

S&T 
communities 

Work 
packages 

P&D.3 Execute LRIP 

Production-
representative 
articles 

S&T 
communities 

Work 
packages 

P&D.4e 
Perform IOT&E to rectify deficiencies in 
both articles and production base   

S&T 
communities, 
operational 
users Event 

P&D.5 

Prepare for FRP (demonstrate control of 
manufacturing process and acceptable 
reliability, collection of statistical 
process control data, demonstrated 
control and capability of critical 
processes) 

Beyond LRIP 
Report 

PM, S&T 
communities 

Work 
packages 

P&D.6e 
Full-Rate Production (FRP) Decision 
Review 

FRP decision 
in Acquisition 
Decision 
Memorandum 

MDA, 
Congress, 
USD (AT&L) Event 

P&D.7 
Execute FRP and Deployment: Deliver 
system and materiel to users. 

Initial 
Operational 
Capability 
System 
Components 

S&T 
communities, 
operational 
users 

Work 
packages 

P&D.8e 
Perform Follow-on OT&E (FOT&E) to 
assess system performance 

[New 
capability 
requirements] 

S&T 
communities, 
operational 
users Event 

P&D.9 Ensure military equipment valuation   
PM, S&T 
communities 

Work 
packages 

Post-
conditions   

Initial Operational Capability (IOC) 
achieved       
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e. Operations and Support Phase 

Table 6.   O&S Purpose & Description (From OUSD AT&L, 2008). 

    Operations & Support       

Purpose 
  

Execute support system that meet materiel readiness and O&S performance in a cost-
effective manner over system’s life cycle  

Pre-
conditions 

  

Acceptable performance in DT&E, mature software capability, no significant manufacturing 
risks, manufacturing processes under control, approved ICD (if MS C is program initiation), 
approved capability production document (CPD), refined integrated architecture, -ilities, 
phased for rapid acquisition and fully funded 

    Activity Product Organization Type 

Phase 
description 

O&S.1 

Life cycle sustainment: Continual 
engineering for RAM, HSI, environment, 
safety, occupational health, 
supportability and interoperability   

PM, S&T 
communities, 
operational 
users 

Work 
packages 

O&S.2e Iterative reviews   

PM, 
operational 
users Event 

O&S.3 Prepare for disposal   PM 
Work 
packages 

O&S.4e Disposal   

PM, S&T 
communities, 
operational 
users Event 

O&S.5e PEO annual review   PEO, PM Event 

 

2. Systems Engineering Process Models 

A quote by Nogueira, Jones, & Luqi (2000), made in the context of 

software engineering, mirrors the development of SE as a discipline to find the 

right balance between order and chaos:  

The edge of chaos is defined as “a natural state between order and 
chaos, a grand compromise between structure and surprise” 
(Kauffman as cited in Nogueira et al., 2000). The edge of chaos 
can be visualized as an unstable partially structured state of the 
universe. It is unstable because it is constantly attracted to the 
chaos or to the absolute order. 

We have the tendency to think that the order is the ideal state of 
nature. This could be a mistake. Research … supports the theory 
that operation away from equilibrium generates creativity, self-
organization processes and increasing returns (Roos as cited 
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in Nogueira et al., 2000). Absolute order means the absence of 
variability, which could be an advantage under unpredictable 
environments. 

Change occurs when there is some structure so that the change 
can be organized, but not so rigid that it cannot occur. Too much 
chaos, on the other hand, can make impossible the coordination 
and coherence. Lack of structure does not always mean disorder. 

When the use of SE throughout a system’s life cycle was mandated in 

2006 by acquisition policies, it was believed that SE would provide “an 

overarching process that the program team applies to transition from a stated 

capability need to an affordable, operationally effective and suitable system” 

(ODUSD [A&T] SSE, 2006). The speed with which the pendulum swung toward 

greater order was further accelerated by DoD’s increasing reliance on the more 

complex SoS to implement user capabilities. As a result the SE Guide for SoS 

was introduced (ODUSD [A&T] SSE, 2008) as “the SE community has 

recognized the need for discipline and structure in the engineering of SoS” 

(Dahmann et al., 2008). However, the recent additions of agile methods to the 

International Council on Systems Engineering (INCOSE) SE Handbook (2010) 

indicate that the pendulum swing might have been reversed, with focus on 

increased agility based on potentially chaotic interpersonal emergent processes 

rather than being driven by the false comforts of an ordered plan. 

Each of these revisions to DoD policies and additions to SE as a discipline 

have been accompanied by more SE processes; such as the classic single-pass 

Waterfall and Vee, the iterative and concurrent Dual-Vee, the evolutionary Spiral 

and, the latest Agile processes to list a few more prominent ones. 

A process is defined by the SEBoK (Pyster & Olwell, 2013) “as a series of 

actions or steps taken in order to achieve a particular end; as a verb it is the 

performing of the operations. Processes can be performed by humans or 

machines transforming inputs into outputs.”  Langford (2012) succinctly defines 
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process models “as models that describe the stages in which the project team 

focuses on various milestones and deliveries.”  The process model signifies what 

stage is next and what events constitute that stage.  

According to the SEBoK (Pyster & Olwell, 2013), there are three 

categories of SE processes: (1) pre-specified and sequential processes (e.g., 

single-pass classic waterfall model), (2) evolutionary and concurrent processes 

(e.g., various forms of the Vee-model, spiral models, and waterfall with feedback) 

and (3) interpersonal and emergent processes (e.g., agile development, scrum 

and extreme programming). A list of SE process model adjectives together with 

their ontological relations to other adjectives is shown in Table 7.  

Table 7.   List of common SE process model adjectives. 

Adjective Description 

Pre-specified Describes a process whereby the system requirements were predetermined and fixed 

for the scope and life cycle of the system (Pyster & Olwell, 2013). It is in contrast to an 

evolutionary process. 

Evolutionary Describes a process where successive versions of a system are produced in response 

to discoveries surfaced by earlier versions and changing requirements (Forsberg, 

Mooz, & Cotterman as cited by Pyster & Olwell, 2013). It is in contrast to a pre-specified 

process. 

Single-pass5 Describes a process where a complete system is produced during the first iteration of 

the process (Pyster & Olwell, 2013). It is in contrast to a multi-pass process. 

Multi-pass Describes a process whereby either the whole or a subset of the process model is 

repeated during the system’s life cycle (adapted from Pyster & Olwell, 2013). It is in 

contrast to a single-pass process. 

Iterative Describes a process whereby either the whole or a subset of the process model is 

repeated during the system’s life cycle (adapted from Pyster & Olwell, 2013). It is 

synonymous to multi-pass and is in contrast to a single-pass. 

Incremental An incremental process is an iterative process with the additional condition that the 

system requirements were contiguously partitioned and delivered in successive 

versions of increments in features and functions (adapted from Mooz, Forsberg, & 

Cotterman as cited by Pyster & Olwell, 2013).  

Sequential Describes a process where versions of a system is defined and developed strictly in 

sequence one after another (Pyster & Olwell, 2013). Note that the adjective is used to 

describe the sequential nature of the pre-production phases of the process and does 

not imply that the whole process has to be sequential. A sequential process model has 

                                            
5 Pyster and Olwell (2013) use the words “Single-step” and “Multi-step” to distinguish 

between a process that takes only a single pass to produce a complete system and another 
process that takes multiple pass to produce a complete system. The word “step” might be 
confounded with the steps that comprise a process model. As such, the word “pass” is used. 
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Adjective Description 

the lowest overlap (in fact, no overlap) of pre-production phases when compared to 

opportunistic and concurrent process models. 

Opportunistic Describes a process where subsequent versions of a system after the first is defined 

and developed contingent on the presentation of a sufficiently attractive opportunity, 

such as maturing desired technology or availability of key personnel (Pyster & Olwell, 

2013). An opportunistic process model has higher overlap of pre-production phases 

compared to a sequential process model, but less overlap compared to a concurrent 

one. 

Concurrent Describes a process where subsequent versions of a system after the first is defined 

and developed concurrently. While not necessary it is recommended to ensure 

concurrently produced versions of the system are contiguous parts of the system with 

low modular coupling (adapted from Pyster & Olwell, 2013). A concurrent process 

model has the highest overlap of pre-production phases compared to sequential and 

opportunistic process models. 

Unconstrained Describes a process where a system is produced through an unconstrained order of 

phases. 

Ordered Describes a process where a system is produced through a well defined order of 

phases. 

 

In the following subsections, these seven process models are examined in 

detail: (1) Waterfall; (2) Waterfall-with-feedback; (3) Vee; (4) Evolutionary and 

Incremental Vee; (5) Spiral; (6) Agile; (7) and Wave. By understanding the 

individual characteristics and principles behind each process model, codified 

strategies for each SE process model are developed to guide the customized 

allocation of DAMS phases to be put through the CDS model. These SE process 

model strategies affect the execution of work packages and milestones through 

the DAMS phases and evolve the capability expressed as an instance of the 

CDS ontology in a different manner. 
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a. Waterfall 

 

Figure 6.  Waterfall SE process model (After USDoD, 1988). 

The Waterfall is a pre-specified, single-pass, sequential and 

ordered SE process model, also known as the traditional waterfall model. For the 

rest of this thesis, we use the term “Waterfall” to mean this traditional version. 

The Waterfall process model could be visualized as an ordered flow 

of steps, overlaid on the DAMS life cycle phases as shown in Figure 6. The key 

characteristic of the Waterfall process model is that it follows a strict progression 

through the life cycle stages without revisiting earlier steps (Pressman, 2010). 

It is best used when the requirements for a problem are well 

understood in a context that is stable, therefore making it possible to capture all 

requirements and complete analysis before design starts. However, in the 
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modern context characterized by increasing system complexity and shifting 

context, the Waterfall’s rigidity limits its application. 

Modern systems are rarely implemented in a single-pass ordered 

flow, making it difficult to identify and freeze requirements at the start of 

programs. Even if requirements could be identified and frozen early, they could 

be invalid or irrelevant by deployment if the process execution takes a long time 

(Center for Technology in Government, 1998). 

For the purpose of this thesis, a purist perspective was adopted 

and therefore, the Waterfall process model was treated as one that is totally 

insulated from changing requirements once the functional baseline has been 

established. Rework encountered would be due to errors in design or 

implementation that is only discovered during testing based on the set frozen 

requirements (Langford, private conversation, July 15, 2013). 

b. Waterfall with Feedback 

 

Figure 7.  Waterfall with feedback ( After Royce, 1970 and USDoD, 1988). 



 43 

The classic Waterfall process model is often mistakenly attributed 

to Royce (1970), but Royce was not a proponent of the classic Waterfall. His 

1970 paper was actually about a Waterfall-with-feedback model and criticized the 

use of the classic waterfall. The waterfall-with-feedback adds the feedback 

arrows as shown in Figure 7. It is a marked deviation from the Waterfall process 

model and is, in essence, as interpreted based on contemporary SE process 

terminology, an evolutionary, iterative, sequential, and unconstrained process 

model (Royce, 1970). 

The model shows that at any part along the waterfall, the capability 

delivery organization could revisit an earlier step to rectify any unforeseen 

insufficiencies. Royce (1970) anticipated that unforeseen difficulties encountered 

after design might be so disruptive that the design has to be revisited bypassing 

the immediate steps preceding it. Likewise, the design change could be so 

drastic that it warrants a revisiting of the requirement steps (Royce, 1970). 

The Waterfall-with-feedback process model has five guiding 

principles that further address the weaknesses of the classical Waterfall (Royce, 

1970): 

 Design first: The departure from the cascading ordered steps of the 
classic Waterfall shows up in the first guiding principle to start with 
design. To be more specific, a preliminary design is done together 
with system conceptualization and requirements analysis (Royce, 
1970). The intent was to ensure that conceptualization and analysis 
were performed with a clearer appreciation of the consequences 
(Royce, 1970). 

 Document the design: Focus on a disciplined approach to produce 
documents at every step (Langford, 2013b and Royce, 1970). 
Royce (1970) justifies the emphasis on design documentation as a 
tangible mean to track design progress, establish requirements 
traceability and is a key document referred to by downstream steps. 

 Do it twice:  If the system is an original concept, arrange it so that 
the system is only delivered on the second iteration of the whole 
waterfall-with-feedback process (Royce, 1970). The first iteration 
allows for experimentation to produce a prototype whose usage 
would provide feedback to all subsequent steps of the second 
iteration (Royce, 1970). 
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 Plan, control and monitor testing:  Prioritize testing related 
activities, as formal testing occurs late in the process and 
consumes program resources (Royce, 1970). Capability delivery 
organizations shall build test models to uncover problems even 
before the formal test phase (Royce, 1970). The focus on ensuring 
correctness of implementation according to specifications is 
reflected in the updated waterfall models as embedded verification 
activities before the test phase (Langford, 2013b). 

 Involve the user:  Involve the user as early as possible and 
minimally during (1) systems requirements, (2) preliminary design 
review, (3) critical design review, and lastly (4) final system 
acceptance review (Royce, 1970). The frequent user involvement 
provides a means to evolve the requirements and system design 
continually and as early as practicable to avoid propagating invalid 
requirements and incorrect design/ implementation. 

c. Vee 

 

Figure 8.  Vee model (After INCOSE, 2010). 
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The original Vee model introduced by Forsberg and Mooz in 1991 

is a pre-specified, single-pass, sequential, and ordered process like the Waterfall 

model, but with three differences: (1) a greater focus on systems engineering 

activities; (2) continual need to verify and validate; and (3) evolving baselines of 

the system that is decomposed and defined as it moves down the left of the Vee 

and integrated and verified up the right of the Vee as shown in Figure 8 (Pyster & 

Olwell, 2013; and INCOSE, 2010). Kasser (2010), states that the Vee is a 

rearranged waterfall view “for use as a management tool showing the 

relationship between design activities and test activities” (Forsberg and Mooz, as 

cited in Kasser, 2010). 

The Vee model corresponds to the DAMS phases, as shown in 

Figure 9, starting with solution-agnostic system conceptualization during the 

materiel solution analysis phase before moving down the left-Vee, to 

demonstrate and validate system concepts in the technology development 

phase. Engineering and manufacturing development occurs at the base of the 

Vee. Production and deployment take place along the right-Vee, and end with 

operations and support at the tip of the right-Vee. 
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Figure 9.  Left side of the sequential Vee (From INCOSE, 2010). 

The Vee model is able to show an extremely high level snapshot of 

the system’s passage of time, maturity, baselines as well as upward vertical 

validation and downward vertical investigations. According to the INCOSE 

(2010): 

In the Vee model, time and system maturity proceed from left to 
right. The core of the Vee (i.e., those products that have been 
placed under configuration control) depicts the evolving baseline 
from user requirements agreement to identification of a system 
concept to definition of elements that will comprise the final system. 
With time moving to the right and with the system maturity shown 
vertically, the evolving baseline defines the left side of the core of 
the Vee, as shown in the shaded portion of Figure 3–5 (Figure 10 in 
this thesis). 
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As entities are constructed, verified and integrated, the right side of 
the core of the Vee is executed (as shown in Figure 11). Since one 
can never go backward in time, all iterations in the Vee are 
performed on the vertical “time now” line. Upward iterations involve 

the stakeholders and are the in‐process validation activities that 

ensure that the proposed baselines are acceptable. The downward 

vertical iterations are the essential off‐core opportunity and risk 

management investigations and actions. In each stage of the 
system life cycle, the SE processes iterate to ensure that a concept 
or design is feasible and that the stakeholders remain supportive of 
the solution as it evolves. 

 

Figure 10.  Right side of the sequential Vee (From INCOSE, 2010). 

A problem with the Vee-model is that “practitioners tend to forget, 

or are unaware, that the Vee is a three-dimensional view as shown in Figure 11 

and in its two-dimensional representation it is only an overview of some of the 
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aspects of the project cycle relating to the development to test and evaluation at 

the various phases of the system life cycle while abstracting out all other 

information” (Kasser, 2010). A third dimension of the Systems Analysis and 

Design Process has to be applied when going down the left-Vee and when 

coming up on the right-Vee a System Verification and Integration Process has to 

be applied (Forsberg & Mooz, 1995). 

