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ABSTRACT

With the introduction of formal specification of

abstracted computer resources, both physical and logical,

there is the possibility that a major step forward can be

made toward developing a methodology for reducing the

portability and reusability costs of computing system

components. Still, the current methodology is only concerned

with the static functional properties of resources and not

their timing properties. This places limitations on the

generality of the method. This study describes a way to

formally specify the timing of computer systems by combining

ideas of both semantic algebras and Petri Nets.
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I. INTRODUCTION

Timing in computer systems has been a critical issue

throughout the evolution of computers. The most obvious areas

where timing is of great concern are operating systems,

distributed systems and real-time systems. In the most other

areas, timing of a computer program is taken for granted

since we assume a simple sequential execution of this

program. But we have to realize that, when we consider the

program and the machine on which it has to run as a whole,

i.e. a computer system, we have to deal also with the

internal timing of the hardware. Even though high level

programming languages have provided us with the means to

software from one system to another, we still find these

programs may not work properly because of timing problems.

These timing problems are normally caused by different

implementations of computer resources. So It would be very

helpful to have a way of comparing computer systems and

predicting problems in timing when programs are transferred.

It would even be much better to have specifications of

computer systems that could be used to design transf errab 1

e

programs in the first place.

There is ongoing research at the Naval Postgraduate

School on the formal specifications of computer systems that

is mainly intended to overcome the increasing costs of



computer software resulting from problems with portability

and reusability of programs. The first result of this

research project has been the development of a formal

specification methodology by Davis (1984). This methodology

was successfully used to write a formal specification of an

Abstract Processor by Yurchak (1984). « This work was followed

by several extensions of the Abstract Processor and related

work by Hunter (1985) and Zang (1985). The research performed

at the Naval Postgraduate School is part of a relatively new

branch of computer science: the Science of Computing System

Design which is concerned with a formal approach to the

specification and description of computer systems. This

thesis follows the direction of previous work done in this

field. Its objective is to formally specify timing in

computer systems. Even though there has been considerable

interest in timing, our approach will emphasize two aspects

of the problem:

- We want to develop a formal way to specify timing to
achieve the benefits of the rigorous foundation of a
formal description.

- We want to specify abstracted resources which include
both hardware and software with a unified approach.

Throughout this thesis the term "computer resources" is

used in a sense that combines all hardware and software

building blocks of computer systems: memory, registers, data

types, instructions, etc.. Also the special aspect we are

'An edited version of the specification of the Abstract
Processor is included in Appendix A
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concerned with is time as a computer resource. Computer

resources can be either pure physical or they can be an

abstract type. A memory cell belongs to the physical category

while a specific data type belongs to the abstract category.

The means to deal with these differences is abstraction.

Specifying computer resources as abstractions in a

mathematical way also allows us to compare different

specifications and implementations.

Within this work we will emphasize a practical viewpoint.

Even though in applying pure mathematical concepts to

computer systems we realize that computers are in no way

ideal: as every piece of hardware is finite (especially the

memory) and an event in the computer is never instantaneous

but will take a certain amount of time. In this context, for

example, the term "digital computer" is misleading since

there are many undefined states between those defined n M and

"i".

Therefore the goal of this thesis is to provide a

methodology for the rigorous specification of timing:

- to evaluate the time behavior of systems which leads to
the exhibition of possible places in system where
parallelism could be used,

- to give a better understanding of the dynamic aspect
of computer resources in time, and

- to find time critical situations in a system.

9



I I. BACKGROUND

A. FORMAL SPECIFICATION

The idea of specifying a system formally is to deal with

physical and abstract computer resources as abstractions to

support our major concerns with portability and reusability.

In this sense we deal with computer resources as abstractions

which we want to describe such that the functions and the

properties of a resource are stated in a mathematical way to

support precision and provability. Studies in this direction

have been conducted by many researchers (Goguen (1978),

Guttag (1978), Bergstra (1983), and Davis (1984)). As a short

introduction to this work we would like to present some key

issues here as they were used in the first formal

specification of the Abstract Processor.

The formal specification of the Abstract Processor is

based on the method of algebraic specification which consists

of two parts: the interface specification and the constraints

specification. The interface specification declares operands

and the operators that can be applied to them, so information

for syntactic constructions and type checking are provided.

The constraints specification is a set of properties that

define constraints on the operations. These properties are

stated by equations that associate the same meaning to pairs

of expressions of the specification. As an example the

10



specification of the computer resource "boolean" is shown in

Figure 2. 1.

Resource boolean is

Operands
boo I

Operators
not: boo J -> bool

;

and: bool , bool -> bool;
true: -> bool;
false: -> bool;

Properties
not ( true ( ) ) = falseO;
not (not (x J ) - x;
and ( true ( ) , x ) = x;
and( fal se( ) , x) - falseO;

end boolean;

Figure 2.1: Specification for Resource "boolean"

Figure 2.1 illustrates the definition of one operand type

(bool) and the operations (not, and, true, false) that are

allowed with this operand. The operations are stated as

functions with their input and output. Note here that the

constants resembling "true" and "false" are obtained from the

nullary operator functions with no input ("trueO" and

"falseO"). Up to this point only the interface part is

considered. The meaning of the specification is indirectly

in the form of equations that state that certain expressions

must be treated identically to other expressions. The above

equations use "x" as a free variable, i.e. "x" stands for any

11



expression that can represent an operand of type "bool". So

far this computer resource "boolean" is an abstract data type

in the traditional meaning. But computer resources also

consists of physical resources which are very similar to

abstract data types in their specification. Figure 2.2

provides an example of specifying a physical computer

resource to indicate the memory state of the Abstract

Processor. For simplicity only the operands for

initialization, fetching and storing are presented. The first

interesting fact to note in this specification is that it

states that the resource "amstate" is an extension of the

previously defined specifications of the resources "boolean",

"memaddress", and "regaddress", i.e. all operands, operators,

and properties defined in these specifications can be used to

specify "amstate" without further explanations. The operand

"state" has in this example four operators to initialize the

processor, to fetch from memory and registers, and to store

to memory and registers. The properties for these operations

are shown by equations that indicate their relations among

them. Note that this example uses the term "undefined" to

indicate an error or don't care condition (the attempt to

fetch the contents of an register or memory address of a new

initialized processor is illegal).

The basic step in becoming familiar with formal

specifications is to consider the well-known constructs of

abstract data types: a class of objects together with a set

12



of operations that may be applied to these objects. This

approach can also be applied to physical computer resources.

Resource amstate is

Extension of
boolean,
memaddress,
regaddress,

Operands
state;

Opera tors
fetchm: memaddr , state -> val;
fetchr: regaddr , state -> val;
s torem: val , memaddr, state -> state;
storer: val , regaddr, state -> state;
initam: -> state;

Properties

fetchm (a, ini tarn (J ) is undefined

;

storem(fetchm(a, q) , a, q) = q;
impl ies (eqmemaddr (al , a2)

,

fetchm(al , storem(v, a2, q) ) = v)
* trueO;

impl ies (not (eqmemaddr (al , a2)

,

fetchm(al, storem(v,a2, q) ) = fetchm(al , q)

)

- true();

fetchr(r,initam()) is undefined;
storer (fetchr (r, q) , r, q) - q;
impl ies (eqregaddr (rl , r2)

,

fetchr (rl , storer (v, r2, q) ) = v)
- trueO;

impl ies (not (eqregaddr (rl , r2)

,

fetchr (rl, storer (v, r2, q) ) - fetchr (rl , q)

)

= trueO;

end amstate;

Figure 2.2: Specification of "amstate"
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Then we have concrete algebras which describe an aggregate of

operations and sets of values where the sets are the source

for arguments and result types of each operation. This is a

system in which there are sets and operations that are

applied to elements of the sets such that the results of the

operators stay in the system. When we construct a

specification of such a system, we attempt to create a

specification that serves as templates for the sets and

operators in a concrete algebra and axioms which state

provable equations about the values and operations. With such

a specification we have something which describes the

resource abstractly and precisely without restricting it to a

specific concrete algebra, i.e. there can be many algebras

that are implementations of a single specification. They are

considered as the class of algebras uniquely associated to

that specification.

1 . Syntax versus Semantics

We refer to the syntax of description as the "form"

of the description and to semantics as the "meaning" of the

descr ipt ion.

The meaning is always determined by associating form

to real objects. Basically the syntactic part describes legal

expressions that can be formed with the operators in the

specification. These expressions are called formal terns. The

constraint part specifies that certain formal terms are to be

considered equivalent. The meaning of specifications is

14



established by associating certain concrete algebras to the

specification. There algebras represent the "real object".

Operational expressions in the concrete algebras are called

actual terms. Semantics are defined by a correspondence

between properties of formal terms and actual terms. A real

object is a realization of the abstract object defined by a

specification under three conditions as they are stated in

Davis and Yurchak (1984):

- Condition 1:

For each operand type of the specification there is a
corresponding set of values in the real object and to
each operator in the specification there is a
corresponding operation in the real object that is
defined on values that correspond to the operand types of
the operator.

- Condition 2:
In the correspondence between formal terms and actual
terms, two formal terms are provably equal if and only if

their corresponding actual terms have the same value.

- Condition 3:
To every value of the real object there must correspond
some formal term whose corresponding actual term has that
value.

These conditions provide us with a powerful insight:

given a formal specification of some resources there can be

different implementation in the real world (as they probably

are on different machines), but as long as the

implementations satisfy the above conditions they are

equivalent. This is a very important property when the issue

of portability is concerned.

Still an formal specification despite its abstract

view of resources has to deal with the real world: for

15



example there is nothing like true infinite memory so that a

defined operator like "nextroemaddr" (to obtain the memory

address of the next instruction to be executed) will

eventually exceed the physical implemented memory of a

system. The nundef ined** has been introduced in the formal

specifications to act like a safeguard. It indicates that

there is no interpretation in the realization for this term.

B. PETRI NETS

Petri Nets are tools for the study of systems through

modeling. The Petri Net theory has been originally introduced

by Carl Adam Petri in his doctoral dissertation (1962).

Further studies of A. W. Hold and Jack B. Dennis helped to

develop this theory.

1 . Terminology of Petri Nets

From Peterson (1981) a basic Petri Net is defined as

a five-tuple M = (P,T, l,0,m) which is composed out of the

following parts:

- a set of places P
- a set of transitions T
- an input function I

- an output function
- a marking vector m

The function I is a mapping from a transition t, to a

collection of input places 0(tj) and the function is a

mapping of a transition t, to a collection of output places

I(ti), the marking vector m indicates the number of tokens

16



preset in each place. In this general form, developed by C.A„

Petri, a place can hold more than one token at a time. 2

As an example, the following net structure is

presented here and Figure 2.3 shows its corresponding graph

in the common symbology of Petri Net graphs where circles

indicate places, bars indicate transitions, and arrows show

the connections between places and transitions:

M = (P,T, I ,0,m)
P =

{ P> » P2 t P-3 . P« » Ps > P6 » P? , Pa >

T = (t, , t 2 , t 3 , t 4 . t a }

m = (1,0,0,0,0,0, 0, 0)

I ( t» ) = {p, ) 0(t t ) = {p 2 , p 4 )

I Ct 2 ) {pi ) 0(t 2 ) = (p 3 }

I (t 3 ) = (P2 ,P3 } 0<t 3 ) = (p 3 ,p 6 }

I ( t« ) = (P4 ,P5 } 0(t 4 > = (P7 }

I ( t a > = fp* , P7 > 0(

t

9 ) = tpa >

t2 p3 t3 p6

Figure 2.3: Graph of Petri Net

The following Petri Net terminology is used in this thesis:

- place = a construct for modeling conditions of the system
- event = actions that take place in the system
- token = a construct used to indicate that a condition

holds (a true condition)

2 The reader is referred here to the BAG theory

17



- transition = the process of recognizing true
preconditions, the occurrence of an event, and making the
postconditions hold

- concurrency * two or more events depending on different
preconditions can occur in any order

- conflict = only one of two or more events depending on at
least one common precondition can occur

To give a simple description of Petri Nets we can say the

following: An event occurs (a transition is initiated or

enabled) when all of its preconditions hold. The effect of

the occurrence is that the tokens of the preconditions are

"used" for the event and then distributed to the

postcondi t ions.

The following constructors can be recognized in Petri Nets:

- simple transitions B there is one precondition and
whenever this condition holds the event occurs so that
the token from the precondition is removed and after the
occurrence of the event the token is moved to the
postcondition so that this condition now holds (Figure
2.4).

- conjunctive transitions = there are two or more
preconditions that all have to hold in order for the
event to occur. All tokens of the preconditions are used
and after the occurrence of the event only one token is
moved to the postcondition to indicate that it now holds
(Figure 2.5).

- disjunctive transitions one precondition is connected
to two or more events and when this precondition holds
one of the events will occur and will move the token from
the precondition to the postcondition of that event that
occurred. The selection of the event to occur is

non=determinist ic (Figure 2.6).

- distributive transitions = there is one precondition and
when this holds the connected event will occur. It will
remove the token from the precondition and it to all
postconditions so that every postcondition of this event
will have a token (Figure 2.7).

- complex transitions * combinations of the above simple
constructs of Petri Nets.

18



before euent after euent

Cpro
®-*-*o

Cpost Cpre
O » Kg)

Cpoet

Figure 2.4: Simple Transition

before euent after euent

Cpr*l

®-*
Cpre2

-o
Cpost

CH
Cprel

OH
Cpra2

~+®
Cpost

Figure 2.5: Conjunctive Transition
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before euent after euent

Cpoutl

Cpra

Cpost2

either

S Cpo.tl

Q.
CpraX

Cpost2
E2

or:

Cpostl

Cpra

Cpost2

Figure 2.6: Disjunctive Transition
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before euent

-O
®-*
Cpra

Cpoatl

ho
E Cpost2

after euent

O*
Cpra

-*§)
Cpoatl

—K§)
S Cpost2

Figure 2.7: Distributive Transition

2. Properties of Petri Nets

Petri Nets by their nature are well suited to model

asynchronuous processes, i.e. where the progress of a process

is controlled by conditions and events and not by some kind

of fixed clock. This means that in some part of the net there

can be waiting for a condition to start an event, even the

case that a process cannot continue because of a missing

condition. Suppose an event is modeled as a conjunctive

transition as indicated in Figure 2.5. If the precondition

C p r . i is never true the process will stop at this point. The

"flow" of the progress can always be observed by the state of

the condition places in the system. The occurrence of events

is recognizable by the changing of the preconditions and

postconditions.
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The discussion of disjunctive events has shown an

important property of Petri Nets: their non-deterministic

nature, i.e. we have under normal circumstances to force a

distributive construct in one or the other direction. This is

a major obstacle when we have to model some kind of decision

making in a Petri Net. One way to get around this problem is

the construct (introduced by Peterson (1981)) of an "external

agent" which provides appropriate TRUE or FALSE places at

decision points in the net. Here by the intervention of the

"external agent" the process proceeds in the direction of the

TRUE or FALSE place. In general, one can think of "external

agents" as CASE-constructs in high-level programming

languages such that, dependent on the value of an argument,

one and only one action is taken by setting the according

place in the net. We will discuss this topic further in

Chapter IV.

When we look at the conjunctive and distributive

constructs we observe that by combining them we can build a

distributive construct which "fans" out into several holding

places and then combines again with a conjunctive construct.

In this way, we have able to introduce paralleli«m into Petri

Nets. Figure 2.8 shows the graph of a process that fans out

into five processes which then merge again into one process.

This capability of Petri Nets is very powerful and convenient

in specifying computer resources.

22



startjpar end_par

process_p5

Figure 2.8: Parallelism with Petri Nets

3. Modeling with Petri Nets

Modeling with Petri Nets has been widely used in very

different areas: computer software, computer hardware,

chemical reactions, queuing theory, political systems, etc..

Two examples as they are presented by Peterson (1981) are

given to illustrate this modeling work: a portion of a Petri

Net showing a control unit of a computer with multiple

registers and functional units as an example for modeling

computer hardware (Figure 2.9) and a Petri Net dealing with

the mutual exclusion problem as example for modeling computer

software (Figure 2.10).

In our approach we want to exploit the ease and the

properties of Petri Nets for modeling the combination of

computer hardware and software as they operate in time.
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intruction uses

unit u and
registers i, j,k

ready to

decode next
instruction

unit u is

operating with
registers i, j, k

reset execution elements

Figure 2.9: Computer Control Unit

Figure 2.10: Mutual Exclusion
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III. THE PROBLEM OF TIMING SPECIFICATION

A. GENERAL PROBLEMS

Why are we so concerned about the timing of a system?

Time is an important resource in computer systems that must

be managed carefully. There is almost always the possibility

that if we invest more of other resources we are able to

reduce the amount of time a piece of work will need.

Everybody remembers a mathematical problem like this: if it

takes one unit to accomplish a task in x hours how many hours

will it take y units to do the same task? In this very simple

problem the increase of other resources (e.g. units) will

reduce the needed time for the task linearly. In computer

systems we could save time by implementing more CPUs, disk

drives, arithmetic units, etc.. But since more hardware costs

more money and the control of additional resources uses time

by itself we have to be very careful in determining the

resources we need and how we use them. The following example

shows the danger of mismanaging computer resources: a

computer task that requires some resources (e.g. disks) would

waste them if it holds more than it needed at times when it

actually does not need them and so prohibits other tasks from

using them.

The formal specification as described in the

specification of the Abstract Processor is only concerned

25



with static computer resources, i.e the timing properties are

implied by the functional relations between components of the

system. The static specification is purely functional. For

example, operands must be evaluated before a function is

applied but there is no way of indicating the order of

evaluation. The dynamic computer resources are those that

express an ordering of resources in time, mutual exclusion

and concurrency. Instead of assuming some ordering in the use

of computer resources we want to be able to explicitly state

and define the timing of a system.

The goal is to specify the required timing properties

precisely to a desired degree which for example is sufficient

to evaluate the system for time and cost efficiency. The

relation between time and cost depends on the nature of the

system: there is much more emphasis on time in system that

are very time critical (e.g. real-time systems) and not so

much on systems that are purely problem solvers.

The basis of this work is to show whether such a

methodology for specifying timing properties can be based on

the theory of Petri Nets and how well the special cases of

timing in computer system resources can be expressed in terms

of Petri Nets.
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B. SPECIFIC PROBLEMS OF INTEREST

1

.

Order of Evaluations of Functions

Given a function f <

x

( ,

x

2 , . . . , x„ ) we only require that

x» to x„ are evaluated before f can be applied. 3 There is no

statement that the evaluation of x» has to be started first

or what evaluation has to be completed first.

2. Parallel Processing of Parts of Functions

Considering again our function f (x» , x 2 , . . . , x„ ) we

want to state explicitly which evaluations have to performed

in parallel and which in sequence. Why do we want to do so?

Following our purpose, in the specification we want to

describe timing in a way which is as exact and detailed as a

timing diagram used to construct hardware.

3. Mutual Exclusion

A major problem that arises with parallelism is

mutual exclusion, i.e. a computer resource can only be used

by one process at a time and the use of the resource has to

have a certain entry and exit point to preserve the integrity

of the resource.

Consider a simple computer with a memory unit which

retrieves and stores data on request via a specified

interface (Memory Buffer Register and Memory Address

Register). This is parallelism even in simple computers since

the memory is independent from the CPU. So we have to make

3 Even if x is a constant it has still to be evaluated,
i.e. its value has to be retrieved
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sure that only one request is handled by the memory unit at a

time and that the next one is handled when the first one is

finished. We want to be able to explicitly state those

properties in the specification of timing systems.

4. Data Flow

During the course of a process in time certain data

has to be available in order for the process to proceed. Some

data is changed, other data is not needed anymore. Here we

have the problem of how to model data flow by means of Petri

Nets.

To make this point more clear let us consider the

execution of following instruction: SUB R1,R2 (subtract the

contents of register 1 from the contents of register 2 and

store the result in register 2). During the execution we have

to retrieve the identities of the registers from the

instruction (i.e. the instruction has to be decoded) then

their contents both have to be available before we can

perform the subtraction. At this point of the execution we do

not need the identity of the first register anymore, but the

one for the second since it is not only a source for the

operation but also the destination. Thus, we have to have

some mechanism in our methodology to state data which is

available during the course of the execution.
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IV. APPLICATIONS OF PETRI NETS TO THE TIMING IN FORMAL

SPECIFICATIONS

In previous work computer resources have been formally

specified using basically the algebraic specification

approach. In essence, this is a type of functional

specification. The question we address here is can functional

specification be extended, using Petri Net theory, to provide

for the specification of timing properties.

A. GENERAL APPROACH

Given a general function f <x t » x* , . . . > x„ ) what are the

stages of evaluation for this function?

- the evaluation of f <Xi , x 2 , . . . , x„ ) must have been
requested from somewhere and by this the evaluation gets
into a requested stage

for *U x,, i < i <= n , the evaluation is requested
which starts for all x t a new process with the same
stages as described here

- once all x, are evaluated and their results are available
to our function f it can be evaluated in a processing
stage

- when the evaluation is completed and the result is
available the process is completed

Note the similarity to the "natural" way a human being

would calculate this function: if we were to calculate

sum(sin<

x

2 ) , sqrt(y) ) we had to calculate the square root of y

and we had to square x and take the sine of it and then we

would apply the sum-function to the intermediate results.
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However, this example exhibits a problem for our very general

approach: how do we know what the values of x and y are and

how do we know that e.g. n sqrt n means "take the square root".

Therefore there must be some decoding and retrieval steps in

between which determine what the parts of the function

expression mean. This is exactly the case when we consider

computer instructions: e.g. given an instruction like nADD Rl

M2 R3" which means "add the contents of register 1 to the

contents of memory address 2 and store the result in

register 3". Here the following steps have to be performed:

- The instruction has to be decoded (we assume that at this
stage the instruction is already retrieved): i.e. the
components of the instruction (operator and operands)
must be made available to the further evaluation.

- Up to this stage only the names (i.e. the symbolic
addresses) of the operands are available and so the next
step is to retrieve the values of the operands.

- Now that the operator and the values of the operands are
available the operation designated by the operator can be
performed.

- When the result is available it can be stored into the
location which expressed by the third operand.

