Reserve

, United States $A \geq Q 0.9$
 Department of
 Agriculture
 Soil
 Conservation
 Service
 Engineering
 Division
 January 1975

 Small Watersheds

 Small Watersheds
 Technical Release Number 55

PREFACE

This technical release was prepared by hydraulic engineers from the Engineering and Watershed Planning Unit (E\&WP), Upper Darby, Pa., and the Central Technical Unit, Hyattsville, Md. Valuable contributions were received from the Engineering Division, Washington, D.C., E\&WP Units at Lincoln, Nebr., Portlanł, Oreg., and Fort Worth, Tex., and from state hydrologists and engineers.

This technical release is presented as a guide for field personnel in estimating the effects of land use changes and structural measures on hydraulic and hydrologic parameters, runoff volume, and peak rates of discharge. Field engineers should recognize that some of the proposed methods are in the formative stage and thus have not been fully tested. The results should be compared with other available methods, and engineering judgment should be used in arriving at a final estimate. Caref'ul consideration should be given to the scope and importance of the job when deciding on a particular procedure. It is not intended that all procedures fit all situations that arise.

As more data become available procedures described in this technical release will be revised.

TECHNICAL RELEASE NO. 55
 URBAN HYDROLOGY FOR SMALL WATERSHEDS

CONTENTS

Page

Chapter l. Effects of urbanization on runoff volume and peak rates of discharge
Introduction. 1-1
Effects of urban development 1-1
Volume parameters 1-2
Soil type 1-2
Cover type 1-2
Time parameters 1-3
Slope 1-3
Flow length 1-3
Surface roughness 1-3
Methodology 1-3
Chapter 2. Estimating runoff from urban areas
Introduction 2-1
Runoff equation 2-1
Effect of urbanization on runoff 2-4
Urban runoff curve numbers 2-4
Example 2-1 2-6
Example 2-2 2-7
Example 2-3. 2-7
Example 2-4 2-8
Chapter 3. Time of concentration, travel time, and lag
Introduction. 3-1
Computation of travel time 3-1
Overland flow 3-1
Storm sewer or road gutter flow 3-2
Channel flow 3-3
Example 3-1 3-3
Computation of lag 3-5
Hydrograph method 3-5
Modified curve number method 3-5
Example 3-2. 3-9

Chapter 4. Peak discharges (appendix D charts)

Introduction 4-1
Modification of peak discharge due to urbanization 4-1
Example 4-1 4-3
Chapter 5. Tabular and graphical methods of determining peak discharges
Introduction 5-1
Tabular method of determining peak discharge 5-1
Example 5-1 5-2
Graphical method of determining peak discharge 5-5
Example 5-2. 5-5
Chapter 6. SCS-TR-20 Method of determining peak flow
Introduction 6-1
Areas of application 6-1
General description. 6-1
Capabilities and limitations 6-1
Chapter 7. Methods for controlling peak discharges from urbaniz- ing areas
Introduction 7-1
Methods of reducing or delaying urban runoff. 7-1
Effects of reducing or delaying urban runoff 7-1
Methods for estimating the effect of storage 7-6
Example 7-1 7-9
Example 7-2 7-10
Example 7-3 7-11
Appendix A. Urban hydrology bibliography A-1
Appendix B. Soil series and hydrologic soil groups B-1
Appendix C. Rainfall maps of conterminous United States for 24- hour rainfall amounts C-1
Appendix D. Peak rates of discharge for small watersheds D-1
Appendix E. Adjustment factors for peaks determined using charts in appendix D E-1
Appendix F. Sample Peak Discharge Worksheets for use in Urban Hydrology F-1
Figure
2-1 Schematic curves of accumulated rainfall (P), runoff (Q), and infiltration plus initial abstraction ($F+I_{a}$) showing the relation expressed by equation 2-5 2-2
FigurePage
2-2 Percentage of impervious areas vs. composite CN's for given pervious area CN's. 2-6
3-1 Average velocities for estimating travel time for overland flow. 3-2
3-2 Urban watershed for example 3-1 3-3
3-3 Curve number method for estimating lag (L) for homogeneous watersheds under natural conditions up to 2,000 acres. 3-7
3-4 Factors for adjusting lag from equation 3-2 or figure 3-3 when the main channel has been hydraulically improved. 3-8
3-5 Factors for adjusting lag from equation 3-2 or figure 3-3 when impervious areas occur in the watershed. 3-9
4-1 Factors for adjusting peak discharges for a given future- condition runoff curve number based on the percentage of impervious area in the watershed 4-2
4-2 Factors for adjusting peak discharges for a given future- condition runoff curve number based on the percentage of hydraulic length modified. 4-2
5-1 Sample watershed for example 5-1 5-2
5-2 Peak discharge in csm per inch of runoff versus time of concentration $\left(T_{c}\right)$ for 24-hour, type-II storm distribution.. 5-5
7-1 Approximate single-stage structure routing for weir flow structures up to 150 csm release rate and pipe flow struc- tures up to 300 csm release rate $7-7$
7-2 Approximate single-stage structure routing for weir flow structures over 150 csm release rate and pipe flow struc- tures over 300 csm release rate 7-8
7-3 Stage-discharge and stage-storage relationship for struc- ture A in example 7-1. $7-10$
D-I Storm distribution regions, Pacific Coast states. D-2
D-2 Peak rates of discharge for small watersheds (24-hour, type-II storm distribution) D-3
E-1 Hydraulic length and drainage area relationship E-6
Table
2-1 Runoff depth in inches for selected CN's and rainfall amounts 2-3
2-2 Runoff curve numbers for selected agricultural, suburban, and urban land use 2-5
5-1 Basic data used in example 5-1. 5-3
5-2 Discharge summary table for example 5-1 5-4
5-3 Tabular discharges for type-II storm distribution (csm/in) 5-7
7-1 Measures for reducing and delaying urban storm runoff. $7-2$
7-2 Advantages and disadvantages of measures for reducing and de- laying runoff. 7-3
B-1 Soil names and hydrologic classifications B-2
E-I Slope adjustment factors by drainage areas. E-2
E-2 Adjustment factors where ponding and swampy areas occur at the design point E-3
E-3 Adjustment factors where ponding and swampy areas are spread throughout the watershed or occur in central parts of the watershed E-4
E-4 Adjustment factors where ponding and swampy areas are located only in upper reaches of the watershed E-4

CHAPTER 1

EFFECTS OF URBANIZATION ON RUNOFF VOLUME AND PEAK RATES OF DISCHARGE

Introduction

This technical release analyzes the effects of urbanization in a watershed on hydraulic and hydrologic parameters and presents methods of estimating runoff volume and peak rates of discharge. Obtaining basic data on runoff volume and peak rates of discharge is difficult because conditions are constantly changing during the transition from rural to urban land use. At this time only general empirical relationships between the parameters that affect runoff and peak rates of discharge can be developed. Much research is being undertaken to better analyze the effects of urbanization through collection of runoff data and study of watershed models. Reports of progress in this field are being made continually. For additional information see the bibliography in appendix A.

As population density and land values increase, the effects of uncontrolled runoff become an economic burden and a serious threat to the health and well-being of a community and its citizens. Emphasis must be placed on providing solutions to the water problems caused by radical changes in land use. Estimating the magnitude and frequency of future flood events makes possible systematic planning and installation of structural and nonstructural measures to reduce hazards to acceptable levels.

Management of runoff from even minor storms is rapidly becoming an engineering requirement of local and state governments to help reduce flooding and stream erosion. Rapid deterioration of stream channels caused by increased storm runoff has had a detrimental impact on communities. Counties and states are adopting policies which limit the effects that changes in land use may have on the stream regimen within a development or watershed. These policies cover such areas as (l) assisting in the planned management of water resources, including storm drainage, throughout the watershed; (2) promoting and encouraging the inclusion of flood storage in all planned reservoirs; and (3) encouraging and assisting in planning for onsite retention of runoff through the use of temporary storage structures and infiltration devices.

There is a need for thorough understanding of the problems associated with the rapid conversion of land use and for adequate technical procedures to assist local communities, municipalities, and planning groups in assessing the effects of changed land use on streanflow.

Effects of Urban Development

An urban or urbanizing watershed can be defined as an area in which all or part of the watershed will be covered by impervious structures, such as roads, sidewalks, parking lots, and houses. Urban stream channels may
also be supplemented by some form of artificial drainage system, such as paved gutters and storm sewers.

The effect of urbanization on the water regimen has long been recognized. Investigations to evaluate the factors involved have been going on for over 35 years. Ideally, hydrologic studies to determine volume and rates of runoff should be based on long-term stationary streamflow records for the area being investigated. Such records are seldom available for small drainage areas, and because of the time involved in converting a watershed from rural to urban conditions, available records normally are not adequate. It becomes necessary to estimate the magnitude and frequency of peak rates of runoff through modeling of measurable watershed characteristics. An understanding of these characteristics is required for judging how to alter parameters to reflect changing watershed conditions.

Urbanization of a watershed changes its response to precipitation. The most common effects are reduced infiltration and decreased travel time, which result in significantly higher peak rates of runoff. The volume of runoff is determined primarily by the amount of precipitation and by infiltration characteristics related to soil type, antecedent rainfall, type of vegetal cover, impervious surfaces, and surface retention. Travel time is determined primarily by slope, flow length, depth of flow, and roughness of flow surfaces. Peak rates of discharge are based on the relationship of the above parameters as well as the total drainage area of the watershed, the location of the development in relation to the total drainage area, and the effect of any flood control works or other manmade storage. Peak rates of discharge are also influenced by the distribution of rainfall within a given storm event. SCS uses three standard rainfall distributions--types I, IA, and II. Type II-distribution applies to all areas of the United States except for parts of the Pacific Coast states. For rainfall distribution in the Pacific Coast states, refer to the map in appendix D.

Volume Parameters

Soil type

Since urban areas are seldom completely covered by impervious structures, soil properties are an important factor in estimating the total volume of direct runoff. The infiltration and percolation rates of soils indicate their potential to absorb rainfall and thereby reduce the amount of direct runoff. Soils having a high infiltration rate (sands or gravels) have a low runoff potential, and soils having a low infiltration rate (clays) have a high runoff potential. Urbanization on soils with a high infiltration rate increases the volume of runoff and peak discharge more than urbanization on soils with a low infiltration rate.

Cover type

The type of cover and its hydrologic condition affects runoff volume through its influence on the infiltration rate of the soil. Fallow land yields more runoff than forested land for a given soil type. Covering areas with impervious material reduces surface storage and infiltration and increases the volume of runoff.

Some rainfall is retained on the surface and by vegetation before runoff begins. Interception is rainfall that is caught by foliage, twigs, branches, leaves, etc. This rainfall is lost to evaporation and thus never reaches the ground surface. Increasing the vegetal cover increases the amount of interception.

Surface depression storage begins when precipitation exceeds infiltration. Overland flow starts when the surface depressions are full. The water in depression storage is not available as direct runoff.

Initial abstraction is the sum of interception, depression storage, and infiltration before runoff begins. It occurs on all types of cover, from pasture in good condition to concrete pavement. However, the amount of initial abstraction is less on concrete pavement than on pasture.

Time Parameters

Slope

Urbanization can change the effective slope of a watershed if flow paths are altered by channelization and by terracing areas for building lots, parking lots, roads, and diversion ditches. The slopes of storm sewers, street gutters, roads, and overland flow areas as well as stream channels are significant in determining travel times through urban watersheds.

Flow length

Flow length may be reduced if natural meandering streams are changed to straight channels. It may be increased if overland flows are diverted through diversions, storm sewers, or street gutters to larger collection systems.

Surface roughness

Flow velocity normally increases significantly when the flow path is changed from flow over rough surfaces of woodland, grassland, and natural channels to sheet flow over smooth surfaces of parking lots, diversions, storm sewers, gutters, and lined channels.

Methodology

Procedures outlined in SCS National Engineering Handbook, Section 4, Hydrology ($\mathrm{NEH}-4$), are adequate for determining volumes, peak rates, and hydrographs of runoff from urban areas. The increase in the volume of runoff due to urbanization depends more on the percentage of impervious area than on any of the other watershed constants. Changes in the time-area relationship (lag time) can be estimated by hydraulic analysis of overland velocities and storage. Changes in channel routing can be estimated by hydraulic analysis of channel velocities and storage.

The soil-cover complex and associated runoff curve number procedure outlined in $\mathrm{NEH}-4$ can be used to measure the change in runoff volume caused by urbanization. Runoff curve numbers for land use and treatment practices
for hydrologic soil groups were developed from daily rainfall records from small agricultural watersheds. By using land use patterns found in an urban area and accounting for impervious areas, a composite weighted curve number representing runoff potential from the watershed can be determined.

Special attention should be given to the computation of time of concentration and travel time. Once storm drains are installed, the flow pattern may be changed so significantly that flow retardance cannot be represented by factors based on runoff curve numbers or overland flow. Velocities of flow through culverts and channels should be computed using hydraulic procedures that take into consideration the characteristics of the flow paths.

When urbanization is proposed in only part of a watershed and peak discharges are desired downstream of the development, consideration should be given to subdividing the watershed into areas of similar land use. The hydrographs from these areas are combined and routed to the outlet.

Methods of determining peak rates of runoff are outlined in chapter 16 of NEH-4. Examples 1 and 2 in chapter 16 of NEH-4 show the development of the total hydrograph. Hydrographs are used when timing effects of tributaries must be analyzed or hydrographs must be routed. Example 4 in chapter 16 of NEH-4 describes a procedure for computing only the peak rate of discharge. This approach can be used when runoff characteristics within a watershed are homogeneous and routing is not required.

Examples in this technical release illustrate the effects of urbanization on volumes and peak rates of runoff using procedures outlined in chapter 16 of NEH-4. Chapter 2 in this technical release discusses runoff volume from urban areas and presents methods of developing runoff curve numbers for urban areas. Chapter 3 discusses time of concentration and travel time as they are affected by urbanization and presents examples of the computation of these parameters. Chapters 4, 5, and 6 present methods of computing peak rates of discharge using standard charts applicable to small drainage areas, charts for preliminary planning and evaluation, and SCS-TR-20 procedures for dealing with more complicated watershed conditions. Chapter 7 reviews methods of surface and subsurface storage used to reduce peak discharges caused by urbanization.

As more information is gathered and analyzed, better procedures may be developed to analyze the effects of urbanization. Procedures presented in this technical release will be revised periodically to incorporate results of future research.

CHAPTER 2

ESTIMATING RUNOFF FROM URBAN AREAS

Introduction

Effective rainfall is that portion of precipitation that produces direct runoff, which is water that enters the stream channels during a storm or soon after and forms a runoff hydrograph. Losses or abstractions are that portion of precipitation that does not contribute to direct runoff. Losses occurring on urban watersheds are similar to those occurring on natural watersheds. The amount of runoff from a storm event largely depends on detention, infiltration, evapotranspiration, etc., and is related to soil type, type of vegetation, and amount of impervious cover.

With proper modifications and assumptions, the soil-cover-complex method described in NEH-4 can be used to estimate runoff from urban areas. The variables used in this method apply to runoff from both agricultural and urban watersheds. A combination of a hydrologic soil group (soil) and a land use and treatment class (cover) is used to determine the hydrologic soil-cover complex. The effect of the hydrologic soil-cover complex on the amount of rainfall that runs off is represented by a runoff curve number, referred to as CN. Chapters 7, 8, 9, and 10 of NEH-4 discuss the development of soil-cover complexes including soils, cover, treatment practices for agricultural areas, and resulting runoff.

In an urban watershed, the cover usually consists of both pervious and impervious surfaces. Impervious surfaces, such as roofs, streets, sidewalks, driveways, and parking lots, have some initial abstraction before runoff occurs. However, during an intense part of a storm event, nearly 100 percent of the rainfall may run off. Both initial abstraction and infiltration should be considered for pervious surfaces such as lawns, parks, and playing fields.

Runoff Equation
Figure 2-1 shows schematic curves of accumulated storm rainfall P, runoff Q, and infiltration plus initial abstraction ($F+I_{a}$). For convenience in estimating runoff, initial abstraction includes all the storm rainfall occurring before surface runoff starts.

Figure 2-1.--Schematic curves of accumulated rainfall (P), runoff (Q), and infiltration plus initial abstraction ($F+I_{a}$) showing the relation expressed by equation 2-5.

Assume

$$
\begin{equation*}
\frac{F}{S}=\frac{Q}{P_{e}} \tag{Eq.2-1}
\end{equation*}
$$

where F is the infiltration occurring after runoff begins in inches, S is the potential abstraction in inches, Q is the actual direct runoff in inches, and P_{e} is the potential runoff or effective storm runoff (storm rainfall minus the initial abstraction) in inches.

With $F=P_{e}-Q$, equation $2-1$ can be written as

$$
\begin{equation*}
Q=\frac{P_{e}^{2}}{P_{e}+S} \tag{Eq.2-2}
\end{equation*}
$$

The initial abstraction (I_{a}) in inches, estimated from an empirical relation based on data from small watersheds, is

$$
\begin{equation*}
I_{a}=0.2 \mathrm{~S} \tag{Eq.2-3}
\end{equation*}
$$

Thus

$$
P_{e}=P-I_{a}=P-0.2 S
$$

(Eq. 2-4)
where P is the total storm rainfall in inches. Substituting equation 2-4 in equation 2-2,

$$
\begin{equation*}
Q=\frac{(P-0.2 S)^{2}}{P+0.8 S} \tag{Eq.2-5}
\end{equation*}
$$

Potential abstraction S is related to the soil and cover conditions of a watershed. The runoff curve number, which is also related to soil and cover conditions, is related to potential abstraction S by

$$
\begin{equation*}
C N=\frac{1,000}{S+10} \tag{Eq.2-6}
\end{equation*}
$$

from which

$$
S=\frac{1,000}{C N}-10
$$

The solution to equation 2-5 is shown in table 2-1 for a range of CN's and total rainfall amounts.

Table 2-1. --Runoff depth in inches for selected CN's and rainfall amounts

$\begin{aligned} & \text { Rainfall } \\ & \text { (inches) } \end{aligned}$	Curve Number (CN) ${ }^{\text {1/ }}$								
	60	65	70	75	80	85	90	95	98
1.0	0	0	0	0.03	0.08	0.17	0.32	. 56	. 79
1.2	0	0	0.03	0.07	0.15	0.28	0.46	. 74	. 99
1.4	0	0.02	0.06	0.13	0.24	0.39	0.61	. 92	1.18
1.6	0.01	0.05	0.11	0.20	0.34	0.52	0.76	1.11	1.38
1.8	0.03	0.09	0.17	0.29	0.44	0.65	0.93	1.29	1.58
2.0	0.06	0.14	0.24	0.38	0.56	0.80	1.09	1.48	1.77
2.5	0.17	0.30	0.46	0.65	0.89	1.18	1.53	1.96	2.27
3.0	0.33	0.51	0.72	0.96	1.25	1.59	1.98	2.45	2.78
4.0	0.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
5.0	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	1.92	2.35	2.80	3.28	3.78	4.31	4.85	5.41	5.76
7.0	2.60	3.10	3.62	4.15	4.69	5.26	5.82	6.41	6.76
8.0	3.33	3.90	4.47	5.04	5.62	6.22	6.81	7.40	7.76
9.0	4.10	4.72	5.34	5.95	6.57	7.19	7.79	8.40	8.76
10.0	4.90	5.57	6.23	6.88	7.52	8.16	8.78	9.40	9.76
11.0	5.72	6.44	7.13	7.82	8.48	9.14	9.77	10.39	10.76
12.0	6.56	7.32	. 8.05	8.76	9.45	10.12	10.76	11.39	11.76

1/ To obtain runoff depths for CN 's and other rainfall amounts not shown in this table, use an arithmetic interpolation.

Effect of Urbanization on Runoff

Initial abstraction consists of interception, infiltration, and depression storage that must be satisfied before runoff begins. Urban initial abstraction has been found to be correlated with slope of the impervious area. However, because of the limited scope of the research data available, no attempt has been made to revise the basic runoff equation to apply exclusively to urban areas.

Investigations have also shown that runoff from small (less than annual) rainfall events comes primarily from the impervious areas. However, both the pervious and impervious areas contribute to runoff for the larger, less frequent events. If the pervious portion of an urban area has a CN of 60 to 65 , approximately 2 inches of rainfall is needed before runoff begins. Most 24 -hour rainfall values used in computing peak rates of flow are over 2 inches. Therefore, for urban analysis the total watershed area can be assumed to contribute to storm runoff.

Urban Runoff Curve Numbers

Several factors should be considered when computing the anticipated future CN for urban areas. The amount of runoff can vary depending on whether house gutters connect directly to storm drains, outlet onto impervious driveways, or outlet onto lawns or other pervious areas where infiltration can occur. General building practices or codes within a development may be helpful in determining runoff flow paths. Some areas have zoning ordinances on how storm runoff from individual houses must be handled.

In determining urban CN's, consideration should be given to whether heavy equipment compacted the soil significantly more than natural conditions, whether much of the pervious area is barren with little sod established, and whether grading has mixed the surface and subsurface soils causing a completely different hydrologic condition. Any one of the above could cause 'a soil normally in hydrologic group A or B to be classified in group B or C, respectively. In many areas of the country, lawns are heavily irrigated. This may significantly increase the moisture content in the soil over that under natural rainfall conditions.

Table 2-2 gives CN's for agricultural, suburban, and urban land use classifications. The suburban and urban CN's are based on typical land use relationships that exist in some areas. They should only be used when it has been determined that the area under study meets the criteria for which these CN's were developed.

There will be areas to which the values in table 2-2 do not apply. The percentage of impervious area for the various types of residential areas or the land use condition for the pervious portions may vary from the conditions assumed in table 2-2. A curve for each pervious CN can be developed to determine the composite CN for any density of impervious area. Figure 2-2 has been developed assuming a CN of 98 for the impervious

Table 2-2.--Runoff curve numbers for selected agricultural, suburban, and urban land use. (Antecedent moisture condition II, and $I_{a}=0.2 S$)

LAND USE DESCRIPTION	HYDROLOGIC SOIL GROUP			
	A	B	C	D
Cultivated land!: without conservation treatment : with conservation treatment	$\begin{aligned} & 72 \\ & 62 \end{aligned}$	$\begin{aligned} & 81 \\ & 71 \end{aligned}$	$\begin{aligned} & 88 \\ & 78 \end{aligned}$	$\begin{aligned} & 91 \\ & 81 \end{aligned}$
Pasture or range land: poor condition good condition	$\begin{aligned} & 68 \\ & 39 \end{aligned}$	$\begin{aligned} & 79 \\ & 61 \end{aligned}$	$\begin{aligned} & 86 \\ & 74 \end{aligned}$	$\begin{aligned} & 89 \\ & 80 \end{aligned}$
Meadow: good condition	30	58	71	78
Wood or Forest land: thin stand, poor cover, no mulch good coverㄹ/	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & 66 \\ & 55 \end{aligned}$	$\begin{aligned} & 77 \\ & 70 \end{aligned}$	$\begin{aligned} & 83 \\ & 77 \end{aligned}$
```Open Spaces, lawns, parks, golf courses, cemeteries, etc. good condition:-grass cover on 75% or more of the area fair condition: grass cover on 50% to 75% of the area```	$\begin{aligned} & 39 \\ & 49 \end{aligned}$	$\begin{aligned} & 61 \\ & 69 \end{aligned}$	$\begin{aligned} & 74 \\ & 79 \end{aligned}$	$\begin{aligned} & 80 \\ & 84 \end{aligned}$
Commercial and business areas (85\% impervious)	89	92	94	95
Industrial districts (72\% impervious).	81	88	91	93
Residential: ${ }^{\text {/ }}$    Average lot size Average \% Impervious ${ }^{4 /}$   $1 / 8$ acre or less 65   $1 / 4$ acre 38   $1 / 3$ acre 30   $1 / 2$ acre 25   1 acre 20	$\begin{aligned} & 77 \\ & 61 \\ & 57 \\ & 54 \\ & 51 \end{aligned}$	$\begin{aligned} & 85 \\ & 75 \\ & 72 \\ & 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 90 \\ & 83 \\ & 81 \\ & 80 \\ & 79 \end{aligned}$	$\begin{aligned} & 92 \\ & 87 \\ & 86 \\ & 85 \\ & 84 \end{aligned}$
Paved parking lots, roofs, driveways, etc. 5/	98	98	98	98
Streets and roads:   paved with curbs and storm sewers-5/ gravel   dirt	$\begin{aligned} & 98 \\ & 76 \\ & 72 \end{aligned}$	$\begin{aligned} & 98 \\ & 85 \\ & 82 \end{aligned}$	98 89 87	98 91 89

1/ For a more detailed description of agricultural land use curve numbers refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, Aug. 1972.
2/ Good cover is protected from grazing and litter and brush cover soil.
3/ Curve numbers are computed assuming the runoff from the house and driveway is directed towards the street with a minimum of roof water directed to lawns where additional infiltration could occur.
4/ The remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.
5/ In some warmer climates of the country a curve number of 95 may be used.


Figure 2-2.--Percentage of impervious areas vs. composite CN's for given pervious area CN's.
area. The curves in figure $2-2$ can help in estimating the increase in runoff as more and more land within a given area is covered with impervious material.

There are a number of methods available for computing the percentage of impervious area in a watershed. Some methods include using U.S. Geological Survey topographic maps, land use maps, aerial photographs, and field reconnaissance. Care must be exercised when using methods based on such parameters as population density, street density, and age of the development as a means of determining the percentage of impervious area. The available data on runoff from urban areas are not yet sufficient to validate widespread use of these methods.

## Example 2-1

Compute the runoff from 5 inches of rainfall for a l,000-acre watershed to be converted to a suburban development. All the soils are in hydrologic soil group C. The proposed land use is 50 percent detached houses with lot size $1 / 4$ acre; 10 percent townhouses with lot size $1 / 8$ acre; 25 percent streets with curbs and gutters, schools, parking lots, plazas; and 15 percent open space, parks, schoolyards, etc., with good grass cover.

1. Compute the weighted runoff curve number.

Land use	Table 2-2   curve   number	$\frac{\text { Product }}{}$		
Detached houses with lot size $1 / 4$ acre	$\frac{\text { Percent }}{50}$		83	4,150
Townhouses with lot size $1 / 8$ acre	10	90	900	
Streets with curbs, plazas, etc.	25	98	2,450	
Open space, parks, etc.	$\underline{15}$	74	$\underline{1,110}$	
	100		8,610	

Thus

$$
\text { Weighted } C N=\frac{8,610}{100}=86
$$

2. From table 2-1 using $C N=86$ and $P=5$ interpolate to read $Q=3.47$ inches.

## Example 2-2

Compute the runoff from 6.3 inches of rainfall for a l,000-acre watershed to be converted to a suburban development. The soils are in hydrologic soil groun B. Forty percent of the development is impervious with all impervious areas connected; 60 percent is pervious and considered to be in good grass cover.

1. From table 2-2 read pervious $\mathrm{CN}=61$.
2. From figure 2-2 read $C N=76$.
3. From table 2-1 using $C N=76$ and $P=6.3$ interpolate to read $Q=3.64$ inches.

## Example 2-3

Compute the runoff curve number for a l,000-acre watershed. The hydrologic soil group is 50 percent B and 50 percent C interspersed throughout the watershed. The land use is:

40 percent residential area that is 30 percent impervious
12 percent residential area that is 65 percent impervious
8 percent paved roads with open ditches
10 percent paved roads with curbs and storm sewers
16 percent open land with 50 percent fair cover and 50 percent good cover

14 percent parking lots, plazas, schools, etc. (all impervious)

Using table 2-2 and figure 2-2, display the data given and compute tra runoff curve number.

Hydrologic soil group

Land use						
	B			C		
	$\frac{\text { Pct. }}{20}$	$\frac{C N}{72}$	$\frac{\text { Product }}{1,440}$	$\frac{\text { Pct. }}{20}$	$\frac{\mathrm{CN}}{81}$	$\frac{\text { Product }}{1,620}$
Residential (65 pct. impervious)	6	85	510	6	90	540
Roads with open ditches	4	89	356	4	92	368
Roads with curbs and sewers	5	98	490	5	98	490
Open land:						
Fair cover	4	69	276	4	79	316
Good cover	4	61	244	4	74	296
Parking lots, plazas, etc.	7	98	686	7	98	686
	50		4,002	50		4,316

Thus

$$
\text { Weighted } \mathrm{CN}=\frac{4,002+4,316}{100}=83.18 \text { (use 83) }
$$

Example 2-4
A 175-acre watershed is 30 percent agricultural and 70 percent urban land. The agricultural area is 40 percent cultivated land with conservation treatment, 35 percent meadow in good condition, and 25 percent forest land with good cover. The urban area is residential: 60 percent is $1 / 3$-acre lots, 25 percent is $1 / 4$-acre lots, and 15 percent is streets and roads with curbs and storm sewers. The entire watershed is in B hydrologic soil group.
Display the data given and compute the weighted composite runoff curve number using curve numbers for the given land use in table 2-2.

Land use	Acres	Curve Number	Product
Agricultural:	(52)		
Cultivated land (conservation treatment)	21	71	1,491
Meadow (good cover)	18	58	1,044
Forest (good cover)	13	55	715
Urban:	(123)		
1/3-acre lots	74	72	5,328
1/4-acre lots	31	75	2,325
Streets and roads with curbs and storm sewers	18	98	1,764
	175		12,667

Thus

$$
\text { Weighted } \mathrm{CN}=\frac{12,667}{175}=72.4 \text { (use 72) }
$$

TIME OF CONCENTRATION, TRAVEL TIME, AND LAG

## Introduction

Urbanization commonly increases the velocity at which water can flow from its point of impact on the watershed to the watershed outlet. Time of concentration, travel time, and watershed lag are three related watershed parameters directly affected by the increased velocity. These parameters are widely used in determining peak rates of runoff.

Time of concentration is the time it takes for runoff to travel from the hydraulically most distant part of the watershed to the point of reference. It is usually computed by determining the water travel time through the watershed. In hydrograph analysis it is the time from the end of excessive rainfall to the point of inflection on the falling limb of the hydrograph. Lag can be considered as a weighted time of concentration and is related to the physical properties of a watershed, such as area, length, and slope. In simple hydrograph analysis, lag is the time from the center of mass of excessive rainfall to the peak rate of runoff. The time of concentration determines the shape of the runoff hydrograph. Thus, changes in the time of concentration cause changes in the resulting hydrograph. The extent of urbanization and stream modification affects the travel time of water through the watershed, which changes the time of concentration.

Two factors can contribute to a decrease in travel time. Urbanization generally decreases overland flow travel time by decreasing flow retardance and by reducing the interflow distance because there are more points of interception by gutters and other conveyances. Channelization decreases travel time by increasing velocities in improved channels. The travel path may be on the surface of the ground or below it (as subsurface flow) or in a combination of both. Urban hydrology studies have shown that the response time of subsurface flow is so much longer than that of surface flow that only surface (including sewer) flow travel time is of significance when determining peak discharges.

Computation of Travel Time
Overland flow, storm sewer or road gutter flow, and channel flow are the three phases of direct flow commonly used in computing travel time.

## Overland flow

The travel time for overland flow in an urban area consists of the time it takes water to travel from the uppermost part of the watershed to a defined channel or inlet of the storm sewer system. This type of flow is significant in very small watersheds because a high proportion of travel time is due to overland flow. The velocity of overland flow can vary greatly with the surface cover and tillage as shown in figure 3-1. If the slope and land use of the overland flow segment are known, the average flow velocity can be read from figure 3-1. The travel time is
then computed by dividing the total overland flow length by the average velocity.

velocity in feet per second
Figure 3-1.--Average velocities for estimating travel time for overland flow.

Storm sewer or road gutter flow
Travel time through the storm sewer or road gutter system to the main open channel is the sum of travel times in each individual component of the system between the uppermost inlet and the outlet. In most cases average velocities can be used without a significant loss of accuracy. During major storm events, the sewer system may be fully taxed and additional overland flow may occur, generally at a significantly lower velocity than the flow in the storm sewers. By using average conduit sizes and an average slope (excluding any vertical drops in the system), the average velocity can be estimated using Manning's formula.

Since the hydraulic radius of a pipe flowing half full is the same as when flowing full, the respective velocities are equal. Travel time may
be based on the pipe flowing full or half full. The travel time through the storm sewers is computed by dividing the length of $f$ low by the average velocity. If flow is principally in shallow road gutters, the curve for overland flow in paved areas shown in figure 3-1 can be used to determine average velocity.
Channel flow
The travel time for flow in an open channel from the storm sewer outlet to the watershed outlet (or evaluation or design point) can be determined by using Manning's equation to compute average velocities. Bankfull velocities should be used to compute these averages. Channels may be in either natural or improved condition.

Example 3-1
An urbanized watershed is shown in figure 3-2. Three types of flow conditions exist from the furthermost point of the watershed to the outlet. Compute the travel time ( $\mathrm{T}_{\mathrm{t}}$ ) and time of concentration ( $\mathrm{T}_{\mathrm{c}}$ ) based on the following data:

Reach	Description of flow	Slope	Length
		Percent	Feet
A to B	Overland (forest)	7	500
B to C	Overland (shallow gutter)	2	900
$C$ to D	Storm drain with manhole covers, inlets, etc. ( $n=0.015$; diameter 3 feet)	1.5	2,000
D to E	$\begin{aligned} & \text { Open channel, gunite, trape- } \\ & \quad \text { zoidal }(\mathrm{b}=5 ; \mathrm{d}=3 ; \mathrm{z}=1.1 \text {; } \\ & \mathrm{n}=0.019) \end{aligned}$	0.5	3,000



Figure 3-2.--Urban watershed for example 3-1.

1. Compute the overland flow travel time.

Reach $A$ to $B$ (forest cover). From figure 3-1 for a slope of 7 percent read $v=0.7 \mathrm{ft} / \mathrm{sec}$.

$$
T_{t}=\frac{\text { length }}{\text { velocity }}=\frac{500 \mathrm{ft}}{0.7 \mathrm{ft} / \mathrm{sec}}=714 \mathrm{sec}
$$

Reach B to C (street gutter). From figure 3-1 for a slope of 2 percent read $v=2.8 \mathrm{ft} / \mathrm{sec}$.

$$
T_{t}=\frac{\text { length }}{v e l o c i t y}=\frac{900 \mathrm{ft}}{2.8 \mathrm{ft} / \mathrm{sec}}=321 \mathrm{sec}
$$

2. Compute the storm drain flow travel time. Reach C to D. Use Manning's equation to compute pipefull velocity.

$$
\begin{aligned}
& v=\frac{1.49}{n}\left(\frac{D}{4}\right)^{2 / 3} \mathrm{~s}^{1 / 2} \\
& v=\frac{1.49}{0.015}\left(\frac{3}{4}\right)^{2 / 3}(0.015)^{1 / 2}=10 \mathrm{ft} / \mathrm{sec} \\
& T_{t}=\frac{1 e n g t h}{v e l o c i t y}=\frac{2,000 \mathrm{ft}}{10 \mathrm{ft} / \mathrm{sec}}=200 \mathrm{sec}
\end{aligned}
$$

3. Compute the open channel flow travel time.

Reach $D$ to $E$. Use Manning's equation to compute bankfull velocity.

$$
\begin{aligned}
& \mathrm{v}=\frac{1.49}{\mathrm{n}} \mathrm{r}^{2 / 3} \mathrm{~s}^{1 / 2} \\
& \mathrm{n}=0.019 \text { for gunite channel } \\
& \mathrm{s}=0.005 \\
& \mathrm{v}=\frac{1.49}{0.019}(1.78)^{2 / 3}(0.005)^{1 / 2}=8.2 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~T}_{\mathrm{t}}=\frac{\text { length }}{\mathrm{velocity}}=\frac{3,000 \mathrm{ft}}{8.2 \mathrm{ft} / \mathrm{sec}}=366 \mathrm{sec}
\end{aligned}
$$

Reach	Description of flow	$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$	Velocity   (ft/sec)	Travel time (sec)
A to B	Overland	500	0.7	714
$B$ to C	Overland	900	2.8	321
$C$ to D	Storm drain	2,000	10.0	200
D to E	Open channel	3,000	8.2	366
			Total	1,601

Thus

$$
T_{c}=\frac{1,601 \mathrm{sec}}{(3,600 \mathrm{sec} / \mathrm{hr})}=0.44 \mathrm{hr}
$$

## Computation of Lag

The time between a brief heavy rain and the maximum runoff rate is called lag. Lag is a watershed parameter that is of ten related to time of concentration. It can be estimated from historical hydrographs or it can be estimated from specific watershed characteristics, such as watershed length, slope, and flow retardance. Watershed lag is used to compute peak discharges of the unit hydrograph in equation $4-1$ in chapter 4. The same relationship is used in all SCS procedures outlined in chapters 4, 5, and 6 .

## Hydrograph method

In hydrograph analysis, lag is the time from the center of mass of excess rainfall to the peak rate of runoff. The time difference between the center of excess rainfall and the peak runoff can be determined by analyzing hydrographs from historical storm events. Based on studies of many storm events for a range of watershed conditions, the following empirical relationship between lag and time of concentration was derived:

$$
\begin{equation*}
\mathrm{L}=0.6 \mathrm{~T}_{\mathrm{c}} \tag{Eq.3-1}
\end{equation*}
$$

This relationship is for average natural conditions and for approximately uniform distribution of runoff over the watershed. A limited study of urban hydrographs shows that this relationship does not differ significantly in urbanized watersheds.

Modified curve number method
In small urban areas (less than 2,000 acres), the curve number method described in chapter 15 of NEH-4 can be used to estimate the time of concentration from watershed lag. The curve number method, originally developed from agricultural watershed data, was intended to span a broad set
of conditions ranging from steep to flat and from heavily forested to smooth. The equation for watershed lag is:

$$
\begin{equation*}
L=\frac{e^{0.8}(S+1)^{0.7}}{1,900 Y^{0.5}} \tag{Eq.3-2}
\end{equation*}
$$

where
$I=1 a g$ in hours
$\ell=h y d r a u l i c$ length of watershed in feet
$S=\frac{1,000}{C N^{\prime}}-10$ (where $C N^{\prime}$ is the retardance factor and is equivalent
to the runoff curve number)
Y = average watershed land slope in percent.
Figure 3-3 shows the solution to equation 3-2 in graph form.
The $C N^{\prime}$ is a measure of the retardance of surface conditions on the rate at which runoff concentrates at some point in question. Therefore, $(S+I)^{0.7}$ is a retardance factor based on the surface condition of the watershed.

Data collected from small urban watersheds indicate that the retardance factor $\mathrm{CN}^{\prime}$ generally does not adequately reflect the increased rate at which water can run off as a result of the installation of impervious areas, roads, gutters, and storm drains. Where an area is completely paved, such as a small parking lot, equation 3-2 adequately represents lag. For composite land use areas where streets, gutters, or sewers provide a more efficient flow pattern than lawns, forests, or other pervious areas, equation 3-2 overestimates lag.

Two factors cause the difference between historical measurements of lag and those computed by equation 3-2. The first is the extent to which a stream (usually the major watercourse in the watershed) has been changed over natural conditions either by straightening or by enlarging stream capacity and providing bank protection to allow higher flow velocities than under natural conditions. The second factor is the increased amount of impervious area, which permits water from overland flow sources and side channels to reach the main channel at a much faster rate than under natural conditions.

The weighted runoff curve number, if used as a retardance factor in equation 3-2, does not provide sufficiently for the decrease in lag caused by changes in the main channel and increases in impervious areas. Since urbanization can take place while the main channel is left in its natural state, separate adjustments to the lag equation were derived to account for the effect of each of the two factors on lag.


Figure 3-3.--Curve number method for estimating lag (L) for homogeneous watersheds under natural conditions up to 2,000 acres.

Figure 3-4 shows lag factors required to adjust equation 3-2 for watersheds where the natural condition of the main channel has been hydraulically improved. If the main channel has not been modified, the lag computed by equation 3-2 can be used. Not enough data are available, nor is equation 3-2 accurate enough, to distinguish between the types of channel modification made. The adjustment for channel improvement is made as follows. If 50 percent of the channel has been modified from its natural condition and the future-condition curve number is computed to be 80, then the lag computed by equation 3-2 (or read from figure 3-3) is multiplied by 0.7 .


Figure 3-4.--Factors for adjusting lag from equation 3-2 or figure 3-3 when the main channel has been hydraulically improved.

Figure 3-5 shows lag factors for adjusting equation 3-2 if part of the watershed is impervious. If the future-condition curve number is 100 or the impervious area is zero, adjustments are not necessary. When a significant part of the watershed is impervious, time of concentration is decreased because the flow paths to the main channel are more efficient than under natural conditions.

Since figures 3-4 and 3-5 are used only with future-condition curve numbers, the lag factors cannot be used to directly compute the decrease in lag (or time of concentration) from present conditions. To determine the change in lag or time of concentration from present to future conditions, compute the present value and then, using the future-condition curve number, compute the future value.

When only peak discharges from an urban watershed are desired, lag does not have to be computed. Peak factors in figures $4-1$ and $4-2$, discussed in the next chapter, are used in the same manner as the lag factors when urban modifications to a watershed have occurred. If other procedures are used to compute peaks, but a time of concentration for future conditions is desired without making a detailed survey to determine the
individual overland components of flow, figures $3-4$ and $3-5$ can be used. Figures 3-4 and 3-5 are approximations at best and have the same limitations and uses as equation 3-2 and figure 3-3.


Figure 3-5.--Factors for adjusting lag from equation 3-2 or figure 3-3 when impervious areas occur in the watershed.

Example 3-2
A watershed of 1,000 acres has a present-condition curve number of 75 , average watershed slope of 4 percent, and hydraulic length of 13,200 feet. Urban development is expected to modify about 70 percent of the hydraulic length, increase the impervious area to 40 percent, and increase the runoff curve number to 80. Compute the present- and futurecondition time of concentration using the curve number method.

1. Present-condition lag from equation 3-2 or figure $3-3$ with $\mathrm{CN}=75$.

$$
L=\frac{(13,200)^{0.8}(3.33+1)^{0.7}}{1,900(4)^{0.5}}=1.45 \mathrm{hr}
$$

2. Present-condition time of concentration from equation 3-1.

$$
T_{c}=1.67(1.45)=2.42 \mathrm{hr}
$$

3. Future-condition lag.
a. Basic future-condition lag with $\mathrm{CN}=80$ :

$$
L=\frac{(13,200)^{0.8}(2.5+1)^{0.7}}{1,900(4)^{0.5}}=1.25 \mathrm{hr}
$$

b. Lag factor for modification of 70 percent of the hydraulic length from figure 3-4: hydraulic-length lag factor $=0.59$
c. Lag factor for 40 percent impervious area from figure 3-5: impervious-area lag factor $=0.76$
d. Future-condition lag $=1.25(0.59)(0.76)=0.56 \mathrm{hr}$
4. Future-condition time of concentration from equation 3-1.

$$
T_{c}=1.67(.56)=0.94 \mathrm{hr}
$$

PEAK DISCHARGES (APPENDIX D CHARTS)

## Introduction

A quick and reliable method of computing peak discharges from agricultural drainage areas 1 to 2,000 acres in size is given in charts in appendix $D$. The charts were prepared for the solution of the gener ? relationships, are based on type-II rainfall distribution, and are applicable to most agricultural areas of the United States. They do not apply to parts of the Pacific Coast states that do not have type-II rainfall distribution, as shown on the map in appendix D.

This chapter presents a method of adjusting peak discharges obtained from the charts in appendix $D$ to reflect the increase in peak discharge due to urbanization. Additional methods for interpolating or adjusting peak discharges for conditions not found on the charts or not represented by the general equations in this chapter are given in appendix $E$.

## Modification of Peak Discharge Due to Urbanization

Research in the area of urban hydrology is developing rapidly. Research to date has been sufficient to identify the parameters that are affected by urbanization and to derive limited empirical relationships between those parameters for both agricultural and urban watersheds. The time to peak for urban watersheds is affected by a decrease in lag or time of concentration as described in chapter 3.

Figures 4-1 and 4-2 give factors for adjusting peaks calculated from charts in appendix $D$ based on the same parameters that affect watershed lag and time of concentration. The factors are applied to the peaks using future-condition runoff curve numbers as follows:

$$
Q_{\text {MOD }}=\quad Q\left[\text { Factor }_{\text {IMP }}\right] \quad\left[\text { Factor }_{\text {HIM }}\right]
$$

where

$$
\begin{aligned}
Q_{\text {MOD }} & =\text { modified discharge due to urbanization } \\
Q & =\text { discharge for future } \mathrm{CN} \text { from appendix } D \text { charts } \\
\text { Factor } \text { IMP } & =\text { adjustment factor for percent impervious areas } \\
\text { Factor } & =\begin{array}{l}
\text { adjustment factor for percent of hydraulic length } \\
\text { Hodified. }
\end{array}
\end{aligned}
$$



Figure 4-1.--Factors for adjusting peak discharges for a given futurecondition runoff curve number based on the percentage of impervious area in the watershed.


Figure 4-2.-Factors for adjusting peak discharges for a given futurecondition runoff curve number based on the percentage of hydraulic length modified.

Example 4-1
A 300-acre watershed is to be developed. The runoff curve number for the proposed development is computed to be 80. Approximately 60 percent of the hydraulic length will be modified by the installation of street gutters and storm drains to the watershed outlet. Approximately 30 percent of the watershed will be impervious. The average watershed slope is estimated torbe 4 percent. Compute the present-condition and anticipated future-condition peak discharge for a 50-year 24-hour storm event with 5 inches of rainfall. The present-condition runoff curve number is 75 .

1. From table 2-1, the runoff for present condition is 2.45 inches and for future condition is 2.89 inches.
2. From the chart for moderate slope in appendix $D(C N=75)$, the present condition peak discharge is 120 cfs (cubic feet per second) per inch of runoff. The peak discharge is then $120 \times 2.45$ or 294 cfs.
3. From the chart for moderate slope in appendix $D(C N=80)$, the futurecondition base discharge for $\mathrm{CN}=80$ is 133 cfs per inch of runoff. The base discharge is then $133 \times 2.89$ or 384 cfs.
4. From figure 4-1, with 30 percent impervious area and future runoff curve number of 80 , read peak factor $=1.16$.
5. From figure 4-2, with 60 percent of the hydraulic length modified and future-condition curve number of 80 , read peak factor $=1.42$.
6. The future-condition peak discharge is:

$$
389(1.16)(1.42)=633 \mathrm{cfs}
$$

7. The effect of this proposed development is to increase the peak discharge from 294 to 633 cfs.

TABULAR AND GRAPHICAL METHODS OF DETERMINING PEAK DISCHARGES
Introduction
This chapter presents tabular and graphical methods for computing peak discharges from urban areas using time of concentration ( $\mathrm{T}_{\mathrm{C}}$ ) and travel time $\left(\mathrm{T}_{t}\right)$. These methods are approximations of the more detailed hydrograph analysis, SCS-TR-20 "Computer Program for Project Formulation-Hydrology," discussed in chapter 6.

The tabular method can be used to develop composite hydrographs at any point within a watershed by dividing the watershed into subareas and computing the time of concentration for each subarea and the travel time through each reach. The graphical method uses only the time of concentration and is applicable to a watershed where runoff characteristics are uniform and valley routing is not required. The factors affecting peak discharge calculations discussed in earlier chapters also apply in this chapter: 24-hour rainfall amount, a given rainfall distribution, hydrologic soil-cover complexes (runoff curve numbers), time of concentration, travel time, and drainage area.

The tabular method can be used for watersheds where hydrographs are needed to measure nonhomogeneous runoff, i.e., the watershed is divided into subareas. It is especially applicable for measuring the effects of changed land use in a part of a watershed. It can also be used to determine the effects of structures and combinations of structures, including channel modifications, at different locations in a watershed.

## Tabular Method of Determining Peak Discharge

Table 5-3 shows the tabular discharge values for the type-II rainfall distribution used in this procedure. Tabular discharges, in terms of csm (cubic feet per second per square mile) per inch of runoff, are given for a range of $\mathrm{T}_{\mathrm{c}}$ 's from 0.1 to 2 hours and $\mathrm{T}_{\mathrm{t}}$ 's from 0 to 4 hours. For $\mathrm{T}_{\mathrm{c}}$ 's up to 12 hours and $\mathrm{T}_{\mathrm{t}}$ 's up to 30 hours, refer to TSC Technical Note ENG-UD-20. Values for other distributions are available. Table 5-3 was developed by computing hydrographs for 1 square mile of drainage area for a range of times of concentration and routing them through stream reaches with a range of travel times. A constant runoff curve number of 75 and a rainfall volume sufficient to yield 3 inches of runoff were used.

The tabular method should not be used when large changes in the curve number occur among subareas within a watershed and when runoff volumes are less than about 1.5 inches for curve numbers less than 60. For most watershed conditions, however, this procedure is adequate to determine the effects of urbanization on peak rates of discharge for subareas up to approximately 20 , square miles in size.

The computed values of time of concentration $\left(\mathrm{T}_{\mathrm{c}}\right)$ and travel time ( $\mathrm{T}_{\mathrm{t}}$ ) can be rounded to the nearest value used in table 5-3 or, if more refinement is warranted, the discharges can be computed using the calculated $T_{c}$ and $T_{t}$ and interpolating between the $T_{c}$ and $T_{t}$ shown in the table. The information needed to calculate the peak discharge at a point in the watershed is:

1. The drainage area of each subarea
2. $T_{c}$ for each subarea
3. Tt for each routing reach
4. The runoff curve number for each subarea
5. The 24 -hour rainfall for a selected frequency
6. The runoff in inches for each subarea

Example 5-1
A developer plans to develop subareas 5, 6, and 7 shown in figure 5-1. The township planning board, before accepting his proposal, wants to know what effect the development would have on the 100-year discharge at the downstream end of subarea 7 .


Figure 5-1.-aSample watershed for example 5-1.

1. Develop a table similar to table 5-1, which provides a summary of all the basic data required in the tabular hydrograph method.

Table 5-1.--Basic data used in example 5-1

Subarea	Drainage Area $\left(m i^{2}\right)$	Time of Concentration (hrs)		Runoff Curve Number		$\begin{gathered} \text { Runoff! } / 2 \\ (\text { in }) \\ \hline \end{gathered}$		$\begin{gathered} \text { Travel time- } / \\ (\mathrm{hrs}) \end{gathered}$	
		Pres.	Fut.	Pres.	Fut.	Pres.	Fut.	Pres.	Fut.
1	0.3	1.50	1.50	65	65	2.35	2.35	-	-
2	0.2	1.25	1.25	70	70	2.80	2.80	-	-
3	0.1	0.50	0.50	75	75	3.28	3.28	0.25	0.25
4	0.25	0.75	0.75	70	70	2.80	2.80	-	-
5	0.2	1.50	1.50	75	85	3.28	4.31	1.25	1.00
6	0.4	1.50	1.00	70	75	2.80	3.28	-	-
7	0.2	1.25	0.75	75	90	3.28	4.85	0.75	0.50

1/ From Table 2-1 for $P=6$ inches.
2/ Travel time through the reach for the corresponding subarea.
2. Develop a flood routing summary table similar to table 5-2 for present and future conditions. The $\mathrm{T}_{\mathrm{t}}$ for each subarea is the total travel time for that subarea through the watershed to the point of interest (end of subarea 7). The hydrograph coordinates under timehours for each subarea are computed using the appropriate sheets from table 5-3 and equation $q=q_{p}(D A)(Q)$ where:

$$
\begin{aligned}
q= & \text { hydrograph coordinate discharge } \\
& \text { in cfs (cubic feet per second) } \\
q_{p}= & \text { csm/in. (cubic feet per second per square mile } \\
& \text { per inch of runoff) } \\
D A= & \text { drainage area in square miles } \\
\mathrm{Q}= & \text { runoff in inches }
\end{aligned}
$$

Using subarea 4 as an example, for $T_{c}=0.75$ hours use sheet 3 of table 5-3. For $T_{t}=2.00$ hours (the travel time through subareas 5 and 7) the routed peak of subarea 4 appears at the outlet of subarea 7 at 14.0 hours and is $251 \mathrm{csm} / \mathrm{in}$. Therefore, the peak discharge is: $q=251(.25)(2.80)=176 \mathrm{cfs}$.
3. In order to develop a composite hydrograph at the end of subarea 7, a method of summing the hydrographs from each subarea is used. This method provides a means of adjusting the timing of each hydrograph to allow for the travel time $\left(T_{t}\right)$ from the individual watershed to the point in question. Table 5-2 shows how the present and future discharges are estimated. The effect of the urban development is to increase the l00-year peak discharge from 752 to 894 cfs. Methods for preventing an increase in discharge are discussed in chapter 7.
Table 5-2.--Discharge summary for example 5-1


## Graphical Method of Determining Peak Discharge

The curve of $T_{c}$ vs. peak discharge in csm per inch of runoff shown in figure 5-2 was developed from table 5-3 for zero Tt. It can be used for a watershed where the runoff can be represented by one curve number, i.e., the land use, soils, and cover are similar and are distributed uniformly throughout the watershed. This procedure is limited to peak discharge determination (hydrograph not required) for a watershed where valley routing is not required. The peak discharge can be calculated from figure 5-2 using $\mathrm{T}_{\mathrm{c}}$ in hours, runoff in inches from.a 24 -hour rainfall, and drainage area in square miles.


Figure 5-2.--Peak discharge in csm per inch of runoff versus time of concentration ( $T_{C}$ ) for 24-hour, type-II storm distribution.

Example 5-2
A developer wishes to install a planned unit development in the uppermost part of a watershed. An ordinance in the township requires that a planned unit development not increase the l00-year-frequency flood flow at the downstream end of the development. The following basic data have been determined for present and future conditions:

```
Drainage area = 960 acres (1.5 mi }\mp@subsup{}{}{2}\mathrm{)
CN (present) = 80
CN (future) = 85
T
T
```

$P_{24}(24$-hour, 100-year frequency rainfall) $=6.0 \mathrm{in}$.

The land use (present and future) and hydrologic soil groups are evenly distributed, i.e., runoff characteristics are uniform throughout the watershed. What will be the effect of the planned development on runoff and peak discharge at the 100-year frequency?

1. Present condition:
$\mathrm{Q}=3.78$ inches for $\mathrm{CN}=80$ and $\mathrm{P}_{24}=6.0$ inches (table 2-1).
From figure $5-2$ for $T_{c}=0.9$ hours, $q_{p}=345 \mathrm{csm}$ per inch of runoff.

$$
\left.q=q_{p} A Q=345^{\prime}, \ldots 5\right)(3.78)=1,956 \mathrm{cfs}
$$

2. Future condition:
$Q=4.31$ inches for $C N=85$ and $P_{24}=6.0$ inches (table 2-1).
From figure $5-2$ for $T_{c}=0.6$ hours, $q_{p}=460 \mathrm{csm}$ per inch of runoff.

$$
q=q_{p} A Q=460(1.5) 4.31=2,974 \mathrm{cfs}
$$

3. The proposed project will increase the total volume of runoff by 14 percent and decrease the time of concentration by 33 percent rem sulting in an increase in peak discharge of 52 percent (from 1,956 cfs to 2,974 cfs).

Methods descriDed in chapter 7 can be used to determine the reservoir storage capacity required to reduce the peak from 2,974 to 1,956 cfs.

Table 5-3.--Tabular discharges for type-II storm distribution (csm/in)																								
$\frac{\text { TIME }}{\text { Of Concrypration }=0.1 \text { hours }}$ Hydrograph Tlme in Hours																								
$\underline{T_{t}}$	11.0		11.7	11.8	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13.0	13.2	13.5	14.0	14.5	15.0	16.0	18.0	20.0
0	24	51	299	991	746	477	233	152	132	121	111	85	74	70	68	65	52	48	39	33	29	24	18	14
0.25	20	38	66	140	327	626	686	546	364	236	169	137	117	97	83	75	66	52	41	35	30	24	18	14
0.50	15	27	36	43	67	133	288	482	580	543	429	310	222	168	134	110	81	63	47	38	32	26	19	15
0.75	12	20	25	29	34	42	65	125	245	392	496	515	452	360	273	206	127	80	53	42	35	27	19	15
1.00	9	15	19	21	24	28	32	41	63	115	209	328	427	470	451	389	245	121	64	47	38	29	20	16
1.50	6	10	12	13	14	16	17	19	22	25	29	38	56	92	154	236	410	360	133	66	47	33	21	16
2.00	3	6	7	8	9	10	11	12	13	14	16	18	20	23	27	34	74	244	371	142	68	38	23	17
2.50	2	4	4	5	5	6	7	7	8	9	10	11	12	13	15	16	21	41	243	343	150	48	26	19
3.00	1	2	2	3	3	4		4	5	5	6	7	7	8	9	10	12	17	50	239	321	74	29	20
3.50	0	1	1	1	1	2	2	2	3	3	4	4	4	5	6	6	7	10	27	59	304	159	33	21
4.00	0	0	0	0	0	1	1	1	1	2	2	2	2	3	3	4	5	6	10	18	67	290	39	23


Of Concentration a 0.2 hour																								
${ }_{\text {T }}$	11.0	11.5	11.7	11.8	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13.0	13.2	13.5	14.0	24.5	15.0			20.0
0	23	47	208	509	796	641	424	245	170	138	121	104	85	75	71	68	56	49	40	34	29	24	18	14
0.25	18	34	49	91	196	419	603	627	486	341	235	173	138	114	96	83	70	55	43	36	31	25	18	15
0.50	14	24	32	37	50	87	181	341	490	545	497	397	296	219	167	133	92	67	49	39	33	26	19	15
0.75	11	18	23	26	30	36	49	84	161	284	409	491	481	422	340	263	157	89	56	43	36	27	19	15
1.00	9	14	18	20	22	25	29	35	48	79	143	240	347	426	452	427	299	147	69	49	39	29	20	16
1.50	5	9	11	12	13	14	16	18	20	23	26	32	43	67	110	176	330	399	159	72	50	33	22	17
2.00	3	6	7	7	8	9	10	11	12	13	15	16	18	21	24	29	56	192	363	168	75	40	24	18
2.50	1	3	4	5	5	6	6	7	7	8	9	10	11	12	13	15	19	33	200	337	174	51	26	19
3.00	0	2	2	2	3	3	4	4	5	5	6	6	7	8	8	9	11	15	40	203	316	82	29	20
3.50	0	0	1	1	1	2	2	2	2	3	3	4	4	5	5	6	7	9	16	46	300	180	34	22
4.00	0	0	0	0	0	1	1	1	1	1	2	2	2	3	3	3	4	6	9	16	53	286	41	24


Sheet 3 of 5
(csm/in)--Continued
type-II storm distribution
Table 5-3.--Tabular discharges for

$\frac{\text { TDE }}{\text { OF COACEMTRATION }=0.5 \text { hours }}$																								
$\mathrm{T}_{\mathrm{t}}$	11.0	11.5	11.7	11.8	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13.0	13.2	13.5	14.0	14.5	15.0			20.0
0	18	36	80	166	301	433	496	474	395	309	242	194	158	130	109	94	75	57	43	36	31	25	18	15
0.25	15	26	37	52	94	172	277	372	425	424	383	326	270	221	182	150	107	73	49	39	33	26	19	15
0.50	12	20	25	30	38	58	101	169	252	327	374	385	366	329	285	241	169	103	59	44	36	27	19	15
0.75	9	15	19	22	25	30	41	63	103	162	229	292	335	354	348	325	255	157	77	50	39	29	20	16
1.00	7	12	15	17	19	21	25	31	13	66	103	153	210	264	304	327	317	231	109	61	44	31	21	16
1.50	5	8	9	10	11	12	14	15	17	20	24	31	43	63	92	129	214	295	224	115	65	36	23	17
2.00	3	5	6	6	7	8	9	10	11	12	13	14	16	19	23	30	58	143	271	216	120	46	25	18
2.50	1	3	3	4	4	5	5	6	7	7	8	9	10	11	12	14	18	39	150	253	209	71	28	19
3.00	0	1	2	2	2	3	3	4	4	4	5	5	6	7	7	8	10	15	48	154	239	126	32	21
3.50	0	0	1	1	1	1	2	2	2	2	3	3	4	4	5	5	6	8	16	56	155	227	38	23
4.00	0	0	0	0	0	1	1	1	1	1	1	2	2	2	3	3	4	5	9	19	63	217	52	25


| $T$ | 11.0 | 11.5 | 11.7 | 12.8 | 11.9 | 12.0 | 12.1 | 12.2 | 12.3 | 12.4 | 12.5 | 12.6 | 12.7 | 12.8 | 12.9 | 13.0 | 13.2 | 13.5 | 14.0 | 14.5 | 15.0 | 16.0 | 18.0 | 20.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 15 | 29 | 57 | 98 | 163 | 248 | 329 | 375 | 388 | 369 | 325 | 276 | 232 | 195 | 165 | 142 | 107 | 76 | 51 | 39 | 33 | 26 | 19 | 15 |
| 0.25 | 12 | 21 | 29 | 39 | 61 | 100 | 158 | 227 | 291 | 336 | 355 | 348 | 321 | 285 | 247 | 212 | 156 | 103 | 62 | 44 | 36 | 27 | 19 | 15 |
| 0.50 | 10 | 16 | 21 | 24 | 29 | 41 | 63 | 100 | 150 | 208 | 263 | 305 | 327 | 329 | 314 | 288 | 226 | 147 | 79 | 52 | 40 | 29 | 20 | 16 |
| 0.75 | 8 | 13 | 16 | 18 | 20 | 24 | 30 | 43 | 65 | 98 | 142 | 192 | 239 | 278 | 303 | 311 | 286 | 208 | 107 | 63 | 45 | 31 | 21 | 16 |
| 1.00 | 6 | 10 | 13 | 14 | 15 | 17 | 20 | 24 | 31 | 44 | 65 | 95 | 134 | 177 | 220 | 256 | 294 | 264 | 149 | 81 | 53 | 33 | 21 | 16 |
| 1.50 | 4 | 6 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 16 | 19 | 23 | 31 | 42 | 60 | 83 | 147 | 269 | 248 | 152 | 85 | 40 | 23 | 17 |
| 2.00 | 2 | 4 | 5 | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18 | 23 | 39 | 97 | 251 | 235 | 153 | 56 | 26 | 19 |
| 2.50 | 1 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | 15 | 28 | 107 | 218 | 236 | 91 | 29 | 20 |
| 3.00 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 8 | 12 | 33 | 113 | 225 | 153 | 34 | 22 |
| 3.50 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 5 | 7 | 13 | 39 | 117 | 215 | 44 | 24 |
| 4.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | 7 | 15 | 45 | 207 | 63 | 26 |


$\frac{\text { TTIE OF COMCEATRATIOR }=1.0 \text { hours }}{\text { Fydrograph Time in Hours }}$																								
${ }_{t}$	11.0	21.5		21.8	11.2	12.0	12.1	12.2	12.3	12.4		12.6	12.7	12.8	12.9		13.2	13.5						20.0
0	13	24	45	66	107	155	211	258	301	313	316	301	277	247	217	188	146	102	64	46	36	27	19	15
0.25	10	18	24	32	45	68	102	146	193	238	272	293	299	293	275	252	200	139	81	54	41	29	20	16
0.50	8	14	17	20	24	32	46	68	99	136	178	219	251	274	284	283	254	187	105	65	47	31	21	16
0.75	7	11	13	15	17	20	25	33	46	67	94	128	165	202	233	256	273	236	140	82	55	33	21	16
1.00	5	9	11	12	13	15	17	20	25	33	46	65	90	121	154	187	240	262	183	107	66	37	22	17
1.50	3	5	7	7	8	9	10	11	12	14	16	19	24	31	43	58	103	185	244	181	110	48	24	18
2.00	2	3	4	4	5	6	6	7	8	8	9	10	11	13	15	18	29	69	182	230	178	70	27	19
2.50	1	2	2	3	3	3	4	4	5	5	6	6	7	8	9	10	12	21	77	178	219	114	31	21
3.00	0	1	1	1	1	2	2	2	3	3	3	4	4	5	5	6	7	10	25	83	210	172	39	22
3.50	0	0	0	0	1	1	1	1	1	2	2	2	2	3	3	3	4	6	11	29	88	202	52	25
4.00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	4	6	12	33	195	77	28

$\frac{\text { THE OF Corckstration }=1.25 \text { hours }}{\text { Eydrograph Tine in }}$


	TIME OF CONCENTRATION $=1.5$ hours																							
$\mathrm{T}_{\mathrm{t}}$	11.0	21.5	11.7	11.8	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13.0	13.2	13.5	14.0	14.5	15.0	16.0	18.0	20.0
0	10	18	31	42	57	81	105	133	164	192	209	227	235	236	236	225	201	153	99	68	50	32	20	16
0.25	8	13	17	22	30	41	57	76	99	125	153	178	199	215	225	230	224	188	122	82	58	36	21	16
0.50	6	10	13	15	18	22	30	40	54	72	94	118	143	167	188	204	224	214	152	99	68	39	22	17
0.75	5	8	10	11	13	15	18	22	29	39	52	69	89	111	134	157	194	219	182	122	82	44	23	17
1.00	4	6	8	9	10	11	12	14	17	22	29	38	50	66	84	105	148	198	214	150	100	50	24	18
1.50	2	4	5	5	6	7	7	8	9	10	12	14	17	21	26	34	58	109	191	204	149	70	28	19
2.00	1	2	3	3	4	4	4	5	5	6	7	8	8	10	11	13	19	40	112	184	197	102	33	20
2.50	0	1	1	2	2	2	3	3	3	4	4	5	5	6	6	7	9	14	45	114	190	147	40	22
3.00	0	0	1	1	1	1	1	1	2	2	2	3	3	3	4	4	5	7	16	49	115	184	53	25
3.50	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	3	4	8	18	53	178	74	28
4.00	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	4	8	21	174	105	34

\footnotetext{




 かิ






 ल्ल̈




 が $\approx$ 円

 ন

 TIME OF CONCENTRATION $=2.0$ hours
Table 5－3．－－Tabular discharges for type－II storm distribution（csm／in）－－Continued

## CHAPTER 6

## Introduction

This chapter presents a general description of the "Computer Program for Project Formulation--Hydrology" distributed by SCS through Technical Release No. 20 (SCS-TR-20). A detailed description of the use of the computer program is beyond the scope of this chapter. However, an awareness of its potential use in urban hydrologic studies is important. The pro'gram was developed primarily as an evaluation tool for watershed project planning. It provides a procedure for analyzing alternative systems of structural measures. SCS-TR-20 describes in detail the preparation of input data.

## Areas of Application

Under most conditions seen in the field the hydrologic effects of urbanizing a watershed can be determined by using methods described in chapters 4 and 5. However, consideration should be given to using the computer program when:

1. Watersheds are larger than 2,000 acres
2. There are many subareas with different runoff characteristics
3. Large swamp areas or reservoirs are present
4. Historical storm events need to be analyzed

## General Description

The program was developed with strict adherence to a policy of having it (1) as flexible as possible in the use of input data; (2) provide for the maximum use of engineering judgment; (3) engineer-oriented rather than machine-oriented; and (4) described in the FORTRAN system to provide for ease in future extensions, alterations, and recompilation for other computer models.

The program computes surface runoff resulting from any synthetic or natural rainstorm. It takes into account conditions affecting runoff (CN, $T_{c}$, etc.), develops a hydrograph, and routes the hydrograph through stream channels and reservoirs. The computer can combine the routed hydrograph with those from other tributaries and print out the total composite hydrograph, peak discharges, time of occurrence, and the water surface elevation at each desired cross section or structure. Watersheds are analyzed under present conditions and with various combinations of land treatment, floodwater-retarding structures, and channel improvement. Capabilities and Limitations
In general, in any one continuous operation, the computer program can:
l. Route through as many as 60 structures and an unlimited number of variations for each structure, including that of having no structure.
2. Route through as many as 120 stream reaches and an unlimited number of channel modifications for each reach.
3. Compute up to 300 ordinates of a hydrograph and print out the discharge and elevation for each.
4. Make an unlimited number of routings through a watershed, including variations in rainfall amounts, rainfall duration, and antecedent moisture condition.
5. Develop and route the runoff for nine different storm distributions and for an unlimited number of depths and durations for any storm distribution.
6. Combine hydrographs from an unlimited number of tributaries and reaches.

Hydrologic and hydraulic parameters that are affected by urbanization can be varied and used as input to the computer program and the effects can be analyzed.

If it is desired to use the computer program for urban hydrology studies, a copy of SCS-TR-20 can be obtained from any SCS state office. A copy of the source program can be obtained by SCS personnel through the SCS Management Division, Washington, D.C.; other users can obtain a copy through the National Technical Information Service:

National Technical Information Service
U.S. Department of Commerce
P.O. Box 1553

Springfield, Virginia 22151

## CHAPTER 7

METHODS FOR CONTROLLING PEAK DISCHARGES FROM URBANIZING AREAS

## Introduction

As rural areas urbanize, the increase in peak discharges due to more efficient conveyance paths and increased impervious areas can have a significant adverse impact on downstream areas. There is a growing interest on the part of planners, developers, and the public in protecting downstream areas from induced flood damages that may accompany increased peaks and stages. Planning authorities are proposing local ordinances that restrict the type of development permitted and the impact development can have on the watershed. One of the primary controls being imposed is that future-condition discharges cannot exceed present-condition discharges at some predetermined frequency of occurrence at specified points on the channel.

Earlier chapters discussed methods of determining changes in peak discharges. This chapter discusses types of measures or construction technigues that can be used to control peak discharges from urbanizing areas through planned runoff delay and increased infiltration and presents a procedure for estimating the amount of storage reguired to maintain peaks at some predetermined level.

Methods of Reducing or Delaying Urban Runoff
Methods to control runoff in urbanizing areas reduce either the volume or the rate of runoff. The effectiveness of any control method depends on the available storage, the outflow rate, and the inflow rate. Because a great variety of methods can be used to control peak flows, each method proposed should be evaluated for its effectiveness in the given area.

Table 7 -l lists measures for reducing and delaying urban storm runoff. Table 7-2 lists some advantages and disadvantages of each measure. Both tables were adapted from tables prepared at Pennsylvania State University under the direction of Gert Aron, associate professor of civil engineering. Effective measures for reducing peak rates of runoff are, of course, not limited to those listed in table 7-1.

## Effects of Reducing or Delaying Urban Runoff

The direct reduction of peak flows and volume of runoff through installation of these measures is very difficult to determine. Measures that increase infiltration also reduce runoff. Therefore the runoff curve number will be lower than it would be without the measures. Measures that delay runoff also increase the time of concentration. The degree of change in curve number or time of concentration over the watershed depends on how extensively each measure is applied.

Table 7-1.--Measures for reducing and delaying urban storm runoff

Area	Reducing runoff	Delaying runoff
Large flat roof	1. Cistern storage   2. Rooftop gardens   3. Pool storage or fountain storage   4. Sod roof cover	1. Ponding on roof by constricted downspouts   2. Increasing roof roughness   a. Rippled roof   b. Gravelled roof
Parking lots	1. Porous pavement   a. Gravel parking lots   b. Porous or punctured asphalt   2. Concrete vaults and cisterns beneath parking lots in high vaiue areas   3. Vegetated ponding areas around parking lots   4. Gravel trenches	1. Grassy strips on parking lots   2. Grassed waterways draining parking lot   3. Ponding and detention measures for impervious areas a. Rippled pavement   b. Depressions   c. Basins
Residential	I. Cisterns for individual homes or groups of homes   2. Gravel driveways (porous)   3. Contoured landscape   4. Ground-water recharge   a. Perforated pipe   b. Gravel (sand)   c. Trench   d. Porous pipe   e. Dry wells   5. Vegetated depressions	1. Reservoir or detention basin   2. Planting a high delaying grass (high roughness)   3. Gravel driveways   4. Grassy gutters or channels   5. Increased length of travel of runoff by means of gutters, diversions, etc.
General	1. Gravel alleys   2. Porous sidewalks   3. Mulched planters	1. Gravel alleys

Table 7-2.--Advantages and disadvantages of measures for reducing and delaying runoff

Measure
Advantages
Disadvantages
A. Cisterns and covered ponds

1. Water may be used for:
a. Fire protection
b. Watering lawns
c. Industrial processes
d. Cooling purposes
2. Reduce runoff while only occupying small area
3. Land or space above cistern may be used for other purposes
4. Expensive to install
5. Cost required may be restrictive if the cistern must accept water from large drainage areas
6. Requires slight maintenance
7. Restricted access
8. Reduced available space in basements for other uses
$\left.\begin{array}{ccc}\text { B. Rooftop } \\ \text { gardens }\end{array} \quad \begin{array}{c}\text { 2. Esthetically pleasing } \\ \text { 2. Runoff reduction }\end{array} \quad \begin{array}{c}\text { 1. Higher structural } \\ \text { loadings on roof } \\ \text { and building }\end{array}\right]$

Table 7-2.--Advantages and disadvantages of measures for reducing and delaying runoff--Continued

Measure	Advantages	Disadvantages
E. Increased roof roughness   a. Rippled roof   b. Gravel on roof	1. Runoff delay and some reduction (detention in ripples or gravel)	1. Somewhat higher structural loadings
F. Porous pavement (parking lots and alleys)   a. Gravel parking lot   b. Holes in impervious pavements (1/4 in. $\phi$ ) filled with sand	1. Runoff reduction (a and b)   2. Potential groundwater recharge ( a and b )   3. Gravel pavements may be cheaper than asphalt or concrete (a)	1. Clogging of holes or gravel pores (a and b)   2. Compaction of earth below pavement or gravel decreases permeability of soil (a and b)   3. Ground-water pollution from salt in winter (a and b)   4. Frost heaving for impervious pavement with holes (b)   5. Difficult to maintain   6. Grass or weeds could grow in porous pavem ment ( a and b )
G. Grassed channels and vegetated strips	1. Runoff delay   2. Some runoff reduction (infiltration recharge)   3. Esthetically pleasing   a. Flowers   b. Trees	1. Sacrifice some land area for vegetated strips   2. Grassed areas must be mowed or cut periodically (maintenance costs)
H. Ponding and detention measures on impervious pavement   a. Rippled pavement   b. Basins   c. Constricted inlets	1. Runoff delay ( $a, b$, and $c$ )   2. Runoff reduction ( a and b )	1. Somewhat restricted movement of vehicle (a)   2. Interferes with normal use ( $b$ and $c$ )   3. Damage to rippled pavement during snow removal (a)   4. Depressions collect dirt and debris (a, b, and c)

Table 7-2.--Advantages and disadvantages of measures for reducing and delaying runoff--Continued
Measure Advantages Disadvantages
I. Reservoir or detention basin

1. Runoff delay
2. Recreation benefits
a. Ice skating
b. Baseball,
football, etc., if land is provided
3. Esthetically pleas- 3. Mosquito breeding area ing 4. Siltation in basin
4. Could control large drainage areas with low release
J. Converted
septic tank
for storage
and groundwater recharge
5. Low installation costs
6. Runoff reduction (infiltration and storage)
7. Water may be used for:
a. Fire protection
b. Watering lawns and gardens
c. Ground-water recharge
K. Ground-water recharge
a. Perforated pipe or hose
b. French drain
c. Porous pipe
d. Dry well
8. Runoff reduction (infiltration)
9. Ground-water recharge with relatively clean water
10. May supply water to garden or dry areas
11. Little evaporation loss
L. High delay grass 1. Runoff delay 1. More difficult to mow
(high roughness)
12. Increased infiltration
M. Routing flow over lawn
13. Runoff delay
14. Increased infiltration
15. Considerable amount of land is necessary
16. Maintenance costs
a. Mowing grass
b. Herbicides
c. Cleaning periodically (silt removal)
17. Requires periodic maintenance (silt removal)
18. Possible health hazard
19. Sometimes requires a pump for emptying after storm
20. Clogging of pores or perforated pipe
21. Initial expense of installation (materials)
22. More difficult to mow
$\qquad$
23. Possible erosion or
scour
24. Standing water on lawn in depressions

Preliminary studies at Pennsylvania State University ${ }^{1}$ have shown that for one particular situation analyzed (a 200-acre urban watershed) the potential peak flow was reduced by about 8 percent by gravel minidikes on slightly slanted roofs. Also, installing grass-protected infiltration trenches to control runoff from parking lots reduced the flood peak by about 5 percent. Various possible combinations of methods should be evaluated on their particular merit for the watershed under consideration.

## Methods for Estimating the Effect of Storage

When a structure such as a retarding dam or holding pond is installed, hydraulic routing procedures can be used to determine the effect on peak discharges. The SCS-TR-20 program referred to in chapter 6 provides an accurate method for analyzing this situation. A less accurate method has been developed for quickly analyzing effects of storage reservoirs on peak discharges. The method is based on average storage and routing effects for many structures. The storage indication method of routing was used. Figure 7-1 relates the volume of inflow to volume of required storage for a range of peak release rates. Figure 7-2 relates the peak outflow-inflow ratio to the storage-runoff volume ratio where a singlestage pipe spillway or weir is used. Emergency spillway flow is not considered.

The accuracy of the curves in figures 7-1 and 7-2 depends on the relationship between the storage available, the inflow volume, and the shape of the inflow hydrograph. When only a small volume is available for temporary storage, the shape of the outflow hydrograph is very sensitive to the rate of rise of the inflow hydrograph. Conversely, when a large volume is available for storage, the shape of the inflow hydrograph has little effect on the outflow hydrograph which, in this case, is controlled by the hydraulics of the structural system. Therefore, parameters such as runoff curve number and time of concentration, which affect the rate of rise of a hydrograph, become significant parameters in analyzing the effects of structures when the peak outflow rate approaches the peak inflow rate.
In figure $7-1$ the peak inflow rate is not a factor in determining storage requirements. It can be seen that the ratio of volume of storage ( $\mathrm{V}_{\mathrm{S}}$ ) to volume of runoff $\left(\mathrm{V}_{\mathrm{r}}\right)$ is relatively high. Therefore, inflow peak is not a significant parameter. Figure 7-1 is usually accurate within 5 percent for release rates under 100 csm (cubic feet per second per square mile) and within 10 percent for release rates over 100 csm .
Figure 7-2 relates the ratio of peaks to volumes. For this case the parameters affecting the shape of the hydrograph are important. In situations where runoff curve numbers are less than 65 in combination with short $T_{c}$ values, $V_{S} / V_{r}$ values read from the curve will be up to 25 percent too high. Runoff curve numbers over 85 with long $T_{c}$ values cause $V_{S} / V_{r}$ values to be up to 25 percent too low.
${ }^{1}$ Studies of flood peak abatement in urban storm runoff conducted by Gert Aron, assoc. prof. civil eng., Pennsylvania State Univ.


Figure 7-1. --Approximate single-stage structure routing for weir flow structures up to 150 csm release rate and pipe flow structures up to 300 csm release rate.

Figure 7-1 applies to pipe drop inlets of 0 to 300 csm release rate and weir flow structures of 0 to 150 csm release rate. Figure 7-2 applies to pipe drop inlets of over 300 csm release rate and weir flow structures of over 150 csm release rate.

Extrapolation for points falling outside the limits of the curves could introduce a significant error. The steps necessary to use the procedure described in this chapter are:

1. Determine the basic watershed parameters (DA, CN, $T_{C}$, etc.).
2. Determine the volume of runoff and peak rate of flow from the watershed.
Figure 7-2.-Approximate single-stage structure routing for weir flow structures over 150 csm release rate and pipe flow structures over 300 csm release rate.
3. Set the desired rate of outflow from the structure.
4. Determine the required volume of storage from the appropriate figure, 7-1 or 7-2.
5. Proportion the storage structure so that the design outflow rate and maximum storage occur at the same stage.

Note that in steps 3 and 4, the storage volume could be set and the resulting rate of outflow determined from figures 7-1 and 7-2. For structures with drainage areas over 2,000 acres and for events of less than 2 -year frequency, the SCS-TR-20 program discussed in chapter 6 should be used. The following examples show how figures 7-1 and 7-2 are used.
Example 7-1
A developer is attempting to secure a permit to install a 4.2-acre-ft detention reservoir at the outlet of a proposed 75-acre development for storm water management. Based on procedures described in chapter 4, the present peak discharge of the design storm is 180 cfs (cubic feet per second), the future runoff is 3.4 inches, and the future peak discharge is 360 cfs . Using the stage-discharge and stage-storage curves shown in figure 7-3, determine whether the proposed structure will reduce the future-condition peak discharge to 180 cfs .

For this example, 180 cfs is the desired outflow $Q_{0}$ and 360 cfs is the future-condition discharge into the reservoir $Q_{i}$. Inflow runoff $V_{r}$ is 3.4 inches.

1. Select the proper figure to use in the shortcut routing method.

$$
\begin{aligned}
Q_{0} & =180 \mathrm{cfs}(\text { present peak }) \\
& =\frac{180 \mathrm{cfs}\left(640 \mathrm{acres} / \mathrm{mi}^{2}\right)}{75 \mathrm{acres}}=1,536 \mathrm{csm}
\end{aligned}
$$

Since Qo is greater than 300 csm , use figure 7-2.
2. Compute $\frac{Q_{0}}{Q_{i}}$ (must be in same units).

$$
\frac{Q_{0}}{Q_{i}}=\frac{180 \mathrm{cfs}}{360 c f s}=0.5
$$

3. Determine $\mathrm{V}_{\mathrm{S}}$ (volume storage).

$$
\text { With } \frac{Q_{0}}{Q_{i}}=0.5 \text {, enter figure } 7-2 \text { and find } \frac{V_{S}}{V_{r}}=0.28
$$

STORAGE IN ACRE FEET


Figure 7-3.--Stage-discharge and stage-storage relationship for structure A in example 7-1.

Since $V_{r}=3.4$ inches, then

$$
\begin{aligned}
V_{S} & =0.28(3.4)=0.95 \mathrm{in} \\
& =\frac{0.95 \mathrm{in}(75 \text { acres })}{12 \mathrm{in} / \mathrm{ft}}=5.9 \mathrm{acre}-\mathrm{ft}
\end{aligned}
$$

4. Determine available storage.

From figure 7-3 the elevation of the crest of the emergency spillway must be 104.8 msl (mean sea level) to discharge 180 cfs . At this elevation the available storage is 4.2 acre-ft.
5. Evaluate proposed structure.

The required storage of 5.9 acre-ft is greater than the 4.2 acre-ft provided by the proposed structure. The structure should be redesigned to raise the crest of the emergency spillway to 105.7 msl (5.9 acre-ft), and the principal spillway should be modified so that it will discharge 180 cfs at 105.7 msl .

## Example 7-2

Based on the conditions in example 5-1, determine the release rate and the storage required at structure 6A located near the outlet of subarea 6 to maintain the peak discharge at the existing rate at the outlet of
the watershed. Refer to figure 5-1 and tables 5-1 and 5-2. Assume a pipe drop inlet spillway for the structure.

1. From table 5-2, subtract the future-condition flow contribution by subarea 6 from the future composite hydrograph as follows:

Hydrograph
location
Composite discharge (cfs)
$\begin{array}{llllll}\begin{array}{c}\text { Subarea 6 discharge } \\ \text { (cfs) }\end{array} & 371 & 333 & 245 & 138 & 85 \\ \begin{array}{c}\text { Composite discharge } \\ \text { minus subarea 6 } \\ \text { (cfs) }\end{array} & 448 & 525 & 649 & 636 & 518\end{array}$
Note that the partial composite hydrograph peak is 649 cfs at the outlet of the watershed.
2. Since the present-condition maximum peak discharge at the outlet is 752 cfs, the release rate of structure 6 A cannot exceed 752 cfs minus the peak of the partial composite hydrograph. Therefore,

$$
\text { maximum release rate }=752-649=103 \text { cfs }
$$

3. Determine peak outflow ( $Q_{0}$ ) in csm from proposed structure 6A.

$$
Q_{0}=\frac{103 \mathrm{cfs}}{0.4 \mathrm{mi}^{2}}=258 \mathrm{csm}
$$

4. A pipe drop inlet with 258 csm maximum release rate will be routed. Use figure $7-1$ since the release rate is less than 300 csm .
5. Determine required storage ( $V_{S}$ ). With $Q_{0}=258 \mathrm{csm}, V_{r_{r}}=3.28 \mathrm{in}$. (future-condition runoff for subarea 6). Enter figure 7-1 and find

$$
\begin{aligned}
V_{S} & =1.55 \mathrm{in} \\
& =\frac{1.55 \mathrm{in}\left(640 \mathrm{acres} / \mathrm{mi}^{2}\right)\left(0.4 \mathrm{mi}^{2}\right)}{12 \mathrm{in} / \mathrm{ft}}=33.1 \mathrm{acre}-\mathrm{ft}
\end{aligned}
$$

Therefore, the storage required to maintain the peak discharge at the present rate at the watershed outlet is 1.55 inches or 33.1 acre-ft. The pipe spillway must be designed to provide 103 cfs outflow at 33.1-acre-ft storage.

## Example 7-3

Determine the release rates and storage required to maintain present peaks for two structures, one located at the outlet of subarea 4 (site 4 A ) and one at the outlet of subarea 6 (site 6A) as shown in figure 5-1 and example 5-1. Structure 4 A will have a pipe drop inlet spillway and 'structure 6A will have a straight drop spillway.

1. The decision on the amount of reduction to be accomplished at each structure is more or less arbitrary. Several alternatives should be studied to find the optimum design. This example will illustrate one trial calculation to show the procedure used. First subtract futurecondition outflows of subareas 4 and 6 from the future composite hydrograph as follows:

Hydrograph	Time (hours)				
location	13.00	13.20	13.50	14.00	14.50
Composite discharge (cfs)	819	858	894	774	603
Subarea 4 discharge (cfs)	58	103	188	174	106
Subarea 6 discharge (cfs)	371	333	245	138	85
```Composite discharge minus subareas 4 and 6 (cfs)```	390	422	461	462	412