 

Figure 11.  Application of System Analysis and Design Process to the Concept 
Exploration phase (From Forsberg & Mooz, 1995). 

The Vee-model, being a derivative of the classic Waterfall, suffers 

from the same weakness of being unable to consider changes in customer needs 

during development of the solution system (Kasser, 2010). 
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d. Evolutionary and Incremental Vee 

 

Figure 12.  Evolutionary and Iterative Vee Model (After Forsberg & Mooz, as cited 
in Pyster & Olwell, 2013). 
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The Evolutionary and Iterative Vee is, as the name implies, is an 

updated variant of the Vee model with evolutionary and iterative features as 

shown in Figure 12. According to Pyster & Olwell (2013), it is used when: 

(1) rapid exploration and implementation of part of the system is 
desired; (2) the requirements are unclear from the beginning; (3) 
funding is constrained; (4) the customer wishes to hold the System 
of Interest open to the possibility of inserting new technology at a 
later time; or (5) experimentation is required to develop 
successive prototype versions. 

The Evolutionary and Iterative Vee differs from the Vee model in 

that it need not be plan-driven and increments could be opportunistic in nature, 

contingent on maturing technology or changes in needs or requirements (Pyster 

& Olwell, 2013). As shown in Figure 12 the capability delivery organizations use 

increments to develop parts of the system first, but the system cannot function as 

a whole until all increments are completed and a system-level test readiness 

review (TRR) is conducted. The resulting system could be deployed and 

operated providing new system requirements or changes in requirements for the 

next evolutionary iteration of the system. 

The requirements and architecture framework, within each 

evolutionary iteration, is taken to be stable to facilitate the partitioning of 

contiguous requirement sets for increments based on some criteria as follows 

(Fairley, as cited in Pyster & Olwell, 2013): (1) priority of features; (2) safety-

critical first; (3) user-interface first; and (4) kernel first followed by utilities. 

The benefits of the Evolutionary and Iterative Vee are:  (1) each 

increment has a tight build-verify-validate-demonstrate cycle which is quick to 

identify rework and fix defects (Pyster & Olwell, 2013); (2) flexibility to incorporate 

in-scope changes to requirements in subsequent iterative builds (Pyster & Olwell, 

2013); and (3) long-term flexibility to incorporate scope-changing requirements in 

subsequent evolutions. 
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e. Spiral 

 

Figure 13.  The Incremental Commitment Spiral Model (From Koolmanojwong, 
2010). 

The Spiral model is considered a primarily evolutionary and 

concurrent process model (Pyster & Olwell, 2013; Langford 2013b). Boehm was 

credited with the introduction of the Spiral model to SE in 1998, which has since 

been updated to the Incremental Commitment Spiral Model (ICSM) with the six 

risk-based decision reviews shown in Figure 13 (Koolmanojwong, 2010). For the 

purpose of this thesis, the Spiral process model refers to this updated ICSM 

model. The Spiral Model in Boehm’s (2000) words with emphasis intact: 

The spiral development model is a risk-driven process model 
generator. It is used to guide multi-stakeholder concurrent 
engineering of software intensive systems. It has two main 
distinguishing features. One is a cyclic approach for incrementally 
growing a system’s degree of definition and implementation while 
decreasing its degree of risk. The other is a set of anchor point 
milestones for ensuring stakeholder commitment to feasible and 
mutually satisfactory system solutions 
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The main benefit of the Spiral model, apart from its ability to evolve 

a system based on changing stakeholder needs, is being able to lower cost by 

eliminating infeasible solutions earlier and avoiding rework (Boehm, 2000; 

Langford, 2013b). 

Risks are “events that can cause the system to fail to meet its 

goals” (Boehm, 2000), and are ranked in terms of their combined impact and 

likelihood. Risks are addressed by prototyping, modeling, and trade-studies. 

During risk analysis, key characteristics of the system are determined and 

referred to as process drivers (Langford, 2013b). 

The Spiral model is a process model generator, which allows 

capability delivery organizations to embark on either “an incremental, waterfall, 

evolutionary prototyping, or other subsets of process elements in the spiral 

model” (Boehm, 2000) based on the risk patterns identified. The process model 

generated would inform the organizations what should be done next and for how 

long (Boehm, 2000). 
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Figure 14.  ICSM phase view with DAMS phases (After Koolmanjwong, 2010). 

The Spiral model is the first concurrent process model encountered 

in this thesis, and it differs from the sequential process model in that life cycle 

issues are considered together instead of considering them sequentially, and so 

any stakeholder or engineer interested in providing a requirement or design input 

can do so at any point in the process (Langford 2013b) as shown in Figure 14. 

A successfully executed Spiral process model would invariantly 

display the following six characteristics (Boehm, 2000): (1) concurrent rather than 

sequential determination of artifacts; (2) consideration of spiral elements6 in each 

spiral cycle; (3) level of effort for activities commensurate with risk; (4) level of 

 

                                            
6 Spiral elements are (1) critical-stakeholder objectives and constraints; (2) product and 

process alternatives; (3) risk identification and resolution; (4) stakeholder review; and (5) 
commitment to proceed (Boehm, 2000). 
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detail for artifacts commensurate with risk; (5) managing stakeholders’ continued 

commitment through three anchor point milestones7; and (6) emphasis on life 

cycle rather than initial development. 

f. Agile 

The Agile method is not a process in itself, but a method to be 

employed within a defined SE process model (Pyster & Olwell, 2013). The Agile 

method could be used in an evolutionary process model (Pyster & Olwell, 2013). 

The process model employing the Agile method could also be sequential, 

opportunistic or concurrent depending on the system partitioning needs and 

technical competency of the capability delivery organizations with the agile 

process (Fruhling & Tarrel, 2008). 

The INCOSE SE Handbook (2010) states that project execution 

methods can be described on a continuum from “adaptive” to “predictive” and 

agile methods are on the “adaptive” end. Despite being adaptive in nature, agility 

is neither “unplanned” nor “undisciplined” (INCOSE, 2010). It is guided by four 

key values in the Agile Manifesto (Bent et al., 2001): 

 Individuals and interactions over processes and tools 

 Working software over comprehensive documentation 

 Customer collaboration over contract negotiation 

 Responding to change over following a plan 

An Agile process flow usually follows a Scrum method, as depicted 

in Figure 15, where there are two main threads of SE activities at a given point in 

time. 

 

                                            
7 Three anchor point milestones: (1) Life Cycle Objectives (LCO), (2) Life Cycle Architecture 

(LCA), and (3) Initial Operational Capability (IOC). 
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Figure 15.  Agile model (After Boehm & Turner, as cited in Pyster & Olwell, 2013 
and Fruhling & Tarrel, 2008). 

The first thread is the Scrum thread that starts as a list of system 

backlog requirements is allocated by the system owner and scrum master to the 

team for a sprint (usually thirty days) (Fruhling & Tarrel, 2008). These allocated 

requirements are frozen for the duration of the sprint (Fruling & Tarrel, 2008). 

The scrum master expands the requirements into discrete tasks to be further 

allocated to the team which would then implement them with a daily rhythm that 

involves a scrum meeting (Pyster & Olwell, 2013). The meeting called by the 

scrum master allows every team member to provide a short update on what has 

been done, what problems they have, and what they would do before the next 

meeting (Fruhling & Tarrel, 2008; Pyster & Olwell, 2013). The Scrum thread ends 

with the sprint, and usually results in the delivery of a system with incremental 

functionality. 
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The second thread is the System backlog management thread 

(depicted by the orange arrows in Figure 15). The system owner controls the 

backlog through the scrum master, and ensures the central and continual re-

prioritization of the requirements (Fruling & Tarrel, 2008). The requirements could 

be changed or added due to the requirements being deemed invalid through 

hands-on with the incremental version of the system or as discovered by the 

team during scrum sprints (Fruling & Tarrel, 2008). 

These two threads could either happen sequentially or 

concurrently, depending on the team’s grasp of the requirements. If the 

requirements are not well-defined, the team should perform these threads 

sequentially to leverage on the down-time between sprints to seek clarity on the 

requirements (Fruhling & Tarrel, 2008). Advanced teams, could perform these 

threads concurrently, and may even have multiple Scrum threads developing 

multiple incremental versions of the system concurrently (Fruhling & Tarrel, 

2008).  

With respect to the DAMS life cycle phases, the Agile method is 

suitable to be used within SE processes during the Technology Development 

phase and the Engineering & Manufacturing Development phase as the frequent 

and rapid builds would be too expensive during and after the Production & 

Deployment phase. 

g. Wave 

The Wave process model is a meta-process model view of the 

Trapeze model developed specifically for use with the delivery of acknowledged 

SoS capabilities. Dahmann et al. (2011) pointed out that many other SE process 

models were predicated on the capability delivery organization’s ability to “define 

boundaries and requirements clearly and to control the development environment 

so that requirements can be optimally allocated to components,” a premise that is 

no longer valid in an SoS environment. 
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The Trapeze model is an SE model for SoS and identified seven 

core SoS SE elements (ODUSD [A&T] SSE, 2008): (1) translating capability 

objectives, (2) understanding systems and relationships, (3) assessing 

performance to capability objectives, (4) developing and evolving an SoS 

architecture, (5) monitoring and assessing changes, (6) addressing requirements 

and solution options, and (7) orchestrating upgrades to SoS. 

The Wave model shown in Figure 16 is a process-space 

visualization, with the model showing the time-sequenced steps overlaid on the 

needed SoS SE elements from the unwrapped Trapeze model on the left 

(Dahmann et al., 2011).  “The arrows between the wave model elements depict 

the normal process flow, and the embedded circles in the arrows indicate that 

there may be and usually is back-and-forth iteration between these elements” 

(Dahmann et al., 2011). 

 

Figure 16.  The Wave Model with the Unwrapped Trapeze Model (From Dahmann, 
Rebovich, Lowry, Lane, & Baldwin, 2011). 

Dahmann et al. (2011) suggest that the Wave model is suitable for 

SoS SE as it has several characteristics that reflect the attributes of SoS: (1) 

multiple overlapping iterations of evolution; (2) ongoing analysis; (3) continuous 

input from external environment; (4) architecture evolution; and (5) forward 

movement with feedback. 
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Table 8 shows the additional information artifacts required by the 

Wave meta-process model as the capability delivery organizations go through 

the six steps of the model: (1) initiate SoS; (2) conduct SoS analysis; (3) develop 

and evolve SoS architecture; (4) plan SoS update; (5) implement SoS update; 

and (6) continue SoS analysis. 
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Table 8.   Information artifacts for the six steps of the Wave Model (From 
Dahmann et al., 2011). 
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E. CAPABILITY DELIVERY ONTOLOGY 

The U.S. DoDAF is an “overarching, comprehensive, and conceptual 

model” that supports six core processes pertaining to capability delivery: (1) 

JCIDS process that ensures warfighters receive the capabilities required to 

execute their assigned missions successfully; (2) the DAMS management 

framework that translates mission needs into operational capabilities through a 

series of milestones; (3) the use of Systems Engineering that is required by DoD 

acquisition policies to establish a holistic life cycle perspective of the SoI; (4) 

program management processes; (5) Portfolio Management through architectural 

description; and (6) business & mission operations (DoD Chief Information 

Officer, 2012). 

Vitech’s CORE 8 Architecture Definition Guide describes a working 

ontological model based on DoDAF Version 2.0 (Vitech, 2011). This section 

reviews a subset of the model selected for the purpose of describing the key 

concepts relating to JCIDS’s capability needs, DAMS life cycle phases, Systems 

Engineering and Program Management through the use of SEP models 

strategies to guide capability delivery. 

In order to describe how a capability is taken through its life cycle by the 

capability delivery organizations, the ontology captures the three complementary 

domains relating to the: (1) capability’s operational architecture; (2) system 

architecture; and (3) program management as shown in Figure 17. The 

operational architecture documents the envisaged capability’s operational 

concepts through its activities, tasks, and military performers. The system 

architecture records the corresponding requirements on the functions of a 

physical component.8 The program management domain tracks the program 

activities needed as per the capability’s life cycle phase and the program 

                                            
8 A component in the CORE ontology is recursive composite entities that represent an SoS 

or system type (Vitech, 2011). 
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elements9 needed to accomplish it. The three domains are intricately woven 

together, with the operational architecture defining solution-agnostic functions to 

support their capability needs, the systems architecture defining the system 

components that would perform these functions, and the program management 

executing the program elements needed to supply the system components. 

 

Figure 17.  Operational, system & program domains in CORE’s Schema (From 
Vitech Corporation, 2011, used with permission). 

The program management domain could be further elaborated as 

shown in Figure 18, whereby a capability delivery organization could be 

responsible for the various ontological entities as shown. Of particular interest to 

this thesis is the organization’s assigned responsibility for a program activity 

(such as a DAMS life cycle phase or step in a process model), and the 

                                            
9 The program element in the CORE ontology is a recursive composite entity that represents 

either a program, project, work package or task (Vitech, 2011). 
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organization’s assigned program elements (work packages) to implement the 

architecture or the physical components (parts and whole of an SoI) of a 

capability. 

 

Figure 18.  Model of capability delivery organization in CORE’s Schema (From 
Vitech Corporation, 2011, used with permission). 

The CORE 8 ontology represents a working ontology that has been 

rigorously improved and used for model-based systems engineering. The CORE 

8 ontology is chosen as the base over which an extended CDS ontology would 

be proposed because it is familiar to both defense academics and practitioners. 

The CDS ontology with emergence developed in this thesis would be more 

readily adapted or extended in part or whole to other DoDAF compatible 

research. 
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III. RESEARCH APPROACH 

This chapter discusses the scope of the research pertaining to the 

capability delivery system, and the overall approach to achieve the research 

objectives provided in Chapter I. 

A. OVERVIEW 

 Section B scopes the CDS and identifies inputs and noise factors to 
which the CDS is subject. 

 Section C presents an extended capability delivery ontology with 
the central theme of emergence. 

 Section D describes how the ontology would be used by the CDS 
through the DAMS life cycle phases. 

 Section E specifies how a subset of the SE process model 
strategies would influence the generic flow of DAMS events and 
work packages. 

 Section F elaborates on the potential input, control and output 
variables for a CDS Simulator (CDSS). 

 Section G explains the impetus behind developing a CDSS based 
on the proposed ontology with emergence. 

B. SCOPE OF THE CAPABILITY DELIVERY SYSTEM 

The earlier sections covered the capability-based approach towards force 

modernization supported by the JCIDS, the differences between systems and 

SoS, how desired capabilities are implemented based on desired emergent traits 

of the SoI, the DAMS working model of a system’s life cycle, and the use of a 

variety of SE processes to help manage the complexity of delivering modern 

systems. 

Figure 19 shows a high level map of how the various concepts come 

together to form a meta-model of capability delivery. A capability need is 

conceived by its sponsors and put through the JCIDS. JCIDS would assist the 

JROC and the corresponding MDA to decide if this need is valid and warrants a 

materiel solution. If so, the MDA would then decide the appropriate entry 
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milestone depending on the technological and operational maturity of the 

materiel solution. The capability enters the DAMS at the milestone designated by 

the MDA after a positive MDD and is taken through its life cycle, gradually 

maturing the SoI that would implement the capability until its deployment. The 

SoI would be realized by many capability delivery organizations that change 

along its life cycle as depicted at the bottom of the figure. The organizations 

interact with each other based on the chosen SE process to satisfy DAMS 

requirements. The black block that separates these organizations from the 

maturing SoI represents the organization’s fog of emergence that could influence 

the perception of the system’s achieved performance and their engineering 

decisions. 

