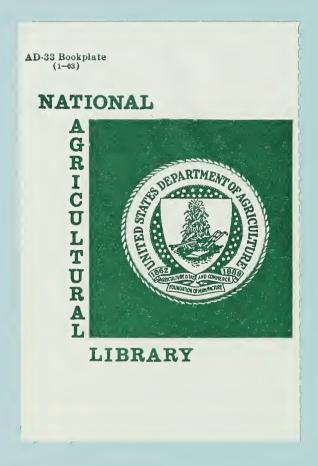

Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

. .



VOLUME I ALABAMA RIVER BASIN COOPERATIVE STUDY

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ECONOMIC RESEARCH SERVICE FOREST SERVICE

APRIL 1977

ALABAMA RIVER BASIN

COOPERATIVE STUDY

WITHIN ALABAMA

VOLUME I

Prepared by

UNITED STATES DEPARTMENT OF AGRICULTURE Soil Conservation Service Economic Research Service Forest Service

U. S. DEFT. OF AGRICULTURE RATIONAL SOMPOSITION CON

FEB 1 3 1978

In cooperation with the

CATALOGINI - PALP. ALABAMA DEVELOPMENT OFFICE

Auburn, Alabama

April 1977

454224

TABLE OF CONTENTS

CHAPTER

PAGE

1.	INTRODUCTION
1.	Nature and Scope of the Study
	Purpose and Objectives of the Study 1-2
	Relationship Between Study Objectives and
	State Goals
	State 00a15
2.	NATURAL RESOURCES
5.	Description of the Basin
	Climate
	Precipitation
	Wind
	Geology and Topography
	Inventories of Resources
	Water. 2-7
	Surface Water 2-8
	Impoundments
	Surface Water Quality
	Sewage Treatment
	Stream Use Classification 2-13
	Reservoir Sites
	Ground Water
	Ground Water Availability 2-21
	Ground Water Quality 2-22
	Minerals
	Soils
	Land
	Land Use
	Land Capability Classification 2-34
	Forest Land Site Potential 2-34
	Agricultural Land Use
	Land Ownership
	Forest Resources
	Area Condition
	Fish and Wildlife
	Fish
	Wildlife-Hunting
	WildlifeNon-Harvest Values 2-55
	Flora and Fauna
	Wetlands
	and Scenic Value

CONTENTS (CONT'D)

PAGE

3.	HUMAN AND ECONOMIC RESOURCES	
	General	3-1
	Population and Urban Growth	3-1
	Income	3-3
	Employment	3-4
	Industrial Development	3-6
	Other Social and Cultural Factors	3-9
	Agricultural Economy	3-9
	Crop Production	3-11
	Livestock and Livestock Products	3-14
	Forest Products	3-17
4.	PROJECTIONS, PROBLEMS AND NEEDS	
	General Projections	4 - 1
	Population	4 - 1
	Income	4-3
	Employment	4-4
	Food and Fiber Output	4-5
	State Production	4-5
	Basin and Subbasin Analyses	4-5
	Land Use	4-8
	Agricultural Land Use	4-9
	Crop Production	4-9
	Livestock Production	4-12
	Timber Production	4-16
	Problems and Needs	4-28
	Flood Prevention	4-28
	Erosion and Sedimentation	4-40
	Urban and Industrial Water Use and	
	Needs	4-54
	Rural and Agricultural Water Use and	
	Needs	4-59
	Impaired Drainage	4-60
	Surface Storage for Flow Augmentation,	
	Recreation and Municipal Water	4-62
	Recreation and Related Needs	4-65
	Introduction	4-65
	Demand, Supply and Facility Needs	4-69
	Boating	4-69
	Swimming	4-69
	Water Skiing	4-69
	Camping	4-73
	Hiking	4-73
	Picnicking	4-73
	Golfing	4-77
	Forest Related Recreation	4-77

CONTENTS (CONT'D)

					PAGE
	Hunting Waste Disposal Probl Confined Livest	ems		• • • •	4-79 4-79 4-80 4-90 4-90 4-93 4-94 4-95
5.	COMPONENT NEEDS				
	Summary of Component Need	S			5-1
	Agricultural Flood D				5-1
	Erosion Reduction .				5-5
	Agricultural Drainag				5-6
	Production Efficienc				5-6
	Increased Forest Pro				5-7
	Reduction of Fire Lo	sses		•	5-7
	Increased Forest Gra				5-8
	Urban Flood Damage R				5-8
	Water Supply				5-8
	Increased Recreation		•	•	5-9
	Solid Waste Disposal				5-10
	Low Quality Stream I				5-10
	Reduction in Sedimen				5-10
	Reduction of Critica				5-11
	Reduction of Erosion				
	Forest Land		•	•	5-12
	Protection of Scenic				
	Streams		•	•	5-12
	Natural Scenic Sites		•	•	5-13
	Improve the Quality				
	Wildlife Habitat.		•	•	5-13
	Protection of Endang				
	Flora and Fauna .		•	•	5-14
	Protection of Archae	ological and			
	Historical Sites.			•	5-14

TABLES

CHAPTER AND TABLE NUMBER		PAGE
CHAPTER 1 1-1	INTRODUCTION Components and State Subgoals	1-7
CHAPTER 2 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8	NATURAL RESOURCES Wind velocities	2-4 2-13 2-14 2-37 2-38 2-47 2-50 2-51
2-9 2-10	Acreage of Type 1 wetland, 1975 Wetlands by type	2-58 2-58
CHAPTER 3 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12	HUMAN AND ECONOMIC RESOURCESPopulation trendsPersonal and per capita income, 1959,1969, and 1972.Employment by major categories.Unemployment rates.Industrial development.Farm characteristics.Cash receipts from farm salesAverage yield of major crops.Principal crops:Acres harvested andproduction.Livestock and livestock products soldForest range resourcePaundwood volumes	3-2 3-4 3-7 3-8 3-10 3-10 3-11 3-13 3-16 3-17 3-17
3-12 3-13 3-14	Roundwood volumes	3-17 3-20 3-20
CHAPTER 4 4-1 4-2 4-3 4-4	PROJECTIONS, PROBLEMS AND NEEDS Personal income, projections Employment by major categories Agricultural production, historical and projected	4-3 4-4 4-6 4-8
4-4 4-5 4-6	Agricultural land use, current and projected	4-10
	projected	4-11

.

TABLES (CONT'D)

PAGE

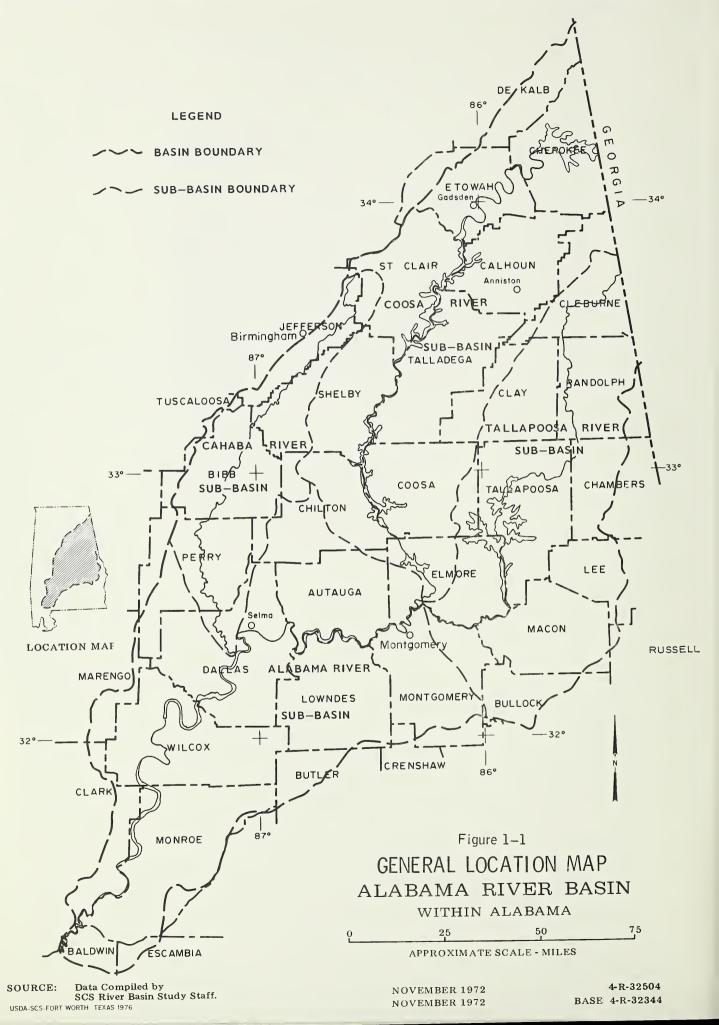
4-7	Forest grazing potential		4-14
4-8	Forest-grazing production, present		
	and projected		4-14
4-9	Roundwood growth potential (cu. ft/ac).		4-18
4-10	Roundwood growth potential by ownership		4-18
4-11	Forest losses from insects and disease.		4-23
4-12	Flood plain areas, principal streams		4-32
4-13	Flood damage, principal streams		4-33
4-14	Flood plain land use and damage,		
	small watersheds		4-34
4-15	Flood plain land use and damage, PL-566		
	and RC&D watersheds		4-35
4-16	Land needing erosion reduction		4-40
4-17	Gross erosion, present and projected		4-41
4-18	Erosion rates by land use		4-41
4-19	Critically eroding areas, present		
	and projected		4-45
4-20	Roadside erosion		4-46
4-21	Surface-mined land needing erosion	Ť	
	reduction		4-50
4-22	Sediment production, present and	Ť	
	projected		4-50
4-23	Water withdrawal (million gallons per	·	4 30
+ 25	day)		4-55
4-24	Public water supply needs	·	4-57
4-25	Withdrawal of water, projected needs.		4-58
4-26	Water use by hydroelectric and	·	
. 20	thermoelectric plants		4-58
4-27	Water pollution problems needing flow	•	4-50
,	augmentation.		4-63
4-28	Outdoor recreation demand		4-66
4-29	Forest land recreation potential		4-77
4-30	Forest game species population		486
4-31	Hunter activity by forest game species.		4-88
4-32	Confined livestock, waste production.		4-92
4-33	Animal waste stabilization		4-93
4-34	Solid waste collection and disposal	•	4 55
- 5-	systems		4-95
4-35	Visual resource management needs		4-96
+-00	visual resource management needs	•	4 50
CHAPTER	5 COMPONENT NEEDS		
5-1	Specific components and component needs		5-2
5-2	Communities needing additional water.		5-9

FIGURES

CHAPTER AND FIGURE NUMBER		PAGE
CHAPTER 1	INTRODUCTION	
1-1	General Location Map	1-1
CHAPTER 2	NATURAL RESOURCES	
2-1	Annual temperature	2-2
2-2	Annual precipitation (inches)	2-3
2-3	Land resource areas	2-5
2-4	Runoff	2-9
2-5	Existing impoundments	2-11
2-6	Surface water quality stations	2-12
2-7	Water use classifications	2-15
2-8	Potential reservoir sites	2-19
2-9	Ground water availability map	2-23
2-10	Reserves of coal and lignite	2-26
2-11	Fossil fuels map	2-27
2-12	General soil map	2-29
2-13	Land use map	2-31
2-14	Land use distribution	2-33
2-15	Land capability by land use	2-35
2-16	Roundwood production potential	2-36
2-17	Land ownership map	2-39
2-18	Land ownership distribution	2-41
2-19	Forest ownership and type distribution	2-42
2-20	Acreage distribution of forest types	2-42
2-21	National forests	2-43
2-22	Forest types map	2-44
2-23	Forest land acreage by area condition	2-45
2-24	Freshwater fish habitat for public use	2-46
2-25	Fishing streams	2-48
2-26 2-27	Public hunting and fishing areas	2-49
2-27	Deer population	2-52 2-53
2-28	Deer concentration	2-55
2-29	Turkey population	2-54
2-30	Turkey concentration	2-50
2-31	Wetland map	2-59
2-32		2-02
CHAPTER 3	HUMAN AND ECONOMIC RESOURCES	
3-1	Urban-rural composition of the population	3-3
3-2	Per capita income, Basin compared to	
	U.S	3-5
3-3	Trend in cropland harvested	3-12
3-4	Roundwood volumes by tree size classes	3-18
3-5	Forest land acres by age of stands	3-18
3-6	Annual roundwood removal and growth	3-19

FIGURES (CONT'D)

PΔ	GE
	C.G.


3-7	Stumpage values and value to the	
	economy	3-21
3-8	Primary forest industries	3-22
CHAPTER 4	PROJECTIONS, PROBLEMS AND NEEDS	
4-1	Population for Alabama, projections	4-1
4-2	Composition of population	4-2
4-3	Per capita income	4-3
4-4	Cropland in production, current and	
	projected	4-11
4-5	Improved pasture, current and projected .	4-13
4-6	Forest grazing potential	4-15
4-7	Roundwood supply and demand projections .	4-16
4-8	Roundwood demand by forest products	4-17
4-9	Roundwood growth, projected and	
	potentials	4-19
4-10	Forest land, percent of area by	
	stocking class	4-20
4-11	Roundwood utilization and waste	4-21
4-12	Losses of roundwood from woods and mill .	4-22
4-13	Forest fire occurrence	4-24
4-14	Causes of forest fire	4-25
4-15	Forest fire fuel map	4-26
4-16	Fire control, manpower and equipment	
	needs	4-27
4-17	Water resource development projects	4-36
4-18	Erosion by land use categories	4-42
4-19	Forest land erosion by disturbances	4-43
4-20	Erosion hazard	4-47
4-21	Sediment contribution by land use	4-51
4-22	Sediment contribution from forest land	4-52
4-23	Trends in water withdrawal and daily	
	use	4-54
4-24	Public water supply needs	4-56
4-25	Rural use of water	4-59
4-26	Monthly precipitation and	
	evapotranspiration	4-61
4-27	Outdoor recreation participation	4-66
4-28	Water development needed for boating	4-70
4-29	Beach acreage needed	4-71
4-30	Water needed for skiing	4-72
4-31	Camping facilities needed	4-74

FIGURES (CONT'D)

PAGE

4-32	Hiking trails	 			4-75
4-33	Picnic table needs				4-76
4-34	Golf course requirements.				4-78
4-35	Fishing supply and demand				4-79
4-36	Hunting acreage needed				4-81
4-37	Hunting supply and demand				
	land	 			4-82
4-38	Deer habitat rating	 			4-83
4-39	Squirrel habitat rating .				4-84
4-40	Turkey habitat rating				4-85
4-41	Quail habitat rating				4-87
4-42	Potential for hunting				4-89
4-43	Confined livestock operati				4-90
4-44	Solid waste disposal areas				4-97
4-45	Critical visual resource a				4-98
4-46	Potential wild and scenic				4-99
		 		-	

.

CHAPTER 1

INTRODUCTION

NATURE & SCOPE OF THE STUDY

The State of Alabama is intensely interested in the conservation, development, and utilization of all resources within the State, including those within the Alabama River Basin. In order to determine the availability of land and water resources and the demands on these resources both present and future, the State requested the Secretary of Agriculture to cooperate in a study of the basin. The study area encompasses the entire drainage area of the Alabama River within the State (see figure 1-1).

Participation in this Cooperative River Basin Study by the U. S. Department of Agriculture is under authority of Section 6, Public Law 83-566 as amended. The principal participants within the Department of Agriculture were the Economic Research Service, Forest Service, and Soil Conservation Service. The study was conducted under the direction of the USDA Field Advisory Committee, chaired by the State Conservationist, Soil Conservation Service. The Field Advisory Committee was responsible for coordinating the Department's survey activities; arranging for input by other agencies and reviews of draft reports; preparing schedules; and for maintaining overall coordination with other cooperating federal and state agencies.

The Alabama Development Office was the study sponsor and the coordinating agency for the State of Alabama. Many federal and state agencies, local governments, other organizations and individuals have contributed data, technical assistance and otherwise participated in this study. Their contributions are acknowledged throughout the report.

This report contains the inventory of resources in the basin and the present and projected needs for the basin's natural, human, and economic resources.

Data and projections presented herein establish a basis for selection and evaluation of alternative plans for natural resource use and development. The formulation and analysis of these alternative plans and a suggested plan for land and water resource development is presented in Volume II.

PURPOSE AND OBJECTIVES OF THE STUDY

The broad purposes of this study were (1) to inventory land and water resources, (2) to project future resource needs, (3) to provide basic data for planning and development, (4) to identify resource development alternatives, and (5) to identify problems and development opportunities for detailed study. To achieve these purposes, the study was conducted:

- 1. To provide input for the Alabama Development Office planning process and to assist other state and local agencies engaged in resource planning;
- To provide alternatives to be considered in formulating a sound resource use plan for the basin that will result in: the conservation and development of land and water resources to meet current and foreseeable needs; economic growth and development; and protection and enhancement of the natural environment;
- 3. To identify specific resource problems and needs that can be met through existing local, state, and federal programs;
- 4. To identify those problems and needs requiring action which cannot be implemented under existing programs and suggest methods and techniques for their solution.

The Alabama River Basin study was conducted in accordance with the multiple-objective planning concepts developed by the Water Resources Council which became effective October 25, 1973. This study was guided by the Principles and Standards for Water and Related Land Resource Planning of the Water Resource Council, and the USDA Procedures for Planning Water and Related Land Resources, March 1974. The overall planning effort in this basin was directed toward improvement in the quality of life through contributions to two major objectives:

- 1. National Economic Development (NED) to enhance national economic development by increasing the value of the Nation's output of goods and services and improving national economic efficiency.
- 2. Environmental Quality (EQ) to enhance environmental quality by the management, conservation, preservation, creation, restoration, or improvement of the quality of certain natural and cultural resources and ecological systems.

The two major planning objectives, components of these objectives, and specific components developed by the USDA agencies engaged in this study and the Alabama Development Office are listed on the following page. The scope of some phases of the study was limited as indicated by the footnotes to the specific components.

SPECIFIC COMPONENTS	 goods 1. Increased or more efficient output of food and fiber. and fiber. a. Improved efficiency of production and resulting agricultural income. 1/ b. Increased forest production and utilization c. Urban flood damage reduction. 2/ 3. Increased and more efficient production of ated agricultural, municipal, and domestic water supply. ec- d. Increased output of outdoor recreational 	 Improved quality aspects of water, land, and air. Improved waste disposal. 3/ Improved stream water quality. 3/ Improved stream water quality. 3/ Improved stream water quality. 3/ Reduction in point source erosion. Improvement, protection and/or preservation of areas of natural beauty for man's enjoyment. Improved and increased access to scenic areas. 2/ Enhancement or preservation of biological resources. Improved quality and increased quantity of fish and wildlife habitat. Protection of rare and endangered species of flora and fauna. 2/ 	The evaluation of agricultural flood damages in the basin and the potential for reducing these damages is included. Main stem flooding damages were evaluated along with tributary damages, however, the evaluation of the potential for reducing agricultural flood damages through structural measures installed on the major rivers of the basin was considered to be outside the scope of this study. The scope of the study was limited to the identification of needs and generalized approaches to meeting these needs. The inclusion of information relating to municipal and industrial waste discharges and animal waste disposal was in response to a request from the Alabama Water Improvement Commission. The identification of plan elements relating to water quality was limited in scope and included reduction in sediment and the potential for increasing low flow in the basin's streams in selected locations.
COMPONENTS OF OBJECTIVE	 The value to the nation of increased goods and services resulting from a project. External economies (externalities) - gains to individuals or groups other than direct users of project outputs. Technological externalities - external ficiency of firms economically related to direct and indirect users of project outputs. Pecuniary externalities - external cc- onomies reflected in increased income of firms economically related to direct and indirect users of project 	 Management, protection, enhancement or creation of areas of natural beauty. Management, preservation or enhancement of especially valuable biological resources and ecosystems. Management, preservation or enhancement of especially valuable geological, archeological and historical resources. Enhancement of quality aspects of land, water and air. Avoiding irreversible or irretrievable com- mitment of resources. 	evaluation of agricultural flood damages in the basin luded. Main stem flooding damages were evaluated along the potential for reducing agricultural flood damages t ers of the basin was considered to be outside the scope scope of the study was limited to the identification o inclusion of information relating to municipal and ind ponse to a request from the Alabama Water Improvement C water quality was limited in scope and included reducti the basin's streams in selected locations.
MAJOR OBJECTIVE	National Economic Development (NED)	Environmental Quality (EQ)	$\frac{1}{1}$ The evaluation included. Mai of the potenti rivers of the $\frac{2}{7}$ The scope of t The inclusion response to a to water quali in the basin's

RELATIONSHIP BETWEEN STUDY OBJECTIVES AND STATE GOALS

The major objectives of this study and specific components of these objectives are closely related to the State's goals for three functional areas of state government as presented in <u>Goals for Alabama</u>, 1975. The development of goals for state government was initiated by the Alabama Development Office in 1972 under authority granted this agency by Legislative Act 657 of 1969. The State's preliminary goals were developed with input from local and state government agencies, regional planners, special interest groups, various organizations and private citizens. Following further review and refinement, the goals were finalized in April 1975.