Note that the partial composite hydrograph peak discharge is 462 cfs.
2. The combined release rates of the two structures can be 752 cfs (desired peak) less 462 cfs (partial composite peak). Therefore structure 4 A release and structure 6 A release equals 752 minus 462 , or 290 cfs.
3. It is now necessary to decide the distribution of the 290 cfs release rate between the two structures. For a first trial assume structure 6 A release is 200 cfs and structure 4 A release is 90 cfs .
4. Determine storage required in structure 6A.
a. $Q_{0}=200 \mathrm{cfs}=\frac{200 \mathrm{cfs}}{0.4 \mathrm{mi}^{2}}=500 \mathrm{csm}$.

Since Q_{0} is more than 300 csm , use figure 7-2.
b. Since figure 7-2 is to be used, the peak inflow ($Q_{\dot{1}}$) at the outlet of subarea 6 must be determined.
Do not use 371 cfs or 245 cfs, because the discharges in table $5-2$ and in step 1 above are subarea contributions at the outlet of subarea 7 and not the peak inflow at subarea 6 .
Enter table 5-3 for $T_{c}=1.00 \mathrm{hr}$ (sheet 4 of 5) and $T_{t}=0$ and find $Q_{i}=316$ csm per inch of runoff.

$$
Q_{i}=316\left(V_{r}\right)=316(3.28)=1,036 \mathrm{csm}
$$

c. Compute required storage (V_{S}).

$$
\text { With } \begin{aligned}
Q_{0} & =500 \mathrm{csm} \text { and } Q_{i}=1,036 \mathrm{csm}, \\
\frac{Q_{0}}{Q_{i}} & =\frac{500}{1,036}=0.48
\end{aligned}
$$

From figure 7-2, $\frac{V_{S}}{V_{r}}=0.29$ and with $V_{r}=3.28$ in (future-condition runoff)

$$
\begin{aligned}
V_{S} & =0.29\left(V_{r}\right)=0.29(3.28)=0.95 \mathrm{in} \\
& =\frac{0.95 \mathrm{in}\left(640 \mathrm{acres} / \mathrm{mi}^{2}\right)\left(0.40 \mathrm{mi}^{2}\right)}{12 \mathrm{in} / \mathrm{ft}}=20 \mathrm{acre}-\mathrm{ft}
\end{aligned}
$$

5. Determine storage required in structure 4A.
a. $Q_{0}(\operatorname{step} 3)=90 \mathrm{cfs}=\frac{90 \mathrm{cfs}}{0.25 \mathrm{mi}^{2}}=360 \mathrm{csm}$

Since $Q_{0}=360 \mathrm{csm}$ and the outflow structure is a pipe drop inlet, use figure 7-2.
b. Since figure 7-2 is to be used, the peak inflow (Q_{i}) at the outlet of subarea 4 must be determined. Enter table 5-3 for $T_{C}=0.75$ and $T t=0$ and find $Q_{i}=388$ csm per inch of runoff.

$$
Q_{i}=388\left(V_{r}\right)=388(2.80)=1,086 \mathrm{csm}
$$

c. Compute required storage (V_{S}).

With $Q_{0}=360 \mathrm{csm}$ and $Q_{i}=1,086 \mathrm{csm}$,

$$
\frac{Q_{0}}{Q_{i}}=\frac{360}{1,086}=0.33
$$

From figure $7-2$ read $\frac{V_{S}}{V_{r}}=0.41$, and with $V_{r}=2.80 \mathrm{in}$,

$$
\begin{aligned}
V_{S} & =0.41(2.80)=1.1 \mathrm{in} \\
& =\frac{1.1 \mathrm{in}\left(640 \mathrm{acres} / \mathrm{mi}^{2}\right)\left(0.25 \mathrm{mi}^{2}\right)}{12 \mathrm{in} / \mathrm{ft}}=15 \mathrm{acre}-\mathrm{ft}
\end{aligned}
$$

6. Summary

Structure	Drainage area	Q		Storage
	$m \mathrm{i}^{2}$	csm	cfs	acre-ft
4 A	. 25	368	90	15
6A	. 40	500	$\underline{200}$	20
Total	---	---	290	35

Other trial calculations can be made to determine the most economical allocation of storage between the two structures that still maintains a combined release rate of 290 cfs .

APPENDIX A

URBAN HYDROLOGY BIBLIOGRAPHY

American Society of Civil. Engineers. 1969. Basic information needs in urban hydrology. ASCE Urban Hydrol. Res. Council, 112 p. New York.
1969. Effect of urban development on flood discharges-current knowledge and future needs. ASCE J. Hydraul. Div. 95: 287-309.

Anderson, D. G. 1970. Effects of urban development on floods in northern Virginia. U.S. Geol. Survey Water-Supply Pap. 2001-C, 22 p. Washington, D.C.

Anderson, J. J. 1970. Real-time computer control of urban runoff. ASCE J. Hydraul. Div. 96: 153-164.

Benson, Manuel. 1952. Characteristics of frequency curves based on a theoretical 1,000-year record. U.S. Geol. Survey, Water Resources Div., 21 p. Washington, D.C.

Brater, E. F. 1968. Steps toward a better understanding of urban runoff processes. Water Resources Res. 4: 335-347.

Carter, R. W. 1961. Magnitude and frequency of floods in suburban areas. In Short papers in the geologic and hydrologic sciences. U.S. Geol. Survey Prof. Pap. 424-B, pp. B9-Bll. Washington, D.C.

Chen, C. W., and R. P. Shubinski. 1971. Computer simulation of urban storm water runoff. ASCE J. Hydraul. Div. 97: 289-301.

Dawdy, D. R. 1969. Considerations involved in evaluating mathematical modeling of urban hydrologic systems. U.S. Geol. Survey Water-Supply Pap. 1591-D. Washington, D.C.

Dawdy, D. R., and T. O'Donnel. 1965. Mathematical models of catchment behavior. ASCE J. Hydraul. Div. 91: 123-137.

Eagleson, P. S. 1969. Modeling surface runoff in urban hydrology. In ASCE Urban Water Resources Res. lst year rep. append. A, ch. 4, pp. A32-A78.

Espey, W. H., Jr., C. W. Morgan, and F. O. Masch. 1965. A study of some of the effects of urbanization on storm runoff from a small watershed. Texas Univ. Cent. Res. in Water Resources, Hydraul. Eng. Lab. Tech. Rep. HYD-07-6501-CRWR-2, 107 p. Austin, Tex.

Evelyn, J. B., V. V. D. Narayana, J. P. Riley, and E. K. Israelsen. 1970. Hydrograph synthesis for watershed subzones from measured urban parameters. Utah Water Res. Lab., Utah State Univ., 51 p. Logan, Utah.

Hydrocomp International, Inc. 1971. Studies in the application of digital simulation to urban hydrology. Palo Alto, Calif. Prepared for U.S. Dept. Inter., Off. Water Resources Res.

Izzard, C. F. 1946. Hydraulics of runoff from developed surfaces. Highway Res. Bd. Proc. 26: 129-146.

James, L. Douglas. 1965. Using a digital computer to estimate the effects of urban development on flood peaks. Water Resources Res. 1: 223-234.

James, L. Douglas. 1970. An evaluation of relationships between streamflow patterns and watershed characteristics through the use of OPSET: a self calibrating version of the Stanford watershed model. Univ. Kentucky, Water Resources Inst. Res. Rep. 36. Lexington, Ky.

Kerky, W. S. 1959. Time of concentration for overland flow. Civ. Eng. 29:60.

Knapp, G. L., and J. P. Glasby. 1972. Urban hydrology-a selected bibliography with abstracts. U.S. Geol. Survey, Water Resources Invest. 3-72, 211 p. Washington, D.C.

Knapp, J. W., and W. J. Rawls. 1968. Prediction models for investment in urban drainage systems. U.S. Dept. Inter., Water Resources Res. Cent. Rep. A-O11-VA, 7 p. Washington, D.C.

Leopold, Luna B. 1968. Hydrology for urban land planning--a guidebook on the hydrologic effects of urban land use. U.S. Geol. Survey Cir. 554, 18 p. Washington, D.C.

Leopold, L. B., and T. Maddock. 1953. The hydraulic geometry of stream channels and some physiographic implications. U.S. Geol. Survey Prof. Pap. 252, 57 p. Washington, D.C.

March, F., and P. S. Eagleson. 1965. Approaches to linear synthesis of urban runoff systems. MIT Hydrodynamics Lab. Rep. 85. Cambridge, Mass.

Miller, C. R., and W. Viessman, Jr. 1972. Runoff volumes from small urban watersheds. Water Resuurces Res. 8: 429-434.

Narayana, V. V. D., J. P. Riley, and E. K. Israelsen. 1969. Analog computer simulation of the runoff characteristics of an urban watershed. Utah Water Res. Lab., Utah State Univ., 83 p. Logan, Utah.

Terstriep, M. L., and J. B. Stall. 1969. Urban runoff by road research laboratory method. ASCE J. Hydraul. Div. 95: 1809-1834.

Tholin, A. L., and C. J. Keifer. 1959. The hydrology of urban runoff. ASCE J. Sanit. Eng. Div. 85: 47-106.
U.S. Soil Conservation Service. 1973. A method for estimating volume and rate of runoff in small watersheds. SCS-TP-149 (Rev.), 60 p . Washington, D.C.
1972. Hydrology. Nat. Eng. Handb., Sec. 4. Washington, D. C.

Viessman, W., Jr. 1966. The hydrology of small impervious areas. Water Resources Res. 2: 405-412.

APPENDIX B

SOIL SERIES AND HYDROLOGIC SOIL GROUPS

This appendix provides soil names and their hydrologic classification used in determining soil-cover complexes in chapter 2 of this technical release. The hydrologic parameter, A, B, C, or D, is an indicator of the minimum rate of infiltration obtained for a bare soil after prolonged wetting. By using the hydrologic classification and the associated land use, runoff curve numbers can be computed as shown in chapter 2.

The hydrologic soil groups, as defined by SCS soil scientists, are:
A. (Low runoff potential). Soils having a high infiltration rate even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands or gravels.
B. Soils having a moderate infiltration rate when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse texture.
C. Soils having a slow infiltration rate when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water or soils with moderately fine to fine texture.
D. (High runoff potential). Soils having a very slow infiltration rate when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material.

		AKAKA	A	AMADDR	D	AKBCR	8	Atlee	
AASTAD	8	AKASKA	B	\triangle Magce	D	arbuckle	8	ATMORE	810
abajo	c	AKELA	C	AMALU	D	arcata	8	ATOKA	
$\triangle B+\mathrm{j}$ t	D	ALADDIN	E	AMANA	B	ARCH	8	ATSION	c.
ABBUTTSTIOMN	c	alat	A	AMARGOSA	D	ARCHABAL	8	ATtERBERRY	B
AdEGG	8	alaeloa	-	AMARILLC	-	ARCHER	C	ATTEWAN	A
abela	8	Alaga	A	amasa	8	ARCHIN	c	Attica	B
ABELL	B	Alakal	C	AMBERSCN		ARCO	8	ATTLEBORO	
aberderen	0	ALAMA	C	AMBCY	C	arcula	c	Atwatek	B
ABES	D	alamance	B	AMBRAW	C	ARD	c	ATwELL	C
ABILENF	c	ALAMC	c	AMECEE	A	ARDEN	8	ATbCOD	B
ABINGTIN:	8	alamosa	c	AMELIA	8	ARUENVCIR	8	AUBBEENAUBBEE	B
abioua	c	ALAPAHA	0	AMENIA	8	ARDILLA	c	AUBERRY	8
abu	B	ALAPAI	A	AMERICUS	A	AREDALE	8	AUBURN	C
A BKA	c	ALPAN	B	$\triangle M E S$	C	ARENA	c	AUBURNDALE	0
ABKAHAN	8	almand	C	AMHERST	C	arenales	A	aUdian	B
ABSAPUXEE	c	aldany	c	AMITY	C	ARENOTSVILLE	B	AU GRES	C
abSC.JTA	θ	ALAATON	0	AMMDN	B	ARENOSA	A	AUG SBURG	B
ABSHEA	D	altee	C	AmOLE	C	ARENZVILLE	8	augusta	C
ACACIO	c	albemarle	8	AMCR	B	ARGONAUT	D	AULD	D
ACADEMY	c	alhertville	C	AMDS	C	ARGUELLD	8	AURA	8
acadia	0	ALAIA	C	AMSTERDAM	8	ARGYLE	8	a URORA	c
AcAva	0	ALJICN	e	$\triangle M T C F T$	D	ARI20	4	AUSTIN	C
aceitunas	H	ALBNIGHTS	C	AMY	D	ARKABUTLA	c	auxvasse	D
acel	D	AlCALDE	c	ANACAPA	8	ARKPGRT	8	auzoul	B
ACKEP	8	ALCESTER	H	anamuac	0	ARLANC	8	Ava	C
ACKMEN	8	alcua	5_{0}	andmite	D	ARLING	c	avalanche	8
ACMF	c	alcona	\square	ANAPRA	B	ARLINGTON	A	avalon	8
ACO	B	alcova	H	anatline	D	arloval	c	avery	B
ACILITA	в	ALDA	C	anaverde	B	APMAGH	D	AVCN	c
active	c	ALDAX	D	AACHG	C	ARMINGTUN	D	avonburg	0
ACION	8	aluen	C	AACHCRACE	A	ARMO	8	avondale	8
ACUFF	8	ALDER	ε	anchgr eay	-	ARMCLR	8	Ambrey	0
achurit	8	ALIERDALE	c	AACHER PGINT	B	ARMSTEF	c	AXtELL	0
AnA	8	ALUERHUOD	c	anclite	c	ARMSTKCNG	D	AYAR	C
ADAIU	D	ALOIND	c	AACC	C	Armuchet	c	Arccex	B
ADAMS	A	ALEKNAGIK	B	ANCERS	c	afnegakd	B	AYR	8
adamsin	B	Alex	e	ANCER SCN	-	ARNHART	C	AYRES	0
$A D A M S T I L I N T$		ALF XANDRIA	c	ANCES	c	AKNHEIM	c	AYRSHIRE	C
ADAMSVILLE	c	alexis	8	ANCLRINIA	C	ARNG	D	arsees	8
ADATU	0	ALFORD	®	ANDOVER	D	arnclu	8	ALTALAN	-
acaven	0	algansee	B	ANCRES	B	aknot	C/D	Altec	-
a Duisoi.	D	ALGIEKS	C/0	ANCREWS	C	ARUCSTCCK		ALULE	C
anor	c	AL GDMA	310	ANEC	D	ARDSA	D	AZWELL	B
AUE	A	ALICE	A	ANETH	A	ARP	0		
ADEL	Δ	alicel	B	angelica	D	AKkIngten	B	BABB	A
anelatie	0	ALICIA	c	ANGELINA	8/0	Arkclime	c	BABBINGTON	8
adelantg	8	ALIDA	9	ANGIE	C	ARFCN	c	BABCOCK	8
a DELPMIA	c	ALIKCHI	B	angle	A	ARRCh	8	babyton	a
aceria	c	ALKD	D	AAGLEN	B	AFREUWSMITH	8	GACA	c
ADILIIS	A	allagash	B	angcla	C	ARTA	C	$\triangle A C H$	D
ADIRI? \% Dack		ALlard	\checkmark	ANGCSTURA	8	arteis	C	BAChus	θ
dekins	8	ALLEGHENY	B	ANIAK	D	aryaca	D	BACKBDNE	A
ADLEH	c	allemands	D	ANITA	D	arvana	c	BADENAUGH	-
ADULP ${ }^{\text {a }}$	D	ALLEN	${ }^{\text {H }}$	ANKENY	A	ARVESDN	c	BAOGER	C
$\triangle D \times I A N$	A/D	allemoale	C	ANLAUF	C	arvilla	8	BADGERTON	8
AESEAS	\checkmark	allensuille	C	andabella	A	aklell	C	BADO	0
AEIN:	A	ALLEMIINE	-	annandale	C	ASA	B	BADUS	C
AFIISN	0	ALLENWUCD	H	AANISTCN	8	asoury		BAGCAD	8
agar	8	alley	C	ANDKA	A	ASCALCN	8	aAGGOTT	0
AGassil	0	alliance	B	ancaes	C	ASCHUFF	0	bagley	-
AGATE	ก	ALligatior	L	AASELMC	A	asctrof ${ }^{\text {a }}$	8	BAHEM	8
AuAWA*	8	ALLIS	D	ANSON	8	ASHBy	C	baile	D
AGEicy	c	ALLISCN	C	antelcpe springs	c	asheale	8	bainville	C
AGFK	0	allcuez	c	ANTERC	C	ASHE	8	BAIRD HOLLOH	C
AGNEK	B	allemay		ANT FLAT	c	a Sheum	C	BAJURA	0
AGNEW	B / C	Alfac	B	anthony	B	ASHLEY	A	a akeoven	D
agivils	8	almena	c	ANTIGD	B	ASH Sphing	C	BAKER	C
agua	A	alront	c	AAT ILCN	8	ashton	8	gaker pass	θ
aguadilla	A	alyy	ε	AATICCH	D	ashue	8	BALAAM	A
agua culce	c	ALCHA	c	ANTLER	C	ashuelcit	c	BALCH	D
afua frita	C	alcinso	B	AATCINE	C	ASHECCO	C	-ALCCM	8
AGUEDA	B	all'var	c	ANTY	8	ASKEN	c	BALD	c
agule ita	B	ALPENA	B	anhay	-	ASC	0	GALCER	c
AGUIL it	D	ALPON	8	A LIA	\bigcirc	ASCTIN	C	BALDOCK	日/C
AGUSTIV	H	ALPCMA	A	APACHE	D	ASPEN	8	BALCHIN	D
ahatinat	D	alps		apakuit	A	ASPERMINT	8	balor	8
AHL	c	ALSEA	H	APISHAPA	C	ASSIAMIRCINE	e	GALE	c
$\triangle \mathrm{HL}$ 'S $\mathrm{I}+\mathrm{IIM}$	c	alstan	ε	APISEN	-	ASSUMPIICN	8	BALLARD	\square
AHMEFK	B	alstien	p	$\triangle P P I A N$	D	astaiula	A	ballinger	c
AHUL 1	11	ALTAMDNT	L	APPLECATE	c	ASTCR	410	balr	B / C
AHTAN,	c	altavista	c	L.? PLLTCA	C	ASTCHIA	B	balran	B / C
AHmatist	c	altecirf	r	AHPLINE	${ }^{\text {d }}$	atascauere	c	BALCN	B
Alisunitio	c	altmar	${ }^{3}$	APKCA	B	atce	日	GALTIC	D
AIKEA	\square	ALTE	c	$\triangle P T$	c	ATEFIC	c	CALTIMCRE	e
AIKMA.	D	altuga	C	APTAKISIC	5	Athfinlel	-	BAMBER	B
AItig	-	ALTLV	\bigcirc	AKABY		\triangle THENA	8	GAMFERTH	B
Almatea	\%	ALTUS	B	aralia	\checkmark	athens	\checkmark	GANCAS	-
Altmant	c	altvan	t	ANAPIEN	c	ATHEPTLN	t/c	bancrgft	8
Alritca	H	AlVin	$\stackrel{ }{+}$	arave.	D	athel	t	GANDERA	B
AIt P_{1}; t	0	ALVIR4	C	akavetca	ε	ATKIASC.N	-	BAAGC	C
AITS	-	ALVISC	u	AKFELA	\checkmark	ATLAS	0	GANGUR	-
	NOTFS	$\begin{aligned} & \text { A BLAI:Y } \\ & \text { TWO SOIL } \end{aligned}$		soll. rpoup I*rica H AS B/C I!! ICAT	TFS ES	if smil rnoige DRAI!'FC/IJ'nn		PFFII NFTEP"IP'E IIATIn*1	

BANGSTCN	A	beattr		BERTELSCN	a	blakeney	C	BORDA	D
bankard	A	beaucoup	B	BEETHOUD	8	BLAKEPCRT	8	bordeaux	日
HANKS	A	beaufuko	D	bertie	C	BLAMER	C	BORDEN	8
banner	C	beaumont	0	HERTOLOTII	8	blanca	8	BORDER	8
BANNFRVILLE	C／D	BEAURESARD	C	BERTRANC	8	blanchard	A	GORNSTEDT	8
BANNOCK	8	beausite	8	BERVILLE	0	blanchester	8／0	borrego	C
ban ouete	0	BEAVERTON	8	BERYL	8	BLAND	C	BORUP	8
bahabor	B	BECK	C	BESSEMER	8	blandfuro	C	borvant	0
baraga	C	BECKER	8	BETMANY	C	blanding	8	borza	C
BARBAEY	D	BECKET	C	BETHEL	D	blaney	8	bosanke	0
BAKbilue	8	BECKLEY	E	BETTERAVIA	C	blanket	c	BOSCO	¢
BAK BGUKVILIE	－	BECKTON	0	BETTS	8	BLANTON	A	BOSKET	8
bainclay	C	BECKHITH	c	BEULAH	8	BLANYON	C	boster	8
BARCO	8	BECKWOURTH	8	BEVENT	8	blasingame	C	boscue	8
barcus	8	BECREEK	A	beverly	8	blencoe	C	BOSS	0
BARD	0	beufcro	C	BEW	0	BLENC	0	BOSTON	C
BARGEN	c	BEDINGTON	8	BEWLEYVILLE	8	blencon	8	BOSTWICK	8
bardiey	c	BEDNER	C	BEWLIN	0	BLETHEN	8	BOSWELL	0
BARELA	c	BEEBE	A	BEXAR	C	blevins	8	BOSWORTH	D
BARFIELD	－	BEECHER	C	－EZZANT	B	BLICHTON	D	botella	8
barfuss	8	BEFCHY		B18B	810	BLISS	0	BOTHWELL	c
BAKKER	C	BEEHIVE	8	HIBON	A	BLOCKION	C	bottineau	C
BARKEKVILLE	C	beEzar	8	BICKELTCN	8	BLOOGET	A	BOTTLE	A
BARKLFY	8	bemanin	8	BICKMORE	C	BLOMFORD	8	BOULDER	8
barlane	－	BEHEMOTOSH	－	biccnooa	C	8LCOM	c	boulder lake	0
baklun	8	bejucos	8	BIDDEFORD	0	bloomfielo	A	boulder point	B
barnakd	D	BELDEN	D	bicoleman	C	BLUCMING	8	BOULFLAT	0
baknes	8	BELDING	8	BIOWELL	8	BLOCR	－	bourne	c
baknesion	8	BELFASt	8	BIEBER	D	blossom	C	80	c
barney	Δ	BELFIELD	B	BIENVILLE	A	elount	C	BOwBELLS	B
barnhakil	8	BELFORE	B	EIG BLUE	D	BLUCHER	C	BOWDOIN	D
BARNSTFAD		eelgrade	8	BIGEL	A	BLUEBELL	C	80WDRE	C
BARNUM	8	BELINDA	0	Bigetiy	C	blue earth	D	BOHERS	c
BARKADA	0	BELKNAP	C	8IGGS	A	BLUEJCINT	B	B0wIE	8
BARRINGTON	B	BELLAMY	－	biggsville	B	blue lake	A	BOWFAN	8
barron	8	bellavista	0	BIG HGRN	C	BLUEPGINT	8	80GMANSVILLE	c
BARKUNETT	C	BELLE	－	BIG TIMBER	D	blue stak	B	box Elder	c
BARRCIWS	0	bellef CNTAINE		BIGWIN	A	BLUEWING	8	BOXWELL	c
barry	0	PELLICUM	8	BIJCu	A	BLUFFDALE	C	Bor	A
BARSTOW	8	BELLINGHAM	C	billett	A	BLUFFTON	0	borce	8／0
BARTH	C	BELLPINE	C	BILLIAGS	C	BLUFORD	D	Boro	D
bartie	－	BELMCNT	B	BINEORD	8	BLY	8	BOYER	8
barton	8	belmore	8	BINGHAM	8	blythe	D	BOYNTON	
baStonflat	－	BELT	0	Binnsville	D	bDARCTKEE	C	Borsag	D
bakvon	C	BELTED	0	BINS	8	80bs	D	BOYSEN	A
bascam	8	beltrami	8	BIPPUS	8	B0etail	8	B02 ARTH	c
BASEMOH	0	BELTSVILLE	C	BIRCH	A	BOCK	8	802 E	8
BASMAM	0	BELUGA	C	Birchwoco	C	B00ENBURG	B	BO2EMAN	A
BASHEK	ค	belvcir	c	BIROS	C	BUDINE	B	braceville	c
basIIE	0	BFNCLARE	C	BIRCSALL	0	BOEL	A	bracken	0
BASIN	C	BENEVOLA	C	Birdsboro	8	B0ELUS	A	brackett	C
BASINGER	C	BENEWAH	C	bircsley	D	BOETTCHER	C	BRAD	D
basket	C	BENFIRLD	C	Birkieck	8	BOGAN	C	BRADDOCK	C
BASS	A	BENGE	e	BISHEE	Δ	BOGART	8	BRACENTON	$8 / 0$
BASSEL	B	BEN HUR	B	BISCAY	C	bugue	D	BRACER	c
bassett	8	HENIN	0	BISHCP	B／C	buhannon	C	BRADFORO	8
basster	0	BENITO	0	BISPING	8	BCHEMIAN	B	bradshan	A
BASTIAN	0	BENJAMIN	D	BISSELL	8	BOISTFOKT	C	BRADWAY	c
BASTRDP	B	BEN LOMONO	8	RIt	D	bolar	C	BRACY	B
batavia	8	BENMAN	A	BITIERON	A	BCLD	B	BRACYVILLE	c
bates	8	benarale	в	BITtERRCOT	C	boles	C	BRAHAM	e
bath	c	BENNETI	c	BITIER SPRING	c	bClivar	B	brainero	B
BATTLE CREHK	c	bendingion	0	HITIERSPRING	C	80LIVIA	8	brallier	0
BATza	c	BENOIT	c	HIXAY	8	bolton	8	bram	B
bandette	8	BENSCN	C／D	bJCRK	c	bombay	8	bramard	8
GAUER	C	BENTONVILLE		BLACHLY	c	80N	8	bramble	C
BAUGH	B／C	BENZ	D	BLACK BUTIE	C	EONACCURD	c	BRAMWELL	0
HAXTEK	8	beitia	в	black canton	D	BONAPARTE	A	BRAND	D
baxterville	8	BECWAWE	c	blackcap	A	BCND	C	BRANDENBURG	A
bayamon	8	BERCAIL	c	ELACKET	8	BCNURANCH	－	BR ANOON	8
bayakd	A	BERDA	8	BLACKFOUT	8	bindurant	B	BRANOYWINE	c
BAYBOR］	D	BEMEA	C	BLACKHALL	D	BONE	D	Branford	8
BAYSHCIRF	8／C	BERENICETON	f	BLACKHAWK	D	BONG	8	BRANTFORD	8
BAYSIDE	C	BERENT	A	blackleaf	8	BONHAM	C	BRASHEAR	C
BAYwonls	A	DERGLAND	0	blacklock	D	BCNILLA	8	BRASSFIELO	8
BALETIT	C	BEKGSTRUM	8	plackman	C	BCNITA	D	GRATTON	8
BEAD	C	BEKINO	8	black mCuntain	B	bCAN	D	BRAXTON	C
beadle	C	bekkeley		blackeak	c	ecanek	8	GRAYMILL	$8 / 0$
Btales	A	BEKKS	C	ELACKPIPE	c	BONNET	B	brays	
bear basin	8	EEKKSHIRE	8	BLACK RIOGE	C	BCNNEVILLE	8	BRAYTON	C
BEAK CRFEK	c	BEKLIN	C	blackrcck	B	BCANICK	A	BRALITO	A
BEAROALI	C	BERMUDIAN	B	blacksta	8	bonnie	c	bralos	A
beakdev	C	bernal	C	blackiall	B	BUN＇	D	BRECKENRIDGE	0
BEAROSTOWN	C	BEKNALOO	b	blackwater	0	BON S ALL	D	BRECKNCCK	8
BEAR LAKE	－	EERNAKD	0	『laCKwEll	810	BCNTA	C	breece	8
BEAKMIJUT	A	BERNARDINO	C	elacen	0	BCNTI	C	bregar	0
hearpaw	H	bernardsticn	c	blacc	D	bCOKER	D	BREMEN	8
beak prairie	8	BERNHILL	8	blaine	8	ecomer	8	BREMER	8
BEAHSKIN	0	bernice	A	blair	c	BOUNE	A	BREMO	C
beasley	C	BERNING	C	elaikica	C	bCONESHORC	8	BREMS	${ }_{4}$
－tasiga	c	eerrendos	D	elake	c	Broth	C	BRENOA	c
heatin	c	bekryland	0	ELAKzLAND	A	buram	A	bKENNAN	8
	NOTES	A BLAIIK HY TWB SOIL．	$\begin{aligned} & \text { LOGI } \\ & \text { PS } S \end{aligned}$	SOIL TOPCUP INN AS R／C IInlr	$\begin{aligned} & \text { ATFS } \\ & \text { FS Th } \end{aligned}$	THE enll ron F OPAIP：EE／1ロ＇	$\begin{aligned} & S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BFFP OFTERMI } \\ & \text { THATIOM } \end{aligned}$	