 

Figure 19.  Conceptual scope for a Capability Delivery SoS (After OUSD AT&L, 
2008). 
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Figure 19 shows a high level map of how the various concepts come 

together to form a meta-model of capability delivery. A capability need is 

conceived by its sponsors and put through the JCIDS. JCIDS would assist the 

JROC and the corresponding MDA to decide if this need is valid and warrants a 

materiel solution. If so, the MDA would then decide the appropriate entry 

milestone depending on the technological and operational maturity of the 

materiel solution. The capability enters the DAMS at the milestone designated by 

the MDA after a positive MDD and is taken through its life cycle, gradually 

maturing the SoI that would implement the capability until its deployment. The 

SoI would be realized by many capability delivery organizations that change 

along its life cycle as depicted at the bottom of the figure. The organizations 

interact with each other based on the chosen SE process to satisfy DAMS 

requirements. The black block that separates these organizations from the 

maturing SoI represents the organization’s fog of emergence that could influence 

the perception of the system’s achieved performance and their engineering 

decisions. 

The red box shows the scope of the Capability Delivery System (CDS). 

The JCIDS is considered to be out of scope, but it provides important: (1) initial 

inputs; and (2) noise factors to the CDS. The initial inputs are the capability 

needs, available technology, and resources for the CDS. A necessary and logical 

outcome of a capability-based approach facilitated by the JCIDS means that the 

changing face of war, political landscape, and technologies could trigger a 

modification, invalidation, or insertion of requirements even while the SoI was 

undergoing development. These enter the CDS as noise factors that are beyond 

the control of the CDS, but must be dealt with in order to ensure that the 

capability as-deployed matches the relevant capability requirements at the time. 

These input and noise capability factors are assumed to be accompanied by a 

positive MDD. Any capability need that is unable to obtain the MDD would not be 

able to enter the CDS and hence will not be a factor. 
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The systems engineering processes selected by the organizations to help 

realize the SoI, would help them decide what to do and for how long in 

accordance to DAMS deliverables, as well as analyze, detect, and know about 

the SoI’s full suite of emergent traits. 

C. CAPABILITY DELIVERY ONTOLOGY WITH EMERGENCE 

The CORE 8 ontology reviewed in Chapter II was extended to reflect the 

axiomatic concepts regarding the fog of emergence; specifically the difficulty 

experienced by capability delivery organizations to know the actual extent of an 

SoI’s many emergent traits due to both the indeterminate nature of some 

emergent traits, multiplicity of contexts (especially divergence between context 

designed for and the actual contexts in which the SOI would be deployed), and 

system darkness. 

The fog of emergence as shown in Figure 20 is a representation of the 

organization’s knowledge of emergence as a state transition diagram. Simply put 

this diagram shows that a capability delivery organization’s knowledge of any 

emergent trait is subjective and runs a gamut of no knowledge to full knowledge 

against an external objective manifestation of that same trait, which is intrinsically 

exhibited by the functions performed by a SoI component. 
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Figure 20.  Fog of Emergence. 

Figure 20 shows that an initially “Unknown” emergent trait exhibited by a 

function performed by a given component (part or whole of a SoI) could be 

classed as either an “Unexpected Indeterminable” or “Unexpected Determinable” 

emergent trait. Recall that due to system darkness and multiplicity of contexts for 

the as-deployed SoI, where on one hand, an emergent trait that is 

“Indeterminable” is one that could only be detected together with the operation of 

the SoI in its multiple as-deployed operational contexts.  “Determinable” 

emergent traits, on the other hand, arise due to the interaction of SoI parts in the 

intended Mission context. 

If an emergent trait is assigned as a desirable functional requirement or 

analyzed in its as-intended context, it becomes “Partially Expected.”  A “Partially 

Expected” emergent trait could occasionally become “Fully Expected” through a 
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successful and complete analysis of the mechanisms through which the 

emergent trait arises. 

After the component is integrated, the fog of emergence for that emergent 

trait automatically transits the various states of expectation to the corresponding 

states of knowledge as shown in Figure 20. The inherent simplifying assumption 

here is that we assume that when an emergent trait is expected, the 

organizations would be in a position to employ the appropriate methods, tools, 

and measures to detect and hence know about it after the component is 

integrated. 

Similarly, the transition from a lower state of knowledge of an emergent 

trait to a higher state knowledge of emergent trait occurs when the organization 

detects more of the exhibited emergent trait through the testing or operation of 

the component. 

Finally, Figure 20 shows that the fog of emergence may never be lifted 

fully when the SoI is deployed, especially if the various organizations are no 

longer actively seeking to discover and measure potentially unknown emergent 

traits until these traits result in a delayed systemic failure of the system. 

The transitions from lower states of knowledge to higher states of 

knowledge are influenced by the competency level of the organization to analyze 

and detect this trait using the appropriate methods, tools and measures. 

Specifically, for each emergent trait, there is an engineering sub-domain and a 

corresponding level of competency in that domain to be able to analyze and 

detect it. An organization that has a low level of competency would logically have 

a lower chance of analyzing or detecting the emergent trait even if the trait was 

manifested and experienced during operation. 

The extended CDS ontology with emergence that is consistent with the 

narrative of how the fog of emergence could be lifted by Organizations during 

capability delivery is shown in Figure 21. The new entities of Fog of Emergence, 

Emergent Trait, Mission Context, and their associated links are highlighted in red. 
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Figure 21.  Extended CDS ontology with emergence (After Vitech Corporation, 
2011, used with permission).  

An Organization’s perception of the SoI’s performance (achievement of 

Requirements for Functions performed by Components) is always obscured by 

the Fog of Emergence. The dotted lines between: (1) Emergent Trait and 

Requirement; and (2) Mission Context and Intended Mission, show a proper 

subset relationship. The set of Requirements desired of an SoI’s Function is a 

proper subset of the full suite of Emergent Traits exhibited by the same Function. 

The Intended Mission is a proper subset of the multiplicity of Mission Context that 
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the SoI would be tasked to undertake in its lifetime regardless of design 

intentions. An Organization’s natural propensity to focus on the Requirements 

and Intended Missions give rise to the Fog of Emergence, where the 

Organization only sees a subjective view of the objective reality. 

D. USE OF CDS ONTOLOGY BY THE CDS 

1. Narrated Walk-Through 

The following narrative walks through how the CDS ontology with 

emergence would be used to capture the evolving products and SoI components 

of the capability and its delivery by the organizations responsible, with the entities 

of the ontology capitalized bolded for emphasis. 

During the early phases of capability delivery, the JCIDS match capability 

needs to capability providers. The input for the CDS comes in the form of an 

Operational Architecture. The Operational Architecture captures the 

Capability needed which forms the basis for an Operational Activity to be 

performed by a military Performer to achieve an Intended Mission. 

The CDS starts with the MSA Program Activity, where the Program 

Elements comprise conceptualization of operations and developing a value 

system for the stakeholders to perform an Analysis of Alternatives (AoA). These 

are represented by the refinement of Operational Activities and Intended 

Mission contexts, which helps identify the implementing Functions. The 

stakeholders would then define a measure for the satisfactory performance of the 

Function as a Requirement. The Analysis of Alternatives would use these 

Requirements to evaluate alternative Components in their performance of 

these Functions and culminates in a sub-Program Activity that reviews the 

readiness to complete MSA and proceed to TD Program Activity. 

The TD Program Activity starts with the Milestone A sub-Program 

Activity. During the TD phase, the main Program Elements would involve 

refining the System Architecture by building a number of competing prototype 

Components. Using these prototypes during demonstrations, users could 
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identify insufficiencies in Operational Activities and Intended Missions, and 

competing vendors could assess how their prototype Components would 

perform when operated by the users against the desired Requirements. The 

System Architecture would continually be refined until a high-confidence 

system-level design of the baselined system is produced and captured in the 

Preliminary Design Review (PDR) report Product. The PDR report would be 

reviewed at the PDR sub-Program Activity, after which the Capability 

Development Document (CDD) Product would be prepared for the eventual 

transition to the EMD Program Activity. 

The Milestone B sub-Program Activity starts the EMD Program Activity. 

There are two main threads of Program Elements, with the first being the 

Integrated System Design Program Element and the second being the System 

Capability & Manufacturing Process Demonstration Program Element. The 

Integrated System Design Program Elements straddle the design-review sub-

Program Activities, where the capability delivery Organization would have a 

chance to analyze both their design Products and prototype Components for 

insufficiencies. With the design review sub-Program Activities completed, the 

System Capability & Manufacturing Process Demonstration Program Element 

begins. The Program Elements to build both the mission and support 

Components straddle the repeated DT&E sub-Program Activities. Through 

these activities, the capability delivery Organization, together with the user, 

would have a chance to assess the performance of the developed Components, 

and also identify new Operational Activities and new Intended Missions for 

the next iteration. When the Systems Architecture and developed 

Components were demonstrated to meet Requirements of Functions that 

implement the needed Operational Activities of a Capability for the Intended 

Missions during a DT&E Program Activity, a Program Element to produce the 

Capability Production Document (CPD) Product would begin. 

The P&D Program Activity begins with the Milestone C sub-Program 

Activity to authorize entry into LRIP. The Program Elements to prepare the 
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minimum production baseline and production-representative Components would 

lead up into an IOT&E sub-Program Activity where the mission and support 

Components would be evaluated in their Intended Mission contexts. A 

satisfactory IOT&E sub-Program Activity would lead to preparation of a 

“Beyond LRIP10“ Product and FRP Decision Review sub-Program Activity. 

Program Elements to execute FRP and deployment of Components would 

follow and lead up to successive FOT&E sub-Program Activities. When the full 

SoI Components have been evaluated satisfactorily against the Requirements 

of Functions that implement the needed Operational Activities of a Capability 

for the Intended Missions, Program Elements to perform military equipment 

valuation would begin to transit to the O&S Program Activity. 

The O&S Program Activity is marked with continual SoI Component 

operations and support Program Elements and broken up by occasion repeated 

review sub-Program Activities. This is where the previously unintended 

Mission Contexts would start emerging and where previously unanticipated 

Emergent Traits would manifest. However, even if the Emergent Traits 

manifest, they might not be detected as the capability delivery Organizations 

only know about these traits through a competency dependent Fog of 

Emergence. 

Appendix A describes the same flow of Program Activities, sub-Program 

Activities, Program Elements, Products, Systems Architecture and SoI 

Components as described above in an N2 chart format. This table shows the 

specific deliverables, and focus on different parts of the ontology through the 

various life cycle phases with processes such as Program Activities and 

Program Elements forming the diagonal spine of the N2 chart, and objects such 

as Products, Systems Architecture and SoI Components as the output and 

input to the diagonal spine. 

                                            
10 A “Beyond LRIP Report” provides the knowledge to support the MDA’s decision to 

proceed beyond LRIP. The report captures knowledge that demonstrated control of 
manufacturing process and reliability. 
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Throughout the various Program Activities of the Capability’s life cycle, 

the higher the Organization’s competency level in the requisite engineering 

competencies to measure the Emergent Trait, the greater the chance to pick up 

on it. During Program Activities prior to any SoI Component being tested in its 

intended environment, the Organization has a chance to know of determinable 

Emergent Traits arising from analysis of design Products. After the SoI 

Component is built and tested in its operating environment, the Organization 

has a chance to know of previously indeterminable Emergent Traits arising from 

the use of the SoI Component both in its Intended Mission environment as well 

as as-deployed Mission Contexts. 

2. Diagrammatic Relation Between the Ontology and DAMS Life 
cycle Phases 

By aggregating the CDS ontological entities into the Operational 

Architecture, System Architecture, implemented SoI Component, we could map 

how these aggregated entities are affected by DAMS life cycle phases (which are 

main and sub-Program Activities) as shown in Figure 22. 

The five DAMS life cycle phases and key sub-Program Activities are 

captured as rows. The column headers follow a generic problem solving process, 

where we: (1) analyze the problem to determine requirements; (2) design and 

architect a solution to those requirements; (3) develop and acquire a 

system to the design; and (4) integrate and test the system developed. The fifth 

column shows the main outcome for each corresponding row’s flow through of 

the generic problem solving process. 

These Program Activities result in the production and refinement of the 

corresponding CDS ontological entity in the final row; (1) Sub-Program Activities 

to perform Analysis and Requirements would produce or refine the Operational 

Architecture;  (2) Design & Architecture sub-Program Activities would produce or 

refine the System Architecture; (3) Development & Acquisition sub-Program 

Activities would produce SoI Components built according to the System 
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Architecture; and (4) Integration & Test would result in SoI Components being 

validated against the Operational Architecture. The fifth column shows that the 

Fog of Emergence is the main outcome when these sub-Program Activities are 

performed with a focus on Intended Missions and Requirements instead of As-

Deployed Mission Contexts and Emergent Traits. 

 

Figure 22.  Relationship between the CDS Ontology and DAMS main and sub-
Program Activities 
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Certain mapping of sub-Program Activities such as LRIP and FRP to 

“Design & Architecture” remains contrived, however, the overall mapping falls 

naturally in place and allows a reader to quickly grasp how each the DAMS life 

cycle phases would increasingly refine a Capability’s Operational Architecture, 

System Architecture and SoI Components through a process of analysis-design-

build-test. 

E. INFLUENCE OF SE PROCESS MODEL STRATEGIES ON THE CDS 

While seven SE process models have been reviewed, the SE process 

model strategies were encoded and used to influence the sequential or 

concurrent allocation of DAMS life cycle main and sub-Program Activities to 

deliver a capability using three common SE process models in this exploratory 

research: (1) the classic Waterfall, (2) the classic Vee, and (3) the Spiral. 

1. Waterfall DAMS Strategy 

As reviewed in Chapter II, the Waterfall SE process model is a pre-

specified, single-pass, sequential and ordered process model. The allocation of 

DAMS life cycle main and sub-Program Activities (previously discussed in Figure 

22) to the Waterfall process model would be a straightforward affair, where each 

program activity would happen in the sequence as captured with no additional 

SEP model-specific Program Activities. 

A unique behavior of the Waterfall model would be that it is insulated from 

changing Capability needs, and the only type of rework it allows for would be for 

verification-type rework. Verification type rework would be rework due to 

erroneous work done for requirement engineering, system design, development 

and acquisition that cannot be verified against a  precedent Program Activity 

artifact (for example erroneous requirements developed derived from capability 

needs captured in the MDD, or wrong implementation of a design based on an 

Integrated System Design document). 
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The DAMS life cycle Program Activity allocation strategy and SEP model 

specific behaviors are tabulated in Table 9. 

Table 9.   Waterfall DAMS Strategy 

  Waterfall DAMS Strategy 

Description Pre-specified, single-pass, sequential and ordered 

Sequential or 
Concurrent 

Allocation of 
DAMS activities 

Sequential and one is to-one mapping of DAMS 
Program Activities for capability delivery 

Behavior 

Goes through corresponding DAMS phases in strict 
order 

Verification-type rework: Only does rework for 
erroneous work packages based on a fixed initial set of 
requirements derived from Capability needs. 

 

2. Vee DAMS Strategy 

The Vee model as reviewed in Chapter II is taken to be a pre-specified, 

sequential and ordered process model much like the Waterfall model, but with 

greater focus on the use of Systems Engineering, Verification and Validation 

(V&V), Decomposition along its process. 

The DAMS life cycle Program Activities would be allocated in a one-to-one 

manner, with the flow between activities to be strictly sequential and in order. 

However, as there is additional focus on V&V by the Vee model, corresponding 

Program Activities would be added when going down the left of the Vee (Figure 

23) and coming up the right of Vee (Figure 24). 

When going down the left of the Vee, the Vee model follows a System 

Analysis and Design process to develop the Concepts of Operation and “Build 

To” specifications. When coming up the right of the Vee, the Vee model follows a 

System Verification and Integration process to verify correctness of 

implementation of sub-components to the specifications before approving the 

integration of sub-components into an aggregated component. 
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Figure 23.  Application of the System Analysis and Design Process down the left 
of Vee11 (From Forsberg & Mooz, 1995) 

                                            
11 Figures 23 and 24 were cropped from Forsberg & Mooz 1995 paper. The truncation of text 

within text boxes was inherent from source. 
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Figure 24.  Application of the System Verification and Integration Process to the 
right of Vee (From Forsberg & Mooz, 1995) 

Additional Vee model specific behavior is that it recognizes validation-type 

rework. Validation type rework is work done to rectify shortcomings in initial 

Capability Needs and intended Mission contexts. 
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The DAMS life cycle Program Activity allocation strategy and SEP model 

specific behaviors for the Vee model are tabulated in Table 10. 