The State's goals for ten functional areas of state government are presented below in the order of importance as ranked by private citizens:

- 1. Strengthen the educational system in order to provide a quality education for all citizens including general, vocations, and technical-oriented programs; adult education; and pre-school programs.
- 2. Provide the means and opportunity for all citizens to meet their health needs through the expansion and the improvement of the quality and quantity of health services.
- 3. Encourage economic development in Alabama at greater than the national average, but at the same time protect and conserve natural and human resources to the best extent possible.
- 4. Provide for adequate shelter and living environments for all the citizens of Alabama, including an increase in quantity and quality of housing through the cooperation of government and private enterprise.
- 5. Develop a natural resources program which will enhance and protect the natural environment for the social and economic betterment of the entire State.
- 6. Develop an improved public safety and consumer protection system within the State.
- 7. Examine and reorganize State government to assure greater coordination and consolidation of governmental activities toward improving the quality of life in Alabama and insuring more efficient use of tax dollars.

- 8. Improve and extend social services to all citizens through increased government participation.
- 9. Promote the development of an improved, balanced transportation system (air, water, land) which emphasizes the use of existing facilities. Increase the quality and quantity of communications and utilities facilities within Alabama.
- 10. Design and implement comprehensive recreational and cultural programs that provide indoor and outdoor recreational and leisure-time opportunities.

The data developed during the basin study and the proposals included in the alternative plans and suggested plan will contribute most to the goals for three functional areas; Economic Development, Natural Resources and Conservation, and Recreation and Culture. These goals and subgoals are:

- 1. Economic Development
 - <u>Goal</u>: Encourage economic development in Alabama at greater than the national average, but at the same time protect and conserve natural and human resources to the best extent possible.

Subgoals:

- A. Upgrade the quality of the labor force through manpower development.
- B. Develop and enforce adequate controls on development to preserve economically productive lands and to prevent haphazard developments in unincorporated areas.
- C. Place major emphasis on the attracting of higher-wage inustries which will diversify the industrial base of the economy.
- D. Develop State policy which will provide for the orderly and expanded economic growth of the State.
- E. Expand public financial support of economic planning and development activities.
- 2. Natural Resources and Conservation
 - <u>Goal</u>: Develop natural resources programs which will enhance and protect the natural environment for the social and economic betterment of the entire State.

Subgoals:

- A. Encourage the efficient use of existing resources and the protection of the natural, scenic environment.
- B. Develop plans for the reclamation of salvageable and recycleable materials from solid waste.
- C. Promote the wide use of environmental resources to meet the energy needs of the State, utilizing interstate cooperation and environmental education.
- D. Promote environmental quality through the adoption and enforcement of State standards to ensure proper land use and pollution control.
- E. Encourage public purchase of open space and beaches to preserve and ensure the best use of these resources for the public good.
- F. Initiate programs to evaluate and review the environmental impact of existing and proposed development within the State.
- G. Formulate and adopt differential tax structure legislation which will stimulate the development of energy resources while encouraging the efficient use of existing resources.
- 3. Recreation and Culture
 - Goal: Design and implement comprehensive recreational and cultural programs that provide indoor and outdoor recreational and leisure-time opportunities.

Subgoals:

- A. Promote the improvement and development of parks and recreation centers.
- B. Promote a system of complimentary recreational and cultural facilities and programs with emphasis on public library development.
- C. Promote the development of varied, quality, outdoor recreation facilities.
- D. Promote and advertise the scenic, recreational, and cultural facilities of Alabama.

The relationship between the subgoals for these three functional areas of State Government and the specific components of the two major objectives of this basin planning effort are indicated in the matrix on the following page.

D. Родот Евиникание писание писании писание писани писани писание писание писание писание писание писа	OF ALABAMA.					-r			ļ		T	-		T			
	PROMOTE AND ADVERTISE THE SCENIC, RECREATIONAL, AND CULTURAL FACILITIES	D'			•								•				
													٠				•
Contraction of the second	לאסט האסט אונא בארגעניין ארארין אראין אראין אראין אראין איז אראין איז אראין איז אראין איז אראין איז אראין איז א איז אראין איז אראין אראין אראין אראין איז אראין איז איז איז אראין איז אראין איז אראין איז איז אראין איז אראין א	'9												+		_	
	ČENIEKS'					-+			+		-+						
Contraction of the second	- Promote the improvement and development of parks and recreation	.A			•		+		ļ								
Bit State Control of the state of t	.stad	SUBG															
Construction of the second secon										1		1					
2. Benchmin wei Ukraw 2. Benchmin wei Benchminister 2. Benchmin wei Benchminister 2. Benchminister 2. <td>LIFET PROVIDE INDOOR AND OUTDOOR RECREATIONAL AND LEISURE-TIME.</td> <td>TYON</td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	LIFET PROVIDE INDOOR AND OUTDOOR RECREATIONAL AND LEISURE-TIME.	TYON				1											
BANKING RELATION OF THE R			r														
Construction of the server of the serve			2					+ -									
C - Construction of the second of the s																	
E- Construction Constructio	HORMULATE AND ADOPT DIFFERENTIAL TAX STRUCTURE LEGISLATION WHICH WILL	6.														_	
Example 2 and a service of the	INITIATE PROGRAMS TO EVALUATE AND REVIEW THE ENVIRONMENTAL IMPACT OF	'H															
Even the second of the se	Englige the rest lise of these resources for the public good.	'B											•				•
В. 2010 станование состанование и произначие и произначи и произначие и произначие и произначие и произначие и произ	STATE STANDARDS TO ENSURE PROPER LAND USE AND POLLUTION CONTROL.	;				•			1		•	•		1	1		
The second	OF THE STATE, UTILIZING INTERSTATE COOPERATION AND ENVIRONMENTAL EDUCATION	<u> </u>										-		+		1	
Construction of the second of the secon	- FROM SOLID WATE,				H	+		-+			+			+		-	
Construction of the second construction of	DEVELOP PLAND FOR THE RECLAMATION OF SALVAGEABLE AND RECYCLEABLE MATERIALS	<u> </u>			┝─┼				-					+			
Control Description of Additional Additada Additional Additional Additional Additional Additional Additio				•		•	•		•			•	۲		•	•	•
Lie MURANEL REMOVED TO THE RECORDER FORMANCE FORMANCE NUMBER RECORDER FORMANCE PROPERTING OF THE RECORDER FORMACE PROPERTING OF THE	IS THE	SUBGO													+		
Lie MURANEL REMOVED TO THE RECORDER FORMANCE FORMANCE NUMBER RECORDER FORMANCE PROPERTING OF THE RECORDER FORMACE PROPERTING OF THE	ENTIRE STATE.																1
2. Implementation Implementation Implementation 3. Implementation Implementation Implementation 4. Implementation Implementation Implementation 5. Implementation Implementation Implementation 6. Implementation Implementation Implementation 7. Implementation Implementation Implementation 9. Implementation Implementation Implementation 1. Implementation Implementation Im	THE NATURAL ENVIRONMENT FOR THE SOCIAL AND ECONOMIC BETTERMENT OF THE	7909															
Control of the c												Ì			i		
Contract Products in the state of the s			2														
Berner in the state of the															1	i	í
C. T. C. T. C. M. CHERGENTER AND SECURITION IN EXAMPLE IN TRANSPORT OF AND AND THE PARENT WAYNED DEFENDENTIAL INCOMENT OF A DEFENDENTIAL AND	ECONOMIC GROWTH OF THE STATE.	1		•	•	•								1			
B. ENCLORED AND THE PARTICULUM OF ABELIANTICAS PRELIMINARY SIGNED B. ENCLORED AND THE STREET HAVEN DESCRIPTION AND THE STREET AND TH	WILL DIVERSIFY THE INDUSTRIAL BASE OF THE ECONOMY.	i				-			-								
B. I. INVERSE B. I. I. ECONNEL EXELONED B. I. I. ECONNEL EXELONED B. I. I. I. ECONNEL EXELONED B. I. I. I. I. ECONNEL EXELONED B. I. I. I. I. ECONNEL EXELONED B. I. I. I. I. I. ECONNEL EXELONED B. I. I. I. I. ECONNEL EXELONED B. I. I. I. I. ECONNEL EXELONED B. I.					$\left \right $				-			_					
Interestant Interest Interestant Interest Inter				•	\bullet	•	•										
Instruction Instruction Instruction Instruction Instruction Instruction Instruction <td< td=""><td></td><td></td><td></td><td></td><td></td><td>\rightarrow</td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td></td<>						\rightarrow			+					+			
ITER-REINTIONSHIP BETNEEN SECTIFIC COPORENS OF MUCH INSTAND THE STATE'S PRELIMINARY SUBCOUS IN THE FOULTIONL ACENS OF STATE COPORENS OF MUCH INSTAND THE STATE'S PRELIMINARY SUBCOUS IN THE FOULTIONL ACENS OF STATE COPORENS OF MUCH AND HUMM REGOLATION AND H		·						_	-					-			
ITER FELATIONSHIP EPNETN SPECIFIC COPORENTS OF ALLOR INST AND THE STATE'S PRELININGWS SIECOLES IN THE FLACTIONAL AREAS OF STATE CONTOURD AS OF ALLOR INST AND THE STATE'S PRELININGWS SIECOLES IN A REPORT AND AREAS OF STATE CONTOURD AS OF ALLOR A REPORT AND AREAS OF STATE CONTOURD AS OF ALLOR A REPORT AND AREAS OF STATE CONTOURD AS OF ALLOR A REPORT AND AREAS OF STATE CONTOURD AS OF ALLOR A REPORT AND AREAS OF STATE CONTOURD AS OF ALLOR A REPORT AND AREAS OF STATE CONTOURD AS OF ALLOR A REPORT AND AREAS OF STATE CONTOURD AS OF ALLOR A REPORT AND AREAS OF ALLOR AND RESULTION AND RESULTION A REPORT AND AREAS OF AREAS, LUND AND ATTILL AFTER, A REPORT AND AREAS AND AREAS AND AREAS AND AREAS AND AS A REVEATION. A REPORT AND AREAS AND AREAS AND AREAS AND AREAS AND AS A REVEAL AND AREAS AND AREA	:STVC	SUBBCC															
INTER-RELATIONSHIP BENEEN STECTFIC COPPOENTS OF MUCK INS AND THE STATTE'S PRELIMINARY SUBCOND, IN REFERENTIONAL ARENS OF STATE CONCIENTS OF MUCK INS AND THE STATTE CONCIENTS OF MUCK INSTAND TO THE STATE CONCIENT OF MUCK INSTAND TO THE STATE CONCIENT OF MUCK INSTAND TO THE STATE STATE CONCIENT OF MACK INSTAND TO THE STATE CONCIENT OF MUCK INSTAND TO THE STATE CONCIENT OF MUCK INSTAND TO THE STATE CONCIENT OF MUCK INSTAND TO THE STATE STATE OF THE STATE STATE STATE STATE STATE INSTAND TO THE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE INSTAND TO THE STATE STA																	
ITER-RELATIONSHIP RETNETA SPECIFIC COPONENTS OF MADR INCS AND THE STATE'S PRELIMINERY SIEGONALS IN REE FLUCTIONAL ARENS OF STATE CONFERNENT INCS AND THE STATE'S PRELIMINERY SIEGONALS IN REE FLUCTIONAL ARENS OF STATE CONFERNENT INCS AND THE STATE'S PRELIMINERY SIEGONALS IN REE FLUCTIONAL ARENS OF ORDER THE REFU ARTICULTURAL INCOME B. INCREASED OR MORE EFFICIENT OUTPUT OF FOOD AND FIRER ARTICULTURAL INCOME B. INCREASED OR MORE FFICIENT OUTPUT OF FOOD AND FIRER ARTICULTURAL INCOME B. INCREASED FOREST PRODUCTION AND RESULTING B. INCREASED OUTPUT OF OUTDOOR RECERTIONAL ARTICULTURAL INCOME B. INCREASED OUTPUT OF AND FILENCIAL B. INFORMED ARTIE DISPOSAL. B. INFORMED AND INCREASED ACKERTON ARTIENDAL READING B. INCREASED AND MER ANALTRIAN A. INFORMED AND INCREASED AND MERSALING B. INCREASED AND MERSALI		TYON												1			
ITER-RELATIONSHIP BETNERN SPECIFIC COFFONENTS OF MAJOR INES AND THE STATE'S PRELIMINURY SUBGOUS IN REE FUNCTIONAL ARENS OF STATE GOVERNERN COPPORENT A COMPANY SUBGOUS IN REE FUNCTIONAL ARENS OF STATE GOVERNERN A COMPANY OF ORDER TO THE ARENT COMPANY OF ORDER TO THE ARENT A COMPANY OF A CONTOUR A CONTON OF A GARI- THATELY A CONTON A CONTON A FOR A ARENT A COMPANY AND THE ARENT AND A THE ARENT A COMPANY AND THE ARENT AND THE STRUCTUON. A COMPANY AND THE ARENT AND THE STRUCTUON. A COMPANY AND THE ARENT AND THE STRUCTUON A FORD AND FIRE A CONTOURT A CONTON A FORD AND FIRE A CONTOURT A CONTON A FORD AND FIRE A CONTOURT A CONTON A FORD AND FIRE A CONTON A THE AREA AND A AND A THE A CONTON A THE AREA AND THE AREA AND A AND A THE A CONTON AND FARMA. A CONTON A FORD ANALTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTION OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF ARCHIVE AND ADMITTION OF A READ ADMITTY AND INCREASED ADMITTY AND INCREASED ADMITTY AND INCREASED ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF ARCHIVE AND ADMITTION OF A READ ADMITTAL AND ADMITTAL ADMITTION OF A READ ADMITTAL ADMITT	DWIC DEVELOPMENT	ECONC	J.									1					
ITER-RELATIONSHIP BETNERN SPECIFIC COFFONENTS OF MAJOR INES AND THE STATE'S PRELIMINURY SUBGOUS IN REE FUNCTIONAL ARENS OF STATE GOVERNERN COPPORENT A COMPANY SUBGOUS IN REE FUNCTIONAL ARENS OF STATE GOVERNERN A COMPANY OF ORDER TO THE ARENT COMPANY OF ORDER TO THE ARENT A COMPANY OF A CONTOUR A CONTON OF A GARI- THATELY A CONTON A CONTON A FOR A ARENT A COMPANY AND THE ARENT AND A THE ARENT A COMPANY AND THE ARENT AND THE STRUCTUON. A COMPANY AND THE ARENT AND THE STRUCTUON. A COMPANY AND THE ARENT AND THE STRUCTUON A FORD AND FIRE A CONTOURT A CONTON A FORD AND FIRE A CONTOURT A CONTON A FORD AND FIRE A CONTOURT A CONTON A FORD AND FIRE A CONTON A THE AREA AND A AND A THE A CONTON A THE AREA AND THE AREA AND A AND A THE A CONTON AND FARMA. A CONTON A FORD ANALTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF A READ ADMITTION OF A READ ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF ARCHIVE AND ADMITTION OF A READ ADMITTY AND INCREASED ADMITTY AND INCREASED ADMITTY AND INCREASED ADMITTY AND INCREASED ADMITTY OF FISH A CONTON OF ARCHIVE AND ADMITTION OF A READ ADMITTAL AND ADMITTAL ADMITTION OF A READ ADMITTAL ADMITT	SIAIE GUALS AND SUB GUALS							+	+					1	-		
ITER-RELATIONSHIP BETNEEN SPECIFIC COPPORENTS OF MAJOR IVES AND THE STATE'S PRELIMINARY SUBGOULS IN REE FUNCTIONAL ARENS OF STATE GOVERNENT AREAL CONTRACT OF STATE GOVERNENT AREAL CONTRACT OF CONTRACT AND ALL AND ALL AND AREAL AND AREAL AND AREAL AREAL AND AREAL AND AREAL AND AREAL AREAL AND AREAL AND ARE EFFORTIONAL OPPOR- TIVATIES. 1. INFORCED AND ARE FEDUCTION AND ALIA AND ALIANAL MANICIPAL, AND ORESTIC ANTER SUPPLY, 4. INFORMED BATE DISPOSAL. 5. INVERSED AND AND FERENTION. 6. INVERSED AND AND FERENTION. 7. INVERSED AND AND FARMAN. 7. INVERSED AND AND INCREASED ACCESS TO SCENT 7. INVERSED AND AND AND AND AND AND AND AND AND AN				8.0									AS	s.	Ŧ		
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.				LIN	-								ARE	RCE	E	н	
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.				ESUL	LI ON		PLY .	AIF					CEN OF	ESO	Ъ	ES	F
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	ъ́		1	8 8 8	IZ		P SUP	UNA					TO S	L R	Έ	ECI	SR
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	₹.			A P	E		SEIS						T. SS 1	GIC		D S	ISTC
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	united and a set of		ш		2		ATIO					ż		00	0 Q	ERE	E I
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	NI NI		NI2	1 AL	N			ATER		ΥL	;	DS IC		F BI	EASE	DANC	A I
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	AT ALS		BUE	D R R	Ĕ	Ś.	L W A	3		OUAI	TIO	ER.	D/O EASI	0 X	NCR	EN	ICA
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.			0 4	ШĿ	- DQ	IT)			ASO	ER	NTA	RCE	INCF A	ATIC	95	A	
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.			IS C			Ð	EF 20	DEC1	DISF	LAM	DIME	Sol	182	ERVI	Y A	ARE	HAE
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	E ECIF				RES'	Ш	H A B	DSI .	E E	EAM	S	INT	ZEC A FC	RES	HAT	AUNA R	ARC
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	TAT		e e	MOR		AMAC	PICI N	<u>F</u>	MAS	STR	7	2 N	SEAL PRO	L L	LI GU	NO	6
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.			8	۶ġ	ASEI	8	A50		Ę	ÆD	TIO	TIO	CTB,	E.		CTU	S
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	BEI S S S			PRO	CRE -	FLO	SED VSED	ED.	PRO	PRO	EDUC	EDUC	VEME 2016	E E	MPRC N	FOR DR	RVA
TIER-FELATION IVES AND THE IVES AND THE REE FUNCTION 3. 3. 4. 4.	AR			CR CR	(Å	BAN	E L L	LIN	-				Q Z Z	HAN	- 20		SOU
TABLE 1-1 — INTER-RELATI OBJECTIVES AND TH OBJECTIVES AND TH THREE FUNCTION Inter FUNCTION INTE	E S S			A.I.	в.				Υ.	ъ.	J	ο.			A.		
TABLE 1-1 — INTER-RE OBJECTIVES AN THACE FUN THACE FUN THACE FUN THACE FUN THACE FUN THACE FUN				i-		2.	ч. ч.	-	i				2.	м.		÷	7
TABLE 1-1 INTE ORJECTIVE THREE TH	EUN S AN																
TABLE 1-1 1 OBJECT MALOR OBJECTIVE EVELOWERTINE EVELOWERTINE																	
TABLE 1-1 - OB.			ų	100													
TABLE 1- MALOR OBLE EVELOPHEN EVELOPHEN			CLIV	TON				TAI	6								
TABLE CONTINUE OF	÷		BUE	WEN N				MEN	ž								
	ABLE		с В	ION				C C C									
	F		2	1 ->				2									
			ž	3				Ľ	ð								

