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Using the Lennard–Jones potential, we determine analytical
expressions for van der Waals interaction energies between a
point and a rectangular prism-shaped pore, writing them in
terms of standard elementary functions. The parameter values
for a new ferric ion sensor are used to compare these
calculations with the cylindrical pore approximation for the
interactions between an ion and a metal organic framework
(MOF) pore. The results using the prismatic pore approximation
predict the same qualitative outcomes as a cylindrical pore
approximation. However, the prismatic approximation predicts
lower magnitudes for both the interaction potential energy
minimum and the force maximum, since the average distance
from the centre-line to the surface of the prism is greater. We
suggest that in some circumstances it is sufficient to use the
simpler cylindrical approximation, provided that the cylinder
radius is chosen so that the cross-sectional area is equal to the
area of the prism pore opening. However, atoms at the nodes
should remain approximated by semi-infinite lines. We also
determine the interaction between a second ferric ion and a
blocked MOF pore; as expected, the second ferric ion
experiences a force away from the pore, implying that
approaching ferric ions can only occupy vacant MOF pores.
1. Introduction
The van der Waals force is a weak non-bonded force between
atoms and/or molecules. There are two basic approaches to
calculate the interaction forces between two atoms or between
two molecules [1,2]. We may adopt either a discrete method
where forces are calculated for every non-bonded atom pair
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(commonly adopted by molecular dynamics), or use a continuum method to approximate the non-bonded

atoms (or molecules) as geometric shapes, and then calculate the interaction energy between each
interacting body [3,4]. In this paper, we use the second approach and the Lennard–Jones potential to
calculate the van der Waals energies and forces between interacting molecules.

A good first step to approximating the interactions between molecules and porous materials
is to consider them as points, spheres and cylinders (that is, simple geometric shapes with
rotational symmetry). However, not all molecular structures possess rotational symmetry and while
the use of geometric shapes with rotational symmetry results in simplified expressions for the
interaction energies, the use of more representative shapes, for example, rectangular prisms, results in
more complicated expressions. Baowan & Thamwattana [5] studied the absorption of water molecules
into a silica gel by comparing three different approximate pore shapes: cylindrical, square prismatic
and conical. Baowan & Hill [6] found expressions for the interaction energy of a point with a line, a
plane, a ring, a spherical surface and a cylindrical surface. In these papers, the interactions are
found in terms of series expansions and hypergeometric functions; expressions that are often
considerably more complicated than those required in the case of symmetric approximations of
molecular structures.

In this paper, we compare the calculation for a rectangular prism pore approximation to a cylindrical
pore approximation. We base our formulation on that of Baowan & Thamwattana [5] to derive the
interaction energy between a point and a rectangular prism, however, we evaluate analytically all the
relevant integrals and express them in terms of standard functions. This work is motivated by its
application to a new ferric ion sensor which makes use of the van der Waals interactions between
ferric ions and an europium-based metal organic framework (MOF). The MOF possesses pores that in
practice have an approximately parallelogram-shaped cross-section, however in previous models have
been approximated by a cylinder [7]. In this paper, we determine a continuum approximation for the
interaction of ferric ions with a MOF pore using the Lennard–Jones potential and a rectangular prism
pore approximation, and explore the appropriateness of the simpler cylindrical pore approximation.

In §2, we describe the calculation of the van der Waals interaction energies and forces using the
Lennard–Jones potential. Section 3 describes the physical structure of the example MOF and the
geometrical approximations used in the continuum model. The main results for the prism pore
approximation are presented and discussed in §4. Section 5 compares the appropriateness of the
cylindrical pore approximation and presents further insight into sensor behaviour.
2. Continuum approximation for prismatic pore
Figure 1 shows a point particle located on the centre-line of a semi-infinite rectangular prism. We assume
the particle lies on the axis because the interaction energy has a global minimum when the interacting
molecule does not deviate from the pore’s centre-line [8]. The centre-line of the prism is positioned
along the x-axis and the entrance of the prism is located at the origin. The point particle initially
has the coordinates (X, 0, 0), where X < 0 and the prism is formed by the four planes given by
{(xp, yp, zp)|xp∈ [0, ∞), yp = ±α, zp∈ [− β, β]} and {(xp, yp, zp)|xp∈ [0, ∞), yp = [− α, α], zp = ±β}, where α
and β are real constants.

We use the Lennard–Jones potential to calculate the van der Waals interaction energies and forces.
The Lennard–Jones potential, U(ρ), between two atoms is given by [9,10]

UðrÞ ¼ � A
r6

þ B
r12

, ð2:1Þ

where ρ is the distance between the two interacting atoms, and A and B are the attractive and
repulsive constants, respectively, for the two particular interacting atoms. We characterize the semi-
infinite prism by four planes (walls) and four lines (edges). The interaction energy between a point
and a surface S (the wall or an edge of the prism) with an assumed uniformly distributed atomic
surface density n is given by

EðrÞ ¼ n
ð
S
UðrÞdS, ð2:2Þ

where U(ρ) is the Lennard–Jones potential (2.1).
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Figure 1. Schematic showing point particle and semi-infinite rectangular prism.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230232
3

The interaction energy between a point particle and one semi-infinite line (representing any atoms
that might be located along an edge of the prism) is given by

ElineðXÞ ¼ n
ð1
0

� A

ððx� XÞ2 þ a2 þ b2Þ3 þ
B

ððx� XÞ2 þ a2 þ b2Þ6
" #

dx, ð2:3Þ

where the semi-infinite line is one of the edges of the prism described at the beginning of this section, and
ρ2 = (x−X )2 + α2 + β2. Details for the evaluation of this integral are provided in appendix A.