Table B.I--Continued

BRENNER	C/D	buckley	8/C	CAIC	8	CAPUTA	C	CATLIN	8
BRENT	C	BUCKLON	0	CAIRO	D	caraco	c	CATNIP	D
BRENTON	8	buckner	A	cajalco	C	CARALAMPI	B	CATCCTIN	c
BRENTHOOD	B	BUCKNEY	A	CAJCN	4	CARBO	C	CATCOSA	8
BrESSER	8	BUCKS	B	CALABAR	D	CARBOL	D	Cat Skill	A
BREVARD	B	BUCKSKIN	C	calabasas	C	CARBONDALE	0	cattaraugus	c
BREVORT	B	BUC ODA	C	CALAIS	C	carbury	B	caudle	B
BREWER	C	BUD 0	B	CALAMINE	0	CARDIfF	8	cave	0
BREWSTER	D	bude	c	CALAPOOYA	C	CARCINGTON	c	cave rock	A
BREWTON	C	buoe	c	CALAWAH	B	CARDON	D	cave	0
BRICKEL	c	BUELL	A	CALCO	C	carey	8	cavode	c
brickton	C	BUENA VISTA	B	CALDER	0	CAREY LAKE	B	caveur	D
BRIDGE	C	BUFFINGTON	B	CALCHELL	B	CAREYIGMN	0	CAEKER	8
BRIDGEHAMPTON	B	BUFF PEAK	C	CALEAST	C	CARGILL	C	cayagua	c
BRIUGEPORT	-	BUICK	C	CALEB	B	CARIBE	8	CAYLOR	8
BRIDGER	A	gukreek	в	calera	C	Carigel	8	caylga	C
BRIDGE SON	B/C	BULLION	0	CALHI	A	CARIBCU	8	CAZADERC	c
bridgeville	B	RULLREY	B	CALHOUN	D	CARLIN	0	CALADOR	8
BRIDGPIJRT	6	GULL RUN	8	CALICO	D	CARLINTON	B	Cazenovia	A
BRIEOWELL	8	bull trail	B	CALIFCN	C	CARLISLE	A/D	CEBOLIA	C
BRIEF	8	bully	B	CALImus	B	carlctia	B	CECIL	B
BrIENSBURG		EUMGARD	8	CALIta	B	CARLCH	0	CEEARAN	0
BRIGGS	A	BUNCOMBE	A	CALI2A	${ }_{4}$	CARLSBAD	C	CEDAR Butte	c
briggsdale	c	BUNDO	B	CALKINS	c	CARLS SURG	A	CEDAREDGE	Q
BRIGGSVILLE	C	bune jug	C	CALLAHAN	c	CARLSON	C	CEDAR MT.	0
BRIGHTON	A/D	BUNKER	D	Calleguas	D	CARLTCN	8	CEDARVILLE	B
BRIGHTWOCD	C	EUNSELMEIER	C	CALLINGS	c	CARMI	8	CECONIA	8
BRILL	B	BUNT INGVILLE	B/C	callemay	C	CARNEGIE	C	CEDRON	C/0
BRIM	C	GUNYAN	B	CALMAR	8	CARNERO	C	celaya	8
Brimfielo	C/0	burbank	A	calmeva	c	CARNEY	0	CELETON	D
GRIMLEY	8	BURCM	H	Calcuse	8	CAROLINE	c	CELINA	c
BRI INEGAR	8	BURCHARD	B	CALPINE	\checkmark	CARR	B	CELIO	A
BRINKERTON	0	BURCHELL	B/C	CALVERT	0	CARRISALITOS	0	CELLAR	0
BRISCOT	B	BURDETT	c	CALVERTCN	C	CARRIEC	A	CENCOVE	8
BRITE	C	BUREN	C	CALVIN	C	carsc	0	CENTER	c
BRITION	C	burgess	B	calvista	0	CARSON	0	CENTER CREEK	B
QRIIAM	A	BURGI	B	CAM	8	CARSTAIRS	B	CEATERFIELD	B
BRUAD	c	BURGIN	0	camaguey	0	CARSTUMP	C	CENTERVILLE	D
BROADALBIN	C	BURKE	C	CAMARGO	-	CARTAGENA	0	CENTRALJA	B
BrOADAX	B	BURKHARDT	B	CAPARILLO	8/C	cartecay	C	CENTRAL POINT	B
BRDADBROCK	C	BURLEIGH	D	CAMAS	A	carusi	C	CERESCO	A
BRRAD CANYON	8	BURLESON	0	Camascreek	$8 / 0$	caruthersuille	B	CERRILLOS	c
BRUADHEAD BROADHURST	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	BURLING FON BURMA	A	CAMBERN CAMERIDGE	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	CARVEK CARWILE	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	CERRO CHACRA	$\begin{aligned} & C \\ & C \end{aligned}$
BROCK	0	BURMESTER	D	CAPCEN	B	caryville	B	CHAFFEE	c
BRUCKLISS	c	BURNAC	C	CAMERCN	0	casa grande	C	CHAGRIN	8
bPOCKMAN	c	BURNETTE	B	Capillus	E	CASCADE	C	CHAIX	-
GRUCKPJRT	D	BURNHAM	0	CAMP	-	cascajo	B	CHALFONT	c
BRECKTON	D	BURNS:DE	B	CAMPUELL	b/C	cascilla	B	CHALMERS	c
Brockway	8	RURNSVILLE	6	CAMPMDRA	\checkmark	casce	B	CHAMA	8
BRUOY	C	GURNT LAKE	-	CAMPIA	B	CASE	B	CHAPEEK	c
HROGAN	${ }^{8}$	BURRIS	D	CAPPC	C	Castbier	0	CHAMBERINO	c
BKCGUEN	B	BURT	0	CAMPCNE	B/C	CASEy	C	Chamise	8
BRDLLIAR	c	BURTON	8	CAPPSPASS	c	CASHEL	c	chamokane	8
HROMO	6	BUSE	8	CAMPUS	-	CASHICN	0	CHAPPION	e
BRONAUGH	B	gushnell	C	CAPrCDEA	c	CASHMEKE	8	CHANCE	$8 / 0$
BRUNC.HO	B	bushValley	D	CAnA	C	Cashrcat	8	CHANDLER	8
GRONSUN	8	BUSTER	c	CAMAAN	c/0	casiac	4	CHANEY	c
BRONTE	C	butano	C	CANADIAN	B	casita	C	CHANNAHON	e
BRDIKE	C	BUTLER	D	canacice	0	CASPAR	B	CHANNING	-
BROIJKFIELC	-	BUTLERTOWN	C	CANANDA IGUA	c	CASPIANA	${ }^{\text {B }}$	CHANTA	8
Henoking s	B	BUTTE	C	CANASERAGA	C	CASS	A	CHAMIIER	D
BROCKLYN	D	gutterfield	C	canaveral	C	cassacaga		CHAPIN	c
BROCKSIDE	C	BUXIN	D	CANOELERC	C	cassia	C	CHAPMAN	
BROOKSTUN	B/0	BUXICN	C		c	cassclary	6	CHAPPELL	B
brocksville	D	grars	D	caneadea	0	Cassuille		CHARD	B
mroseley	B	BYRCN	A	canem	B	casiaic	C	CHARITCN	D
BR,JSS	B			CANEL	${ }^{6}$	castalia	C	CHARITY	D
BROUGHTON	D	Caballo	C	CANELCX	C	castana	a	CHARLESTON	c
BRDHARO	c	cabarton	c	CANEY	C	castell	c	CHARLEVOIX	B
BRCONVELL	B	CABSA	c	CanEyville	c	castile	B	Charlos	A
BROMVFIELD	A	CASBART	0	CANFIELD	c	castinc	C	charlútte	A/ 0
BRUNVLEE	8	CABELON	D	CAMISTEO	C	CASTLE	D	CHARLTON	8
bruyles	C	CAbIa	C	CAMAINGER	-	castle valley	0	CHASE	c
RRUC, E	D	caginet	C	CAACE	8	castafer	C	chaseburg	-
BRUIN	C	cable	0	cancacito	c	CASTC	C	chaseville	A
BRUNEEL	B	CABO RUJd	C	CANCVA	B/0	castru	c	CHASKA	c
bruno	A	cabot	c	cantcn	8	castroville	B	Chastain	D
BRUNT	C	CACAPUN	B	CANTKIL	-	casusi	C	CHATBURN	B
mausett	B	CACHE	0	cantua	B	CAStrell	B	CHATFIELD	
BRUSH		cacioue	-	canutio	B	CATALINA	B	LHATHAM	\downarrow
BRUSSFTT	G	CAUDC	0	CAMYCN	\cup	CATALPA	C	CHATSWCRTH	D
BRYAN	A	cadeville	0	CAPAC	\square	catano	A	Chalacer	c
GRYCAN	8	caunus	8	CAPAY	0	catarina	0	chavies	B
Bryce	0	caurima	c	CAPt	0	cataula	C	Chalganakee	c
BUCAN	0	CAVOK	C	CAPE FEAR	D	CATAMBA	\square°	CHEADLE	c
BUC HANAN	C	Cager	C	CAPERS	0	CATH	D	CHECKEIT	0
buchenau	c	Caguabo	0	CAPILLC	D	Cathcant	B	ChECAHAP	8
BUCHEK	c	CAHABA	8	CAPLES	c	CATHEUKAL	C	CHEEKTCHAGA	D
BUCKINGHAM		camill	B	CAPPS	B	Catherine	810	CHEESMAN	8
BUCKLANL	C	C Amune	c	CAPSHAW	C	catmej	-	CHEHALEM	c
BUCKLEBAC	8	CaHte	C	CAPULIN	C	cajlett	c/o	CHEPALIS	B

[^0]Table B.l--Continued

Chehul pum	c	chute	A	CCACHELLA	e	CONALB	8	cotiro
CHCLAN	в	CIALES	0	CCAD	8	ccnant	c	COIC
CHELSEA	Δ	CIALITOS	8	COAL CREEK	C	conasauga	c	COTCPAXI
CHEMAWA	A	cibevue	A	CCALMONT	c	conata	0	cott
CHEMUNG	0	Cibu CIbola	0 8	COAMC COARSEGClo	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	CGNBGY CONCTAS	0	COTTER COTTERAL
CHENA	A	CICERD	0	CGATICOOK	c	CGNCHO	C	COTTIER
CHENAN,	A	C IDERCDNE	B	cGatsburg	0	conccaully	B	COTTGNmOOO
CHENEY	B	CIDRAL	c	COBB	B	CONCORU	0	cottrell
CHEANFMY	C	cieneba	E	cleme	D	CONCHEEK	e	CUUCH
CHENUWT. TH	B	CIMA	C	cober	B	CONLA	c	cougar
cheujist	c	CIMARRGN	c	cceurg	c	CONOIT	C	coulstone
Cherefte	A	CINCINNATI	c	CGCHETDPA	c	CONDON	c	COUNTS
ChErixee	0	CINCO	A	COCCA	A	CGAE	A	cGupeville
CHERAY	c	cineear	A	cocolalla	c	ccaejo	c	COURT
CHERRYHILI	c	CINCLE	c	coderaus	c	CGNE STUGA	θ	COLRTHOUSE
ChEREY SPHINGS	0	cifcleville	C	coor	Δ	CGNESUS	B	COURTLAND
CHESAM	B	CISNE	0	CCE	A	ccngaree	8	courtaey
CHESHIEE	в	CISPUS	Δ	CCEBURN	C	CONI	0	COURTROCK
CHFSHNINA	0	CItico	B	CCFF	D	CUNLEN	8	COUSE
chesmimnus	B	clackamas	i	CGGGON	B	CCNLEY	c	coushatia
Chister	8	clalbgrne	B	COGSWELL	C	conneaut	C	cove
Chestirtion	c	ClalRe.	A	COHASSET	8	CONNECTICUT		COVEILG
CHETCO	0	Clairemont	B	COMGCTAH	0	CCNAEH	B	covelano
CHEIEK	в	CLALLAM	B	cotce	B	CONOTIGN	-	coventry
Chevelin	c	Clam gulch	C	COIT	C	ccnuver	-	covertown
CHEmACLA	c	Clami	c	cgredale	C	cunumingu	C	cuvington
CHEWELAH	B	CLANTON	c	CGKEL	C	conrao	-	COWAN
CHEYENNE	8	CLAPPER	B	CGKER	0	CCNRLE	8	COWARTS
CHIARA	0	claremure	c	cckesbury	0	CGNSER	C/O	COmOEN
Chicxastia	8	Clarence	c	CCKEVILLE	B	constable	A	CUwCRY
Chicopfe	\bullet	Clareson	c	ccleath	C/0	consumo	8	COMEEMAN
CHICOTE	0	claheville	C	CCLBERT	0	CONTINENTAL	C	COWERS
Chigley	c	Clarinda	D	CClburn	B	CONTKA COSTA	c	COWICHE
CHILCOT	0	ClARICN	B	CCLby	B	CONVEAT	c	COWGOD
CHILDS	${ }^{6}$	ClARITA	0	CClChEStER	8	cook	0	COX
CHILGHEN	c	clakk	B	CCLDEN		CCGKPGRT	c	cuxville
CHILHCWIE	C	Clark fork	A	Cold springs	c	cCulbrith	B	coyata
CH11	8	Clarksburg	c	CCLE	8/C	cuulville	C	cozao
CHILLICOTHE	C	Clarksoale	C	cllegrcck	B	COOMBS	8	CRABTON
chillisouague		Clakk Son	8	Coleman	C	ceciney	${ }^{\text {b }}$	CRAOOOCK
chillum	H	clarksville	e	CGLEMANTCHN	0	CCR,PER	C	Craclebaugh
Chilmark	8	clarno	E	ccletu	A	CCGTER	c	crafton
CHILU	810	claky	8	cclfax	C	ccpare	8	crago
CHILUOUIN	8	clato	8	cclinas	B	COPALIS	-	CRAIG
CHILSON	0	clatsop	D	ccilamer	C	COPELAND	$8 / 0$	Crajgment
CHILTCN	B	claverack	c	ccllard	B	COPITA	${ }_{B}$	cramer
CHIMAY.	c	CLANSGN	c	ccllbras	C	ccplay		crane
Chimmer	B	clayburn	6	cclleen	c	CCPPER HIVER	0	CRANS TON
CHINA CREEK	8	Claysprings	-	ccllegiate	C	COPPEKION	*	crary
Chinchallo	8/0	clayton	8	cclett	C	CGPPOCK	e	crater lake
CHINIAK	A	Clearfielo	C	CGLLIER	A	cupsty	0	CRAVEN
CHINO	B/C	clear lake	0	CGLLINGTEN	8	coulille	C/ 0	CRAWFOKO
CHINOLJK	${ }_{B}$	CLEEK	c	ccllias	C	cera	0	CREAL
chipeta	D	CLE ELUM	B	CCLLIASTGN	C	ceral	c	CREBBIN
CHIPLFY	c	CLEGG	B	ccllinsville	C	cerbett	c	CREEDMAN
CHIPMATS	c	CLEMAN	B	ccina	B	corbia	8	CREEDMOCR
CHIPPFFVY	0	clemville	B	cclmer	C	corcega	c	CREIGHTCN
CHIPPinA	B/0	Cltcka	8	CGLC	e	CCKL	c	CRELDGN
chlumitu	c	CLERF	8	cclcckur	${ }^{\text {b }}$	curces	-	LRESEARO
chiricahua	0	CLERMGNT	c	colcma	A	cerveva	c	CRESCENT
CHITINA	B	CLEVERLY	A	ccicmbc	8	CCAINTM	c	CRESCG
Chitiencen	c	CLIFFOCWN	C	CGLGNA	c	cuzkinuale	B	CREST
CHITMO!	c	Cliffruuse	c	cclcnie	A	curlena	A	CRESTLINE
CHIVAT:	c	CLIFFORO	8	cclcrajg	B	comlfit	8	CRESTMGRE
CHIWAWa	8	CLIFFWEOO	C	cclcrick	C	curlér	c	CRESTION
CHC	c	CLIFTERSON	8	CCLCSC	0	CURMANT	c	CRESUELL
CH) DEE	D	CLIFTCN	c	cclcsse	A	CCKNAILL	B	CRETE
Chack	B/D	clifir	B	Crip	0	COKNIAG	0	CREVA
CHCCOLSCCO	-	Climara	-	cllrain	8	corauti	c	crevasse
CHUPSKA	c	CLIMAX	c	CCLICN	A	ccanville	B	CREWS
Chiplank	A	CLIME	c	CLLTS NECK	る	corcial	c	CRICEK
CHUPTIE	0	Clinton	-	cliumbia	B	cghrening	0	CHIN
CHJRALMCVT	8	cledine	c	cclumbine	A	corkalitos	A	CRISFIELO
chiteau	c	clcntahf	B	cclusa	C	CCHKECI)	c	CRITCHELL
CHRISTIAN	c	clluuallum	C	cclville	8	CUPKEKA	0	CRIVITI
CHRISTIANA	B	cliolato	3	CCLVIN	C	cersca	c	cracker
CHRISTIANAURG	0	clrouet	-	CCLmGCO	810	CUHTEz	0	crackett
CHRISTY	B	cliun	0	CCLYER	C/0	COKTJAA	${ }_{\text {a }}$	CROFTGN
CHAOM!	c	ClCUOCROF T	C	CCMERIC	8	CChunna	c	CRDGHAN
chualaf	B	cloud peak	e	CCMETA	C	curvallis	8	CRCCKED
chubis	c	Cllud rim	B	COMFREY	C	corwia	8	chgckec creek
ChUCKAmALLA	B	cenugh	0	CGMITAS	A	CChy	c	CROCKSION
chul itas	B	clevercale	C	comiy	C	ccrrcun	c	CRGCM
chummy	C	ClCVER SPRINGS	8	ccmperce	C	cusac	c	CRGPLEY
CHUMSTICK	c	clevis	-	CLMO	A	COSH	c	crosby
chupanera	8	ciuff	C	ccmocohe	8	CCSHCCTCN		CRGSS
CHURCH	0	clunie	0	CCNCRO	-	coskI	B	crossuille
CHURCHILL	0	Cluro	C	ccmptche	B	ccssayuna	c	CROSWELL
Churchillle	0	clurg	c	CCPPTGN	c	costilla	A	CROT
CHURN	B	clyoe	c	Clmstcek	C	cctacu	C	CROTON
Churnuashek	B	Clymer	P	ccmus	B	cotati	C	CROUCH
	notes	A BLANF HYO THO SOIL PRO		SOIL GPOUP In AS R/C. IP'R	$A T F E$ $\leqslant T$	Pre erli. gipoup nCAIPR N/U:IDR		BEEM OETFRITP"ED

Table B．I－－Continued

CRDH	c	CANZ	B	cel rey	c	DIXPCNT	c	DRY CREEK	c
CRUW CREFK	B	DAKGDL	c	CEL RIC	c	DIXMCRE	B	DRYDEN	8
CRCHFAST	C	dakien	C	OELTA	c	CIXONVILLE	C	cry lake	c
CRUWHEAKT	B	DARLING	B	DELTEN	B	Cixville	A	cuane	8
CRind HILL	c	DAkNELL	C	CELWIN	A	CCAK	C	dUBAKELLA	C
Canialey	0	dainam	8	celradia	B	UCides	B	dubay	0
CKUWN	8	DAKR	A	DEMAST	8	008Y	0	dubes	8
Cricmsham	8	CARRET	C	DEMASTERS	B	CCCAS	R	CUBCIS	C
CROLIFA	C	DARRCCH	c	OE MAYA	C	CCCKERY	C	cubucue	8
CRUCKİIN	B	CART	A	cereks	D	OCC 1	8	CuCer	8
CRUICKSHANK	c	CADVADA	ט	CEMKY	D	DODGE	8	CUCHESNE	A
CRUME	8	Dakinin	0	DEMONA	C	DCDGEVILLE	8	CUCKET	C
CPUMP	0	CASSEL	0	OEMCPCLIS	C	OUOSCN	C	CUCCR	c
Chutch	B	UATEMAN	C	OEMPSTER	8	DUGER	A	OUDA	A
CPUTCHFR	0	DATINO	C	DEAAY	6	clege	C	OUDLEY	0
ceuzl	C	DATHYLER	C	DENISDN	C	CCLANC	－	DUEL	8
crystal lake	H	CAULTCN	0	denrark	D	DCLf	C	OUELM	c
CRYSTAL SPRItIGS	0	CAUPHIN		CEAM IS	C	ocllar	－	duffau	8
CKYSticla	8	daver	A	cenay	D	OCLLARU	c	DUFFER	0
Cuba	H	davididen	H	Cenreck	D	CULCRES	8	OUFFIELD	8
cuberant	8	cavis	B	dentcn	0	OULPH	c	CUFFSON	－
Cuchillas	0	CAVISON	R	CEAVER	C	OOMINGO	c	DUFFY	8
cudary	0	danes	C	DEPEW	C	DCMINGUEZ	c	DUFUR	8
CUOIY：I	8	DAWHCN	$6 / 0$	CEPCE	D	OCMINIC	A	DUGCINS	0
CUEK！	8	DAWSCN	0	DERINCA	C	OCMINO	C	dugcut	D
CUEVA	0	car	0	CESAN	A	OCAA AAA	8	cughar	c
CUEVITAS	0	daybele	A	CESART	c	ocnalo	E	DUKES	A
cullen	c	dartcn	0	descalabkado	0	CUNEGAL		CUL AC	c
culleoka	8	dayville	B／C	ceschutes	C	donerail	C	OUMAS	8
Cullo	C	CAZE	0	Ceseres	C	dCAICA	A	dumeco	c
CULPERER	C	deacon	－	CESHA	0	OCALCATCN	c	CUMCNT	c
culvires	c	ceadmall	8	cestler	C	CCANA	0	DUABAR	0
Cumberland	8	ceama	C	desclaticn	c	OCAAAM	c	duniearicn	C
climler	C	dean	H	Destain	8	CUAAYERDCK	0	CUNBRIDGE	－
CUAmINT，S	E10	dean lake	C	DEIER	c	dCinc van	8	duncan	D
CUNIC＇s	C	DEARDURFF	8	detlik	C	couley	A	duncanacn	8
CURPER	${ }_{6}$	DEARY	C	de truf	c	ccone	e	DUACCM	0
CURDLI	c	DEAKYTIN	8	CETMDIT	C	dCUR	B	cuncas	c
curecanti	H	deatman	C	Ocv	8	ODKA	0	duncay	A
CURLFW	c	CEAVER	C	cevils cive	0	cGisan	C	CUNCEE	C
Cuknan	c	DEHENGER	C	DEVCL	8	CURCHESTEA	t	DUAELLEN	E
Curhavt	3	DECAA	0	CEVCA	8	DUROSHIA	［	cune sano	A
curtis creek	${ }^{1}$	DECATHON	C	CEVCRE	H	Oomuthea	c	DUNGEAESS	R
CURTIS SICIAR，	A	delatur	a	venfret		ccrevan	D	CUA：GLEA	C
CUSHING	R	decca	A	CEDEY	8	DCkS	®	cunkinsville	e
CUSHMAY	c	DECKER	C	CEhVILLE	B	COKSET	8	DUAKIRK	8
Custar	c	DECKERVILLE	C	DEXTER	B	dLS CAllezas	c	CUnlap	8
Cutiek	0	DECLC	E	CIA	C	ccssman	8	DUAPDRE	B
CUTz	0	decorra	－	diablc	D	duthan	8	DUNAING	c
Curama	P．	DFCRCSS	－	diameno	c	dotia	B	DUAPHY	C
Crismoer	B	UFE	c	diamcad springs	c	OLTY	8	dunville	8
CYNTHIANA	C／0	CEERWATER	6	CIAL	c	CCUBLETOP	8	du page	E
cyrremiokt	c	DEEK CREEK	c	dibble	c	ccucs	8	curee	c
Crril	B	ceerfielo	8	CICK	A	COUCHERIY	A	DUPLIN	C
		DEERFORD	0	CICKEY	A	COUGHIY	A	DUPC	C
OABCb	8	DEERING	C	CICKIASOA	A	ccuglas	8	OUPCNT	C
dacrna	c	UEERLDOGE	0	CICKSCN	c	ODure	8	dupree	D
CADE	A	DEER RARK	A	diger	c	cever	8	curalde	C
cafter	－	UEどくTOA	－	CIGCER	c	covray	0	DURANO	8
cagbet	A	CEERTKAIL	C	CIGricn	－	COW	B	durant	0
darcion	0	DEFIAACE	0	OILL	B	CCHAGIAC	6	durelle	B
OAGOR	B	DEFURD	（）	cillaro	C	CChDEA	c	DURram	8
caguals	c	DEGARMO	b／c	cillcema		cchelltan	c	CURKEE	c
dagucy	c	OEGNER	c	nilliager	8	CCWNE＊	6	CURCC	8
CAhL WUIST	B	DE GREY	0	cillca	0	chaney	B	CURRSTEIN	0
daigle	c	de Jaknft	－	DILLurn	A	CCuns	${ }^{\text {d }}$	cUTCHESS	8
calley	A	CEKALB	c	gilman	C	ccxie	c	DUTSGN	c
dakrta	8	UEKCVFN	0	vilis	0	ccirce	c	dutta	0
DAL 30	8	CFLAKE．	B	BILICCRTH	［	ccrie	A	duval	8
DALGY	0	DELANCE：	C	cimal	c	ceirle	A	duzel	B
dale	R	celaney	A	cimram	C	cerctestiwi	0	CWIGHT	0
JALrsar	－	delanu	$\stackrel{4}{4}$	dincle	－	diyn	c	UWYER	A
calian	H	CELECO	c	dinclishas	c	CKA	c	CYE	c
SALLA．	8	Delena	［	rimktlmat	H	DKACUT	c	CYER	
1，ALT：	C	DELFINA	0	cIAKEY	A	cirage	\pm	UYKE	E
UAL UPF	5	CELHI	A	eindea	A	craboun	－	OYRENG	U
damascus	0	OELICIAS	3	dinslale	B	cragsten	c		
EAMC：	0	UELKS	310	dinura	B／C	CKAIA	c	LAD	C
CANA	8	OtLL	C	cinzek	8	Crake	B	EAGAR	E
canhairy	c	deilekek	e	cicxice	c	ckainyun	B	taglecone	E
Danty		CEILC	A／C	ícue	－	Craptk	c	EAKIA	B
OAREDra	c	f，ELLRDSE	E	EISAPEL	E	crtscen	－	eates	a
TAVCRIDicic	0	DELM	0	bisauttl	B	cressiek	C	EARLE	c
CANCOEGG	0	Ctlmar	0	DISCE	E	crems	8	EAKLMONT	B
daniels	13	DFLNITA	c	CISTAER	C	CRIFTUA	c	EARR	a
Canku	］	nelmat	${ }^{+}$	CISTERHEFF	［	CRIUES	H	tastey	$\stackrel{\text { i }}{ }$
castay	c	ChLACRTE	c	CITCHCAMP	c	Crum	c	＋AST FCRK	c
JARM：M，HA	0	OELRHI	8	civfes	B	crumatr	8	east lake	Δ
DANSYIA	0	DELPHILL	c	civice	B	crumecnd	c	eastlano	c
DANT	\checkmark	DELPIEDRA	c	cix	A	Ekury	a	EASTCN	C
danvirss	c	DELRINE	c	018	A	ikral	c	eastcaville	A
danvillf	c	celray	1／D	cixit	C	cryburg	－	EAST Park	0
	NOTES	A BLAMF a blanr	LOGIC	SOIL GROUP IPRICA	TES	THF SNIL REMI	1	RFEN CETFRMIT	

Table B．l－－Continued

EASTPAMT	A	ELLISCN	B	fsecrio	A	FARNUM	B	FLEISCHMANN	D
eatuntunn		Ellitam	［	ESPARTO	8	fakiagut	c	FLEMING	c
eaulallie	B／b	ellsaerry		ESPIL	0	farrar	8	FLETCHER	8
E BA	C	ELLSWORTH	C	ESPIAAL	A	Farkell	8	Floke	0
EBMFくt	0	ELMA	H	esclatzel	B	FARKENHURG	8	Flom	c
ERYS	H	flmoale	t	ESS	8	Farrot	c	FLOMATICN	4
EBEVE2\％H	c	ELMIRA	A	ESSFN	C	FARSCA	－	florence	C
fCCLES	H	ELMO	C	ESSEX	C	Farmell	C	FLORIDANA	8／0
ECHARO	C	Elment	e	essexville	D	fatima	B	FLURISSANT	C
ECHLEK	B	Elmore	＊	istacaoo	B	fatiog	c	flotell	c
tCKLėr	a	ELMWOOD	C	ESTELLINE	8	－aunce	A	floweree	B
ECKMAN	\bigcirc	ELNOKA	－	ESTEP．	0	faucuier	c	fioyo	B
eckrant	0	elnika	－	ESterbrcok	B	FAWCETt	c	FlUSHING	
tCTOK	c	ELPAN	0	estherville	B	FAGN	B	fluvanna	c
edalgo	c	EL PFCO	c	ESTU	C	FAXCN	0	firgare	B
foos	8	EL RANCHU	B	ESTRFLIA	B	FAYAL	c	FLYNN	D
Evor	C	ELREO	810	ETHAN	－	faytite	B	FOARC	0
EDEA	c	elreo	B／0	ethete	B	fayetituille	B	fogelsville	B
edentun	C	FLS	4	ETHRIDGE	C	faymCCo	c	FOLA	B
edenvale	0	ELSAH	B	ETIL	A	FE	0	foley	0
EDGAK	B	ELSIABORU	${ }^{\text {B }}$	ETNA		fedora	B	FONDA	0
edgecumae	B	elsmere	A	ETCWAh	8	FELDA	8／0	FONCIS	c
edgeler	C	ELSO	0	ETCWN	B	felioa	8	FONTAL	C
EDGEMUNT	8	EL SCLyo	C	ETTA	C	FELLOWSHIP	0	fontreen	－
t DGEmATFR	C	ELSTON	B	ETTER	日	FELT	B	FOPIANC	D
EDGEWICK	8	ELIDPIA	ρ	ETTERSBURG	8	Felta	c	forbes	B
EOGE WUU）	A	eltree	A	ETtrick	0	FELTHAM	A	FORC	D
eogingiun	C	ELTSAC	0	eubanks	B	feltca	8	foroney	4
EOINA	0	Etwha	＊	Eudora	B	feltunia	8	FORDVILLE	B
EOINBUKG	c	ELwoco	C	eufaula	A	FENCE	B	FORE	0
EDISOL	8	ELY	－	EUREKA	c	FENDALL	c	forelano	C
EOISTO	c	ELYSIAN	－	fustis	A	FENwOod	8	FORELLE	－
EOITH	A	ELIINGA	B	EUTAW	0	ferdelforo	c	FCRESMAN	8
EDLOE	B	embden	B	evangel ine	C	FEROIG	c	forestoale	D
Eumbniss	c	emuent	C	evans	B	FERGUS	B	FORESTER	C
EDMOLF	0	EMER	C	EVAASTCN	日	FERGUSON	B	Forear	a
edmuinu	c	emeralo	B	EVARG	A	FERNANOC	c	FORMAN	B
eoria	0	EMERSEN	8	EVART	0	fernoale	B	Forney	0
EDNFYVILlif	－	EMIOA	0	evendale		FERNLEY	c	FORREST	c
EOUM	c	emigrant	8	EVERETT	B	FERNOH	B	FORSEY	c
EDSON	C	emigration	0	everglades	A／O	FEKAPCINT	c	FORSGREN	C
EDWAKDS	8／0	Emily	8	Everty	B	FERKELO	8	FORT CGLLINS	B
FFL	C	EMLIN	B	EVERMAR	c	FERRIS	0	FORT OKUM	C
EFFINGICN	0	EMMA	C	EVERSON	c	FERROA	－	FORT LYON	8
fFwun	A	EMMERT	A	IVESBORC	4	Fertaline	0	FORT HEADE	4
EGAM	C	frmet	A	Ewa	B	FESTIAA	8	FORT MOTT	A
EGAN	8	EmmCas	C	EWAIL	A	FETTIC	0	FDRT PIERCE	
tGBEMT	B／C	EmCFir	A	Ewingsville	B	Fianctr	c	FORT ROCK	C
EGELANS	A	Emper	－	ExChequer	0	fibea	0	Fortuna	0
EGGLESTSN	B	EMPEYVILLE	C	EXETER	C	FIOALGO	c	fortimingate	C
E Gilar	C	Empire	C	fxtine	c	fiulletumn	C	formaro	C
EILKS	c	EMEICK	${ }^{8}$	EXRAY	0	FIOCYMENT	C	FOSHOME	8
EIFORT		ENCE	－	Exum	C	FiEloing	B	FOSSUM	B
EKAH	c	ENC IfRRC	0	EYERBCW	D	FIELOCN	B	FOSTER	B／C
EKALAKS	B	ENCIAA	B	tYre	－	fielosun	A	fostoria	${ }_{8}$
ELAM	4	ENDERS	C			FIFE	B	fountain	0
ELAERT	0	tNDICOTT	0	fabius	B	FIFER	0	rourlog	0
eldurn	B	FNT T	H	faceville	B	Fillmore	0	FOURIILE	B
ELCO	8	enfielo	H	fatfy	B	fincastle	c	FOUR STAR	B／C
Elo	－	ENGLE	H	falm	C	Fingal	C	FOUTS	B
ELDEM	8	fNGLESIDF	B	faines	4	finley	B	fox	B
ELTER HULLCW	0	FNGLEW00\％	C	faireanks	B	firestefl	B	Foxcreek	C
FLOERON	8	fnglund	0	faircale	B	FIKGRELL	日	FOXPCUNT	C
Eloon	B	ENNIS	B	falrfax	B	FIKMAGE	B	FoxCl	D
elcorabu	c	enilichille	810	tairfielo	－	FIRC	C	FCXPARK	B
elokioge	C	ENula	－	falrmaven	B	FIRTH	8	FOXTON	C
ELFPHANT	0	ENCN	c	FAIRMCUAT	0	FISH CREEK	B	frailey	c
ELTKOr	8	ENTS	B	FAIRPORT	C	Fishers	${ }^{8}$	fram	B
ELfRIOA	A	ENCSAURG	0	fajaroc	c	Fishticok	0	francis	，
ELIJAH	c	ENSIGN	D	falaya	C	FISHKILL		FRANK	0
flioak	C	ENSLEY	c	falcon	C	FITCL	A	FRANKFORT	D
Elk	H	ENSTROM	B	falfurrias	A	fitcrville	c	FRANKIKK	C
FLKAOFK	8	fNTERPRISE	B	falk	B	FITLGERALD	B	framklin	B
flkcrfek	C	FNIIAT	0	FALKNER	C	Fit 2 HUGH	B	FRANKSTCWN	B
¢LK HOLLOW	B	ENUMCLAL	¢	fall	B	five dut	B	FRANKTCWN	D
ELKHORN	A	tprraim	c	fallbrcck	B	fivemile	8	frankville	B
elkins	0	ephrata	B	fallen	C	fives	B	fraternioad	0
elkinsvilla	A	EPCUFETTE	L	fallsaurc		Flage	B	FRazer	c
ELKMJUND	c	EPPING	$1)$	fallsington	0	flagitaff	C	FRED	c
flk mountain	8	EPSIE	c	FANCHER	c	flak	B	FREDENSBORG	c
ELKTDN	D	FRA	－	＋ANG	C	FLAMING	B	FREDERICK	B
tllabflle	B／C	ERAM	C	fancin	B	flamingo	0	FREOON	C
EILEUGU	\cup	EREER	C	fanai	C	flanagan	B	FREOONIA	c
flleny	0	ERIC	\＆	fand	C	flancreau	8	FREDRICKSDN	c
EtIET	0	ERIE	C	faracay	C	flaster	A	FREEBURG	c
ELIIOEn	A	EんIN	－	farallcne	B	flatreao	A	freece	0
ELLICOTT	Δ	CKNFST	c	farakay	D	FLAI HiJRN	8	FREEHOLD	B
FLLINGIOA	B	ERKANUUSPE	c	farcr？	0	flaticp	0	FREEL	8
FLLINO：	B	ESCAL	B	farisia	B	FLAXTCN	A	freeman	c
FLLIOT	c	escalante	B	FAKLANC	B	fleak	A	fretmanville	B
fllis	0	escamaia	c	FAKMINGTCN	C／0	flechaud	c	freteon	B
ELLISFGRCF	c	ESCOnOIDO	C	farnuf	${ }^{\text {B }}$	FLEETNGCO		FREER	c
	notes	A BLA！！ TuO SOI	$\begin{aligned} & \text { LOCil? } \\ & \text { PS SU } \end{aligned}$	$\begin{gathered} \text { SOII CROIIP } \\ \text { CH AS R/C ITC } \end{gathered}$	ATFS ES TI	THF SOIL CROHI E MRAIDFN／U＊N	$\begin{aligned} & \text { CMT } \\ & \text { FR } \quad \text { I } \end{aligned}$	REFN DFTFR＂I＇ TUATIO＂	