Table 10.   Vee DAMS Strategy 

  Vee DAMS Strategy 

Description 
Pre-specified, sequential, and ordered like waterfall 
with greater focus on SE, V&V, and 
decomposing/integration of system baselines 

Sequential or 
Concurrent 

Allocation of 
DAMS activities 

Sequential and one is to one mapping of DAMS 
Program Activities for capability delivery. 

Additional SEP model specific Program Activities 
would be added for going down the left of the Vee 
and coming up the right of the Vee. 

Behavior 

Goes through corresponding DAMS phases in strict 
order 

Does verification-type rework for erroneous work 
packages based on a fixed initial set of requirements. 

Allows validation-type rework if SoI does not work 
according to newly discovered mission contexts. 

 

3. Spiral DAMS Strategy 

The Spiral model as reviewed in Chapter II is an evolutionary and 

concurrent process model with greater focus on risk-based decision reviews. 

The allocation of DAMS life cycle Program Activities for capability delivery 

can be templated based on Figure 25. The total CDS ontological entities could be 

partitioned into three contiguous sets to be delivered in three iterations. The 

Program Activities of the Spiral model has to arranged sequentially with some 

concurrent overlaps between iterations. The concurrent nature of the spiral 

model is not limited to overlaps between iterations, and as reviewed in Chapter II, 

manifests as overlaps between Program Activities within an iteration as shown in 

Figure 14. 

A unique behavior of the Spiral model is its process generation behavior, 

which means that when the context suits the use of another process model, the 
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Organization could choose to deliver a particular increment using another 

process model. 

The DAMS life cycle Program Activity allocation strategy and SEP model 

specific behaviors for the Spiral model are tabulated in Table 11. 

 

Figure 25.  Concurrent development between iterations of spirals (From OUSD 
AT&L, 2008) 
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Table 11.   Spiral DAMS Strategy 

  Spiral DAMS Strategy 

Description Evolutionary (multi-pass) and concurrent (with overlaps of 
activities between and within iterations) 

Sequential or 
Concurrent 

Allocation of DAMS 
activities 

Partition CDS Ontological entities into three contiguous 
sets to be delivered iteratively 

First iteration to perform all DAMS Program Activities: 
MSA1, TD1, E&MD1, P&D1, and O&S1. for the first set of CDS 
ontological entities 

Second incremental iteration to perform TD2, E&MD2, 
P&D2, O&S2 for the second set of CDS ontological entities. 
TD2 to kickstart during E&MD1 and to be executed 
concurrently.  (Refer to Figure 25) 

Third incremental iteration to perform TD3, E&MD3, P&D3, 
O&S3 for the second set of CDS ontological entities. TD3 to 
kickstart during E&MD2 and to be executed concurrently. 

Within-iteration concurrent execution of Program 
Activities that match those specified in Figure 26. 

Additional risk-based Program Activities to be added. Even 
though typical DAMS Program Activities have included risk-
based reviews, in order to differentiate Spiral from the 
other two SEP models, the Spiral model should exhibit a 
greater focus on their characteristic risk-based reviews. 

Behavior 

The Spiral Model is a process generator and may choose to 
execute a particular iteration using another SEP model 
when the context is suitable. 

Ordered, but concurrent flow through the model. 

Detected emergence can be factored into next increment’s 
TD. 

F. INPUT, CONTROL, OUTPUT VARIABLES 

1. Input Variables 

The following describes the list of User defined input parameters to the 

CDS Simulator (CDSS). 

 Initial State. A set of parameters representing the initial capability 
needs, described by the Capability, its set of Functions, associated 
Requirements, associated Emergent Traits, performing 
Components and responsible Organizations at the start of 
simulation. 
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 Final State. A set of parameters representing the as-deployed 
emergent traits, described by the Capability, its set of Functions, 
associated Requirements, associated Emergent Traits, performing 
Components and responsible Organizations at the start of 
simulation. 

 Transitive States. A set of parameters representing the insertion of 
capability needs, described by (1) new Components, with their set 
of Functions, associated Requirements and Emergent Traits and 
(2) existing Components, with their set of updated Functions, 
associated Requirements and Emergent Traits. The set of 
parameters is tagged with a numerical value corresponding to a 
simulation time during which they would be inserted. 

 Choice of SEP models. A list of SEP models to be loaded for the 
simulation. 

2. Output Variables 

Conventional wisdom posits that there are gaps between capability 

performance articulated as-needed (i.e., what the joint staff wanted), the 

performance based on system architecture as-planned (i.e., what the lead DoD 

component planned), and the capability of an SoI as-deployed (i.e., what the end 

user got and how the end user actually uses the capability). The CDS ontology 

with Fog of Emergence allows us to add another set of attributes to a CDS, the 

capability performance as-known (i.e., what we know the users would get and 

how they use the capability). The four sets of attributes for the CDS are as 

elaborated below: 

 The as-needed attributes are measured off the set of requirements 
associated with capability needs for its Intended Missions from its 
initial state towards the end of the capability’s life cycle with 
changes due to JCIDS insertion of needs, changing face of war, 
politics or appearance of disruptive technologies. 

 The as-planned attributes are measured as a proper subset of the 
as-needed attributes that a Lead DoD component has recognized 
and planned for delivery through the CDS. 

 The as-deployed attributes are simply the summation of the full set 
of emergent traits (beyond those desired as requirements) 
exhibited by the functions performed by the SoI components in all 
Mission Contexts. 



 83 

 The as-known attributes are measured off the organizations’ 
subjective knowledge of the as-deployed attributes as perceived 
through the Fog of Emergence. The capability delivery 
organizations as well as end-users could only make use of as-
known attributes in their decision making and plans with respect to 
capability delivery. The as-known set of attributes can only be 
grown through successful analysis of how the SoI would work for 
successful detection of the emergent traits exhibited by the SoI in 
its operational contexts (which is a subset of all Mission Contexts 
but more than the Intended Mission). The as-known is always less 
than the as-deployed. 

It should also be said that the as-deployed set of attributes is a theoretical 

construct as it is predicated on omniscience regarding the set of Emergent Traits 

associated with the SoI in all Mission Contexts. However, this as-deployed set of 

attributes is meaningful in the context of this thesis as a common benchmark to 

examine the CDS performance measure through attributes as-needed, as-

planned, and as-known. The most important contributions of this thesis are: (1) to 

provide a CDS ontology that could act as a prism to separate the white light of 

capability performance into its constituent colors of “as needed,” “as-planned,” 

“as-known” and “as-deployed;” and (2) to gather insights into how capability 

delivery Organizations could try to expand their “as-known” perspective as much 

as practicable. 

3. Control Variables 

The following are the variables that the User of the CDSS could control to 

explore the effects on the Measures of Interest. 

 SEP models provide different strategies toward allocating the 
DAMS life cycle phases and toward clearing the Fog of Emergence. 

 Variability of capability needs could be directly manipulated through 
the number of capability needs inserted into the CDSS during 
simulation. 

 Complexity of capability implementation could be indirectly 
manipulated by varying the number of dummy work packages to be 
inserted into the work space. A highly complex SoI is likely to result 
in greater rework, as a consequence of relatively lower requirement 
engineering, SE, and domain-specific engineering competencies 
with respect to the inherent complexity of the SoI 
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G. IMPETUS FOR EXPLORING CAPABILITY DELIVERY SYSTEM 
SIMULATOR 

As part of the research approach, a conceptual Capability Delivery System 

Simulator (CDSS) and its critical functionalities would be explored. There are four 

reasons behind the inclusion of the CDSS. 

First, a deeper understanding on the tractability and shortcomings of the 

proposed CDS ontology with fog of emergence can be gained from 

conceptualizing and exploring the development of critical CDSS functionalities. 

Second, the encoded logic within the exploratory CDSS would serve as a 

less ambiguous extension of the prose captured in the main paper of this thesis 

and facilitate further discussion and improvement of the body of knowledge 

regarding capability delivery with emergence. 

Third, the measures of effectiveness for capability delivery, as particular 

regards to the “as-deployed” attributes, are theoretical constructs that are best 

discussed with assistance of a simulator that is built on the CDS ontology with 

fog of emergence. This exploratory CDSS is the first step toward developing a 

full-fledged simulator system. 

Finally, the concepts and software functionalities developed could be also 

applied into other capability delivery software applications apart from simulation. 

In the following chapters, we would elaborate on the conceptualization of 

the CDSS requirements, functionalities and preliminary design before a summary 

of the insights gained from the implementation of key CDSS functionalities. 
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IV. CDSS CONCEPT 

As the CDSS is a simulation model based on the CDS ontology with 

emergence, which in turn is extended from Vitech’s CORE 8 ontology, the CDSS 

might be implemented in Vitech CORE. While the subsequent exploratory 

implementation of the CDSS was in JAVA programming language, the CDSS 

concepts captured in this chapter would be implementation agnostic in nature. 

A. PURPOSE 

The purpose of the CDSS is to model the CDS to explore the effects of SE 

process models on how the CDS would adaptively change its as-needed, as-

planned and as-known capability needs/requirements given the same as-

deployed capability and noise factors. 

The CDS would take in a User defined as-deployed capability and a set of 

initial capability needs. The noise factors would include instability of capability 

needs provided as capability needs that would be inserted at User-defined 

intervals. These inputs are analogous to what the JCIDS would be subjecting the 

CDS. 

While the CDSS’s primary purpose is to measure the as-needed, as-

planned and as-known capability needs/requirements, the CDSS should also 

provide some means to determine the cost and time-taken as the capability 

proceeds through its life cycle toward deployment. 

The measures of effectiveness for the CDS would be to minimize gaps 

between as-needed, as-planned, and as-known. Figure 26 shows how the 

capability needs for the capability could change over time and values “x” and “y” 

represent the gaps. The as-known line in Figure 26 is lower than the rest, due to 

negative emergent traits that decreased the achieved performance of a 

requirement from what was planned. The opposite could happen in the case that 

emergent traits are known to help raise achieved performance of requirements. 



 86 

 

Figure 26.  Different types of capability needs over the SoI’s life cycle (After OUSD 
AT&L, 2008). 

B. SCOPE 

The scope for the CDSS is shown in Figure 19; specifically it excludes 

modeling of the JCIDS. The inputs and noise factors from the JCIDS would be 

made available to the CDSS as user-defined data. 

The choice of SE process models and the maturing SoI over the DAMS 

life cycle phases as supplied by the capability delivery organizations are within 

scope. 

C. REQUIREMENTS LIST 

The following section captures the list of software requirements derived 

from the conceptual model and would be refined iteratively along with the spiral. 

They are to be read in totality along with the requirement models that follow in 

Section 4 to gain a holistic understanding of the requirements. 

1) The CDSS shall model system life cycle phases as Program 
Activities based on the Defense Acquisition Management System. 
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a) The CDSS shall initialize workspaces (comprising of 
Program Elements) for each Program Activity and allocate 
them to Organizations responsible for them 

b) A Program Element is a representation of work that when 
performed would contribute to the supply of an operational 
architecture artifact, a system architecture artifact, or a SoI 
component. 

c) A workspace is a collection of Program Elements under the 
same Program Activity. 

d) The CDSS shall use these Program Activities as the list of 
discrete events to drive an event-based simulator. 

2) The CDSS shall allow the User to specify a Systems Engineering 
Process (SEP) model to be loaded for the simulation (refer to 
Chapter III). 

3) The CDSS shall adapt the initialization of the phased work 
packages and events according to the selected SEP models as 
documented in Chapter III. 

4) The CDSS shall implement the CDS ontology model as described 
in Chapter IV Section. D.2 of this chapter to model how a capability 
is matured over its life cycle due to SEP model-specific interactions 
amongst the three domains of operational architecture (capability 
needs), system architecture (capability implementing system with 
emergent traits), and program management (work packages and 
events) across the life cycle phases. 

a) The CDSS shall allow the User to specify two sets of 
capabilities performances for an SoI: 

i) As deployed capabilities: The full set of capability 
needs, associated SoI, and all emergent traits as 
represented in the ontological format from Figure 21. 

ii) Initial capability needs: A subset of the capability 
needs, parts of SoI and emergent traits representing 
what is initially known to the capability delivery 
organizations at the start of simulation. 

b) The CDSS shall allow the User to specify the values for the 
following attributes based on the data table in Table 12: 

i) Capability Delivery Organization: A User defined list 
of engineering competencies and the level of 
competency for each competency possessed by the 
organization. 
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ii) Emergent Trait: A User defined set of engineering 
competencies and level of competency needed to 
analyze or measure this trait. 

c) The CDSS shall allow the User to specify the simulation time 
during which the difference in capability needs and SoI 
between the initial and as-deployed capabilities would be 
inserted into the CDS as noise factors: 

i) Consistency of specified time across different runs: 
The CDSS shall allow the User to specify in a 
consistent manner as to when a particular capability 
need and associated parts of SoI is to be inserted 
during simulation time. 

ii) Consistency refers to the ability to specify this 
insertion at the same unit of simulation time across 
different runs involving the same sets of capabilities 
as defined in Requirement 4.a. The consistency 
across runs ensures a common base of comparison 
across SEP models. 

d) The CDSS shall be able to create random workspaces filled 
with the appropriate and work packages for each life cycle 
phase satisfying the following sub-requirements: 

i) The randomly generated workspaces shall be 
validated against the as-deployed capability needs to 
ensure that there exist a set of work packages 
(program elements) that would supply the needed 
Operational Architecture, System Architecture 
Artifacts and SoI components that would exhibit as-
deployed emergent traits that satisfies the as-
deployed capability needs. 

ii) When a workspace is validated, a random number of 
dummy work packages would be randomly inserted 
into the workspace. These dummy work packages 
would have the same attributes as the true work 
packages except that they would fail a verification 
check. Dummy work packages represent work 
performed that does not contribute productively 
towards the supply of any artifacts of SoI 
components. 

5) The CDSS shall be able determine a pair of estimated cost and 
schedule needed to perform a set of work packages is sufficient to 
produce the corresponding capability architecture artifact, system 
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architecture artifact or system component that satisfies the 
capability needs within a life cycle phase. 

a) Consistency of estimated cost and schedule: The CDSS 
shall apply a repeatable cost and schedule estimation 
heuristic so that the same cost and schedule would be 
calculated for different runs involving the same workspace. 

b) The heuristic shall be applied on the initial capability needs 
to determine the estimated time and budget for each life 
cycle phase. 

6) The CDSS shall maintain a time-sorted queue of events comprising 
of DAMS Program Activities and SEP-model process generated 
events. 

7) The initial DAMS and SEP-model process events shall be inserted 
into the queue using the time determined in Requirement 5.b.   

8) The CDSS shall allow for at least three types of events as listed in 
the following sub-requirements: 

a) DAMS Program Activity events. They have associated work 
packages that when performed help accomplish these 
milestones and events. 

b) Work Completion events. When the planned work packages 
could be completed before their associated event, a “work 
completion event” shall be created and inserted into the 
time-sorted event queue. This event could potentially be 
used to keep track of the amount of slack-time from work 
completion to next event. 

c) Capability needs insertion events. These are events that 
where capability needs are inserted to the CDS at simulation 
time specified under Requirement 4c. 