The interaction energy between a point particle and one vertical semi-infinite plane (that is, where
zp = ±β) is given by

EvertðXÞ ¼ n
ð1
0

ða
�a

� A

ððx� XÞ2 þ y2 þ b2Þ3 þ
B

ððx� XÞ2 þ y2 þ b2Þ6
" #

dydx,

¼ 2n
ð1
0

ða
0

� A

ððx� XÞ2 þ y2 þ b2Þ3 þ
B

ððx� XÞ2 þ y2 þ b2Þ6
" #

dydx, ð2:4Þ

where the coordinates of the vertical semi-infinite plane are given by (x, y, ± β), x∈ [0, ∞), y∈ [−α, α]
and ρ2 = (x−X )2 + y2 + β2. Details for the evaluation of this integral are provided in appendix
B. Similarly, the interaction energy between a point particle and one horizontal semi-infinite plane is
given by

EhoriðXÞ ¼ 2n
ð1
0

ðb
0

� A

ððx� XÞ2 þ a2 þ z2Þ3 þ
B

ððx� XÞ2 þ a2 þ z2Þ6
" #

dzdx,

where the coordinates of the horizontal semi-infinite plane are given by (x, ± α, z), x∈ [0, ∞), z∈ [−β, β]
and ρ2 = (x−X )2 + α2 + z2.

The total interaction energy is given by the sum of the interaction energies between the point
and the components of the prism (i.e. the four lines and four planes). As part of this calculation,
we determine the interaction energy between the point and the various atom types located on
each surface.

The van der Waals force in the axial direction is the component of the derivative of the
interaction energy that is directed along the axis of symmetry. It can be calculated using similar
triangles [11]

FðXÞ ¼ x� X
r

dE
dr

,

where E is the interaction energy, defined in equation (2.2). The interaction force between a point particle
and one semi-infinite line is given by

FlineðXÞ ¼ n
A

ðX2 þ a2 þ b2Þ3 �
B

ðX2 þ a2 þ b2Þ6
" #

:
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The interaction force between a point particle and one vertical semi-infinite plane is given by

FvertðXÞ ¼ 2n
A
8

2a

ða2 þ b2 þ X2Þ2ðb2 þ X2Þ þ
3a

ða2 þ b2 þ X2Þðb2 þ X2Þ2
"(

þ 3ðb2 þ X2Þ�5=2 arctan
a

ðb2 þ X2Þ1=2
 !#

� B
1280

128a

ða2 þ b2 þ X2Þ5ðb2 þ X2Þ þ
144a

ða2 þ b2 þ X2Þ4 ðb2 þ X2Þ2
"

þ 168a

ða2 þ b2 þ X2Þ3ðb2 þ X2Þ3 þ
210a

ða2 þ b2 þ X2Þ2 ðb2 þ X2Þ4

þ 315a

ða2 þ b2 þ X2Þðb2 þ X2Þ5 þ 315ðb2 þ X2Þ�11=2 arctan
a

ðb2 þ X2Þ1=2
 !#)

:

The interaction force between a point particle and one horizontal semi-infinite plane is given by

FhoriðXÞ ¼ 2n
A
8

2b

ða2 þ b2 þ X2Þ2ða2 þ X2Þ þ
3b

ða2 þ b2 þ X2Þða2 þ X2Þ2
"(

þ 3ða2 þ X2Þ�5=2 arctan
b

ða2 þ X2Þ1=2
 !#

� B
1280

128b

ða2 þ b2 þ X2Þ5ða2 þ X2Þ þ
144b

ða2 þ b2 þ X2Þ4ða2 þ X2Þ2
"

þ 168b

ða2 þ b2 þ X2Þ3ða2 þ X2Þ3 þ
210b

ða2 þ b2 þ X2Þ2ða2 þ X2Þ4

þ 315b

ða2 þ b2 þ X2Þða2 þ X2Þ5 þ 315ða2 þ X2Þ�11=2 arctan
b

ða2 þ X2Þ1=2
 !#)

:

The total interaction force is given by the sum of the interaction forces between the point and the
components of the prism.

In this section, we have presented expressions for the interaction energy and force between a point
particle and the components of a rectangular pore. These investigations are motivated by a newly
developed ferric ion sensor which we describe in the following section.
3. Application to ferric ion sensor
Up-to-date knowledge of the ferric ion concentration in minerals leaching processes is essential to
maximize copper and uranium recovery. Current methods of ferric ion sensing are expensive and
both time and energy consuming which leads to waste and operation inefficiencies. Xu et al. [12]
reported the sensing properties of an europium-based MOF, and Rozenberga et al. [13] reassessed the
reported europium-based MOF structure and discovered that the methoxy group remains after
the MOF synthesization process. The parameters and results given in this section correspond to the
compound named EuBDC-OMe which is a crystalline MOF structure [13].

The ferric ion sensor used in the minerals leaching process is exposed to solutions with very
low pH levels, and this highly acidic environment results in almost insignificant double layers.
Accordingly, the Coulomb potential becomes inconsequential and only the van der Waals interactions
are studied.