Figure 4.1 shows the corresponding graph of a Petri Net

describing the above steps. In this example we see an

approach to describe the execution of an instruction in a

sequential manner. Suppose we had a machine that could

perform retrieval of values and operation in parallels, how

could we describe that certain steps could be performed in

parallel and how could we mark points in time where the

process can only proceed if some results are available?
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instruction
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operators
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operation
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o
execution
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decode retrieve perform store
instruction values for operation result

operation

Figure 4.1: Simple Instruction Execution Net

This is the point where we can use the properties of

Petri Nets: if we model requests and availabilities as places

of Petri Nets and the actions on requests and availabilities

as transitions and connect them accordingly we are in a

position to model the evaluation of a function or the

execution of an instruction.

Up to this point there is nothing new in our methodology

since modeling with Petri Nets is common practice and has

been done for a long time. The question to be ask now is does

a methodology based on Petri Nets provide the means to

specify the specific problems of computer systems and their

components in a way that is consistent with the formal

specification of the static properties we have seen in the

specification of the Abstract Processor.

In addition we not only want to look at the timing of

systems in an isolated fashion, but also we want to combine

the specification of static properties, as introduced in the
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specification of the Abstract Processor, with the

specification of dynamic properties of such a system. With

this combination we can specify systems completely.

B. NOTION OF SUBNETS

Now that we have Petri Nets as a tool we can model simple

timing systems using our methodology. However, we would like

to simplify and eliminate redundancy: if we use the same

structure in a net several times, it would be better to have

this structure defined once and reference this definition

wherever we need it in our system (Figure 4.2). As an

example, suppose we realize that a structure to make the

contents of a certain memory address available to the process

appears several times in our system. By defining this

retrieval -function as a subnet we are in a position to use it

everywhere in the system simply by setting its ENTRY-place

(in our example with a request for value of a specified

register) and we obtain the result (the value of the

specified register) at its EXIT-place. This works even for

the case that the subnet specifies a computer resource that

has to be accessed observing mutual exclusion.

The major question that has to be asked here is how can

we model such a subnet that has the ability to "sense" where

it has been invoked and so can return its results to that

location in the system. Computer language constructs like

procedures or functions use a return address which is saved

with the call of the procedure/function to determine the
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location in the program which has to be executed after the

procedure/function is finished. Our model of using Petri Nets

is different in this aspect: despite the fact that it shows

the dynamic behavior of a system, its structure is static and

does not change in time and so all connections between nets

and subnets are established. Since we have to know al 1 these

#-»
ENTRY
place

©
use of subnet A use of subnet B

B-H

©
use of subnet C

-*©
EXIT
place

Figure 4.2: Symbology of Subnets

connections we are able to provide for each connection an

entry-place which is connected to the net internally by

disjunctive events such that only one can be "fired" at a

time. The "firing" of those events lets a path-place hold

that indicates the entry-place which triggered the event.

This path-place decides what exit-place is set when the

internal net provides the result.

This definition of a subnet is a very powerful shortcut

for keeping descriptions of systems limited. It resembles a

function construct in a high-level programming language: it

is been "called" by setting its request-place, does its
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supposed work and "returns" the result as the available'

p lace.

rO-H-Oi
\r

r«q_by(ll)

1=
ra<^_by(12)

activated finished—o- -4-*®
process_for (11)
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Figure 4.3: Generalized Subnet without Mutual Exclusion
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Figure 4.4: Generalized Subnet with Mutual Exclusion
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We have to show that our methodology is capable of

defining subnets and introducing them into other nets.

C. COMBINING NETS

With the introduction of subnets we are in need of rules

and guidelines on how we can combine a collection of small

nets and subnets into a timing system.

1 . Coupling of Nets

In the preceding paragraph we have assumed that nets

are connected by entry and exit places, but generally, we

have two possibilities to connect nets:

- Coupling by places: to connect two nets the first net
outputs to a EXIT-place that is read by the second net as
an ENTRY-place. In the special case that we use subnets
in our specification we request the subnet by place (the
ENTRY-place of the subnet) and obtain the result by a
place (the EXIT-place of the subnet).

- Coupling by events: events are shared between nets and
when the ENTRY-event "fires" the requested net is invoked
and signals the availability of the result by "firing"
its EXIT-event.

We have chosen the coupling of nets by places because

of the following reasons:

- The request for a subnet submitted by a place allows the
requested subnet more "liberty" to react on the request
only when it is ready to do so since the pending request
as a "loaded" place remains until it is used by the net,
where as in event-coupling the saving requests had to be
done in a more complicated way.

- The coupling of nets by places resembles the way events
like interrupts are processed in real machines, here the
interrupt does not interrupt the execution of
instructions at any time, but a status "interrupt" is set
and this status is checked between the execution of
instructions and acted upon.
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2. Extensions of Nets

To make our methodology consistent we need to state

what other nets we are going to use in this net. There is a

close similarity to INCLUDE, USE or WITH constructs of high-

level programming languages or the EXTEND construct of the

formal specification. In the specification of timing the

mentioning of a net to be the extension of another means that

the parent net is going to use the extended net as a subnet

in the specification.

3. Net Selection

Due to the non-deterministic nature of Petri Nets we

do not have a traditional net construct which can make

decisions on truth or falseness and directs the path in the

net accordingly. A proposed solution for this problem by

Peterson (1981) is to use "external agents" as they were

presented in Chapter 2. This construct is able to examine a

status or data on a given condition and make the decision

whether the condition is fulfilled. With the outcome of the

decision a path to a place representing true or the place

representing false is set. By extending this idea we able to

think of "external agents" as a CASE-statement where one and

only way through the net is chosen according to a condition

(see Fi gure 4.5).

D. TYPING OF NET ELEMENTS

In the traditional Petri Net theory we have tokens to

indicate the flow through the net and to mark holding places.
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So the "firing" of an event consists in collecting a token

from each of the connected input places, performing the

designated action and distributing a token to each connected

output place. This is not enough when we want to describe the

flow of data in time. Also we want to be able to state

specifically what kinds of data, what types of data are being

requested, available or transferred at a certain point in the

timing of a system.

avail net

re<^_net [msg=v]
External Agent

Figure 4.5: Net Selection by "external agents

How can we show the presence of data in our methodology?

On first sight we have two possibilities: either we introduce

a typed place or a typed token. Both of these constructs

could indicate the presence of certain data. So we to examine

both methods under the consideration which of them suits our

37



goal better to develop a practical and understandable

methodol ogy

.

1

.

Typed Places

When we introduce a concept of typed places we still

have the original meaning of the tokens to indicate the

holding of a place. The presence of data of a certain type

must be accomplished by means that have to obey the type of

the place. The events still react on the presence of tokens

in the places.

2. Typed Tokens

This alternative considers a token as a construct

that carries an actual piece of data according to the type of

the token. We can imagine tokens as a message residing in the

places. The events now can be modeled by picking up a message

from each connected input placed, performing their designated

actions, and distributing a message to every connected output

pi ace.

So now we can look at places in a net as constructs

that can receive token-messages from events, keep them and

send them to events. The actions performed by events consist

of picking up message-tokens from places, changing and

creating message-tokens and sending them to places.

3. Typed Tokens in Typed Places

Both concepts above exhibit some disadvantages:

- Pure place typing needs some external mechanism to
establish the presence of data.
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- Pure token typing allows a message-token to be sent to
every place in the net since there no protection from
receiving message-tokens of the wrong type.

This leads to the idea of combining both typing

schemes. With this concept we restrict places in the net to

accept only tokens of a certain type and the tokens are

actually typed messages. One small problem does arise here:

what if we want in some situations the token to have its

original meaning only to indicate its presence without any

data? This reminds of a message without contents. As a

solution we introduce following typing convention:

- A place declared to be of a certain type or collection of
types can only accommodate tokens that are messages of
this type or collection of types.

- A place declared to be of no type can only accommodate
tokens which are "empty" messages.

- An event will collect typed token-messages from the
connected typed input-places, perform its designated
action and output typed token-messages to the connected
typed output-places.

With this typing scheme we are now in a situation to

specify data flow in time by means of typed tokens and

places. Although we have based our work on Petri Nets we see

that our concept has become more general and now reminds of a

general message passing system.

E. SYNTAX

Since our approach includes the existing specification

methodology of the static computer resources, we have to

carefully develop a new syntax which expresses both the

static and dynamic properties of the systems to be specified.
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The following syntax has been introduced with the

specification of the Abstract Processor by Davis and Yurchak

(1985)

:

Resource <name> is
Operand Types

<operand types>
Operators

<operators>
Properties

<properties>

The following requirements have to be fulfilled by the

syntax we want to develop:

- It has to have the ability to express both the static and
dynamic properties of system properties where the static
part should be left in the form as introduced by Davis
and Yurchak (1984).

- The form of the syntax should be as simple and easy to
understand as possible.

- The chosen names of the constructs of the syntax should
be self-explanatory and suggest the intended meaning to
the user.

- It has to provide a precise and unambiguous way to
specify the system.

Another point to consider is that we want to follow

certain accepted design principles, especially that of

Information Hiding as it is done e.g. in the ADA package

construct where there is a Package Interface (to provide the

user of the package with all the information necessary to use

the package and nothing else) and a Package Body (the

implementation of the package).

Before we finalize the syntax for the dynamic

specification of a system we need to say something about how

the dynamic properties of static objects are described in
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terms of places and transitions. Places reflect the

conditions on the execution of the static functions, whereas

transitions are used to describe changes in these conditions

during the execution of the static functions. Some of these

places and transitions are generic, i.e. they apply to any

function. For example, a function is always requested by a

place and becomes activated by an act ivate- trans i t ion. This

does not prevent us from defining additional places and

transitions when they are needed for a specification. We are

going to use an uniform notation to indicate the connection

between the statement of the dynamic properties and the

static properties. Given an operator storem : val, memaddr,

state -> state we will use internal places names that are

preceded by storem__ (e.g. storem_acti vated) and transition

names that are followed by _storea (e.g. acti vate_storem) . We

also reserve standard notations for entry and exit places of

subnets: entry places are always preceded by req_ (e.g.

req_storem for "request a store in memory'*) and exit places

are always preceded by avail_ (e.g. avail_storem for "result

of store in memory is available). We reverse the order of

attaching the name of the function because we want to

emphasize that a subnet represents a transition that is

specified in detail.

1 . P laces

There are three types of places we want to

distinguish in our syntax:
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- internal places* which names and definitions are only
known and accessible within the net they are defined in;
the purpose is to build the internal structure of the net

- entry places, which names and definition are also known
and accessible to those nets which are declared to be
extensions of this net; they provide an interface to
invoke this net

- exit places* which names and definitions are known and
accessible to those nets which are declared to be
extensions of this net; they provide an interface to
obtain the results from the invocation of this net

We have chosen the following syntax to describe

places in our specification:

place_nane( net label ) [«essage_type]

.

A place_name is the distinct name of a place in the described

net. In the case that a place is either an entry or exit

place the rule applies that their names are known to those

nets which are declared to be extensions of this net. If a

net has multiple entry or exit places the parameter netlabel

can be attached in parentheses to describe this fact where

netlabel indicates a location in the system. As we have said

a place is able to accommodate a certain kind of message so

the type of the message the place can hold in brackets is

part of the place description. The following description of

places are legal (compare with the static specification for

"fetchr" and "storem" in Chapter II):

- storem_acti vatedC val . memaddr. state] ; a place of the name
n storem_act i vated" which can hold messages that consist
of data of type val, memaddr and state

- fetchr_avai 1 C ] ; a place of the n f etchm_avai

1

w which can
only hold empty messages
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- req_pushstk(net label ) Cval . stkaddr. state]; places of the
name "req^ushstk" which are distinguished by the
parameter "netlabel", all of them able to hold messages
which contain data of types val, stkaddr and state.

2. Transitions

Our methodology defines transitions as the process of

collecting a message from each connected input place and

sending messages to every connected output place. So we want

to state what kind of messages are received and transmitted.

The following syntax is used to describe transitions:

trans i tion_name: input_messages -> output_messages.

The trans i t ion_name is a distinct name for the transition in

the net and is not known outside the net. Input and output

messages are of the above form where multiple messages are

separated by commas. The following examples are legal

description of transitions:

- perf orm_storem: Cval . memaddr. state) -> (state!;
the transition of the name "perf orm^storem" takes a
message which contains data of type val , memaddr and
state as input and outputs a message containing data of
type state

- f inish_fetchr: C va 1 ) , t 3 -> [ va I ] , [ ]

;

the transition of the name "f inish_f etchr** takes two
messages as input where one consists of data of type val
and the other is an empty message and outputs again two
messages of same type

Note that the description of transitions only

declares them in terms of their capabilities to accept and to

transmit certain kinds of messages and does not show any

internal action of the transition. The reason for this is to

present the transitions as building blocks of the net in form

of a mapping function which is general enough to provide
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information about its interface and nothing more. The

interna] actions are described as the properties of the net.

This does not necessarily means that a transition is

instantaneous, rather the complexity of the internal actions

determine the duration of the transition. But every complex

transition can be modeled as a net with entry and exit places

such that the internal transitions become instantaneous.

3. Properties

Now that we have described the building blocks of a

net we need to connect them in order to describe the intended

timing of a system. The following form is chosen for the

syntax of the properties of the net:

trans i t i on_naae

(

p 1 ace_names C me s sage_da t a ) = >

place_naaesCmessage_dataJ ; This form shows how places and

transitions are connected and how the transfer of message

elements occurs between them. Here are some examples of legal

property descriptions:

- perf ortn_f etchmC f etchm_acti vat«dtn. qJ ) >
f etchm_comp 1 etedt v ] { the transition "perf orm_f etchm"
occurs when there is a message in the place
"f etchm_acti vated" . The message is taken from the place
in such a way that all message elements (memaddr m and
state q) are available to the transition. Then the action
of getting the memory contents is performed and the
resulting value v is transmitted as a message to the
place n f etchm_compl eted n

- perf orm_storer ( storer_acti vatedC v. r . q 3 ) »>
storer_completedCql ] ; the transition "perform_storer M

occurs when there is a message in the place
"storer_acti vated" in such a way that the message is
taken from the place in such a way that its message
elements (value v, regaddr r and state q) are available
to the transition. The action of storing the value v in
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register r is performed and the new state ql is
transmitted as a message to the place "storer_corap 1 eted"

Functionally, the internal actions performed by

transitions follow the rules stated as static properties for

the functions involved.

4. Initial ization

In some kinds of nets we have an internal circuit of

places in order to act as a synchronization mechanism (as

illustrated in Figure 4.4 to provide mutual exclusion). They

have to be initiated somehow i.e. a message has to be placed

in at least one of these places since they are not provided

with messages from outside the net. We going to describe this

initialization by using the symbol "=>" used to indicate the

placement of a message into a place. The following is an

example of an initialization:

«> f etchm_avai 1 C ] ; the place **f etchm_avai 1
w is loaded

with an empty message

The initialization of a place is a one-time action at

the beginning of system start and provides the necessary

conditions to get a process going. It can be viewed as

establishing the initial state of a computer system when it

is turned on.
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V. THE ABSTRACT PROCESSOR TIMING SPECIFICATION

In this chapter we want to present some examples on how

specific problems of timing in computer system can be modeled

using the methodology in a top-down fashion. The examples

resemble a variety of computer system timing problems to test

the use of Petri Nets in specifying the timing properties. In

Appendix B a complete specification of the static and dynamic

properties of a reduced Abstract Processor is presented. We

have chosen to use the Abstract Processor as the object to be

specified in timing considerations because of the following

reasons

:

- to emphasis this work as the logical step following the
work of specifying static properties of systems,

- by specifying a non-existent, abstracted processor we
intentionally leave the issue of the actual
implementation untouched since we stated that by whatever
means the specification is implemented the processor will
have the specified properties,

- to emphasize our intention of specifying what the user of
a processor wants to achieve and not how it is
implemented as compared to a traditional processor design
approach that is dominated by engineering and
implementation issues.

Also we want to show how well our methodology can deal

with the special aspects of timing in computer systems. The

special aspects we are concerned with are mutual exclusion,

interrupt processing and concurrency. Despite the fact that

the Abstract Processor is in its static part specified as a

simple single processor during this work we have realized
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that even there, a lot of potential concurrency can be

detected.

Whenever we refer to actual implementation we do this

with the intention to give on* example of how the

specification could be realized. Once again we emphasize that

the methodology stated in this work is only concerned with

what is available in a system and not with the how it is

implemented. We want to remind the reader that the

methodology developed here is intended to be general. That

is, it can be equally applied to the specification of

computer resources that may be implemented in hardware,

software or firmware. With this in mind we have look at the

timing specification not as a blueprint by which a system can

be build directly but rather as formally stated requirements

a system has to fullfil no matter what approach is chosen for

the implementation .

A. ATOMIC NETS

One feature of the methodology is it forces the specifier

to focus on the essential nature of the system components.

When we consider these essential components as actions in a

system that are not further divisible we can speak of atomic

actions which we want to specify as atomic nets in our

methodology. Such nets will use no other net in their

specification and so can be considered as building blocks of

a system. In general they represent the elementary actions in

a system. The Abstract Processor consists of several such
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elementary actions and to illustrate this idea, we will show

how the actions of store operations and fetch operations can

be described with atomic nets.

B. MODELING OF MEMORY AND REGISTER ACCESS TIMING

The first question we have to ask when we want to specify

the access of memory or registers is what kind of information

do we have to have available to perform an access and what

information we obtain after the access has been made. In

order to perform an access the address of the memory cell or

register has to be available. Depending whether a store or a

fetch has to be performed, we either have to provide a value

for this process or we obtain a value from the process. Also,

to indicate the current contents of the register or memory

cell we have to indicate the process for accessing the state

of the processor. In case of a store access we obtain a new

state as the result of the process since the change of a

memory cell or register also changes the state.

At this stage we have established the components of any

process dealing with the access of memory or registers. We

anticipate that accesses to memory and registers will be made

from various places in the system, so we provide a netlabel

for every entry and exit place. In terms of our specification

methodology can now define the entry and exit places of the

subnet

:

- the fetching of the contents of a memory cell is
requested by providing message which consists of the
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memory address and the state to the following entry-
place: req_fetcha>( net label ) Cmemaddr. state]

|

- We obtain as a result a corresponding message containing
the value from the exit place:
avai l__fetchm( net label ) C val 3 ;

- similarly we state the entry and exit places for fetching
the contents of a register:
req_fetchr (net label ) Cregaddr. state! ; as the entry place
and avai

1
_fetchr (net label ) t val J ; as the exit place

- the storing of a value into a memory cell is requested by
providing a message which consists of the value to be
stored, the memory address and the state to the following
entry place: req__s torem( net label ) C val . nemaddr. state] ;

- We receive as a result a corresponding new state from the
exit place: avai

I
_storem( net I abe 1 ) t s tate ]

;

- similarly we define the entry and exit places for storing
values into registers;
req_storer (net 1 abe 1 ) C val . regaddr. state] ; as the entry
place and avai

1
_storer (net labe 1 ) [state] ; as the exit

place.

To show the versatility of the proposed methodology we

will specify memory and register access differently: we are

going to specify memory access in a way that allows only one

access to one memory cell at a time (an implementation for

this method might be a single memory unit allowing only one

access at a time). On the other hand we might want to able to

access registers in parallel. These requirements determine

the internal structure of resulting specification.

Considering the above requirements on how we have to

specify the system we realize that we have to construct the

specification to deal with memory accesses and accesses to

each register separately.
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As the next step we are going to specify the memory

accesses. Since we know from our requirements that only one

access at a time is allowed to the memory we have to provide

a mutual exclusion mechanism in our specification that makes

sure that the memory is not accessed by more than one request

at a time.

From Figure 5.1 we see that from any system location

indicated by a netlabel a message in an entry place to

request a memory access can only trigger a transition to

activate the process when the process is available. Since

there is only one empty message to indicate the availability

of the net only one request can be honored at a time. The

availability is restored when the access is completed. Also

we see that the internal places w processed_f or" serve as

traffic signs to direct the results to the appropriate exit

places. Drawing the picture of the net can be helpful to the

process of specifying net just as flow charts can be helpful

in programming tasks, but our intention is primarily to state

a formal specification. The following is the dynamic part of

the memory access specification expressed in precise syntax:

entry places
req_f etchm(net labe 1 ) E memaddr. state]

;

req_storem(net labe 1 ) C val . memaddr . state]

;

exit places
avai l_f etchm( net label ) C va 1 ]

;

avai l_s to rem (net label ) E state]

;

internal places
access_avai IE];
f etchm_f or (net label ) E ]

;

f etchm_acti vatedE memaddr. state]

;
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f etchm__completedt val ] ;

storem_f or (net labe 1 ) [ 3 ;

storem_acti vatedC val . memaddr. state]

;

storem_compl eted[ state]

;

initial state
= > access_avai 1 C ] ;

transitions
act_fetchm: [memaddr. state], [] -> C memaddr . state] , [ 3

;

perf orm_f etchm: [memaddr . state] -> (vail;
f inish_fetchm: CvaI3,M -> [val],[]j
act_storem: C val . memaddr. state] , [ ] ->

[val . memaddr. state], C];
perf orm_storem: C val . memaddr . state] -> [state];
f inish_storem: [state], [] -> [state], [];

properties
act_f etchm( req_f etchm( 1 1 ) [m. q] , access_avai 1 [ ] ) =>

f etchm__f or ( 1 1 ) [ ] , f etchm_act i vatedtm. q] ;

perf orm_f etchm ( f etchm_acti vatedtm. q] ) =>
f etchm_compl etedC v]

;

f inish_f etchm(f etch_completed[v] , f etchm_f or ( 1 1 ) [ ] ) =>

avai l__f etchm ( 1 1 ) [ v] , access_avai 1 [ ] ;

act__storem(req_storem( 1 1 ) [ v. m. q] , access_avai 1 [ ] ) =>

storem_f or ( 1 1 ) [ ] , storem_act i vatedC v. m. q]

;

perform_storem( storem_acti vated[ v. m. q] ) =>
storem_compl e ted [ ql ]

;

f inish__storem(storem_compl etedCql ] , storem__f or ( 1 1 > [ ] ) =>

avai l_storem( 11) [ql], access_avai 1 [ ]

;

When we look at the requirements of the register accesses

we see that the above design for memory accesses is not

suitable for register access if we want to allow for

concurrent access to registers. So we have to find a way to

express the properties of register accesses. Looking closely

again at the requirements we realize that each register has

the same access policies as the whole memory we specified

before. This leads us to the fact that every register has to

have its own specification. For the sake of simplicity let us

say that our system has three registers with register

addresses 1,2 and 3. We could now define three different nets
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each for the access of a certain register. There is one

problem though: whenever a register access is requested from

somewhere in the system, the proper net for the register to

be accessed has to be addressed. So we want to have the

decision about which register net is meant centralized in one

place in the system. Therefore we employ some decision
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Figure 5.1: Petri Net Graph for Memory Access
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mechanism to select the right register access net. In this

case the graph drawn out in Figure 5.2 of the net might

confuse more than it helps. We try to specify the register

accessl—auail

req_fetch
(netlabel)
[redaddr.
state]

req_$tore
(netlabel

[ual.

redaddr.
state]

eq_storer
(netlabel)
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f e t c 1 1 r
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uaUCstorer
etlabel)
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Figure 5.2: Petri Net Graph for Register Access

53



access just by direct reasoning. Still, the graph in Figure

5.2 illustrates that, despite the fact that each register can

be accessed independently from the other registers, only

oneaccess to a register is allowed at a time because of the

separate "access_avaiI B places for each register. These

places prohibit any access to a register until it is

avai labl e.