9) The CDSS shall process the earliest event in the queue with the 
following basic outcomes: 

a) As the simulation is event-driven, the time tagged on the 
earliest event denotes the effective simulation time. If there 
is any cumulative schedule slippage (refer to Requirement 
9.k), the effective simulation time shall be the sum of the 
time tagged on the event and the cumulative schedule 
slippage. 

b) The CDSS shall perform a verification check of all work 
packages performed up till the effective simulation time and 
reveal any dummy work packages inserted according to 
Requirement 4.d.ii. 
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c) The CDSS shall determine how many artifacts and system 
components have been supplied based on the current set of 
valid work packages performed. 

d) The CDSS shall randomly determine if the corresponding 
capability delivery organizations would be able to increase 
their knowledge of the emergent traits and mission contexts 
associated with the set of completed artifacts and SoI 
components. 

i) The CDSS shall model the possible increase in 
knowledge of emergent traits according to the state 
transition diagram shown in Fog of Emergence, 
Figure 20. 

ii) The CDSS shall ensure that organizations could only 
lift the fog of emergence on mission contexts during 
Requirement & Analysis sub-Program Activities. This 
lifting of fog is because organizations responsible for 
the operational architecture would be more focused 
on identifying concepts of operations.   

iii) The CDSS shall ensure that organizations could only 
lift the fog of emergence on emergent traits that 
manifest in intended missions and are expected as 
requirements during the Design and Architecture sub-
Program Activities. This lifting of fog is because of the 
tendency for design organizations to design to 
requirements for intended missions. 

iv) The CDSS shall ensure that organizations could only 
lift fog of emergence on emergent traits that manifest 
in intended missions during Development and 
Acquisition sub-Program Activities. This lifting of fog is 
due to the tendency for builder organizations to be 
only concerned with building a SoI component to work 
in intended missions. 

v) The CDSS shall allow organizations to lift the fog of 
emergence for mission contexts and for emergent 
traits that manifest outside of intended missions 
during Integration and Test sub-Program Activities. 
This lifting of fog is because integration organizations 
would be concerned with how the system would be 
used instead of what it was designed for. 

vi) The random mechanism shall take in to account the 
differences between the required competency level 
and the competency level possessed by the 
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organization to adjust the probability of successful 
analysis or detection. 

(1) If the required competency level is lower than 
the organization’s competency level, the 
probability of success is one. 

(2) If the required competency level is higher than 
the organization’s competency level, the 
probability of success should be reduced. 

e) Undesirable emergent traits shall be modeled by assigning a 
negative value. 

f) The achieved performance of a requirement is the 
summation of all emergent traits that contribute to it. 

g) The CDSS shall reveal work packages corresponding to any 
newly known negative emergent trait that does not affect any 
desired requirement. 

i) Such negative emergent traits represent traits that 
arise due to the multiplicity of the as-deployed 
operational context and have a real impact on the 
performance of the SoI despite being unanticipated. 

ii) Even though not associated with any SoI requirement, 
such negative emergent traits should be ideally 
reduced to zero by going through due diligence to 
perform corresponding work packages that would 
contribute to their suppression.  

h) The CDSS shall calculate an organization’s latest knowledge 
emergent traits exhibited by the current set supplied of 
artifacts and SoI components as viewed through the Fog of 
Emergence. 

i) The CDSS shall determine if the latest subjective knowledge 
of emergent traits satisfy the latest capability needs. 

i) If the traits satisfy the needs and does not have any 
known negative emergent traits, this event does not 
need to be rescheduled. 

ii) If the traits do not satisfy the needs or have known 
negative emergent traits, this event has to be 
rescheduled. 

j) If the event does not have to be rescheduled, the CDSS 
shall proceed to process the next event. 

k) If the event has to be rescheduled, the CDSS shall apply the 
cost and schedule heuristic in Requirement 5 to determine a 
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new set of work packages to be performed and then to 
process the event again but with a new effective simulation 
time based on the new estimated time needed. 

l) If the event has to be rescheduled, the CDSS shall keep 
track of the cumulative schedule slippage in simulation time 
units, to allow the existing events in the queue to be offset by 
the appropriate amount of simulation time, without a need to 
update each and every event in the queue. 

10) The CDSS shall allow SEP-model strategies to alter the event 
processing basic outcomes listed in Requirement 9 according to the 
following sub-requirements. Where conflict arises, this Requirement 
shall take precedence over Requirement 9. The list of SEP-model 
strategies can be found in Tables 9 through 11 in Chapter III. 

a) Addition to Requirement 9.i:  The SEP-model strategy may 
specify how and when the CDSS would allow capability 
delivery organizations to receive new capability needs (if 
any) at that given effective simulation time. 

b) Addition to Requirement 9.j:  If an event does not have to be 
rescheduled after being processed, the CDSS shall check to 
see if this event is a “work completion event.”  The SEP-
model strategy may specify how the CDSS could handle 
early completion of work ahead of a scheduled event. 

c) Addition to Requirement 9.k:  If an event has to be 
rescheduled after being processed, the CDSS may use an 
SEP-model strategy-specific modification of the cost and 
schedule heuristics (Requirement 5) to determine a new set 
of work packages to be performed and whether the resulting 
updated event could be directly processed or inserted into 
the time-sorted event queue. 

D. REQUIREMENT MODELS 

1. Use Cases 

Three use cases for the CDSS are listed as shown in Figure 27. The User 

is expected to “Start simulator” which would draw inputs from an Input File. 

Thereafter the User could decide either to run in “event trail mode” or “no trail 

mode” with the former use case constantly writing to the Console to provide a 

textual update on the simulation progress. Both modes would use the “Run 

simulator” use case, which in turn prints the final results of the simulation to 

Console and to an Output File. 
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User

1. Start simulator

Capability Delivery System Simulator

Input File

Console

Output File

3. Run simulator
2. Enter

simulation mode

*

*
*

*

*

*

«uses»
*

*

*

*

 

Figure 27.  High-level use cases for CDSS. 

For the details regarding the use cases, refer to Appendix B. 

2. Data Attributes 

This section captures the additional data attributes for the CDS 

ontology with Fog of Emergence shown in Figure 20. For the full set of data 

attributes, please refer to the CORE 8 Architecture Definition Guide. 
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Table 12.   Additional Data attributes for CDS Ontology with Fog of Emergence. 

S/N Attribute Description 

Organization 

1 Competencies A list of Strings indicating the engineering 
competencies that the organization possesses. 

Competency levels Competency levels: A list of numerical values (0–1) 
indicating the corresponding levels of competency. 

Emergent Trait of a Function 

2 (Primary Key) Name A String that identifies the name of an emergent trait. 
If an emergent trait is desired as a Requirement, this 
field has to match the corresponding Name field of the 
Requirement. 

(Primary Key) 
Function 

A String that identifies the corresponding Function 
that exhibits this emergent trait. 

Value A numerical value that can be either negative or 
positive denoting the contribution of this emergent trait 
arising from the associated Function. 

Determinable A numerical value that can be either negative or 
positive denoting the contribution of this emergent trait 
arising from the associated Function. 

Requisite engineering 
competencies 

A list of String values indicating the requisite 
engineering competencies needed to analyze or 
measure this emergent trait. 

Requisite competency 
levels 

A list of numerical values (0–1) indicating the 
corresponding levels of competencies needed to 
analyze or measure this emergent trait. 

Fog of Emergence 

3 (Foreign Key) 
Organization 

A String value indicating the name of an Organization. 

(Foreign Key) 
Emergent Trait 

A pair of Emergent Trait-Function String values 
identifying the indicating the name of an Emergent 
Trait of Function. 

State A String value representing the associated 
Organization’s state of knowledge for the associated 
emergent trait. 

Subjective Knowledge A numerical value that shows the Organization’s 
extent of knowing the actual contribution for an 
associated Emergent Trait. 

Function 

4 Emergent Traits A numerical value that shows the Organization’s 
extent of knowing the actual contribution for an 
associated Emergent Trait. 
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3. Activity Diagram 

Output File

Input FileUser Interface Capability Delivery System Simulator

Load waterfall strategy Load waterfall w feedback strategy Load vee strategy Load spiral strategy

Create lifecycle workspace

Read input file

[Waterfall] [Waterfall w feedback] [Vee] [Spiral] 

Create event queue

Start simulator

Display status

Prompt for mode
Run simulation

[mode entered] 

Periodical update

Pop earliest event

[Has event] 

Process event based on strategy

Update time-sorted event queue

[New events created] 

[No new events] 

End simulation

[No events left] 

Print event

[Sim continue & 3 sec passed] 

[mode = event trail] 

[mode = event trail] 

End print

[Sim ended] 

[mode = no trail] 

Compile results

Display summary

Write report

Update lifecycle workspace

[Changes to work packages] 

[No change] 

[mode = no trail] 

[mode = no trail] 

[mode = event trail] 

 

Figure 28.  Swimlane activity diagram for the CDSS. 
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The User starts the simulator using a command through the user interface, 

and the CDSS reads the corresponding input file to load an appropriate strategy 

for the SE process model and to initialize its internal representation of the 

capability life cycle workspace. Using the SE process strategy, a time-sorted 

event queue based on the DAMS life cycle events and the SE process model 

events would be created. The CDSS displays a summary status of what it has 

been initialized with and prompts the user for a simulation mode. The CDSS 

notes of the selected mode and begins to run the simulation. If the mode is set to 

“no trail,” a parallel update thread for the user interface is created. The main 

discrete event processing thread is entered for both cases of “no trail” or “event 

trail” mode. 

The discrete event processing thread on the right side of the diagram 

picks the earliest event from its queue of time-sorted events and processes the 

event according to the selected SE process model strategy. 

If the mode is set to “event trail,” the simulation thread would print the 

details of this event to the user interface, allowing the User to be apprised of the 

current as-needed, as-planned, and as-known capabilities. Depending on the 

strategies there might be updates due to either the life cycle work packages or 

creation of new events.   

The thread checks the time-sorted event queue for more events to 

process, and if there is an event to be processed, the event processing sequence 

is repeated. This discrete event processing thread transitions to end simulation 

when there are no more events to be processed. 

The “no trail” user interface update thread runs in parallel to the discrete 

event simulation thread. The thread simply prints a period to the user interface 

every three seconds as a visual indicator to the User that the discrete event 

processing thread is still running. This user interface update thread transitions to 

end print when the discrete event processing thread ends. 
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If a “no trail” user interface user interface update thread was created, this 

update thread would rejoin the main discrete event processing thread. The CDSS 

then compiles the results of the simulated run and writes a full report to the 

output file before printing a summary to the user interface and exiting. 
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V. CDSS PRELIMINARY SOFTWARE DESIGN 

A. CDSS ARCHITECTURE 

The CDSS is a software-intensive system developed using the Java 

Platform, Standard Edition 7 without using any Operating System (OS) specific 

libraries. The Java Platform provides a Java Runtime Environment that abstracts 

the underlying hardware and OS away from the Developer. As long as the User 

obtains the appropriate Java Runtime Environment12 for their computers, the 

Java Platform would execute the CDSS in the same manner across different 

hardware and OSs. 

The following section articulates the functional and component 

architectures that illustrate all requisite functionality have been implemented. 

1. Functional Architecture 

Figure 29 shows the CDSS Functional Architecture, up to four-levels of 

decomposition of the functions required to implement the requirements of the 

CDSS. The leaf functions have been numbered 1 to 21. 

The top level functions are: 

 Read input: To read the external input file into the CDSS. 

 Prepare simulation: To prepare the simulation according to the 
inputs received. 

 Run simulation: To run the discrete event simulation. 

 Record data: To record data to memory. 

 Write output: To write data to Excel. 

                                            
12 Please access http://java.com/en/download/index.jsp to download the latest version of the 

Java Runtime Environment appropriate for your hardware and OS. 
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Figure 29.  CDSS Functional Architecture 

2. Component Architecture 

The Component Architecture allocated with the requisite functions is 

shown in Figure 30. The CDSS Executive uses the Initializer, Runner, and Util 

components to initialize the simulation before running the simulation, supported 

by the utilities of an XML reader, data recorder, and Excel writer. 
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Figure 30.  CDSS Component Architecture 

The allocation of functions to components was derived from performing a 

N2 chart analysis of the functions, and then grouping the functions through the 

heuristics of increasing module-internal cohesion and decreasing module-

external coupling. 

As shown in Figure 31, functions 2 through 8 (annotated leaf functions on 

page 88), form the Initializer component; functions 9 through 19 make up the 

Runner component; and lastly functions 1, 20, and 21 form the Util component. 

The Initializer component is broken into the CapabilityInit and EventQInit 

components responsible for creating the baseline Capability Architecture and 

time-sorted event queues respectively. 

The Runner component is broken into three sub components, with 

function 9 (queue updating based on SEP strategy) being kept at the parent 

component-level as function 9 have coupling with functions from two sub-

components. The EventProcessor component processes the oldest event, the 

CapabilityUpdater component updates the Capability Architecture, and the 
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WorkPlanner component take stock of progress and updates work plans if 

required. 

The Util component comprise of three sub-components, the XmlReader, 

the DataRecorder, and ExcelWriter. These sub-components are highly coupled 

with the other components, and hence were kept as an external high-level 

component to be re-used instead of redundantly duplicated. 

 

Figure 31.  N2 Chart of CDSS Functions and Component Grouping13 

                                            
13 A “1” in a cell of x-th row and y-th column denotes information flow from the corresponding 

function on the x-th row to a function on the y-th column. 
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VI. EXPLORATORY CDSS IMPLEMENTATION RESULTS 

A. SIMPLIFYING ASSUMPTIONS  

Although the exploratory CDSS developed as part of this thesis is not fully 

functional for the purpose of running experiments, it current form is capable of a 

complete normative simulation run.   

The normative simulation run takes a specifiable capability need through 

all DAMS life cycle activities of MSA, TD, E&MD, P&D, and O&S, driven by a 

class Waterfall SE process model, subjected to unstable capability needs that 

change during simulation. The fog of emergence for a single capability delivery 

organization was implemented and could be dynamically lifted at run-time to 

reconcile the organization’s perceived “as-needed,” “as-planned” and “as-

deployed” attributes of a capability as it steps through the capability delivery life 

cycle. 

While, the exploratory implementation CDSS’s is facilitated by many 

simplifying assumptions the underlying software wireframe maintains the 

ontological relationships between the CDS ontological entities according to the 

proposed CDS ontology with Fog of Emergence. In this section we cover the key 

simplifying assumptions. The discussion in the main paper of the thesis shall use 

prose and diagrams as much as possible but code snippets will be included 

where useful. 

1. One-to-one Perfect Match Between Associated CDS 
Ontological Entities 

In typical systems engineering, the Operational Activities to achieve 

Intended Missions of an Operational Architecture are represented as operational 

flow blocks that are further refined into Functional flow blocks and Component 

hierarchies in the System Architecture. While systems architecting heuristics 

advise a one-to-one allocation of function to form, in practice, it is often 

unrealistic to ensure that a component is only allocated a single function. 
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In this thesis, however, we apply this heuristic and assume a perfect 

match for associations between CDS ontological entities of the same architecture 

type and across architecture types as shown in Figure 32.   

For CDS ontological entities such as the Performer, Capability, and 

Operational Activity, they would refer to the same set architecture flow blocks. 

For CDS ontological entities such as the Component, Requirement, and 

Function, they would refer to the same set of hierarchical blocks. 

 

Figure 32.  One-to-one perfect match between Operational and System 
Architecture Entities 

The result of simplification facilitated: (1) greater ease for user input (as 

we only need to specify two sets of blocks for the whole CDS ontology); (2) 

automated translation of Operational Architecture entities into their corresponding 

System Architecture entities; and (3) reduces computing resource usage when 

many CDS entities share the same reference to either a recursively 

decomposable network of flow blocks or hierarchical blocks. 

2. Strictly Sequential Execution of Program Activities 

The CDSS is a discrete event simulation, which queues CDS events such 

as Program Activity, work completion and capability need insertion using a time-



 105 

tag determined using a time-allocation heuristic based on perfect knowledge of 

all as-deployed Capability needs, Emergent Traits and Program Elements.   

Intuitively, we know that perfect capability delivery is impossible and we 

expect a capability delivery Organization that is obscured by the Fog of 

Emergence to take a longer time to deliver the same Capability when everything 

else is held equal. During the simulation, Program Activities are expected to be 

delayed as Organizations encounter rework or choose a less a non-optimal plan 

of Program Elements to accomplish the Program Activities. 