Table B.l--Continued

freestione	C	GASCCNADE	0	GLEMFIELD	D	Grancer	C	GUNN	B
FREEIENER	B	gas Crefk	C	GLENFORD	C	cranleville	B/C	GUNTER	A
FREMONT FRENCH	${ }_{C}^{C}$	GASKELL GASS	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	glenhall GLEAHAF	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	GRANILE GRAAC	$\begin{aligned} & \mathbf{B} \\ & \mathbf{C} \end{aligned}$	CURABO GURAEY	${ }_{0}$
FRENCHIOWN FRENEAU	0	GASSET GATE SBURG	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$	GLEAMCRA GLENAALLEN	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \end{aligned}$	GHANT GRANISSURG	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	gustaves GUSTIN	$\begin{aligned} & \mathrm{B} \\ & \mathrm{c} \end{aligned}$
FRESNO	c	gateview	B	glenoma	B	grantsuale	A	guthrie	0
FRIANA	D	GAIEwAY	C	glenrcse	8	granville	B	guyton	D
FRIANT	0	gatewood	D	GLENSTED	0	CRAPEVINF	C	GWIN	D
FRIDLO	c	gaulor	B	GLENTON	B	GRASMEPE	B	GMINNETT	8
FRIEUMAN	8	gavins	c	GLENVIEW	B	grassia	B	GYMER	c
FRIES	D	gaviota	D	glenville	C	gkassy butte	A		
FRIU	B	gay	0	GLIDE	B	GRAT?	C	haccke	c
FRILZELL	C	GAYLORO	B	GLIKON	B	ghavcen	C	HACIENDA	c
FROBERG	0	gaynor	C	glcria	C	grave	B	HACK	8
FROHMAN	C	gayville	B	glCucester	A	gravily	C	HACKERS	B
FRONHOFER	c	gazelle	D	glover	C/D	graycalm	A	hacketistiomm	E
FRONTON	0	GAZOS	B	GLYADCN	B	GRAYFGKD	${ }^{\text {b }}$	hadley	8
FRGST	0	gearhart	A	CIYNA	C	GRAYLING	A	H400	8
fruita	8	GEARY	B	GCBLE	C	graylock	8	HAGEN	8
FRUITLANC	B	GEE	B	GCLCARD	B	graypoint	B	hagenbartin	B
frye	0	GEEBURG	C	GCDDE	D	gray	B	HAGENER	A
FUEGO	c	GEER	c	COCECKE	D	great beno	B	HAGER	c
FUERA	C	GEFO	A	GODFREY	C	Greeter	8	hagerman	8
FULDA	c	GELKIE	B	GOCWIN	D	GREEN RLUFF	B	HAGERSTGWN	c
FULLERTON	B	GEM	C	GCEGLEIN	C	green cantun	B	HAGGA	8
FULMER	8/0	GEMID	C	GOESSEL	D	GREEACREEK	H	HAIG	C
ful Shear	C	GEMSGN	C	GCFF	c	greencale	E	HAIKU	θ
fulton	0	genesee	8	GCGEBIC	8	GREEAFIELD	8	HAILMAN	B
fuouay	A	GENEVA	C	GGLBIN	C	GREEAHORN	0	halnes	$8 / 6$
FURNIS	8/0	GENOA	0	glilccaia	0	GREENLEAF	B	HAIRE	c
fury	B/D	genola	8	ccldendale	B	GREENCUGH	c	halaya	B
		GEORGEVILLE	H	GCLCFItLD	B	GREEAPORT		halcer	c
gasstra.	c	GEORGIA	B	gclchill	B	GREEN RIVER	B	hale	B
gabaldon	c	gerald	0	GGldman	c	GREENSHORO		haleima	0
GABICA	0	GERBER	D	GCLDRIDGE	8	GREEASON	C	haler	8
GACEY	0	GERIG	8	gulderun	A	GREEATON	C	HALF MOCN	8
gaddes	c	GERING	B	guldsbera	c	greenville	8	HALFORO	A
gades	G	GERLAND	C	GOLDSTON	C	gheenmater	A	halfway	D
GADSDEN	D	GERMANIA		gulcstream	D	GREEAWICH	B	HALII	8
GAGE		GFEMANY	B	gGlcvale	C	GREEAmOCU	c	hal IIMAILE	8
GAGEBY	B	GESTRIN	B	gCluvein	c	GREER	c	HALIS	4
GAGE TOM	c	GETTA	C	GCLIAD	C	GREGCRY	A	hall	8
GAHEE	8	getirs	C	gollaher	A	GRELL	c	halleck	8
GAINES	C	gersen	0	GCME 2	B	GRENADA	C	HALL RANCH	c
gainesville	4	GHENT	C	gcavick	B	grenville	B	hallville	B
galata	0	gifbler	C	CUCCH	0	GRESHAM	C	halsey	D
GALE	B	CIBBGN	B	gGCCALE	C	GREWIAGK	C	HAMAKUAPOKO	8
GALEN	B	GIHBS	0	GCCDING	c	GREYBACK	B	HAMAN	8
GALENA	C	gibistome	A	GUCCING ION	C	grevbull	C	HAMAR	θ
GALEPPI	C	GIFFIN	C	GCCDLCH	B	GREYCLIFF	C	HAMBLEN	c
GALESTOWN	A	GIFFCRO	C	COOCMAN	8	GRIFFY	8	HAMBRIGHT	0
galey	B	GILA	C	GCGCRICH	8	GRIGSTON	B	HAMBURG	B
GALISTEO	D	GILBY	${ }^{6}$	GCCOSPRINGS	0	GRIMSTAC	B	HAMEL	c
gallagher	B	GILCHRIST	B	GOOSE CREEK	B	GKISWCLC	8	HAMERLY	c
gallatin	A	GILCREST	B	gocse lake	C	GRIVER	C	HAMILTCN	A
GALLigos	B	gilead	C	gGG Smus	B	GR122LY	C	HAMLET	B
GALLINA	C	GILES	8	GCRCO	C	GROGAN	B	HAMLIN	B
GALLION	B	GILFCRD	810	GCRE	0	GRGSECLOSE	C	HAMPDEN	
galva	B	gilhculy	B	GCRGCNIC	A	GRGSS	C	HAMPSHIRE	c
Galvestun	A	GILISPIE	C	gCRHAM	B	GRCICN	A	HAMPTCA	c
galvin	c	GILIIAM	c	GCRIA	C	grove	A	HAMTAH	c
gamblek	A	gilligan	B	GCHING	c	grcveland	B	HANA	A
GANNEIT	D	GILLS	C	GCRPAN	B	GROVEP.	-	hanalei	c
gansner	D	gilmare	D	GCRLS	A	gRCVETLN	-	hanamaulu	A
gapo	D	GILPIN	C	GORZELL	B	GRUBES	0	hanceville	B
GAPPMAYER	8	GILRCY	C	gosten	B	grulla	0	HAND	8
gaka	8	GILSCN	B	ecshute	0	grummit	c	HANDFGRO	B
GARBER	A	gilit edge	C	GCSPRET	c	gruncr	C	HANEY	B
gakbut	B	GINAI	0	GCIHAM	A	GRUVER	c	hangatro	c
garcent	c	ginger	C	GCTHARD	c	GryGIA	C	HANGER	B
garuena	B	GINI	B	GCTHIC	c	GUADALUPE	B	HANIPOE	8
GARDIVER	A	GINSER	c	GGTHC	C	guaje	A	hankins	C
GAKONERS FORK	B	GIKD	A	gCllding	0	gualala	0	HANKS	${ }^{\text {H }}$
GAKDNERVILLE	D	given	C	ccuan	C	GUAMANI	B	HANLY	A
garcone	A	GLADCEN	A	gove	B	gUANAJIBO	c	hamma	E
garey	C	gladistune	B	GCmet.	B	guanica	0	hanover	C
GARFIELD	C	gladmin	A	GRAEE	B	guarabo	B	HANS	c
garita	c	glamis	C	grable	8	guayabota	0	HANSEL	c
garland	A	glana	B / C	GRacemont	B	guayama	D	han Ska	c
garlet	A	glasgon	c	gfaceville	B	guben	B	hanson	a
GAhlgck	C	glean	${ }^{6}$	GRACY	D	GUCKEEN	C	HANTHO	8
garmun	c	GLEASON	c	CRAFIGN	B	GUELPH	8	HANTZ	0
GARMURE	A	GLEN	B	gratam	D	GUENCC	C	HAP	8
garner	D	glenberg	B	GRAIL	C	gutrasey	c	HAPGOOD	${ }^{-}$
GARG	D	GLENBROOK	0	GRAMM	B	GUERRERC	C	HAPNEY	c
GARk	0	glencoe	c	GRANATH	B	GUEST	ט	HARBERU	B
garraro	B	glendale	H	GRANBY	AfD	GUIN	A	harbourion	
GARREISON	8	glendale	d	grande rcmoe	0	GULER	B	HARCO	8
GARRET	B	GLENDIVE	e	CRAADFIELD	B	gulkana	H	HARCEMAN	\checkmark
GARHISIN	B	glenotra	c	grancliew	c	gumbiot	c	MARDESTY	${ }^{8}$
GARWIN	C	SLENELG	B	grantr	C	GUNBARKEL	A	HARCING	0

hardscrabble	B	herer	8	hilcreth	0	honeygrove	C	HUMEARGER	B
HARDY	0	hebert	C	hilea	0	HDNE YVILLE	C	HUMBIRD	C
hargreave	A	HEBGEN	A	Hiles	8	HCNN	B	MUMBDLDI	C
HARKERS	C	HEPE	-	Hilger	日	monckam	Δ	humdun	B
marker	8	MEBRDN	c	hilgrave	B	hCNC LUA	B	HUFE	C
HARLAN	8	HECHT	B	hillemann	c	honcmanu	8	humeston	c
HAKLEM	c	HECKI	C	hillet	0	honculiuli	D	HUMPINGTON	c
harleston	c	HECLA	8	hillfield	θ	honuaulu	A	HUMPHREYS	B
harlingen	D	HECTCR	D	rillgate	C	HCOD	B	HUMPTULIPS	-
HARMEHL	c	HEDDCN	C	hilliard	B	hoode	B	HUNSAKER	B
harmuny	c	HEDR ICK	8	millen	B	HCCDSPPCRT	8	HUNTERS	8
harner	c	medville	D	hillsbcro	8	mocoviem	B	HUNTING	c
HARPETM	A	HEGNE	D	hillscale	B	HODK TCN	C	huntington	B
HARPS	A	HEIDEN	D	Hilvar	C/ 0	hool ehua	B	muntsuille	B
HARPSTER	c	HEIDTMAN	c	HILC	A	HOCPAL	c	HUPP	B
HARPT	B	HEIL	D	HILT	8	HCCPER	0	hurley	D
haroua	8	MEIMDAL	8	HILTCN	B	HCOPESTEN	B	HURCN	c
har jua	B	HEISETON	-	hinckley	A	HCESIC	A	HURST	D
harriet	D	HEISLER	B	hindes	c	HCCT	D	HURGAL	E
HARRIMAN	B	HEIST	8	hinesburg	c	hCUTEN	D	HUSE	C
harkis	D	HEIT	C	hiakle	0	hCDVER	B	HUSSA	$8 / 0$
HARRISBURG	D	HEIT 2	0	HIMMAR	c	HDPETCN	C	hussman	-
HARRISON	c	HEILER	D	hinsdale		HCPEWELL		HUTCHINSON	c
harris	c	HELOT	C	HIATEE	D	-DPGCCD	C	HUTSCN	8
harstene	8	helemano	C	histe	D	HOPKIAS	B	huxley	0
hart	0	HELENA	C	HIT	B	HOPLEY	8	hram	0
HART CAMP	c	helmer	C	HI VISTA	C	HCPPER	B	HYAI	4
HARTFORD	A	HEIVETIA	C	HIWASSEE	B	HOQUIAM	B	hyativille	B
hartig	8	HELY	8	HIWCOD	A	moratio	D	HYOABURG	-
HARTLAND	B	HEMBRE	8	mixtcn	B	HCRD	8	hrde	D
hartieton	B	HEMMI	C	HCBACKER	8	HCREB	8	hYoro	c
HARTLINE	B	HEMPFIELD		HCBAR	C	HCRNELL	D	HYMAS	0
HAPT SBURG	в	HEMPSTEAD	C	heabs	B	HORNING	A	HYRUM	8
hant sells	8	HEACRATT	8	rCBSCN	C	rornitos	D	hysham	c
HAQTSHCRN	8	HENDERSON	8	hCCHEEIF	B	HCRRCCKS	B		
marvaro	B	HENDRICKS	H	HOCKING	B	MORSFSHDE	B	IAO	c
harvel	B	HENEFER	c	HCCKINSDN	c	HORTCN	B	IBERIA	c
harver	c	reakia	B	hCCKLEY	C	+ CRTCNVILLE	B	ICENE	C
maskill	A	HENLEY	c	HCCEE	8	HOSKIN	C	104	B
HASKINS	c	HENLINE	C	reccins	c	mosley	0	Idabel	B
hassell	D	HENNEKE	c	HCCGSCN	C	HCSmER	c	IDANA	c
hastings	B	HENNEPIN	B	HCEBE	B	HOTAW	c	IDECN	0
Hat	8	HENNINGSEN	c	hCelzle	c	hCt lake	C	IOMCN	B
hatbdre	D	HENRY	0	HCFFMAN	c	mCUDEK	B	IGAACIO	B
Hatch	c	HENSEL	B	hCFFPANVILLE	c	hCUGHTON	410	16C	0
hatcheny	C	HENSHAN	C	HCGANSBURG	8	houk	c	1 gualdad	D
matfield	c	hensley	D	hCCELANo	B	hCulka	0	IHLEN	D
hathaway	8	HEPLER	D	HCGG	D	houl ticn	C/0	1 Jar	c
hattie	c	HERBERT	B	-OGRIS	B	hCUADBY	0	ILDEFCNSD	-
hatton	C	HEREFDRD	B	HCH	B	rCukglass	B	ILKA	-
haubstadt	c	HERKIMER	8	hGHPANN	c	mCUSATCNIC	0	ILliden	$8 / 0$
havana	B	HEFLCNG	0	mCKC	C	hCUSE MCUNTAIN	D	IMA	B
haven	8	HERMISTCN	B	hCLBROCK	8	rcuseville	C	IMALER	8
Haverly	8	HERMCN	A	holcomb	D	hCUSTCA	0	IMLAY	C
haversun	8	HERNDOA	8	hClodmay	D	HCUSTCN BLACK	c	IMmCKALEE	B/0
havillah	B	HCRO	8	rcloen	A	HOVDE	A/C	IMPERIAL	c
havingdon	c	HEPRERA	A	mClCerness	c	mivea	0	INAVALE	Δ
HAVRC	9	HEFRICK	C	hCLCREGE	B	HOUCNIEEP	C	INDIAHOMA	c
havrelcn	8	HEPRCN	8	rclland	B	huvert	D	INDIAN	
Maw	-	HERSH	Δ	helliagek	8	huver	C	indian creek	D
hawes	Δ	HERSHAL	B/0	rcllis	C/D	HCWARD	B	indianc	c
HAWI	B	HESCH	R	hCllister	0	HCWELL	c	INDIAMCLA	A
hawkeye	A	HESPER	C	hlllicman	c	hCWIAND	C	INDIO	B
hankjell	A	HESPERIA	8	hellcmay	A	HCYE	B	INGA	-
HAWKSPRINGS	8	HESPERUS	B	mClly	0	hevetion	c	ingalls	8
haxtur	A	HESSE	C	helly spring s	0	tcypus	A	INGARD	B
HAYBUURNE	8	HESSEL	c	HCLLYmCCC	-	hertville	D	INGENIO	c
haybin	c	HESSELBERG	c	hclmoel	c	HUBBARD	A	INGRAM	0
hayden	B	HESSELTINE	B	HCLPES	B	HUEER	D	INKLER	8
HAYESTON	B	HESSCN	C	rclcrua	B	hubert	8	INKS	D
hayesville	8	hettinger	0	hCLCPAn	B/0	hUELERSBUKG	c	INAAN	c
mayfieto	P	HEXT	B	HCLROYD	8	ruckieberat	c	IAMC	A
haymine	c	HEZEL	B	mClsine	8	hUdSEN	c	INSKIP	c
haymono	8	hialeah	D	hClSt	B	HUECG	c	inverness	D
haynes S	0	hismatha	A	hiclstica	B	HUEL	A	INWCOD	c
haynis	3	HIBEARD	c	mCLT	8	HUEAFMr	B/C	10	B
HAYPAFSS	A	HIPBINC	C	hclite	8	fuckruekt	D	i0la	A
hayspur	$8 / 0$	hickery	c	meltville	c	huey	D	idleau	C
hayter	A	HICKS	B	hitrikf	C/0	HUFFINE	4	iona	B
hayti	0	hidalgo	8	HOMA	c	mugGins	c	ionia	B
haymo(0)	B	hideamay	D	HCPE CAmp	C	hlikes	\checkmark	ICSCC	B
HALEL	c	HIDEWJOD	C	hCPELAKE	B	rughesville	B	ipava	${ }^{\text {d }}$
halelatr	D	highams	D	HCPER	c	Hugc	B	1Ra	C
HALEV	8	highfielo	B	hCMESTAKE	D	ruichica	C	IHEDELL	0
hallehurst	C	HIGH GAP	c	hCMESTEAC	8	huikau	Δ	IHETEBA	c
HACLETOA	H	HIGHLAND	8	hCMALAAU	C	HULETT	B	IRIM	c
HEADLf	B	HIGHMORE	H	hCaclit	B	hulis	C	IRCCK	t
meadjulir ters	8	high pakk	E	reacale	D	hullit	B	IRCA BLDSSOm	D
heake	0	himimanu	A	HCADC	c	hulla	D	IRCA mCuntain	D
meath	c	HIIBACR	C	heacche	B	Hum	B	IRDA RIVER	e
heatly	A	hiko ptak	-	hcaecye	B	humacao	6	IRDAICN	c
hebrranvillef	3	Hikc Spkives	c	Heney	D	hUMATAS	c	IRVIAGTON	c
	liItes	A RLAIIY. HY THO SOIL GRO	$\begin{aligned} & \text { drir } \\ & \text { s } \$ 11 \end{aligned}$	SOIL C.PCUP IND " AS PIC IPDIC.	$\begin{aligned} & \text { TFE } \\ & \text { e TH'F } \end{aligned}$	HF enll. RROIg Ha DCAIPER/UHRCAI	$\begin{aligned} & \text { PRT } \\ & n \quad \text { T } \end{aligned}$	BERN DFTERIIPIE HATIOR:	

Table B.l--Continued

IRWIN	0	Jonus	B	KARLC	D	KERMIT ${ }_{\text {a }}$	A	KItSAP	C
ISAAC	c	JCPL IN	-	karluk	C	KERR	8	KITTANNING	
isamujah	B/C	JOPPA	-	kARAAK	D	KERRICK	B	KIttitas	B
1 SABELL	C	JCRDAN	0	KARNES	B	KERRTCHN		KITIREDGE	C
1 SAN	ט	JCRNAOO	6	KARRO	8	KER SHAW	\wedge	KITTSON	C
ISANII	D	JORY	C	KARS	A	KERSICK	0	KIUP	8
1 SHAM	C	JCSE	C	KARTA	C	KERSTON	A/D	KIVA	8
ISHI P1SHI	C	JOSEPHINE	B	KARTAR	8	KERT	C	KIWANIS	4
ISLAND	B	JOSIE	8	KASHEITNA	B	KERTAN	c	KIzruyax	8
isim	H	Jor	B	KASILCF	\wedge	KESSLER	C	KJAR	0
ISTOKPEGA	b	JUBILEE	C	KASK1	B	KESWICK	0	KLABER	C
Itsmont	8	JuOD	D	kASCTA	C	KEICHLY	B	KLAhath	B/0
IUKA	c	JUDITH	B	KASSLER	,	KEtTle	B	Klaus	A
IVA	C	JUDKINS	C	KASSCN	C	KETTLEMAN	*	KLAWAS!	c
I VAN	8	JUOSCN	B	KATAMA	B	KETIAEK	C	KLEJ	B
ives	B	Juor	C	KATEPCY	C	kivis	c	KLICKER	c
IVIE	A	JUGE T	1)	KATC	C	Kladlaif	C	KLICKItat	C
IVINS	C	JUGH ANDLE	3	KATHINE	8	KEmF. ENAE	A	KLINE	B
I ZAGJRA	C	JULES	-	katula	B	KEYA	B	kLINESVILLE	C/D
Izee	c	JULESBURG	A	kATY	C	keyes	0	KLINGER	B
		Juliaetta	B	KAUFMAN	0	KEYPORT	C	KLCNOIKE	D
JABU	C	JUMP E	B	KAUPC	A	keytesville	D	KLONE	e
jacaguas	B	JUNC AL	C	kaveit	0	KEZAR	-	KLOOCHMAN	8
jac ana	D	JUNCOS	D	KAhAIHAE	C	kIAMAH	C	KLOTEN	B
JACINTO	8	JUAC TICN	B	KAhal hapal	8	kibeie	B	Klutina	B
jack creek	-	juneau	B	KAmbahgam	C	Kickerville	B	KNAPPA	B
JACKLIN	${ }^{3}$	JUNIATA		KAWICH	A	KIDC	C	KNEELAND	C
JACKNIFE	C	JUNIUS	C	KAMKAbLIA	C	kICMAN	B	KNIFFIN	C
JACKS	D	JUNO	B	KEAAU	D.	KIEHL	A	KNIGHT	C
JaCkSnn	B	junguitos	C	kearua	8	KIEV	8	KNIK	8
jacksonville	c	JURA	C	kralakekua	C	KIKONI	B	KNIPPA	D
JaCUB	D	juva	B	KEALIA	D	KILARC	D	KNOB HILL	B
jactiasen	0	JUVAN	0	KEAASBURG	0	kilauea	8	KNCHLES	8
JACOdY	C			KEARAS	B	kilbounne	A	KNOX	B
JaCoufs	C	kaalualu	A	KEATING	C	KILBURA	A	KNULL	B
Jacouith	C	KACHEMAK	B	keaukaha	D	KILCHIS	C	KNUTSEN	A
JACHIN	る	KADASHAN	H	Ktainakapu	3	KILDCR	C	KOBAR	C
Jaffrer	A	kade	C	KEBLER	8	KILGCRE	B/0	KOCh	C
jabueres	B	kautika	-	KECH	C	KILKENNY	B	KOCAK	C
JAL JAMES CANYCN	$\stackrel{8}{8 / C}$	KAUCKA	B	KECKO	8	KILLBUCK	$C / 0$	KODIAK KOEFLER	B
jamestionn	${ }_{c}^{\text {c }}$	kafna	D	KEEFERS	c	KILLINGWUR Th		KOEFLER	
JANE	C	KAHANA	B	KEEGAN		KILLPACK	C	KOEPKE	8
JANISE	C	kahanui	B	KEEI	0	kilmareue	c	KOERLING	B
Jansen	A	Kahler	B	Keikee	8	kilca	A	KOGISH	D
Jarble	C	Kahola	B	KEENE	C	XILLHANA	A	KOHALA	A
JAKITA	C	KAH: SHEETS	0	KFEAC	C	KILHINNING	C	KOKEE	-
JARGE	6	kahua	D	KEG	B	KIM	8	KOKC	B
JaRvis	E	kaikli	0	KEFENA	c	kimama	B	KOKCKAh!	0
JASPER	R	kAILUA	A	KEIGLEY	C	KIMBALL	c	KOKOMO	8/0
JAIJCAS	A	KAIMU	Δ	KEISER	8	KImberly	8	KOLGERG	B
java	A	katnaliu	A	KEITH	8	KIMBFCUGH	C	KOLEKGLE	C
jar	C	KAIPCIOI	8	kekaha	${ }^{\text {H }}$	KIMMERLING	C	KOLLS	D
JAYEM	B	KAImIKI	A	KFKAKE	0	KIMO	C	holca	C
JAYSDN	0	KALAE	-	KELLER	C	KINA	D	KOLCKOLC	B
JEAA	A	kalara	C	KELLY	D	KINCC	A	KONA	D
jeanerfitf	c	kalarazoo	8	KELN	C	KINGFISHER	8	konama	8
Jt AN LAKF	A	KALAPA	\bigcirc	KELSEY	C	kinghurst	B	KONAER	C
JEOOU	ט	KALALPAPA	0	KELSC	C	KIAGMAN	c	KONCKTI	C
JEFFE.SIIN	B	KALIFONSKY	c	KELIAER	B	KINGS	C/ 0	koclau	C
JEKLFY	C	KALIHI	5	KELVIN	C	Kingstury	0	kOCSKIA	c
JELM	0	KALISPELL	A	KEPCC	8	kingsler	8	KOOTENAI	A
JFNKINS	B	KALKASKA	A	KEPPSVILLE	B	Kivgs River	C	KOPIAH	C
JFAKINSON	D	KALMIA	B	KEPPTCN	B	kingstun	B	KOPP	8
JEMNESS	8	kalcko	L	KEAAI	C	Kingsville	c	KOPPES	8
JENAINGS	C	Kaloloch	E	kenatsuillf	A	KINKEAD	0	KORCHEA	B
JE:dAY	0	kalsin	C	kencaia	C	KINKEL	8	KORNMAN	B
JERAILU	0	kafack	8	KEACALL	-	KINKCRA	D	kosmos	C
JEKICHI]	c	kamakija	A	kencallville	B	kinman	C	Kosse	D
Jeiciome	-	kamaoa	B	KEAESAm	8	kinney	8	KOSTER	C
JEPRY	c	kamacle	B	Kenmecr	B	KINNICK	c	koszta	B
Jesuel	0	KAMP. $A R$	b	KENAALLY	\bigcirc	kinhead	0	KOUTS	B
Jessie camp	C	kanadec	B	KEANAN	B	kinruss	0	KOVICH	C
JESSUP	C	KAAAKA	${ }^{\text {B }}$	Kennebec	-	KINSTCN	C	KOYEN	B
JFII	a	K ANAPAHA	A/O	kennedy	8	KINTGN	C	koyukuk	+
JICis	C	Kapotk	B	KEANEHICK	B	kinzel	B	KRACE	B
Jin	C	KANE	H	Kencer	A	KICNA	B	KRAAZBURG	B
Jimeincz	C	Kaneithe	B	kenaey lake	C	KIPLING	D	KRATKA	C
Jimtemn	C	Kantpue	B	KEAC	D	KIPP	C	kralse	4
3.33	C	KANLEE	B	KEACAA	0	KIPPEN	B	KREAMER	
joses	C	KANGSH	C	KEASAL	8	KIPSCN	C	KREMLIN	8
jocily	H	KAAZA	C	KENSPUR	A	KIRK	B/D	KRENTZ	B
juel	a	KAPAA	A	KEAT	-	KIRKPAM	c	KRESSON	C
jues	2	KAPAPALA	8	kenton	C	Ktrklainu	D	KRU*	0
JOHNS	c	KAPCO	e	KEC	B	KlRKTCN	8	KRUSE	B
JUHNTEUSG	0	KAPCUSIN	B	keclear	B	kirtiey	B	KRUZOF	a
Joha Scy	d	KAPULIKANI	C	kecrar.	C	KIRVIN	C	KUBE	8
JUHASTIN	B/O	kARAMIN	B	Kecta	C	kISaing	D	KUBLER	c
JCIHASWIJIM	4	KAKDE	C	KECmAS	0	kissick	D	xubli	C
JIICF	0	KARHEEN	r	KEPLER	c	KISTLER	C/O	KUCERA	8
Jtuliel	C	KARLAN	c	Keray	-	kitcrell	8	KUCK	c
Junf sville	A	KARLIN	A	kermel	${ }^{\text {b }}$	kjtchen creek	B	KUHL	D

TWO SOIL GROUPS SUCH AS B/C IPOICATFS THE DRAIMEN/HRORAI!!EO EITIAATIOM

Table B.l--Continued

kukaiau	A	LAAE	C	leacyille	8	lickcale	0	LOLAK	D
KULA	B	laney	B	LEAF	0	LICKING	C	lolalita	8
kulakala	B / C	LANG	B/0	leahy	8	LICKSKILLET	0	LOLEKAA	8
*ullit	B	LAAGFORO	C	LEAL	8	LIODELL	0	LOLETA	C/0
kuma	B	LANGHE I	B	Leaps	C	LIEBERMAN	C	LOLC	
kunia	B	langley	C	Leatram	C	LIEN	D	LOLCN	A
KUNUWEIA	c	LANGLOIS	0	LEAVENWCRTH	8	LIGGET	B	loma	C
kuko	D	langcla	b	Leavitt	B	LIGHTNING	0	lomalta	0
kuskokmim	D	Langrell	B	leavitiville	8	LIGNUM	C	LOMAX	8
kustina	D	LANGSTON	C	lebancn	C	LIGON	0	LOMIRA,	8
kutch	D	LANIER	B	-LEBAR	8	LIHEA	A	LONDC	c
kUTITMm	B	LANIGER	${ }^{6}$	lebec	8	LIhue	8	LOAEPINE	c
kvichak	8	LAAKBUSH	8	LEBO	C	LIKES	A	LONERIOGE	B
KYLE	0	LANMIN	C	lebsack	c	LILAM	A	LCNE ROCK	A
MYIER	D	LAAKTREE	C	LECK KILL	B	LILLI\#AuP	A	LONETREE	8
		LANOAK	B	LEDBEDER	8	LIMA	8	LONGFORD	C
la barge	B	lansuale	B	LEOGEFORK	A	LIMANI	8	LONGLOIS	8
¢ABETte	C	LANSOOWNE		LEDGER	C	LIMBAR	8	LONGMARE	8
$14 B I S H$	0	LARSING	B	LEDRU	0	LIMER ICK	C	LONGMONT	C
4 a bountr	C	LANTIS	B	LEEY		LIMON	C	LONGRIE	C
4 A BRIER	C	LANTON	c	LEE	0	LIMONES	B	LONGVAL	8
lacamas	C/0	LANTCNIA	B	LEEDS	c	LINCCLN	A	LONG Valley	8
la casa	c	LANT 2	c	leefielo	C	LINCRCFT	A	LONGVIE*	C
LACITA	C	Lar	D	leelamau	A	Lindery	C	LONCKE	8
L ACKAmANNA	C	LAPALMA	c	LEEPER	0	Llivosey	0	LONTI	C
¢ACONA	C	LAPEER	B	LeEsville	B/C	LINCSIDE	C	LOOKOUT	C
lacota	0	LAPINE	A	LEETCN	C	LINDSTROM	8	LOON	8
(ACY	0	Laplatta	C	LEETCNIA	C	LINDY	C	LOPER	8
LAOO	B	LAPDRTE	C	LEFCR	8	lineville	C	LOPEZ	0
ladoer	0	LA PCSTA	A	LEGLEH	8	LINGANORE	8	LORADALE	C
ladelle	B	La Prairie	B	Legcke	8	LINKER	B	LORAIN	C/D
LADCGA	c	LARABEE	8	LEHEW	C	Linkville	B	LORDSTOWN	C
latue	C	LARCHMCUNT	B	LEHIGH	C	LINNE	C	LORELLA	0
LAOYSMITH	D	LARDELL	C	Lermans	0	LINNET	D	LORENZO	4
LA FARGE	B	LAREDO	B	LEHR	B	LINNEUS	B	LORETIO	B
lafe	D	lares	C	LEICESTER	C	LINO	C	LORING	C
LA FONDA	C	LARGENT	0	Leilerua	8	LINSLAW	D	LOS ALAMOS	C
LAFON 1	B	largc	C	LELA	0	LINT	B	LOS BANOS	c
LAGLOR IA	B	LARIMER	8	lelano	0	LINTCA	日	LOSEE	8
LAGONOA	C	LARKIN	e	LEMETA	0	LINVILLE	B	LOS GATOS	8
La Grande	C	LARKSON	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	LEMPSTER	${ }_{C} 10$	LINHCOD	$A / 0$	LOS GUINEOS	C
la hogue	B	larry	0	LEAA	A	LIPPIACOTT	$8 / 0$	lCS ROBLES	8
LAhONTAN	0	LARSCN	0	LENAPAH	0	LIRICS	B	LOS TANOS	8
LAIDIG	C	larue	A	Lenamee	8/0	LIRRET	0	LOST CREEK	8
LaIdian	B	Larvie	D	LENNEP	0	lisade	B	LOST HILLS	C
Lairosville	D	LAS	c	LENCIR	0	LISAM	C	LOS TRANCOS	0
LAIREP	D	LAS ANIMAS	c	LENCX	8	LISBCN	B	LOSTwELES	B
LA JARA	[lasausses	C	LEAZ	8	LISMAS	0	LOTHAIR	C
LAKE	A	LAS flores	0	LEC	8	lismcre	B	LOTUS	8
lake charles	D	LASHLEY		LEON	A 10	LITCHFIELD	4	LOUOON	C
lakf Cheek	6	LASIL	¢	LELNARD	C	LITHGOH	C	LOUCCNVILLE	C
LAKEHELFN	B	Las lucas	c	LECNARDO	B	LITHIA	c	LOUIE	c
LAKFHURST	A	LAS POSAS	C	LECAARDTCWN	0	LITIMBER	c	LOUISA	B
lake janee	A	LASSEN	0	LECNIDAS	B	litle	0	LOUI SBURG	B
lakelano	A	lastance	B	LECTA	c	Littlebear	A	LOUP	D
Lakemunt	D	Las vegas	0	LEPLEY	0	LITtLEFIELO	0	LOUROES	C
LAKEPORT	B	LATAH	C	LERDAL	C	LIttie plee	0	LOUVIERS	D
LAKESHIJRE	0	LATAHCO	C	LERCY	8	LITTLETON	8	LOVEJOY	C
LakE SOL	B	LATANIER	0	leshara	B	LITtLE molu	B	covelano	c
LAKETON	B	latham	0	LESHC	C	LIt	C	LOVELL	C
LAKEVIEW	C	LATINA	0	lestie	0	livermore	A	LOVELOCK	C/C
LAKEWIN	A	LATOM	0	lester	B	Livingston	0	LOwELL	C
LAKEWOUD	A	LATCNIA	8	le sueur	8	livcas	A	LOWRY	B
LAKI	B	LATTY	c	lera	c	LIZE	c	LOwVILLE	B
LAKIN	A	lauderdale	-	LETCHER	0	lizlant	a	Loyal	B
LAKOMA	D	LaUGENOUR	$8 / 0$	LETHA	0	lobuell	c	loyalton	D
LALAAU	A	LAUGHLIN	d	Lethent	C	lubelville	C	Lorsville	0
la lande	C	lajumala	-	LETCRT		LCBERG	8	LOZAND	B
lallie	0	LAUREL	C	Letterbcx	B	LUBERT	8	LO2 IER	0
LAM	810	laurelhurst	C	LEVAN	A	LCBitos	C	lualualei	D
LAmar	B	LAUREL W000	B	Levasy	C	LOCEY	c	LUBBOCK	C
Lamartine	8	LAUREN	8	Leverett	C	LOCHSA	B	LUBRECHT	C
LAMBERT	B	lavallee	B	leviathan	B	LCCKE	B	LUCAS	c
lambeth	C	laveen	0	Levis	C	lCCKEREY	c	LUCE	C
LAMINGTUN	0	laveloo	0	LEWIS	0	LGCKHARO	8	luceoale	\square
Lamo	B	Lavfrkin	c	LEWISBERRY	8	LOCKHART	B	LUCERNE	B
Lamoni	0	lavina	C	LEWISBURG	c	LCCKPCKT	0	LUCIEN	c
Lamcial	A	LAWAI	8	LEUISTCN	c	LCCKwOCD	8	LUC ILE	B
lamonta	D	LAWLER	${ }^{\text {a }}$	Lewisville	c	LOCUST	C	LUCILETON	8
lamoure	C	LAWRENCE	C	LEX	8	LODAR	0	LUCKy	B
LAMPHIER	B	Lawrencevillf	C	LEXIAGTON	8	lucema	4	LUCKY STAR	B
LAMPSHIRE	0	LAWSCN	-	libeings	0	LOCI	c	lucy	a
LAMSO'V	0	LAMTHEG	0	LIbuy	B	LOOC	0	LUDOEN	0
LANARK	8	Lawtcn	C	libeg	A	lcfftus	c	LUDLOW	C
LANCASTER	B	LAX	C	literal	0	LOFTCN	0	LUFKIN	D
Lance	B	Layccek	B	LIGERTY	C	LOGAN	c	LUHCN	B
Land	1.	Lartce	A	libery	A	LCGGERT	${ }^{1}$	Lujane	c
LANDES	0	lea	C	lierary	D	LCGY	B	LUKIN	C
LANOISRERG	C	LEAOER	B	libutte	D	LCHLER	c	LULA	B
LANOL	C	LEAOPOINT	B	LICK	8	LOhMILLEK	c	lumbee	D
LANOUSkr	0	leaovale	C	LICK CREEK	0	LOHNES	A	LUMMI	B/C