Figure 2a shows the three-dimensional view of the MOF crystal structure and pores. In order to
investigate the van der Waals interaction between a point ferric ion and the MOF crystal, we consider
a single isolated pore. The MOF pore is a parallelogram prism which we approximate by a
rectangular prism, where the ligands are modelled as semi-infinite planes and the europium nodes
with associated water molecules as semi-infinite lines. The semi-infinite pore approximation for the
interactions calculated below gives a good approximation for a finite pore of depth 70 Å or more
(Rozenberga et al. [13] report that the MOF crystal sizes are of the order of 100 nm). In figure 2b, the
opposite faces of the unit cell are comprised of two ligands (where the benzene rings are facing each



(a) (b) (c)

Figure 2. (a) Atomic structure of EuBDC-OMe, with metallic europium nodes as turquoise spheres, and organic linkers with oxygen
as red spheres, hydrogen white and carbon grey [13]. (b) EuBDC-OMe unit cell, building block for crystalline structure. (c) EuBDC-
OMe unit cell along b-axis of symmetry.

Table 1. Physical parameters for single EuBDC-OMe pore used in §4 [13].

atomic type

number per single pore/cell

atoms at node nodes atoms in ligand ligands total atoms

hydrogen 4 4 6 6 52

carbon 0 0 9 6 54

oxygen 2 4 5 6 38

europium 2 4 0 0 8

MOF parameters

a-axis basis vector 11.513 Å

b-axis basis vector 6.829 Å

c-axis basis vector 20.976 Å

a-axis and c-axis intersection angle θ = 102.8°
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other) bridging four europium metal ions (along the a-axis of symmetry), and the adjacent sides have a
single diagonal ligand.

Each unit cell has a molecular formula of Eu2(C9H6O5)3 · 2H2O and these unit cells are repeated
to create the MOF structure shown in figure 2a. We assume that a single pore consists of two of
these molecular unit cells together with four linking europium atoms and water molecules [13].
The europium nodes with associated water molecules are located along the edges of the prism,
and so we approximate the europium ions and associated water molecules by four semi-infinite
lines. The bridging ligands are approximated by four semi-infinite planes. The vertical planes are
parallel to the a-axis of symmetry. The numbers of each atom type and other MOF parameters are
given in table 1.

The width of the prism is taken as half the magnitude of the c-axis basis vector (in table 1), so that 2β =
20.976/2 = 10.488Å, and the adjacent side of the parallelogram has the magnitude of the a-axis basis vector.
Therefore, the length of the prism is 2α = 11.513 × sin (180− θ) = 11.2269 Å. This approximation ensures that
the area of the rectangle is equal to the area of the parallelogram. Note that the vertical plane has two
bridging ligands (parallel to the a-axis basis vector) and that the mean surface density for the vertical
plane should be about twice the value of the horizontal plane, see table 2.

To calculate the mean surface density, we divide the number of atoms by the surface area of each
component of a single approximated pore (lines/planes). For example, the mean surface density of
hydrogen atoms at the nodes (lines) is the number of hydrogen atoms at a node divided by the length
of the single approximated pore, i.e. 4/b-axis basis vector length. The mean surface density for
hydrogen atoms found in the bridging ligands parallel to the c-axis basis vector (the horizontal plane),
is 6/(2β × b-axis basis vector length). This is calculated in a similar way for the hydrogen atoms on
the adjacent side of the prism (the vertical plane).



Table 2. Mean density for each atom type for approximated prismatic MOF unit cell.

atomic type

mean surface density, nk

line (Å−1) vertical plane (Å−2) horizontal plane (Å−2)

europium 0.2929 0 0

hydrogen 0.5857 0.1565 0.0838

oxygen 0.2929 0.1304 0.0698

carbon 0 0.2348 0.1257
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Ferric ions are typically associated with six water molecules when in solution [14]. However, we only
consider the interaction between the ferric ion (without associated water molecules) and the MOF pore.
In terms of the van der Waals interactions, inclusion of the water molecules increases the magnitude of the
interaction energy and force, but it does not change its qualitative behaviour [7]. Accordingly, for
comparison with the cylindrical pore approximation we ignore the effect of the water molecules, and
compare the interactions of the ferric ion only with the two pore shapes. We note that the presence of
associated water molecules increases the likelihood of any steric interactions. The ferric ion is modelled as
a point.

To calculate the total interaction energy between the ferric ion point and the semi-infinite prism MOF
pore, we sum all non-bonded interactions between the ferric ion point and each atom type found in the
MOF pore. That is,

EFe,pore ¼ EFe,H þ EFe,O þ EFe,C þ EFe,Eu ¼
X
k

EFe,k:

In this example, the MOF pore is characterized as four planes and four lines to represent the bridging
ligands and nodes of the MOF pore. The interaction energies between the ferric ion and each atom type in
the MOF pore are calculated as follows. Europium atoms in the MOF pore are only located at the nodes
of the MOF pore, which are approximated by four semi-infinite lines. The interaction energy between the
ferric ion point and the europium nodes is given by

EFe, Eu ¼ 4ElineðrÞ,
where ρ2 = (x−X )2 + α2 + β2. Carbon atoms in the MOF pore are only located in the bridging ligands of
the MOF pore, which are approximated by four semi-infinite planes (two vertical and two horizontal).
The interaction energy between the ferric ion point and the carbon atoms in the MOF ligands is given by