This means that the CDSS has to dynamically recalculate the time tags for 

CDS events when schedule slippages occur. This was circumvented by keeping 

track of a single cumulative schedule slippage value. Instead of using CPU 

cycles to recalculate the time tags for all CDS events in the queue every time a 

schedule slippage occurs, we simply determine that the effective simulation time 

is the sum of the original time-tag and this cumulative schedule slippage value. 

Unfortunately, even though the exploratory implementation of Program 

Activities supports recursive and dynamic flow composition, the work-around 

prevented us from leveraging on that behavior. Referring to Figure 33, assuming 

we have four Program Activities labeled 1,2,3, and 4 that each activity is 

expected to 1,2,3, and 4 days to complete respectively. A delay by one day for 

activity 2 would impact the completion dates of all activities that follow it in the 

sequential activity flow, but not for the concurrent activity flow where activity 2 is 

not on the critical path. A mechanism that only tracks a single cumulative 

schedule slippage would not be able to help determine the schedule impact to 

non-sequential ordered Program Activities. 
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Figure 33.  Impact of delays for Program Activities 

3. Conflation of the “As-Planned” and “As-Known” Perspectives 

The CDS ontology and the Fog of Emergence facilitate the discussion of 

the divergence between what was “as-planned” and “as-known” by the capability 

delivery Organizations. However, in the implementation of the CDSS, it was 

assumed that when not subjected to constraints in maximum time and cost for 

the overall life cycle, the capability delivery Organization would always plan 

based on what they know. 

Future work could incorporate the concept of Risk into the CDSS to model 

how capability delivery Organizations might choose to plan differently from what 

they know.  

4. Planning and Execution of Program Elements 

Referring to Figure 22 in Chapter III, each sub-Program Activity such as 

the Materiel Development Decision, Analysis of Alternatives, or Initial Operational 

Test & Evaluation comes with their own set of Program Elements to evolve the 

CDS ontological entities. The planning and execution of Program Elements to 

accomplish Program Activities are obscured by the Fog of Emergence, namely 

due to a capability delivery Organization’s propensity to focus on intended 
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missions and requirements when delivering a capability instead of looking 

beyond that to uncover more mission context and emergent traits the as-

deployed capability would deal with. Furthermore, the Organization is also 

subjected to unstable capability needs that may be allocated to the SoI during its 

life cycle. These factors combine to make the planning and execution of Program 

Elements an interesting challenge to be modeled. 

In the exploratory implementation of the CDSS, each cell in Figure 22 

comes with a work space of Program Elements. The workspace is a 2-

dimensional box filled with randomly located Program Elements that would 

contribute towards producing a deliverable that helps the accomplishment of the 

associated Program Activity as shown in Figure 34. When the Organization lifts 

more of the Fog of Emergence during simulation time, the accompanying 

Program Elements associated with the newly discovered Mission contexts or 

Emergent Traits would also be revealed. Furthermore, to model the relative 

complexity of the workspace for the Organization, there is a chance that some of 

the Program Elements in the workspace are unproductive. That is when an 

unproductive Program Element is performed; it does not contribute toward the 

accomplishment of the deliverables of the Program Activity. 

 

Figure 34.  A Program Activity’s workspace comprised of Program Elements that 
help accomplish it. 
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This representation facilitates the modeling of an Organization’s optimizing 

behavior toward planning and execution of Program Elements where they are 

expected to try and do enough using the least time and money. To be more 

specific, the Organization’s optimizing behavior was implemented using an 

analogy of the minimum spanning tree, which is a tree that covers a required set 

of nodes with the shortest span of the edges. The span of the edges corresponds 

to the time and money expended by the Organization to perform that Program 

Element. 

In this example, Program Activity requires the production of three 

deliverables (green, blue, and orange) and each of the deliverables require two 

Program Elements to be performed. Figure 34 shows a minimum spanning tree 

that satisfies these conditions. When an Organization performs the planned 

Program Elements, they would be able to know if the Program Element was 

productive or not. Figure 35 shows a scenario where one of the planned Program 

Element turned out to be unproductive (white node), triggering the Organization 

to incur more time and money (red edge) to rework a needed Program Element. 

 

Figure 35.  Unproductive Program Elements result in rework 
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The advantage of such a model is that there is no inherent bias towards 

any particular SEP model. A SEP model that delivers the capability in increments 

may partition the workspace into standalone workspaces and tackle them 

incrementally. Another SEP model that delivers a capability in a single-pass 

might try to tackle the whole workspace at once. 

Conventional Graph Theory implies that a SEP model takes into account 

the whole workspace at once, which always yields a better minimum spanning 

tree. However, in our model, both the incremental or single-pass SEP models 

would be equally obscured by the Fog of Emergence, initially. This obscuration 

means the single-pass SEP model might be expending more cost and time to lift 

the Fog of Emergence than an incremental SEP model that focused on Program 

Elements producing a subset of the deliverables. Hence, incremental SEP model 

has a chance of lifting the Fog of Emergence more rapidly. 

5. Aggregated Handling of Entity Attributes 

The proposed CDS ontology with Fog of Emergence specifies that each 

Organization has their own unique set of engineering competencies and 

competency levels, and each Emergent Trait has their own corresponding 

requisite engineering competency level. This means that an Organization might 

be good at analyzing or measuring a particular Emergent Trait while being 

relatively poorer at doing the same for another Emergent Trait. 

However, in our exploratory implementation, we use a single competency 

level and a single requisite engineering competency level for the Organizations 

and Emergent Traits. This means that in the normative CDSS run, when an 

Organization is given the chance to analyze or measure Emergent Traits, the 

Organization would have same probability of success across all Emergent Traits. 

The Table 13 captures the use of aggregated handling of attributes that should 

have been specified and handled individually. 
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Table 13.   Use of Aggregated Handling in Exploratory CDSS Implementation 

S/N Aggregated handling Implication and Mitigation 

1 

Single competency value and requisite 
competency levels to lift the Fog of 
Emergence, instead of setting 
corresponding values for each Emergent 
Trait and each Organization 

This means the Organization would always be 
equally competent in analyzing and detecting 
all Mission Contexts and Emergent Traits 
within a single simulation run. 

2 

Single Requirement threshold value 
applied to all Functions 

The manifested Emergent Traits for a Function 
in a particular Mission Context is set 
individually. This means the CDSS still has the 
level of resolution to differentiate SEP models ‘ 
ability to lift the Fog of Emergence between 
runs. 

3 

Single complicatedness and complexity 
factor applied to CDS ontological entities of 
the same Architecture type. 
 
For example, Capability, Performer, and 
Operational Activity fall under the 
Operational Architecture while 
Requirement, Component and Function fall 
under System Architecture.   

These values are used to generate the 
corresponding DAMS sub-Program Activity 
workspaces. 
 
A more complicated workspace is one with a 
bigger breathe, allowing a greater dispersion of 
Program Elements in the workspace and 
hence possibly causing the Organizations 
more time and money to do the same Program 
Elements than in a less complicated 
workspace. 
 
A more complex workspace is one with more 
unproductive Program Elements, representing 
the Organization’s inability to have a proper 
grasp on the workspace resulting in more 
probable rework. 
 
This means all Program Activities are equally 
complicated and complex if they deal with the 
same Architecture type. This should not be the 
case as a Technological and Prototype 
Demonstration Program Activity that deals with 
the building of Components to the Systems 
Architecture should not be as complicated and 
complex as the Follow-on Integration Test & 
Evaluation of a produced SoI. 

 

6. No Penalty for Doing Work Out of Phase 

As an Organization lifts the Fog of Emergence or is subjected to Capability 

needs inserted into the CDS, it might be triggered to perform Program Elements 

associated with a Program Activity that has already been passed. Currently there 

is no additional penalty for doing work out of phase. As a recommendation 
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for future work, the appropriate DAMS life cycle phase for this capability need 

could be inserted according to the DoD 5000.02 directive. A penalty function 

would need to be developed. 

B. DISCUSSION OF KEY FEATURES OF IMPLEMENTATION 

This section discusses the result of the exploratory implementation of the 

CDSS using the functional architecture described in Chapter V. The top level 

functions remain the same, but as not all functions were fully explored some sub-

functional headings were renamed where appropriate to better reflect what was 

done. 

1. Read Input 

While the User does not have the ability to specify user inputs in text or 

XML format yet, the current CDSS does provide application programming 

interfaces into passing important User inputs to the CDSS. 

The two sets of User specified inputs to the CDSS are (1) Initial Capability 

need and as-deployed SoI with the full Set of Mission and Emergent Traits, and 

(2) when Capability Needs are inserted into the CDSS (if there is a difference 

between the Initial Capability need and as-deployed SoI). The application 

programming interfaces to set these parameters are elaborated in the next 

section. 

2. Prepare Simulation 

Before the simulation is performed, a number of functions must be 

performed to set up the simulation. The following subsections would discuss 

what was implemented to: (a) translate User specified start (Capability need) and 

end state (as-deployed SoI with full mission sets and Emergent Traits); (b) how 

to insert transitive states (Capability need insertion) consistently across runs of 

the same capability but using different SEP models; (c) generate baseline 
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Program Activities and workspaces; (d) determine optimal life cycle workplan; 

and (e) how to allocate Program Activities given the strategies of SEP models. 

a. Initial Capability Need and As-deployed SoI 

In order to specify an as-deployed Operational Activity for a 

Capability need similar to that in Figure 33, the code to do that is as listed below 

(with redaction). After instantiating the individual flow blocks, the flow relationship 

between the blocks are easily set up by calling a function to add the parent-child 

relationship or a precedent and antecedent relationship. A sample of the software 

code is shown to illustrate the simplicity of setting up the relationship through the 

Application Programming Interface. 

 
// Setting up the as-deployed Operational  
OperationalArchitecture asDeployedOa = new OperationalArchitecture("A", 
    10.0, 40.0, 0.1); 
 
// Setting up flow blocks referenced by the CDS Operational Architecture  
// entities 
OperationalArchitectureFlowBlock A = new OperationalArchitectureFlowBlock( 
    "A"); 
OperationalArchitectureFlowBlock one = new OperationalArchitectureFlowBlock( 
    "1"); 
 
... 
OperationalArchitectureFlowBlock a = new OperationalArchitectureFlowBlock( 
    "a"); 
OperationalArchitectureFlowBlock b = new OperationalArchitectureFlowBlock( 
    "b"); 
 
A.addChild(one); 
... 
a.addFollowingBlock(b); 
... 
// Auto translate from flow blocks to hierarchical blocks 
SystemArchitectureHiBlock asDeployedHiBlock = FunctionFlow2HierarchyMapper 

    .translate(A); 

// Setting up the as-deployed System Architecture 
asDeployedSa = new SystemsArchitecture("A", 
    asDeployedOa.getCapabilityThreshold(), 80.0, 0.2, 

    asDeployedHiBlock); 

// Setting up the list of Missions that the SoI has to achieve 
ArrayList<Mission> fullMissions = new ArrayList<Mission>(); 
fullMissions.add(“M1”); 
fullMissions.add(“M2”); 
    

asDeployedOa.setMissions(fullMissions); 
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// Setting up the Fog of Emergence with what is the end state (asDeplyedSa,  
// fullMissions) and the initial state (asPlannedSa) 
FogOfEmergence foe = new FogOfEmergence( 
    asDeployedSa.getTopLevelHiBlock(), 
    asPlannedSa.getTopLevelHiBlock(), fullMissions, 
    initialMissions, 0.5, 0.8, 

    asDeployedSa.getRequirementThreshold()); 
 
// Setting objective and subjective Emergent Traits that manifest in Mission  
// contexts, for a set of Functions 
foe.setObjectiveEmergentTraits("M1", "Requirements", "All", 0.0); 
foe.setObjectiveEmergentTraits("M1", "Requirements", "1,2", -2.0); 
foe.setObjectiveEmergentTraits("M2", "Requirements", "All", -1.0); 
foe.setObjectiveEmergentTraits("M2", "X", "1", -4.0); 

 

The code in the snippet above shows how a flow block network is 

translated into hierarchical structure through a helper class that performs the 

translation. Only the top-level flow block has to be specified, as the helper class 

would navigate through the parent-children and precedent-antecedent 

relationships automatically translate the whole flow network into a hierarchical 

structure. 

Of interest would be how the Emergent Traits are set into the Fog 

of Emergence through the setObjectiveEmergentTraits method that accepts the 

following four parameters: 

 Mission name: For example “M1” and “M2” 

 Emergent Trait type: “Requirements” imply that the Emergent Trait 
is expected as a Requirement and would take the same name as 
the Requirement. Anything else, such as “X” imply that the 
Emergent Trait is not desired as a Requirement. 

 Applicable Functions: “All” imply that this Trait manifest in all 
functions and anything else implies that this Trait manifests only in 
functions listed such as “1, 2.”  Note that “All” is usually used with 
Emergent Traits expected as Requirements, as by definition all 
Requirements of Functions are desired Emergent Traits. 

 Manifestation delta: A numerical value that denotes how this 
Emergent Trait would manifest with respect to a threshold value. If 
this is a Requirement, this delta value would be applied to a 
Requirement threshold. If this is not a Requirement, this delta value 
represents a negative Emergent Trait that has to be suppressed by 
bringing its value up to zero. 
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Another point of interest would be the setting of a pair of values 

representing the complicatedness and complexity associated with the 

Operational Architectures and System Architecture. As mentioned earlier under 

the discussion on how we aggregated the handling of CDS entity attributes, this 

was a quick work around to generate workspaces that work on the associated 

Operational and System Architectures instead of setting a unique pair of values 

for each workspace. 

b. Capability Need Insertion 

The exploratory CDSS allows for Capability needs to be injected by 

specifying the name of the Capability need block (which is the same as the name 

of the Flow Blocks referenced by all Operational Architecture CDS ontological 

entities), and a positive numerical value. This value is used to calculate the 

actual simulation unit time by which the Capability need is made known to the 

Organization. 

  // ############################################################### 
  // TIME-TAGGED INSERTION OF CAPABILITY NEEDS INTO THE EVENT Q 
  // ############################################################### 
  // Here we insert cap need "2" and "3" at 0.1 and 0.4 sim time 
  // respectively. 
  // The sim time for insertion is calculated using the best solution 
  // lifecycle. This also ensures that the cap need would be inserted at 
  // the same time across different runs of the same capability 
  eventQ.add(new CapabilityNeedInsertion("2", 0.1 * lifecycleSpan)); 
  eventQ.add(new CapabilityNeedInsertion("3", 0.4 * lifecycleSpan)); 

 

The code snippet above shows how Capability needs “2” and “3” are 

inserted into the discrete event queue at a simulation unit time of 0.1 and 0.4 of a 

value called the life cycleSpan. The life cycleSpan value is derived from pre-

simulation calculation of how long an omniscient Organization would take to 

deliver the capability from MSA to O&S. Using this as a common benchmark 

allows the CDSS to insert the Capability need at the same simulation unit time 

across runs involving the same capability, but different SEP model.  

How the Organization deals with it is dependent on the SEP model 

employed. If the Organization chooses to take up the new Capability needs, the 
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corresponding Program Elements would appear in the workspaces for the 

Organization and hence affect their planning and execution of work. 

c. Generation of Baseline Program Activities and 
Workspace 

The Program Activity was implemented as a composite data 

structure that can have a single parent, many children, precedent and antecedent 

Program Activities. The flow heuristic follow two simple rules (1) a parent activity 

is considered complete only when all its children is completed and (2) an 

antecedent activity could only begin when all its precedent activities are 

completed. Referring to Figure 37, parent activity A is only considered completed 

when children activities from 1 through 6 are competed. Antecedent activity 6 

could only begin after both precedent activities 4 and 5 are completed. Following 

this heuristic, both activities 4 and 5 could happen in parallel. Likewise the two 

separate children branch of {1, 2} could happen in parallel with the children 

branch of {3, 4, 5, 6}. 