CHAPTER 2

NATURAL RESOURCES

DESCRIPTION OF THE BASIN

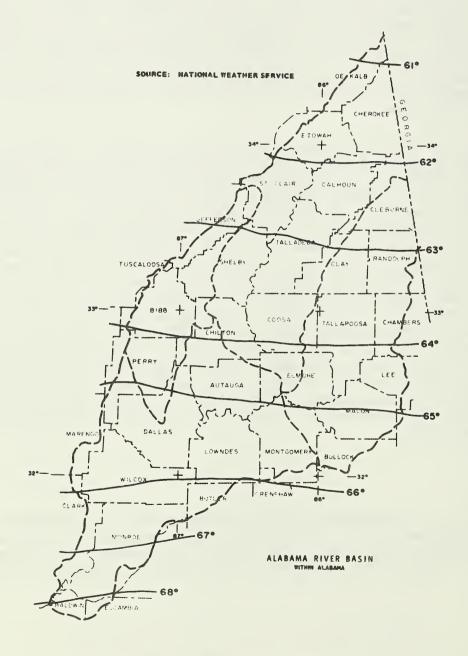
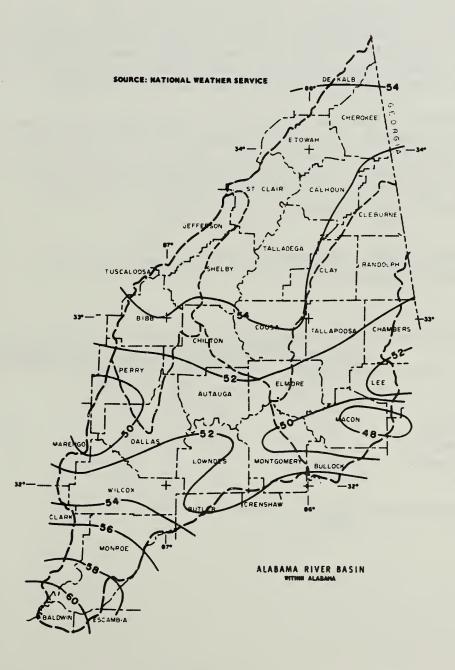
The Alabama River Basin comprises approximately 22,750 square miles extending from East Tennessee and Northwest Georgia diagonally across Alabama in a southwesterly direction to the confluence of the Alabama River with the Tombigbee River approximately 45 miles north of Mobile. There has been considerable development of the land and water resources in the upstream portion of the basin in Tennessee and Georgia through ongoing programs and this portion of the basin is not included in the study. However, the effects of waterflow from this portion of the basin have been considered.

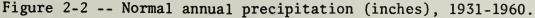
The basin is located primarily in the Southern Piedmont, Southern Coastal Plains, and the Alabama-Mississippi Blackland Prairies Land Resource Areas. The headwaters of the basin extend into the Southern Appalachian Ridges and Valleys and Sand Mountain Land Resource Areas. The principal cities within the basin are Gadsden, Anniston, Montgomery, and Selma. The greater Birmingham area, the largest urban area within the state, with a population of approximately 900,000 is partially within the basin. The 1966-67 Conservation Needs Inventory indicates that approximately 68 percent of the land area is forest land and 24 percent is distributed equally between cropland and pasture. Slightly more than 8 percent of the basin land area is being used for non-agricultural purposes. The drainage area of the Alabama Subbasin is 5,919 square miles, the Cahaba is 1,872 square miles and the Alabama portions of the Coosa and Tallapoosa subbasins are 5,461 square miles and 3,959 square miles respectively. The Alabama portion of the basin totals 17,211 square miles (11,015,000 acres) and the drainage area in East Tennessee and Northwest Georgia is 5,539 square miles. Hereafter, reference to "the basin" applies only to the Alabama portion.

Climate

The climate is influenced by frontal systems moving from northwest to southeast and temperatures change rapidly from warm to cool due to inflow of northern air. The average annual temperature is 64 degrees Fahrenheit, ranging from 60 degrees in the north to 68 degrees in the southern portion of the basin (see figure 2-1). The average daily temperature varies from 80 degrees Fahrenheit in July to 47 degrees Fahrenheit in December.

Summer temperatures usually reach 90 degrees or higher about 70 days per year but temperatures above 100 degrees are relatively rare. Freezing temperatures are common but are usually of short duration. During the winter, extreme lows of 32 degrees or less occur about 65 times. The frost-free season varies from 201 days in the extreme north portion to about 261 days in the southern portion of the basin. Snowfall is rare and averages only about 1 inch per year in the northern portion.


Figure 2-1 -- Average annual temperature, 1931-1960.

Precipitation

Average annual rainfall is about 54 inches and varies from 52 inches in the northern portion to 60 inches in the southern portion of the basin. The nearness of the Gulf of Mexico is a major reason for plentiful rainfall in the basin. Climatic forces change with seasons but the direction and velocity of the winds do not vary greatly during the year. The more intense rains usually occur during the warmer months.

The normal rainfall pattern is shown in figure 2-2. Flood-producing storms over the Alabama River Basin are usually of the frontal type. They usually occur in the winter and spring and last from 2 to 4 days. Normally 5 to 6 inches of intense or general rainfall will cause widespread

flooding, but on many smaller streams, 3 to 4 inches of rainfall are sufficient to produce significant flooding. During the last 37 years, 80 percent of the flood-producing storms occurred during winter and spring months, and 25-30 percent of these storms occurred in March. March is generally the wettest month with an average rainfall of over 6 inches. Occasionally several wet years or dry years occur in series. However, annual rainfall records indicate no pattern. The greatest probability of drought is in May and October. Severe droughts are uncommon.

Wind

Wind in the basin is normally less than 10 miles per hour. During the passage of cyclonic disturbances over and to the north of the basin, there have been destructive local windstorms with some developing into tornadoes. The southern portion of the basin occasionally experiences high winds when hurricanes move inland from the Gulf of Mexico.

Structures oriented to the wind are rare and windbreaks are uncommon. However, resource planners may want to know prevailing and maximum recorded wind direction and velocity (see table 2-1). Wind records are available from the National Oceanic and Atmospheric Administration (formerly U. S. Weather Bureau) stations in Atlanta, Birmingham, Chattanooga, Mobile, and Montgomery.

		AILING		MAXIMUM	
STATION	VELOCITY	DIRECTION	VELOCITY 1	DIRECTION	DATE
	(m.p.h.)		(m.p.h.)		
Atlanta, Georgia	9.6	NW	70	NE	1/53
Birmingham, Alabama	7.9	S	65	SW	3/55
Chattanooga, Tennessee	6.3	S	82	W	3/47
Montgomery, Alabama	6.8	S	60	SW	3/52
Mobile, Alabama	9.2	N	98	Е	7/16

Table 2-1--Average annual and maximum recorded wind velocities, Alabama River Basin.

1/ Excludes tornado force winds

Geology and Topography

The Alabama River Basin is an area of strong topographical contrasts. There are five major land resource areas within the basin. Each of these areas is characterized by similar topography, soils, land use, and climate (see figure 2-3). These characteristics are interrelated with the geology and weather patterns of the area and have produced a distinct, recognizable land form with advantages and disadvantages as well as corridors for and barriers to development.

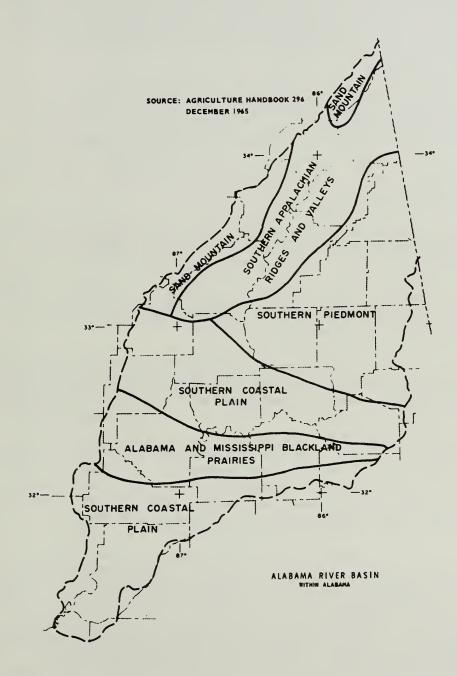


Figure 2-3 -- Major land resource areas.

Sand Mountain Land Resource Area is a series of plateaus underlain by rocks belonging to the Pottsville Group of Pennsylvanian Age. These rocks are a thick sequence of shales and sandstones; mostly flat lying and undeformed with a strong sandstone near the base of the sequence. The basal sandstone forms prominent cliffs overlooking the valleys so that the plateau margins stand out sharply to the observer. The Sequatchie and Wills Creek anticlines form valleys that divide the area into three main parts: Lookout Mountain, Sand Mountain, and the plateau west and south of Sand Mountain. The long straight Wills Creek and Sequatchie Valleys are developed on limestones that are folded and broken by thrust faulting similar to the valleys in the adjacent Ridge and Valley area; and stand in strong contrast to the main portions of the plateaus with their massive sandstone rims. Elevations generally range from 700 to 1,500 feet mean sea level (ms1).

The Southern Appalachian Ridges and Valleys Land Resource Area is also called the Coosa Valley or the Limestone Valleys. The area is a series of wide, gently rolling valleys and steep, rough ridges all trending northeast-southwest. Long, straight valleys and ridges influence transportation, agriculture, streams, and roads. Elevation in the valleys range from 500 to 700 feet msl, and elevations on the higher ridges from 1,500 to 2,000 feet above mean sea level.

The Ridge and Valley area is known geologically as the Folded Appalachians. The northeast-southwest trend is caused by the parallel folding and faulting of the underlying rocks. In the humid climate of the region, limestone is generally weathered most rapidly, with shale being a little more resistant and sandstone being the most resistant. Selective weathering has formed sandstone and shale ridges and limestone and shale valleys parallel to the structure of the underlying rocks.

The Southern Piedmont Land Resource Area comprises about 25 to 30 percent of the basin. The area is mostly a moderately rolling upland developed on deeply weathered, crystalline, metamorphic rocks. Schists and gneisses predominate with quartzites, slates, and phyllites forming lesser areas. Elevations in the Piedmont area of Alabama generally range from 700 to 1,000 feet above mean sea level. The state's highest elevation, Cheaha Mountain at 2,407 feet msl, is located in this area. The Piedmont area was once general farmland used primarily for cotton production. During the past 30 years, because of erosion and economic factors, the area has become a land of pine timber, mixed farming, and manufacturing.

The Southern Coastal Plains Land Resource Area comprises most of the southern half of the basin and is divided in two portions by the Black Belt. The northern portion of the Coastal Plain is mostly rough, rolling land, generally called the Upper Coastal Plain. South of the Black Belt the countryside varies from rough and rolling to smooth and gently rolling. Topography and soils of the Coastal Plains favor the development of timber and general agriculture. Elevations in the Upper Coastal Plain vary from 300 to 600 feet msl and in the Lower Coastal Plain from 100 to 500 feet above mean sea level. The Upper Coastal Plain is developed on sands, clays, and gravels of the Tuscaloosa Group and the Eutaw Formation of Upper Cretaceous Age. The Lower Coastal Plain is underlain by sands, clays, shales, and limestone of Cretaceous through Recent Age. The area is belted with topographic belts trending east and west in the basin. This belting is caused by weathering of formations of differing resistance. The geologic structure is monoclinal and the formations all slope very gently southward at 10 to 45 feet per mile.

The Alabama and Mississippi Blackland Prairies Land Resource Area is more commonly called the Black Belt. In the basin, the Black Belt trends east and west and is generally an area of gently undulating topography developed on soft, limy, sedimentary rocks. The name, Black Belt, is derived from the fertile, black soils. The area was originally grassland with hardwood timber and brush. The topography and soils led first to development of a cotton plantation culture; later a cattle industry developed, and now the area is diversifying with mixed agriculture, cattle, and crops. Elevations generally range from 100 to 300 feet above mean sea level.

The Black Belt geologically belongs within the Coastal Plains but is such a distinct belt and covers such a large area that it is set out as a major land resource area. The same structure that is present in the Coastal Plain prevails with the same gentle southerly slope of the formations.

INVENTORIES OF RESOURCES

Inventory data has been developed from numerous published sources such as the 1967 Conservation Needs Inventory, the 1969 Agricultural Census, and the 1970 U. S. Census. Information from many technical publications has also been used.

In addition to data from secondary sources, the river basin staff conducted an extensive field examination of the entire basin area. Data was collected and organized within groups of designated Conservation Needs Inventory watersheds. This field examination was oriented toward the identification of existing and projected problems and needs and the location of resources with development potential. Attention was directed toward the problems and needs identified in the Work Outline and those encompassed by the specific components of the two planning objectives. The areas of interest expressed by the Alabama Development Office was also considered. District Conservationists of the Soil Conservation Service participated in this field examination and furnished valuable information concerning problems and needs within their district. After the field examination was completed, additional data was collected through SCS District Conservationists, from other state agencies, from university personnel, and regional planning commissions. The need for displaying combinations of resource inventory data and identifying conflicting uses of resources was recognized early in the inventory process. For these reasons, much of the resource data collected has been prepared for storage in a map oriented computer data storage system known as MIADS (Map Information Assembly and Display System). This system is used to store, combine, and display some of the basic data.

Inventoried resource data stored in MIADS and maintained in the files of participating USDA agencies are available on request.

WATER

Generally, the basin has a plentiful supply of good quality water for municipal, industrial, domestic and livestock purposes. In most areas of the basin an adequate supply of surface water exists, or could be impounded.

Water supply sources of the basin are generally adequate at the present time except in local areas during extreme dry periods. In the future, additional supplies will be needed in all areas of the basin. A large part of the future needs can be supplied through development of surface reservoir storage.

Surface Water

Only two county studies and eight county maps of surface water resources in the river basin have been published by the U. S. Geological Survey/Geological Survey of Alabama (see appendix 10). Rainfall (54-inch average) in the basin amounts to about 49.5 million acre-feet per year. Most of this rainfall is returned to the hydrologic cycle by evaporation and transpiration, a small amount infiltrates to ground water reservoirs, and the remainder becomes streamflow (approximately 19 inches). The geographic distribution of surface runoff is illustrated by appendix table 1. Average annual runoff represents the normal surface water resource or the normal recoverable surface water supply. This totals about 23.7 million acrefeet per year or approximately 21.2 billion gallons per day. The streamflow is equivalent to an average runoff of 19.59 inches from the entire basin area including the area outside Alabama (see figure 2-4). Impoundments -- The impoundments of the basin range in surface area from a fraction of an acre up to 40,000 acres. There are about 14,745 impoundments, including natural impoundments, containing a combined

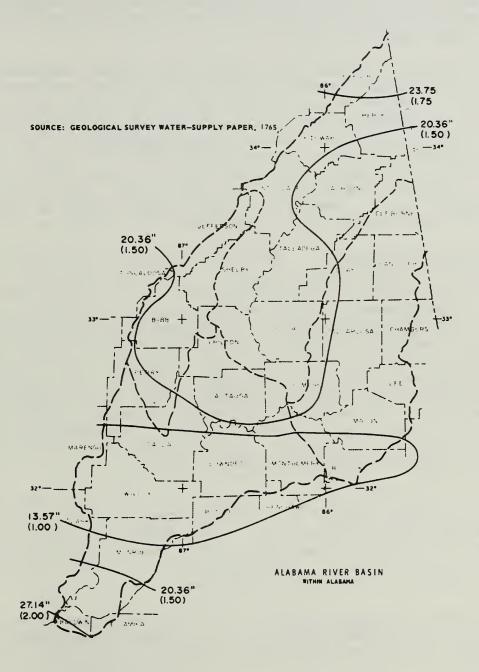


Figure 2-4 -- Annual runoff in inches (cubic feet per second - per square mile in parenthesis).

surface areas area of 245,620 acres. Included in natural impoundments are beaver ponds, river oxbows, wet borrow pits, and Grady ponds (natural, swampy, rounded ponds or "bays" in the Coastal Plains Area).

There are 95 impoundments with a surface area larger than 40 acres and whose combined surface area would be 177,910 acres. This represents only 0.6 percent of the impoundments but 72.4 percent of the total surface area. Martin Lake is the largest impoundment in the basin and has a surface area of 40,000 acres and a storage capacity of 1,630,000 acrefeet at normal operating level.

The U. S. Corps of Engineers and Alabama Power Company impoundments statistics are shown in appendix table 2B. Locations are shown in figure 4-17. Statistics for single purpose and multiple-purpose structures installed under authority of PL-566 and the RC&D Programs are shown in appendix table 2C. Statistics for impoundments, other than those mentioned above, are shown in appendix table 2D. Shown in this table are the total number and surface acres of impoundments larger than 40 acres, between 5 and 40 acres, less than 5 acres, and natural impoundments. Figure 2-5 is a summary of appendix tables 2C and 2D showing the number and total surface area of impoundments by county and subbasin.

Surface Water Quality -- The surface waters of the Alabama Basin are generally of good chemical quality. With minor treatment, most waters of the basin are suitable for industrial or domestic uses. A summary of plant managers' opinions of water quality conditions and treatment facilities that exist in the Alabama River Basin indicates that water treatment for industry is a serious concern in only 3 percent of industries that treat their own water supplies. Specific individual qualities may be of great importance when the water is to be used in some manufacturing processes (see appendix table 3A for common water use characteristics). If water of specific qualifications is not available, the available supply can usually be tailored to fit industrial needs by chemical treatment. Few, if any, industries have failed to locate in the basin because of water quality deficiencies.

The chemical quality of water in streams varies with the stage and at low flow is closely related to the mineral characteristic of the geologic units through which the water flows. The Alabama River and its tributaries are higher in calcium and magnesium content than in sodium and potassium at both high and low stage. As flow decreases, the bicarbonate content increases and the sulfate content decreases.

Stream temperatures vary from 36° to 48° F in January and February to 63° to 86° F in July and August. Major streams furnish an abundant year long supply of water at temperatures suitable for most industrial purposes.

Water use is based on volume of flow, depth of channel, rate of flow temperature, natural characteristics, geographic location, and the nature of the stream and its major uses.

In determining the precautionary measures to be taken to reduce the effect of wastes upon water quality, it is necessary to study the nature of the natural waters and how they are affected by wastes discharges. The effects of organic loadings are most evident during the warm summer months when high stream temperatures and low flow coincide. Water quality parameters measured in the Alabama River Basin are listed by agencies in appendix table 3B. Locations are shown on figure 2-6.