THO SOIL GROUPS SUCH AS R/C, IMDICATFS THF ORAIPFCIMMRAIMFE SITHATIOM

LUN	C	MALABAR	A/D	MARKSBCRC		Mayflciner	C	mCYICKERS	C
LUNA	c	MALABON	C	marla	A	MAYMEN	0	meat	D
LUNCH	c	MAl Achy	B	marlbirc	B	maylamo	-	meacin	A
LUNDIMO	C	malaga	B	marlean	B	maymen	C	meadcmville	B
Lundy	8	malama	A	marlette	B	maynard lake	B	meadville	
LUNI	C	mal ara	0	marley	B	mayo	B	meander	0
LUPTON	D	malcclm	e	marlin	0	maycodan	8	PECAN	8
luka	0	maleza	B	MARLCW	C	MAYCHORTM	0	MECCA	8
luray	C/D	malibu	0	MARLTCN	C	Maysoorf	B	meckesville	C
LUTE	0	MALIN	C/ 10	MARMARTH	B	maysville		MECKLENBURG	c
LUTH	C	mal jamar	A	marha	D	MAYTCWN	C	MEDA	B
LUTHER	8	mallct	A	MARPA	B	marville	6	medanc	c
lutie	B	MALM	C	marcuette	A	Maymgoo	B	MEDARY	C
luton	D	malc	B	MARR	B	MALEPPA	B	MEDFCRD	D
luverne	c	malone	B	MARRIOTT	B	MAZCA	C	MEDFRA	0
LUXOR	C	malcterre	c	marsoen	C	mazuma	C	Medicine lodge	-
LUZENA	0	Malpals	C	mar Sell	B	MCAFtE	C	MEDINA	8
LYCAN	8	malpesa	C	marshall	B	MCALLEN	B	meomay	B
lrcoming	c	malvern	c	MARSHAN	0	mcallister	c	meeks	A
LYDICK	8	mamala	0	marshcale	C	*CALPIN	C	meetetise	C
LYFORD	C	mahou	c	marshfield	c	mceee	8	MEGGEIT	0
Lries	日	manamas	C	marsing	B	MCBETH	C	MEGCN	C
LYMAN	C/0	MANALAPAN		MART	C	MCBRIDE	B	MEHL	C
LYNCH	0	manana	C	martella	B	mCCABE	B	MEHLHCRN	C
LYNCHBURG	8/0	manassa	C	MARTIN	C	mCCAFFERY	A	MEIGS	
LYNDEN	A	manassas	B	martina	A	MCCAIA	C	meikle	0
lynnuyl	A	manastash	C	MARTIAECK	0	mCCALER	B	MEISS	0
LYnN HAven	B/0	manatee	H/D	martinez	D	mCCALIV	0	melbcurne	B
lynnville	C	manama	C	martini	B	mCCAMMOA	C	melby	C
Lrnx	B	mancelona	A	martinselerg	B	mCCARRAN	0	melita	6
LYONmAN	¢	MANCHESTER	A	martinsoale	B	mCCARTHY	B	mellentmin	D
LYONS	0	MANDAN	B	mattinson	C	mCclave	C	mellor	c
gyunsville	8	manderfield	B	martinsville	B	mccleary	c	mellctit	B
LYSINE	D	mandeville	B	martintca	C	mCCLELLAN	B	melolano	C
lystair	B	MANF RED	c	MARTY	B	mCClCud	C	melrose	C
LYtell	8	MANGUM	D	marvan	0	MCCOIN	0	MEL STONE	A
		manhattan	A	marvin	C	mCCOLL	0	MEL TCN	B
maben	C	manheim	C	MARY	C	mcconnel	8	melville	E
MABI	D	mani	c	marydel	B	MCCOCK	B	melvin	c
mabray	0	manila	C	marysland	0	mCCCRNICK	c	memalcise	0
macar	B	manistee	B	masada	C	meccr	C	MEMPHIS	8
macedonia	c	manitou	C	Mascamp	0	MCCREE	-	menahga	A
machete	c	manley	8	mascctie	0	mCCKCRY	c	MENAN	C
MaCHIAS	B	manlius	C	MASHEL	B	MCCRCSKIE	D	menard	B
MACK	c	manlcye	8	mashulaville	B/0	mCCullough	C	MENCH	C
macken	D	makning	8	mason	8	mCCULEY	C	mencebcure	C
MACKINAC	B	MANOR	B	mascaville	C	mCCUNE	D	MENCCCINO	B
macksburg	B	mansfielo		MASSACK	B	mCCUTCHEN	C	MENCON	B
macomb	B	mans IC	E	massena	C	mCDOLE	B	MENOLTA	B
macomber	8	mansker	B	MASSILLCN	B	mCoonalo	8	menefee	0
MACON	8	mantachie	c	MASTERSCN	B	modonaldsville	C	MENFRC	B
MACY	8	MANTEO	C/ ${ }^{\text {d }}$	matamoros	C	MCEWEN	B	MENLO	0
madalin	0	MANTER	A	matanuska	C	MCFACDEN	8	MENC	C
madalmaska	B	manton	B	matanzas	B	mCFAIN	C	MENCKEN	c
MADODCK	A	MANTZ	B	matapeake	B	mCfaul	C	mencminee	B
madode		manu	c	MATALAN	C	mCGAFFEY	C	MENTG	C
madel ia	C	manvel	C	MATCHER	A	mCGARY	C	MENTCR	B
madel Ine	D	manmood	D	MAIFIELD	C	MCuthee	C	mequcn	C
MADERA	D	manz Anita	C	MATPERS	B	mCGILVERY	-	MERCED	C/D
MADISON	B	manzano	C	mathericn	B	mGGINTY	B	mercedes	0
Madonna	c	manzanola	C	matreson	B	mCCIRK	C	MERCER	c
madras	C	MAPES	C	mathets		MCGCla ${ }^{\text {a }}$	8	mercey	C
MADRID	B	maple mt.	B	mathistica	C	mCGRATH	\bigcirc	MEREDITM	e
madurez	B	MAPLETON	C/0	matleck	0	MCGREH	A	mereta	c
MAGALLSN	B	MARATHON	8	MATMCA	0	MCHENRY	8	mercle	8
magens	B	marble	A	mattapex	C	MCILmAINE	A	MERIDIAN	B
Maginnis	c	makblemount	B	mattcle	C	mCintush	B	Mekind	0
MAGNA	D	makcetta	A	mauce	B	mcintyre	8	merkel	B
magnolia	8	MARCUM	B	maveran	C	mekaple	D	MERLIN	L
magnus	c	makcus	c	maukey	C	mCkay	D	Mermill	E/D
maguayis	0	makcy	D	malmee	A/D	mCKENNA	C/ 0	merna	c
mahaffy	C/0	mardem	C	MAUNABC	D	mCKENZIE	D	MERCS	A
mahala	c	MAKDIN		maupin	C	mCKImley	C	MERKIFIELO	
mahalasyille	B/0	marengo	C / D	maurepas	D	mCkinaey	0	Merrill	C
matana	H	maresua	B	maurine	D	mCLAIN	c	MERRILIAN	c
mallaska	B	marg erum	B	Maury	8	mClalein	B	MERRIMAC	A
MAHER	C	marguerite	B	maverick	C	MCLEAN	C	MERRIT	d/C
mahoning	0	maria	B/C	mavif	D	mClecc	B	mer rcuge	B
mahukdna	B	mak iana	C	MAnAE	A	MCPAHON	C	PERTCN	B
mal den	8	marlas	D	MAX	B	mCamen	C	MERT2	
maile	A	maricao	B	MAXEY	C	mCrllin	C	MESA	B
majada	B	MAR I COPA	B	maxfielc	C	mCmurdie	C	MESCAL	C
makallat	B	makietta	C	Maxscn	A	mCMURPHY	8	mescalero	C
makalapa	0	makilla	C	maxten	B	momurray	D	MESITA	C
makapili	${ }_{\text {a }}$	parina	A	maxville	A	mCNARY	c	MESKILL	c
MAKAWAT	B	marion	c	MAXHELL	D	mCPAUL	B	mesman	c
makameli	8	mariposa	C	may	B	MCPHER SCN	c	MESSER	C
makena	H	MAHISSA	C	mayberry	C	MCPHIE	B	ME T	0
MAKIKI	8	markes	D	maybesc	c	mcolarrie	C	METALINE	-
MAKOTI	C	marker	D	may day	0	mClueta	C	met Ambra	B
MAL	8	mapkham	C	Mayer	0	mCRAE	B	METEA	B
mala	8	marklano	c	MAYFIELO	B	mctaggart	B	metigushe	A

Table B.I--Continued

Table B．l－－Continued

NOHILI	0	CCILLA	C	CNSLCm	8	OLCSSO	\square	paralcma	c
NOKASIPPI	0	cckley	B	ONTARIC	8	Cuybee	8	paramore	0
NOKAY	C	ocree	A／O	Cajko	8／0	CXALIS	C	PARASCL	8
nokomis	B	OCONEE	C	cntchagca	0	0x8C\％	C	parcelas	0
NULAM	8	CCENTO	8	GNYX	8	OXERINE	C	PARDEE	0
NOLICHUCKY	8	ccesta	C	CCKALA	A	CXFCRD	c	PAREMAT	8
NOLIN	8	ocoueoc	B	CPAL	0	CzAmIS	$8 / 0$	parent	c
NuLO	8	CCTAGON	8	OPEGUCN	C／0	dzan	0	Pariette	C
NDME	C	coell	B	CPFIR	C	clauke	C	PARIS	
ACNDALION	8	cotrmotit	c	GPIMIKAC	0			Parishville	c
NONOPAHU	0	COtSSA	0	cguaga	C	PAAIKI	B	PARKAY	8
NCuKACHAMPS	C／0	COIN	C	ORA	C	paalca	8	parkoale	8
NOUKSACK	8	ODNE	C	Cran	8	paauhau	A	PARKE	8
NOONAN	0	OPFALLON	0	crange	0	PACRAPPA	\＆	PARKER	8
noka	B	OGOEN	0	Cranceeurg	B	PACHECC	B／C	PARKFIELO	C
NORAI	B	CGEECHEE	C	CRCAS	0	PACK	C	PARKHILL	0
NCkblirne	8	CGFMAW	C	GRCFARO	8	PaCKARO	8	PARKHURST	
Mokby	B	cgilvie	C	ORO	Δ	PaCKEN	C	PARKINSON	8
NORD	B	cglala	B	Cricnance	C	packham	B	PARKYILLE	C
NÓN JEA	8	ugle	${ }^{\circ}$	upoway	0	packsajole	B	PARKHOCO	A／C
NCRDNESS	8	CHAYSI	c	orelia	0	PACKHCCl	0	parleys	
NOMFISK	8	IHIA	A	crella	3	paculet	8	parlin	c
noklir	B	ujal	A	CREM	A	pacticlus	C	parlo	8
NCLKA	B	cjata	0	CRESTIMBA	C	paden	C	parma	C
NCRMA	B	CKANCGAN	B	CFFCRO	C	PADRCNI	B	parnell	0
MORREST	c	CKAA	D	CRIOIA	C	PADUCAH	8	PARR	B
NOWKI ${ }^{\text {a }}$	c	OKEECHOBEF	A／ 1	CRIF	A	PADUS	B	PARRAN	0
nokthoale	c	CKEELANTA	A 10	ckit．	C	paest	B	PARRISH	C
NO STHFIFLC	8	CKEMAH	C	CKICN	8	PAGEI	8	PARSHALL	B
NUKTHP：JRI		CKLAREO	8	Chita	B	pagoca	C	PARSIPPANY	0
NCRTH PCAEER	C	CKLAmAHA	A／D	calano	B	pahikanagat	C	PARSONS	0
pior tmijmberlanc	C10	CKMCK	C	CRLANOC	A	Patreah	0	PARTRI	C
NTRTUN	c	OXD	U	Chman	C	PAhrec	0	pasagzhak	B
nurtowville	c	CKしるCJI	C	urrsby	B／C	PAIA	c	PASCC	H
NOK TUAE	0	OKCLIONA	r	ChCOELL	C	PAICE	C	PASC SECO	0
NOkwalk	8	CKPEEK	0	CRCFINL	B	painestille		pascuerti	C／0
nuriar flat	A	OKTIBBEHA	0	ghe grande	C	Paintrcck	B	pascuotank	$8 / 0$
NOKWFLL	C	DLA	C	（ PCNC	0	PAIT	8	Passar	
NOMinICH	c	OLAA	A	lkcvaua	C	PAJARITO	8	PASS CAAYON	0
NCKWO－O	8	olalla	C	CKH	c	PAJARD	C	PASSCREEK	\square
NOTI	0	clanta	B	LPRVILLE	C	Pakala	8	pastura	0
notus	A	clathe	C	CRSA	A	pakial	B	patahs	8
névara	8	clo camp	c	cksing	A	pala	8	patent	C
novary	B	olfiham	c	ORTELEC	A	Palacic	8	Patillas	B
NOWCuT	C	Clis	C	Lritigalita	c	Palapalal	8	Patilo	C
NOYi	C	clusmar	B／0	LRTING	C	palatine	8	PATIT CREEK	B
toury	c	Clowick	A	CRTII	C	palestine	${ }^{\circ}$	PATMA	c
NU，Ki：LLS	c	CLELO	\bigcirc	cruce	8	palisade	B	patcutville	C
nucla	－	clena	ส	－SACt	0	palma	8	PATRICIA	8
nleces	c	cleoua	B	csakis	B	palmarejuc	C	PATRICK	B
nugbe I	c	Clete	B	cserceo	B	Palm beach	A	patrcle	C
niuma	c	olex	${ }^{8}$	LSta	B	palmek	0	Pattani	c
nunoa	C	clga	c	gstama	0	PALMER CANYON	8	pattenburg	B
vuvica	c	Cli	is	C SHEA	C	PALMICH	8	PATIERSDN	c
NIMN	c	Cliaga	${ }^{3}$	CSHKCSH	C	PALMS	c	PAITION	B／ 0
nuss	0	clinua	\checkmark	CSHTCMO	8	PALNYRA	B	PATmay	C
nutliy	c	Lliphant	＊	CSICR	8／0	pallu	B	paul	B
Nutens	c	Clivahain	C	－ska	C	pallmas	e	pauloing	0
nuthicse	B	Cliver	R	－srunc	B	PALLMINO	0	Paulina	c
nuvalof	c	Clivier	c	$15 C$	B	palis veroes	e	paulsell	0
NYALA	0	CLMITO	0	cscee	D	palluse	8	paulville	B
Aracra	Δ	cluitl	3	uscalogt	し	pal sircte	E	palizalu	B
NVYSA	c	clmos	c	CSLTe	H	PAMLICE	0	palasaugunt	\checkmark
AYSSATON	13	Clinsteo	e／o	CSSMN	C	PAHCA	C	pausant	8
NYSTREM	c	claey	8	CSt	B	pamscel	0	paumela	8
		clckul	c	CStrancer	8	paina	8	PAVAHRCC	B
vahe	A	CLPE	c	CTERC	B	panala	C	pavant	0
UAKJALE	H	DLSCN	c	Citelle	0	PANAEMA	0	PAVILLICN	8
CAKDEN	0	CLTON	c	CTIS	C	Panascffkee	0	PamCa TUCK	0
CAKFERU	H	dlustee	H／O	CTISCO	A	PANCHEKI	8	pamlet	8
＇AK GLEN	H	LLYIC	B	otisville	A	panchuela	C	pabaee	0
dak gouve	C	CLYMPIC	E	ctiey	R	PANLE	e	PAXTON	c
WAK LIAKF	B	CMAHA	－	ristcc	C	panclah	C	payette	8
CAKLAND	C	cmak	C	LTEA	810	pandera	0	PAYMASTER	8
daks aitge	c	CMEGA	Δ	Ctitnaeia	C	panduza	0	Payne	C
Oakville	A	crena	B	Ctiteraclt	B	paine	B	PAYSCN	0
capmoli；	0	CNNI	C	Citckef	Δ	panguitch	8	PEACHAT	c
CAFiAPUJKA	8	CNA	A／U	Cimay	0	PANHILL	t	PEARL HARBCR	ט
unsis	B	cNALASKA	－	utnell	C	panil cije	B	pearmat	
－ATMAN	E	CNAMIA	e	clachita	C	Pariky	C	PEARSCll	0
OHAA．	C	cNakga	\cdots	curay	Δ	pancctie	A	peavine	c
OHAR，	4	cnama	I：	rutlet	C	panula	0	pecatcaica	H
irkay	0	cNaway	B	cvall	C	pansey	0	PECCS	c
nuukid	u	cruana	L	cufrlianc	C	panthe：	c	pedee	c
UCALA	1	cneida	B	cvertr	C	pantin	c	pedernales	c
chetaret	0	G，NEILL	¢	cvekica	c	PAOLA	A	PEUIGC	B／C
UCEAISf：	Δ	cntinta	H	rvic	c	pacli	B	PEULAK	c
UCHEYTITAA	3	ONITA	C	ivina	－	papas	c	PEORICK	B
LCHLJCKCNLC	B	CNITE	E	One ${ }^{\text {ch }}$	0	PAPAI	A	PeEbles	C
UCHI	0	cneta	C	bhin CaEek	C	papakating	c	PEEL	L
6． HCO	C	cneva	c	infas	0	PAPCLCS＇	C	PEELER	B
EChiPPa	8／0	cnisar	0	＇mbl	8	patalisi	C	PEEVER	c

TINO SOIL RROIIPS SIIM AS B／E IHOICATEE THE BPAIHFR／UHOPAIMFR CITIIATIOM

Table B .I--Continued

Prgith	0	Plf CREEK	c	PCE	B/C	preble	C	OUIAN	0
Pff Gkam	R	PIEPIAN	A	pcgantab	C	PRENTISS	C	gulaney	c
PHKIN	C	PIERPONT	C	PLGUE	8	Pkestue isle	B	GUINTCA	
pflhat	$8 / 0$	PIEPPE	0	PCHAKUPU	A	Prestil	A	guitman	C
PFLIL	C	PIIHCNUA	A	Plinsetit	8	PRESILN	A	OUONSET	A
PFLIA	0	PIKE	8	PCIAT	8	PKEwitt	C		
peluina	c	Pilchuck	A	pGiat isafel	C	PKEY	0	Rabep	c
pembertion	A	PILGPIM	R	POJDAGUE	B	PRICE	C	RABEY	A
pimplna	C	PILOT	B	PCKEGCMA	8	PHIDA	0	RABIOEUX	8
PEMRR, KE	8	PILCT ROCK	C	PCKER	8	PRIOHAM	0	rabun	B
PENA	A	PIMA	8	pCIANC		PRIETA	C	RACE	0
PENCE	A	PINAL	[PCLAK	B	PKIMfAUX	c	RACHERT	0
PENDEN	8	pinaleno	B	PCLATIS	c	PPIMCHAK	B	RACINE	8
PENC lREItle	a	PINATA	c	PCLE	A	PRINCETCN	B	RACCON	0
penuriar	0	pinavetes	A	pclegak	C	PKINEVILLE	C	RAO	c
PENISTAJA	8	PINCHER	C	pCleliag	8	PRING	8	radforo	8
PENITENIE	8	pinckney	C	POLEC	C	PRINS	c	RADLEY	c
PINN	C	Pinconning	0	pCley	C	PRCCICR	8	RAOMOR	0
PENNTL	C	PINCUSHION	8	PLLICH	C	PRGGRESSO	C	rafael	0
PENNINGTUN	8	PINEDA	8/0	PCLLARO	C	PRUMISE	0	RACLAN	0
PENAISUIA	c	pinecale	B	pollasky	C	PRCMC	0	racmar	8
PENT	C	Pineguest	B	PCLLY	8	PROMEATORY	B	RACC	C
PENOYEK	C	PINELLOS	A/0	PCLC	8	PKLING	C	rac soale	810
PENROSE	0	PINETOP	C	pcesea	6	Prospect	B	RAGTGIN	0
penthouse	0	Pineville	8	pclvadera	C	PROSPER	B	RaHm	c
PENTL	0	PINEY	C	pleat	c	prosser	c	RAIL	c/0
Penwooo	A	PINICEN	8	pCrelle	C	PRLTIVIA	C	RAINBCM	C
peuga	C	PIAKEL	C	pompanc	A 10	PKOUT	C	RAINEY	B
PEOH	C	PIAKSTON	B	perpeaic	C	Privicence	c	RAINS	B/0
PEONE	B/C	pinnacles	C	pCAPTCA	8	Provg	C	RAINSBORO	c
peutuag	C	PINL	C	PCMROY	8	PRCVC bay	0	rake	0
PEPOUN	H	Pinula	C	pCACENA	0	PRCHERS	B	Ral SEn	B/C
peguea	C	PINOLE	8	FCACHA	A	PTARMIGAA	B	RAMAOA	c
PERCHAS	0	PINCN	c	PCAO	B/C	PUAULU	A	ramaiero	8
PERCIVAL	C	Pinlenf	U	PCNC CREEK	8	PUCHYAN	A	RAMBLER	B
PERELLA	C	PInIAS	0	PCACILLA	A	PUoole	0	RAMELII	c
PERHAM	c	PINTLAR	A	PLAIL	0	PUERCO	0	RAMIRES	D
PEEICO	8	Pinto	¢	pcatcicc	B	PUETT	c	rampel	c
PERKINS	C	PINTURA	A	PCALER	0	PUGE T	C	RAMC	c
PERKS	A	PIATHATER	C	POCKU	A	PUGSLEY	B	RAMCNA	8
PERLA	C	PIOPGLIS	0	PCOLE	8/0	PUHI	A	RAMPART	B
PERMA	A	PIPER	E/C	plcler	0	PUHIMAU	0	HAMPARTAR	A
PERMANENTE	c	pirouetie	c	pCCAmA	8	PULASKI	8	RAMSEY	0
PERRIN	8	PISGAH	C	PCPE	B	Puleinu	B	RAMSHORN	B
Perkine	0	PISHKUN	B	PCPPLETCA	A	PULIMAN	0	RANCE	c
PERRJI	0	pistakee	A	pCGUCNCCK	C	PULS	0	RANCHERIA	B
PERRY	0	Plit	C	PCKRETT	810	PUL SIPHER	c	RANC	8
PERRYVIIIE	8	PITtMAN	[PCHT	B	PULINEY	c	RANDADC	c
PEKSAY:	0	PIttSfielo	${ }^{2}$	pCftaceville	0	PUMPER	c	randall	0
PERSHING	C	PITTSTOMN	C	PCRTALES	C	PUNA	A	RANCOLPH	D
PEKSIS	B	PIItwooo	b	PCPT BYRCN	8	punalue	c	RANCS	c
PEKT	0	placentia	[PCPIERS	8	Punchu	A	ranger	0
Ptru	C	placiritos	C	PChterville	0	PURDAM	C	RANIER	c
PESCADEPC.	C/0	placio	A 10	PCRTHILL	c	PUROY	0	RANKIN	c
PESET	c	PLACK	c	PCPTINC	c	PURGATERY	0	RANTOUL	0
PESHASTIA	8	plajifielo	A	pCPTLANO	0	PURAER	0	RANYHAN	B
PESU	C	plainview	C	plrineuf	B	pursiey	8	RAPELJE	c
peteetafet	0	PLAISTEO	C	PCATCLA	C	PURVES	0	RAPHO	8
PCTFRHICKO	8	plano	b	PCKTSMCUTA	0	PUSTOI	A	RAPIOAN	B
PEEEHS	0	plata	B	PCSART	C	PUTAAM	c	RARCEN	c
PETOSKEY		platfa	c	pCSEY	8	Puukala	0	RARICK	B
PETRIE	0	plateau	B	PCSITAS	0	puucae	C	RARITAN	c
petantia	0	flataer	C	pCSkIA	c	PUU CC	A	hasbanc	B
Pettuas	C	Plate	C	PCSES	c	PUU CPAE	B	MASSET	B
pewamin	815	platte	c	PCST	0	PUU Pa	B	hathbun	C
pfytion	8	plativille	B	petarc	0	PUYALLUP	B	RATLIFF	B
PHACE	8	plala	B/C	PCTLATCH	C	Pref	A	RATCN	C
Phafe.?	B	pleasant	1	PCTRAT2	c	PYLCA	c	Rattier	B
pharcilio	0	pleasant grijve	8	potscam	c	PYCIE	A	raub	8
PHFBA	C	plcasantury	8	PCTITR	C	Prrario	c	rauville	0
PHFEt, Y	A	pleasant valf	H	PCTIER	c	PYRMCNT	0	rauli	8
Phftan	-	pleasant view	B	PCTIS	8			Ravalli	c
PHLLPS	A	PLERCER	c	PCLCRE	B	guakek	C	ravenoale	0
PHIFCHSON	H	pleek	C	peultay	8	QUAKERTCWA	e	RAVENNA	c
Prilucem	B/0	PLEINE	ᄃ	PCVERTY	A	quamba	0	RavCla	B
PHILLIPS	c	Plevas	C	PCHCER	8	quanam	8	RAWAH	8
Phillithshukg	A	Pleme	c	PCWCERHLIRN	C	quandahl	8	Ramhide	0
Prill ${ }^{\text {a }}$	b	plover	8	PLWELL	c	cuakles	C	RAWSCN	B
Philowath	c	plumas	r	PCiner	B	gUAKTZSUKG	c	RAY	8
PHIPHS	c	PLUMMER	810	PChtite	c	ovatara	c	RaYado	c
Prot 3 E	8	Plush	3	PCWLEY	0	quar	C	Raventouf	B
Pheirnix	0	pleth	B	pChhatka	c	Quebrada	c	RAYMONOVILLE	0
PIASA	D	plutos	L	PCY	0	QUEETS	B	Rayae	8
ricache	C	plymCuth	A	PCYGAN	0	OUEMALC	c	Raynesfcro	B
picarcae	A	Prall	c	PCZC	C/0	GUEALER	0	RAYNHAM	C
PICKAnAY	c	PCARCH	A	PLZC Blance	\square	Quicksell	c	Raynor	D
Pickens	-	pocalla	A	PRAC	C	QUIGLEY	8	RALCR	C
PICKETI	B	pccatello	B	PRATHER	${ }^{\text {b }}$	GUILCENE	c	RALCRT	8
pickafio	0	POCKEP	0	phatley	C	ouillayuie	B	REACING	c
pickwlck	B	pucomoke	c	PPATT	A	culmer	C	HEAOINGTGN	c
Picu	1	POOO	0	Preacher	B	guincy	A	REAOLYN	B
PICTulu	8	prounk	e	PRERISH	0	CUINLAN	c	reacan	8

[^1]A RLAHK HYOROLDCIC SOIL GRMUP IPOICATES THE SRIL CPOIJ NAS POT PFFA RFTEPMIHER. THO SDIL CROIJPS SIJCII AS B/C IPIICATFS THF NDAIVFO/UHORAIMFN SITHATINH:

Table B.l--Continued

reakor	B	rhoades	0	RCCK RIVER	B	RUDYARC	c	SALPCN	1
REAL	0	R18	c	RCCKION	8	ruella	${ }^{\text {b }}$	Salol	0
Reap	0	RICCO	0	RCCKmELL	8	ruggles	B	SALCNIE	B
REARDAN	c	RICETON	-	RCCKWOCO	B	ruidoeso	6	Saltair	0
reaville	c	RICEVILLE	C	RCCKY FCRD	8	Ruko	0	SALT Chuck	A
REBA	c	RICHAROSON	B	RCDOY		RULE	в	SALTER	B
rebel	B	richeal	0	RODMAN	4	RULICK	c	SALTERY	0
rebuck		RICHEY	c	ROE		rumbo	C	salt lake	D
RECLUSE	D	RICHFIELD	c	RCEBUCK	0	RUMFORD	B	sal uda	c
redbank	B	RICHFORD	A	RoEllen	0	RUANEY	c	saluvia	
REO BAY	B	RICHLIE	A	RCESIGER	8	RUMPLE	C	SALVISA	c
RED BLUFF	B	RICHMOND	c	RCHNERVILLE	8	RUM RIVER	c	SALZER	0
REI) BUTTE	B	RICHTER	B	RCHRERSVILLE	C	RUNE	c	SAMEA	d
RFOBY	c	richvale	B	Rokeby	0	RUNNELLS	c	SAMISH	c
REOCHIEF	c	RICHVIEt	C	ROLEITE	c	RUNNYMEDE	B	SAMMAMISH	c
heocloud	B	hichmood	B	ROLFE	c	RUPERT	A	SAMPSEL	0
REODICK	c	RICKHORE	C	ROLISS	0	RUSCO	C	SAMPSON	B
redoing	D	RICKS	4	RCLLA	c	ruse	0	SAMSIL	0
RedField	B	RICREST	B	ROLLIN	0	RUSH	c	San ancreas	C
RED HILL	C	R100	C	ROLCFF	c	RUSHTCMN	A	SAN ANTON	B
RED HOOK	c	RIOGEBURY	C	PUnbo	c	RUSH:ILLE	C	SAN ANTCNID	c
rediake	0	RIDGECRESt	c	KOMED	c	RUSS	B	SAN ARCACIO	B
REDLANDS	B	RIOGEDALE	B	ROMNEY	c	RUSSELL	8	SAN BEAITO	8
redmanson	B	RIDGELAND	D	ROMULUS	0	RuSSELLVILLE	C	SANCHE2	0
REDHONO	c	RIOGELAMN	A	RCND	D	RUSSLER	c	Sandall	c
rednijn	c	RIOGELY	B	RCNNEBY	8	RUSTION	B	SANDERSCN	a
aEDOLA	B	RIDGEVILLE	B	RGNSCN	B	RUTLAND	C	SANCLAKE	0
redona	B	RIOGEGAY	D	ROSACH!	c	rutlege	0	SANCLEE	Δ
REDRIOGE	B	RIETBROCK	C	RCSAMCND	B	RYAN	C	SANELI	D
REDROB	8	RIffe	B	rosane	c	ryan park	${ }^{8}$	SAN EMIGDIO	B
RED ROCK	B	RIFLE	A/D	rcsaric	c	kYDE	8/0	SANGER	B
RED SPUR	B	RIGA	0	RCSCCE	0	RYDER	C	SAN GERMAN	0
REOSTOE	B	RIGGINS	A	RUSCCMACN	0	RYEGATE	B	SANGO	c
REDIMAYNE	B	ritey	c	rcseberay	B	RYEPATCH	0	sangrey	a
REDTJM	c	filla	B	ROSEBLCGM	0	HYER	C	SANILAC	c
redvale	c	Rillito	8	rcseevo	B	RYus	c	SAN ISABEL	B
REDVIEW	c	RIMER	c	RGSEBURG	B			SAN JOAGUIN	0
HEE	B	RIMINI	A	ROSE CREEK	c	SABANA	c	SAN JON	c
REEO	c	RIMROCK	D	ROSEGLEN	B	sabana seca	0	SAN JOSE	B
REEDER	B	RIN	8	RUSEHILL	0	SABENYO	日	SAN JUAA	\wedge
REEOPOINT	c	RINCON	c	RCSELAND	0	SABINA	c	SAN LUIS	B
REfOY	c	RINCONADA	c	Roselms	0	sabine	A	San mateo	c
REELFEOT	c	RINGLING	C	RCSEMOLNT	B	SABLE	0	SAN MIGUEL	c
REESER	c	RINGC	D	ROSENOALE	8	SAC	B	SANPETE	A
Reesville	c	RINGCLD	B	hCSEVILLE	8	SACO	c	SANPITCH	c
kefuge	c	RINGWODO	-	RCSEmORTH	C	Sacramento	C/D	SAN POIL	B
REGAN	B	RIO	0	RCSHE SPRINGS	c	SACUL	0	san saba	0
REGENT	c	RIC ARRIBA	0	ROSITAS	4	sadule	B	SAN SEBASTIAN	8
REHM	c	rid grande	B	RGSLYN	B	SADDLEBACK	B	SANTA	c
Reichel	B	RIO KING	c	RCSMAN	B	SADIE	B	SANTA Clara	c
REIFF	8	RIU LAJAS	A	hCSNEY	c	SADLER	C	SANTA FE	0
meilly	A	RIO PIEDRAS	B	RCSS	B	SAFFELL	B	SANTA ISABEL	0
REINACH	B	RIPLEY	8	RCSS FCRK	c	SAGANING	0	SANTA LUCIA	c
RELAN	4	RIPON	B	RCSSI	c	SAGE	D	ganta marta	c
relay	B	riaie	B	RCSSMCYNE	e	SAGEHILL	B	SANTANA	c
RFLIANCE	c	RISTA	C	RCSS Valley	c	SAGEMOOR	C	SANTAQUIN	A
RELIz	0	RISUE	D	RCTAN	c	SAGERTGN	c	SANTA YAEL	c
KELSE	${ }^{8}$	RITCHEY	${ }^{8}$	RCTHIEMAY	B	SAGINAM		SANTEE	0
REMBER T	0	RITNER	C	RCTHSAY	B	SAGC	0	SANTIAGO	${ }^{8}$
REMGIT	A	RITIER	B	hCubideal	c	SAGOUSPE	c	SANTIAM	c
REMSEN	0	RITTMAN	C	RGUEN	C	saguache	A	SAN TIMOTEO	c
remuinar	B	RIticas	8	ROLND bltte	D	SAHALI	B	SANTCNI	0
remunda	C	RITLVILLE	B	RCUNDTGP	c	SAINT ALBANS	B	SANTOS	c
RENFRCm	0	riverhead	B	RCundup	c	Saint charles	${ }^{8}$	SANTO TCMAS	B
RtNO	0	riverside	\triangle	rcunor	c	Saint ceair	D	SAN YSIDRO	D
Renohill	c	HIVERTCN	B	rcusseau	A	SAINT ELAO	A	SAPP	D
RENOVA	B	riverview	B	RCUTCN	0	saint ceorge	c	SAPPHIRE	B
henox	B	RIVRA	A	RCUTt	c	Saint helens	Δ	SAPPINGTON	B
RENSHAH	B	RIXIE	c	heval	0	saini icmace	c	SARA	C
HENSLCM	B	Hil	0	RCbe	0	SAIMI Joe	8	saralegui	-
hFNSSELAER	c	rCANCKE	c	mintna	0	salat jorns	do	saranac	c
RENTIOE	C	rubuins	B	achland	c	saint lucie	A	SARAPH	c
RENTON	4/C	RCBES	0	RChley	B	saint martin	c	saratoga	8
RENTSAC	c	RORERTS	0	rcxbury	B	Saint mahys	B	SARCO	8
REPARADA	0	ROBERTSDALE	c	HCY	B	saint nichelas	c	SARDINIA	c
REPPART	B	Robertsuille	D	RCYAL	-	SAINT PAUL	B	SARGEANT	0
REPUBLIC	B	ROBIN	B	ROYALTCN	c	saint thomas	0	SARITA	Δ
RESCUF	c	hCHINSON	D	hersticne	B	Salado	B	Sakkar	c
reservf	B	kolinsgnville	B	PC2A	0	SALAL	B	SARPY	A
RESNEH	B	rocledo	0	rczellville	B	SALAMATİF	c	SARTELL	A
HET	B/C	ROB HOY	c	hCRETTA	a	SALAS	c	SASKA	e
retriever	0	robr	c	rczlee	c	salcraket	B	SASSAFRAS	8
RETSOF	c	RCCHE	c	flark	c	SALtM	e	SASSER	${ }^{\circ}$
RETSIK	B	ROCHELLE	c	rueicren	A	SALEMStURG	-	SATANKA	c
Rexburg	B	aCCHEPORT	c	rubio	c	SALGA	c	satanta	e
REXCM	A	rockamay	c	ruey	-	SALIDA	Δ	Satellite	c
REYES	C/0	rockcastle	0	Pucr	-	salitias	c	SATt	0
reynolus		riock creek	0	Ruckles	D	salisbury	D	sattley	B
rfynusa	B	ROCKF ORD	-	kUClick	c	SALIX	B	SATtRE	B
REYGAT	0	ROCKINGHAF	C/0	RUCC	0	Salkum	c	SATUS	8
H HAME	B	Rocklin	c	RUUEEN	B	SALLISAm	B	sauce	8
RHINEBECK	0	KOCKPORT		RUOGLPH	C	SALLYANN	C	SAUGATUCK	C

[^2]