The current implementation of the Program Activity could support 

concurrency but as discussed in Chapter VI.A, the implementation decision 

regarding how schedule slippages were tracked effectively rendered the 

concurrency feature of the Program Activity to a backseat. The baseline Program 

Activities generated in the exploratory implementation of the CDSS is based on 

the five main DAMS Program Activities (MSA, TD, E&MD, P&D, and O&S) 20 

sub-Program Activities (refer to Figure 22) and is set up in a strict sequential 

manner as shown in Figure 36. This strict sequential behavior is enforced 

because TD cannot begin until MSA is completed, and MSA is not complete until 

all its sequential flowing children of MDD, CD, MBSE and AoA is completed. 
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Figure 36.  Flexibility in implementation of Program Activity 

With the 20 sub-Program Activities set up, the CDSS would then 

generate the Program Elements needed to accomplish these Program Activities. 

Figure 37 captures the heuristics employed to generate these workspaces based 

on User specified inputs. Recall that for each Architecture type, there was an 

associated pair of complicatedness and complexity numbers. The 

complicatedness would be used to bound the workspace. For each CDS 

ontological entity (depicted as Hierarchical blocks in Figure 37) and negative 

Emergent Trait in the corresponding architecture being evolved by the sub-

Program Activity, a number of Program Elements would be generated (shown as 

nodes with the same color). Program Elements to produce the required entities 

are shown as circles, while Program Elements to suppress negative Emergent 

Traits are shown as triangles. In this example, 16 productive Program Elements 

were randomly scattered in an 80 by 80 workspace. The number of unproductive 

Program Elements (circles or triangles with dashed borders) to be inserted is 

calculated using the complexity figure and rounded down to the nearest integer 

value. The unproductive Program Elements are randomly generated, so it is 
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possible to end up with all four newly inserted unproductive Program Elements to 

be for entity 1 or to suppress a single Emergent Trait associated with entity 1. 

 

Figure 37.  CDSS generated workspace for each sub-Program Activity 

It is important to note that in our implementation we ensure that 

even though the locations of Program Elements were random, no two Program 

Elements would fall on exactly the same point. This discordance is because we 

do not want to have an edge that costs the Organization no effort to traverse. 

d. Determining an Optimal Life cycle Work Plan 

With the 20 Sub-Program Activity workspaces generated, the 

CDSS then determines the optimal life cycle work plan by following the minimum 

spanning tree heuristics described in Chapter VI, Section A.3. In this optimal life 

cycle work plan determination stage, we take the perspective of an Organization 

that is omniscient and avoids unproductive Program Elements and knows the full 



 118 

suite of Program Elements associated with the as-deployed Capability needs, 

Mission contexts and Emergent Traits. 

All 20 workspaces would be solved and the respective spans used 

to set the corresponding planned start and end times for each Program Activity. 

The total life cycle span is also recorded. 

e. Preparation of the CDS Event Queue Based on SEP 
Model Strategy 

The preparation of the CDS discrete event queue for each SEP 

model strategy is performed after the determination of the optimal life cycle work 

plan. Unfortunately, the current implementation of the CDSS only covers the 

Waterfall process model which uses a one to one assignment of optimal life cycle 

work plan into the CDS event queue. The other strategies as described in 

Chapter III Section E were not been implemented yet.   

At this point, Capability Need Insertion events would be created 

and inserted into the CDS event queue using the heuristics described in Chapter 

VI, Section B.2.b. 

The final step in the preparation of the CDS Event Queue would be 

to determine the Organization’s work plan based on their subjective knowledge of 

the Capability as viewed through the Fog of Emergence. The same minimum 

spanning tree heuristics as described in Chapter VI, Section A.3 is applied with 

one difference. Instead of applying it on the as-deployed SoI with full Mission 

Contexts and Emergent Traits, this time it is applied on the initial Capability need 

with partial knowledge of Intended Missions and Emergent Traits that are desired 

as Requirements. 

Regardless of the starting state, a work plan calculated based on 

the Fog of Emergence is guaranteed to be shorter or equal to that of the optimal 

work plan. This minimized work plan results even if an Organization starts with 

full knowledge of the Mission Context and Emergent Traits. There are still 

unproductive Program Elements embedded in the workspace. These additional 
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Program Elements are still considered valid during planning and may give the 

Organization an even shorter minimum spanning tree. For Organizations starting 

with a smaller subset of Capability need, Intended Missions and Emergent Traits, 

the Organizations have a smaller set of Program Elements in their workspace 

and hence a shorter minimum spanning tree than the optimal. 

However, starting with a shorter plan than optimal is only a 

transient condition because during the simulation, the transitive states would 

cause the Organization to pick edges that are either unproductive or not on the 

optimal minimum spanning tree, and incurs more and more cost in terms of its 

span to perform the needed set of Program Elements to accomplish the Program 

Activity. The only time when an Organization could complete a capability delivery 

at a faster rate than the optimal plan, is when it ignores Capability need inserted 

or failed to pick up enough negative Emergent Traits and hence deliver a sub-

standard Capability. 

It is inevitable that the CDSS has to prepare for a start state with a 

work plan shorter than the optimal, and in this implementation where we insert 

Program Activities into the CDS event queue based on the optimal schedules, we 

run into a problem where Organizations would complete their work at hand 

before the Program Activity is popped from the event queue for processing. As 

such, based on the newly calculated work plan, we insert Work Completion 

Events just before the scheduled Program Activities. This would allow 

Organizations to assess the work done and have a chance at lifting the Fog of 

Emergence at that point in simulation time. 

Future work shall implement the other strategies, as well as varying 

the ratio of allocation. A one-to-one assignment of the optimal life cycle work plan 

could be overly generous for a Capability that starts off simple, or extremely tight 

for another Capability that starts off with high knowledge of Emergent Traits and 

Mission Contexts. 
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3. Run Simulation 

With the CDS event queue being prepared, the simulation is ready to be 

run. The simulation is run simply by always popping the time sorted queue at the 

zeroth-element. The CDSS wraps a CdsEvent interface around the JAVA 

Comparable interface to allow the Java Virtual Machine to perform the time-

sorting as shown in the code snippet below. This ensures that the zeroth-element 

of a time sorted queue is always the one with the smallest planned end in 

simulation time units. 

 
public interface CdsEvent extends Comparable<CdsEvent> { 
 
 /** 
  * @param pa 
  * @return -1 if this CdsEvent ends before event, 0 if ends at the same time, 1 
  *         if this CdsEvent ends after event 
  */ 
 public abstract int compareTo(CdsEvent event); 
 
 /** 
  *  
  * @return the planned end date in simulation time units corresponding to 
  *         this event 
  */ 
 public abstract double getPlannedEnd(); 
 
} 

 

In the current implementation there are three types of CDS events that 

implement the CdsEvent Interface. They are the Capability Insertion Events, 

Program Activity, and Work Completion Events. The simulation ends when the 

queue is empty. 

It is also worthwhile to recall that the CDSS uses a cumulative schedule 

slippage variable as a a simplifying work around described in Chapter VI Section 

A.2 to avoid going through the queue to update the CDS events every time a 

schedule slippage occur. 
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a. Capability Insertion Events 

(1) Update Fog of Emergence and Workspace. Recall 

that a Capability Insertion Event is specified by the User as described in Chapter 

VI Section B.2.b using the name for the Capability need to be inserted. When this 

event is processed, the CDSS updates the Organization’s Fog of Emergence to 

reflect a change in the as-needed Capability.   

Depending on the SEP model strategy, the Organization can 

choose to ignore the need, attend to it immediately, or attend to it at the next 

incremental iteration of the Capability. Should the Organization take up the 

capability need, the CDSS updates the Organization’s as-planned Capability. 

This update triggers the unveiling of the relevant Program Elements in the 

various workspaces.  

The current implementation of the CDSS uses the Waterfall 

process model which ignores changes in Capability Need. Therefore, a 

recommendation for future work is to incorporate the SEP models that allow for 

changes in Capability Need.  

b. Program Activities and Work Completion Events 

(1) Determine Work Done. When a Program Activity or 

Work Completion Event is popped from the CDS event queue, the CDSS 

determines how much of the current workspace has been completed.   

The Work Completion Event is a special CDS event that is 

created to signify completion of Program Elements based on an Organization’s 

work plan. Hence, when a Work Completion Event is processed, all the Program 

Elements in its work plan are considered done. 

For the Program Activity, an additional check is performed to 

determine how much work was done. Consider an example workspace with the 

required Program Elements as indicated shown in Figure 38. The optimal 

solution would be the green minimum spanning tree with a span of 16 units. 
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Hence, the CDSS would have entered this Program Activity into the CDS event 

queue with a planned end of 16 simulation time units. However, an Organization 

that does not know which Program Element is unproductive, would plan to 

perform the blue minimum spanning tree which seems to satisfy the same 

requirements while costing only 11 units of simulation time. The CDSS would 

have scheduled that as a Work Completion Event.   

 

Figure 38.  Work Determination Heuristics for Program Activities 

However, when the Work Completion Event popped at 11 

units of simulation time, the Organization would discover that it has a shortfall of 

one blue circle, one orange circle and one green triangle. A new work plan would 

be an extended minimum spanning tree that incorporates the red edges. This 

means that the new completion time for this work plan would be at 20 simulation 

time units. There is a scheduled Program Activity at 16 time units between now 

(11 units) and then (20 units). The implemented heuristics in the CDSS when it 
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encounters such a situation would be to update the work plan but not insert a 

new Work Completion Event. It would allow the upcoming Program Activity to 

pop and do a stock-take then. 

When the Program Activity pops at 16 units of simulation 

time, the CDSS will use a greedy algorithm to determine which of the red edges 

have been performed. In other words, the algorithm tries to hit the most Program 

Elements based on the time that elapsed since the previous Work Completion 

Event. In this example, 5 units of simulation time would have elapsed, and using 

the greedy algorithm just described, the CDSS would determine that the three 

Program Elements that could be performed with just 3 units of simulation time 

are completed. 

(2) Attempt to Lift Fog of Emergence. When the Program 

Elements that were completed were determined for Program Activities and Work 

Completion Events, the CDSS would check if those Program Elements were 

productive or not. Using the subset of productive Program Elements that were 

completed, the CDSS can then determine which CDS ontological entities 

(Operational Activities, Function, Components for example) were produced using 

the relationship described in Chapter VI, Section B.2.c. This successful 

production would be followed by a random lifting of the Fog of Emergence, as 

appropriate for the sub-Program Activity type using the Organization’s 

competency and the Mission/Emergent Trait’s requisite competency levels as 

described in Chapter VI, Section A.4. 

In the current implementation of the CDSS, if the sub-

Program Activity is of the type “Requirements and Analysis,” this activity would 

need all CDS ontological entities known to the Organization to be produced 

before the CDSS randomizes the discovery of more unintended Mission 

Contexts. 

If the current sub-Program Activity type is “Design and 

Architecture,” the CDSS would allow the Organization a chance to analyze the 
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manifestation of Emergent Traits that are desired as Requirement for known 

Intended Missions for corresponding CDS ontological entity produced. 

If the current sub-Program Activity type is “Development and 

Acquisition,” the CDSS would allow the Organization a chance to measure the 

manifestation of Emergent Traits beyond those expected as Requirements for 

known Intended Missions for corresponding CDS ontological entity produced. 

If the current sub-Program Activity type is “Integration and 

Test,” the CDSS would allow the Organization a chance to record new Mission 

Contexts that were previously unintended and also for the manifestation of 

Emergent Traits beyond those expected as Requirement for known Intended 

Missions for corresponding CDS ontological entity produced. 

Any newly known Mission contexts and Emergent Traits 

would be entered into the Organization’s subjective view through the Fog of 

Emergence and be utilized in their planning of future work. 

(3) Update Work Space. As described before, when a 

new Mission or Emergent Trait is known, the corresponding Program Elements 

(including unproductive ones) are added to the Organization’s work space. 

(4) Update Work Plan. Based on the new knowledge of 

Emergent Traits, the CDSS allows the Organization to determine a new work 

plan, similar in manner to the one described in Figure 39. That is an extended 

minimum spanning tree shall be calculated to cover the Program Elements 

needed to produce new CDS ontological entities or to suppress new Emergent 

traits. 

It should be noted that even if an Organization did not 

successfully lift any of the Fog of Emergence during this event, the Organization 

may still need to update its work plan if it had performed unproductive Program 

Elements. 

If the current CDS Event is a Work Completion Event, and 

the new work plan is scheduled to complete before the corresponding Program 
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Activity, a new Work Completion Event is created and inserted into the CDS 

event queue using that scheduled end time. If the new work plan is scheduled to 

complete after the corresponding Program Activity, no new CDS event would be 

created. 

4. Record data 

The current CDSS implementation uses a simple singleton Data Recorder 

that could be retrieved during run-time through a static accessor method. This 

Data Recorder allows the CDSS to record data in to separate in-memory files 

through a simple function call, as shown in the code snippet below. 

 
 DataRecorder.getInstance().record("Debug", -1.0,  
  "Accessing godsViewActivityMap: " 
  + godsViewActivityMap.get(key).getDescription()); 

 

The example above shows the CDSS writing a debug message to a 

Debug file, with a customized message that examines the description of a 

Program Activity that has an omniscient knowledge of the workspace it holds. 

5. Write Output 

The current implementation does not support writing of data records to 

XML file, but it does support the writing of data to the console as shown in a 

snippet of the console output below. 

 
249.83805327776446 [CDS Event]: Processing Conceptual Design of type 
DESIGN_AND_ARCHITECTURE 
312.72378550398514 [CDS Event]: Processing Work Completion Event for MBSE 
312.72378550398514 [CDS Event]: Considering productivity of packages 2 & 3 
312.72378550398514 [CDS Event]: Setting workspace [3] as a known dummy 
312.72378550398514 [CDS Event]: Considering productivity of packages 3 & 6 
312.72378550398514 [CDS Event]: Considering productivity of packages 3 & 4 
312.72378550398514 [CDS Event]: Work done up till work completion event for MBSE 
 A Threshold = 10.0 Done = 6.288255432302714 
 1 Threshold = 10.0 Done = 11.574258507211669 
-1.0 [CDS Event]: Already known Emergent Trait exhibited by Function 1 in Mission M2: 
Trait Description = 1 successfully closed gap between subjective 8.103260893602503 and 
objective 8.0 by 1.8967391063974963 
354.14581346649095 [CDS Event]: Inserting Cap Need 2 
415.7735546678426 [CDS Event]: Processing MBSE of type DEVT_AND_ACQUISITION 
490.81460380617693 [CDS Event]: Processing Work Completion Event for AoA 
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490.81460380617693 [CDS Event]: Considering productivity of packages 0 & 2 
490.81460380617693 [CDS Event]: Considering productivity of packages 2 & 4 
490.81460380617693 [CDS Event]: Considering productivity of packages 4 & 3 
490.81460380617693 [CDS Event]: Work done up till work completion event for AoA 
 A Threshold = 10.0 Done = 10.626537330780224 
 1 Threshold = 10.0 Done = 12.162147241828698 

 1_suppress_1 Threshold = 1.8967391063974972 Done = 0.0 
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VII. CONCLUSION 

A. RESEARCH CONTRIBUTIONS 

In summary, this thesis proposed a capability delivery ontology with the 

central theme of emergence and developed a CDSS prototype. Using this 

capability delivery ontology, the embedded fog of emergence could be used as a 

prism to separate the white light of capability performance into its constituent 

colors of “as needed,” “as-planned,” “as-known” and “as-deployed.”   

While it was lamentable that the scope of research had to be reduced due 

increased complexity that came with the large scope captured in the literature 

review and time constraints encountered, the tractability of the ontology was still 

demonstrated through a CDSS prototype that had a partial implementation of the 

functionalities required of a full-fledged simulator. The CDSS prototype embodied 

the concepts put forward by the ontology to step through capability delivery 

starting with JCIDS capability need inputs and noise factors and carried it 

through the DAMS life cycle phases up till O&S. 