Again, we can anticipate that access to registers will be

requested by several locations in the system. So we can state

the entry and exit places as we have in the memory example.

Next we already found out that there three independent

register access nets and we can use again this structure for

internal places and transitions we used in the memory access

net. But how do we state that the net for register 1 is used

when there is an access request for register 1 and only this

net? The indication that a certain register is going to be

accessed is the register address contained in the request

message. Now instead of a name of the register address we

state the actual value of it when we specify the properties:

entry places
req_f etchr (net labe 1 ) C regaddr . state]

;

req_storer (net labe 1 ) [ va 1 . regaddr. state ]

;

exit places
avai l_f etchr (net labe 1 )[ val ]

;

avai l_storer(net label )[ state]

;

internal places
accessl_avai 1 [ ]

;

fetchrl_activatedC regaddr. state]

;

f etchr l_compl etedCval ]

;

storerl_activatedCval . regaddr . state]

;

s torerl_comp letedCstate] ;
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access2_avai 1 C ]

;

f etchr2_acti vated C regaddr. state]

;

f etchr2_completed[ val ]

;

storer2_act

i

vatedC va 1 . regaddr. state]

;

storer2_compl etedC state]

;

access3_avai 1 C ]

;

f etchr3_acti va ted C regaddr . state]

;

f etchr3__completed[ val ] ;

storer3__acti vatedC val . regaddr. state] ;

s torer3_comple ted [state]

;

f etchr_f or (net label ) C ]

;

storer__f or (net label ) C ] ;

initial state
=> accessl_avai 1 C ]

;

=> access2_avai 1 C ]

;

=> access3_avai 1 C ]

;

transi tions
act_fetchrl: [ regaddr . state] , C ] -> [regaddr . state] , C ]

;

perf orm_f etchr 1 : C regaddr . state] -> [val];
f inish_fetchrl: [val],[] -> Cval3,C3;
act_storerl: [va 1 . regaddr. state] , [ ] ->

[ val . regaddr. state], CD;
perf orra_storerl : [val . regaddr . state] -> [state];
f inish_storerl : [state], [] -> Estate], M;

act_fetchr2: [regaddr . state] ,[ ] -> [ regaddr . state] ,[]

;

perform_f etchr2: [ regaddr . state] -> [val];
f inish_fetchr2: [val],[] -> [val],[];
act_storer2: [ val . regaddr . state] ,[ ] ->

[ val . regaddr. state] , [ ]

;

perf orm_storer2: [va 1 . regaddr . state ] -> [state];
f inish__storer2: [state], [] -> [state], M;

act_fetchr3: [ regaddr. state] ,[ ] -> [ regaddr . state] ,[] ;

perf orm_f etchr3: [ regaddr . state ] -> [val];
f inish_fetchr3: [val],[] -> [val],[];
act_storer3: [ va 1 . regaddr . state] ,[ ] ->
[val . regaddr. state] ,[]

;

perf orm_storer3: [ val . regaddr . state ] -> [state];
f inish_storer3: [state], [] -> [state], [];

properties
act_f etchrl (req_f etchr ( 1 1 )[ 1 . q] , access l_avai 1 [] ) =>

f etchr_f or ( 1 1) [ ] , f etchr l_aotiva ted [ 1. q]

;

perf orro_f etchr 1 ( f etchr l_activated[ 1 . q] ) =>
f etchr l_compl

e

tedt v ]

;

f inish_fetchrl(fetchl_completed[v], f etchr_f or ( 1 1 ) [ ] ) =>
avai l_f etchr ( 1 1 ) [ v] , accessl_avai 1 [ ]

;
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act_storerl < req_storer ( 1 1 ) C v. 1
. q] , access l_avai 1 C 3 ) =>

storer_for ( 1 1 ) C 3 , storerl_acti vatedC v . 1
,
q 3

;

per f orm_s tore rl ( storerl_acti vatedC v. 1. q] ) =>
storerl_compl etedCql 3

;

f inish_storer 1 ( storerl_completedCql 3, storer_for(ll)C3)
=> avai l_storer < 1 1

)

Cql 3 , access l_avai 1 [ 3

;

act_f etchr2(req_f etchr ( 1 1 ) C2. q3 , access2_avai 1 C 3 ) =>

fetchr_f or ( 1 1) C 3 , f etchr2_acti vatedC2. q3

;

perf orm_f etchr2( f etchr2_act i vatedC 2. q3 ) =>

f etchr2_compl etedC v3

;

f inish_f etchr2(f etch2_compl etedC v3 , f etchr_f or ( 1 1 ) C 3 ) =>

avai
1
_f etchr

(

11) [ v 3 , access2_avai 1 [ 3

;

act_storer2(req_storer < 1 1 ) C v. 2. q3 , access2_avai 1 C 3 ) =>
storer_for(ll)C3, storer2_acti vatedC v. 2. ql

;

perf orm_s tor er2( storer2_acti vatedC v. 2. q3 ) s >

storer2_compl eted [ ql 3

;

f inish_storer2( storer2_corapl eted Cql 3, storer_for(ll)Cl)
= > avai l_storer ( 1 1

)

Cql 3 , access2_avai 1 C ]

;

act_fetchr3( req_f etchr ( 1 1 ) C3. q3 , access3_avai 1 C 3 ) =>
f etchr _f or ( 1 1 ) C 3 , f etchr3_acti vatedC 3. q3

;

perf orm__f etchr3( f etchr3_acti vatedC 3. q3 ) =>
f etchr3_compl etedC v 3

;

f inish_f etchr3(fetch3_completedCv3 , f etchr_f or ( 1 1 ) C 3 ) =>
avai l_f etchr ( 1 1 ) C v3 , access3_avai 1 C 3

;

act_storer3( req_storer ( 1 1 ) C v. 3. q3 , access3_avai 1 C 3 ) =>
storer_for( 11)C3, storer3_acti vatedC v. 3. q3

;

perf orm_s tor er3( s torer3_acti vatedC v. 3. q3 ) «>
storer3_compl eted [ ql 3

;

f inish_storer3(storer3_compl eted Cql 3, storer_for(ll)C3)
= > avai l_storer ( 1 1

)

Cql 3 , access3_avai 1 C 3

;

We see that even specifications of simple resources

become large and complex and the drawing the net is even more

complex. Here we realize the real benefit of the introduction

of subnets: once these subnets are specified we can use their

properties everywhere in our system simply by stating the

entry and exit places of the subnets in the net we want to

specify. Those nets using subnets are actually extensions of

the subnets. The next section will illustrate these facts in

detai 1

.
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C. MODELING OF INSTRUCTION FETCH AND EXECUTION TIMING

From the static specification of the Abstract Processor

we see that there are two operands "prog" and "exq" which are

responsible for the process of executing programs. The

process is kept going by corecursive calls between those two

operators.

Even though those two processes are very closely

connected by corecursive calls we want to consider them

separately and start with specifying the "exq" process.

The **exq H process needs information about the instruction

to be executed, the current memory address, and the state of

the processor. After the process has finished it returns the

new state. This determines the contents of the messages the

entry and exit places of this net have to accommodate. Still

we have to decide what kind of execution unit we want to

specify. We want to specify that only one execution unit can

be performed at a time. This means that we have to provide

mutual exclusion for the use of this net. We can do this the

same way as we provided for memory accesses. We can

accomplish that by providing a distinct entry place and exit

place indicated by netlabels. Now we are in a position to

specify the entry and exit places:

- req_exq(net label ) t instr. memaddr. state] j as the entry
place

- aval l_exq(net label

)

[memaddr. state] j as the exit place

At this point we have to look closely at the actions an

execution on an instruction has to accomplish: retrieval of
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information from the instruction, about register and memory

addresses of operands, and about the operation to be

performed, accesses to the operands, application of the

operator, and calculation of the address of the next

instruction to execute. We see now that the previous

specifications for memory and register accesses will come in

handy when have to specify these accesses in the

specification. Also we assume for this specification that

there are nets for the retrieval of operands and operators

from the instruction, the application of operands and

calculation of the next memory address.

The next issue we have to address is the fact that

different instructions have to be executed differently. Here

a decision mechanism similar to the one we introduced to

access a specific register can help us to make the

specification structured and understandable. The mechanism we

introduce here has to recognize from the instruction part of

the message which execution is requested and has to direct

the path within the specification to the appropriate part of

the specification. In the formal specification we indicate

this explicitly by the contents of the instruction part of

the request message.

In the following we show some representative examples of

the execution specifications of different instructions. Their

graphs are depicted in Figures 5.4 and 5.5 and illustrate
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clearly the simplification obtained by the use of predefined

subnets.

entry places
req_exq( net label ) C instr . memaddr. state]

;

exit places
avai l_exq(net labe 1 ) [memaddr. state]

;

internal places
exq_avai 1 C ] ;

exq_f or (net label ) C ] ;

exq_monad_activated Estate 3

;

exq__monad_f etchC state] j

exq_monad_apply [ state]

;

exq_monad__storeC ] ;

exq_mov_r_r_act i vatedC state]

;

exq_mov_r_r_perf ormCstate]

;

exq_mov_r_r_storeC ] ;

initial state
s > exq_avai 1 C ]

;

transitions
acti vate_exq_monad : C instr . memaddr . state] , C ] ->

Cstate] , Cinstr 3 , [instr 3

,

[instr], [memaddr]

;

start_exq_raonad: [ s tate

3

, [ regaddr 3 , ->
[state] , [ regaddr. state]

;

apply_exq_monad : [ state 3 , [operator 1,1 va 1 ] ->

[state] , [operator. va 1 3

;

store_exq_monad : [

s

tate 3 , [ va 1 3 , [ regaddr 3 ->
[ 3 , [ va 1 . regaddr. state]

;

f inish_exq__monad : [], [state] , [memaddr ] ->
[memaddr. state]

;

acti vate_exq_mov_r_r : [ instr . memaddr . state 3 , L 3 ->

[state], [instr], [instr], [memaddr 3

;

start_exq_mov_r_r : [start ],[ regaddr ] ->

[state] , [ regaddr. state]

;

store_exq_mov_r_r : [state] ,[ regaddr ],[ val ] ->

[ ] , [ val . regaddr. state]

;

f inish_exq_mov_r__r : [], [state] , [memaddr ] ->

[memaddr. state]

;

properties
acti vate_exq_monad (exq_avai 1 [ ]

,

req_exq( 1 ) [monad ( o. rl.r2).m.q]> =>
exq_f or (!)[], exq_monad_act i vated[ q]

,

req_operator (11) [monad (o. rl . r2) 3

,
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req_operandl (12) C monad (o. rl. r2) ]

,

req_pperand2< 13) C monad (o. rl.r2)l,
req_nextmemaddr( 14) Cm] ;

start_exq_monad (exqjnonad_acti vatedCq] ,

avai l_operandl ( 1 1

)

Crl 3 ) -> exq_monad_f etchCq]

,

req_f etchr ( I 5 ) C r 1
.
q]

;

apply_exq_monad(exq_monad_f etchCq] , avai l_f etchr ( 1 5 ) C v ]

,

avai l_operator ( 1 1 ) Co] ) => exq_monad_applyCq3 ,

req_apply_mop( 16) Co. v]

;

store_exq_monad (exq_monad_applyCq3

,

avai l_apply_mop( 16) C vl 3 , avai l__operand2( 13) C r23 ) =>
exq_monad_8tore[

3

, req_storer <17)Cvl.r2.q3;
f inish_exq_monad (exq_monad_storeC 3 , avai l_storer( 17) Cql 3

,

avai l__nextmemaddr ( 14) Cml 3 ) > avai 1 _exq( 1 ) Cml . ql 3 ;

act i vate_exq_mov_r__r (exq_avai 1 C 3 ,

req_exq( 1 ) Cmov_r_r (rl t r2).m.q3) =>
exq_mov_r_r_acti vatedCq]

,

req_operandl (11) Cmov__r__r ( rl , r2) ]

,

req_operand2( 12) Cmov_r_r ( rl, r2) 3 ,

req_nextmemaddr ( 13) Cm 3

;

start_exq__mov_r_r (exq_mov__r__r_act i vatedCq 3 ,

avai l_operandl ( 1 1

)

Crl 3 ) =>
exq_mov__r_r__perf ormCq] , req_f etchr ( 14)Crl.q3;

store_exq_mov_r_r ( exq_mov_r__r_perf ormC q 3 ,

avai l_f etchr( 14) C v3 , avai
1
_operand2( 12) C r23 ) =>

exq_mov_r_r_storeC 3 , req_storer C v. r2. q3

;

f inish_exq_raov_r_r (exq_mov_r_r_storeC 3 , avai l_storer Cql 3

,

avai l_nextmemaddr ( 13) Cml 3 ) =>
avai l_exq(l)Cml.ql3j

The above two examples show the specification of the

execution of a monadic instruction and of a move instruction.

We have used the previously specified register access

(
n fetchr M and "storer") to fetch the contents of a register

and to store a value into a register. The way we used them

was that we stated their entry and exit places at the

appropriate locations in the description of the properties of

our execution specification. In the same way we invoked the

specifications of w nextraemaddr M
, "apply_mop ,t

, "operandi",

"operand2" and "operator" which for this example we assumed

to be defined .
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We want to emphasize at this point that the stated

properties of the given examples are not the only way the

execution could be specified: we are following the philosophy

that as soon as the information is available, the possible

requests are made based on the information. In a real

specification other considerations may have priority, but our

intention is to show how this can be accomplished using the

methodology.

The next part of the specification is to state the "prog"

part and to connect it with "exq" in a way that illustrates

the corecursi veness of their interconnection. Since we have

already modeled the "exq n part as a process taking an

instruction, a memory address and the state, and provides a

new memory address and a new state, we want this as a subnet

in our "prog" specification. When we look again at the static

specification of "prog" of the Abstract Processor we realize

that this process needs a memory address and the state to get

started, i.e. the same information as "exq" provides as

output. This fact leads to the idea of a loop in requesting

"prog": when "prog" has performed its initial tasks and has

invoked "exq" it is in the situation of requesting itself

again as soon as the result of "exq" is obtained. This idea

will work nicely once the process is started, but how do we

get this process running? Here we can claim that the initial

request has to come from the outside world (imagine a

possible implementation as an on-switch at the machine which
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Figure 5.3: Partial Petri Net Graph of n exq_monad-rt
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Figure 5.4: Partial Petri Net Graph of " e x q_mov_r_r"
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resets the state and sets the program counter to a predefined

initial value). Ue want to specify this process as a single

control unit and that this is the major process in the

system. The following is a possible specification of "prog"

(see also Figure 5.5):

entry places
req_progCmemaddr . state]

;

internal places
prog_avai 1 C ]

;

prog_f etch Cmemaddr. state]

;

prog_instr Cmemaddr . state]

;

prog_perf ormC

]

initial state
=> prog_avai 1 [ ]

;

transi t ions
acti vate_prog: C ], Cmemaddr . state] ->

Cmemaddr. state], Cmemaddr . state]

;

get_instr_prog : Cmemaddr . state] , C va 1 ] ->

Cmemaddr . state ] , C va 1 ]

;

perf orm_prog : Cmemaddr . state] , C instr ] ->

C ] , C instr. memaddr . state]

;

f inish_jprog : C ], Cmemaddr . state] ->

C ] , Cmemaddr. state]

;

properties
acti vate_prog (prog_avai 1 C ] , req_progCm. q] ) =>

prog_f etchCm. q] , req_f etchra( 1 1

)

Cm. q]

;

get_instr_prog (prog_activatedCm.q] f avail_fetchro( 1 1 ) C v]

)

=> prog_instr Cm. q] , req_atomof instr ( 12) Cv ]

;

perf ormjprog (prog_instrCm.q],
avai

1
_atomof instr ( 1 2) C i ] ) =>

prog_perf ormC ] , req_exq( 13) C i . m. q]

;

f ini sh_prog (prog_perf ormC ] , avai l_exqCml . ql ] ) =>
prog_avai 1 C ] , req_progCml

.
ql ]

;

The declaration of n req_prog" as an entry place models

our previous stated connection to the outside world. Note

that this specification in the form presented could not be

used as a subnet since no exit place has been declared. The

64



following Figure 5.5 shows how this specification is drawn as

a net.

D. MODELING OF INTERRUPTS

The above specifications of "exq" and "prog" and their

interconnection in their current form does not provide for

any recognition and processing of interrupts. This chapter is

to show one way how interrupts oould be handled using our

specification methodology.

As always the first step is to state the requirements for

the process of interrupt handling. We want to look at

interrupts as a signal which comes either from outside or

inside the system on which the current running program is

interrupted and a handler program at a predefined location is

started. After the completion of the handler the execution of

the interrupted program is resumed, therefore we need to save

the memory address of the interrupted program. Also we want

the invocation of the interrupt handler only to happen at a

defined state, i.e. between the completion of the execution

of one instruction and the fetching of the next instruction.

Another requirement is that the interrupt handler acts on a

single interrupt only one time, so that a following interrupt

signal can be interpreted as another interrupt. In the

following specification we assume that there is a dedicated

stack in the system on which the current memory address of

65



Cn
o
u

6
o

M

5
o
M
a

M —
o

M

8.

O I
0»
o
n
a.

I
1=.

0>
o
u

•p

0»

6
or-

a

Po
u
0, o

l4

en
o
u

0»
o
M
a.

Figure 5.5: Graph of "prog" without Interrupt Handling

66



the running program can be saved. Also, for simplicity

reasons we allow only one type of interrupt, i.e. the handler

has to determine the source of the interrupt by software. The

following is one way to specify the above requirements (also

see Figure 5.6)

:

entry places
req_prog C memaddr . state]

;

internal places
prog_avai I C 3 ;

prog_fetchCmemaddr . state]

;

prog_instr Cmemaddr . state]

;

prog_perf ormC

]

prog__check Cmemaddr. state]

;

prog_saveC ]

;

initial state
= > prog_avai 1 C ] ;

transitions
acti vate_prog: C ] , Cmemaddr . state] ->

Cmemaddr. state] , Cmemaddr. state]

;

get_instr_prog: Cmemaddr . state]

,

Cval ] ->

Cmemaddr. state]

,

Cval ]

;

perform_prog: C memaddr

.

state 3 , C ins tr ] ->

C ] , C instr .memaddr . state]

;

finish_prog: C ], Cmemaddr . state] ->

Cmemaddr. state], M;

normal_prog: Cmemaddr . state] , C ] ->

C ] , Cmemaddr . state]

;

itrpt_prog : Cmemaddr , state] , C ] ->

C ] , C instr . memaddr. state]

;

f in_int_prog: C ], Cmemaddr . state] ->

C ] , Cmemaddr. state]

;

properties
acti vate_prog (prog_avai 1 C ] , req__progCra. q] ) =>

prog_f etchCm. q] , req_f etchm( 1 1 ) Cmemaddr. state]

;

get_instr_prog(prog_acti vatedCm. q] , avai 1 _f etchm( 1 1 ) C v]

)

s > prog_instr Cm. q] , req_atomof instr ( 12) Cv] ;

perf orm_prog(prog_instr Cm. q]

,

avai l_atomof instr ( 12) C i ] ) =>
prog_jperf ormC ] , req_exq( 13) C i . m. q] ;

f inish_prog(prog_perf ormC ] , avai
1
_exqCml

. ql ] ) =>

prog_checkCml . ql ] , req_checkC];
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norma l_prog ( prog_check C mi . ql 3 , avai 1 _normal C 3 ) =>
prog_avai 1 C ] , req_prog Crai

.
ql

]

i trpt_prog(prog_checktml . ql ] , avai 1 _intrpt C 3 ) *>
prog_saveC 3 , req_exqt jsr( int_addr , sys_stk) . ml. ql 3

;

f in_int_prog(prog_saveC 3 , avai l_exqCm2. q23 ) *>
prog_avai 1 C 3 , req_progCm2. q2 3

;

The above interrupt-sensiti ve specification of w prog w is

very similar to the former specification of "prog" which did

not provide for interrupt handling (compare Figure 5.5 and

Figure 5.6). The major difference is that an "external agent"

is invoked as soon as the execution of the instruction is

completed. This Agent sends a message to one of its output

places to show that either an interrupt is present or not.

This construct ensures two properties: first, the External

Agent is responsible for clearing the interrupt signal after

it has recognized it so that an interrupt is only honored

once; second, the presence of an interrupt has priority over

the normal way of execution of a program. Once an interrupt

has been detected by the Agent and its appropriate output

place has been provided with a message the "prog" process can

continue and it will place the current memory address on a

specified system stack by executing a "push" instruction and

will start a new cycle at the system interrupt handler

address. Since the interrupt handler is by itself a loaded

user program is responsible for saving the necessary register

contents and for restoring those registers and the saved

memory address from the system stack when it finishes.