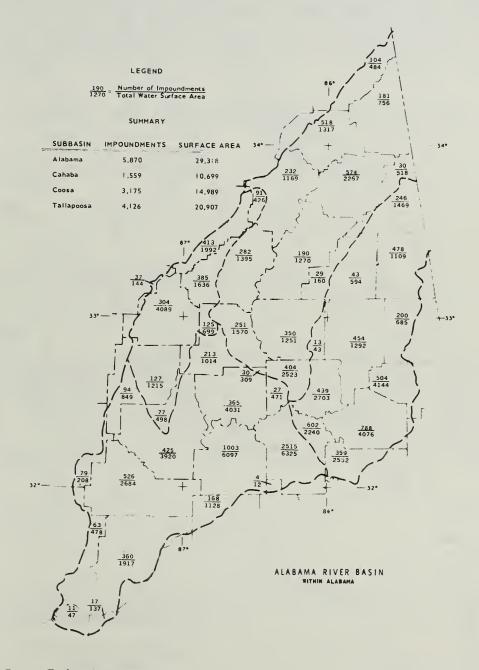
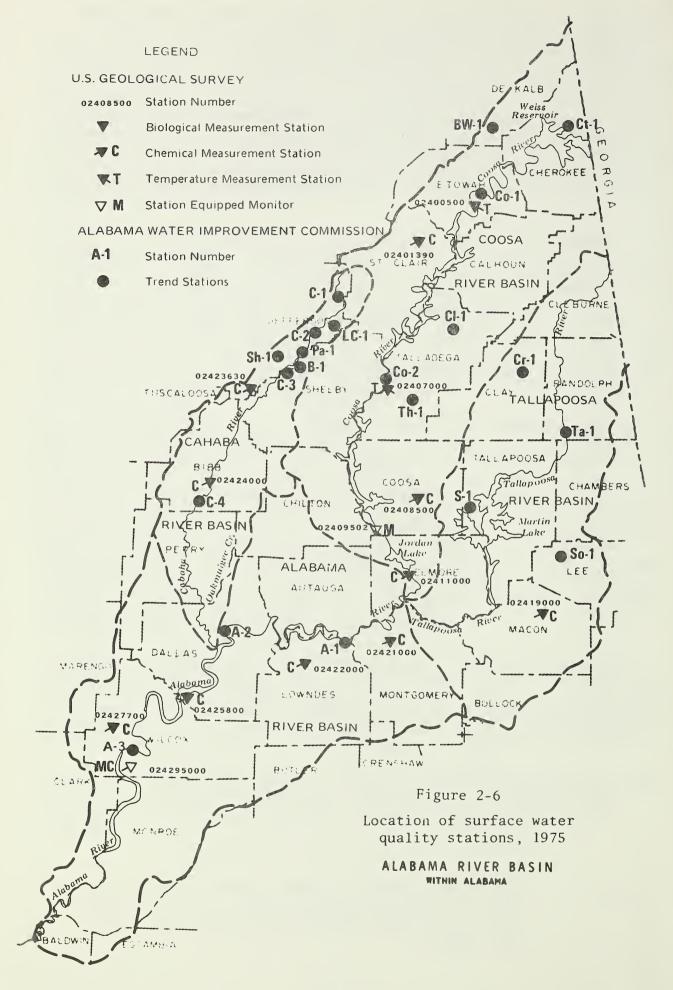



Figure 2-5 -- Existing impoundments, number and total surface area. (Data for impoundments larger than 40 acres or stream drainage more than 250,000 acres are not included in this figure.)

<u>Sewage Treatment</u> -- Private industry and municipalities have invested large sums in recent years for sewage treatment facilities in the basin. In 1972, residents and industry in the Alabama River Basin generated 847,900 population equivalents of waste which receive varying degrees of treatment (see table 2-2). Municipalities are listed in appendix table 4A by type of waste disposal facility. In 1972, there were still untreated wastes being discharged into the streams of the basin. Fourteen towns with a total population of 68,000 or more had inadequate facilities, however, the Alabama Water Improvement Commission reports that one of these had new facilities presently under construction while six others had corrective plans in the advanced stage. Ten industrial treatment facilities were listed as inadequate with plans scheduled to meet required standards. Appendix table 4B lists waste water treatment by industries in the study area.

Table 2-2 -- Population served by sanitary sewage facilities, 1972.

Alabama Subbasin	187,685
Coosa Subbasin	188,543
Tallapoosa Subbasin	92,249
Cahaba Subbasin	379,451
TOTAL	847,928

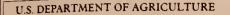
<u>Stream Use Classification</u> -- The Alabama Water Improvement Commission adopted water use classifications in 1967. The establishment and maintenance of stream classification standards is primarily a state function, but a federal influence is exerted through the Environmental Protection Agency (EPA). The classification of water uses in streams in the Alabama River Basin was completed in 1972, the Cahaba River Subbasin being the last. The classifications, as revised in September 1973, are:

- 1. Public Water Supply
- 2. Swimming
- 3. Fish and Wildlife
- 4. Fish and Wildlife as a Goal

The use classification of streams in the Alabama River Basin are presented in figure 2-7. Use classification, for all streams classified (1975), is shown by reaches in appendix table 5B. The State of Alabama is developing a Water Quality Management Plan for each of the 14 river basins within the state. In certain urban-industrial areas of the state, the Regional Planning and Development Commissions will be responsible for developing area-wide waste treatment management plans. Stream mileage data is compiled by free-flowing and impounded stream miles. Most of the mainstream of the Alabama and Coosa Rivers is impounded. With installation of the proposed Crooked Creek impoundment on the Tallapoosa River, about 50 percent of this stream will be impounded. None of the Cahaba River is impounded and a section is being considered for designation as a scenic river. The 1963-1964 annual report of the Alabama Water Improvement Commission indicated there are about 978 river miles in the basin; approximately 500 miles are impounded as of 1975.

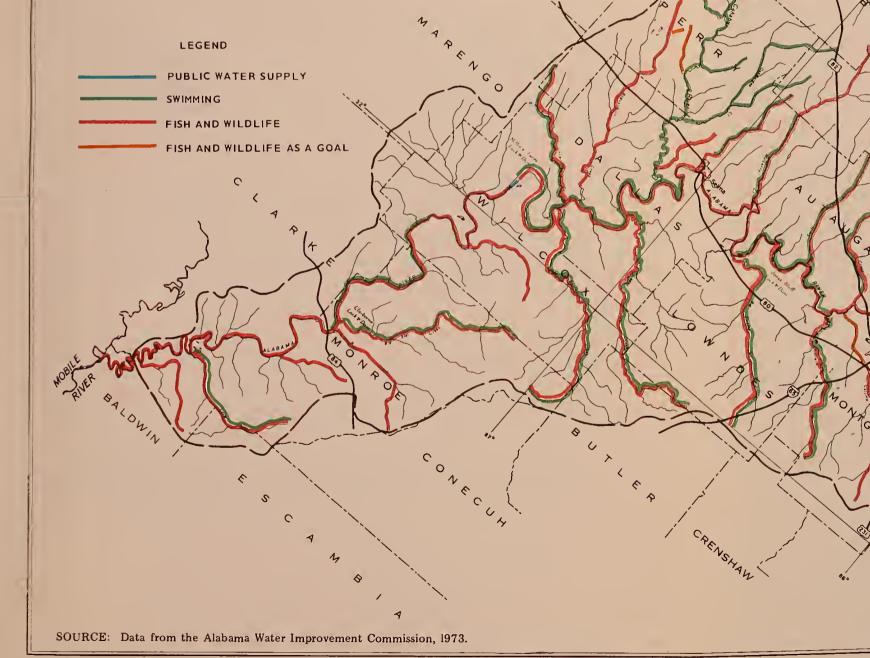
There are about 13,600 miles of streams in the Alabama River Basin with drainage areas one square mile or larger (see table 2-3). Estimated total mileage of streams in Alabama is 41,150 miles. These estimates were determined by measuring the thread of the stream on a selected group of $7\frac{1}{2}$ minute quadrangle maps to determine the ratio of stream mileage to drainage area (see appendix 6 for additional procedural details).

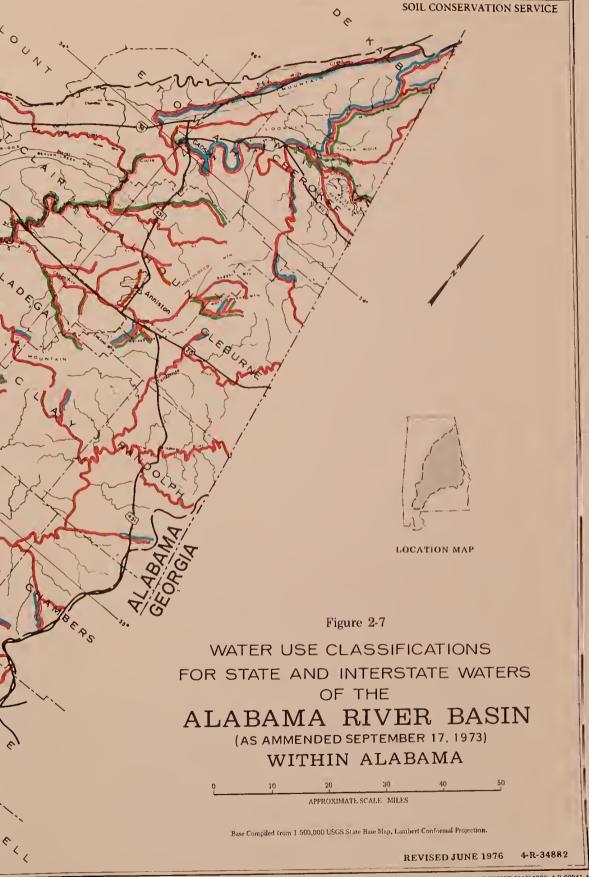
RIVER SUBBASINS	DRAINAGE AREA SQUARE MILES 1/	MILES OF STREAMS 2/
Alabama	5,919	4,840
Coosa	5,461	4,240
Cahaba	1,872	1,410
Tallapoosa	3,959	3,110
TOTAL	17,211	13,600


Table 2-3 -- Estimated mileage of streams having drainage areas exceeding one square mile.

1/ Alabama Conservation Needs Inventory, 1967.

 $\overline{2}$ / Expanded from a sample on $7\frac{1}{2}$ -minute quadrangle map.


"Streamflow" classification is presented in appendix 6 by type of flow. Selected streams were inventoried by the following flow classifications:


- 1. Perennial
- 2. Intermittent
- 3. Ephemeral
- 4. Ponded

EXPLANATORY NOTES CONCERNING WATER USE CLASSIFICATIONS

1. On September 17, 1973, the Alabama Water Improvement Commission adopted a classification of "Fish and Wildlife as a Goal" for certain waters of the State. The Environmental Protection Agency disallowed this classification and in November of 1974 promulgated federal water quality standards for the waters of the State of Alabama which reclassified as "Fish and Wildlife" all stream segments classified by the Alabama Water Improvement Commission as "Fish and Wildlife as a Goal" within the Alabama River Basin. This action by the Environmental Protection Agency is being challenged in court and has not been resolved as of July 1, 1976

 ی ۲

0

The flow classification is grouped by watershed, river basins, and percentages in each land resource area. Stream classification by the above factors provides the water resource planner with valuable information for evaluating the quality of streams.

<u>Reservoir Sites</u>-An inventory of available reservoir sites in the Alabama River Basin has been completed and certain parameters of each site examined. It was not intended to locate every available site, but to select the better sites within an area. The inventory is designed to give planners a starting point in locating reservoir sites for meeting recreational, municipal and industrial, fish and wildlife, irrigation, and flood detention needs. The site parameters can be used in making preliminary estimates of effects and cost (for methodology see appendix 7A).

The major rivers of the basin are largely committed to navigation and hydroelectric power and therefore, additional development of the rivers beyond that already existing or planned is limited. Consequently, the evaluation of available reservoir sites was focused on tributaries and minor streams. Drainage areas range in sizes from 2 to 30 square miles with a few going up to 125 square miles. The available storage volumes range from 450 to 50,000 acre feet. Surface areas range from 45 to 2,600 acres. Figure 2-8 shows the location of potential reservoir sites. Data, such as location, drainage area size, reservoir size, and embankment volume can be found in appendix table 7B.

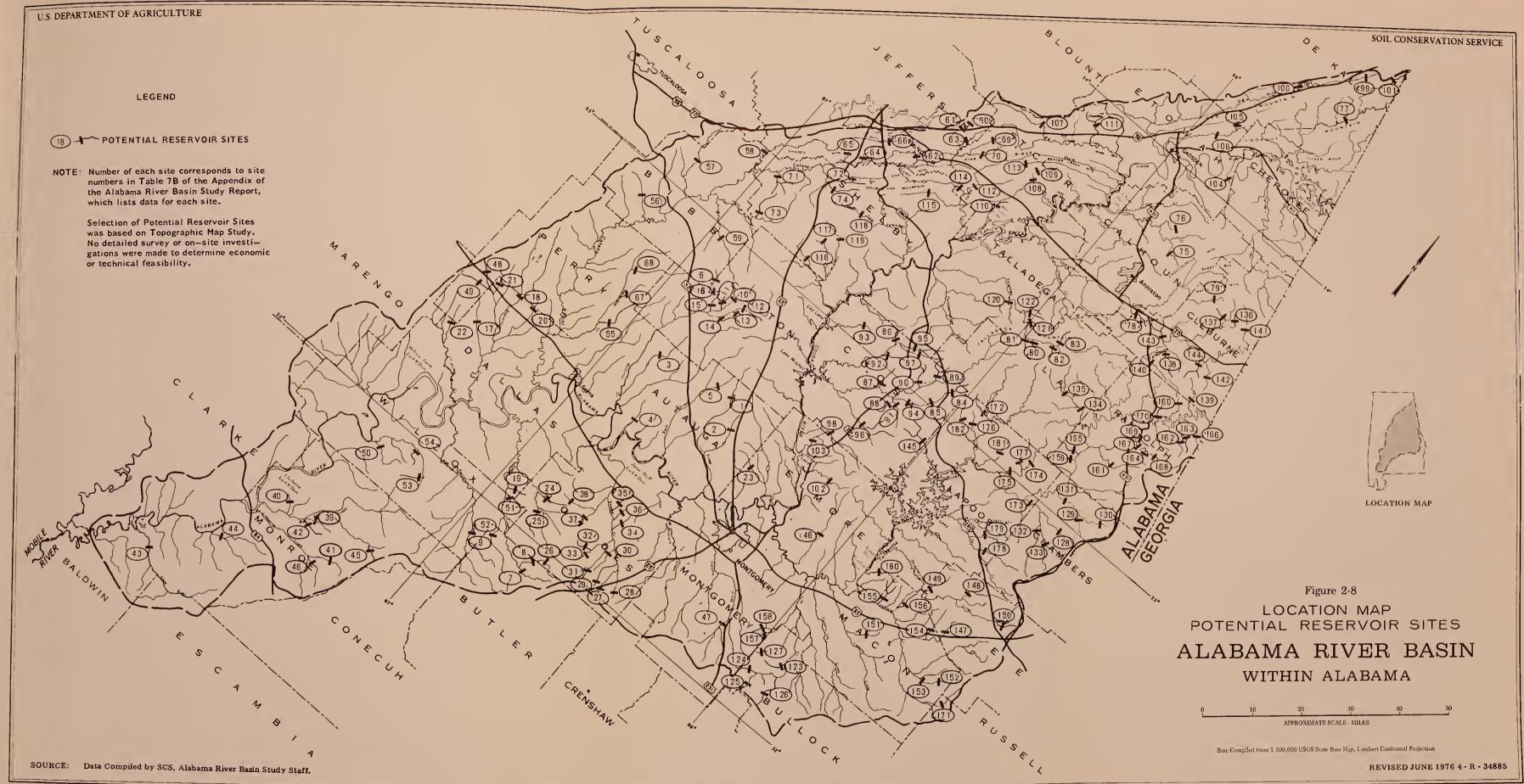
The topography of the Sand Mountain, Southern Appalachian Ridges and Valleys, and Southern Piedmont land resource areas is well suited for impoundments. However, the potential for reservoir development is often limited by factors such as roads, railroads, pipelines, transmission lines, houses, other fixed improvements, or geologic conditions. These items have a more immediate effect on the selection of large impoundments. Sites for small private ponds for recreation, irrigation, fire control, fish production, and other purposes are relatively unlimited throughout the area.

The soil and foundation characteristics in the above areas are favorable for constructing earthfill structures for both large and small reservoirs. Borrow material is readily available within close proximity of the site. Some locations may have a limited supply of impermeable soil for use as core material. Seepage through the abutments and foundations may be a problem with the greater water storage depths within the Sand Mountain area and the Appalachian areas.

Due to the stage-storage relationship, large reservoirs for purposes such as municipal use, industrial use, fish and wildlife, recreation or low-flow augmentation will require high dams. It is not difficult to locate embankments in areas with flood plains ranging from 50 to 400 feet in width. This results in rather short dams compared to their height.

The extent of site availability is limited in the Talladega Mountain area from Sylacauga to the Alabama-Georgia state line because this area has a high concentration of water resource developments. There are presently 69 floodwater retarding structures with drainage areas ranging from 1.1 to 38.1 square miles located in this area. Eight of these are multiple-purpose structures. Approximately 23 sites are planned but not constructed; some are multiple-purpose sites.

The lower reaches of the Piedmont, Upper Coastal Plain and Blackland Prairies areas are not as well suited for impoundments as is the area discussed above. Low, rolling topography characterizes these areas with broad valleys and gently sloping uplands. These conditions cause inundation of large land areas with relatively shallow depths. This impoundment characteristic is suitable for recreational purposes but these sites are less desirable if storage volume is a prime consideration. The topography lends itself to low embankments up to 3,500 feet in length. Suitable borrow material is readily available within close proximity of the structure. Critical sediment source areas above these sites may require treatment to control the accumulation of sediment in the reservoirs.


The Lower Coastal Plain is not well suited for impoundments. The topography is relatively flat, resulting in shallow reservoirs, and the sandy soils provide limited amounts of impermeable material.

Few potential sites exist on large creeks in the basin that have not been preempted by other interests. The removal or relocation of these fixed improvements renders the use of the sites as reservoirs prohibitively expensive.

In general, a site is available within reasonable distance of any need. However, man-made improvements will increase with time resulting in an increase in land rights cost; therefore, dedication of potential sites for beneficial water storage should be made as soon as possible.

The type of sites located are for on-stream reservoirs with ungated emergency spillways. These sites were studied primarily as singlepurpose sites, however, water could be stored for multiple use. Some sites could include water storage for flood control, fire protection, irrigation, fish and wildlife, recreation, and other uses.

Topographic quadrangle maps were the primary tool used to locate potential reservoir sites and on-site investigations were conducted for relatively

and the second se

few sites. Some unknown features such as sinks, faults, roads, power lines, building, etc., could exist in any reservoir site.

Ground Water

<u>Ground Water Availability</u> -- The Ground Water Availability map and legend is intended to portray, in very general terms, ground water conditions including range of depth, yield, and quality (see figure 2-9). The information is for area wide planning and not for specific well locations. More detailed information is available in appendix 8A which was developed for this report by combining data from three area-wide reports and other sources. The map was generalized from the 1926 Geologic Map of Alabama. Several geologic units (formations) were combined on the map where rock types and water bearing characteristics are similar. The map was developed expressly for this study and is an attempt to show the correlation of ground water occurrence within similar rock types.