This research is the first of the many steps to come, the proposed CDS 

ontology with Fog of Emergence provides the language construct that shows 

promise when used to discuss Systems Engineering issues that arise due to 

emergence, and also sets the stage for future designs of experiments to 

determine main and interaction effects between the various input and control 

parameters of capability delivery to determine a normative model of capability 

delivery with emergence. A copy of the source code for the CDSS prototype is 

available on request (contact Professor Gary Langford). 

Future research should be mindful that the systems engineering process 

models are models of what their creators believe are important in the process to 

deliver a product, a system, or a capability. Actual capability delivery by the 

various organizations would inevitably pursue whatever activities needed to 
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deliver their system regardless of which systems engineering process they 

picked. 

Nevertheless, experiments based on these models could uncover relative 

philosophical advantages or disadvantages between these models, and these 

insights could be used develop a normative model for capability delivery with 

emergence. 

B. REFLECTION ON DELIVERING THE “CDSS” CAPABILITY USING THE 
CDS ONTOLOGY WITH FOG OF EMERGENCE 

One of the research objectives of this thesis to develop a CDSS could be 

compared to an organization charged with delivering a capability need. The 

following section concludes this thesis by examining the part of the thesis journey 

to deliver a “capability delivery simulation” capability need, using the language 

constructs afforded by the CDS ontology with fog of emergence.  

The capability delivery organizations involved initially assessed that the 

“capability delivery simulation” capability was sufficiently contained and 

uncomplicated and had planned to take the capability rapidly through DAMS life 

cycle phases of TD and E&MD to produce a working simulator capable of being 

used for experiments on capability delivery.   

The initial analysis and requirements in Chapter III helped defined the 

Operational Architecture comprised of the Operational Activities, Function Flows, 

and Intended Missions (Use Cases) and were similar to the activities performed 

in preparation for the Milestone A Review of the TD phase. The quality and the 

comprehensiveness of the Operational Architecture were affected by the 

Organization’s lack of requisite competency in the Discrete Event Modeling and 

Simulation domain. The work planned to implement the CDSS ignored a 

multitude of Mission Contexts (how CDS events were not just Program Activities 

as initially envisioned but included work completion events and capability 

insertion events) and unforeseen Emergent Traits (The CDS ontology with 

emergence has many points of articulation and each interaction between specific 
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instances of an entity may require some logic to be encoded) that have been 

lurking in the background from the very day this topic was selected. 

As the Organization progressed into the Prototype Preliminary Design 

activities of the TD life cycle phase, the Organization completed more Program 

Elements and produced corresponding CDS ontological entities such as the 

Functional view and Component view of the Systems Architecture. With the 

entities produced, the Organization had the opportunity to lift the Fog of 

Emergence obscuring its view of the SoI. More Program Elements were revealed 

to the Organization with regard to more work needed to improve the preliminary 

design to suppress newly discovered negative Emergent Traits. An example of 

the negative Emergent Trait was the design choice to use a cumulative schedule 

slippage mechanism which effectively nixed the ability for the current CDSS 

prototype to allow concurrent Program Activity execution despite the fact that the 

Program Activity itself was fully composable as described in Chapter VI Section 

A.2. 

In the development of the prototype, a number of Program Elements were 

found to be unproductive and resulted in reworked (the Component Architecture 

developed in Chapter V, Section A.2 was quickly found to be too rigid and hence 

not followed in the development). Faced with an increasing minimum spanning 

tree, but limited time, the original plan to take the “capability delivery simulation” 

capability up till the E&MD life cycle phase to produce a simulator usable for 

experiments, was scaled back to focus on TD activities of developing a prototype 

that explored the important functionalities of the CDSS to facilitate future work 

that involved the running of experiments. The fog of emergence had obscured 

the Organization’s perception of Emergent Traits in the as-deployed Mission 

contexts, resulting in what proved to be an overly-optimistic plan. 

The saving grace was that through these ordeals, the Organization 

verified the tractability of the proposed CDS ontology with emergence twicefold, 

firstly through the CDSS, and secondly through the journey to deliver a “CDSS 

capability.” 
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APPENDIX A. N2 CHARTS OF DAMS LIFE CYCLE PHASES 

Figure 39 below shows the high level overview of the N2 chart of the five 

DAMS life cycle phases: (1) Materiel Solutions Analysis (MSA); (2) Technology 

Development (TD); (3) Engineering & Manufacturing Development; (4) 

Production & Deployment (P&D); and (5) Operations & Support (O&S). 

 

Figure 39.  Overview of N2 Charts of DAMS Life cycle Phases. 
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The diagonal spine of the chart is formed by the generic sequence of 

program elements (in green cells) required to produce products, systems 

architecture and SoI components (as input and output arrows) needed to 

accomplish program activities (in yellow cells). The following five tables follow the 

same convention and provide a zoomed in view of each DAMS life cycle phase in 

more detail. 

Table 14.   N2 Chart Materiel Solution Analysis. 

Initial 
Capability 
Doc, 
MDD, 
AoA 
Study 
Guidance 

 Materiel Solution Analysis   

Define 
CONOPS 

[O&M] 
Operational 
Activities 

           

  
Functional 
Decomposition 

[F]Functions [F] Functions        

    
Value System 
Development 

[R] MoEs, 
Requirements 

       

      
Component 
Allocation 

[SA] 
Component 
allocation 
for 
multiples 
alternatives 

     

Refined 
CONOPS 

Refined 
Functions 

Refined 
MoEs, 
Requirements 

Recommended 
Alternative 

Analysis of 
Alternatives 

[SA] AoA: 
CONOPS, 
MoEs, Cost, 
Schedule, 
CTEs, Risk, 
Recommended 
options to ICD 
needs 
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Initial 
Capability 
Doc, 
MDD, 
AoA 
Study 
Guidance 

 Materiel Solution Analysis   

          Prepare TDS 

[SA] TDS: 
Tech 
development 
strategy, 
single-step 
or 
evolutionary, 
schedules, 
cost, goals, 
increments, 
prototypes 
needed 

 

Feedback Feedback Feedback Feedback Feedback Feedback 
MSA Review 
Milestone 

[SA] AoA 
completed, 
options for ICD 
capability 
needs 
recommended, 
and TDS ready 
for Milestone 
A 

Table 15.   N2 Chart Technology Development. 

[SA] AoA 
completed, 
options for ICD 
capability 
needs 
recommended, 
and TDS ready 
for Milestone 
A 

 Technology Development   

Milestone A 
Review 

[SA] 
Options 
for ICD 
needs 

      
Planned in 
TDS 

   

Cost growth > 
25% 

RFP 
process 

[SA] 
Proposal 
selected and 
awarded 
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[SA] AoA 
completed, 
options for ICD 
capability 
needs 
recommended, 
and TDS ready 
for Milestone 
A 

 Technology Development   

Cost growth > 
25% 

  
Build 
Prototypes 

[C] 
Refined SA 
(Especially 
Function & 
Process) 
and 
Production 
of 
Prototypes 

       

Cost growth > 
25% 

  

Demonstrate 
again: Not 
affordable, 
militarily 
useful, 
mature 
technology 

Demo 
Prototypes 

[O&M + C] 
Demonstrated: 
Develop LCSP, 
SEP (includes 
RAMS) based 
on candidate 
designs 

    [SA] SEP 
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Cost growth > 
25% 

      
Prepare for 
PDRs 

[SA] PDR 
Report: 
Hw, Sw 
and HIS 
baseline, 
refined SA 
with high 
confidence 
design at 
system-
level 

  [SA] CDD Approved 
by JROC = {Tech & 
manufacturing 
processes for 
program/increment 
identified and SoI 
can be developed 
for production 
within 5 years 
(usually), contains 
key operational 
performance 
parameters}, 
Refined Integrated 
Architecture, 
Clarification plan to 
become a 
warfighting 
capability, LRIP 
quantities (one unit 
to  10% of total) 

Cost growth > 
25% 

  
Insufficient 
confidence 
for design 

  
Insufficient 
confidence for 
design 

PDR 

[SA] 
Successful 
PDR Report 
with 
requirement 
trades, cost 
estimation 

Cost growth > 
25% 

          
Prepare 
CDD 
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Table 16.   N2 Chart Engineering & Manufacturing Development (From 
Integrated Systems Design). 

[SA] CDD Approved 
by JROC = {Tech & 
manufacturing 
processes for 
program/increment 
identified and SoI 
can be developed 
for production 
within 5 years 
(usually), contains 
key operational 
performance 
parameters}, 
Refined Integrated 
Architecture, 
Clarification plan to 
become a war 
fighting capability, 
LRIP quantities 
(one unit to  10% of 
total) 

       

 PDR Report      

 PDR Report Engineering and Manufacturing Development   

Milestone B Review 

[SA] 
Acquisition 
Strategy + 
Acquisition 
Program 
Baseline 
(APB) = 
Acquisition 
program 
initiated, 
Minimal LRIP 
quantities 
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RFP process 
(ensure no 
award to 
offerors using 
CTEs not 
demoed in 
relevant 
environment 
+ no TRL) 

[SA] 
Proposal 
selected 
and 
awarded 

Integrated System Design     

    
Post-PDR 
Assessment 

[SA] MDA 
inform PM 
of required 
remedial 
actions 

        

      
Prepare 
sub-system 
CDR  

[C] Sub-System 
designs &  building 
of some components 

[C] Sub-
system 
components 
built 

    

        
Prepare System-level 
CDR 

[C} CDR 
Report: 
System-level 
design & list 
of 
components 
built 

    

      
PM direct 
to redo 
CDR 

PM direct to redo 
CDR 

CDR 

[C] Post CDR 
Report: SME 
& CDR Chair, 
Description 
of product 
baseline and 
%age of 
built-to 
packages 
completed, 
issues and 
actions for 
closure, risk 
assessment 
against exit 
criteria 

  

      

MDA direct 
PM to 
address 
resolution 
/ 
mitigation 
plans 

MDA direct PM to 
address 
resolution/mitigation 
plans 

  
Post CDR 
Assessment 

[SA] MDA 
approved 
CDR & 
Initial 
Product 
Baseline 
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Table 17.   N2 Chart Engineering & Manufacturing Development  
(From System Capability & Manufacturing Process Demonstration). 

 

[SA] MDA 
approved CDR 
& Initial 
Product 
Baseline 

System Capability & Manufacturing Process 
Demonstration 

 

  

Build 
Components 
(System + 
Manufacturing) 

[C] Components    

New capability 
needs 

Unable to 
meet approved 
requirements 
in intended 
environment 
and industrial 
capabilities are 
not available 

DT&E 
[O&M+C] Satisfied user needs 
in terms of mission capability 
and operational support 

 

      Prepare CPD 

[C] Approved by JROC: CPD 
= {Operational 
requirements informed by 
EMD results, expected 
performance of production 
system}, Acceptable -ilities, 
Refined integrated 
architecture 
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Table 18.   N2 Chart Production & Deployment 

[C] Approved 
by JROC: CPD 
= 
{Operational 
requirements 
informed by 
EMD results, 
expected 
performance 
of 
production 
system}, 
Acceptable -
ilities, 
Refined 
integrated 
architecture 

 Production & Deployment    

Milestone C 
Review 

[SA] 
Authorized 
entry into LRIP 

      
Authorize 
production & 
procurement 

    

  

Execute LRIP, 
build 
minimum 
production-
representative 
articles 

[C] 
Components 
(System & 
Production) 

          

  
Not ready for 
FRP 

IOT&E in 
mission 
context 

[C&OA] 
Ready for 
FRP 

  

If (skip 
beyond LRIP 
& FRP 
decision 
review) 
Congress, 
USD(AT&L) 
approve 

    

      
Prepare 
for beyond 
LRIP 

[C] Beyond 
LRIP Report: 
Demonstrate 
control of 
manufacturing 
process, 
acceptable 
reliability, 
collection of 
statistical 
process 
control data, 
demonstrated 
control and 
capability of 
critical 
processes 
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FRP Decision 
Review 

[C]  MDA’s 
FRP Decision 

    

          
Execute FRP 
& 
Deployment 

[C] 
Components 
(System & 
Production) 

  

            FOT&E 

[O&M+C] 
Mission 
performance 
assessment 

              
Military 
Equipment 
Valuation 

 
 

Table 19.   N2 Chart Operations & Support 

[SA] Initial Operational 
Capability 

Operations & Support  

Life cycle sustainment: 
Continual engineering for 
RAMS, HSI, environmental 
safety, occupational health, 
supportability, and 
interoperability 

[O&M+C] Full 
Operational Capability 

      

  Iterative reviews 
[O&M+C] Full 
Operational 
Capability 

    

    PEO Annual reviews 
[O&M+C] Full 
Operational 
Capability 

  

      
Prepare for 
Disposal / 
Repurpose 

[O&M+C] Full 
Operational 
Capability 

        
Disposed / 
Repurposed 
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APPENDIX B: CAPABILITY DELIVERY SYSTEM SIMULATOR 
USE CASES 

A. USE CASE TEMPLATES 

1. “Start Simulator” 

Use Case: Start simulator 

Primary actor: User 

Goal in context: To start the simulator and load the input file. 

Preconditions:   

 CDSS must be compiled and the executable set on the computer’s 
PATH variable 

 Input file specifying input and control parameters must be well-
formed 

 Destination folder must exist and with “write” permission enabled 

 User has brought up the command line interface 

Trigger: Intention to use the CDSS. 

Scenario: 

 The user enters command to run program with two parameters 
specifying the location of input file and the destination folder/name 
of output file: 

 Java CDSS [input file location] [output file destination] 

 The software loads the input file and displays a summary on the 
input and control parameters read in. 

Exceptions: 

 Incorrect number of command parameters. The software displays 
an example of an expected command and exits. 

 Input file is not well formed.  

Priority:  Moderate priority, to be implemented as second increment. 

When Available: Prototype 2 

Frequency of use: High frequency 
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Channel to actor: Via PC-based command line interface to link the 

software with input files. 

Open Issues: 

 What input format would facilitate less error-prone specification of 
input and control parameters? 

 What output file format would facilitate ease of analysis through a 
separate spreadsheet program such as Excel? 

2. “Enter Simulator Mode” 

Use Case: Enter simulator mode 

Primary actor: User 

Goal in context: To set simulator mode to either print event trail on the 

console or to just run with no event trail. 

Preconditions:   

 User has already performed Use case “Start simulator.” 

Trigger: The CDSS presents the user with three options as listed below:  

“1 – Exit simulator; 2- Display event trail on console; [Anything else]  - No 

event trail on console.” 

Scenario: 

 If user enters “1,” the CDSS shall skip simulation and exits. 

 Else if user enters “2,” the Console displays “Event trail mode set” 
and begins to run the simulator. 

 Else if user enters anything else (including empty return), the 
Console displays “Mode: No Event Trail” and begins to run the 
simulator. 

Exceptions: NA 

Priority:  Moderate priority, to be implemented as second increment 

When Available: Prototype 2 

Frequency of use: High frequency 
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Channel to actor: Via PC-based command line interface to link the 

Software with input file 

Open Issues: NA  

3. “Run Simulator” 

Use Case: Run simulator 

Primary actor: User 

Goal in context: To run simulator and to generate output file containing 

simulation results based on provided input and control parameters. 

Preconditions:   

 User must has already performed use case “Set simulator mode” 

Trigger: The CDSS received a simulation mode. 

Scenario: 

 The CDSS starts the discrete event simulation. 

 If “Event Trail,” the CDSS display status update on the Console for 
every discrete event until simulation is over. 

 Else if “No Event Trail,” the CDSS insert a period .”“on the Console 
display every 3s to indicate that it is running until simulation is over. 

 The software writes the full event trail and results into the Output 
File. 

 The software displays a summary of the output parameters via the 
Console and terminates. 

Exceptions: 

Output destination does not exist. Software shall inform the user via the 

console and attempt to write output file to local folder as “Output.csv.” 

Priority:  Top priority, to be implemented immediately. 

When Available: Prototype 1 

Frequency of use: High frequency 
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Channel to actor: Via PC-based command line interface to link the 

software with input file. 

Open Issues: 

What output file format would facilitate ease of analysis through a 

separate spreadsheet program such as Excel? 
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