Table B.1--Continued

Stetsen	8	SUNSET	B	itallaeccsa	C	TENSAS	D	TIAKEN	0
StETIER	D	SUNSHINE	c	talleyville	B	TENSED	C	TIMAERMAN	8
STEUREN	8	SUNSHEET	C	talls	8	TENSLEEP	B	TIMMONS	8
StEvens	B	SUPAN	8.	tallula	0	TEOCULI	θ	tippahute	D
STEVENSON	8	SUPERIOR	${ }^{\circ}$	tally	8	tepee	0	TIMPANCGOS	8
STEWART	D	SUPERSTITION	A	talmage	A	TEPETE	8/D	TIMPER	0
Stickney	C	SUPERVISOR	C	talme	B	TERINO	C	TIMPOONEKE	8
STIDHAM	A	SUPPLEE	8	talcka	0	TERMINAL	0	timula	8
STIGLER	C	SUR	B	talpa	D	TERMC	C	TINA	c
STILLMAN	A	SURGH	B	TAMA	8	TEROUGE	D	tincahay	A
Stillmater	D	SURPRISE	B	tamalco	0	terra ceia	A/D	TINE	4
Stilsca	B	SURRENCY	B/D	tamba	C/0	terrad	0	tinstey	A
STIMSON	B/C	Survya	c	tammany creek	B	tekrera	c	TINTON	A
Stingal	8	Suste creek	D	tapms	C	terril	θ	tinytome	8
STINSON	C	susitina	B	tampico	0	TERRY	-	thocano	0
Stirk	D	SUSQUEHANNA	D	tanama	0	TERWILLIGER	C	TIOGA	B
STIRUM	B	SUTHER	c	tanana	C	TESAJC	A	TIPPAM	c
STISSING		SUTHERLIN	c	tanberg	0	tescett	c	TIPPECANOE	8
Stiversville	8	SUTPHEN	D	TANDY	C	tesudue	8	TIPPER	A
STOCKBAIDGE	B	SUttien	B	taneum	c	TETCN	A	TIPPERARY	A
stuckland	8	Sutton	B	taney	C	tetcnia	日	TIPPIPAH	D
STOCXPEN	-	SVEA	B	tangair	c	tetcaka	c	TIPPO	c
STUCKTON	0	SVERCRUP	ε	tanna	c	tetctum	C	TIPTON	8
STHDICK	D	SVIIL	c	tanner	C	TEW	B/D	tiptonville	8
STITKES	0	SHAGER	c	TANSEM	B	TEX	B	tira	8
STOMAR	c	Shakane	8	tantalus	A	textide	E	TISBURY	8
STONER	8	SHAN	c	TANWAX	0	tezuma	C	TISCH	c
STONEWALL	A	Shanboy	D	TACP!	c	thackery	e	tish tang	8
Stono	B/0	SWANNER	D	TACS	c	THADER	c	TITLSVILLE	c
STCNYFURD	0	SHANSON	C	tapia	c	THANYCN	A	TIVERTCN	4
Stouker	8	Smanton	B/0	TAPPEN	0	THATCHER	B	TIVCLI	A
STOPIEN	8	SmANTOWN	C	TARA	8	THATUNA	C	TIVY	c
Stinla	8	SWAPPS	c	TARKIC	0	thayne	B	roa	c
STOKM KING	0	SWARTSHOOD	C	TARKLIN	C	thebes	8	TOBICO	D
STCRY	c	SHARTZ	D	TARPC	c	THEBC	D	tobin	B
STOSSEL	c	Swaser	D	tarpaat	c	THEDUL UND	C	tobler	8
StOUGH	C	shastika	C	TARYALL	8	THENAS	C	tobisa	D
STOWELL	0	smatara	A	tascosa	B	THERESA	B	roer	θ
stur	0	Swauk	C	tassel	0	THERICT	0	TOCCOA	8
STRAIGHT	C	Swamillia	A	tate	B	THEKMAL	c	TODD	8
STRAIN	8	Steeatman	C	tapivee	C	THERHCPCLIS	0	TODCLER	8
Sthashurg	C	SWEDE	e	tatu	C	Thetferd	a	todoville	8
STRATEORO	8	SUEDEN	\bullet	-tatum	c	THIOKCL	C	TOEREAD	6
Strauss	c	SHEEN	C	-tauntcn	C	THCENY	0	toeja	c
STRAW	8	STEENEY	B	tavares	A	THOMAS	c	TOEM	c
STKAWN	B	SUEET	c	tawas	A/0	thornoale	c	toge	8
Stheatur	C	Steetgrass	8	taylor	c	therrdike	C/0	tomina	c
Strde	8	SMEETWATER	0	taylcr creek	D	THORNCCK	0	TOINE	c
Stqonghurst	8	SWENUDA	B	taylcrsflat	D	THORATON	c	toivabe	c
Strontia	8	SWIFTON	A	taylorsville	C	THORNMCCO	8	TOREEN	c
Stroupe	0	SWIMS	A	TAYSCM	B	thCrCughfare	B	TOKUL	8
Sthyker	B	Swingle	0	tallina	A	THORP	c	tolby	B
Stukel	c	Swisbob	0	teal	D	THCRR	B	TOLEDO	D
Stukr	8	SWITCHBACK	c	TEALWHIT	C	THCKREL	8	TOL ICHA	D
stumble	A	SWITRERLANJ	8	teanamar	c	THOW	B	tull	a
STUMPD	0	SWUPE	C	TEAPG	B	THPTE MILE	c	tollgate	B
STUMP SPEINGS	B	shybert	c	teas	c	Thuncekzirc	c	tcalhouse	D
stuttgaft	D	SYCAMORE	A	teascale	B	thurber	c	tolat	8
Stutzville	B/C	SYCAN	A	TE	B	THURLCNI	c	rolc	8
Sublettic	B	SYLACAUGA	B/C	TECHICK	B	THURLCM	c	TOLSOMA	D
Suobury	B	SYLVAN	B	tecclete	B	THUKMAN	A	IULStoi	D
SUFFIELD	c	SYMERTON	-	tecumsah	A	THURMONT	B	TOLT	0
SUGARLIJAE	8	SYNAREP	ล	TECRCH	B	THUKSTON	B	toltec	C
suisun	0	SYkACUSE	B	teel	8	tIAK	C	tcllea	B
sula	E	SYRENE	D	TEFACHAPI	D	tibitits	B	tolvar	8
sully	8	SYRET	C	terama	C	tica	c	TOMAH	C
SUL Phura	0			Tfja	D	TICE	c	TOMAS	8
SULTAN	A	tabernasm	H	TEJCN	B	TICHIGAA	C	TOMAST	C
sumas	B/C	tabiona	H	tekca	c	TICHACR	D	tomera	0
sumuem	0	table mcuntain	8	TELA	B	tickapeo	c	TOMICHI	A
SUMMA	8	tabler	D	TELEECNC	D	tickasun	b	tomcka	A/D
SUMNEFFIELU	c	TABCR	c	teleprcne	D	tiowell	0	tonata	C
SUMMERPS	B	taclma	D	telfer	A	tiekra	C	tenamanca	c
SUmmerville	c	tacuesh	0	TÉLl	${ }^{6}$	tietca	B	tcaer	D
Sumait	c	TAFT	c	telicr	B	tiffany	C	tongue river	\checkmark
Sumaitville	H	TAGGERT	c	telitic	B	tifiun	B	TONINI	8
sumter	c	TAHOMA	4	tellman	B	tiger crfek	B	TONKA	c
Sidy	L	tahouamenon	0	telstad	B	TIGERLEN	A	tonkey	L
sunturst	c	tahouats	c	terescal	D	TIGInCN	B	TCNKS	E
sunbury	H	TAINTOR	c	TERPLE	8/C	tigrett		TONCPAH	8
sunctux	A	Tajo	c	tervik	B	tigua	D	tonchek	B
Sunis	c	takeuchi	c	tenabl	0	tijezas	B	TONSINA	8
SUNDEIL	c	TAKILMA	-	tenaha	B	TILFCKE	B	tonuco	8
SUNCERLAND	C/0	taxotina	H	teans	c	tilleoa	B	TOCLE	0
SUNOCWN	R	TALAATE	C	TfNCEE	C	THLICU*	${ }_{\text {e }}$	TOCMES	0
SUNFIELI)	8	talapus	P	TEATRIFFE	C	TILLMAN	C	TOP	
sumailand	C	TALROTT	c	teafx	Δ	TILmA	c	TOPPENISH	B/C
suninytar	0	ialcot	c	tenibac	B	tilsit	C	TOPTCN	
sunvys iom	-	talimina	0	tenlinc	B	tiltun	8	toouerville	D
sundirvalf	c	talkeetna	c	tenac	0	TIMBERG	c	TOOLOP	A
Suvat	c	TALLAC	6	IEATI	c	timuentr	B	TORBCY	8
SUnirist	\bigcirc	TAMADE!	C	trabtre	B	LIMENTMA	B	TORCHLIGHT	C
	NOTES	A BLANK HYOn? TWO SOIL GFOI	$\begin{aligned} & \text { nir } \\ & \text { suc } \end{aligned}$	$\begin{aligned} & \text { Enli rrnur INRI } \\ & \text { HAS B/C IVNICA } \end{aligned}$	$\begin{aligned} & \text { TFF TI } \\ & S T I D F \end{aligned}$	COIL rinnip DPAIMEN/J゙!	$\begin{aligned} & \text { YחT } \\ & \text { CIT } \end{aligned}$	MATIn"	

Table B.l--Continued

tormunta	c	truckee	C	UKIAH	C	VASHII	C	vClinia	B
torning	B	TRUCKTON	B	UL EN	B	vascuez	8	VOLKE	c
torooa	B	truesdale	C	ULLOA	8	VASSAR	B	VOLKMAR	8
toronta	c	trull	C	ULM	8	vastine	c	VOLNEY	8
torpenc lake	C	trulon	8	UL R ICHER	8	vaucluse	c	volperie	c
torreon	c	truman	8	ulupalakua	8	vaughnsville	c	voltaire	0
torres	8	trumbull	D	ULYSSES	8	VAYAS	0	volusia	C
TORRINGTON	B	trume	D	UMA	A	veal	B	VONA	B
torro	C	TRYON	0	UMAPINE	B/C	VEAZIE	B	VORE	8
TORTUGAS	0	tSChicoma	C	UMIKCA	8	VEBAR	8	VRCCMAN	B
TOTEM	8	tub	c	UMIL	0	VEBAR	${ }^{8}$	VULCAN	c
TOTTEN	B	tubac	c	UMAAK	8	VEGA	c	VYLACH	0
TOUCHET	8	TUC ANNON	c	UMPA	B	vega alta	c		
toumey	8	TUCKERMAN	0	UNA	0	VEGA BAJA	C	mabanica	D
TOULON	B	TUCUMC ARI	C	UNADILLA	8	VEKOL	0	WABASH	0
TOURN	C	tuffit	0	UAAWEEP	8	velma	B	HABASHA	0
tolendoulst	8	TUGHILL	0	UNCCMPAGHRE	c	velva	8	mabassa	B/0
tours	B	TUJUNGA	A	UNE EOA	B	VENA	B	WABEK	B
toutle	A	TUKEY	c	UAGERS	8	VENANGO	C	WACA	C
TIWER	0	TUKEILA	D	UNICN	c	VENATOR	0	WACCTA	8
TOWNER	8	tula	c	UAIONTOHN	8	veneta	c	waccusta	C
TOwnley	c	tulana	C/10	UNicNVILLE	c	VENELIA	D	madams	8
towns bury	8	TULARE	C/ 10	UAISCA	c	VEAICE	0	WADCELL	8
TOWNSEND	c	tularosa	C	UPSAL	c	VENLC	0	hadcoups	-
TOWSON	B	TULIA	B	UPSHUR	C	venus	B	WADENA	8
toxamay	0	TULLER	0	UPICN	c	VERBCORT	D	WADESBORO	8
Tor	0	tullock	8	URACCA	8	VERDE	C	WAOLEIGH	c
toyah	8	rully	C	UREANA	c	\checkmark FKDEL	D	WADMALAE	0
toze	B	tumbez	D	UREC	0	- rodella	D	WADSWORTH	c
trabuco	c	tumey	D	URICH	0	VERDIGRIS	e	HAGES	8
track	8	tumitas	B	URNE	B	VEROUN	0	WAGAER	0
tracy	B	TUMWATER	A	URSINE	c	vergenines	c	wagram	A
trate	c	TUNEHEAN	0	URTAH	C	VERHALEN	c	WAHA	c
IRAIL	A	tunica	D	URHIL	0	VERMEJC	0	WAHEE	0
trail creek	B	TUNIS	0	USAL	8	VERNAL	8	WAHIAWA	B
trans yivania	8	TUAKHANNOCK	A	USHAR	B	VERNALIS	8	WAHIKULI	B
TRARPER	A	TUNNEL	B	USINE	B	VERNON	D	WAHKEENA	8
TRAPRIST	c	TURELO	c	USKA	0	VERONA	c	WAhkiacus	8
trask	C	TUPUKNUK	0	UTALINE	8	VESSER	c	WAHLUKE	8
triver	B/C	turbeville	C	UTE	c	VESTON	c	WAHPETON	c
travessilla	0	turbotville	C	UTICA	A	VETAL	A	WAHTIGUP	B
travis	c	TURBYFILL	8	UTLEY	8	veterar	B	WAHTUM	B/C
tramick	B	TURIN	B	utuaco	B	veyo	0	WAIAHA	c
tray	c	TURK	0	uvaca	D	VIA	8	WAIAKOA	c
treadmay	0	TURKEYSPRINGS	c	uvalde	c	VIAN	8	waitaleale	D
treasure	B	turley	C	UHALA	8	viboras	0	waialua	8
TREBLOC	0	TURLIN	8			VIBORG	B	halama	0
TREGO	c	TURNBOW	C	vacherie	C	vickery	c	WAIHUNA	D
trelona	0	TURNER	B	VADER	8	VICKSEURG	8	maIKALCA	B
TREMBLES	B	TURNERVILLE	8	VADC	A	victicr	A	WAIKANE	
tremre	A	TURNEY	8	VAIDEN	0	victeria	c	WAIKAPU	B
trempealeau	8	turret	B	VAILTCN	B	victery	8	WAI KOMO	0
TRENARY	B	turria	c	valce	C	vicu	c	mailuxu	8
TRENT	B	tuscan	0	valcez	B/C	viUA	B	WAIPEA	B
trenton	D	tuscaramas	c	vale	8	vidorine	c	walnee	e
THEP	B	tuscarora	C	VALENCIA	B	VIENNA	B	waincla	A
tres hermanos	c	tuscola	8	VALEAT	A	vieques	8	waipary	c
tres hermanos	c	tuscumbia	c	valentine	A	VIEW	c	WAISKA	B
TRETTEN	c	tusel	C	valfra	c	VIGAR	c	WAITS	B
TREVINO	0	TUSKEEGO	c	valkaria	810	VIGO	0	WAKE	D
thexler	c	TUSLER	B	vallar	0	viking	0	WAKEEN	8
TRIAMI	C	tusouitee	B	vallecitics	c	vil	c	WAKEFIELD	B
triassic		tustin	B	VALLERS	c	vilas	A	hakelano	$8 / 0$
TRICON	c	TUSTIMENA	8	valmget	C	villa grcve	8	wakcnoa	c
TRIDELL	B	TUTHILL	8	valmy	B	villars	B	WALCOTJ	B
TRIDENT	0	turtie	8	valcis	8	vina	8	Walceck	C
TKIGO	c	TUTMILER	B	vanaje	0	vincennes	c	halco	0
TRIMBIE	8	TUXEDO		vanamda	0	VINCEAT	c	WALCRCN	0
TRIMYER	8	TUXEKAN	B	VAL BUKEN		VINEYARD	c	WALDROUP	0
trinchera	C	thilacks	A	VANCE	c	VINGC	8	WALES	c
trinity	0	thin Creek	B	vanda	0	vining	c	Walferd	c
TRIPLEN	c	TWINING	C	vandalia	c	vinita	c	WALKE	c
TRIROLI	c	TWISP	B	VAACERDASSON	0	vinlatu	c	WALL	8
TRIPR	8	THO DOT	C	VANDERGRIFT	C	vinton	B	wallace	日
TRITON	C	TYEE	0	VANOERHCFF	0	vira	C	WALLA malla	-
IRIX	8	TYGART	0	vanderlir	A	viratcn	c	WALLER	8/0
TROJAN	8	TYLER	D	van dusen	8	virden	c	WALLINGTON	C
trommal o	D	TYNDALL	6/C	vanet	C	VIRGIL	8	wallis	-
TROMP	B/C	TYNER	A	vang	8	virgin reak	0	wallkill	C/C
TRONSEN	8	trrone	c	VANHORN	B	VIHGIA RIVER	D	wallman	c
TROOK	8	TYSON	C	VAA NCSTERA	B	virtue	e	wallowa	C
TROPAi	D			vanacy	B	visalia	8	mallpack	
trosi	0	UBAR	c	vanuss	B	vista	c	wallrcck	B
trour	A	ubly	8	vantage	c	vives	B	wallsburg	0
trout creek	C	UCOLA	c	VAN HAGONER	D	vivi	8	WALLSOA	
troutidale	8	UCERIA	8	varco	c	vLASATY	C	mALPOLE	c
trout lake	c	UDEL	D	varelum	c	VCCA	c	WALSH	B
trcut river	A	UDOLPHO	c	varick	D	vcoermaler	e	walshville	D
troutville	8	UFFENS	D	varina	c	vCladora	B	WALTERS	${ }^{\text {a }}$
troxel	8	UGAK	D	varma	c	vCLEATE	C	WALTON	c
troy	C	UHLIG	8	varre	8	volga	0	- ALlm	B
truce	C	UIATA	8	VARYSBURG	B	VOLIN	8	WALVAN	B
	NITES	A BLANK HYDR TINO SOIL GR	$\begin{aligned} & \text { ngir } \\ & \text { S sid } \end{aligned}$	$\begin{aligned} & \text { SOIL COMUP IPI } \\ & \text { H: AS B/C IMDI } \end{aligned}$	$\begin{aligned} & \text { ATES } \\ & \text { FS TH } \end{aligned}$	llf EOIL GROIJP 		「EE! DPTER!! HATIn"	

Table B.1--Continued

WAMEA	B/C	WEHADKEE	D	hHITNEY	B	WINU	c	YAMPA	C
-AMIC	B	WEIKERT	C/D	GHITDRE	A	WINZ	c	YAMSAY	0
HAMPSVILLE	8	WEIMER	D	WHITSCL	B	WIOTA	B	rana	B
WANATAH	B	WE INBACH	C	WHITSCN	D	WISHEYLU	C	Yaquina	B/0
mantile	0	WEIR	D	WHITWELL	C	WISKAH	C	Yarcley	
matul)	A	WEIRMAN	9	WHCLAA	c	HISNER	D	Yates	0
WANFTTA	A	WEISER	C	wIBAUX	D	WITBECK	0	YaECIM	C
dann	A	WEISHAUPT	c	WICHITA	C	WITCH	0	Yawker	c
hank	A	WEISS	A	WICHUP	0	WITHAM	c	YAXCN	B
WAPAL	-	WEITCHPEC	B	WICKERSHAM	8	wIthee	C	YEATES HOLLOM	C
napati	C/0	melbr	8	mICKET	C	WITT	C	YEGEN	8
haptlee	B	mELCH	c	WICKHAM	8	WITZEL	c	YELF	8
WAPIVITIA	H	WELD	c	wICKIUP	C	WCDEN	8	YENRAB	A
WAPPIAS	8	WELOA	c	WICKLIFFE		WODSKOw	8	YECPAN	8
WAPSIC	b	WELDCN	ᄃ	WCKSBURG	B	WCLCCTTSBURG		YETULL	A
WAFHA	a	- ELDONA	3	WIDTSCE	c	WOLDALE	C/O	YODER	B
- Aro	0	WELLER	c	WIEHL	C	WCLF		YOKCHL	c
inardyero	A	mELLERHDRN	c	WIEN	0	WOLFESEN	c	YOLLABCLLY	D
WARDELI	1	htLLINGTDN	-	WIGGLETCA	B	WDLFCHO	B	YOLC	B
a ${ }^{\text {S }}$ DEN	4	mCllad	3	mil braham	C	WOLF PCINT	E	YOLCGC	0
war dutll	c	mellaer	B	wilbur	C	WOLFTEVER	c	YCMCNT	B
HAME	H	WFLLSSORO	C	milce	C	WOL VERINE	A	YONCALLA	C
WAREHAN	c	WFILSTCA	e	WILCCX	0	hcoobine	B	YONGES	0
watmand	c	mellsville	A	WILCCXSCN	C	hCOCbridge	C	YONNA	8/0
mAK. SPRINGS	c	WEMPLE	B	bilocat	0	hCODRURN	C	Yorcy	
-APNERS	A/D	bFNAS	8/C	hilder	B	moocuury	0	YORK	C
WARREV		WENATCHEE	C	hiloerness	C	wCCDCOCK	B	rorkville	0
WARREATISN	$6 / 0$	WENDEL	B / C	WILCRESE	0	houdenilile	C	YOS 1	C
WARKIOK		WENHAM		-ILCWOCE	0	WOCOGLEN	0	YOUGA	B
WA:SAW	8	WENDRA	C	miley	C	WDODHURST	A	Youpan	C
WARSINO	B	WEATHORTH	B	WILXES	C	wood Lr	B	YCUNGSTCN	B
WARwICK	A	WERNER	B	AILKESCN	.	HOODLYN	C	YOURAME	A
Wasatch	A	WESU	C	mILKIAS	0	WOUDAANSIE	a	YOVIMPA	D
WasEPI	B	WESSEL	8	WILL	0	WODOMERE	8	YSIDORA	C
WASHIT, URN		WESTBRDOK	0	WILLACY	B	WCDO RIVER	c	Yturbide	A
WASHINGTCN	-	WESTAURY	C	willakenzie	c	WOCOROCK	B	YUBA	0
WASHOE	c	WESTCREEK	B	WILLAMAR	0	WCUORCW	C	YUKCN	0
Washinggal	\bigcirc	WESTERVILLE	c	Willamette	B	woods chess	D	YUNES	D
WASHIENAW	C / F	WESTFALL	C	WIllapa	c	WOCDSFIELD	c	yungue	C
WASILIA	c	WESTFIELD		wIllard	C	WOODSIDE	A		
WASIUJA	c	WESTFORD		nillette	A/D	W000SCN	D	IAAR	D
GASSAIC	8	GESTLAND	810	WILLHARD	B	WOUDSTCEK	C/ 0	zaCa	C
matas	c	WESTMIASTFR	C/L	millians	8	WCOOSTCWN	C	ZACHARIAS	B
watallia	B	HESTMORE	B	WILLIANSBURG	B	W000ward	8	zachary	0
WATLHAIG	B	WESTMURELAND	B	WILLIANSCN	C	WCDLPAN	B	zafra	θ
WATCHU:G	0	WESTCN	0	willis	C.	WOOLPER	C	ZAHILL	B
WATERO, ${ }^{\text {a }}$ O		WESTPHALIA	B	WILLITS	8^{-}	woclsey	C	ZAHL	B
WATFPBURY	D	meStPlain	C	WILLUUGHBY	B	HCCSLEY	B	ZALESKI	C
WATERIND	c	WESTPDRT	4	hillcw Creex	8	WOOSTER	C	ZALLA	A
mateas	c	westiville	d	hillowcale	B	WOCSTERN	B	zamora	B
WATAINS	B	WETHERSFIELU	C	WILICHS	D	WOCTEN	A	IANE	C
WATKINS RIUGE	8	WETHEY	B/C	WILLHCCO	A	WORCESTER	8	ZANEIS	B
WATOPA	B	WETZEL	0	WILMER	C	WORF	D	zanesville	C
watr jus	8	- EYMCUTH	B	milpar	0	WCRK	C	ZANONE	C
WATSEKA	c	WHALAN	3	WILSCN	D	WCRLAND	B	zAPATA	C
watsov	c	WHARTDN	c	wittshire	C	worley	C	zavala	B
watsonia	0	WHATCOM	C	minans	B/C	WORMSER	C	zavco	C
WATSONVILLE	D	WHATELY	c	WINCHESTER	A	HOROCK	8	2EB	8
WATT	0	WHEATLEY	c	WINCHUCK	C	HCRSHAM	D	LEESIX	c
WATTJN	c	WHEATRIDGE	C	WINOER	B/D	WORTH	C	LELL	E
maubay	8	WHEATVILLE	B	WINCMILL	8	WDKTHEN	B	IEN	c
WAUBEEX	8	WHEELER	B	WINOOM	B	WORTHING	0	zenca	C
-AUblinsie	\%	WHEELING	B	WINO RIVER	8	WORTHIAGTON	C	LENIA	8
hauchula	B/0	bHEELOCK	C	WINESOR	A	WORTMAN	C	LENIFF	8
WAUCOMA	8	WHEELON	0	WINCTHORST	C	WRENTHAM	C	ZEONA	A
Waucunda	8	WHELCMEL	B	WINOY	c	WRIGHT	C	zIEGLER	C
haukef	e	WHETSTONE	B	WINEG	B	HRIGMTSVILLE	0	ZIGWEIO	\bigcirc
WAIIKEGAN	8	GHIOBEY	B	WINEMA	C	WUNJEY	B	IILLAH	8/C
WAUKENA	D	WHIPPANY	C	WINETTI	8	WURTSBURO	C	ZIM	0
WAUKON	y	WHIPSTOCK	C	WINFIELC	C	WYALUSING	0	ZImmerman	A
Waumbek	B	bhikla	C	WING	D	WYARO	8	ZING	C
WAUVIKA	0	WHIT	B	WINGATE	B	WYARNO	C	ZINEER	B
WAUSEON	310	miltaker	c	HINGER	c	WYATT	c	ZION	
WAVERLY	310	WHITCOMB	c	hingville	8/0	WYEAST	C	ZIPP	C/0
WAnAKA	C	WhITE BIRD	C	WINIFREC	C	WYEVILLE	C	$21 T A$	8
waycup	B	WHITECAP	0	hink	B	WYGANT	8	zoar	
wardeli	0	WHITEFISH	B	WInkleman	C	WYKOFF	8	ZOHRER	8/0
WAYLAND	C/0	WHITEFDRD	8	WINLO	0	WYMAN	B	200k	c
hayve	B	WHITEHDRSE	B	WINLCCK	C	WYMORE	c	zorravista	A
waymesbgro	8	WHITE HOUSE	C	WINN	C	WYNA	8	ZUFEL	B
waysioe		WHITELAKE	B	hinfiebagc	8	WYNOCSE	D	zUMBRO	B
WEA	8	WHITELAM	B	winam ucca	8	WYO	B	zUMWALT	C
heaver	c	WHITEMAN	0	WI NNESHIEK	B	WYOCENA	8	zUNOELL	B
HEBA	c	WHITEROCK	-	WINNETT	D			ZUNHALL	8
GEbER	8	WHITESBURG	C	hincas	0	yacolt	B	ZUN1	C
WEESTER	c	White store	0	Winuoski	B	yahara	8	ZURICH	B
WEOGF	4	HMITE SHAM	C	WINSTCN	A	yahola	B		
WEOUmEE	B	WHITEWATER	8	WINTERS	C	Yakima	B		
WEED	c	WHITEEOOO	C	WINTERS BURG	8	Yakus	0		
WEEDING	A	WHITLEY	B	Winterset	c	VALLANI	B		
WEEDMAPK	8	WHITLOCK	B	WINTHROP	A	YALMER	B		
WEEKSVILLE	B/L	WHITMAK	0	WINTONER	c	YAMHILL	r		
	mites	$\begin{aligned} & \text { A ELAHK HY } \\ & \text { TWO SOIL GF } \end{aligned}$	$\begin{aligned} & \text { oric } \\ & \text { s su } \end{aligned}$	SOIL GROUP IPI H AS B/C IHDI	$\begin{aligned} & \text { ITES T } \\ & \text { S THF } \end{aligned}$	HE SOIL GROIIP DPAIMED/UNOPA	$\begin{gathered} \text { HOT } \\ 0 \text { Q } \end{gathered}$	BFFA DFTFPYIAIE UATIO"	

APPENDIX C

RAINFAL工 MAPS OF CONTERMINOUS UNITED STATES FOR 24-HOUR RAINFALL AMOUNTS

This appendix contains maps of the conterminous United States showing $24-h o u r$ rainfall amounts up to 100-year frequency for areas east of 105° longitude. For areas west of 105° longitude, use the detailed precipitation maps provided for each state. These may be obtained from the West Technical Service Center, SCS, Portland, Oreg.
C-2
CONTERMINOUS UNITED STATES

CONTERMINOUS UNITED STATES

CONTERMINOUS UNITED STATES

APPENDIX D

PEAK RATES OF DISCHARGE FOR SMALL WATERSHEDS

This appendix contains charts for estimating peak rates of runoff from small watersheds for use with procedures in chapter 4 of this technical release. They provide a basic peak discharge rate for a 24 -hour duration storm associated with a watershed in a natural condition. To use these charts to determine peak rates of runoff in urban areas, the peaks must be modified for the amount of urbanization according to factors discussed in chapter 4 and for other factors discussed in appendix E.

Figure D-l shows the storm distribution regions for the Pacific Coast states. For all other states SCS uses only type-II storm distribution.

drainage area (ACres)
Figure D-2.--Peak rates of discharge for small watersheds (24 -hour,
type-II storm distribution). Sheet 1 of 3

APPENDIX E

ADJUSTMENT FACTORS FOR PEAKS DETERMINED USING CHARTS IN APPENDIX D

Introduction

This appendix describes methods for adjusting peak rates of discharge for ranges of flat, moderate, and steep slopes; for conditions where swamps or ponding areas exist; and for conditions where the watershed shape factor (ℓ / w) varies significantly from that used in the development of appendix D charts.

Slope Interpolation

Table E-l provides interpolation factors to be used in determining peak rates of discharge for specific slopes within ranges of flat, moderate, and steep slopes for a range of drainage areas. Appendix D charts for FLAT slope are based on l-percent slope, for MODERATE slope on 4-percent slope, and for STEEP slope on 16-percent slope. For slopes other than 1,4 , and 16 percent, use the factors shown in table E-l to modify the peak discharges.

Example E-1

Compute the peak discharge for a 1,000-acre watershed with an average watershed slope of 7 percent and a runoff curve number (CN) of 80 for 4 inches of rainfall.

1. Determine the peak discharge for a watershed with a moderate slope (4 percent). From appendix D, read a peak discharge of 295 cfs per inch of runoff for 1,000 acres and a $C N$ of 80 . From table 2-1, find 2.04 inches of runoff for 4 inches of rainfall and a CN of 80. The peak discharge is then 295×2.04 or 602 cfs (cubic feet per second).
2. Determine the interpolation factor. From table E-1 find 7-percent slope under MODERATE heading and read an interpolation factor of 1.23 for a drainage area of 1,000 acres. (The peak from a 1,000 -acre watershed with a watershed slope of 7 percent is 1.23 times greater than for an average watershed slope of 4 percent.)
3. Determine the peak discharge for 7-percent slope.

$$
q=(602)(1.23)=740 \mathrm{cfs}
$$

Example E-2
Compute the peak discharge for a 15-acre watershed with an average slope of 0.5 percent and a runoff curve number of 80 for 4 inches of rainfall.

1. Determine the peak discharge for a watershed with a flat slope (l percent). From appendix D read a peak discharge of 11.2 cfs per inch of runoff for 15 acres and a CN of 80. From table 2-1, find 2.04 inches of runoff for 4 inches of rainfall and a CN of 80 . The peak discharge is then 11.2×2.04 or 23 cfs.

Table E-l.--Slope adjustment factors by drainage areas

FLAT SLOPES								
Slope (percent.)	$\begin{aligned} & 10 \\ & \text { acres } \end{aligned}$	$\begin{aligned} & 20 \\ & \text { acres } \end{aligned}$	$\begin{gathered} 50 \\ \text { acres } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { acres } \end{aligned}$	$\begin{gathered} 200 \\ \text { acres } \end{gathered}$	$\begin{gathered} 500 \\ \text { acres } \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { acres } \end{aligned}$	$\begin{aligned} & 2,000 \\ & \text { acres } \end{aligned}$
0.1	0.49	0.47	0.44	0.43	0.42	0.41	0.41	0.40
0.2	. 61	. 59	. 56	. 55	. 54	. 53	. 53	. 52
0.3	. 69	. 67	. 65	. 64	. 63	. 62	. 62	. 61
0.4	. 76	. 74	. 72	. 71	.70	. 69	. 69	. 69
0.5	. 82	. 80	. 78	. 77	. 77	. 76	. 76	. 76
0.7	. 90	. 89	. 88	. 87	. 87	. 87	. 87	. 87
1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.5	1.13	1.14	1.14	1.15	1.16	1.17	1.17	1.17
2.0	1.21	1.24	1.26	1.28	1.29	1.30	1.31	1.31
MODERATE SLOPES								
3	. 93	. 92	. 91	. 90	. 90	. 90	. 89	. 89
4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5	1.04.	1.05	1.07	1.08	1.08	1.08	1.09	1.09
6	1.07	1.10	1.12	1.14	1.15	1.16	1.17	1.17
7	1.09	1.13	1.18	1.21	1.22	1.23	1.23	1.24
STEEP SLOPES								
8	. 92	. 88	. 84	. 81	. 80	. 78	. 78	. 77
9	. 94	. 90	. 86	. 84	. 83	. 82	. 81	. 81
10	. 96	. 92	. 88	. 87	. 86	. 85	. 84	. 84
11	. 96	. 94	. 91	. 90	. 89	. 88	. 87	. 87
12	. 97	. 95	. 93	. 92	. 91	. 90	. 90	. 90
13	. 97	. 97	. 95	. 94	. 94	. 93	. 93	. 92
14	. 98	. 98	. 97	. 96	. 96	. 96	. 95	. 95
15	. 99	. 99	. 99	. 98	. 98	. 98	. 98	. 98
16	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
20	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10
25	1.06	1.08	1.12	1.14	1.15	1.16	1.17	1.19
30	1.09	1.11	1.14	1.17	1.20	1.22	1.23	1.24
40	1.12	1.16	1.20	1.24	1.29	1.31	1.33	1.35
50	1.17	1.21	1.25	1.29	1.34	1.37	1.40	1.43

2. Determine the interpolation factor. From table E-1 find 0.5-percent slope under FIAT heading. Read a slope interpolation factor of 0.81 interpolated between the values for 10 acres and 20 acres.
3. Determine the peak discharge for 0.5 -percent slope.

$$
q=(23)(.81)=19 \mathrm{cfs}
$$

Adjustment Factors for Swampy and Ponding Areas

Peak flows determined from appendix D assume that the topography is such that surface flow into ditches, drains, and streams is approximately uniform. On very flat areas and where ponding or swampy areas occur in the watershed, a considerable amount of the surface runoff may be retained in temporary storage. The peak rate of runoff should be reduced to reflect this condition. Tables E-2, E-3, and E-4 provide adjustment factors to determine this reduction based on the ratio of the ponding or swampy area to the total watershed area for a range of storm frequencies.

Table E-2 contains adjustment factors to be used when the ponding or swampy areas are located in the path of flow in the vicinity of the design point. Table E-3 contains adjustment factors to be used when a significant amount of the flow from the total watershed passes through ponding or swampy areas and these areas are spread throughout the watershed. Table E-4 contains adjustment factors to be used when a significant amount of the flow passes through ponding or swampy areas that are located only in the upper reaches of the watershed.

Table E-2.--Adjustment factors where ponding and swampy areas occur at the design point

Ratio of drainage area to ponding and swampy area	Percentage of ponding and swampy area	Storm frequency (years)					
		2	5	10	25	50	100
500	0.2	0.92	0.94	0.95	0.96	0.97	0.98
200	. 5	. 86	. 87	. 88	. 90	. 92	. 93
100	1.0	. 80	. 81	. 83	. 85	. 87	. 89
50	2.0	. 74	. 75	. 76	. 79	. 82	. 86
40	2.5	. 69	. 70	. 72	. 75	. 78	. 82
30	3.3	. 64	. 65	. 67	. 71	. 75	. 78
20	5.0	. 59	. 61	. 63	. 67	. 71	. 75
15	6.7	. 57	. 58	. 60	. 64	. 67	. 71
10	10.0	. 53	. 54	. 56	. 60	. 63	. 68
5	20.0	. 48	. 49	. 51	. 55	. 59	. 64

Table E-3.--Adjustment factors where ponding and swampy areas are spread throughout the watershed or occur in central parts of the watershed

Ratio of drainage area to ponding and swampy area	Percentage of ponding and swampy area	Storm frequency (years)					
		2	5	10	25	50	100
500	0.2	0.94	0.95	0.96	0.97	0.98	0.99
200	. 5	. 88	. 89	. 90	. 91	. 92	. 94
100	1.0	. 83	. 84	. 86	. 87	. 88	. 90
50	2.0	. 78	. 79	. 81	. 83	. 85	. 87
40	2.5	. 73	. 74	. 76	. 78	. 81	. 84
30	3.3	. 69	. 70	. 71	. 74	. 77	. 81
20	5.0	. 65	. 66	. 68	. 72	. 75	. 78
15	6.7	. 62	. 63	. 65	. 69	. 72	. 75
10	10.0	. 58	. 59	. 61	. 65	. 68	. 71
5	20.0	. 53	. 54	. 56	. 60	. 63	. 68
4	25.0	. 50	. 51	. 53	. 57	. 61	. 66

Table E-4.--Adjustment factors where ponding and swampy areas are located only in upper reaches of the watershed

Ratio of drainage area to ponding and swampy area	Percentage of ponding and swampy area	Storm frequency (years)					
		2	5	10	25	50	100
500	0.2	0.96	0.97	0.98	0.98	0.99	0.99
200	. 5	. 93	. 94	. 94	. 95	. 96	. 97
100	1.0	. 90	. 91	. 92	. 93	. 94	. 95
50	2.0	. 87	. 88	. 88	. 90	. 91	. 93
40	2.5	. 85	. 85	. 86	. 88	. 89	. 91
30	3.3	. 82	. 83	. 84	. 86	. 88	. 89
20	5.0	. 80	. 81	. 82	. 84	. 86	. 88
15	6.7	. 78	. 79	. 80	. 82	. 84	. 86
10	10.0	. 77	. 77	. 78	. 80	. 82	. 84
5	20.0	. 74	. 75	. 76	. 78	. 80	. 82

These conditions may occur in a proposed or existing urban or suburban area and the adjustment factors from tables E-2, E-3, or E-4 should be applied after the peaks have been adjusted for the effects of urbanization as described in chapter 4.

Example E-3
A 5-acre pond is located at the downstream end of a 100-acre watershed in which a housing development is proposed. The average watershed slope is 4 percent and the present-condition curve number is 75. After the installation of the housing development, 30 percent of the watershed will be impervious and 50 percent of the hydraulic length will be modified. The future-condition curve number is estimated to be 80. For a rainfall
of 6 inches (100-year frequency event) determine the present-condition and future-condition peak discharges downstream of the pond.