Exceptions to the ranges shown in the figure 2-9 may be found in all areas. Planning based on this report should therefore be done conservatively. Planners should approach with caution proposals which expect maximum yields within a yield range or the minimum depth to obtain a given supply of ground water.

Ground water occurs in the space between soil particles and in cracks and crevices in the rocks of the earth. Extremes can occur on either side of the usual range for a rock type because of unusual fracturing or because of rock that is less permeable than usual. The specific location and development of large capacity wells should only be done with the advice of Geological Survey personnel or other competent professionals who have knowledge of ground water conditions of the given local area.

More detailed information on the availability of ground water is available at the Geological Survey of Alabama and/or from the district office of the Water Resources Division, U. S. Geological Survey in Tuscaloosa, Alabama. Water studies have been completed in most counties of the basin, though all are not published. These published reports and some unpublished information can be consulted at the offices of the agencies mentioned above. Appendix figures 10C and 10D indicate the status of water availability maps and geologic mapping.

Ground water availability and quality in the Appalachian Ridges and Valley Physiographic area is quite variable. The area consists of a series of narrow northeast to southwest trending ridges and valleys. Some of the largest springs in the state are found in this area issuing from highly fractured rock along faults. These highly fractured zones may be tapped for high yielding wells but the location of these nontypical areas is outside the scope of the present study. The probability of high yielding wells in Piedmont Physiographic area is the poorest in the basin. Water quality is generally good for all purposes except for local areas where high iron content exists. The rocks of the area are crystalline (metamorphic and igneous) rocks and most are of low permeability. Ground water occurrence is controlled by the size and pattern of cracks and crevices and the depth of weathered rock (saprolite).

Large quantities of ground water are available throughout most of the Coastal Plains Physiographic area. Occurrence of water is controlled by the porosity of the material. The Coastal Plain consists of alternating beds of clay, marl, sand, gravel, and limestone. Aquifers, the porous formations or beds that store and transmit water, are usually sand, gravel or limestone. Silts, clays, or marls are so impermeable that they yield very little water to a well.

Generally the water in these coastal plain aquifers is fresh to depths of 1,000 to 2,000 feet and salt water occurs in these formations at greater depths. Because of the high yield capacity of the major aquifers and the overlapping of aquifers it is common for cities and industries of the area to use wells that tap one or more major aquifers and yield a half million gallons per day (350 gallons per minute) per well. Many wells in the area are capable of producing more than a million gallons per day (mgd) on a sustained basis.

Ground Water Quality -- The quality of ground water in the basin is generally good and requires little or no treatment for most uses. Some municipal and industrial supplies are treated for the removal of iron and carbon dioxide by aeration and rapid sand filtration. The addition of chlorine to kill harmful bacteria is a common practice. All treatment should be in accordance with standards set by public health departments and pollution control boards. Appendix table 9A shows use limitations of water quality parameters.

The amount and kinds of minerals dissolved in ground water may vary greatly from place to place, depending on the types of minerals in the soil or rocks over or through which the water moves, the content of carbon dioxide in the water, the temperature of the water, and the length of time the water has been in contact with the rocks. Common mineral constituents in ground water are iron, calcium, magnesium, bicarbonate, sulfate, chloride, fluoride, nitrate, sodium, potassium manganese, and silica.

Determination of the chemical quality of ground water in any given part of the basin can be made only on the basis of chemical analyses. Appendix table 9B shows results of chemical analysis at selected locations.

U.S. DEPARTMENT OF AGRICULTURE

LEGEND

APPALACHIAN RIDGES AND VALLEYS PHYSIOGRAPHIC AREA

GROUNDWATER AVAILABILITY RATING

2/

3,

र्य ब्र ब्र

4/

C

0

2 \$

CU4

ତ 0

Quartzite, sandstones, shales and siltstone Poor dts Dolomites and limestones Good

SC	Mostly schist	Fair	
s	Phyllite, schist, limestone and dolomite	Poor	_1/
n	Granite and gneiss	Poor	
g	Mica schist and gneiss	Poor	
g	Chlorite and hornblende schist	Poor	
g	Mica schist, granite gneiss, biotite gneiss	Poor	

COASTAL PLAINS PHYSIOGRAPHIC AREA

Qbt	Alluvium and terrace deposits	Good
Tci	Citronelle Formation	Good
Tmu	Miocene Series	Good
Tjo	Oligocene Series and Jackson Group	Good
Tgi	Gosport Sand and Lisbon Formation	Good
Tt.	Tallahatta Formation	Poor
Th	Hatchetigbee Formation	Fair
Ttu	Tuscahoma Sand	Fair
Tnf	Nanafalia Formation	Good
Ina	Naheola and Porters Creek Formations	Poor
Tc	Clayton Formation	Fair
Kr	Ripley Formation	Good
Ks	Selma Group	Poor
Ke	Eutaw and McShan Formation	Good
Kt	Tuscaloosa Group	Good

J/ Some fair to good yields in limestone and dolomites.
 2/ Small per well yield, but shallow depths allow inexpensive well field development.

3/ Individual wells may yield a million gallons

Kon.

A Individual wells may yield a million gallon gallons per day (300 gpm).

PIEDMONT PHYSIOGRAPHIC AREA

Mostly schist	Fair	
Phyllite, schist, limestone and dolomite	Poor	1/
Granite and gneiss	Poor	
Mica schist and gneiss	Poor	
Chlorite and hornblende schist	Poor	
Mica schist, granite gneiss, biotite gneiss	Poor	

Sources:

APPALACHIAN RIDGES AND VALLEYS: GSA Special Report 16, Ground Waters of Northern Alabama.

PIEOMONT: GSA Special Report 23, Geology and Ground Water of the Piedmont Area of Alabama.

0

N

PLAINS

dls

RIDGES

21

APPALACHIAN

COASTAL PLAINS: GSA, Appendix H. Hydrology and Ground Water of Non-Appalachian Alabama.

GENERAL: Geologic Map of Alabama 1926 and various county and area reports.

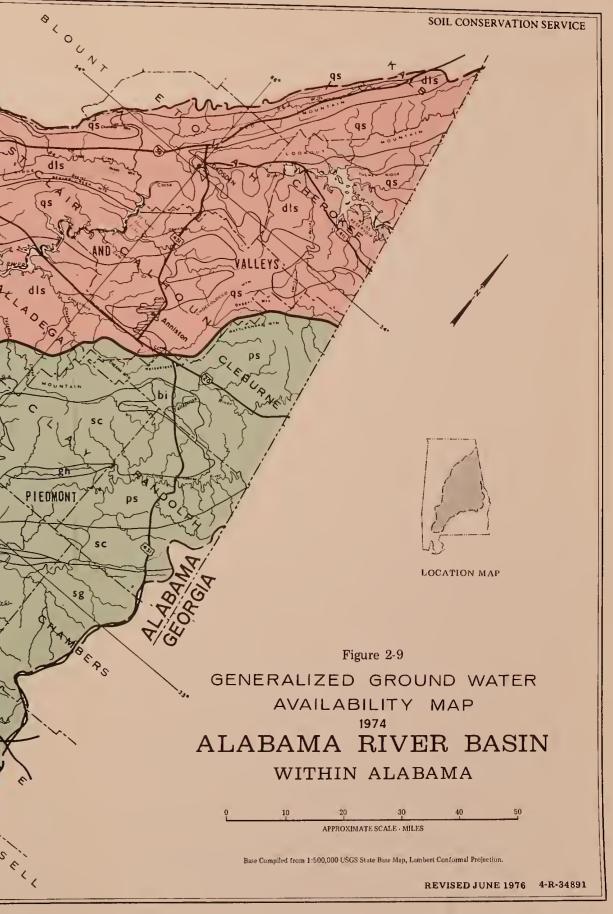
COASTA

~

CRENSHAW

USDA-SCS-FORT WORTH, TEXAS 1976

SOURCE: Data compiled by SCS River Basin Study Staff. 9


S

0

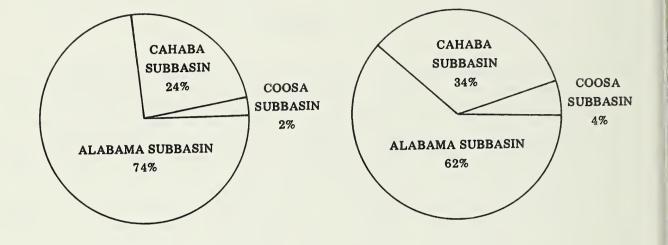
4

1

ð

Appendix figure 9C shows the location of ground water quality tests typical of the Alabama River Basin. More detailed information on the chemical quality of ground water in specific areas may be obtained from the district office of the Water Resources Division, U. S. Geological Survey, Tuscaloosa, Alabama. Appendix table 3A gives the water quality characteristics and their effects.

MINERALS


The Alabama River Basin is rich in mineral resources and supports a valuable mineral industry. Most minerals found in the basin are disemenated deposits and either are not mined at present or mined in very small areas which are usually not restrictive to area-wide land and water resource development. Urban encroachment or other preemptive land use may make even the most abundant mineral commodities, such as sand, gravel, and stone, unavailable in the local area of need. Sound land use planning should consider the best available data regarding the location of mineral commodities. It is suggested that resource planners consult the Geological Survey of Alabama concerning plans for any large land or water resource development. Quantitative estimates of most mineral resources and the projection of future mineral resource needs and the resultant effect on land and water resources are outside the scope of this study.

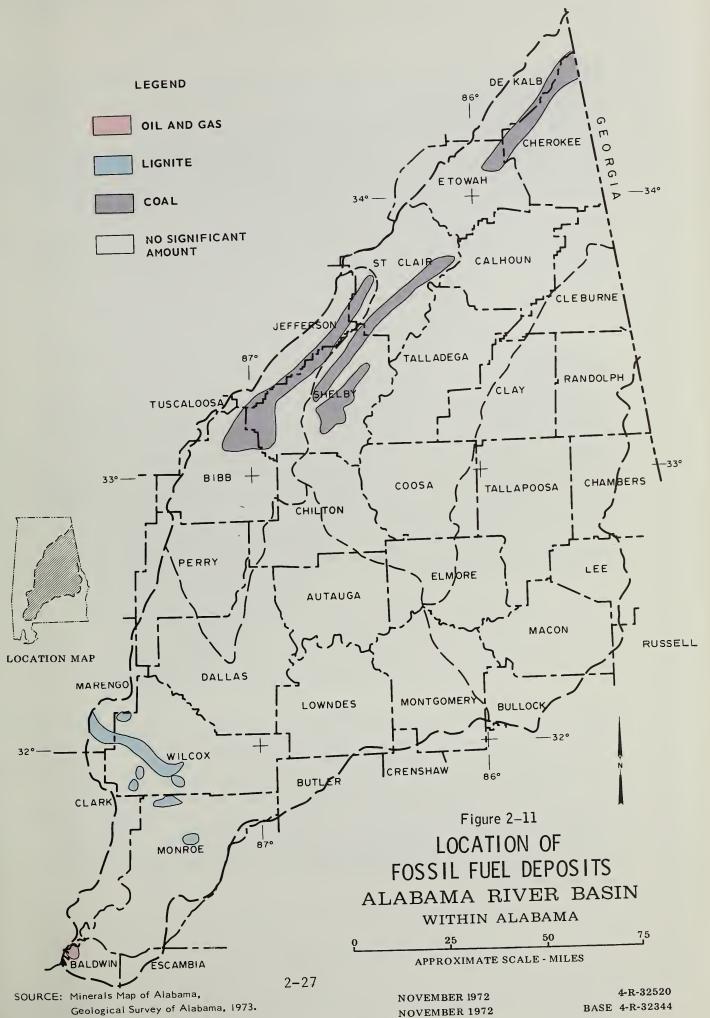
Events of recent years point up the need for development of energy reserves, particularly near-surface deposits of coal and lignite (lowrank bituminous coal). Figure 2-10 shows a comparison of reserves of coal in the state and basin and the approximate area potentially minable.

Figure 2-11 shows the approximate area in which coal, lignite, and petroleum (fossil fuels) are found in the basin. Petroleum reserves (proven) within the basin are small and were not estimated. Coal and lignite strip mining are potentially the largest "land users" of the mineral resources in the basin. Iron ore has been strip mined in local areas but surface mining is not active at the present and is not considered to be potentially a large land user in the future.

Of the strip mining in the basin, coal and lignite will potentially require the largest land area. This affected area represents 1 percent of the basin (see appendix table 11E and 11F).

More detailed information is available from publications of the Geological Survey of Alabama. Appendix figure 11A shows status of mineral resource mapping. The general area where other minerals may be found in the Alabama River Basin is shown in appendix figures 11B, 11C, and 11D.

ALABAMA BASIN RESERVES ^{1/} of Strippable Coal and Lignite (920 Million Tons)


AREA POTENTIALLY MINABLE

(126,000 Acres)

AREA	MILLIONS OF TONS AVAILABLE	ACRES POTENTIALLY AFFEC	TED
Alabama	3,883	643,000	
Basin	920	126,000	
Alabama Subbas	in 679	77,500	
Cahaba Subbasi	n 223	43,300	
Coosa Subbasin	18	5,200	
Tallapoosa Sub	basin 0	0	

Figure 2-10 -- Reserves of Strippable Coal and Lignite $\frac{1}{2}$, Alabama and the Alabama River Basin.

1/ Source - Geological Survey of Alabama, 1974 (see appendix Table 11E)

USDA-SCS-FORT WORTH. TEXAS 1976

NOVEMBER 1972

The general soils map (see figure 2-12) shows the distribution of soil associations. (See appendix table 12A for association descriptions and interpretive information.) Each soil association is a broad landscape that has a repeating pattern of soils and is named according to the one or more most extensive soil series. Each area also includes other soils which are less extensive and may or may not have characteristics similar to those of the dominant soils. The scale of this map prohibits use of this information in detailed or operational planning.

Information on smaller areas or tracts for planning can be obtained from detailed soil maps at local Soil Conservation Service field offices. Status of the publication of detailed soil surveys is shown in appendix figure 12C.

LAND

Land Use

The basin area totals 11,015,000 acres. Approximately 68 percent of the land within the Alabama River Basin is forested. Cropland and pasture each comprise 12 percent of the land area. The remaining 8 percent is used for other miscellaneous and urban purposes. This land use distribution varies only slightly except in the Cahaba subbasin where 73 percent of the area is in forest, 6 percent in cropland, 6 percent pasture, and 12 percent in urban and other uses. The Alabama subbasin has about 62 percent in forest use which is slightly less than the basin average, and 14 percent and 17 percent cropland and pasture respectively, both of which are slightly greater than the basin average. More detailed information on land use is presented in appendix table 14B.

In 1967, there were 1,364,000 acres of urban and built-up area in the state. This represents an increase of 34 percent since 1958. A total of 420,000 acres in the Alabama River Basin were allocated to this use. From 1958 to 1967, urban acreage in the basin increased by 40 percent, shifting about 38,600 acres from rural to urban uses annually.

The basin land use map (see figure 2-13) is the result of a 1972 reconnaissance survey by field personnel of the Soil Conservation Service. Land use was mapped on aerial photo index sheets and county road maps and the data compiled and tabulated by MIADS (Map Information Assembly and Display System). The survey shows the pattern of land use and is not intended for operational planning. Land use categories and percentages of the basin are shown in figure 2-14. The categories mapped as plowed land and grass consist of more than two-thirds cultivated cropland or pastureland respectively; the category mixed grass and plowed consists of more than one-third of each (cultivated cropland and pastureland).

U. S. DEPARTMENT OF AGRICULTURE

SOIL LEGEND

30

39

46 47

49 50

53

SOILS OF THE COASTAL PLAINS (Paleudults, Hapludults)

SOILS OF THE LIMESTONE VALLEYS AND UPLANDS (Paleudults, Fragiudults)

Map Symbol

Association Cbeaha-Leesburg Colbert-Conasauga-Firestone Conasauga-Firestone-Talbott Decatur-Dewey-Allen Holston-McQueen-Cbewacla Minvale-Bodine-Fullerton Minvale-Fullerton

SOILS OF THE APPALACHIAN PLATEAU (Hapludults, Dystrochrepts)

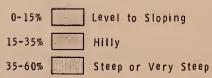
Hartsells-Linker-Albertville Hartsells-Wynnville-Albertville Hector-Rockland, limestone-Allen Montevallo-Townley-Enders

SOILS OF THE PIEDMONT PLATEAU (Hapludults, Rbodudults)

Appling-Cecil Cecil-Grover-Madison Davidson-Hiwassee-Gwinnett Iredell-Mecklenburg Gwinnett-Cecil-Appling Madison-Louisa Madison-Tallapoosa Musella-Gwinnett-Hiwassee Tallapoosa-Tatum

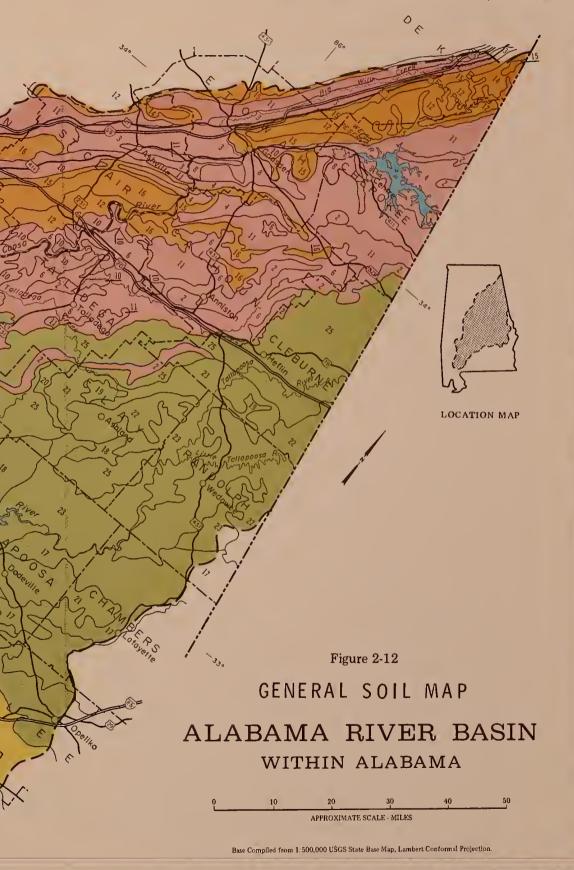
SOILS OF THE PRAIRIES (Eutrochrepts, Hapludalfs, Paleudalfs)

Demopolis-Sumter-Oktibbeba Sumter-Oktibbeba-Leeper Boswell-Susquehanna


Dotban-Fuquay-Wagram Luverne-Smitbdale-Boswell

SOILS OF THE MAJOR FLOOD PLAINS AND TERRACES (Dystrochrepts, Hapludults, Ochraquults)

Cahaba-Cbewacla-Myatt


Luverne-Smitbdale-Boswell Malbis-Orangeburg-Pansey Orangeburg-Dothan-Luverne-Red Bay Orangeburg-Red Bay-Dothan-Troup Lucedale-Bama Savannah-Ruston-Stough Smitbdale-Luverne-Troup Smithdale-Luverne-Troup Smithdale-Luverne-Dotban-Orangeburg Troup-Alaga-Lucy Troup-Luverne-Dotban-Orangeburg Troup-Smitbdale-Esto Troup-Smitbdale-Malbis-Escambia Luverne-Boswell-Quitman-Smitbdale

DOMINANT SLOPES

Source: Data extracted from the General Soil Map of the State of Alabama.