68



Figure 5.6: Graph of "prog" with Interrupt Handling
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E. EXECUTION OF PROGRAMS

The question to be asked now is: how will the proposed

specification methodology show the timing of the execution of

programs? As an example, let us consider the following simple

program:

1000: 1

1001

:

2
2000: M0V_M__R 1000, rl
2001: M0V_M_R 1001, r2
2002: ADD rl,r2,r3
2003: M0V_R_M r3, 1002
2004: STOP

The above program retrieves the values "1" and "2" from

memory addresses 1000 and 1002 into registers "rl" and "r2 w
,

adds them together, with the result in "r3 n
, and than moves

this result into memory address 1002. At the top level of the

specification there is the "prog" net. With the start of this

program it receives the "req_progC2000. ql ]

"

4 message from the

outside. It retrieves the instruction contained in memory

address 2000 and invokes the "exq" net with the message

"req_exqC instr . 2000. ql ] ". Inside the "exq" net the "external

agent" determines the appropriate net to process the

instruction, here the "mov_m_r" net, and enters this net.

After the completion of "exq", "prog" finishes with a message

"req_progt2001. q23" to itself where the "2001" and q2 were

obtained from the execution of "exq". At this point "prog"

starts all over again and finishes with the message

"req_progt2002. q33". This repeats until the "stop"

4 Netlabels are omitted for simplicity
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instruction is executed and results in termination of the

process. Inside the invocations of the "exq" net there are

several uses of the nets to access memory and registers as

wel 1 as to process "nextmemaddr".

The following shows the major messages with their

included data that are exchanged during the course of the

execution of the program (not necessarily in the order as

they might occur):

req_progC2000, ql

]

req_f etchmC2000, ql

]

avail _fetchmC nM0V_M_R 1000, rl n
3

req_atomof instr C "M0V_M_R 1000, rl w
3

avai l_atomof instr Croov__m_r ( 1000, rl ) 3

req_exqCmov_m_r ( 1000, rl) .2000. ql3
req__operandl Cmov_m_r ( 1000, r 1 ) 3

avai l__operand2C 1000 3

req_pperand2Cmov_m_r ( 1000, rl )

3

avai l_operand2Cr 1

3

req_f etchmC 1000. ql

3

avai l_f etchmC 1

3

req_storer C 1 . rl . ql

3

avai l_storerCq23
req_nextmemaddr C20003
avai l_nextmemaddr C2001

3

avai l_exqC2001. q2 3

req_progC2001, q2 3

req_f etchmC 2001 , q23
avai l_f etchmC "MOV_M_R 1001, r2 w

3

req_atomof instr

C

wM0V_M_R 1001, r2 n
3

avai l_atomof instr C mov_m_r (1001, r2)

3

req_exqCmov_m_r (1001, r2) . 2001. q23
req_operandl Cmov_m_r ( 1001 , r2)

3

avai l__operand2C 1001

3

req_pperand2Cmov_m_r ( 1001 , r2)

3

avai l_operand2C r2 3

req_f etchmC 1001. q23
avai

1
_f etchmC 2 3

req_storer C2. r2. q2 3

avai l_storerCq3 3

req_nex tmemaddr C2001

3

avai l_nextmemaddrC20023
avai l_exqC2002. q33

req_progC2002. q3 3

req_f etchmC2002, q33
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avai l_fetchn»[ "ADD rl,r2,r3"3
req__atomof instr["ADD rl,r2,r3**3
avai

1
_a torn of instrCdyadr (add, rl, r2, r3)

3

req_exq[ dyad (add, rl, r2, r3) . 2002. q3)
req_operandl C dyad (add, rl,r2,r3)3
avai

1
^operandi [ r 1

]

req_operand2[ dyad (add, rl , r2, r3)

3

avai
1
_operandl C r2 3

req_operand3C dyad (add, rl , r2, r3)

3

avai l_pperand3Crl

3

req_operator [ dyad (add, rl , r2, r3)

3

avai l_operator Cadd3
req_f etchr Crl. q3 3

avai l__f etchr£13
req_f etchrC r2. q33
avai l_f etchrE23
req_applydopCadd. 1.23
avai l_apply_dopC3 3

req_storerC3. r3. q3 3

avai l_storer[q43
req_nextmemaddr [2002 3

avai l_nextmemaddr [2003 3

avai l_exqC2003. q43
req_prog[2003, q4 3

req_f etchmC2003, q43
avail_fetchm["M0V_R_M r3,1003 w

]

req_atomof instrC wM0V_r_m r3, 1003"

3

avai l_atoraof instr Cmov_r_m( r3, 1003)

3

req_exqCmov_r_m(r3, 1003) .2003. q43
req_operandl Cmov_r_m( r3, 1003)

3

avai l_operand2C r33
req_operand2Craov_r_m( r3, 1003)

3

avai l_operand2C 10033
req_f etchr C r3. q4 3

avai I_f etchmC33
req_storerC3. 1003. q4 3

avai l_storerCq53
req_nextmemaddr [20033
avai

1
_nex tmemaddr [2004

]

avai l_exq[2004.q5 3

req_prog[2004. q5

3

req_f etchmC2004, q53
avai l_fetchmC ,t ST0P ,t

3

req_atomof instr ["STOP M
3

avai l_atomof instr[stop3
req_exq[stop. 2003. q4 3

avai l_exq[ . q43
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With the appropriate tools to track certain messages and

their contents one is able to take snapshots during the

course of the execution to determine the timing within the

execution.
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VI . SUMMARY AND CONCLUSION

The intention of this work has been to present a

methodology to specify timing in computer systems with strong

emphasis on the issues of portability and reusability. The

work has been also influenced by the goal to pursue a

practical viewpoint for dealing with computer resources. In

describing the essential properties of timing between

abstracted computer resources, it has been possible to state

the required timing in a system in an exact and rigorous way.

As a first result of this work it has been pointed out that

the attempt to specify the time behavior of a computer system

without having a formal specification of the static behavior

of the system will lead to inconsistencies and errors. We

view the timing specification as an extension of the static

specification (the system functionally) to a complete

specification (the system functionally and dynamically).

A. ADVANTAGES

This methodology is based on Petri Nets and their

underlying theory. Since Petri Nets are an accepted and

commonly used tool in a variety of applications one familiar

with Petri Nets will have almost no problems understanding

the methodology. During the course of this research a number

of distinct advantages have been recognized:
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1. Ability to State Asynchronuous Timing

Asynchronuous timing in a system is the most common

timing method in any computer system, be it the reaction on

the completion of some task or dealing with an external

interrupt. The examples presented during this work show very

clearly that every event displays asynchronuous timing since

it reacts on certain holding conditions whenever they might

be true. By stating events and their connected places we can

describe the asynchronuous timing easily.

2. Ability to Show Dataflow in a System

The combined consideration of timing and dataflow in

a system has been accomplished by changing the original token

meaning of Petri Nets into a data carrying message. This

enables the methodology to exhibit currently available data

at any stage of the process.

3. Ability to Model Concurrency

The inherent ability of Petri Nets to model

concurrency by activating several places as the result of a

transition is available in this work and provides a useful

construct.

4. Ability to Model Mutual Exclusion

As it was shown in different examples it was possible

to model mutual exclusion simply by incorporating a structure

of control places into nets which allow only one access to

the nets or to of parts of the nets at a time.
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B. DISADVANTAGES

The disadvantages of this methodology can be based on the

properties of Petri Nets and the intended accuracy of the

speci f i cat ions.

1

.

Compl ex i ty

The given examples, though very simple and small in

their nature, exhibit a large complexity in stating the

specification. This complexity is largely due to the details

involved in the timing of systems and also to the attempt to

handle data in the timing. The syntax presented is only one

way of representing formal timing specification and it is

very tedious for the user to deal with it, therefore a future

implementation should provide an user interface which is easy

to interact with, preferably in a graphical environment.

2. Difficulty to Model Decisions

Petri Nets by their nature are non-deterministic and

so the specification methodology presented suffers from this

disadvantage when we are forced to model decisions. The idea

introduced of "external agents'* helps to deal with this

probl em.

C. FURTHER RESEARCH TOPICS

This work has been a basic step in showing the

possibility of specifying the time behavior of a computer

jsystem. As further research topics we suggest the following

areas

:
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Automation of this methodology to hide the complexity of
the specification from the user by providing a graphical
interface

Provision of automated features which allow the user to
make inquiries about the specified system, e.g. existence
of deadlocks, history of invocations of certain subnets,
trace of certain messages, etc.

Development of tools which are able to analyze and
compare the performances of different specifications

Research in the area of timed Petri Nets where actions
can be specified to be performed within a specified time

Application of this methodology in the area of the newly
developed computer systems using transputers and their
programming language OCCAM
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APPENDIX A; EDITED STATIC SPECIFICATION OF

THE ABSTRACT PROCESSOR

This edited specification of an Abstract Processor is

based on the work of Yurchak (1984). It uses an improved

syntax of Davis and Yurchak (1985) which is considered more

meaningful. Also, some minor changes to correct errors have

been made. The specification consists of two parts: the

replacement statement which provide a shortcut for stating

frequently used properties, and the specification of the

various resources.

repl ace (X, S

)

nequivrel (X, S )
;

"

with
wX(i, i) = true( )

;

X(i, j) = X( j, i )

;

impl ies(and(X( i , j) ,X( j, k) ) ,X( i, k) ) = trueOj"

rep 1 ace ( X, S)
"ref lexive(x,S) ;

w

wi th
"X(i, i) = true( )

;"

rep 1 ace (X, S)
"comrautati ve ( X, S )

;

"

with
"X(i, j) = X( j, i) ;"

replace(X, S)

"transi tive(X, S ) ;
"

wi th
"impl ies(and(X(i, j) ,X( j, k) ) ,X(i,k) ) = trueO;"

replace(X, S)
Massociative(X,S)

;

w

wi th
"X(i,X( j,k) ) = X(X(i,j),k); M

replace(X, S)

"irref 1 ex i ve ( X, S )
;

"
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wi th
"X(i, i) = falseO ;

replace(X, S)

"symmetrictX, S) ;

"

with
n impl ies(X(i, j) ,X( j, i) ) = true(); n

rep 1 ace ( X, S)
nantisymmetric(X,S) ;

"

wi th
"impl ies(and(X< i,j),X(j,i)),(i==j))

replace(S.T)
"idopers (S, T)

;

M

with
"startT: -> S

nextT: S -> S
prevT: S -> S

eqT: S, S -> bool ;

"

replace(S,T)
"idaxiomsCS, T)

;

M

wi th
M prevS( startT( ) ) is undefined;
prevS(nextS ( i ) ) = i;

if i != startT()
then

nex tS (prevS ( i ) ) = i;

endi f

;

equivrel ( eqS, S ) ;
w

replace ( S

)

"typingopers ( S ) ;
M

wi th
"typeS: -> type;
atomofS: va 1 -> S;

valof S: S -> val

;

n

rep lace ( S)
M typingaxioms(S) ;

M

wi th
Mwhattype(valofS(t) ) = typeS();
atomofS( valof S( t) ) = t;

if whattype(v) = typeS()
then

valof S(atomof S( v) ) = v;

e 1 se
atomofS(v) is undefined;

endi f ;
M

replace(S,T)

= true( )
;

"
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with
relop(S,T)

;

n

Happlyrop(ST( ) , vl, v2) =

valof bool (TS(atomof S(vl ) , atomof S( v2) ) ) ;
w

replace (S)
n isops (S) ;

"

with
n if whattype(v) = typeSC)
then

app
1
ybop ( i sS (), v ) = va I of boo 1 ( true ( ) )

;

e 1 se
app 1 ybop ( i sS (), v ) = va 1 of boo 1 ( f a 1 se ( ) )

;

endi f

;

n

replaceCS, T)
n stateaxioms(S,T) ;

M

wi th
w f etchS (a, ini tam ( ) ) is undefined;
storeS(fetchS(a,q) f a,q) = q

;"

impl ies ( eqT(al , a2) , fetchS (al , storeS ( v, a2, q ) ) = v)
= true ( ) ;

implies(not(eqT(al,a2),fetchS(al,storeS(v,a2,q))
f etchS(al, q) ) = trueOj"

Resource boolean is

Extension of

Operand Types
boo 1 ;

Operators
true : -> boo 1 ;

false: -> boo 1 ;

not: bool -> bool;
and: bool, bool -> bool;

Derived Operators
or: bool, bool -> bool;
implies: bool, bool -> bool;

Derived Definition
or(bl,b2) = not(and(not(bl) ,not(b2) ) )

;

impl ies(bl,b2) = not (and ( bl , not ( b2) ) )

;

Properties
false = not(trueO);
not (not (b ) ) = b

;

and ( true ( ) , b ) = b

;

and ( f a 1 se ( ) , b ) = falseO;
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commutative (and, boo 1 )

;

end boolean;

Resource natural is

Extension of
boo 1 ean

Operand Types
nat ;

Operators
zeronat: -> nat;
prednat: nat -> nat;
succnat: nat -> nat;
sumnat: nat, nat -> nat;
mltnat: nat, nat -> nat;
divnat: nat, nat -> nat;
eqnat : nat, nat -> bool;
gtnat: nat, nat -> bool;

Derived Operators
ltnat: nat, nat -> bool
genat: nat, nat -> bool
lenat: nat, nat -> bool
nenat: nat, nat -> bool

Derived Definition
1 tnat (n, m

)

genat (n, m)

1 enat (n, m)
nenat (n, m)

not (or ( gtnat (n, m) , eqnat (n, m) ) )

;

not ( 1 tnat (n, m)

;

not ( gtnat ( n, m)

;

not ( eqnat (n, m)

;

Properties
prednat ( zeronat () ) is
prednat (succnat (n) )

=

succnat ( prednat (n) ) =

sumnat (n, zeronat () ) =

undef ined

;

n;
n;
n;

sumnat (n, succnat ( m) ) = succnat ( sumnat (n, m) )

;

subnat (n, zeronat () ) = n;
if gtnat(n,m) = trueO
then

subnat (n, succnat (m)

)

e 1 se
subnat (n, succnat(m)

)

end i f

;

ml tnat ( x , zeronat () ) = zeronatO ;

m 1 tnat ( x , succnat ( zeronat ()) ) = x;
mltnat(x,y) = sumnat ( x , m 1 tnat ( x ,

prednat (y )))

;

if eqnat ( y, zeronat () ) = trueO

= prednat ( subnat (n, m ))

;

is undefined;
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then
divnat(x,y) is undefined;

else if ltnat(x,y) = trueO
then

divnat(x,y) = zeronat;
e 1 se

divnat(x,y) = sumnat ( succnat ( zeronat () ,

divnat(subnat(x,y) ,y) )

;

end i f

;

endi f

;

eqnat(n,m) = eqnat ( succnat (n) , succnat (m) )

;

gtnat ( succnat (n) , n) = trueO;
equivrel (eqnat, nat)

;

irreflexive(gtnat,nat) ;

irref lexive( 1 tnat, nat )

;

transitive(gtnat,nat) ;

transitiveCl tnat, nat)

;

transitive(genat,nat) ;

transitive( lenat,nat)

;

antisymmetric(genat,nat) ;

ant i symmetr ic ( 1 enat , nat ) ;

symmetr ic (nenat , nat )

;

commutat i ve ( sumnat , nat

)

commutative (ml tnat, nat)
associative (sumnat, nat

)

associative(ml tnat, nat)

end natura 1

;

Resource integer is

Extension of
boo 1 ean,
natura

1

Operand Types
int

;

Operators
zeroint : -> int

;

ntoi : nat -> int

;

i ton : int -> nat

;

predint: int -> int;
succint: int -> int;
sumint: int, int -> int
mltint: int, int -> int
divint: int, int -> int
modint: int, int -> int
eqint: int, int -> bool
gtint: int, int -> bool
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Derived Operators
ltint: int, int -> bool;
geint: int, int -> bool;
leint: int, int -> bool;
neint: int, int -> bool;

Derived Definition
1 t int (n, m) =

geint (n, m) =

1 eint (n, m) =

neint (n, m) =

Properties
predint(succint(
succint(predint(
ntoi (zeronat( )

)

ntoi (succnat(n)

)

sumint ( succi
i ton( zeroint ( )

)

if 1 tint < x , zeroi
then

i ton ( x ) is u

e 1 se
i ton( succint

succnat

(

endi f ;

if 1 tint ( x , zeroi
then

abs int ( x ) =

e 1 se
abs int ( x ) =

endi f

;

sumint (n, zeroint
sumint (n, succint
sub int (n, zeroint
subint(n, succint

subint (n, sue
ml tint (x, zeroint
ml tint(x, succint
m 1 t int ( x , y ) = su
if eqint (y , zero i

then
di v int ( x ,

y

)

else if 1 t int (ab
then

di v int ( x , y

)

else if or

(

and ( gt in
gtin

and ( 1 tin
1 tin

) = true

not(or(gtint(n,m) ,eqint(n,m) ) )

;

not ( 1 t int (n, m)

;

not

(

gtint (n, m)

;

not (eqint (n, m)

;

n) ) = n;
n) ) = n;
= zeroint ( )

;

nt(zeroint( ) ) ,ntoi (n) )

;

= zeronat ( )

;

ntO) = trueO

ndef ined

;

( x ) ) = sumnat

(

zeronat ( ) , iton(x) ) ) ;

ntO) = trueO

subint(zeroint( ) , x)

;

x;

( ) ) = n;
(m)) = succint ( sumint (n, m) )

;

( ) ) = n;
(m)) = pred int ( subint (n, m) )

;

cint(m) ) is undefined;
( ) ) = zeroint ( )

;

( zero int ( ) ) ) = x

;

mint(x, ml tint(x, predint(y) ) )

;

ntO) = trueO

is undefined;
sint(x),absint(y)

)

= zeroint ;

t ( x , zeroint ( ) )

,

t (y , zero int ( ) ) )

,

t ( x , zeroint ( ) )

,

t (y, zeroint ())

)

( )

= true (

)
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then
divint(x,y) = sumint < succint ( zeroint ( )

,

divint ( subint ( x, y) ,y) )

;

else
divint(x f y) = sumint (predint ( zeroint ()

,

divint(sumint(x,y),y) )

;

end i f

;

end i f ;

end if ;

if gt int (m, zeroint () ) = trueO
then

if 1 tint (n, zeroint () ) = trueO
then

modint (n, m) = modint ( sumint (n, m) , m)

;

e 1 se
modint(n,m) = subnat(n,

m 1 tnat (m,divint(n,m) ) )

;

end i f

;

e 1 se
modint(n,m) is undefined;

endi f

;

eqint(n,m) = eqint ( succint (n ), succint (m) )

;

gt int ( succint (n ), n) = trueO ;

equivrel (eqint, int)

;

irreflexive(gtint, int)

;

irref lexive( 1 tint, int)

;

trans itive(gtint, int)
transitiveC 1 tint, int)
transitive(geint, int)
transitiveC leint, int)
antisymmetric(geint, int)

;

ant i symmetr ic( leint, int)

;

symmetric(neint, int)

;

commutat i ve ( sumint , int)
commutat i ve(mltint, int)
associative( sumint , int

)

associativednl tint, int)

end i nteger

;

Resource character is

Extension of
boo 1 ean

Operands
char ;

Operators
' A' ,'B' » r

»

> w ,

'a' , 'b' , 'c'

,

'Z'
'z'

-> char

;

-> char

;
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>

I » »

NUL
SOH
STX
EXT
EOT
ENQ
ACK
BEL
BS:
HT:
LF:
VT:
FF:
CR:
SO:
SI :

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM:
SUB
ESC
FS
GS
RS
US
SP
DEL:
eqcha
gtcha

i

w

»

»

2'

->
->
->
->
->
->
->
->

>

>

>

>

>

>

>

>

->
->
->
->
->
->
->
->
->

>

->
->

>

>

>

>

>

->

r :

r :

» + » » — » t — i

i ^

»

&', '*' ,
»
('

» »

»*? »/» »%» » r *

.» » » »» »^» » s > »•?» »/
» • >

-> char;
, '3» , '4' , '5' , '6'

->
->
->

char

;

char ;

char

;

»7», '8' , »9' , »0' -> char;
char
char
char
char
char
char
char
char

char

;

char

;

char

;

char

;

char ;

char

;

char ;

char ;

char
char
char
char
char
char
char
char
char
char ;

char
char

char ;

char ;

char ;

char ;

char ;

char

;

char, char -> bool;
char, char -> bool;

Derived Operators
1 tchar : char, char -> bool;
gechar : char, char -> bool;
lechar: char, char -> bool;
nechar: char, char -> bool;

Derived Definition
1 tchar ( n, m)
gechar (n, m

)

1 echar ( n, m

)

not(or(gtchar(n,m),eqchar(n,m) ) )

;

not( ltchar(n,m) )

;

not(gtchar(n,m) )

;
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nechar(n,m) = not ( eqchar (n, m) )

;

p roper ties
gtchar CDLE » ~ » > = true
gtchar » ~ t

,
' }' ) = true

gtchar CM' 9 t 1 \
9 '

' = true
gtchar ? i f

,
' {' ) = true

gtchar ('{'
, 'z' ) = true

gtchar (
' Z* 9 • • a' ) = t

gtchar C ' a* ' ' ' ) = true
gtchar f i l t » ) = true
gtchar »«»> = true
gtchar f A »

, ' ]' ) = true
gtchar [']»

, ' " ) = true(
gtchar ' » » 'CM = true(
gtchar ['['

, 'Z' ) = true
gtchar :'Z' f • • • A' ) = t

gtchar ; 'A' ,
' @' ) = true

gtchar :»©» ' ? ' ) = true
gtchar !

* ?'
,

' >' ) = true
gtchar <:* >' * = * ) = true
gtchar ; » s»

,
•<• ) = true

gtchar

i

: ' <' » » » = true
gtchar f * •

'

> »
» . » ^ = true

gtchar < ' *
*

,
'9' ) = true

gtchar ['9'
f • • * 0' ) = t

gtchar <
'0'

,
'/' ) = true

gtchar : ' /' ' ' ) = true
gtchar

1

'

.