EFe,C ¼ 2Evertðr1Þ þ 2Ehoriðr2Þ,
where r21 ¼ ðx� XÞ2 þ y2 þ b2 and r22 ¼ ðx� XÞ2 þ a2 þ z2. Note that the mean surface densities, n, for the
vertical and horizontal planes differ and need to be considered accordingly. Hydrogen atoms are located at
the four nodes of the MOF pore (water molecules associated with the europium atoms) and in the bridging
ligands. The interaction energy between the ferric ion point and the hydrogen atoms is given by

EFe,H ¼ 4ElineðrÞ þ 2Evertðr1Þ þ 2Ehoriðr2Þ:
Similarly, the interaction energy between the ferric ion point and the oxygen atoms in the MOF ligands and
at the MOF nodes is given by

EFe,O ¼ 4ElineðrÞ þ 2Evertðr1Þ þ 2Ehoriðr2Þ:

The total interaction force between the ferric ion and the semi-infinite prism MOF pore is given by

FFe,pore ¼ FFe,H þ FFe,O þ FFe,C þ FFe,Eu ¼
X
k

FFe,k,

where

FFe,pore ¼ x� X
r

dEFe,pore

dr
:

In the following section, we discuss our numerical findings.



Table 3. Attractive and repulsive constants for Lennard–Jones parameters for interactions between like atoms [15].

atom type van der Waals diameter, σ (Å) well-depth, e (eV)

hydrogen, H 2.5711 0.0019

carbon, C 3.4309 0.0045

oxygen, O 3.1181 0.0026

ferric ion, Fe3+ 2.5943 0.0006

europium ion, Eu3+ 3.1119 0.0003
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4. Results and discussions
The Lennard–Jones parameters are given in table 3, where the attractive and repulsive constants can be
calculated using A ¼ es6 and B ¼ es12. Note that the parameters provided in table 3 are for interactions
between like atoms. The attractive and repulsive constants for the interaction between different atomic
types can be calculated by re-evaluating the well depth and van der Waals diameter using the
geometric and arithmetic means, respectively, that is eij ¼ ffiffiffiffiffiffiffi

eiej
p and σij = (σi + σj)/2 [6].
0:230232
4.1. van der Waals interaction energy and force
Figure 3 shows the individual van der Waals interaction energies and forces between a ferric ion and all
atom types found in the MOF pore approximated by a rectangular prism. The europium nodes
contribute the least to the interaction energy and force. This is attributed to europium having the
fewest number of atoms in the pore and that europium atoms are only located at the edges of
the prism. Since europium atoms are the furthermost atom types from the MOF pore centre-line, it
stands that their contribution would be the smallest. In addition, europium has the smallest well-
depth e.

By contrast, the interaction energy and force between the ferric ion and carbon atoms in the MOF pore
contributes the most to the total energy and force. There are 54 carbon atoms in a single representative
MOF pore and the average carbon-ferric ion distance ρ is shorter than the average europium–ferric ion
distance, therefore carbon has a greater influence when interacting with the ferric ion. In addition, carbon
has the largest well-depth.

The total interaction energy indicates that it is favourable for the ferric ion to reside in the MOF pore,
as the ferric ion experiences a potential energy minimum inside the MOF pore (figure 3a). The total
interaction force is positive, indicating that there is force to the right acting on the ferric ion, pulling it
towards the MOF pore entrance (figure 3b).
5. Prismatic versus cylindrical approximation
In this section, we compare results for two different approximations for the MOF pore: a rectangular
prism and a cylinder. The expressions describing the interactions in the case of the cylinder (not
shown here) are much simpler than the case of a rectangular prism due to its rotational symmetry.
Here, we make comparisons with cylinders of two different radii. The first mirrors the results shown
in a previous paper [7] where the diameter of the cylinder was taken to be the same length as the
a-axis-basis vector (denoted hereon as the original cylindrical approximation). In the second, the
radius of the cylinder is chosen so that the area of the cylindrical pore opening is the same as the
opening for the rectangular prism, r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ab=p

p
(denoted hereon as the fitted cylindrical

approximation). Figure 4a,b shows the semi-infinite rectangular prism and semi-infinite cylindrical
MOF pore approximations. Figure 4c shows the cross-section of each of the pores. Note that the fitted
cylinder is larger than original cylinder.

We maintain the continuum approach, and therefore for the cylindrical MOF pore calculations, we
assume that all atoms are ‘smoothed’ across the surface of the cylinder. Table 4 provides the mean
densities that are required to calculate the interaction energy and force. Note that the calculations for a
point interacting with a cylinder is not provided in this paper, and we refer the reader to Louw et al. [7].
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Figure 3. (a) van der Waals interaction energy between ferric ion point and MOF pore. Red dotted, dashed, dashed dotted and solid
lines show interaction energies between ferric ion and different atom types in MOF pore. Vertical line marks location of pore
opening. (b) van der Waals interaction force between ferric ion and MOF pore.
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Figure 4. Approximation of EuBDC-OMe MOF pore (a) as semi-infinite rectangular prism and (b) as a semi-infinite cylinder. (c) Area
difference between prism, original cylinder and fitted cylinder, depicted as solid black line, solid blue line and dashed blue line,
respectively.