SOIL CONSERVATION SERVICE, AUBURN, ALABAMA

0

APRIL 1975 4-R-34879

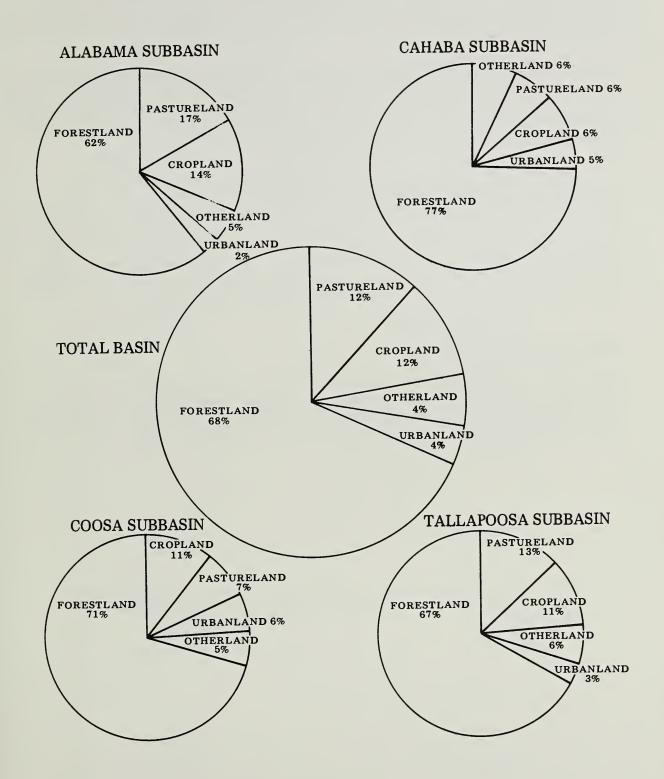
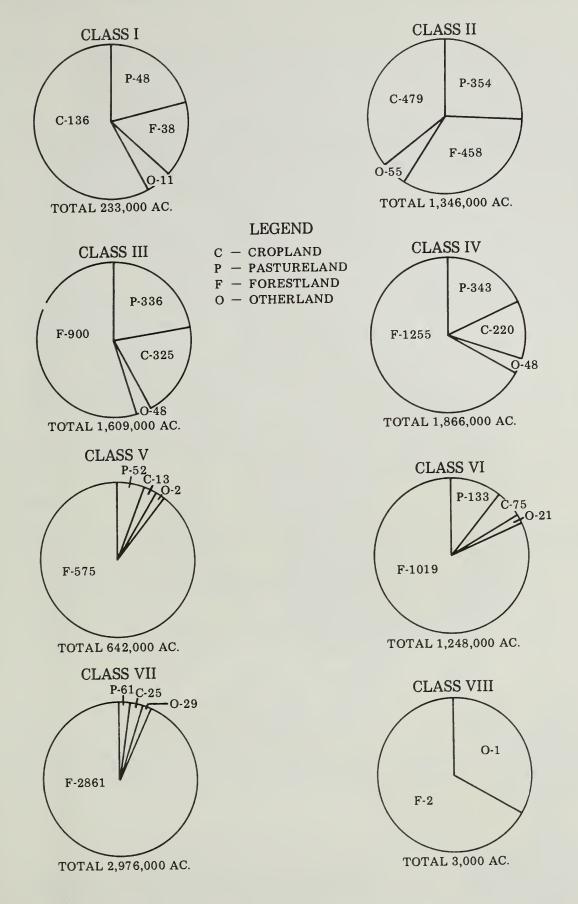


Figure 2-14 - Land use distribution, Alabama River Basin and subbasins, 1970.

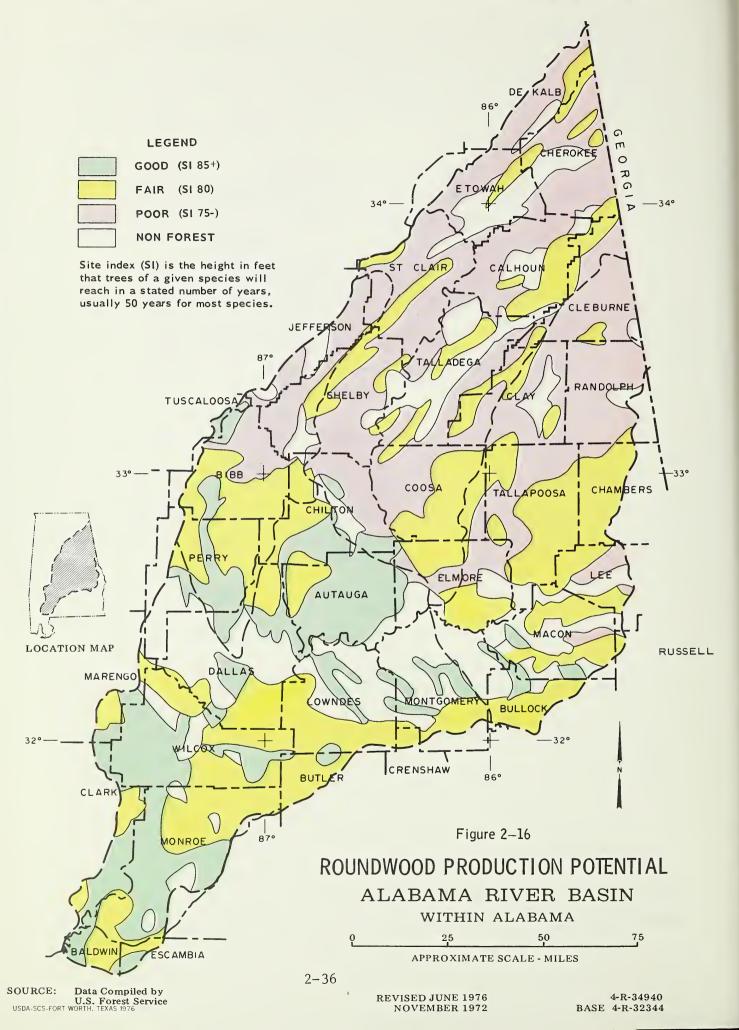
.

Land Capability Classification -- Capability classification is a grouping of soils to show their suitability for various agricultural uses. It is a practical classification based on the degree and kind of permanent soil limitations. The degree of limitation is designated by Roman Numerals I through VIII; the numerals indicating progressively greater limitations and narrower choices for practical use (see appendix table 14A for description).


Class I lands have few limitations that restrict their use while Class VIII lands have limitations that preclude their use for commercial plant production and restrict their use to recreation, wildlife, water supply, or aesthetic purposes. Figure 2-15 shows land capabilities for stated uses and land reported as unclassified.

Forest Land Site Potential -- Forest land site potential (or "roundwood production potential") is based on a grouping of soils to show their suitability for forest in terms of site index.* Forest land site potentials are shown in figure 2-16. The most productive sites are south, in the Coastal Plains. A few very productive sites are known to exist in the northern half of the basin. The steep mountainous area is included as fair site class, because many coves on north-facing slopes have high site indices for producing quality upland hardwoods.

Agricultural Land Use


The 1967 Conservation Needs Inventory (CNI) included classification of 9,923,000 acres in the study area (see table 2-4). Federal lands, urban, built-up and water areas not included in this total comprise the remaining 1,092,000 acres in the basin (see appendix table 14B).

* Site index is the height in feet that trees of a given species will reach in a stated number of years, usually 50 years for most species.

NOTE: Figures in pie charts are thousands of acres

Figure 2-15 - Land capability distribution by land use in the Alabama River Basin

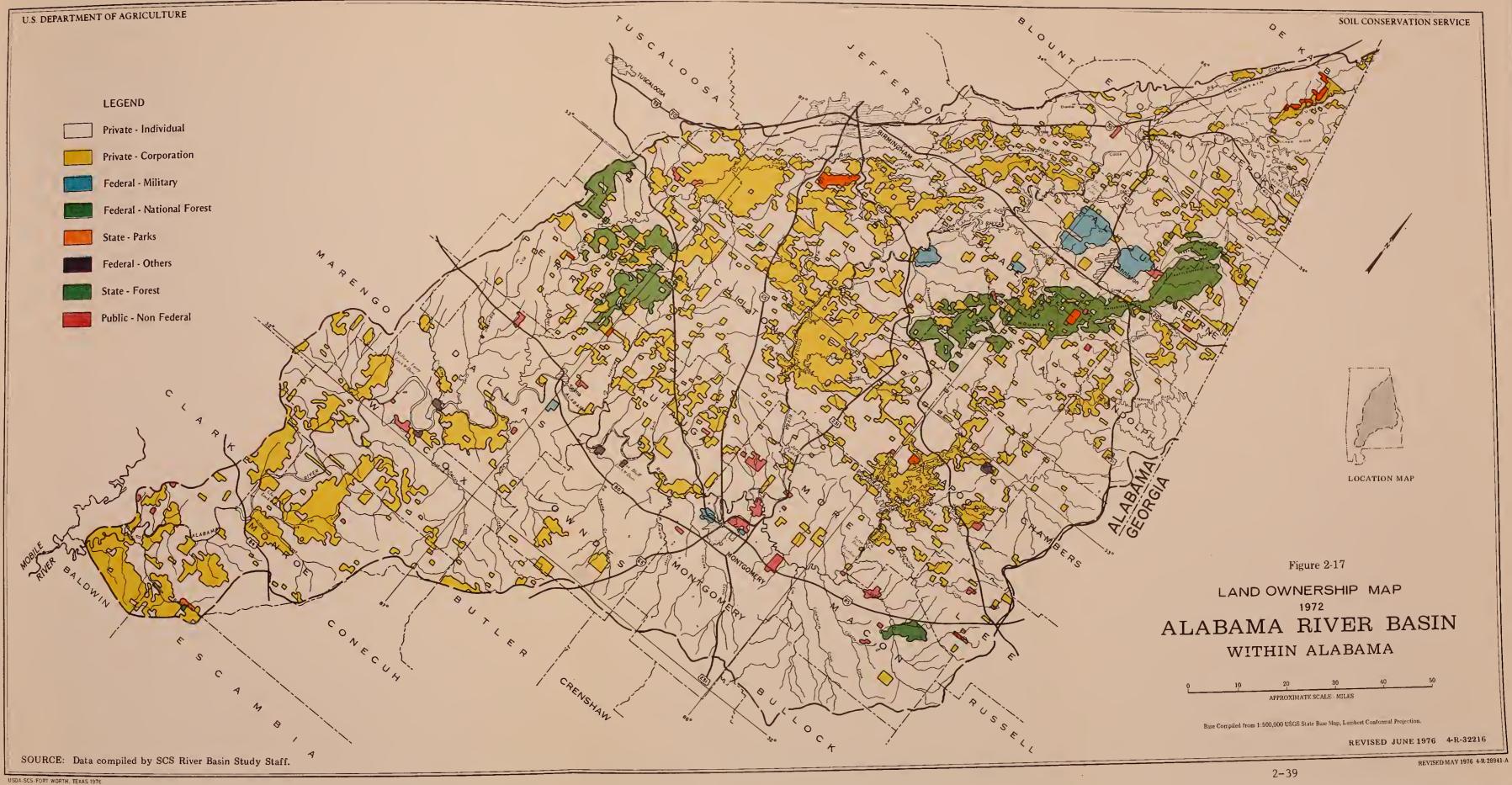
	TOTAL	TOTAL			
LAND USE	STUDY AREA	ALABAMA	CAHABA	COOSA	TALLAPOOSA
		T	housand A	cres	
Cropland	1,273	542	· 72	382	277
Row crops	601	267	28	195	111
Close grown	95	39	9	26	21
Rot. hay & pasture	25	7	2/	10	8
Hayland	101	56	9	19	17
Orchards, vineyards	23	12	2/ 9 2/ 9	5	6
Conservation use	206	90	9	41	66
Idle and other	222	71	17	86	48
Pasture	1,327	658	78	259	332
Improved	531	263	31	104	133
Forest	7,108	2,381	819	2,245	1,663
Grazed	524	422	20	21	61
Other land	215	76	17	·74	48
Total land inventory	9,923 3/	3,657	986	2,960	2,320

Table 2-4 -- Distribution of agricultural land use by subbasin, Alabama River Basin, 1967. 1/

1/ Alabama Conservation Needs Inventory (CNI), 1967.

2/ Less than 500 acres.

3/ Total is inventoried land only; non-inventoried land includes urban, military, water, etc.


Basin farmland is undergoing change faster than in other parts of the state. Much of the transition has been in marginal cropland. From 1939 through 1969, cropland losses averaged over 50,000 acres annually (see table 2-5). During this period, one-third of the basin's farmland went to other uses, compared to a 29 percent drop statewide.

ITEM	1939	1949	1959	1969
		-Thousand Ac	res	
Land in Farms	6,509	7,102	5,643	4,543
	0,505	/,102	3,043	4,040
Cropland, total	3,328	2,790	1,803	1,626
Harvested	2,205	1,610	969	678
Irrigated	0	0	8	2
Pastured	688	935	556	747
Idle	435	245	278	261
Forest land, total	2,450	3,410	2,687	1,868
Pastured	NA	1,448	1,272	NA
Not pastured	NA	1,962	1,415	NA
Pasture	NA	716	996	NA
Other land	NA	186	157	989*

Table 2-5 -- Trend in agricultural land use, Alabama River Basin, 1939-1969.

Census of Agriculture, 1939, 1949, 1959, 1969 *Includes pasture other than cropland or forest land pasture.

Cropland harvested declined steadily between 1939 and 1969 as a result of sharp reductions in corn and cotton acreage. Since 1972, however, harvested acreage has increased in response to export demands. An estimated 823,000 acres were harvested from basin farms in 1975.

Land Ownership

The inventory of land ownership within the basin was based on information obtained from local sources within each county. Ownership was divided between private, federal, and state holdings. The results of this study shows that approximately 10,486,000 acres privately owned. Remaining are 455,000 acres held by the federal government and 74,000 acres owned by the State of Alabama. Included in all categories of ownership are about 245,000 acres of water and 10,770,000 acres of land. The land ownership map (see figure 2-17) shows the general location of holdings of private individuals and private corporations as well as a breakdown of lands owned by the state and federal government. Figure 2-18 shows percent ownership by categories.

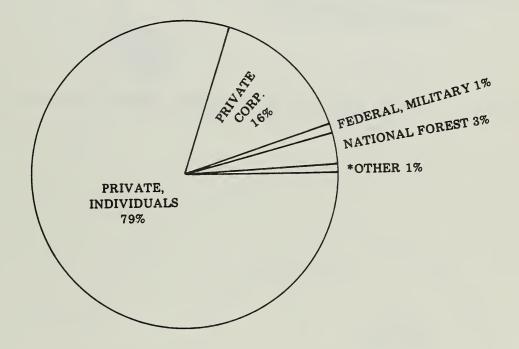
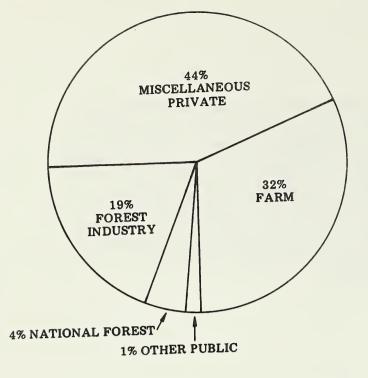



Figure 2-18 -- Land ownership distribution, Alabama River Basin, 1972.

The forest land ownership is largely private in small tracts, although forest industry does control 19 percent; mostly in the central and southern portion of the basin (see figure 2-19).

The U. S. Forest Service administers 310,200 acres in the basin, which is about 4 percent of the total forest land. National Forest locations and acreages are shown in figure 2-21.

OWNERSHIP	ACREAGE
MISCELLANEOUS PRIVATE FARM FORESTS FOREST INDUSTRY NATIONAL FORESTS OTHER PUBLIC	3,299,000 2,380,900 1,419,600 310,200 61,900
TOTAL	7,471,600

Figure 2-19 -- Forest ownership distribution, Alabama River Basin, 1970.

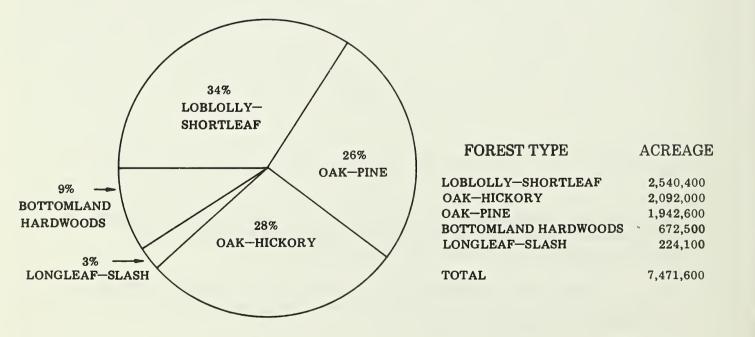
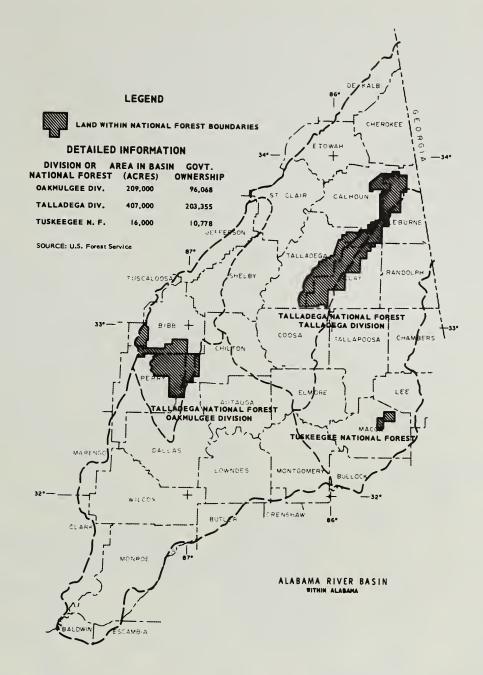
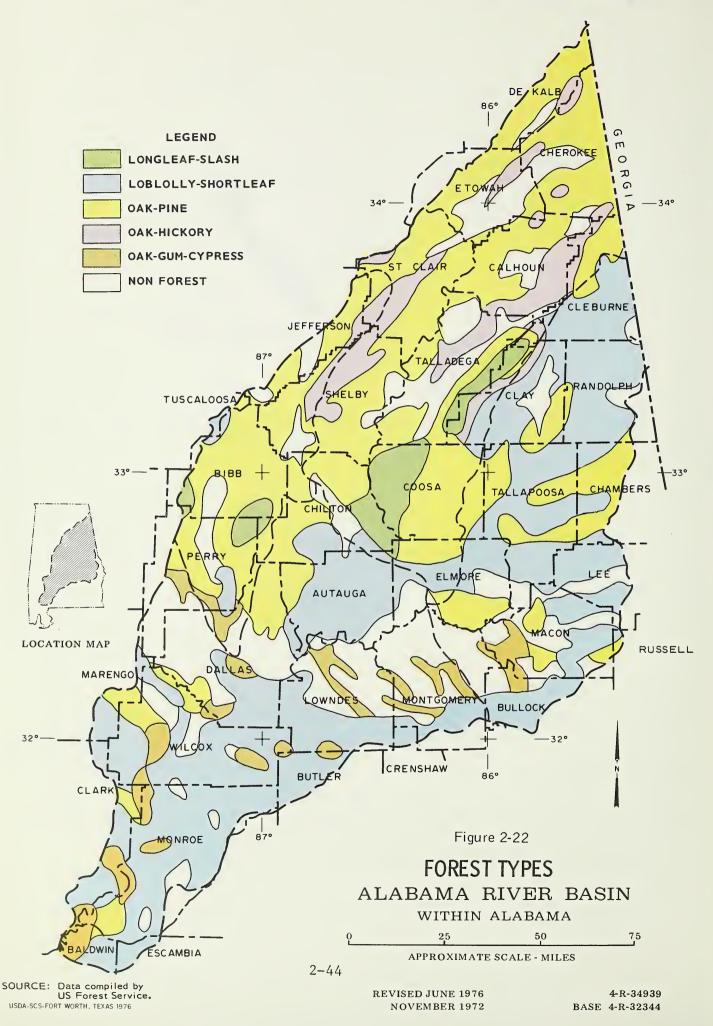
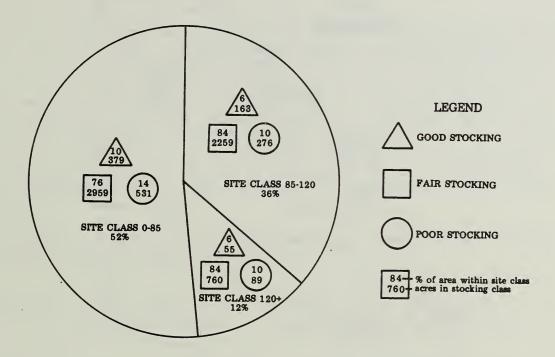


Figure 2-20 -- Acreage distribution of forest types, Alabama River Basin, 1972.