' — * i = true
gtchar

l

:
* -'

» > * = true
gtchar <

» ,
' +' ) = true

gtchar

1

; *
+

'

,
' * ' ) = true

gtchar <
' *

»

,
' ) » ) = true

gtchar

1

: '
)

'

,
' (' ) = true

gtchar <
' (

'

' ' '
) = true

gtchar <

» »

»

,
'&' ) = true

gtchar <
'&'

,
'%' ) = true

gtchar <:'*' ,
' $' ) = true

gtchar

(

p $ »
,

' #' ) = true
gtchar

1

: »
#' » n »

) = true
gtchar

(

» m » » » »
) = true

gtchar <
'

!
' ,SP) = true(

gtchar < SP, US) = true (

)

gtchar < US, RS) = true (

)

gtchar < RS, GS) = true (

)

gtchar < GS, FS) = true (

)

gtchar

(

FS, ESC) = true

(

gtchar < ESC ,SUB) = true
gtchar

(

SUB ,EM) = true(
gtchar < EM, CAN) = true(
gtchar

(

CAN ,ETB) = true

(

)

(

)

(

)

()

()

rue ( )

;

( )

()

( )

( )

);

);

();
rue ( )

;

( )

( )

( )

( )

( )

()

( )

( )

rue ( )

;

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

) ;

) ;

( )

)J

>;

(

)
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gtchar(ETB,SYN) = trueO
gtchar(SYN,NAK) = trueO
gtchar (NAK,DC4) = trueO
gtchar(DC4,DC3) = trueO
gtchar(DC3,DC2) = trueO
gtchar(DC2,DCl) = trueO
gtchar (DC 1, DLE) = trueO
gtchar (DLE, SI ) = trueO;
gtchar (SI , SO) = trueO;
gtchar (SO, CR) = trueO;
gtchar (CR, FF) = trueO;
gtchar(FF, VT) = trueO;
gtchar(VT,LF) = trueO;
gtchar(LF,HT) = trueO;
gtchar(HT, BS) = trueO;
gtchar (BS, BEL) = trueO;
gtchar(BEL, ACK) = trueO
gtchar (ACK, ENQ) = trueO
gtchar(ENQ,EOT) = trueO
gtchar(EOT,ETX) = trueO
gtchar (ETX, STX) = trueO
gtchar(STX,SOH) = trueO
gtchar(SOH,NUL) = trueO
equivrel (eqchar,char)

;

irref lexive(gtchar, char)

;

transitive(gtchar,char) ;

irref lexive( ltchar,char)

;

transitiveC 1 tchar, char)

;

transitive(gechar, char)

;

transitive( lechar)char)

;

ant i symmetr ic ( gechar , char )

;

anti symmetr ic( lechar, char)

;

symmetr ic ( nechar )

;

end ;

Resource string ( e 1 e lment) is

Parameter element is

Extension of
boo 1 ean

Operands
I m ;

Operators
eqlm: lm,lm -> bool;
gtlm: lm,lm -> boo 1

;

Derived Operators
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ltlm: 1 rn, 1 m -> boo 1 ;

gelm: lm,lm -> bool;
lelm: lm, 1 m -> boo 1

;

nelm: lm,lm -> bool;
Derived Definition

ltlm(n,m) = not (or ( gt 1 m(n, m) , eql m(n, m) ) )

;

gelm(n,m) = not ( 1 t lm(n, m) )

;

lelm(n,m) = not ( gt 1 m (n, ra) )

;

nelm(n,m) = not (eq 1 m (n, m) )

;

Properties
equivre 1 ( eq 1 m, 1 m)

;

irreflexive(gtlm, lm);
transitive(gtlm, lm)

;

irreflexive(ltlm, lm);
transitive( ltlm, lm)

;

transitive(gelm, lm);
trans itive( lelm) lm) ;

ant isymmetr ic(ge 1 m, lm)

;

antisymmetric( lelm, lm) ;

symmetr ic(nelm)

;

Extension of
natura 1

;

boo 1 ean

;

Operands
str .

1

m ;

Operators
nu 1 1 s tr . 1 m
makestr . 1

m

1 enstr . 1 m

:

heads tr . 1 m
tai 1 str . 1 m
cats tr. 1 m

:

-> s tr . 1 m

;

1 m -> str . 1 m

;

str . 1 m -> nat

;

str . 1 m -> 1 m

;

str . 1 m -> str . 1 m

;

s tr . 1 m, s tr . 1 m -> str.
eqstr.lm: s tr . 1 m, s tr . 1 m -> bool;
gtstr.lm: s tr . 1 m, s tr . 1 m -> bool;

1 m

;

Derived Operators
ltstr.lm: str . 1 m, str . 1 m -> bool;
gestr.lm: s tr . 1 m, s tr. 1 m -> bool;
lestr.lm: str . 1 m, str . 1 m -> bool;
nestr.lm: s t r . 1 m, s tr . 1 m -> bool;

Derived Definition
1 ts tr . 1 m (n, m) =

not(or(gtstr. lm(n,m),eqstr. lm(n,m)));
ges tr . 1 m (n, m ) = not ( 1 tstr . 1 m (n, m)

)

1 es tr . 1 m (n, m ) = not

(

gtstr . 1 m (n, m )

)

nestr . 1 m (n, m) = not ( eqs t r . 1 m (n, m )

)

Properties
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lenstr. lmCnul 1 str. lm( ) ) = zeronatO;
lenstr. lmdnakestr. lm( 1 ) ) = succnat (zeronat ( ) )

;

1 enstr. ImCcatstr. 1 mC si , s2) ) =

sumnat (1 en str. lm(sl), 1 en str. Im(s2));
heads tr . 1 mdnakestr . 1 m ( 1 ) ) = 1;

tai 1 str . 1 m (makestr . 1 m ( 1 ) ) = nul lstr. lm()

;

heads tr. 1 m C cats tr . 1 m Cmakestr . 1 m C 1 ), s ) ) = 1;

tai 1 str. ImCcatstr. lmdnakestr . 1 m < 1 ) , s) ) = s;

headstr. 1 m(nul 1 str. lm( ) ) is undefined;
tai 1 str . lm(nul 1 str . 1 m ( ) ) = nu 1 1 str . 1 m( ) ;

catstr. 1 m C catstr . 1 m C si , s2) , s3) =

catstr. lm(sl, catstr. Im(s2,s3));
catstr. 1 m(nu 1 1 str. lm( ), s) = catstr. lm(

s, nu 1 1 str . 1 m ( ) ) = s

;

implies(eqlm(ll, 1 2) , eqstr . lm( makestr. lmC 1 1 )

,

makestr . 1 m ( 1 2) ) ) = trueO ;

impliesCgtlmCll, 1 2) ,
gts tr . lmdnakestr. 1 m C 1 1 ) ,

makestr . 1 m ( 1 2) ) ) = trueO ;

gtnat( lenstr. lmdnakestr. lm( 1 ) ,

1 enstr . 1 m (nu 1 1 str . 1 m ( ) ) = trueO ;

implies(gtnat(lenstr. lm(sl), lenstr. Im(s2)),
gtstr . 1 m ( si , s2) = trueO ;

if 1 ens tr . 1 m ( si ) != zeronatO
then

gtnat(lenstr. ImCcatstr. Im(sl,s2),
1 enstr . 1 m ( s2) = trueO ;

e 1 se
eqnat ( 1 ens tr . ImCcatstr. lmCsl,s2),
lenstr . 1 mC s2) = trueC);

endi f ;

equivrel Ceqstr. lm, str. lm)

;

irreflexiveCgtstr. lm,str. lm);
transitiveCgtstr. 1 m, str . lm)

;

irreflexiveC ltstr. lm,str. lm) ;

transitiveCltstr. lm,str. lm);
transitiveCgestr. lm, str. lm)

;

transitiveC lestr. 1 m) str . lm)

;

ant isymmetr icCgestr. lm,str. lm)

;

anti symmetric C lestr. lm, str. lm);
symmetr icCnestr. lm, str. lm);

end str ing Ce 1 ement )

;

Resource str ing C character ) is

where
lm = char

;

nullstr.char = nullstr.lm;
makestr. char = makestr. lm;
len.char = lenstr. lm;
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head. char = headstr.lm;
tail. char = tailstr.lm;
cat. char = catstr.lm;
eq.char = eqstr.lm;

gtstr . 1 m;
1 tstr . 1 m

;

gestr . 1 m

;

lestr. 1 m

;

gt. char
1 t . char
ge. char
1 e. char
ne. char = nes tr. 1 m;

end str ing ( character )

;

Resource identifiers is

Extension of
boo 1 ean

Operands
memid
reg id
stk id
fid;

Operators
idopers (memid , mernsem ) ;

idopers(redid, regseg)

;

idopers(stkid, stkseg)

;

idopers(fid. fseg)

;

Properties
idaxiom(memid,memseg) ;

idaxiom(regid, regseg)

;

idaxiom(stkid, stkseg)

;

idaxiom(fid, fseg)

;

end

Resource memaddress is

Extension of
i dent i f iers

,

boo 1 ean

Operands
memaddr

;

Operators
startmemaddr : memid -> memaddr;
nex tmemaddr : memaddr -> memaddr;
prevmemaddr: memaddr -> memaddr;
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getmemid: memaddr -> memid;
offset: int, memaddr -> memaddr;
eqmemaddr: memaddr , memaddr -> bool;

Properties
prevmeraad
prevmemad
nextmemad
offset ( su
if offset
then

of f se
e 1 se

of f se
endi f

;

eqmemid (

i

true (

eqmemaddr
eqmem

eqmemaddr
eqmemaddr

eqmem
of f set ( ze
eqi vre 1 < e

end memaddress ;

dr ( s tar tmemaddr ( i ) ) is undefined;
dr (nex tmemaddr (m) ) = m;
dr ( prevmemaddr (m) ) = m;
ccint(n),m) = nex tmemaddr ( of f set (n, m) )

;

(n,m) = startmemaddr (

)

t (predint (n) , m) is undefined;

t ( predint (n) , m) = prevmemaddr ( of f set (n, m) )

;

,
getmemid (offset(n,startmemaddr(i)))) =

);

(startmemaddr(il),startmemaddr(i2)) =

ldCil, i2)

;

( star tmemaddr ( i ), nex tmemaddr (a ) ) = falseO;
(nex tmemaddr (al ) , nex tmemaddr (a2) )

=

addr (al , a2)

;

roint ( ) , m) = m;
qmemaddr , memaddr )

;

Resource regaddress is

Extension of
ident i f iers,
boo 1 ean

Operands
regaddr ;

Operators
star tregaddr : regid -> regaddr;
nextregaddr: regaddr -> regaddr;
prevregaddr: regaddr -> regaddr;
getregid: regaddr -> regid;
eqregaddr: regaddr , regaddr -> bool;

Properties
prevregaddr ( startregaddr ( i ) ) is undefined;
prevregaddr ( nex tregaddr (m) ) = m;
nextregaddr

( prevregaddr (m) ) = m;

eqregaddr(startregaddr(il),startregaddr(i2)) =

eqregid ( II, 12)

j

eqregaddr ( startregaddr ( i ), nex tregaddr (a ) ) = falseO ;
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eqregaddr(nextregaddr(al) ,nextregaddr(a2)

)

eqregaddr(al,a2)

;

eqivrel (eqregaddr, regaddr)

;

end regaddress;

Resource stkaddress is

Extension of
ident i f iers

,

boo 1 ean

Operands
stkaddr

;

Operators
getstkid: stkaddr -> stkid;
eqstkaddr: stkaddr , atkaddr -> bool;

Properties
eqstkaddr (nextstkaddr(al) ,nextstkaddr(a2)

)

eqstkaddr(al,a2)

;

equivrel (eqstkaddr, stkaddr)

;

end stkaddress ;

Resource files is

Extension of
ident if iers,
boo 1 ean

Operands
f i le;

Operators
getfile: fid -> file;
eqfile: file, file -> bool;

Properties
eqf

i

le(getfile(il),getfile(i2))
equivrel (eqfi le, fi le)

;

end files;

Resource operatorc 1 asses is

Extension of

= eqfile(il,i2);
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Operands
mop;
dop;
top;
qop;
sop;
oop;
rop;
bop;

Operators

Properties

end operatorc 1 asses

;

Resource instruct iontype is

Extension of

Operands
instr ;

Operators

Properties

end intruct iontype

;

Resource typing is

Extension of
boo 1 ean;
natura 1

;

integer

;

character

;

str ing ( character )

;

ident i f ier s

;

memaddress

;

regaddress

;

stkaddr

;

files;
operatorc lasses

;

intruct iontype;

Operands
type;
va 1 ;

Operators
typingopers(bool )

;

typingopers(nat) ;

93



typingopers

I

:int)

;

typingopers [char )

;

typingopers

(

! str . char ) )

;

typingopers [memid )

;

typingopers

1

regid )

;

typingopers Istkid) ;

typingopers <!f id)

;

typingopers [memaddr )

;

typingopers < regaddr )

;

typingopers [ s tkaddr )

;

typingopers

(

file);
typingopers [mop)

;

typingopers <[dop)

;

typingopers [top)

;

typingopers < qop) ;

typingopers [ sop)

;

typingopers < ' oop)

;

typingopers [ rop)

;

typingopers < bop) ;

typingopers [ i ns tr ) ;

whattype: va 1 -> type;
eqtype: type, type -> bool;

Properties
typingax iom
typingax iom
typingax i om
typingax iom
typingax i om
typingax iom
typingax iom
typingax iom
typingax iom
typingax iom
typingax iom
typingax i om
typingax i om
typingax i om
typingax iom
typingax iom
typingax i om
typingax iom
typingax iom
typingax iom
typingax i om
typingax i om
equi vrel ( i ns

end typing;

boo 1 ) ;

nat ) ;

int ) ;

char ) ;

str . char )

;

memid )

;

reg id )

;

stkid) ;

fid) ;

memaddr )

;

regaddr )

;

stkaddr )

;

file);
mop

)

dop

)

top)
qop)
sop

)

oop)
rop

)

bop)
ins tr ) ;

tr) ;
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Resource operators is

Extension of
operatorc lasses,
typing

Operands

Operators
boo 1 not
boo 1 and
boo 1 or

:

natpred
natsucc
natsura

:

natsub

:

nateq

:

natgt

:

nat 1 t

:

intpred
intsucc
intabs

:

intntoi
inti ton
intsum

:

intsub

:

intm 1 t

:

intdi v

:

intmod

:

inteq

:

intgt :

intl t:

chareq

:

chargt

:

charmak
charstr
charhea
chartai
charcat
str . cha
str . cha
i sboo 1

:

isnat

:

is int

:

ischar

:

iss tr . c

ismemid
i sregid
isstk id
i sf id :

ismemad
i sregad

: -> mop;
: -> dop;
-> dop;

: -> mop;
: -> mop;
-> dop;
-> dop;

-> rop;
-> rop;
-> rop;
: -> mop;
: -> mop;
-> mop;

: -> mop;
: -> mop;
-> dop;
-> dop;
-> dop;
-> dop;
-> dop

;

-> rop;
-> rop;
-> rop;
-> rop

;

-> rop;
estr : -> mop

;

1 en : -> mop;
dstr : -> mop

;

1 str : -> mop;
s tr : -> dop

;

req: -> rop;
rgt : -> rop

;

-> bop;
-> bop;
-> bop;
-> bop;

har : -> bop;
-> bop;
-> bop;
-> bop

;

-> bop

;

dr : -> bop

;

dr : -> bop

;
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isstkaddr: -> bop;
isf i 1 e : -> bop

;

ismop: -> bopj
isdop : -> bop

;

istop: -> bop;
isqop: -> bop;
i ssop : -> bop;
isoop: -> bop;
isrop: -> bop;
isbop: -> bop;
i s instr : -> bop

;

app
app
app
app
app
app
app
app

Propert
app
app

app

app

app

app

app

app

app

app

app

app

app

app

app

ymop
ydop
ytop
yqop
ysop
yoop
yrop
ybop

es
ymop (

ydop(
and (a
ydop(
or (at
ymop (

predn
ymop(
succn
ydop(
sumna
ydop (

subna
ymop (

pred i

ymop (

succi
ymop (

abs in
ymop (

ntoi i

ymop (

i toni
ydop(
sumin
ydop (

subin
ydop (

m 1 t in

mop, va 1 -> va 1

;

dop, val , val -> va 1

;

top, va 1 , va 1 , va 1 -> val;
qop, va

1
, va 1

, va 1 , va 1 -> val;
sop, va 1 , va 1 , va 1 , va 1 , va 1 -> val;
oop, va 1 , va 1 , va 1 , va 1 , va 1 , va 1 ->

rop, val, val -> val;
bop, va 1 -> val

;

boo lnot

(

boo 1 and

(

tomof boo
boo 1 or (

)

omof boo 1

natpred

(

at (atomo
natsucc(
at (atomo
natsum (

)

t ( atomof
natsub (

)

t ( atomof
intpred

(

nt (atomo
intsucc

(

nt ( atomo
intabs (

)

t ( atomof
intnto i

(

nt (atomo
i nt i ton

(

nt (atomo
i ntsum (

)

t (atomof
intsub (

)

t ( atomof
intml t(

)

t (atomof



app 1 ydop ( intdi v ( ) , vl , v2) = valofint(
di vint (atomof int ( vl ) ,atomofint(v2) )

;

applydopC intmod ( ) , vl , v2) = valofint(
mod int (atomof int(vl) ,atomofint(v2) )

;

app
1
ymop ( charstr 1 en ( ) , v ) = valofnat(
lenstr. char(atomofstr. char(v) ) )

;

app 1 ymop ( charmakestr (), v ) = va 1 of str . char

(

makestr.char(atomofchar(v) ) )

;

app lymop(charheadstr ( ) , v ) = valofchar(
headstr.char(atomofstr.char(v) ) )

;

appl ymop (chartai 1 str (), v ) = va 1 of str . char

(

tai lstr.char(atomofstr.char(v) ) )

;

app lydop(charcatstr ( ) , vl , v2) = va 1 of str . char

(

catstr . char (atomofstr. char ( vl )

,

atomof str. char ( v2) ) )

;

re 1 op [nat, eq )

;

re 1 op (nat, gt )

;

re 1 op

(

[nat, It);
re 1 op ! int , eq)

;

re 1 opi:int,gt)

;

re 1 op tint, It)

;

re 1 op< ! char , eq)

;

re 1 op [ char , gt ) ;

re 1 op<'str. char , eq)

;

re 1 op [ str. char
,
gt )

;

i sops

(

boo 1 ) ;

isops [nat )

;

i sops < int) ;

i sops [char )

;

i sops

(

str . char )

;

isops [memi d )

;

i sops

(

' regid )

;

i sops <[stkid)

;

i sops < fid) ;

isops <[memaddr )

;

i sops ( regaddr )

;

isops <
! s tkaddr )

;

i sops < file);
i sops

i

[mop)

;

i sops

(

dop) ;

i sops < top) ;

i s o p s < qop) ;

isops <
' sop)

;

i sops < oop) ;

i sops < [ rop)

;

i sops

(

bop) ;

i sops

(

ins tr )

;

end operators

;
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Resource intructions is

Extension of
natura 1

,

integer

,

memaddress,
regaddress

,

stkaddress

,

opera to re 1 asses,
intructiontype,
typing

Operands

Operators
org : -> instr

;

extern: -> instr;
g 1 ob 1 : -> instr

;

mbegin: -> instr;
mend : -> instr ;

offst: int, regaddr -> inst
link: regaddr, nat -> instr
unlink: regaddr -> instr;
monads: mop, regaddr -> ins
monad: mop, regaddr , regaddr
monadi: mop, va 1 , regaddr ->

dyads: dop, regaddr , regaddr
dyadsi: dop, va 1 , regaddr ->

dyad: dop, regaddr , regaddr

,

dyadi: dop, va 1 , regaddr , reg
triads: top, regaddr , regadd
triadsi: top, va 1 , regaddr,

r

triad: top, regaddr , regaddr
triadi: top, va I , regaddr , re
quads: qop, regaddr , regaddr
quad: qop, regaddr , regaddr

,

regaddr , regaddr -> ins
sexads: sop, regaddr , regadd

regaddr, regaddr, regadd
sexad: sop, regaddr , regaddr

regaddr, regaddr, regadd
octads: oop, regaddr , regadd

regaddr, regaddr, regadd
octad: oop, regaddr , regaddr

regaddr, regaddr, regadd
m o v i _m : val,memaddr -> ins
movi_pcr: val,int -> instr
movi_r: va 1 , regaddr -> ins
movi_ri: val, regaddr -> in
movi_rid: va 1 , regaddr , int
movi_ridn: va

1 , regaddr , nat
mov_m_m: memaddr , memaddr -

tr;
-> instr ;

instr

;

-> instr ;

instr ;

regaddr -> instr;
addr -> instr

;

r, regaddr -> instr;
egaddr -> instr;
, regaddr , regaddr -> instr;
gaddr , regaddr -> instr;
, regaddr , regaddr -> instr;
regaddr

,

tr;
r , regaddr,
r -> instr ;

, regaddr, regaddr,
r -> instr ;

r, regaddr, regaddr,
r, regaddr -> instr;
, regaddr, regaddr,
r , regaddr , regaddr -> instr;
tr;

tr;
s tr ;

-> instr;
, int -> instr ;

> instr ;
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mov_m_r : memaddr, regaddr -> instr;
mov_m_ri: memaddr , regaddr -> instr;
mov_m_rid: memaddr , regaddr , int -> instr;
mov_m_ridn: memaddr , regaddr , nat , int -> instr;
mov_pcr_pcr: int, int -> instr;
mov_pcr_r : int, regaddr -> instr;
mov_pcr_ri: int, regaddr -> instr;
mov_pcr_rid: int , regaddr , int -> instr;
mov_pcr_r idn : int , regaddr, nat , int -> instr;
mov_r_m: regaddr , memaddr -> instr;
mov_r_pcr : regaddr, int -> instr;
mov_r_r: regaddr , regaddr -> instr;
mov_r_ri: regaddr , regaddr -> instr;
mov_r_rid: regaddr , regaddr , int -> instr;
mov_r_ridn: regaddr , regaddr , nat , int -> instr;
mov_ri_m: regaddr , memaddr -> instr;
mov r

mov_ri_r: regaddr , regaddr -> instr;
_pcr: regaddr, int -> instr;