Table 4. Parameter values used incorporating physical attributes for cylindrical and fitted cylindrical MOF pore.

geometric parameters

approx. cylinder radius r = 6.1221 Å

atomic type mean surface density, nk (Å
−2)

cylinder, radius 1/2 a-axis approx. cylinder, radius r

europium 0.0324 0.0305

carbon 0.2186 0.2056

hydrogen 0.2105 0.1980

oxygen 0.1538 0.1447
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Figure 5 compares the interaction energy between a ferric ion and the MOF pore, showing the
rectangular approximation, together with both the original and fitted cylinder approximations. The
magnitude of the predicted potential energy minimum is much greater for the original cylindrical
approximation than for both the rectangular prism and the fitted cylindrical approximations. The fitted
cylinder and the rectangular prism, having the same cross-sectional area, provide very similar
predictions for the interaction energy, demonstrating that in this scenario, it is sufficient to use the
simpler cylindrical formulation, providing that the cross-sectional areas match. In the following figures,
we investigate in more detail the contributions of the planes and lines, and the different atom types.
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The cylindrical approximations ignore the specific locations of the atoms and their respective
distances from the x-axis. This is more problematic for the atoms located only along the edges of the
rectangular prism (the lines), such as the europium atoms and their associated water molecules in this
example. The cylindrical approximation assumes that all atoms are smoothed over the surface of the
cylinder, which is closer to the x-axis than the edges of the rectangular prism. As a consequence, their
contribution to the total interaction energy is much greater than it is in practice. Figure 6a shows the
contribution of the ferric ion–europium interaction to the total potential energy. As expected,
the europium contribution in the cylindrical approximations is much greater in magnitude than the
rectangular prism approximation.

By contrast, the situation for atoms located along the sides of the rectangular prism is more nuanced.
As shown in figure 4, sometimes the cylindrical approximation overestimates the distance between these
atoms and the x-axis, while sometimes it underestimates the distance. In the case of the rectangular
prism, the average distance of an atom on the vertical walls to the x-axis is given by

1
2a

ða
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ y2

q
dy ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
þ b2

4a
ln

1
b2 2a2 þ b2 þ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q� �� �
¼ 6:1197A

�
:

A corresponding expression can be derived for the average distance of an atom on the horizontal walls to
the x-axis

1
2b

ðb
�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
dz ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
þ a2

4b
ln

1
a2 a2 þ 2b2 þ 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q� �� �
¼ 6:3468A

�
:

Both these average distances are greater than the original cylinder’s radius, confirming that the original
cylinder approximation would overestimate the magnitude of the interaction energy. The fitted cylinder’s
radius is very close to the average distance of both the vertical and horizontal walls (less than
4% difference).

Even though there is a small difference between the fitted cylinder’s radius and the average distance
between the centre-line and the vertical wall, there are twice as many atoms located on the vertical wall,
so that the magnitude of the interaction energy for the walls is still underestimated when using the fitted
cylinder approximation. The difference between the fitted cylinder radius and the average distance to the
horizontal wall is not significant enough for the fitted cylinder approximation to overestimate the
magnitude of the interaction energy. This further emphasizes the distance sensitivity of the interaction
energy calculation, and the importance of accounting for atom surface density correctly. Although not
shown here, there is a greater agreeability between the fitted approximation and a perfect square.

Figure 7 shows the interaction force between a ferric ion and the three different approximations of the
MOF pore, and reflects the findings discussed above for the interaction energy. The original cylindrical
approximation overestimates the magnitude of the force in comparison to the rectangular prism
approximation, however the fitted cylinder and rectangular prism approximations (with the same
cross-sectional area) are much closer in magnitude.
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In the sameway as before, we compare the contributions of the europium and carbon atoms for the three
different approximations. Figure 8 echoes the findings from figure 6. Both cylindrical approximations
overpredict the contribution of the europium ions because the radius of both cylinders in less than the
distance from the prism edge to the x-axis. The same argument is true for the original cylinder
approximation overpredicting the contribution of carbon atoms. The fitted cylinder underpredicts the
contribution of carbon atoms mainly due to its radius being less than the average horizontal distance.

One important finding to note is that regardless of the shape used to approximate the MOF pore
(rectangular prism or cylindrical), the force on the ferric ion is always directed to the right, indicating
that the ferric ion will be attracted to the MOF pore entrance.

5.1. Implications of a pore blockage for sensing abilities
In a previous paper, we proposed that a hydrated ferric ion is geometrically too large to fit inside the
europium MOF pores due to steric interactions and as a consequence it will be attracted to the MOF
pore, but will remain at the entrance without entering [7]. Subsequently, these results were confirmed
experimentally by Rozenberga et al. [13]. Therefore, in this section we consider the interaction between
a ferric ion and a MOF pore where the entrance is already occupied by another ferric ion. We use the
rectangular prism approximation.
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This subsection maintains the geometry where the MOF pore is approximated by a semi-infinite
prism, and is described in figure 1 and the surrounding text. In addition, we assume that the MOF
pore entrance is blocked by a ferric ion (not hydrated), where the Cartesian coordinates of the blocked
ferric ion are (0, 0, 0), as shown in Figure 9.