1. Determine the present-condition peak discharge assuming the pond is not in place. From appendix D, find the peak discharge to be 59 cfs per inch of runoff. From table 2-1, find the runoff to be 3.28 inches. The peak discharge is then 59×3.28 or 194 cfs.
2. Determine the ponding adjustment factor. Since the pond is at the lower end of the watershed, use table E-2. The ratio of the drainage area to pond area is $100 / 5$ or 20 . For a 100 -year frequency event the adjustment factor is 0.75 .
3. Compute the present-condition peak discharge.

$$
q=0.75(194)=146 \mathrm{cfs}
$$

4. Compute the basic future-condition peak discharge. From appendix D, find the peak discharge to be 65 cfs per inch of runoff. From table $2-1$, find the runoff to be 3.78 inches. The peak discharge is then 65×3.78 or 246 cfs.
5. Determine the modification factors for proposed urbanization. From chapter 4 and figures $4-1$ and $4-2$ for a curve number of 80 : impervious factor $=1.16$; hydraulic length factor $=1.31$; urbanization factor $=$ $(1.16)(1.31)=1.52$.
6. Compute the future-condition peak discharge.

$$
q=1.52(246)=374 \mathrm{cfs}
$$

7. Compute the future-condition peak below the pond. From step 2 the ponding factor is 0.75 .

$$
q=0.75(374)=280 \mathrm{cfs}
$$

Adjustment for Watershed Shape Factor

The equation used in computing peak discharges from appendix D was based in part on a relationship between the hydraulic length and the watershed area from Agricultural Research Service's small experimental watersheds. Figure E-l shows the best fit line relating length to drainage area. The equation of the line is $\ell=209 a^{0 \cdot 6}$. A watershed shape factor, ℓ / w (where w is the average width of the watershed), is then fixed for any given drainage area. For example, for drainage areas of 10, 100, and 1,000 acres the watershed shape factor is $1.58,2.51$, and 3.98, respectively.

Figure E-1.--Hydraulic length and drainage area relationship.

There are watersheds that deviate considerably from these relationships. The peaks can be modified for other shape factors. The procedure is as follows:

1. Determine the hydraulic length of the watershed and compute an "equivalent" drainage area using $\ell=209 a^{0.6}$ or figure $E-1$.
2. Determine the "equivalent" peak flow from the charts for the "equivalent" drainage area.
3. Compute the "actual" peak discharge for the watershed by multiplying the equivalent peak discharge by the ratio of actual drainage area to the equivalent drainage area.

The factors for modifying the peak for urbanization following procedures in chapter 4 can then be applied to the revised peak discharge.

Example E-4
From a topographic map the hydraulic length of a 100 -acre watershed with moderate slopes and a CN of 75 was measured to be 2,200 feet. Determine the peak discharge for a 6-inch 24-hour rainfall.

1. Determine the "equivalent" drainage area for a watershed with a hydraulic length of 2,200 feet. From figure E-l read 51 acres. (Note that for a 100-acre watershed the hydraulic length would be 3,300 feet from figure E-1.)
2. Determine the "equivalent" peak flow from appendix D for a drainage area of 51 acres and a CN of 75 . Read 37 cfs per inch of runoff. From table 2-1, find the runoff to be 3.28 inches. The peak discharge is then 37×3.28 or 121 cfs.
3. Compute the actual peak discharge for 100 acres.
$\underset{\text { actual }}{\text { discharge }}=$ equivalent discharge ($\frac{\text { actual drainage area }}{\text { equivalent drainage area }}$)

$$
q=121\left(\frac{100}{51}\right)=237 \mathrm{cfs}
$$

The peak discharge for the 100-acre watershed with a hydraulic length of 2,200 feet is 237 cfs (versus 194 cfs for a "normal" l00-acre watershed). Adjustments to this peak discharge for urbanization can be made using factors discussed in chapter 4.
4. The procedure in steps 1,2 , and 3 can be used to determine peak discharges when the actual hydraulic length is longer than that shown on figure E-l. For example, if the actual length were 4,500 feet instead of 3,300 feet, the equivalent area would be 170 acres, as shown in figure E-l.

APPENDIX F

SAMPLE PEAK DISCHARGE WORKSHEETS

Introduction

Peak discharge worksheets have been developed to provide guidance in the use of TR-55 procedures. The worksheets contain examples that illustrate the use of several TR-55 techniques.

Procedure: Chapter 4 (appendices D \& E)
The primary procedure, using chapter 4 with appendices D and E, is illustrated by an example on page $\mathrm{F}-3$. This procedure uses a fixed watershed shape relation (figure E-1) and a fixed lag curve number (CN) relation (figure 3-3). The peak discharge per inch of runoff is read from one of the charts in Figure D-2 using a watershed slope range, drainage area, and CN. Appendix E and urban adjustments may be applied to the chart value, if appropriate.

One of the adjustments, the watershed shape factor, is applied on the worksheet as a muliplication factor and requires a second reading of the Figure D-2 chart. This is a similar but easier to apply procedure than example $\mathrm{E}-4$ in appendix E .

Procedure: Tabular Method (chapter 5)
The Graphical (T_{C}) - Peak Discharge Worksheet, page F-5, illustrates the procedure using figure 5-2 with a computed time of concentration $\left(\mathrm{T}_{\mathrm{C}}\right)$. The worksheet example uses the same input as the previous example, but shows a T_{c} computed by the Lag-CN method. The comparison of peak discharge at the bottom of page F-5 (1% difference between procedures) is meant to show how these procedures are related when a Lag-CN T_{C} is used. If the T_{C} is estimated more accurately by some method other than Lag-CN, the Graphical (T_{c}) procedure should be used. If you do not wish to calculate a T_{c} or information to develop a T_{c} is not available, the primary chapter 4 (appendices D and E) procedure is recommended.

Procedure: Tabular Method (chapter 5)

The Tabular Method, a manual procedure to determine peak discharges for complex watersheds, is contained in Chapter 5. Tables 5-1 and 5-2 are samples of how a worksheet can be set up for this procedure.

Use of Worksheets

The slope range (flat, moderate or steep) used in appendices D and E is the average watershed (land) slope. This is not a channel slope. The base slope for each range is given on page E-1 and the factors for interpolation when using other than the base slope is in table E-1.

The worksheets in this appendix give guidance as to which adjustments are required and which, when applicable, are recommended for each procedure. However, some of those recommended may be required modifications in some regions. If not used on the worksheet, a factor of 1.0 is used in the multiplication.

Do not use the ponding and swampy adjustment factor for the design point (table E-2) if the approximate routing procedures in chapter 7 (figures $7-1$ or $7-2$) are to be used at the design point. This will double count the storage.

A present urban condition is used in the worksheet examples to show how the urban adjustments can be used to estimate peak discharges from watersheds with existing urban areas. The references to future curve numbers in relation to figures 3-4, 3-5 and figures 4-1, 4-2, will be removed in the next revision of TR-55.

Blank worksheets, pages $\mathrm{F}-7$ and $\mathrm{F}-9$ are included.

URBAN HYDROLOGY FOR SMALL WATERSHEDS (TR-55)
PEAK DISCHARGE WORKSHEET
FOR CHAPTER 4 (APPENDICES D \& E)

Project \qquad By \qquad Date $9 / 29 / 81$ HOWARD COUNTY SOME STATE Checked W\&F A Date $9 / 30 / 81$
Steps Peak Discharge Computations for up to 3 Storms: Type \qquad II , Duration \qquad hours.

1. Data: Watershed Condition $=$ \qquad Present (present or future).
Drainage Area (DA) =
\qquad acres. Ave. Watershed Slope (S) = \qquad $\%$ 。
2. Runoff Curve Number (CN)

3. Rainfall Frequency (F)

Rainfall Depth (P)

1st Storm	and Storm	3rd Storm
10 yR.	25 yR	100 yR
4.0	5.0	6.5

4. $\frac{\text { Runoff Depth (Q) }}{\text { Use } P, C N}$

Use P, CN, and Table 2-1.

See Steps 8 to 13 for adjustments that mid be applicable.

TR-55, CHAPTER 4 (APPENDICES D \& E), PEAK DISCHARGE WORKSHEET (CONT.)

Steps Peak Discharge Computations with Adjustments
8. Data: Obtain if Adjustments are Applicable

Rainfali Frequency (F) from Step 3

1st Storm	2nd Storm	3rd Storm
$10 Y R$	$25 Y R$	$100 y R$

Peak Discharge (q_{p}) from Step 7
*9。 Ponding and Swampy Area Peak Factor
Use \% PND, F, and Tables E-2, 3 or 4.
Location in \square at Design Point (E-2)
Watershed: Center or Spreadout (E-3)
(check one) U Upper Reaches (E-4)
*10. Watershed Shape Peak Factor
Use HL with Figure E-1 and read;
Equiv. Drainage Area (EDA) $=400$ acres.

301	400	551

Use Figure D-2 graph from Step 5, CN, and EDA for;
Equiv. Peak/Inch Runoff (q_{e}) $=125$ cfs/in.
Factor $=\left[\frac{q^{e}}{q \text { from Step 5 }}\right] \times\left[\frac{D A}{\text { EDA }}\right]$
Factor $=\left[\frac{125 \mathrm{ct} / \mathrm{in}}{80 \mathrm{cts} / \mathrm{in}}\right] \times\left[\frac{200 \mathrm{Ac}^{400 \mathrm{Ac}}}{4}\right]=$
*11.
$\frac{\text { Impervious Area Peak Factor }}{\text { Use \% IMP, CN and Figure } 4-1 .}$
*12. Hydraulic Length Modified Peak Factor
13. Adjusted Peak Discharge $\left(q_{p}\right)$
 $\mathrm{q}_{\mathrm{p}}=\mathrm{q}_{\mathrm{p}}$ (from Step 7) \times Steps $79 \times 10 \times 11 \times 12$

* If the adjustment is not applicable, enter a Factor of 1.0

PEAK DISCHARGE WORKSHEET
FOR GRAPHICAL (T_{c}) METHOD (FIGURE 5-2)

Project \qquad By TR Date $9 / 29 / 81$ HOWARD COUNTY, SOME STATE Checked WHM Date $9 / 30 / 81$

Steps Peak Discharge Computation for up to 3 storms: Type II , Duration 24 hours.

1. Data: Watershed Condition $=$ Present (present or future).

Drainage Area $(D A)=200$ acres. Ave. Watershed Slope $(S)=2 \%$.
Podding and Swampy areas (PND) Impervious Area (IMP)
\qquad acres, \qquad \% of DA

Total Hydraulic Length (HL) $=7600$ feet
$=60$ acres, \qquad \% of DA

Hydraulic Length Modified (HLM) $=3800$ feet, $\quad 50 \%$ of HL
2. Rainfall Frequency (F)

1st Storm	and Storm	ard Storm
10 YR	25 yR	100 YR

yrs.
3. Rainfall Depth (P)

| 4.0 | 5.0 | 6.5 |
| :--- | :--- | :--- | inches

4. Runoff Curve Number $(\mathrm{CN})=. \quad 90$

See other side for computation
5. Runoff Depth (Q)

Use P, CN, and Table 2-1.
6. Time of Concentration $(T)=0.94$ See other side $\{$ velocity Method for computations $\}$ Lag-CN Method (check one)
other \qquad
7. Unit Peak Discharge (q) Use T_{c} and Figure 5-2
8. Drainage Area $\left[\frac{\text { DA(acres) }}{640(\mathrm{ac} / \mathrm{sm})}\right]=\left[\frac{200}{640}\right]=$
*9. $\frac{\text { Ponding and Swampy Area Peak Factor }}{\text { Only use \% PND, F and Table E-3; }}$ when PND is spreadout in watershed and not related to F_{c} flow path.
10. $\frac{\text { Peak Discharge Area Factor }}{\text { where } q_{p}}=8 \times 9$
Peak comparison
*If the adjustment is not applicable, enter a Factor of 1.0 .

Peal comparison

$$
\begin{array}{lll}
246 / 243 & 334 / 330 & 482 / 477 \\
(\text { Difference in Methods }= & 1 \% \text {) }
\end{array}
$$

F-6

TR-55 GRAPHICAL (T_{c}) METIHOD, PEAK DISCHARGE WORKSHEET (CONT.)

Steps from other side
4. Runoff Curve Number (CN)

Hydrologic Soil Group (Appendix B)	Land Use Description Include Treatment, Practice \& Condition (Table 2-2)	$\underset{\substack{\mathrm{CN}, \mathrm{~N} \\(3)}}{2-2)}$	(acres) (4)	$\begin{aligned} & \text { Product } \\ & \text { (3) } \times(4) \\ & \text { (5) } \end{aligned}$
c	Cultivated w/o Conservation Treatment	88	120	10560
c	Industrial Area	91	50	4550
c	Residential - 1/8Ac	90	18	1620
C	Paved Parking Areas	98	12	1176
		tals $=$	200	17906

CN (weighted) $=\frac{\text { total } \text { col. } 5}{\text { total coi. } 4}\left[\frac{17906}{200}\right]=89.53 ; \quad$ use $C N=90$
5. Time of Concentration (T_{c}) Select computation method, (a) is recommended.
(a) Velocity Method

Reach	Description of Flow 1 /	Length (ft.) (3)	Velocity (ft/sec) (4)	Travel Timo (sec.) (3) $\div(4)$
Fi	nd flow portion		Totals $=$	

sec.

hrs.
(b) Lag-CN Method

$$
\begin{aligned}
& \text { (1) Unadjusted Lag (L) } \\
& (7600,2 \%, 90) \\
& \text { *(2) Hydraulic Length Modified Lag Factor } \\
& (50 \%, 90) \\
& \text { * (3) Impervious Area Lag Factor } \frac{\text { Use \% IMP, CN, and Figure 3-5. }}{\text { 3 }} \\
& (307,90) \\
& \text { (4) Constant (} \mathrm{T}_{\mathrm{c}}=1.67 \mathrm{~L} \text {) } \\
& \text { (5) Time of Concentration (} \mathrm{T}_{\mathrm{c}} \text {) } \\
& \text { where } T_{c}=(1) \times(2) \times(3) \times(4)
\end{aligned}
$$

lirs.

```
URBAN HYDROLOGY FOR SMALL WATERSHEDS (TR-55)
PEAK DISCHARGE WORKSHEET
FOR CHAPTER 4 (APPENDICES D \& E)
```

Project \qquad
\qquad Date \qquad
\qquad Checked \qquad Date \qquad
Steps Peak Discharge Computations for up to 3 Storms: Type \qquad II , Duration \qquad 24 hours.

1. Data: Watershed Condition $=$ \qquad (present or future). Drainage Area (DA) = \qquad acres. Ave. Watershed Slope (S) = \qquad \%.
2. Runoff Curve Number (CN)

Hydrologic Soil Group (Appendix B)	Land Use Description Include Treatment, Practice \& Condition (Table 2-2)	ON (Table 2-2) (3)	\% or Area (acres) (4)	Product (3)x(4) (5)

CN (weighted) $=\frac{\text { total col. (5) }}{\text { total col. (4) }}[\square=$

3. Rainfall Frequency (F)

Rainfall Depth (P)

1st Storm	and Storm	3rd Storm
yrs.		
inches		

4. Runoff Depth (Q)

Use P, CN, and Table 2-1.
5. Basic Peak Discharge (q)

Use S, DA, CN, and Figure D-2.
For graph \square Flat ($\mathrm{S}=$ less than 3\%)
labeled: $\}-$ Moderate ($S=3 \%$ to 7.9%)
(check one) Steep ($\mathrm{S}=8 \%$ \& greater)
*6. Watershed Slope Factor
Use S, DA, and Table E-1.
7. Peak Discharge (q_{p})

$$
\text { where } q_{p}=\text { Steps 非 } \times 5 \times 6
$$

See Steps 8 to 13 for adjustments that may be applicable.

TR－55，CHAPTER 4 （APPENDICES D \＆E），PEAK DISCHARGE WORKSHEET（CONT．）

Steps Peak Discharge Computations with Adjustments

8．Data：Obtain if Adjustments are Applicable

Ponding and Swampy areas（PND）	es，	\％of DA
Impervious Area（IMP）	acres，	\％of DA
Total Hydraulic Length（HL）	feet	
Hydraulic Length Modified（HLM）	feet，	\％of HL

Rainfall Frequency（F）from Step 3

1st Storm	2nd Storm	3rd Storm

Peak Discharge $\left(q_{p}\right) \quad$ from Step 7
＊9．Ponding and Swampy Area Peak Factor
Use \％PND，F，and Tables E－2， 3 or 4. Location in \square at Design Point（E－2） Watershed：$\}$ Center or Spreadout（E－3） （check one）\square Upper Reaches（E－4）
＊10．Watershed Shape Peak Factor
Use HL with Figure E－1 and read；
Equiv．Drainage Area（EDA）$=$ \qquad acres．

cfs

Use Figure D－2 graph from Step 5，CN，and EDA for；
Equiv．Peak／Inch Runoff（ q_{e} ）$=$ \qquad cfs／in．
Factor $=\left[\frac{\mathrm{q}_{\mathrm{e}}}{\mathrm{q} \text { from Step 5 }}\right] \times\left[\frac{\mathrm{DA}}{\text { EDA }}\right]$
Factor $=[\square]=$
＊11．Impervious Area Peak Factor
Use \％IMP，CN and Figure 4－1．
＊12．Hydraulic Length Modified Peak Factor
Use \％HLM，CN and Figure 4－2．

13．Adjusted Peak Discharge $\left(\mathrm{q}_{\mathrm{p}}\right)$

cfs
$q_{p}=q_{p}$（from Step 7）\times Steps $⿰ ⿰ 三 丨 ⿰ 丨 三 9 \times 10 \times 11 \times 12$
＊If the adjustment is not applicable，enter a Factor of 1.0

Project \qquad By \qquad Date \qquad Checked \qquad Date \qquad
Steps Peak Discharge Computation for up to 3 storms: Type II_ Duration 24 hours.

1. Data: Watershed Condition $=$ \qquad (present or future).

2. Rainfall Frequency (F)

1st Storm	2nd Storm	3rd Storm

yrs.
3. Rainfall Depth (P)

inches
4. Runoff Curve Number (CN) $=$

See other side for computation
5. Runoff Depth (Q)

Use $P, C N$, and Table 2-1.
6. Time of Concentration (T_{c}) $=$ \qquad See other side \quad Velocity Method for computations $\}$ Lag-CN Method (check one) Other \qquad
7. Unit Peak Discharge (q) Use T_{c} and Figure 5-2
8. Drainage Area $\left[\frac{\mathrm{DA}(\mathrm{acres})}{640(\mathrm{ac} / \mathrm{sm})}\right]=\left[-\frac{1}{640}\right]=$
*9. Ponding and Swampy Area Peak Factor Only use \% PND, F and Table E-3; when PND is spreadout in watershed and not related to T_{c} flow path.
10. Peak Discharge Area Factor where $q_{p}=$ Steps $\prod^{5 \times 7 \times 8 \times 9}$

*If the adjustment is not applicable, enter a Factor of 1.0 .

TR-55 GRAPHICAL (T_{c}) METHOD, PEAK DISCHARGE WORKSHEET (CONT.)

Steps from other side
4. Runoff Curve Number (CN)

Hydrologic Soil Group (Appendix B)	Land Use Description Include Treatment, Practice \& Condition (Table 2-2)	CN (Table 2-2) (3)	\% or Area (ácres) (4)	Product (3)x (4) (5)

CN (weighted) $=\frac{\text { total col. } 5}{\text { total col. } 4}[\square]=\square$;
use $\mathrm{CN}=$
5. Time of Concentration (T_{c}) Select computation method, (a) is recommended.
(a) Velocity Method

(b) Lag-CN Method
(I) Unadjusted Lag (L) \quad Use HL, S, CN, and Figure 3-3.

hrs.
*(2) Hydraulic Length Modified Lag Factor Use \% HLM, CN, and Figure 3-4.

*(3) Impervious Area Lag Factor Use \% IMP, CN, and Figure 3-5.

(5) Time of Concentration (T_{c}) where $T_{c}=(1) \times(2) \times(3) \times(4)$
hrs.
(TR NOTICE 55-A, September 1981)

Conservation Service

Washington, D.C. 20013

ENGINEERING - TECHNICAL RELEASE NOTICE 55-A

SUBJECT: SAMPLE PEAK DISCHARGE WORKSHEETS FOR USE IN URBAN HYDROLOGY

Purpose. To supplement Technical Release 55, "Urban Hydrology for Small Watersheds," with a new appendix F.

Effective Date. Effective when received.
Explanation of changes. The enclosed appendix F supplements TR-55 with worksheets and examples for the computation of peak discharges for small watersheds. The appendix provides additional guidance on the use of the TR-55 techniques to improve accuracy and reproducibility of peak flow estimates.

Filing Instructions. Appendix F should be inserted in TR-55 inside the back cover, after appendix E. The notice may be filed inside the front cover. Page 2 of the table of contents should be updated by a pen \& ink change to include appendix F.

Distribution. This notice should be distributed to all SCS offices that have copies of Technical Release 55 (dated January 1975).

Copies will be distributed from the National Office only to Federal agencies at their National Office level. States should make copies of this notice available to other Federal, State and local agencies who may be using Technical Release 55.

Additional copies may be ordered from Central Supply by using the order number: TR55A, or Non-SCS from the National Technical Information Service.

PAUL BA HOUR AB
Deputy Chief for Teoh:ongyy
Development and Application

Enclosure
(TR Notice 55-A, September 1981)

DIST: TR -55A

APPENDIX F

SAMPLE PEAK DISCHARGE WORKSHEETS

Introduction

Peak discharge worksheets have been developed to provide guidance in the use of TR-55 procedures. The worksheets contain examples that illustrate the use of several TR-55 techniques.

Procedure: Chapter 4 (appendices D \& E)
The primary procedure, using chapter 4 with appendices D and E, is illustrated by an example on page $\mathrm{F}-3$. This procedure uses a fixed watershed shape relation (figure E-I) and a fixed lag curve number (CN) relation (figure 3-3). The peak discharge per inch of runoff is read from one of the charts in Figure D-2 using a watershed slope range, drainage area, and CN. Appendix E and urban adjustments may be applied to the chart value, if appropriate.

One of the adjustments, the watershed shape factor, is applied on the worksheet as a muliplication factor and requires a second reading of the Figure D-2 chart. This is a similar but easier to apply procedure than example E-4 in appendix E.

Procedure: Tabular Method (chapter 5)
The Graphical $\left(T_{C}\right)$ - Peak Discharge Worksheet, page $F-5$, illustrates the procedure using figure 5-2 with a computed time of concentration $\left(T_{C}\right)$. The worksheet example uses the same input as the previous example, but shows a T_{c} computed by the Lag-CN method. The comparison of peak discharge at the bottom of page F-5 (1% difference between procedures) is meant to show how these procedures are related when a lag-CN T_{C} is used. If the T_{c} is estimated more accurately by some method other than Lag-CN, the Graphical (T_{C}) procedure should be used. If you do not wish to calculate a T_{c} or information to develop a T_{c} is not available, the primary chapter 4 (appendices D and E) procedure is recommended.

Procedure: Tabular Method (chapter 5)

The Tabular Method, a manual procedure to determine peak discharges for complex watersheds, is contained in Chapter 5. Tables 5-1 and 5-2 are samples of how a worksheet can be set up for this procedure.

Use of Worksheets

The slope range (flat, moderate or steep) used in appendices D and E is the average watershed (land) slope. This is not a channel slope. The base slope for each range is given on page E-1 and the factors for interpolation when using other than the base slope is in table E-1.

The worksheets in this appendix give guidance as to which adjustments are required and which, when applicable, are recommended for each procedure. However, some of those recommended may be required modifications in some regions. If not used on the worksheet, a factor of 1.0 is used in the multiplication.

Do not use the ponding and swampy adjustment factor for the design point (table E-2) if the approximate routing procedures in chapter 7 (figures $7-1$ or 7-2) are to be used at the design point. This will double count the storage.

A present urban condition is used in the worksheet examples to show how the urban adjustments can be used to estimate peak discharges from watersheds with existing urban areas. The references to future curve numbers in relation to figures $3-4,3-5$ and figures $4-1,4-2$, will be removed in the next revision of TR-55.

Blank worksheets, pages F-7 and F-9 are included.

URBAN HYDROLOGY FOR SMALL WATERSHEDS（TR－55）
PEAK DISCHARGE WORKSHEET
FOR CHAPTER 4 （APPENDICES D \＆E）

Project \qquad By \qquad Date $9 / 29 / 81$ HOWARD COUNTY，SOME STATE Checked \qquad Date \qquad手呈，1

Steps Peak Discharge Computations for up to 3 Storms：Type＿II＿Duration＿ 24 hours．
1．Data：Watershed Condition＝ \qquad Present （present or future）．
Drainage Area（DA）＝ \qquad acres．

Ave．Watershed Slope $(S)=$ \qquad $\%$ 。

2．Runoff Curve Number（CN）

CN （weighted）$=\frac{\operatorname{total} \operatorname{col} \cdot(5)}{\operatorname{total} \operatorname{col} \cdot(4)}\left[\frac{17906}{200}\right]=\frac{89.53}{2} ;$ use $\mathrm{CN}=\left[\begin{array}{l}90\end{array}\right.$

3．Rainfail Frequency（F）
Rainfall Depth（P）

Mst Storm	and Storm	ard Storm		
10 yR	25 yR	100 yr		
4.0	5.0	6.5	yrs．	Inches
:---:				

4．Runoff Depth（Q）
Use P, CN ，and Table 2－1．
5．Basic Peak Discharge（q）
Use $S, D A, C N$ ，and Figure $D-2$ ．
For graph Flat（ $\mathrm{S}=$ less than 3% ）
labeled：$\}$ Moderate（ $5=3 \%$ to 7.9% ）
（check one）\square Steep（ $\mathrm{S}=8 \%$ \＆greater）
＊6．Watershed Slope Factor
Use S，DA，and Table E－1．
7．Peak Discharge（ q_{p} ）

$$
\text { where } q_{\mathrm{p}}=\text { Steps } / 4 \times 5 \times 6
$$

See Steps 8 to 13 for adjustments that mil be applicable．

$$
\mathrm{F}-4
$$

TR-55, CHAPTER 4 (APPENDICES D \& E), PEAK DISCMARGE WORKSHEET (CONT.)

Steps Peak Discharge Computations with Adjustments
8. Data: Obtain if Adjustments are Applicable

Ponding and Swampy areas (PND)	4		2	\% of DA
Impervious Area (IMP)	60	,	3	\% of DA
Total Hydraulic Length (HL)	$=7600$	eet		
Hydraulic Length Modified (HLM)	3800	feet,	5	\% of HL

Rainfali Frequency (F) from Step 3

1st Storm	2nd Storm	3rd Storm
$10 Y R$	25 YR	100 YR

Peak Discharge $\left(q_{p}\right)$ from Step 7
*9. Ponding and Swampy Area Peak Factor
Use \% PND, F, and Tables E-2, 3 or 4.
Location in \square at Design Point (E-2)
Watershed: X Center or Spreadout (E-3)
(check one) [] Upper Reaches (E-4)
*10. Watershea Shape Peak Factor
Use HL with Figure E-1 and read;
Equiv. Drainage Area $(E D A)=400$ acres.

301	400	551
x	cfs	

Use Figure D-2 graph from Step 5, CN, and EDA for;
Equiv. Peak/Inch Runoff (q_{e}) $=125 \mathrm{cfs} / \mathrm{in}$.
Factor $=\left[\frac{\mathrm{q}_{\mathrm{e}}}{\mathrm{q} \text { from Step } 5}\right] \times\left[\frac{\mathrm{DA}}{\text { EDA }}\right]$
Factor $=\left[\frac{125 \mathrm{cts} / \mathrm{in}}{80 \mathrm{cts} / \mathrm{in}}\right] \times\left[\frac{200 \mathrm{Ac}}{400 \mathrm{Ac}}\right]=$
*11.
$\frac{\text { Impervious Area Peak Factor }}{\text { Use \% IMP, CN and Figure }} 4-1$.
*12. Hydraulic Length Modified Peak Factor
13. Adjusted Peak Discharge $\left(q_{p}\right)$

$$
q_{p}=q_{p}(\text { from Step 7) } \times \text { Steps } 19 \times 10 \times 11 \times 12
$$

* If the adjustment is not applicable, enter a Factor of 1.0

URBAN IIYDROLOGY FOR SMALL WATERSHFDS (TR-55)
PEAK DISCHARCE WORKSHEET
FOR GRAPHICAL (T_{c}) METHOD (FIGURE 5-2)
Project ANY CREEK © US R+242 Dy TK Date 9/29/81
HOWARD COUNTY, SOME STATE Cnecked WHM Date $9 / 30 / 81$
Steps Peak Discharge Computation for up to 3 storms: Type II, Duration 24 hours. 1. Data: Watershed Condition $=$ Present (present or future). Drainage Area $(D A)=200$ acres. Ave. Watershed Slope $(S)=2$ Ponding and Swampy areas (PND) = Impervious Area (IMP)
\qquad acres, \qquad \% of DA
\qquad acres, \qquad \% of DA

Total Hydraulic Length (HL)
$=7600$ feet Hydraulic Length Modified (HLM) = \qquad 3800 feet, \qquad \% of HL
2. Rainfall Frequency (F)

1st Storm	2nd Storm	3rd Storm
10 yR	$25 y \mathrm{y}$	100 yR

yrs.
3. Rainfall Depth (P)

4.0	5.0	6.5

inches
4. Runoff Curve Number $(\mathrm{CN})=$ 90
See other side for computation
5. Runoff Depth (Q) Use $P, C N$, and Table 2-1.
6. Time of Concentration $\left(\mathrm{T}_{\mathrm{c}}\right)=0.94 \mathrm{hrs}$. See other side for computations\} (check one)
 velocity Method Lag,-CN Method Other \qquad
7. Unit Peak Discharge (q)

F-6

TR-55 GRAPHICAL (T_{c}) METHOD, PEAK DISCHARGE WORKSHEET (CONT.)

Steps from other side
4. Runoff Curve Number (CN)

Hydrologic Soil Group (Appendix B)	Land Use Description Include Treatment, Practice \& Condition (Table 2-2)	$\begin{gathered} \mathrm{CN} \\ (\text { Table } 2-2) \\ (3) \end{gathered}$	$\begin{gathered} \text { Area } \\ \begin{array}{c} \text { (acres) } \\ \text { (4) } \end{array} \end{gathered}$	$\begin{gathered} \text { Product } \\ (3) \times(4) \\ (5) \end{gathered}$
c	Cultivated w/o Conservation Treatment	88	120	10560
c	Industrial Area	91	50	4550
c	Residential - $1 / 8 A c$	90	18	1620
c	Paved Parking Areas	98	12	1176
Totals =			200	17906

$C N$ (weighted) $=\frac{\text { total col. } 5}{\text { total } \operatorname{col} .4}\left[\frac{17906}{200}\right]=-89.53$
use $C N=90$
5. Time of Concentration (T_{c}) Select computation method, (a) is recommended.
(a) Velocity Method

sec.
hrs.
(b) Lag-CN Mechod
(1) Unadjusted Lag (L)

Use HL, S, CN, and Figure 3-3. (7600, $2 \%, 90$)
$*(2) \frac{\text { Hydraulic Length Modified Lng Factor }}{\text { Use \% HLM, CN, and Figure 3-4. }}$ $(50 \%, 90)$
*(3) $\frac{\text { Impervious Area Lag Factor }}{\text { Use \% IMP, CN, and Figure 3-5. }}$ $(30 \%, 90)$
(4) Constant ($\mathrm{T}_{\mathrm{c}}=1.67 \mathrm{~L}$)
(5) Time of Concentration (T_{c})
where $T_{c}=(1) \times(2) \times(3) \times(4)$

0.94

```
URBAN HYDROLOGY FOR SMALL WATERSHEDS (TR-55)
    PEAK DISCHARGE WORKSHEET
    FOR CHAPTER 4 (APPENDICES D & E)
```

Project \qquad
\qquad Date \qquad
\qquad Checked \qquad Date \qquad
Steps Peak Discharge Computations for up to 3 Storms: Type \qquad II , Duration 24 hours.

1. Data: Watershed Condition $=$ \qquad (present or future).

Drainage Area (DA) = \qquad acres. Ave. Watershed Slope (S) = \qquad $\%$.
2. Runoff Curve Number (CN)

| Hydrologic
 Soil Group
 (Appendix B) | Land Use Description
 Include Treatment, Practice \& Condition
 (Table 2-2) | CN
 (Table 2-2)
 (3) | \% or Area
 (acres)
 (4) | Product
 (3)x(4)
 (5) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

3. Rainfall Frequency (F)

Rainfall Depth (P)

1st Storm	2nd Storm	3rd Storm
yrs.		

4. Runoff Depth (Q)

Use P, CN, and Table 2-1.
5. Basic Peak Discharge (q)

Use S, DA, CN, and Figure D-2.
For graph \square Flat ($\mathrm{S}=$ less than 3%)
labeled: (check one) Moderate ($\mathrm{S}=3 \%$ to 7.9%) Steep ($\mathrm{S}=8 \%$ \& greater)
*6. Watershed Slope Factor
Use S, DA, and Table E-1.
7. Peak Discharge (q_{p})
where $\mathrm{q}_{\mathrm{p}}=$ Steps 非 $\mathrm{x} 5 \times 6$

See Steps 8 to 13 for adjustments that may be applicable.

TR-55, CHAPTER 4 (APPENDICES D \& E), PEAK DISCHARGE WORKSHEET (CONT.)

Steps Peak Discharge Computations with Adjustments
8. Data: Obtain if Adjustments are Applicable
Ponding and Swampy areas (PND) = \qquad acres, \qquad \% of DA
Impervious Area (IMP) $=\ldots$ acres, ___ \% of DA
Total Hydraulic Length (HL) \qquad feet
Hydraulic Length Modified (HLM) = \qquad feet, \qquad \% of HL

Rainfa11 Frequency (F) from Step 3

1st Storm	2nd Storm	3rd Storm

Peak Discharge (q_{p}) from Step 7
$\therefore 9$. Ponding and Swampy Area Peak Factor
Use \% PND, F, and Tables E-2, 3 or 4. Location in \square at Design Point (E-2) Watershed: $\}$ Center or Spreadout (E-3) (check one) \square Upper Reaches (E-4)
*10. Watershed Shape Peak Factor
Use HL with Figure E-1 and read;
Equiv. Drainage Area (EDA) = \qquad acres.

Use Figure D-2 graph from Step 5, CN, and EDA Eor; Equiv. Peak/Inch Runoff (q_{e}) $=$ \qquad cfs/in.
Factor $=\left[\frac{q^{e}}{\text { q from Step } 5}\right] \times\left[\frac{D A}{E D A}\right]$

*11. Impervious Area Peak Factor Use \% IMP, CN and Figure 4-1.
*12. $\frac{\text { Hydrau1ic Length Modified Peak Factor }}{\text { Use \% HLM, CN and Figure 4-2. }}$
13. Adjusted Peak Discharge (q_{p})

$$
q_{p}=q_{p} \text { (from Step 7) } \times \text { Steps 非 } \times 10 \times 11 \times 12
$$

cfs

* If the adjustment is not applicable, enter a Factor of 1.0

```
URBAN HYDROLOGY FOR SMALL WATERSHEDS (TR-55)
PEAK DISCHARGE WORKSHEET
FOR GRAPHICAL ( \(\mathrm{T}_{\mathrm{c}}\) ) METHOD (FIGURE 5-2)
```

Project \qquad By \qquad Date \qquad
\qquad Checked \qquad Date \qquad
Steps Peak Discharge Computation for up to 3 storms: Type II, Duration 24 hours.

1. Data: Watershed Condition = \qquad (present or future). Drainage Area (DA) = \qquad acres. Ave. Watershed Slope (S) = \qquad $\%$ Ponding and Swampy areas (PND) = \qquad acres, \qquad \% of DA

Impervious Area (IMP)
$=$ \qquad acres, \qquad \% of DA
Total Hydraulic Length (HL) = \qquad feet

Hydraulic Length Modified (HLM) = \qquad feet, \qquad \% of HL
2. Rainfall Frequency (F)

1st Storm	2nd Storm	3rd Storm

yrs.
3. Rainfall Depth (P)
 inches
4. Runoff Curve Number $(\mathrm{CN})=$ See other side for computation
5. Runoff Depth (Q)

Use $P, C N$, and Table $2-1$.
6. Time of Concentration $(T)=$ \qquad hrs. $\left.\begin{array}{l}\text { See other side } \\ \text { for computations }\end{array}\right\}$
 Velocity Method Lag-CN Method (check one) Other \qquad
 inches
7. Unit Peak Discharge (q) Use T_{c} and Figure $5-2$
8. Drainage Area $\left[\frac{\mathrm{DA}(\text { acres })}{640(\mathrm{ac} / \mathrm{sm})}\right]=\left[\frac{\square}{640}\right]=$
*9. Ponding and Swampy Area Peak Factor Only use \% PND, F and Table E-3; when PND is spreadout in watershed and not related to T_{c} flow path.
10. Peak Discharge Area Factor where $\mathrm{q}_{\mathrm{p}}=$ Steps $\# 5 \times 7 \times 8 \times 9$

*If the adjustment is not applicable, enter a Factor of 1.0 .

TR-55 GRAPHICAL (T_{c}) METHOD, PEAK DISCHARGE WORKSHEET (CONT.)

Steps from other side
4. Runoff Curve Number (CN)

Hydrologic Soil Group (Appendix B)	Land Use Description Include Treatment, Practice \& Condition (Table 2-2)	CN (Table 2-2) (3)	\% or Area (ácres) (4)	Product (3)x(4) (5)

CN (weighted) $=\frac{\text { total } \operatorname{col} .5}{\text { total } \operatorname{co1} \cdot \frac{5}{4}}[\square]=\square$;
use $\mathrm{CN}=$
5. Time of Concentration (T_{c}) Select computation method, (a) is recommended.
(a) Velocity Method

(b) Lag-CN Method
(1) Unadjusted Lag $\frac{\text { Use HL, S, CN }}{\text { (L) }}$

Use HL, S, CN, and Figure 3-3.
*(2) Hydraulic Length Modified Lag Factor

hrs.
x

* (3) Impervious Area Lag Factor Use \% IMP, CN, and Figure 3-5.
(4) Constant ($\mathrm{T}_{\mathrm{c}}=1.67 \mathrm{~L}$)
(5) Time of Concentration (T_{c}) where $\mathrm{T}_{\mathrm{c}}=(1) \times(2) \times(3) \times(4)$

1.67

hrs.

[^0]: nOtes

[^1]: Motes

[^2]: iv1)TES