_ri: regaddr , regaddr -> instr;
_rid: regaddr, regaddr, int -> instr;
_ridn: regaddr , regaddr , nat , int -> instr;

mov_r
mov_r
mov_r
mov_rid_m: regaddr

,

int , memaddr -> instr;
mov_rid_pcr: regaddr, int , int -> instr;
mov_rid_r: regaddr , int , regaddr -> instr;
mov_rid_ri: regaddr , int , regaddr -> instr;
mov_rid_rid: regaddr , int , regaddr , int -> instr;
mov_r id_r idn : regaddr , int, regaddr , nat , int -> instr;
mov_r
mov_r i

mov r

dn_m: regaddr , nat , int , memaddr -> instr;
dn_pcr : regaddr , nat , int , int -> instr;
dn_r : regaddr , nat , int , regaddr -> instr;

mov_ridn_ri: regaddr , nat , int , regaddr -> instr;
mov_r idn_r id : regaddr , nat , int , regaddr , int -> instr;
mov_r idn_r idn: regaddr, nat, int, regaddr, nat,

int -> instr

;

push_i : val,stkaddr -> instr;
push_m: memaddr , stkaddr -> instr;
push_pcr: int, stkaddr -> instr;
push_r: regaddr , stkaddr -> instr;
push_ri: regaddr , stkaddr -> instr;
push_rid: regaddr , int , stkaddr -> instr;
push_ridn: regaddr , nat , int , stkaddr -> instr;
pop_x : stkaddr -> instr;
pop_m: stkaddr , memaddr -> instr;
pop_pcr : stkaddr, int -> instr;
pop_r: stkaddr , regaddr -> instr;
pop_ri: stkaddr , regaddr -> instr;
pop_rid: stkaddr , regaddr , int -> instr;
pop_ridn: stkaddr , regaddr , nat , int -> instr;
nop: -> instr;
stop : -> instr ;

jmp: memaddr -> instr;
jmp_i : memaddr -> instr;
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jmp_r: regaddr -> instr;
bra: int -> instr;
bra_r: regaddr -> instr;
if: re I op, regaddr , regaddr , memaddr -> instr;
ifi: re 1 op, regaddr , va 1 , memaddr -> instr;
ifte: re 1 op, regaddr , regaddr , memaddr , memaddr -> instr;
iftei: re 1 op, regaddr , va 1 , memaddr , memaddr -> instr;
if_pcr: re 1 op, regaddr , regaddr , int -> instr;
ifi_pcr: re 1 op, regaddr , va I , int -> instr;
ifte_pcr: re 1 op, regaddr , regaddr , int , int -> instr;
iftei_pcr: re 1 op, regaddr , va 1 , int , int -> instr;
test: bop, regaddr , memaddr -> instr;
testm: bop, memaddr , memaddr -> instr;
teste: bop, regaddr , memaddr , memaddr -> instr;
testme: bop, memaddr , memaddr , memaddr -> instr;
test_pcr: bop, regaddr , int -> instr;
testm_pcr: bop, memaddr , int -> instr;
teste_pcr: bop, regaddr , int , int -> instr;
testme_pcr: bop, memaddr , int , int -> instr;
jsr: memaddr , stkaddr -> instr;
jsr_i: memaddr , stkaddr -> instr;
jsr_r: regaddr , stkaddr -> instr;
bsr: int, stkaddr -> instr;
bsr-r: regaddr , stkaddr -> instr;
rts: stkaddr -> instr;
open: stkaddr -> instr;
close: stkaddr -> instr;
read: stkaddr -> instr;
write: stkaddr -> instr;

Properties

end intructions;

Resource amstate is

Extension of
boo 1 ean,
natura 1

,

integer

,

str(character)

,

memaddress

,

regaddress

,

f i 1 es ,

ident i f ier s

,

typing

Operands
state

;

Operators
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me
re
va
va
->

s

f etchm

:

f etchr

:

storem:
storer

:

ini tam

:

ini ts tk
topstk: st
pushstk: v

popstk: st
la 1 1 oc: na
1 free : mem
indir: nat
inf i 1 e : f i

outf i 1 e : v

openf ile:
cl osef ile:
rmode: ->

wmode : ->

rwmode

:

openerr

:

openok

:

valdata: -

chardata

:

maddr, state -> va 1

;

gaddr, state -> val;
1 , memaddr, state -> state;
1 , regaddr, state -> state;
state

;

tkaddr, state -> state;
kaddr, state -> val
a 1 , stkadd~
:kaddr, state -> val;
'a 1 , stkaddr , state -> state;
tkaddr , state -> state;
it, state -. memid;t , state - . memid

;

id, state -> state,
'-addr -> memaddr;
tate ->

mid, state -? state;
t, memaddr -> memaddr;
ile, state -> va 1

;

val , f i 1 e, state -> state;
str. char, f i 1 e, int, int, state -> state;

: file, state -> state;
int

;

int

:

> int

:

-> int

;

> int

;

-> int

;

-> int;

active: memid, state -> bool;

Properties
topstk
popstk
popstk
s tatea
statea
topstk
popstk
act i ve
act i ve
act ice
act i ve
act i ve
active
active
active
act i ve
active
act i ve
if act
then

fe
endi f ;

if act
then

st

( s

,

ini tstk ( s ) ) is undefined;
( s

,

ini tstk ( s ) ) is undefined;
(s, initamO) is undefined;
x iom( m, memaddr )

;

xiom(r, regaddr)

;

s ( pushstk ( v, s ,
q) ) = v;

s
( pushstk (v , s ,

q) ) = q;
m,initam()) = falseO ;

1 a 1 1 oc ( n, q) q) = trueO ;

m, 1 f ree (m, q) ) = false();
m, storer ( v , r ,

q ) ) = active(m,q);
m, storem ( v , a, q) ) = act i ve (m, q )

;

m, ini tstk ( s ,
q) ) = active(m,q);

m, pushstk ( v, s ,
q ) = active(m,q);

m, popstk ( s ,
q) = act i ve ( m, q )

;

m, outf i 1 e ( v, f ,
q ) = active(m,q);

m, openf i 1 e < s , f , x , y, q ) = active(m,q);
m, c 1 osef i 1 e ( f ,

q ) = active(m,q);
i ve (m, q) = f a 1 se ( )

tchm ( of f set (n, m) ,
q) is undefined;

i ve (m, q ) = f a 1 se ( ) ;

orem ( v, of f set (n, m) ,
q) is undefined;
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endi f

;

if 1 t int <n, ntoi (n2) ) = trueO
then

offset(n,offset(nl,startmemaddr(
lal loc(n2,q) ) ) ) =

of f set ( sum int (n, nl )

,

startmemaddr( lal 1 oc(n2, q) ) )

;

e 1 se
offset(n,offset(nl,startmemaddr(

1 a 1 1 oc(n2, q) ) ) ) is undefined;
endi f

;

indi r (zeronat ( ) , m) = m

;

if whattype ( f etchm( indi r (n, m) ,
q) = typememaddr (

)

then
indi r ( succnat (n) , m ) =

atomofmemaddr(fetchm(indir(n,m) ,q) ) ;

e 1 se
i ndi r ( succnat (n) , m) is undefined;

endi f ;

openf i 1 e ( s, f , n, openf i 1 e ( s , f , m, x , q) ) is undefined;
c 1 osef i

1

e ( f (openf i 1 e(s, f , n, x, q) ) = q;
inf i 1 e ( f , ini tarn () ) is undefined;
inf i 1 e ( f , c 1 ose ( f ,

q ) ) is undefined;
inf i 1 e ( f , openf i 1 e ( s , f , wmode (), x ,

q) ) is undefined;
outf i 1 e ( v, f , ini tarn () ) is undefined;
outf i 1 e ( v, f , c 1 ose ( f ,

q ) ) is undefined;
outf i 1 e ( v, f , openf i 1 e ( s , f , rmode (), x, q ) ) is undefined;
outif le(v, f, openfi le(s, f, m, chardata( ) ,

q)

)

i s undef ined

;

end amstate;

Resource am is

Extension of
memaddress

,

intructiontype,
typing,
amstate

Operands
prog: memaddr , state -> state;

cond : va 1 , memaddr , memaddr - memaddr;
exq: ins tr , memaddr , state -> state;

Operators
prog(m,q) = exq (atomof instr ( f etchm (m, q ) ) , m, q)

;

cond ( va 1 of boo 1 ( true ( ) , ml , m2) ) = ml;
cond ( va 1 of bo 1 1 ( f a 1 se ( ) , ml , m2) ) = m2

;
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Properties
exq (of f st ( i , r ) , m, q) =

prog(nextmemaddr(m)

,

storer

(

va 1 of memaddr

(

i . atomof

m

r,q) )

;

exq( 1 ink ( r, n)m, q) =

prog(nextmemaddr(m)

,

storer

(

va 1 of memaddr

(

r , storem ( fete
startmema

exq(un I ink ( r ) , m, q) =

prog(nextmemaddr (m)

,

1 f ree

(

getmemi d (atom
storer

(

f etchm (at
r,q>>>;

exq (monads ( o, rl ), m, q) =

of f set(
emaddr(fetchr(r,q) ) ) ),

startmemaddr( lal 1 oc (n, q) ) )

,

hr ( r, q ) ,

ddr(lalloc(n,q),q))));

ofmemaddr(fetch(r, q) ) ) ,

omofmemaddr (fetchr ( r
, q) , q)

,

prog(nextmemaddr(m)
storer (appl ymo

rl,q)>;
exq(monad(o, rl, r2) ,m,q)

prog(nextmemaddr(m)
storer (appl ymop

r2,q))

;

exq(monadi (o, v, rl) ,m,q)
prog(nextmemaddr (m)

storer (appl ymop
exq(dyads(o, rl, r2) ,m,q)

prog(nextmemaddr(m)
storer (applydop

o, fetchr ( r

1

exq ( dyads i(o,v,rl)m,q)
prog(nextmemaddr (m)

,

store(applydop(v
exq(dyad (o, rl , r2, r3) , m,

q

prog(nextmemaddr(m)
storer (applydop

fetchr ( r 1 ,

q

exq(dyadi (o,v, rl, r2) ,m,
prog(nextmemaddr(m)

storer (applydop
v, fetchr ( r 1 ,

q

exq(triads (o, rl, r2, r3) ,m,
prog(nextmemaddr(m)

,

storer(applytop(o
fetchr ( r2, q)

,

exq(triadsi (o, v, rl , r2) , m,
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o, fetchr ( rl
,
q) )

,

o, fetchr ( r 1 ,
q) )

,

o,v)),rl,q));

q),fetchr(r2,q)),r2,q))

;

fetchr(rl,q) ) , rl,q) )

;

q) =

fetch r(r2,q)),r3,q)>;
m, q) =

)),r2,q));
q) =

, fetchr ( r 1 ,
q )

,

fetchr(r3,q) ) , r3,q) )

;

q) =



prog (nextmemaddr (m

)

sto op

q
exq (

exq (

exq(

tr iad (

o

prog ( ne
sto

tr iadi (

prog ( ne
sto

quads (

o

prog (ne
sto

rer (app 1 y

t

f etchr ( rl

.

, rl, r2, r3, r4
x tmemaddr (m)
rer (app 1

y to
f etchr (r2,

o, v, rl, r2,

r

x tmemaddr (m
rer (appl yto
f etchr ( r 1

,

, r 1 , r2, r3,

r

x tmemaddr (m

u, v,

, f etchr (r2, q) ) , r2, q) )

j

,m, q) =

p(o,fetchr(rl,q),
q),fetchr(r3,q)),r4,q))

m,q) =3
)

P

q
r4

exq ( quad ( o,
prog (ne

sto

exq (

exq (

exq (

sexads

(

prog (ne
sto

sexad (

o

prog (ne
sto

octads

(

prog ( ne
sto

exq ( octad (

o

prog (ne
sto

exq (

exq (

m o v i _m (

prog ( ne
sto

mov i_pc
prog (ne

xtmemaddr (m

)

rer (app 1 yqop
f etchr ( r2,

q

f etchr ( r4,

q

o, rl , r2, r3,

r

xtmemaddr (m)
rer (app 1 yqop
f etchr ( r2,

q

f etchr ( r4,

q

f etch(r6, q)

, rl , r2, r3, r4
xtmemaddr (m)
rer (app 1 yqop
f etchr ( r2,

q

f etchr ( r4,

q

f etch(r6, q)

,

o, rl , r2, r3, r4
xtmemaddr (m)
rer ( app 1

yqop
f etchr ( r2,

q

f etchr ( r4,

q

fetch ( r6, q

)

f etchr ( r8,

q

, rl, r2, r3, r4
xtmemaddr ( m)
rer (app 1 yqop
f etchr ( r2,

q

f etchr ( r4,

q

f etch(r6, q)
f etchr ( r8,

q

v , ml ) , m, q )
=

xtmemaddr ( m)
rem ( v , ml

,
q ) )

,

r(v,i),m,q) =

xtmemaddr (m )

,

o, v

o, v,

, f etchr (r2, q) ) , r3, q) )

;

,m,q) =

o, f etchr ( r 1 , q)

,

, f etchr ( r3, q )

,

. , r5, q) ) ;

4, r5, r6) , m, q) =

o, f etchr ( r 1 ,

q

, f etchr (r3, q)
, f etchr ( r5, q

)

r6,q) )

;

r5, r6, r7) , m,

q

o, f etchr ( r 1 ,

q

, f etchr ( r3, q

)

, f etchr ( r5, q)
r7,q))

;

, r5 , r6 , r7, r8) , m, q) =

o, f etchr ( r 1 , q
, f etchr (r3 t q)
, f etchr ( r5, q

)

f etchr ( r7, q )

,

,r8,q) )

;

r5, r6, r7, r8, r9 )

,

o, f etchr ( r 1 ,
q )

,

, f etchr ( r3, q)

,

, f etchr ( r5, q )

,

f etchr (r7, q)

,

,r9,q))

;

m q) =
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storem(v,offset(i,ra),q) )

;

exq(movi_r(v,r),rn,q) =

prog(nextmemaddr(rn) ,

storem ( v, r ,
q) ) ;

exq (movi_r i ( v , r ) , m, q) =

prog(nextmemaddr(m)

,

storem( v, atomof memaddr ( f etchr ( r , q) , q) )

;

exq (movi_r id (

v

f r , n) , m, q) =

prog(nextmemaddr(m)

,

storem(v, offset (

n,atomofmemaddr(fetchr(r,q) ,q) )

;

exq(movi_r idn( v, r, i 1 , i2) , m, q) =

prog(nextmemaddr(m)

,

storem(v,offset(i2, indi r

(

il,atomofmemaddr(fetchr(r,q),q) ) ;

exq (mov_m_m (ml , m2) , m, q) =

prog(nextmemaddr (m)

,

storem(fetchm(ml,q) ,m2,q) )

;

exq <mov_m_r (ml , r ) , m, q ) =

prog(nextmemaddr(m)

,

storem(fetchm(ml, q) , r, q) )

;

q(mov_m_ri(ml,r),m,q) =

prog(nextmemaddr(m)

,

storem(fetchm(ml, q)

,

atomofmemaddr(fetchr(r, q) , q) )

;

exq(mov_m_r i d (ml , r, n) , m, q) =

prog(nextmemaddr(m)

,

ex

exq

prog(nextmemaddr(m) ,

storem(fetchm(ml, q) , offset(
n, atomofmemaddr(fetchr(r, q) , q) )

;

(mov_m_r idn (ml , r , i 1 , i2) , m, q) =

prog(nextmemaddr(m)

,

storem(fetchm(ml,q),offset(i2,indir(
il,atomofmemaddr(fetchr(r,q),q) )

;

exq (mov_pcr_pcr ( i 1 , i2) , m, q) =

prog(nextmemaddr (m)

,

5 torem (f etchm ( of f set ( il , m) , q)

,

of f set ( i2, m) ,
q) ) ;

e x q ( m o v_p c r _r (il,r),m,q) =

prog(nextmemaddr (m)

,

storem(fetchm(offset(il,m),q), r , q ) )

;

exq (mov_pcr_r i ( i 1 , r ) , m, q) =

prog(nextmemaddr(m) ,

storem(fetchm(offset(il,m) , q) ,

atomofmemaddr(fetchr(r,q) ,q) )

;

exq (mov_pcr__r id ( i 1 , r , i2) , m, q) =

prog(nextmemaddr(m)

,

storem(fetchm(offset( il , m) , q) , offset(
i2,atomofmemaddr(fetchr(r,q),q) ) ;

exq(mov_pcr_ridn(il,r,n, i2) , m, q) =

prog(nextmemaddr(m) ,
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exq(mov
pro

exq (mov
pro

exq (mov
pro

exq (mov
pro

exq (mov
pro

storem( f etchm (of fset < i 1 , m) , q) , of f set< 12,

indir(n,atomofmemaddr(fetchr(r,q),q) )

;

_r_m(rl,ml),m,q) =

g(nextmemaddr(m)

,

storem(fetchr(rl,q) ,ml,q) )

;

_r_pcr ( rl , i ) , m, q) =

g(nextmemaddr(m) ,

storem(f etchr (rl, q) , of f set( i ,m) , q) )

;

_r_r ( r 1 , r2) , m, q) =

g(nextmemaddr(m)

,

storem(fetchr(rl,q), r2,q) )

;

_r_r i ( rl , r2) , m, q) =

g(nextmemaddr(m)

,

storem(fetchr(rl, q) ,

atomofmemaddr(fetchr(r2,q),q) )

;

_r_rid(rl,r2,n),m,q) =

g ( nex tmemaddr (m )

,

exq (mov
proj

exq (mov
pro

exq (mov
pro

exq (mov
pro

exq (mov
pro

exq (mov
pro

exq (mov
pro

;(nextmemaddr(m) ,

storem(fetchr (rl
, q) , of f set ( i2, indir (

il,atomofmemaddr(fetchr(r2,q),q));

_ri_m(rl,ml),m,q) =

g ( nex tmemaddr ( m )

,

storem( fetchm (atomofmemaddr ( fetchr ( rl
,
q ) , q)

,

ml ,
q) ) ;

_ri_pcr ( rl , i ) , m, q) =

g(nextmemaddr(m) ,

storem(fetchm(atomofmemaddr (fetchr ( rl
,
q)

,
q) ,

of f set C i , m) ,
q) )

;

_ri_r(rl,r2),m,q) =

g(nextmemaddr(m) ,

storer(fetchm(atomofmemaddr(fetchr(rl,q),q),
r2,q))

;

_ri_ri(rl,r2),m,q) =

g(nextmemaddr(m) ,

storem( fetchm (atomofmemaddr (fetchr(rl,q),q),
atomofmemaddr(fetchr(r2,q)),q));

_r i _r id(rl,r2,n),m,q) =

g ( nex tmemaddr ( m )

,

storem(fetchm(atomofmemaddr(fetchr(rl,q) ,q)

,

offset(n,atomofmemaddr(fetchr(r2,q) ) ,q) )

;

_r i_r i dn ( r 1 , r2, i 1 , i2) , m, q ) =

g(nextmemaddr(m) ,

storem( fetchm (atomofmemaddr (fetchr(rl,q),q),
offset(i2, indir(
i

1

f atomofmemaddr (fetchr Cr2 t q) ) ) ,q) )

;

exq (mov_r id_m( rl, il,ml),m,q)
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prog (nextmemaddr (m)

,

storem ( fete hm( offset (il,
atoinof memaddr ( f etchr ( r 1 , q ) ) ) , q) ,ml,q) ) ;

exq(mov_r id_pcr ( rl , i 1

,

i2) , m, q) =

prog (nextmemaddr ( m)

,

storem(fetchm(offset( il,

atomofmemaddr(fetchr(rl,q))),q),
of f set ( i2, m) ,

q) )

;

exq(mov_r id_r ( rl , n, r2) , m, q) =

prog (nextmemaddr (m)

,

storer(fetchm(offset(n,
atomofmemaddr (f etchr (rl,q))),q),r2,q));

exq(mov_r id_r i ( rl , i , r2) , m, q) =

prog (nextmemaddr (m)

,

storem ( f etchm ( of f set ( i

,

atomofmemaddr(fetchr(rl,q) ) ) , q) ,

atomof memaddr ( f etchr ( r2, q) ) ,
q) )

;

exq(mov_rid_rid(rl, il , r2, i 1 ) , m, q) =

prog (nextmemaddr (m)

,

storem( fete hm( offset ( il,

a tomof memaddr (fetchr(rl,q) ) ) , q)

,

offset( il, a tomof memaddr (fetchr(r2,q)),q));
exq(mov_r id_r idn(rl,r2,il,i2,i3),m,q) =

prog (nextmemaddr (m)

,

storem(fetchm(offset( il,

atomof memaddr ( f etchr ( r 1 ,
q ) ) ) ,q)

,

offset(i3, indir(
i2,atomofmemaddr(fetchr(r2,q) ) ) ) ,

q) )

;

exq(mov_r idn_m
prog (nex tm

storem
indi r

(

f etchr
exq(mov_ridn_p

prog (nex tm
storem
indi r

(

of f set
exq(mov_ridn_r

prog (nex tm
storer
indi r

(

f etchr
exq(mov_ridn_r

prog ( nex tm
storem
indi r

(

atomof
exq(mov_ridn_r

prog (nex tm
storem

(rl,n,il,ml),m,q) =

emaddr (m)

,

(f etchm(of f set ( i 1

,

n, atomofmemaddr

(

(rl,q) ) ) ),q) ,ml,q) )

;

cr ( rl , n, i 1 , i2) , m, q) =

emaddr ( m)

,

(fetchm(offset( il,

n, atomofmemaddr (fetchr(rl,q) ) ) ),q),
( i2, m) ,

q) )

;

( rl, i 1, i2, r2) , m, q) =

emaddr ( m)

,

(f etchm (of f set < 12,
i 1, atoinofmemaddr (

(rl,q) ) ) ) ,q), r2,q) )

;

i ( r 1 , i 1 , i2, r2) , m, q) =

emaddr (m )

,

(f etchm(of f set ( i2,
i 1 , atomofmemaddr ( f etchr ( rl

,
q) ) ) ),q),

memaddr(fetchr(r2,q) ) ,q) )

;

id(rl, i 1 , i2, r2, i3) , m, q) =

emaddr (m)

,

(fetchm(offset( i2,
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indir(il,atomofmemaddr(fetchr(rl,q) ) ) ),q),
offset ( i3, atomof memaddr (fetchr(r2, q) ) ,

q) )