Figure 10a shows that there is a local potential energy minimum at 2.85 Å to the left of the pore
entrance. A ferric ion farther away from the pore entrance experiences a force to the right (towards
the MOF pore), while a ferric ion closer to the entrance will experience a strong repulsive force (figure
10b). The potential energy minimum just outside the pore entrance is much smaller in magnitude
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than that of a vacant pore (compare with the minimum of the black line in figure 10a), while the

magnitude of the repulsive force close to the blocked pore is very large. As a consequence, in practice
it is unlikely that a ferric ion will remain at the local potential energy minimum outside the pore,
rather it will more likely move to occupy a vacant MOF pore, which has the global minimum energy.
This means that more ferric ions will become associated with the MOF crystal, which in turn is likely
to improve sensor performance.
lishing.org/journal/rsos
R.Soc.Open

Sci.10:230232
6. Conclusion
In this paper, we have compared the Lennard–Jones interaction energy between a point and a pore, as
calculated using the simpler and more typical cylindrical approximation and the more complicated
rectangular prism approximation. Building on a previous proposal, we have evaluated all the relevant
integrals analytically. By contrast, analytical expressions had previously only been derived for the
cylindrical approximation.

The motivation of the present work is the determination of an optimal pore approximation for a new
ferric ion sensor that uses europium-based MOF crystals. Using parameter values relevant for this
particular example, we determine the van der Waals interactions between a ferric ion and the MOF
pore and use the results to compare the cylindrical and the rectangular prism approximations of the pore.

Numerical values for the prismatic MOF pore approximation indicate that the minimum potential
energy of the ferric ion occurs inside the MOF pore; namely that the inside of the MOF pore is the
most energetically favourable position for the ferric ion to reside. Further, numerical values for the
interaction force indicate that the ferric ion experiences a force of greatest magnitude at the MOF pore
entrance. The force is directed towards the MOF pore.

While the analytical expressions for the interaction energy between a point and a prism are much
more complex than those between a point and a cylinder, the interaction energies and forces have the
same qualitative behaviour regardless of the approximation (cylindrical or rectangular prism). The
qualitative match is closest when the approximations have the same cross-sectional area.

Any differences between the cylindrical and the rectangular prism approximations can be understood
by considering the distance between particular atoms in the pore structure and the centre-line of the pore.
For example, for the MOF pore considered here, the atoms located along the edges of the prism make a
smaller contribution than the same atoms in the cylindrical approximation (where they are assumed to lie
on the surface of the cylinder and as such are closer to the centre-line). As a consequence, in the general
case, it is important to consider whether any such atoms should be considered separately, particularly if
their Lennard–Jones pair potential parameters (σ and e) are large compared with other atom types in
the system.

We have also considered the interactions between a ferric ion and a blocked MOF pore. Our results
indicate that the second ferric ion experiences strong interaction forces directed away from the MOF pore
at distances closer than 2.8 Å from the MOF pore entrance. As a consequence, it might be expected that
the second ferric ion moves towards an alternative unoccupied pore, increasing the proportion of
associated ferric ions and the sensitivity of the ferric ion sensor.

This paper uses a rectangular prism to provide an improved approximation to a parallelogram MOF
pore. A rectangular prism was chosen since it maintains some of the features of a parallelogram (four
sides and edges, same base length and cross-sectional area), while still being mathematically tractable.
Further analysis would be required to derive analytical expressions for the interactions between a
point and a slanted plane to compare how well the rectangular prism approximates a parallelogram
prism.
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Appendix A. Interaction between a point and a line (evaluation

of integral (2.3))
In this appendix, we determine an analytical expression for the interaction energy between a point and a
semi-infinite line. When considering the interaction energies in a three-dimensional Cartesian coordinate
frame, between a point (X, 0, 0) and a semi-infinite line (xp, yp, zp), the Lennard–Jones potential is
integrated along the semi-infinite line

E ¼ n
ð1
0

� A

ððx� XÞ2 þ a2 þ b2Þ3 þ
B

ððx� XÞ2 þ a2 þ b2Þ6
" #

dx,

where (xp, yp, zp) = (x, α, β), where x∈ [0, ∞), α and β are real constants, and ρ2 = (x−X )2 + α2 + β2. Let
x� ¼ x� X, then at the lower bound of integration becomes x = 0, x� ¼ �X, and at the upper bound of
integration, x→∞ becomes x� ! 1, so that

E ¼ n
ð1
�X

� A

ðx2� þ a2 þ b2Þ3 þ
B

ðx2� þ a2 þ b2Þ6
" #

dx�:

Let λ2 = α2 + β2 and x� ¼ l tanc, then l2 þ x2� ¼ l2 þ l2 tan2 c ¼ l2sec2c and dx� ¼ lsec2cdc. The
integration limits are transformed as follows: as x� ! 1, ψ = π/2 and when x� ¼ �X,
c ¼ c0 ¼ arctan½�X=l�. We then obtain

E ¼ nl�5
ðp=2
c0

[�A cos4 cþ l�6B cos10 c] dc:

The potential energy of a point interacting with a semi-infinite line can therefore be written as

E ¼ nl�5[�AJ2ðl, �XÞ þ l�6BJ5ðl, �XÞ], (A 1Þ
where Jn(λ,−X ) is the definite integral of powers of cosine functions and the general form of Jn(λ,−X ) is
given by

Jnðl, �XÞ ¼
ðp=2
u

cos2n cdc:

For expression (A 1), we require J2(λ,−X ) and J5(λ,−X ) which can be evaluated respectively as,