Figure 2-21 -- Location of National Forests, Alabama River Basin, 1975.

Forest Resources

Loblolly-shortleaf forest type (34 percent) dominates the forest land of the basin. Oak-hickory and oak-pine types cover another 54 percent. The remaining 12 percent of the forest land contains bottom land hardwoods, (9 percent) and longleaf-slash pine, (3 percent). Figure 2-20 lists acreages by forest types within the basin and figure 2-22 shows forest types.

<u>Area Condition</u> -- Area condition is a classification of commercial forest land based upon stocking by desirable trees and other conditions affecting current and prospective timber growth. These conditions are illustrated in figure 2-23. Only 8 percent, or 597,600 acres of forest land, is fully stocked with desirable trees. Another 80 percent, or 5,977,400 acres, contains fair stocking. The remaining 12 percent, or 896,600 acres, is poorly stocked.

Figure 2-23 -- Forest land acreage (thousands of acres) by area condition, Alabama River Basin, 1974.

Fish and Wildlife

Fish -- The most common species of sport fishes in the freshwaters of the basin are largemouth bass, smallmouth bass, striped bass, spotted bass, crappies, various catfishes, bluegill, and redear sunfish.

The supply of freshwater fishing available for public use in the basin is presented in figure 2-24 (for detailed information in subbasins see table 15B in the appendix). About 188,000 acres of fishing waters are available in the basin with a capacity of 8,911,000 activity occasions. Almost 50 percent of the fish habitat is in the Coosa Subbasin.

Figure 2-24 -- Freshwater fish habitat available for public use, Alabama River Basin, 1971.

About 500 miles of free-flowing rivers remain in the basin. Many of these rivers are polluted to the extent that use for fishing is very limited (see figure 2-7). Pollution has also decreased use of many small streams that were an important source of fishing during the 1930's and 1940's. However, many productive streams are not now receiving the normal fishing activity because of inaccessibility and other reasons. The more important fishing streams are shown in figure 2-25. These streams were selected on the basis of productivity, water quality, use, and esthetic value.

The most productive fish habitat in the basin is found in small impoundments. In small ponds and lakes, many factors affecting productivity can be controlled. There are about 44,000 acres in privately-owned, small impoundments, 475 acres in state-owned lakes, and 40 acres in lakes owned by the federal government that are managed primarily for fish production (see table 2-6). There is an additional 325 acres of public fishing in small multiple-purpose impoundments owned by either cities or counties. The state and federal hatcheries have provided fish for the initial stocking of about 51,200 surface acres in more than 13,500 small impoundments in 30 basin counties. (See appendix table 15C for details).

State-operated lakes, as of 1975, are shown in figure 2-26; additional data can be found in appendix table 16.

				PRIVATE OWNERSHIP		
					OPEN	USED FOR
	ALL	PUBLIC			TO	COMMERCIAL
SUBBASIN	IMPOUNDMENTS	OWNERSHIP	2/	TOTAL	PUBLIC	PRODUCTION
				-Acres		
Alabama	19,310	194		19,116	2,891	624
Cahaba	2,733	189		2,544	352	62
Coosa	11,725	281		11,444	2,677	216
Tallapoosa	11,163	176		10,987	2,337	85
TOTAL	44,931	840		44,091	8,257	987

Table 2-6 -- Total acreage, use, and ownership of impoundments stocked for fishing, Alabama River Basin, 1971. 1/

1/ Less than 500 acres, more than 0.25 acres.

 $\overline{2}$ / Includes some PL-566 structures.

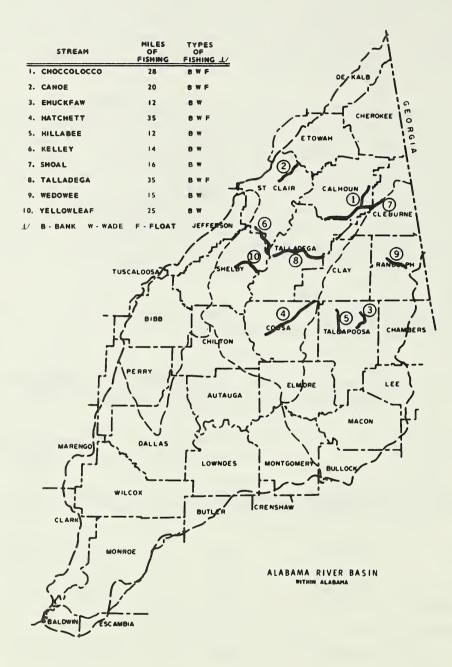


Figure 2-25 -- Important fishing streams, Alabama River Basin.

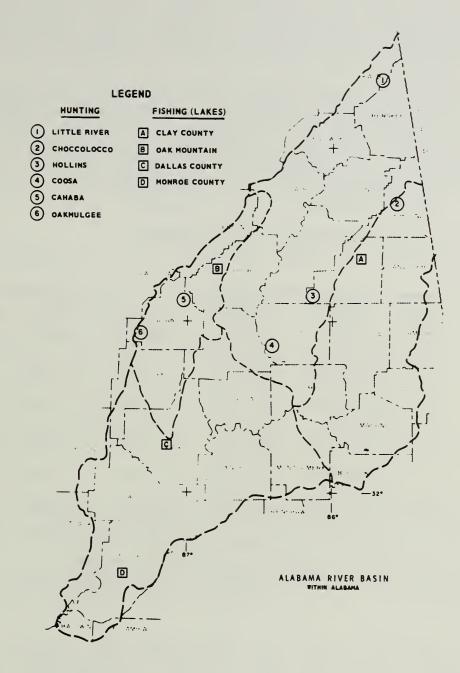


Figure 2-26 -- State-operated public hunting and fishing areas, Alabama River Basin, 1975. <u>Wildlife-Hunting</u> -- The wildlife resource in Alabama is as varied and abundant as that of any other state in the Southeast. The most frequently hunted forest game animals in Alabama are white-tailed deer, turkey, and squirrels. Open land species include quail, rabbits, and dove. The primary responsibility for administering wildlife resources, except the federally protected migratory birds, is vested in the Alabama Department of Conservation and Natural Resources.

A detailed field survey revealed about 3,244,000 acres available for some form of public hunting in the basin. Of this total, 631,800 acres are leased by hunting clubs and 7,620 acres are in shooting preserves. These acreages were not assumed to be open to all hunters because of either restricted or limited memberships (see table 2-7). Less than 15 percent of the acreage open to public hunting is managed by either the state or the federal government.

Table 2-7 -- Acreage available for public hunting, Alabama River Basin, 1971. 1/

SUBBASIN	STATE MGT. AREAS	COMPANY- OWNED LANDS	PRIVATELY OWNED LANDS	- NATIONAL FOREST	CLUB- LEASED LANDS	SHOOTING PRESERVES
Alabama	15,000	377,000	158,700	5,000	279,000	-
Cahaba	50,500	109,700	28,200	33,900	1,300	-
Coosa	102,700	571,000	369,500	107,000	174,000	6,620
Tallapoosa	30,000	217,000	223,700	47,800	177,500	1,000
TOTAL 2/	198,200 1	,272,700	780,100	193,700	631,800	7,620

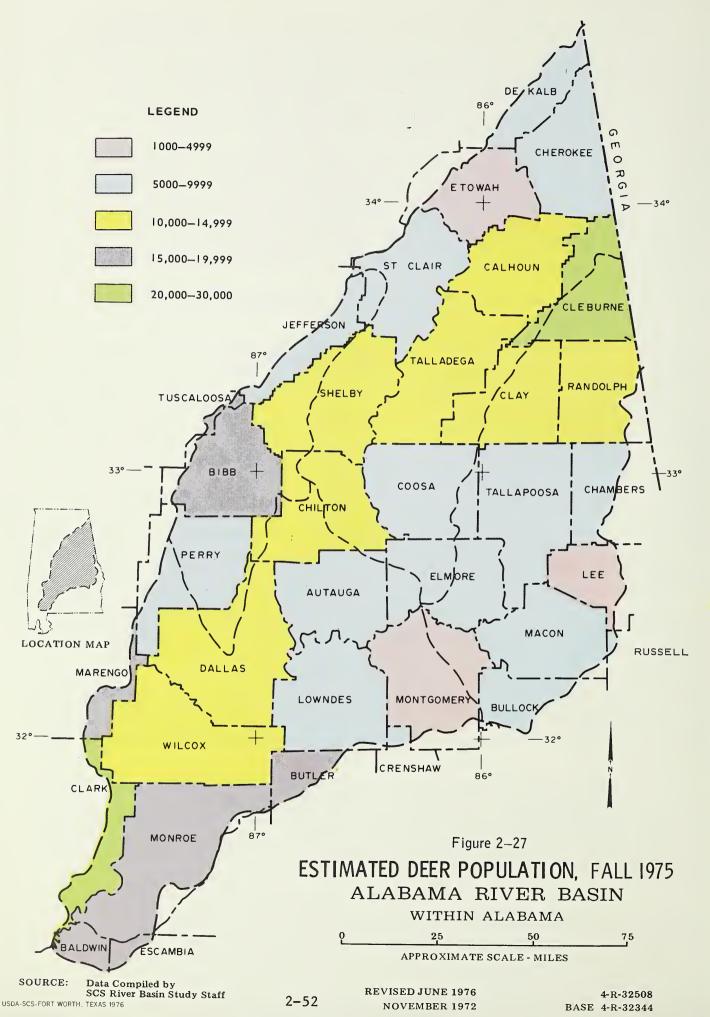
1/ Data obtained from selected state and federal agencies in each county. Duplication of recorded acreage was avoided.

2/ An additional 160,000 acres of water in miscellaneous ownerships was inventoried as being available for public waterfowl hunting.

In 1971, more than 50 percent of the land available for public hunting was either owned or managed by large companies, primarily paper companies. However, privately-owned lands that were unavailable for public use, supported more than 60 percent of the hunting demand.

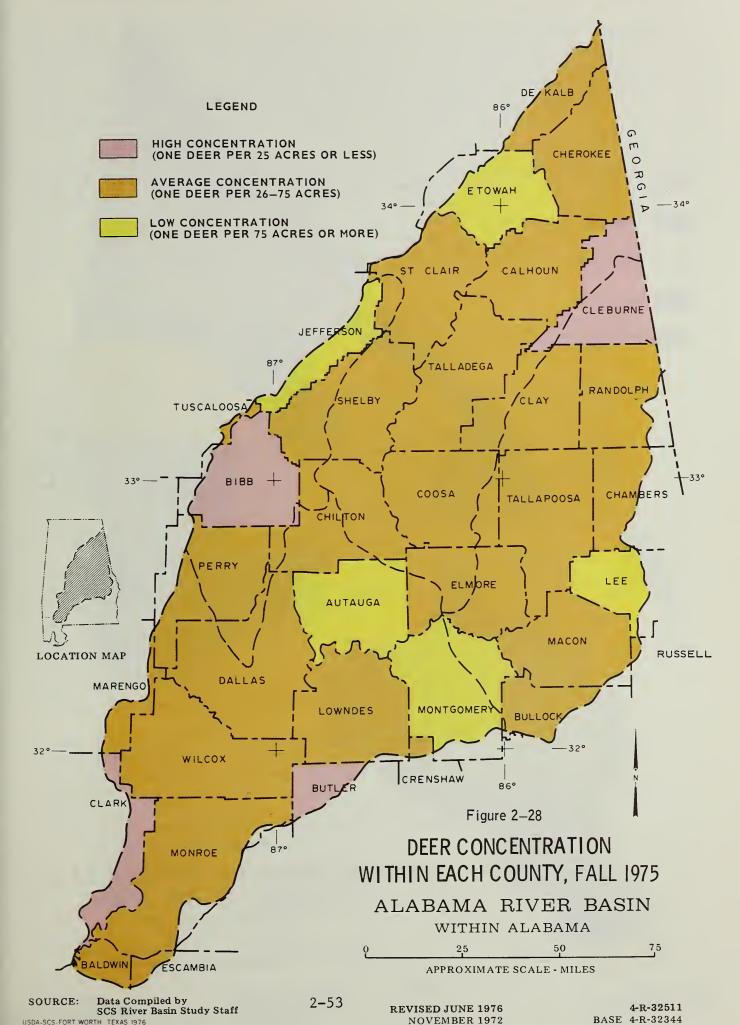
The estimated hunting effort in the basin during the 1974-1975 season was more than 2.2 million man-days (see table 2-8). Estimated harvest for selected species was taken from the game kill survey of the Alabama Department of Conservation and Natural Resources and from field biologists and technicians. Since 1972, deer hunting has been the most popular sport hunting activity in the basin and in the state. In 1974-75, about 196,406 Alabama deer hunters harvested 120,727 deer during 2,006,080 man-days of deer hunting. According to the annual Game-Kill Survey conducted by the Department of Conservation and Natural Resources, squirrels, dove, quail and rabbits are the most popular small game in Alabama. Traditionally, squirrel hunting attracted more people than any other type of hunting. However, the trend has recently been changing toward increased deer and dove hunting. Further reduction of mature hardwood forest should continue to reduce the percent of hunters who primarily hunt squirrels. Other game animals that provide hunting opportunity in the basin include racoon, opossum, fox, bobcat, snipe and woodcock. About 292,600 man-days of hunting for these species was expended in the basin during 1974-75.

Table	2-8	 Harvest	and	huntin	g effor	t for	selecte	ed game	species,	State
		and Alal	oama	River	Basin,	1974-	75. 1/			

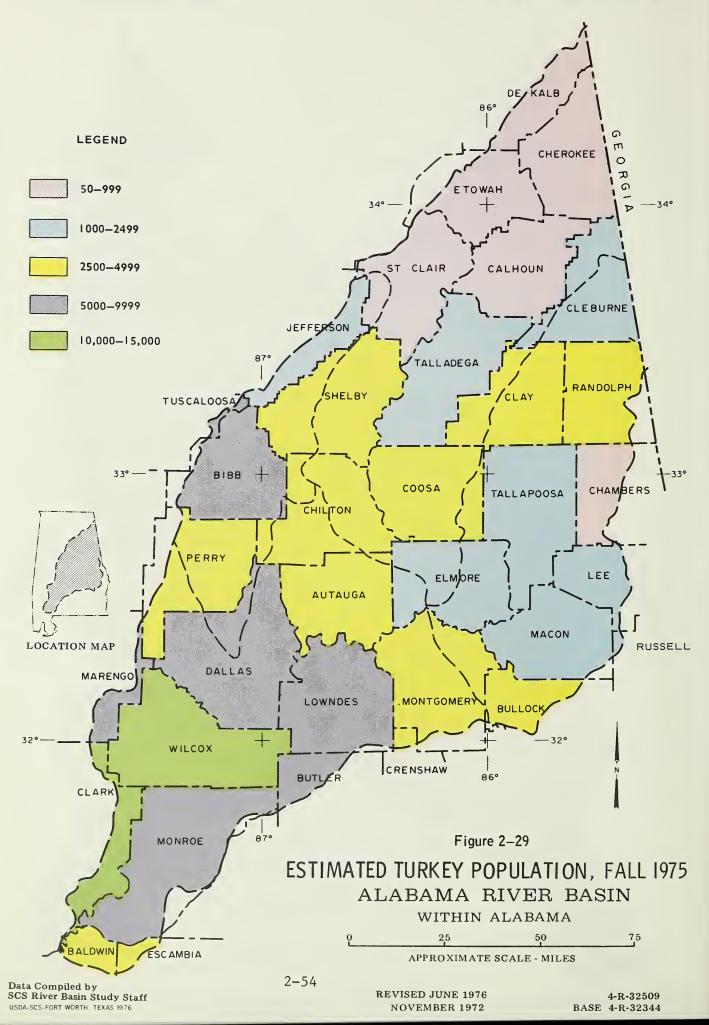

	ESTIMA	TED KILL	MAN-DAY	S EFFORT	MAN-DAYS
SPECIES	STATE	BASIN	STATE	BASIN	PER KILL
Deer	120,727	40,240	2,006,080	668,700	16.62
Turkey	26,299	10,500	291,609	116,600	11.08
Quail	2,310,190	77,100	807,784	244,500	.35
Dove	3,996,080	1,332,000	824,192	269,300	.21
Squirrel	2,082,590	693,500	1,191,380	397,100	.57
Rabbit	946,549	315,500	727,554	242,500	.77
Duck	158,974	15,900	120,942	12,100	.76
Others 2/	_	_	895,430	292,600	-
TOTAL			6,864,971	2,243,400	

1/ Data Source: Alabama Department of Conservation and Natural Resources.
 2/ Includes fox, bobcat, opossum, raccoon, geese, woodcock and snipe.

The deer population in the river basin is about 300,000 compared to a state population of more than one million (see figure 2-27). Every county in the basin had an open season on deer in 1974-1975. Figure 2-28 shows the deer population by counties based on a relative density expressed as high medium or low. Density ratings were calculated by dividing the land area in each county, excluding urban and built-up areas by the estimated deer population. With the exception of Cleburne County, the highest deer populations and deer concentrations are located in the southwestern portion of the river basin.


The eastern wild turkey, perhaps the most magnificent of all game birds, is native to the Southeast. Through a dedicated program of trapping, relocation, and protection, Alabama has become one of the leading states in the production of wild turkeys. The state population (Fall, 1975) was estimated to be about 275,000 with approximately 106,000 in the Alabama River Basin.