;

exq(mov_ridn_ridn (rl,r2,il,i2,i3,i4),m,q) =

prog(nextmemaddr(m)

,

storem(fetchm(offset( i2,
indir(il,atomofmemaddr(fetchr(rl,q) ) ) ) , q )

,

of f set ( i4, indir (

i3,atomofmemaddr(fetchr(r2,q) ) ) ) ,q) )

;

exq ( push_i ( v, s ) , m, q) =

prog(nextmemaddr(m)

,

pushstk ( v , s ,
q) )

;

exq
( push_ra (ml , s ) , m, q) =

prog (nextmemaddr (m)

,

pushstk(fetchm(ml, q) , s, q) )

;

exq ( push_pcr ( i , s ) , m, q ) =

prog (nextmemaddr (m)

,

pushstk(fetchm(offset(i,m) , q) , s, q) )

;

exq ( push_r ( r , s ) , m, q ) =

prog (nextmemaddr ( m)

,

pushstk(fetchr(r,q), s,q) )

;

exq ( push_r i ( r , s ) , m, q) =

prog(nextmemaddr(m)

,

pushstk(atomofmemaddr(fetchr(r,q)),s,q));
exq ( push_r id ( r , n, s ) , m, q) =

prog(nextmemaddr(m)

,

pushstk ( f etchm( of f set (n,

atomofmemaddr (fetchr (r, q) ) ) , q) , s ,
q) )

;

exq ( push_r i dn( r , i 1 , i2, s ) , m, q) =

prog(nextmemaddr(m)

,

pushstk(fetchm(offset( i2, indir( i 1,

atomofmemaddr (fetchr(r,q) ) ) ) ,q) ,s,q) )

;

exq ( pop_x ( s ) , m, q ) =

prog(nextmemaddr(m) ,

pops tk ( s ,
q) )

;

exq ( pop_m ( s , ml ) , m, q ) =

prog ( nextmemaddr (m)

,

popstk(s, storern(topstk(s, q) f ml f q) ) ) ;

exq
( pop_pcr ( s, i ) , m, q ) =

prog(nextmemaddr(m)
,

popstk(s, storem(topstk(s, q)

,

of f set (i,m),q)));
exq ( pop_r ( s , r ) , m, q) =

prog(nextmemaddr (m)

,

popstk(s,storer(topstk(s,q), r,q) ) ) ),m,q)

;

exq ( pop_r i ( s , r ) , m, q) =

prog(nextmemaddr(m) ,

popstk(s, storem(topstk(s, q)

,

atomofmemaddr (fetchr (r, q) ) ,
q) ) )

;

exq ( pop_r i d ( s, r , n) , m, q) =

prog ( nex tmemaddr (m)

,

popstk(s, storem(topstk(s,q) ,offset(n,
atomofmemaddr ( fetchr ( r, q) ) ) ,

q) ) )

;
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exq( pop_r idn( s,
prog (nextme

popstk

(

indi r (

i

exq (nop, m, q) =

prog (nextme
exq ( stop, m, q) =

prog (ra, q) =

exq( jmp (ml ) , m,

q

prog(ml , q) ;

exq ( jmp_i (ml ) ,

m

prog (atomof
exq ( jmp_r ( r ) , m,

prog (atomof
exq( bra( n) , m, q)

prog (offset
exq( bra_r ( r ) , m,

prog

(

offset
nex tmemaddr

exq ( i f (o, rl , r2,
prog ( cond (a
ml , nextmema

exq (ifi(o,r,v,m
prog ( cond (a
ml , nextmema

exq(ifte(o,rl,r
prog ( cond (a
ml , m2) , q)

;

exq (iftei(o,r,v
prog (cond (a

r, i 1 , i2) , m, q) =

maddr (m)

,

s,storem(topstk(s,q),offset(i2,
1 , atomof memaddr ( fetchr ( r, q) ) ) ) ,

q) ) )

;

maddr (m)
, q)

;

q;
) =

,q> =

memaddr (fetchm (ml y q) ),q)

;

q) =

memaddr(fetchr(r,q) ),q)

;

(n, nextmemaddr(m) ) ,q)

;

q) =

(atomofint(fetchr(r,q)),
(m) ) , q)

;

ml ) , m, q) =

pplyrop(o, fetchr(rl, q) , fetchr (r2, q) )

,

ddr (m) ) , q)

;

1 ) , m, q ) =

pplyrop(o, fetchr (r, q) , v,
ddr ( m ) ) , q)

;

2, ml , m2) , m, q ) =

pplyrop(o, fetchr(rl, q) , fetchr(r2, q)

,

, ml , m2) , m, q) =

pplyrop(o,fetchr(r,q),v,ml,m2),q);

exq ( i f _pcr ( o, r 1 , r2, n) , m, q ) =

prog(cond(applyrop(o, fetchr(rl,q) , fetchr(r2,q),
offset(n, nextmema ddr (m) ) , nextmemaddr(m) ) , q)

;

exq ( i f i_pcr ( o, r , v, n ) , m, q ) =

prog(cond(applyrop(o, fetchr(r, q) , v)

,

offset(n,nextmemaddr(m)),nextmemaddr(m)),q);
exq( i f te(o, rl , r2, i 1 , i2) , m, q) =

prog(cond(applyrop(o, fetchr(rl, q) , fetchr (r2, q)

,

of f set ( i

l

y nextmemaddr (m) )

,

offset(i2,nextmemaddr(m) ) ) ,q)

;

exq( i f tei (o, r, v, ml , m2) , m, q ) =

prog(cond(applyrop(o, fetchr (r, q) , v)

,

offset(il,nextmemaddr(m) ),

offset(i2,nextmemaddr(m))),q) ;

exq ( tes t ( o, r 1 , ml ) , m, q) =

prog(cond(applybop(o, fetchr (rl,q) )

,

ml , nextmemaddr (m) ) , q)

;

exq( testm (o, m2, ml ) , m, q) =

prog(cond(applybop(o, fetchm(m2, q) )

,

ml , nextmemaddr (m) ) ,q)

;

exq( teste ( o, rl , ml , m2) , m, q) =
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prog ( cond (app lybop (o, fetchr(rl,q) ) ,

ml , m2 ) ,
q )

;

exq ( testme ( o, m3, ml , m2) , m, q) =

prog(cond(applybop(o, f etchm ( m3, q) )

,

ml , m2) , q)

;

exq ( test_pcr ( o, r 1 , n) , m, q) =

prog(cond(applybop(o, fetchr(rl,q) )

;

of fset(n, nextmemaddr (m) )

,

nex tmernaddr (m) ) ,
q )

;

exq ( testm_pcr ( o, m2, n) , m, q) =

prog(cond(applybop(o, fetchm(m2, q) )

;

of fset (n, nex tmemaddr (m) ) ,

nextmemaddr (m) ) , q)

;

exq ( testejpcr ( o, rl , i 1 , i2) , m, q) =

prog(cond(applybop(o, fetchr(rl,q) )

;

offset(il,nextmemaddr(m) ),

offset( i2, nextmemaddr(m) ) ) , q)

;

exq ( testme_pcr ( o, m3, i 1 , i2) , m, q) =

prog(cond(applybop(o, fetchm(m3,q) )

;

offset( i 1 , nextmemaddr(m) )

,

offset( i2, nextmemaddr(m) ) ) ,
q)

exq ( j sr (ml , s ) , m, q ) =

prog(ml, pushstk(
valofmemaddr(nextmemaddr(m) ) , s,q) )

;

exq(jsr_i(ml,s),m,q) =

prog(atomofmemaddr( f etchm (ml
,
q ) )

,

pushstk(valofmemaddr(nextmemaddr(m) ) , s,q) )

;

exq(jsr_i(rl,s),m,q) =

prog ( atomof memaddr Cf etchr (rl, q) )

,

pushstk(valofmemaddr (nextmemaddr (m) ) , s ,
q) )

;

exq (bsr (n, s ) , m, q) =

prog(offset(n, nextmemaddr (m) )

,

pushstk(valofmemaddr( nextmemaddr ( m) ) , s ,
q) )

;

exq(bsr_r(r,s),m,q) =

prog(offset(atomofint(fetchr(r,q) )

,

nextmemaddr (m) )

,

pushs tk (valofmemaddr(nextmemaddr(m) ),s,q) )

;

exq (rts(s),m,q) =

prog(atomofmemaddr ( topstk (s, q) ) ,
popstk(s, q) )

;

exq ( open ( s ), m, q ) =

prog(nextmemaddr(m) , openfi le(
atomofstr.char(topstk(s,popstk(s,popstk(s,

popstk ( s ,
q) ) ) ) )

,

atomoffi le(topstk(s,popstk(s,popstk(s,q)) ) ),

atomofint(topstk(s, popsstk(s, q) ) )

,

atomofint(topstk(s, q)

,

popstk ( s ,
q ) ) )

;

exq ( c 1 ose ( s ) , m, q) =

prog(nextmemaddr(m),closefile(
atomoffi le(topstk(s,q) )

,

popstk ( s ,
q ) ) )

;

exq ( read ( s ), m, q ) =
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end am;
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APPENDIX B: COMPLETE SPECIFICATION OF A SUBSET OF

THE ABSTRACT PROCESSOR

Resource intructions is

Extension of
natura 1

,

integer

,

memaddress

,

regaddress

,

stkaddress

,

operatorc lasses,
intructiontype,
typing

Operands

Operators
monad: mop, regaddr , regaddr -> instr;
dyad: dop, regaddr , regaddr , regaddr -> instr;
triad: top, regaddr , regaddr , regaddr , regaddr -> instr;
mov_m_r : memaddr , regaddr -> instr;
mov_r_m: regaddr , memaddr -> instr;
mov_r_r: regaddr, regaddr -> instr;
push_r: regaddr , stkaddr -> instr;
pop_r : stkaddr , regaddr -> instr;
jmp_r: regaddr -> instr;
if: re 1 op, regaddr , regaddr , memaddr -> instr;
jsr: memaddr , stkaddr -> instr;
rts: stkaddr -> instr;

Properties

end intructions;

Resource amstate is

Extension of
boo 1 ean,
natura 1

,

integer

,

str(character) ,

memaddress

,

regaddress

,

f i 1 es

,

i dent i f i er s

,

typing
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Static
Operands

state

;

Operators
f etchm:
f etchr

:

storem:
storer

:

topstk

:

pushs tk

:

popstk

:

ini tarn:

ini tstk :

memaddr , state -> val;
regaddr , state -> val;
va 1 , memaddr , state -> state;
va 1 , regaddr , state -> state;
stkaddr, state -> val;
va 1 , stkaddr, state -> state;
stkaddr , state -> state;
-> state;
stkaddr , state -> state;

active: memid, state -> bool;

Properties
topstk ( s , ini ts
popstk ( s, ini ts
popstk ( s , ini ta
stateax iom (m,

m

stateax iom ( r , r

topstk ( s ( push
popstk ( s ( pushs
act i ve (m, ini ta
active (m, store
act i ve (m, store
active (m, ini ts
act i ve (m, pushs
active (m, popst
i f act i ve (m, q

)

then
f etchm ( off

endi f ;

i f act i ve (m, q)
then

storem ( v ,

o

endi f ;

if 1 t int (n, nto
then

offset (n,

o

1 a 1 1 oc
of f set
s tar tm

e 1 se
of f set (n,

o

1 a 1 1 oc
endi f ;

indi r ( zeronat

(

if whattype(fe
then

tk(s)) is undefined;
tk(s)) is undefined;
m()) is undefined;
emaddr )

;

egaddr )

;

stk ( v, s ,
q) ) = v;

tk ( v, s, q) ) = q;
m( ) ) = false( )

;

r(v,r,q)) = active(m,q);
m(v,a,q)) = active(m,q);
tk(s,q)) = active(m,q);
tk(v,s,q) = active(m,q);
k(s,q) = active(m,q);
= falseO

set(n,m),q) is undefined;

= f a 1 se ( ) ;

f f set (n, m ) ,
q) is undefined;

i(n2)> = trueO

f f set (nl , startmemaddr(
(n2,q) ) ) ) =

( sumint (n, nl )

,

emaddr

(

lal loc(n2,q) ) )

;

f f set ( nl , star tmemaddr

(

(n2,q)))) is undefined;

) , m) = m

;

tchm

(

ind i r ( n, m) , q ) = typememaddr (

)
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indi r ( succnat (n) , m ) =

a torn of memaddr (fetchm(indir(n,m),q) )

;

else
indi r ( succnat (n) , m) is undefined;

endi f

;

Dynamic
Entry Places

req_f etchra (netlabel ) [memaddr. state]

;

req_s tor em (netlabel ) Cval .memaddr. state]

;

req_f etchr (netlabel ) Cregaddr. state]

;

req_storer (netlabel ) Cval . regaddr. state]

;

req_topstk (netlabel ) Cstkaddr. state]

;

req_pushstk (netabel

)

Cval , stkaddr. state]

;

req_popstk (netlabel ) Cstkaddr. state]

;

req_initstk(netl abe 1

)

Cstkaddr. state]

;

req_ini tam ( ) C

]

Exit Places
avai l_fetchm(netlabel ) Cval ]

;

avai
1
_storem (netlabel ) Cstate]

;

avai l_fetchr(netlabel ) Cval ]

;

avai
1
_storer (netlabel ) Cstate] ;

avai l_topstk(netlabel ) Cval ]

;

avai
1
_pushs tk (net 1 abe 1 ) C state ] ;

avai l_popstk(netlabel ) Cstate]

;

avai l_initstk(netlabel ) Cstate]

;

avai l_initamCstate] ;

Internal Places
access_avai 1 C ]

;

fetchm_for(netlabel ) C ] ;

f etchm_act i vated C memaddr . state ] ;

f etchm_comp letedCval ]

;

storem_f or (netlabel ) C ] ;

storem_act i vatedCval . memaddr. state]

;

storem_comp letedCstate] ;

access_avai 1 C ]

;

fetchr_for(netlabel ) C ]

;

f e t c h r _activatedCregaddr. state]

;

f e t c h r _completedCval];
storer_for (netlabel ) C ]

;

storer_acti vated Cval . regaddr. state]

;

storer_comp 1 eted C state ]

;
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accessk_avai 1 C ]

;

tops tk_f or (net label ) C ]

;

topstk_acti vatedC stkaddr .state]

;

topstk_comp 1 eted C va 1 ]

;

pushstk_for(netlabel ) C ]

;

pushstk_acti vatedC val . stkaddr. state]

;

pushstk_comp letedCstate] ;

popstk_f or (net 1 abe 1 ) C ]

;

popstk_act i vatedC stkaddr. state];
popstk_comp 1 eted C state ]

;

initstk_for( net label ) C ]

;

ini tstk_acti vatedC stkaddr. state];
ini tstk_comp letedCstate] ;

Initial State
=> accessm_avai 1 C ]

;

=> accessr_avai 1 C ]

;

=> accessk_avai 1 C ]

;

Transitions
act_fetchm: C memaddr . state ], C ] -> Cmemaddr . state ], C ]

;

perf orm_f etchm : Cmemaddr . state ] -> C va 1 ]

;

f inish_f etchm : Cval],C] -> Cval],C];
act_storem: C va 1 . memaddr. state ], C ] ->

Cval .memaddr. state] , C ]

;

perf orm_s torem : C va 1 . memaddr . state ] -> Cstate];
f ini sh_s torem : Cstate], C] -> Cstate], C];

act_fetchr: C regaddr . state ], C ] ->

Cregaddr. state] , C ]

;

perf orm_f etchr : C regaddr . state ] -> Cval];
f inish_f etchr : [val], £] -> Cval],C];
act_storer: C va 1 . regaddr. state ], C ] ->

Cval . regaddr. state], C ]

;

perf orm_s torer : C va 1 . regaddr . state ] -> Cstate];
f inish_storer : Cstate], C] -> Cstate], C];

act_topstk: C stkaddr . state] , C ] ->

Cstkaddr. state] , C ]

;

perf orm_tops tk : C stkaddr . state ] -> Cval];
f ini sh_topstk : Cval], [] -> Cval],C];
act_pushstk: C va 1 . stkaddr . state ], C ] ->

Cval . stkaddr. state] , C ]

;

perf orm_pushs tk : C va 1 . stkaddr . state ] -> Cstate];
f inish_pushstk : Cstate], C] -> Cstate], C];
act_popstk: [ stkaddr . state] , C ] ->

Cstkaddr. state], C]

;

perf orm_pops tk : C stkaddr . state ] -> Cstate];
f inish_popstk : Cstate], C] -> Cstate], C];

115



act_initstk: C stkaddr . state] , C ] ->

Cstkaddr. state] , C ]

;

perf orm_ini ts tk : [ stkaddr . state ] -> Estate];
f inish_ini tstk : [state], [] -> [state], [];

perf orm_ini tam : [] -> [state];

Properties
act_f etchm ( req_f etchm ( 1 ) [m. q] , accessm_avai 1 [ ] ) =>

f etchm_f or ( 1 ) [ ] , f etchm_acti vated [m. q ]

;

pe rform_f etchm ( fetchm_acti vated [m. q] ) =>
f etchm_comp 1 eted[ v ] ;

f ini sh_f etchm ( f etch_comp 1 eted [ v ] , fetchm_for(l)[])
= > avai

1
_f etchm ( 1 ) [v ] , accessm_avai 1 [ ]

;

act_s torem ( req_storem ( 1 ) [ v. m. q] , accessm_avai 1 [ ] ) =>
storem_for( 1 ) [ ] , s torem_act ivatedCv.m.ql;

perf orm_s torem ( s torem_act i vated C v. m. q] ) =>
s torem_comp 1 eted [ q]

;

f ini sh_s torem ( s torem_comp 1 eted [ q]

,

s torem_f or ( 1 ) [ ] ) =>
avai l_storem( 1 ) [q], accessm_avai 1 [ ]

;

act_f etchr ( req_f etchr ( 1 ) [
. q] , accessr_avai 1 [ ] ) =>

fetchr_for ( 1 ) [ ] , fetchr_activated[ . q]

;

perform_f etchr ( f etchr _acti vated[.q]) =>

fetchr_completed[v]

;

f in ish_f etchr ( f etch_comp 1 eted [ v ] , fetchr_for(l)[])
= > avail_fetchr(l)[v], accessr _a v a i 1 [ ]

;

act_storer(req_storer( I ) [v.
. q] , accessr_avai 1 [ ]

)

= > storer_f or ( 1 ) [ ] , storer_acti vated [ v .. q ]

;

perf orm_s tor er ( storer_acti vated [ v. . q ] ) =>

s t o r e r _completed[q] ;

finish_storer( s torer_comp I etedCq]

,

storer_for(l)[]) => avail_storer(l)[q],
accessr_avai 1 [ ]

;

act_tops tk
topstk

per f orm_to
topstk

f ini sh_top
avai

1

_

act_pushst
= > pus

perf orm_pu
pushs

t

f ini sh_pus
= > ava

act_pops tk
popstk

perf orm_po
popstk

( req_tops tk ( 1 ) [ s
.
q ] , accessk_ava i 1 [ ] ) =>

_for(l)[], topstk _activated[s.q];
pstk(topstk _activated[s.q]) =>

_comp 1 eted [ v ]

;

stk(topstk _completedEv], topstk_for(l)[] =>

topstkC 1 ) [v]

;

k ( reqjushs tk ( 1 ) [ v . s . q ] , accessk_avai 1 [ ] )

hstk_for(l)[], pushs tk_act ivated[v. s. q]

;

shs tk ( pushs tk_acti vated [ s . q ] ) =>

k_comp 1 etedCql ] ;

hs tk
(
pushs tk_comp leted[ql],pushstk_for( 1 ) [

]

i l_pushstk( 1 ) [ql]

;

( req_pops tk ( 1 ) [ s
. q] , accessk_avai 1 [ ] ) =>

_for( 1 ) [ ], popstk_activated[s. q]

;

pstk(popstk _activatedCs.q] ) =>

_comp 1 eted [ ql ]

;
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f inish_popstk(popstk_compl etedCql],popstk_for(l)C] =>

avai
1
_popstk ( 1 ) Cql 1 ;

act_ini tstk ( req_ini tstk ( 1 )[ s. q] , accessk_avai 1 [ ] ) =>

initstk_for( 1 ) C 3 , initstk_activated[s.q]

;

perf orm_ini tstk(initstk_activatedCs.q]) =>
ini tstk_comp letedCql];

f inish_ini tstk ( ini tstk_compl etedtql 3 , ini tstk_f or ( 1 ) C

]

= > avai 1 _ini tstk ( 1 )[ ql 3

;

perf orm_ini tarn ( req_ini tamC 3 ) => avai l_ini tamC state ]

;

end amstate;

Resource am is

Extension of
memaddress

,

intructiontype,
typing,
amstate

Operands
prog: memaddr , state -> state;

cond : va 1 , memaddr , memaddr - memaddr;
exq: ins tr , memaddr , state -> state;

Operators
prog(m,q) = exq(atomof instr ( f etchm (m, q) ) , m, q)

;

cond (va 1 of boo 1 ( true (), m, m2) ) = m;
cond ( val of bol 1 ( f al se ( ) , m, m2) ) = m2

;

Properties
exq (monad ( o, r , r2) , m, q) =

prog(nextmemaddr(m)

,

storer(applymop(o, f etchr (r , q) ),
r2,q));

exq (dyad ( o, r , r2, r3) , m, q) =

prog(nextmemaddr(m)

,

storer(applydop(o,
f etchr ( r,q), fetchr(r2,q) ) , r3,q) )

;

exq( triad(o, r, r2, r3, r4) , m, q) =

prog (nextmemaddr(m)

,

storer(applytop(o, f etchr (r, q)

,

f etchr (r2, q) , f etchr (r3, q) ) , r4, q) )

;

exq (mov_m_r (m, r ) , m, q) =

prog(nextmemaddr(m)
,

storem(fetchm(m,q),r,q))
;

exq(mov_r_m(r,m),m,q) =

prog(nextmemaddr(m)
,

storem(fetchr(r,q),m,q) )

;
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Dynamic
Entry Places

req_prog Cmemaddr. state]

;

req_exq (netlabel ) [instr.memaddr. state]

;

req_cond (netlabel ) Cval .memaddr.memaddr] ;