J2ðl, � XÞ ¼
ðp=2
u

cos4 cdc,

¼ 3
8
� p
2
þ 1

4
Xl3

ðl2 þ X2Þ2 þ
3
8

Xl
ðl2 þ X2Þ þ

3
8
arctan

X
l

� �" #
:

and

J5ðl, � XÞ ¼
ðp=2
u

cos10 cdc,

¼ 63
256

� p
2
þ 1

10
Xl9

ðl2 þ X2Þ5 þ
9
80

Xl7

ðl2 þ X2Þ4 þ
21
160

Xl5

ðl2 þ X2Þ3
"

þ 21
128

Xl3

ðl2 þ X2Þ2 þ
63
256

Xl
ðl2 þ X2Þ þ

63
256

arctan
X
l

� �#
,

where tanθ =−X/λ.
Appendix B. Interaction between a point and a plane (evaluation
of integral (2.4))
In this appendix, we evaluate the interaction energy between a point and a semi-infinite plane in order to
express it in terms of elementary functions. When considering the interacting energies in a three-
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dimensional Cartesian coordinate frame, between a point (X, 0, 0) and a semi-infinite plane (xp, yp, zp),

the Lennard–Jones potential is integrated only along the surface of the semi-infinite plane,

E ¼ n
ð1
0

ða2

a1

� A

ððx� XÞ2 þ y2 þ b2Þ3 þ
B

ððx� XÞ2 þ y2 þ b2Þ6
" #

dydx,

where (xp, yp, zp) = (x, y, β), x∈ [0, ∞), y∈ [α1, α2], αi and β are real constants, and ρ2 = (x−X )2 + y2 + β2

(later we will set α1 =−α and α2 = α).
Let λ to be λ2 = (x−X )2 + β2 and y = λtanψ, then l2 þ y2 ¼ l2 þ l2 tan2 c ¼ l2sec2c and

dy ¼ lsec2cdc. Then the upper bound of integration y = α2, c2 ¼ arctan½a2=l�, and at the lower
bound of integration at y = α1, c1 ¼ arctan½a1=l�, so that

E ¼ n
ð1
0
l�5

ðc2

c1

[�A cos4 cþ l�6B cos10 c] dcdx: (B 1Þ

The inner integral for the interaction energy can be expressed in terms of integrals of powers of cosine
functions, In(λ, αi). The general form of In(λ, αi) is defined as

Inðl, aiÞ ¼
ðu
0
cos2n cdc:

For the expression (B 1), we require I2(λ, αi) and I5(λ, αi)

I2ðl, aiÞ ¼
ðu
0
cos4 cdc,

¼ 1
4

ail
3

ðl2 þ a2
i Þ2

þ 3
8

ail

ðl2 þ a2
i Þ

þ 3
8
arctan

ai

l

� �

and

I5ðl, aiÞ ¼
ðu
0
cos10 cdc,

¼ 1
10

ail
9

ðl2 þ a2
i Þ5

þ 9
80

ail
7

ðl2 þ a2
i Þ4

þ 21
160

ail
5

ðl2 þ a2
i Þ3

þ 21
128

ail
3

ðl2 þ a2
i Þ2

þ 63
256

ail

ðl2 þ a2
i Þ

þ 63
256

arctan
ai

l

� �
,

where tanθ = αi/λ. Therefore, the potential energy between a point and the vertical plane at z = β is given
by

E ¼ n
ð1
0
l�5[� A(I2ðl, a2Þ � I2ðl, a1Þ)þ l�6B(I5ðl, a2Þ � I5ðl, a1Þ)] dx:

If α2 and α1 are equidistant from the z-axis, i.e. α2 =−α1 = α, the result can be simplified further, such
that the interaction energy is given by

E ¼ 2n
ð1
0
l�5[�AI2ðl, aÞ þ l�6BI5ðl, aÞ] dx: (B 2Þ

In what follows, we evaluate the integral of the attractive (first) term to write it in terms of standard
functions. Since the process to determine an expression for the integral of the repulsive (second) term is
much the same, we do not provide details here.
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B.1. Evaluation of the attractive term

In this subsection, we determine an expression for the remaining integral of the attractive (first)
component. We write

ð1
0
l�5I2ðl, aÞdx ¼

ð1
0
l�5 1

4
al3

ðl2 þ a2Þ2 þ
3
8

al

ðl2 þ a2Þ þ
3
8
arctan

a

l

� �" #
dx,

¼
ð1
l0

1
4

a

l2ðl2 þ a2Þ2 þ
3
8

a

l4ðl2 þ a2Þ

" #
l

ðl2 � b2Þ1=2
dl

þ
ð1
0

3
8
l�5 arctan

a

l

� �
dx,

¼
ð1
l0

� 1
8a3

1
l
þ 3
8a

1
l3

� �
1

ðl2 � b2Þ1=2
dl (B 3aÞ

þ
ð1
l0

1
8a3

l

ðl2 þ a2Þ �
1
4a

l

ðl2 þ a2Þ2
" #

1

ðl2 � b2Þ1=2
dl (B 3bÞ

þ
ð1
0

3
8
l�5 arctan

a

l

� �
dx, (B 3cÞ

where λ2 = (x−X )2 + β2 and λ0 = (X2 + β2)1/2. The expressions will be determined in three separate parts,
as the three integrals require slightly different techniques to be evaluated. First consider equation (B 3a),

ð1
l0

� 1
8a3

1
l
þ 3
8a

1
l3

� �
1

ðl2 � b2Þ1=2
dl ¼

ðp=2
u0

� 1
8a3 �

1
b
þ 3
8a

� 1
b3 cos

2 u

� �
du,

¼ � 1
8a3b

J0ðb, � XÞ þ 3
8ab3 J1ðb, � XÞ,

where cosθ = β/λ and u0 ¼ arctan½�X=b�. The final result can be written in terms of the definite integrals
for the cosine functions, Jn(β,−X ), and the general form of is given by

Jnðb, � XÞ ¼
ðp=2
u

cos2n cdc,

where tanθ =−X/β.
For the expression (B 3a), we require J0(β,−X ) and J1(β,−X ) which can be evaluated, respectively, as

J0ðb, � XÞ ¼ p

2
� arctan

�X
b

� �� �
and J1ðb, � XÞ ¼ 1

2
� p
2
� 1

2
arctan

�X
b

� �� �
:

Now consider expression (B 3b),

ð1
l0

1
8a3

l

ðl2 þ a2Þ �
1
4a

l

ðl2 þ a2Þ2
" #

1

ðl2 � b2Þ1=2
dl

¼
ð1
w0

1
8a3 �

1
w
� 1
4a

� 1
w3

� �
1

(w2 � ða2 þ b2Þ)1=2
dw,

where w2 = λ2 + α2 and w0 = (α2 + β2 +X2)1/2. The resulting integral in terms of w can be further
transformed into an integrand of cosine functions, such that

ð1
w0

1
8a3 �

1
w
� 1
4a

� 1
w3

� �
1

(w2 � ða2 þ b2Þ)1=2
dw

¼
ðp=2
u0

1
8a3 �

1

ða2 þ b2Þ1=2
� 1
4a

� 1

ða2 þ b2Þ3=2
cos2 u

" #
du,

¼ 1

8a3ða2 þ b2Þ1=2
J0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
, � XÞ � 1

4aða2 þ b2Þ3=2
J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
, �XÞ,

where cos u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
=w and u0 ¼ arctan½�X=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
�. The final result can be written in terms of the

definite integrals for the cosine functions, Jnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
, �XÞ.
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Finally consider expression (B 3c),

ð1
0

3
8
ððx� XÞ2 þ b2Þ�5=2 arctan

a

ððx� XÞ2 þ b2Þ1=2
 !

dx ¼ 3
8a3

ðw0

0

w3 arctanw

ða2 � b2w2Þ1=2
dw,

where w ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� XÞ2 þ b2

q
and w0 ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ X2

p
.

3
8a3

ðw0

0

w3 arctanw

ða2 � b2w2Þ1=2
dw

¼ � 3
8a3b2

ðw0

0
wða2 � b2w2Þ1=2 arctanwdw

þ 3
8ab2

ðw0

0
wða2 � b2w2Þ�1=2 arctanwdw,

¼ � 3
8a3b2 �ða2 � b2w2Þ3=2

3b2 arctanw

					
w0

0

þ 1
3b2

ðw0

0

ða2 � b2w2Þ3=2
1þ w2 dw

" #

þ 3
8ab2 �ða2 � b2w2Þ1=2

b2 arctanw

					
w0

0

þ 1
b2

ðw0

0

ða2 � b2w2Þ1=2
1þ w2 dw

" #
,

¼ �ða2 � b2w2
0Þ1=2

8a3b4 ð2a2 þ b2w2
0Þ arctanw0

þ 1
8a3b4

ðw0

0

ða2 � b2w2Þ1=2ð2a2 þ b2w2Þ
1þ w2 dw,

¼ �ða2 � b2w2
0Þ1=2

8a3b4 ð2a2 þ b2w2
0Þ arctanw0 þ 1

8a3b2

ðw0

0
ða2 � b2w2Þ1=2 dw

þ ð2a2 � b2Þ
8a3b4

ðw0

0

ða2 � b2w2Þ1=2
1þ w2 dw:

To evaluate the remaining integrals, let βw = αsinθ and u0 ¼ arccos½�X=ðb2 þ X2Þ1=2�, then
ð1
0

3
8
ððx� XÞ2 þ b2Þ�5=2 arctan

a

ððx� XÞ2 þ b2Þ1=2
 !

dx

¼ �ða2 � b2w2
0Þ1=2

8a3b4 ð2a2 þ b2w2
0Þ arctanw0 þ 1

8ab3

ðu0
0
cos2 udu

þ ð2a2 � b2Þ
8ab5

ðu0
0

1
1þ k2 tan2 u

du,

¼ 1
8b4

X(3b2 þ 2X2)

(b2 þ X2)3=2
arctan

a

ðb2 þ X2Þ1=2
 !

þ 1
8ab3 G0ð�X, bÞ

þ 2a2 � b2

8a3b4 ðb2 þ a2Þ1=2 arctan ðb2 þ a2Þ1=2
�X

 !
� b arctan

b

�X

� �" #
,

where k2 = 1 + (α/β)2 and G0(−X, β) is defined as a trigonometric integral

Gmð�X, bÞ ¼
ðu
0
sin2m c cos2 c dc,

where tanθ = β/−X, and where G0(−X, β) is given by

G0ð�X, bÞ ¼
ðu
0
cos2 c dc

¼ � 1
2

bX
ðX2 þ b2Þ þ

1
2
arccos

�X

(X2 þ b2)1=2

 !
:
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