Exit Places
avai

1
_exq (netlabel ) Cmemaddr. state]

;

avai
1
_cond (netlabel ) Cmemaddr]

;

Internal Places
prog_avai 1 C ]

;

prog _f etch Cmemaddr. state]

;

prog_instrCmemaddr. state]

;

prog_per f ormC

]

exq_ava i 1 C ]

;

exq_for(netlabel ) C ]

;

exq_monad_act i vated C state]

;

exq_monad_f etch C state ]

;

exq_monad_app lyCstate] ;

exq_monad_s tore C ]

;

exq_dyad_act i vatedCstate] ;

exq_dyad_fetchC state]

;

exq_dyad_app
1 y C state ]

;

exq_dyad_s tore C ]

;
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exq_tr iad_act i vatedC state ]

;

exq_triad_f etchC state]

;

exq_tr iad_appl yC state]

;

exq_triad_storeC ]

;

exq_mov_r_r_act i vatedCstate]

;

exq_raov_r_r_perf ormC state]

;

exq_mov_r_r_storeC ] ;

exq_mov_r_m_act i vated [ state ]

;

exq_mov_r_m_perf ormC state]

;

exq_mov_r_m_store [ ]

;

exq_mov_m_r_act i vatedCstate]

;

exq_mov_m__r_perf orm [state ] ;

exq_mov_m_r_store C ]

;

exqjpush_r_act i vated [state ]

;

exq_push_r_perform[ state ]

;

exq_push_r_push[ ]

;

exq_pop_r_act i vatedCstate]

;

exq_pop_r_perform[ state ]

;

exq_pop_r_store [ ]

;

exq_pop_r_pop[ ]

;

exq_jmp_r_act i vatedCstate]

;

exq_jmp_r_perf orm [state ]

;

exq_jmp_r_conver

t

ing [ state ]

;

exq_if_activated[state]

;

exq_i f_fetch[ state ]

;

exq_i f_cond[state]

;

cond_acti vated [memaddr . memaddr ]

;

Initial State
= > prog_avai 1 [ ]

;

= > exq_avai 1 [ ] ;

= > cond_avai 1 [ ] ;

Transitions
act i vate_prog : [], [memaddr . state ] ->

[memaddr. state], [memaddr. state]

;

get_instr_prog: [memaddr. state]

,

Cval ]

[memaddr. state] , Cval ]

;

perf orm_prog : [memaddr . state ] , [instr]
[], [instr. memaddr. state];

finish_prog: C ], C memaddr . state ] ->

C ] , [memaddr. state]

;

->

->
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act i vate_exq_monad : [ instr . memaddr . state ], C ] ->

Estate], C instr 1 , Cinstr], [instr ] , [memaddr];
start_exq_monad : [ state] ,[ regaddr ] , ->

[state], [regaddr. state]

;

a PP 1 y_exq_monad : [ state] , [operator ],[ va 1 ] ->

[state] , [operator. val ]

;

s tore_exq_monad : [ state ],[ va 1 ],[ operator ] ->

[ ] , [val . regaddr. state]

;

f ini sh_exq_monad : [],[ state ], [memaddr ] ->

[memaddr. state]

;

act i vate_exq_dyad : [ instr . memaddr . state ],[ ] ->

[state], [instr], [instr], [instr], [instr], [memaddr];
start_exq_dyad : [ state] ,[ regaddr ],[ regaddr ] ->

[state] , [regaddr. state] , [regaddr. state]

;

a PP 1
y_exq_dyad : [ state ],[ operator ],[ va 1 ],[ va 1 ] ->

[state], [operator. val , val ]

;

s tore_exq_dyad : [ state ],[ va 1 ],[ regaddr ] ->

[ ] , [val . regaddr. state]

;

f ini sh_exq_dyad : [],[ state ], [memaddr ] ->

[memaddr . state ]

;

act i vate_exq_tr iad : [ ins tr . memaddr . state ],[ ] ->

[state], [instr], [instr], [instr], [instr],
[ instr] , [memaddr]

;

star t_exq_tr iad : [ state ],[ regaddr ],[ regaddr ],[ regaddr ] ->

[state], [regaddr. state], [regaddr], [regaddr]

;

app
1
y_exq_tr iad : [ state ],[ operator ],[ va 1 ],[ va 1 ],[ va 1 ] ->

[state] , [operator. val . val . val ]

;

store_exq_tr iad : [ state ],[ va 1 ],[ regaddr ] ->

[ ] , [val . regaddr. state]

;

f ini sh_exq_tr iad : [],[ state ], [memaddr ] ->

[memaddr. state]

:

act i vate_exq_mov_r_r : [ instr. memaddr. state], []

[state], [instr], [instr], [memaddr];
star t_exq_mov_r_r : [start], [regaddr] ->

[state] , [regaddr. state]

;

store_exq_mov_r_r : [ state ],[ regaddr ],[ va 1 ] ->

[ ], [val . regaddr. state]

;

f ini sh_exq_mov_r_r : [],[ state ],[ memaddr ] ->

[memaddr. state]

;

->

act i vate_exq_mov_r_m : [instr. memaddr. state], []

[state], [instr], [instr], [memaddr]

;

s tar t_exq_mov_r_m : [ star t ],[ regaddr ] ->

[state], [regaddr. state]

;

store_exq_mov_r_m : [ state ], [memaddr ],[ va 1 ] ->

[ ] , [ va 1 . memaddr . state ]

;

f ini sh_exq_mov_r_m : [],[ state ], [memaddr ] ->

[memaddr. state]

;

->
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act i vate_exq_mov_m_r : [ instr. memaddr. state ], C ] ->

[state], Cinstr], [instr], [memaddr]

;

s tart_exq_mov_m_r : [ star t ], [memaddr ] ->

[state], [regaddr. state]

;

store_exq_mov_m_r : [ state ],[ regaddr ],[ va 1 ] ->

[], [val. regaddr. state]

;

f ini sh_exq_mov_m_r : [],[ state ], [memaddr ] ->

[memaddr. state] ;

act i vate_exq_push_r : [ instr . memaddr . state ],[ ] ->

[state], [ instr], [ inestr ] , [memaddr]

;

f etch_exq__push_r : [ state 1,1 regaddr ] ->

[state], [regaddr. state]

;

push_exq_push_r : [ state ],[ va 1 ],[ stkaddr ] ->

[ ] , [stkaddr. state] ;

f inish_exq_push_r : [],[ state ], [memaddr ] ->

[memaddr. state] ;

act i vate_exq_pop_r : [ instr. memaddr. state], [

]

[state] , [ instr] , [ instr] , [memaddr] ;

pop_exq_pop_r : [ state ],[ stkaddr ] ->

[state] , [stkaddr. state]

;

store_exq_pop_r : [ state ],[ va 1 ],[ regaddr ] ->

[stkaddr], [stkaddr. state];
top_exq_pop_r : C stkaddr ], C state] ->

[ ] , [stkaddr. state] ;

f ini sh_exq_pop_r : [],[ state ],[ memaddr ] ->

[memaddr. state] ;

->

act i vate_exq_jmp_r ([instr. memaddr. state], [])
[ state ],[ instr ] ;

fetch_exq_jmp_r ([ state ] , [regaddr] ->

[state], [regaddr. state]

;

convert_exq_jmp_r ([state], [val]) ->

[ state ] , [ va 1 ]

;

f ini sh ([ state 3 , [memaddr 3 ) ->

[memaddr. state] ;

->

act i vate_cond ( [ 3 , [val. memaddr. memaddr]) ->

[memaddr.memaddr3, [val 3

;

f ini sh_cond ([memaddr.memaddr3,[bool3) ->
[ memaddr 3

;

acti vate_exq_i f([3, [instr. memaddr. state3) ->

[3, [ state 3 , [ ins tr 3 , C instr 3 , [instr], [memaddr];
start_exq_if ( [state], [regaddr], [regaddr] ) ->

[regaddr. state], [regaddr. state];
aPP 1 y_exq_i f ([state], [val], [val], [operator]) ->

[state] , [operator. val . val ]

;

cond_exq_i f ([state], [memaddr], [val], [memaddr]) ->
[state], [val .memaddr. memaddr ]

;
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f ini sh_exq_i f ([ state ] , [memaddr] ->

C memaddr . state 3

;

Properties
act i vate_prog (prog_avai 1 [ 3 , req_prog Cm. q ] ) =>

prog_f etchCm. q], req_fetchm(ll)Cm.q3;
get_instr_prog(prog_activatedCm. q] , avai l_fetchm( 1 1 ) Cv]

)

= > prog_ins tr Cm. q3 , req_atomof ins tr ( 1 2) [ v 3

;

perf orm_prog (prog_instrCm. q] ,

avai
1
_atomof instr ( 1 2) C i ] ) =>

prog_perf ormC ] , req_exq (13)Ci.m.q3;
f inish_prog ( prog_perform[ 3 , avai

1
_exqCml . ql ] ) =>

prog_avai 1 C ] , req_prog Cml . ql 3 ;

act i vate_exq_monad (exq_avai 1 C 3

,

req_exq ( 1 ) C monad (o.rl.r2).m.q3) =>
exq_for( 1 ) C 3 , exq_monad_activated[q3

,

req_operator ( 11) [monad ( o. ri . r2) 3,

req_operandl( 12) Cmonad(o. rl. r2) 3,

req_operand2( 13) [monad(o. rl. r2) 3

,

req_nex tmemaddr ( 14) Cm3 ;

start_exq_monad (exq_monad_activatedCq3,
avai

1
_operandl ( 1 1 ) [ rl 3 ) -> exq_monad_f etchC q 3

,

req_f etchr ( 1 5 ) [ rl
. q3

;

apply_exq_monad(exq_monad_fetch[q3, avai l_fetchr( 15) Cv3,
avai

1
_operator ( 1 1 ) [ o 3 ) => exq_monad_app 1 y C q3

,

req_app 1 y_mop ( 1 6 ) C o . v 3

;

store_exq_monad ( exq_monad_app 1 y [ q 3

,

avai
1
_app 1 y_mop ( 1 6 ) C vl 3 , avai

1
_operand2 ( 1 3) C r2 3 ) =>

exq_monad_s tore [ 3 , req_storer(17)Cvl.r2.q3;
f ini sh_exq_monad ( exq_monad_s toreC 3, avail_storer(17)[ql3,

avai
1
_nex tmemaddr ( 1 4) [ml 3 ) => avai

1
_exq ( 1 ) Cml

.
ql 3

;

act i vate_exq_dyad ( exq_avai 1 [ 3 ,

req_exq( 1 ) Cdyad(o. rl. r2, r3) .m. q3 ) =>

exq_f or ( 1 ) C 3 , exq_dyad_act i vated [ q 3 ,

req_operator ( 11) [dyad(o. rl. r2, r3) 3,

req_operandl ( 12) Cdyad(o. rl. r2, r3) 3,

req_operand2( 13) [ dyad ( o . rl. r2, r3) 3

,

req_operand3< 18) Cdyad(o. rl. r2, r3) 3,

req_nex tmemaddr ( 14) Cm]

;

s tar t_exq_dyad ( exq_dyad_act

i

vatedCq] ,

avai l_operandl ( 1 1 ) [rl 3 ) , avai l_operand2( 12) Cr2 3

-> exq_dyad_fetch[q3, req_f etchr ( 15) [ rl .
q3

req_f etch( 19) [ r2. q3

;

aPP 1
y_exq_dyad (exq_dyad_fetch[q3, avai l_fetchr( 15) [ vl 3 ,

avai l_operator( 1 1 ) [o3 ) ,avai l_fetchr( 19) [v23
=> exq_dyad_apply[q3 , req_apply_dop( 16) Co. vl . v23

;

store_exq_dyad( exq_dyad_app
1
y [ q3 ,

avai l_apply_dop( 16) [ v33 , avai
1
_operand3 ( 1 8) [ r3 3 ) =>

exq_dyad_store[ 3 , req_storer( 17) [v3. r3. q3

;
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f inish_exq_dyad ( exq_dyad_storeC ], avail_storer(17)Cql],
avai l_nextmemaddr ( 14) Cml ] ) => avai

1
_exq ( 1 ) [ml

.
ql ]

;

act i vate_exq_tr iad (exq_avai 1 C ]

,

req_exq( l)Ctriad(o.rl.r2,r3,r4).m.q]) =>

exq_f or ( 1 ) C ] , exq_tr iad_activated[q] ,

req_operator ( 1 1 ) C triad (o. r 1. r2, r3) ]

,

req_operandl (12)Ctriad(o.rl.r2,r3)],
req_operand2( 13)Ctriad(o.rl.r2,r3)],
req_operand3( 18) C triad <o. rl . r2, p"3) ] ,

req_operand4 ( 1 10) Ctriad(o. rl. r2, r3, r4) ]

,

req_nex tmemaddr ( 14) Cm]

;

start_exq_tr iad ( exq_tr iad_act i vated C q ]

,

avail_operandl(ll)Crl]),avail _operand2( 12) C r2]
avai 1 _operand 3 ( 1 3) C r3 3

, -> exq_tr iad_fetchCq],
req_f etchr( 15) Crl. q], req_f etch( 19) Cr2. q]

,

req_f etchr( 1 11 ) Cr3. q]

;

app 1 y_exq_tr iad (exq_tr iad_fetchCq], avai l_fetchr( 15) C vl ] ,

avai l_operator( 1 1) Co] ) ,avai l_fetchr( 19) Cv2] ,

avai 1 _f etchr ( 1 1 1 ) C v3] => exq_tr iad_app 1 y C q ] ,

req_apply_top( 16) Co. vl. v2. v3]

;

store_exq_tr iad (exq_tr iad_applyCq]

,

avai l_apply_top( 16) C v4] , avai
1
_operand4 ( 1 8) C r4 ] ) =>

exq_tr iad_storeC ] , req_storer (17)Cv4.r4.q];
f inish_exq_tr iad ( exq_tr iad_storeC ] , avai l_storer ( 17) Cql ]

,

avai
1
_nex tmemaddr ( 1 4) Cml ] ) => avai

1
_exq ( 1 ) Cml

.
ql ]

;

act i vate
r

e

ate_exq_mov_r_r ( exq_avai 1 C ]

,

eq_exq (l)Cmov_r_r(rl,r2).m.q]) =>
xq_mov_r_r_act ivatedCq] ,

req_operandl ( 11) Cmov_r_r(rl, r2) ],

req_operand2( 12) Cmov_r_r(rl, r2) 3

,

req_nextmemaddr( 13) Cm] ;

tar t_exq_mov_r_r ( exq_mov_r_r_act ivatedCq] ,

avai
1
_operandl ( 1 1 ) C r 1 ] ) =>

exq_mov. r * r " " '-* ~ w - ' ' '- s r

avai l_exq( 1 ) Cml. ql ]

;

act i vate_exq_mov_r_m (exq_avai 1 C ] ,

req_exq ( 1 ) C mov_r_m (rl,m2).m.q]) =

e x q_mov_r_m_activatedCq] ,

req operandi ( 1 1 ) Cmov r m(rl,m2)],

star
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store_exq_mov_r_m ( exq_mov_r_m_perf ormCq ]

,

avai l_fetchr ( 14) C v3 , avai
1
_operand2( 1 2) Cm23 ) =>

exq_mov_r_m_storeC 3 , req_s toremC v. m2. q ]

;

f ini sh_exq_mov_r_m ( exq_mov_r_m_store C 3 , avai
1
_storemC ql ]

,

avai
1
_nex tmemaddr ( 1 3) Cml ] ) =>

avai l_exq(l)Cml.ql3;

act i vate_exq_mov_m_r (exq_avai 1 [ ]

,

req_exq ( 1 ) [mov_m_r (m2, r2) . m. q] ) =>

exq_mov_m_r_act i vated C q ]

,

req_operandl ( 1 1 ) [mov_m_r (m2, r2) 3

,

req_operand2( 1 2) Cmov_m_r Cm2, r2) 1

,

req_nex tmemaddr ( 1 3) Cm]

;

start_exq_mov_m_r ( exq_mov_m_r_act i vated C q ]

,

avai
1
_operandl ( 1 1 ) Cm2] ) =>

exq_mov_m_r_perf ormC q ] , req_f etchm ( 1 4 ) Cm2. q 3

;

store_exq_mov_m_r ( exq_mov_m_r_perf ormC q] ,

avai l_f etchm( 1 4) C v3 , avai
1
_pperand2 ( 1 2) C r23 ) =>

exq_mov_m_r_store C ] , req_s torer C v. r2. q ]

;

f ini sh_exq_mov_m_r (exq_mov_m_r_s tore C 3 , avail_storerCql],
avai

1
_nex tmemaddr ( 1 3) [ ml ] ) =>

avai l_exq( I ) Cmi. ql ]

;

act i vate_exq_push_r ( exq_avai 1 C ]

,

req_exq ( 1 ) C push_r ( s , r ) . m. q ] ) =>

exq_push_r_act

i

vatedCq],
req_operandl (ll)Cpush_r(s,r)],
req_operand2( 12)Cpush_r(s,r)],
req_nex tmemaddr ( 1 3) C m ]

;

f etch_exq_push_r ( exq_push_r_act i vated [ q]

,

avai
1
_operand2 ( I 2 ) C r ] ) =>

exq_push_r_per f orm C q] , req_f etchr ( 1 4 ) C r . q]

;

push_exq_push_r ( exq_push_r_perf ormC q ]

,

avai
1
_f etchr ( 1 4) [ v ] , avai

1
_operandl ( 1 1 ) C s ] ) =>

exq_push_r_s toreC ] , req_pushC v. s . q 3 ;

f ini sh_exq_push_r ( exq_push_r_store C3, avail_push[ql3,
avai

1
_nex tmemaddr ( 1 3 ) C ml 3 ) =>

avai l_exq( 1 ) Cml. ql 3

;

act i vate_exq_pop_r (exq_avai 1 C 3

,

req_exq ( 1 ) C pop_r ( s , r ) . m. q3 ) =>

exq_pop_r_act

i

vatedCq3 ,

req_operandl (ll)Cpop_r(s,r)3,
req_operand2( 12) Cpop_r(s, r) 3 ,

req_nex tmemaddr ( 1 3) Cm 3

;

pop_exq_pop_r ( exq_pop_r_act ivatedCq3 ,

avail _operandl(ll)Cs3) =>

exq_pop_r_per f ormC q3 , req_top( 1 4) C s. q 3

;

store_exq_pop_r ( exq_pop_r_perf ormC q3 ,

avai
1
_top ( 1 4) C v 3 , avai

1
_operand2 ( 1 2) C r 3 ) =>

exq_pop_r_store Cs3, req_storerCv.r.q3;
top_exq_pop_r ( exq_pop_r_s tore Cs3,avail_storerCql3 =>
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exq_pop_r_pop[ ] , req_popCs. ql ]

;

f inish_exq_pop_r (exq_pop_r_popC 3 , avai
1
_popCq2]

,

avai
1
_nex tmemaddr ( 1 3) [ml ] ) =>

avai
1
_exq ( 1 ) [ml

.
q2 3

;

act i vate_exq_jmp_r (exq_avai 1 [ 3

,

req_exq ( 1 ) [ jmp( r ) . m. q] ) =>

exq_jmp_r_acti vatedt q]

,

req_operandl C 1 1 ) C jmpCr

)

1 ;

f etch_exq_jmp_r (exq_jmp_r_act i vatedt q ] ,

avai l_operandl ( 1 1 ) [ r ] =>

exq_jmp_r_perf orm[ q 3 , req_f etchr ( 1 2) [ r
.
q ]

;

conver t_exq_jmp_r ( exq_jmp_r_perf orm[ q3

,

avai l_fetchr( 12) [v] ) =>

ex q_jmp_r_converting [ q] , req_atomof memaddr ( 1 3 ) [ v ]

;

f inish_exq_jmp_r ( exq_jmp_r_conver t ing [ q ]

,

avai l_atomof memaddr ( 1 3) [ml ] =>

avai l_exq( 1 ) [ml. q]

;

act i vate_cond (cond_avai 1 [ 3, req_cond( 1 ) [v.ml.m23

)

cond_activated [ml . m2 3 , req_atomof boo 1 ( 1 1 ) [ v 3

;

f inish_cond ( cond_act i vated [ml . m2 3

,

avai
1
_atomof boo 1 ( 1 1 ) [ true ( ) 3 =>

avai
1
_cond ( 1 ) [ml 3

;

f ini sh_cond (cond_activated[ml . m23

,

avai
1
_atomof boo 1 ( 1 1 ) [ f a 1 se ( ) 3 =>

avai
1
_cond ( 1 ) [m2 3

;

*=>

act i vate_e
req_ex
exq_f

o

req_op
req_op
req_op
req_ne

star t_exq_
avai l_operandl

-> exq
req_f e

app
1 y_exq_
avai 1 _
exq_i f

cond_exq_i
avai 1 _
exq_i f

f ini sh_exq
avai

1

_

end am;

xq_i f (exq_avai 1 [ 3

,

q( 1 ) [ if (o. rl. r2.ml) .m.q3) =>

r(l)[3, exq_i f_acti vated [ q3 ,

erator C 1 1 ) [ if (o. rl. r2. ml ) 3

,

erandK 12)[if(o.rl.r2.ml)3,
erand2( 13)[if(o.rl.r2.ml)3,
x tmemaddr ( 14) Cm]
i f ( exq_i f _act i vated[q3 ,

(11) [rl3,avai l_operand2( 12) [r23

)

_if_fetch[q3 , req_f etchr ( 15) [ rl . q 3

tchr( 17) [rl.q3

;

i f ( exq_i f_fetch[q3, avail_fetchr(15)[vl3,
f etchr ( 17) [v23 , avai

1
_operator ( 1 1 ) [ o 3 ) =>

_app 1 y [ q3 , req_app ly_rop( 16) [ o. vl . v23

;

f (exq_i f _app ly[q3,avail _nex tmemaddr ( 14) [m2 3

operand3( 13) [m33 ,avai l_apply_rop( 16) [v33, =>

_cond [ q 3 , req_cond (17)[v3.m3.m23;
_i f ( exq_i f _cond [ q 3 , avai

1
_cond ( 1 7) [ m3 3 ) =>

exq ( 1 ) [m3. q 3 ;
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