Turkeys are found throughout the basin. The highest populations are in the southwestern portion, primarily in Dallas, Lowndes, Wilcox, Monroe, and Clark Counties (see figure 2-29). In 1974-75, there was an open season

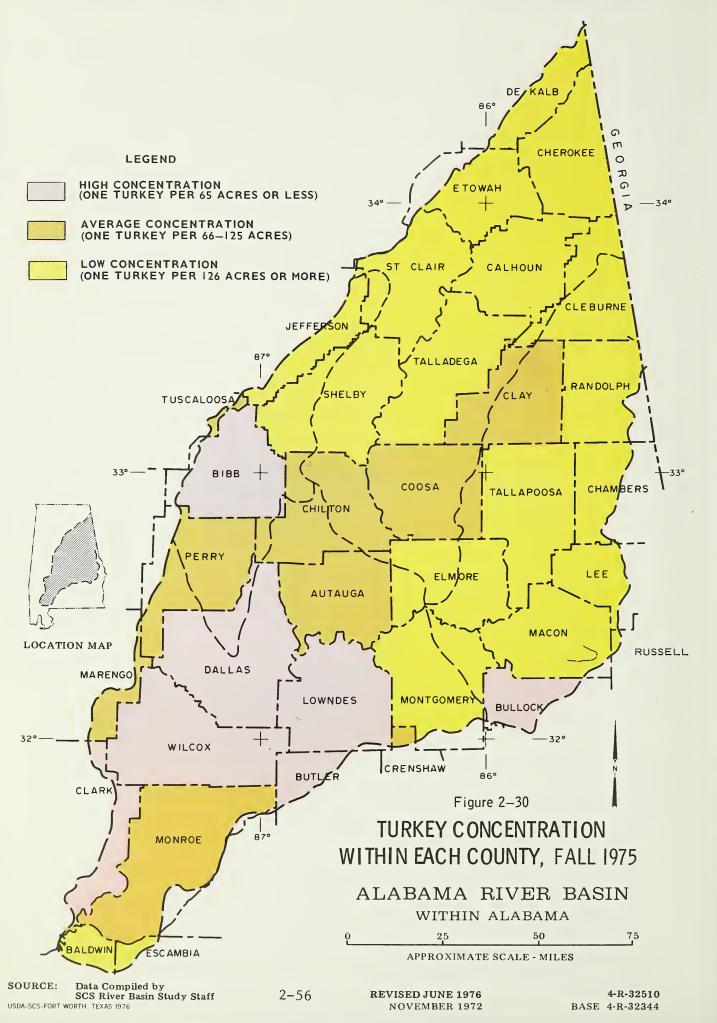

U.S. DEPARTMENT OF AGRICULTURE

SOIL CONSERVATION SERVICE

U.S. DEPARTMENT OF AGRICULTURE

SOIL CONSERVATION SERVICE

for turkey hunting in all counties of the basin except in DeKalb, Cherokee, and Etowah. Figure 2-30 shows the relative concentration of turkeys within each county of the basin. Turkey populations normally fluctuate from year to year with changing environmental conditions. However, where large tracts of diversified tree cover are cleared for monocultural practices wild turkey populations will be adversely affected.


Twenty-six species of wild ducks and four species of wild geese are found in Alabama and in coastal waters of the state. Only one species--the wood duck--normally breeds in appreciable numbers in the state. To some extent, ducks use nearly all ponds, lakes, reservoirs and other water areas in Alabama. However, a recent study in North Alabama indicates that 80 to 90 percent of the young wood ducks are produced in beaver ponds and natural ponds. During the 1974-1975 season, about 13,000 ducks and geese were harvested in the river basin.

Wildlife--Non-Harvest Values -- Many positive values can be realized from wildlife without actually harvesting the animals or removing them from their natural surroundings.

Every year more and more people are becoming interested in wildlife; yet the proportion of hunters in the total population is decreasing. For example, more people are visiting wildlife refuges than ever before; but the sale of duck stamps is below the levels reached two or three decades ago. People are becoming more and more interested in watching, hearing, seeing, photographing, and otherwise enjoying wildlife without harvesting it. This is somewhat of a departure from tradition, of course. It is an interest that must be recognized in managing wildlife not only for the present, but also for future generations.

More than eight million people participated in bird watching in 1965 and more than three million people age 12 and over took nature walks during that year. By comparison, the same study revealed that slightly fewer than 17 million people age 11 and over participated in hunting in 1965. The most striking aspect of these figures is the change from a similar study in 1960. About 1.5 million more people took nature walks in 1965 than in 1960, but 100,000 fewer people participated in hunting. Other published reports reveal the same general pattern--an increased interest in non-harvest, or non-consumptive, uses of wildlife.

In all probability, the increase in demand for wildlife and wildlifeoriented recreational activities within the basin will continue at an accelerated pace. It appears, therefore, that a desirable wildlife management objective should be to provide the greatest satisfaction from wildlife for all the people. This would include effective habitat preservation and management for all wildlife not only for hunting but also for non-consumptive uses.

Birdwatching is most often a group activity with many members of a group or club wandering the same woods. An element of competition is present. The number of either birdwatchers or nature photographers, or both, who can occupy the same area is limited largely by their ability to keep quiet.

Flora and Fauna

The Alabama River Basin, is indeed, rich in diversity of native flora and fauna. Biologically, unique areas such as the Black Belt Swamps, lying on the Selma chalk, Little River Canyon, Cheaha Mountain Area, and large granite outcroppings near Wadley, Alabama, support unique plant and animal life.

This section is devoted primarily to the rare and endangered plant and animal species in the basin. A current listing of these organisms can be found in appendix tables 17 and 18.

Information regarding the status of the plant and animal species listed in the tables was compiled by authorities at Auburn University and from results of a Threatened and Endangered Plants and Animals Symposium held at the University of Alabama in March 1975.

Few species of plants or animals have been sufficiently studied that we can state with certainty their place in the biological complex, their relationship with other organisms, or ultimately their influence on man's welfare. Every living species of organism is a complex of genetic material not duplicated by any other organism. Extermination of a species cannot be corrected or reversed. From a strictly commercial standpoint, the extermination of a species could very easily result in depriving mankind of a product that might be of considerable value.

Obviously, rare and endangered organisms should be given careful consideration in future planning efforts. More comprehensive listings and detailed location maps are available in publications from appropriate agencies and universities.

Wetlands

Natural wetlands such as marshes, swamps, and overflow lands have many inherent values and a variety of uses. These wetlands are valuable in storage of ground water, retention of surface water, stabilization of runoff, reduction of runoff, production of timber, creation of firebreaks, and the production of game as well as non-game organisms.

During the past half century, there has been a continual decrease in the acreage of wetlands in the basin. Furthermore, as human populations continue to expand, wetland is drained, and reservoirs are developed the total wetland acreages will become smaller, and the job of preserving

and developing wetlands for wildlife and other uses will become correspondingly bigger and more expensive. The inventory of existing wetlands in the basin is expected to facilitate total resource planning in the future (figure 2-31). The wetlands were classified by types as defined in USDI, Circular 39.

Table 2-9 presents total flood plain acres by subbasin. Almost all of the wetlands are within flood plains; however, a large portion of the flood plains delineated are Type 1 (annually flooded). Type 5 wetlands were primarily deep lakes and reservoirs and were not shown in figure 2-31 since the permanent waters of streams, reservoirs, and deep lakes are not included in the definition.

Less than 1 percent (36,900 acres) of the Alabama River Basin is classified as Wetlands Type 2, 3, 4, 6, and 7 (see table 2-10 and appendix table 19B). About 95 percent (34,500 acres) of these wetlands were tabulated as Type 6 or Type 7. Several hundred acres of mudflats are exposed each fall in power company reservoirs. These areas were not tabulated although they have a potential for waterfowl development. Usually the power company impoundments are managed primarily for generation of electricity and summertime, water-based recreational activities. The inventory (figure 2-31) pointed out an obvious lack of natural wetlands in the Alabama River Basin. Seasonally flooded bottom lands and beaver impoundments represent most of the wetlands area of the basin.

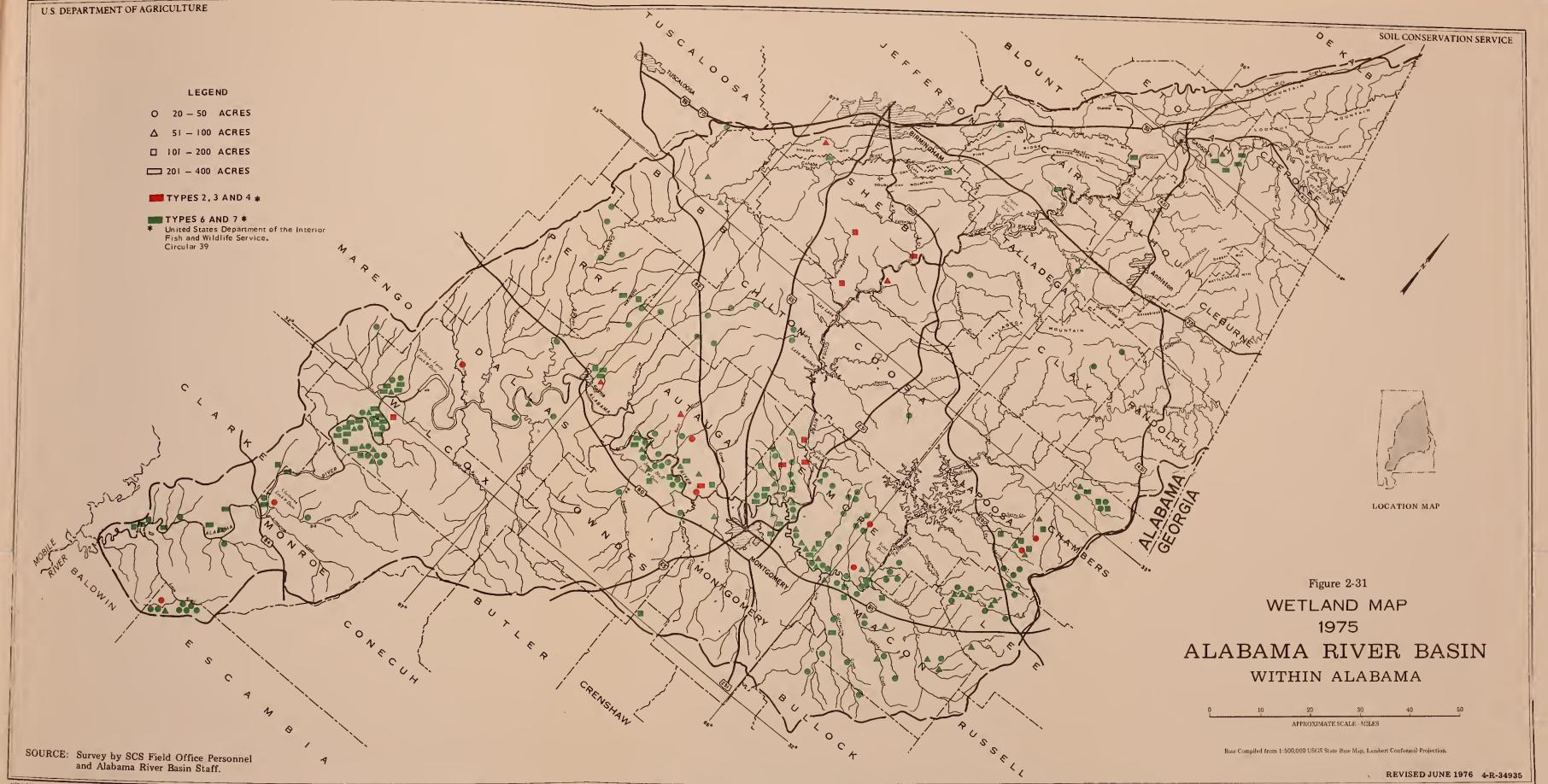

	FLOOD PLAIN 1/
SUBBASIN	(Type 1 Wetland)
	Acres
Alabama	375,300
Cahaba	118,300
Coosa	188,200
Tallapoosa	179,600
TOTAL	861,400

Table 2-9 -- Potential acreage of Type 1 wetland by subbasin, Alabama River Basin, 1975.

Table 2-10 -- Acreage of wetland by type in the Alabama River Basin, 1974.

			TY	PE			
BASIN	2	3	4	5	6	7	TOTAL
				Acres	5		
Alabama River	200	1,000	300	<u>1</u> /	6,900	28,500	36 ,9 00

1/ Type 5 wetland is primarily impoundments and was not included in this inventory.

Places of Historical, Archaeological and Scenic Value 1/

The National Historic Preservation Act of 1966 (80 Stat. 915) provides for the preservation of certain properties including historic districts, sites, buildings, structures, and objects that are significant in American history, architecture, archaeology, and culture. Section 106 of the act requires that all federal agencies must take into account the effect of any work undertaken on sites that appear on the National Register of Historic Places.

Basic data was collected from the Federal Register, Alabama Historical Commission, the Regional Planning and Development Commissions in the basin, and the Appraisal of Potentials for Outdoor Recreation Development for each county in the river basin. These sources can be consulted for a more comprehensive listing.

In this study, an attempt was made to identify those sites that are most likely to be affected by water and related land resource development projects (see appendix table 20). In general, homes, stores, churches, graveyards, museums, and monuments were not included. Types of sites listed are: (a) all sites listed on the National Register of Historic Places as of April 1975, (b) battle sites, or Indian villages that played a significant role in the early settlement of the state, (c) covered bridges, (d) undeveloped natural and scenic areas of unusual aesthetic or scientific value. Agencies, organizations, and individuals planning resource development projects that could result in the unintentional destruction of historical, archaeological, and scenic sites should consult the information sources listed in the preceeding paragraph.

One extensive area of historical interest in the basin is Bartram's Trail, in the eastern part of the basin and along the southeastern boundary (see figure 2-32). This is the route followed by the noted naturalist, William Bartram, in 1775. Records of his travels contain much valuable information about plants, birds, insects, reptiles, mammals, and fish found in the basin during this period. For more information pertaining to Bartram's travels see appendix 21.

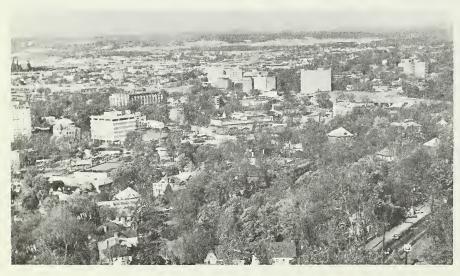
1/ The identification of fossil sites was considered to be outside the scope of this study. There are several important fossil sites in the basin, particularly along the chalk bluffs adjacent to the Alabama river. Information concerning these sites can be obtained from the Geological Survey of Alabama.

Figure 2-32 -- Approximate route of Bartram's travels, Alabama River Basin, 1775-1776.

The Alabama River Basin has a varied landscape. Typical scenes are . . .

forest land,

pastureland,



and cropland.

The Alabama River Basin has many . . .

scenic areas,

urban & built-up areas,

and wetlands.

CHAPTER 3

HUMAN AND ECONOMIC RESOURCES

General

This chapter presents a brief examination of economics, agriculture and forestry. More detailed analyses and projections are available in a separate report, <u>An Economic Base Study of the Alabama River Basin Area</u>, authored by the Economic Research Service and Forest Service in May 1973. Information herein updates and summarizes selected items from the more extensive base report.

Population and Urban Growth

Historically, basin population growth has been slower than that of the state. From 1950 to 1973 population of the study area increased by only 9 percent compared to Alabama's 16 percent. Total population reached 1,039,000 in 1973, about 29 percent of the state's inhabitants. This percentage has been fairly constant in recent years (see table 3-1). Eight basin counties declined in population between 1960 and 1973. The national growth rate during the 13 year period was about 1.01 percent annually, roughly double that of the basin study area.

In the Alabama Basin, urbanization has occurred steadily and uniformly in all subbasins as illustrated in figure 3-1 (see appendix table 22A for details). One-half of the basin population was listed as urban in 1950, two-thirds in 1970, and projections indicate about three-fourths of the population will be urban by 1990.

Migration generally measures the desirability of an area. People will go where job opportunity exists. Other factors, however, can weigh just as heavily in a person's decision to migrate. Marion Clawson addressed this point during a series of meetings on balanced growth for the Nation. 1/ Speaking on migration, Clawson noted, "By and large, the non-metropolitan areas are deficient in many of the important social services. Schools are generally poorer, medical care is poorer-or nonexistent...Libraries, sports, and cultural activities generally are less available. It is often the poverty of social life as well as the deficiency in job opportunities which drives the young people to leave the smaller towns and rural areas." Apparently, this is the case in the Study Area. Between 1950 and 1960, the migration rate for 20-29 year-olds exceeded 60 percent in five counties, 50 percent in another five, and 40 percent in ten other counties. Table 3-1 -- Population trends, Alabama River study area, Alabama, southeastern states and the United States, selected years, 1950-1973.

1973 1/	211,000 N.A. 3,539	1,039 329 103 408 199	1.7 29.4	ee .
1970	204,766 27,413 3,444	998 308 102 393 195	1.7 29.0	and Tenness
1960	179,323 23,326 3,267	967 312 99 381 184	1.8 29.9	th Carolina,
1950	151,323 19,551 3,062	949 298 96 366 189	2.0 30.9	Mississippi, Sou
UNIT	Thous. Thous. Thous.	Thous. Thous. Thous. Thous. Thous.	Pct. Pct.	a, Georgia, Louisiana,
AREA	United States Southeastern U. S. <u>2</u> / Alabama	Alabama Basin Alabama Subbasin Cahaba Subbasin Coosa Subbasin Tallapoosa Subbasin	Alabama U. S. Alabama Basin Alabama	1/ Preliminary 2/ Includes Alabama, Florida, Georgia, Louisiana, Mississippi, South Carolina, and Tennessee.

U. S. Bureau of the Census, <u>Census of Population</u>, and Bureau of Business Research, University of Alabama. Includes Alabama, Florida, Georgia, Louisiana, Mississippi, South Carolina, and Tennessee.

Even though out-migration slowed somewhat between 1960 and 1970, six basin counties experienced net inmigration while 28 sustained out-migration. This loss of such a large share of the childbearing population must be reversed if healthy economic growth is to occur.

Income

Personal income growth in both the study area and Alabama kept pace with national growth during the 1959 to 1972 period. Table 3-2 indicates income in each of the three areas increased by about 57 percent through 1969; however, in recent years, Alabama's income growth has begun to accelerate as a result of the state's emphasis on vocational training and industrialization.

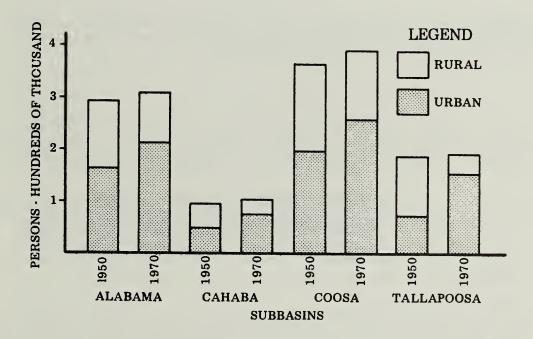


Figure 3-1 -- Urban-rural composition of the population, 1950 and 1970, Alabama River Basin and Subbasins.

INCOME	UNIT (Dollars)	1959	1969	1972
Total personal U.S. Alabama Basin	Bil. Mil. Mil.	437 5,373 1,514	690 8,444 2,380	756 9,699 2,764
Per Capita U. S. Alabama Basin		2,441 1,685 1,557	3,416 2,460 2,392	3,620 2,757 2,696

Table 3-2 -- Total personal and per capita income, United States, Alabama and the Alabama River Basin, 1959, 1969, and 1972. 1/

1/ 1967 dollars.

Economic Report of the President, 1973; Center for Business Research, University of Alabama, and OBERS projections developed jointly by the U. S. Departments of Commerce and Agriculture.

Between 1969 and 1972, personal income within the basin rose by 16 percent while Alabama's total climbed 15 percent and the U. S. average only 10 percent. Ninety-five percent of all basin carnings were from non-farm sources.

Only Jefferson County reported a 1972 per capita income above the United States average, figure 3-2. Most basin counties were well below the national mean; in fact, 11 reported per capita incomes below \$2,200, less than one-half the United States figure. In 1969, 17 counties were in this category, thus the picture is seen to be improving.

In addition, all but two of the basin's 28 primary counties increased their per capita income relative to the U. S. between 1969 and 1972 (see figure 3-2).

Employment

Substantial employment gains were registered in the basin between 1960 and 1970. The most notable were in service and manufacturing employment,

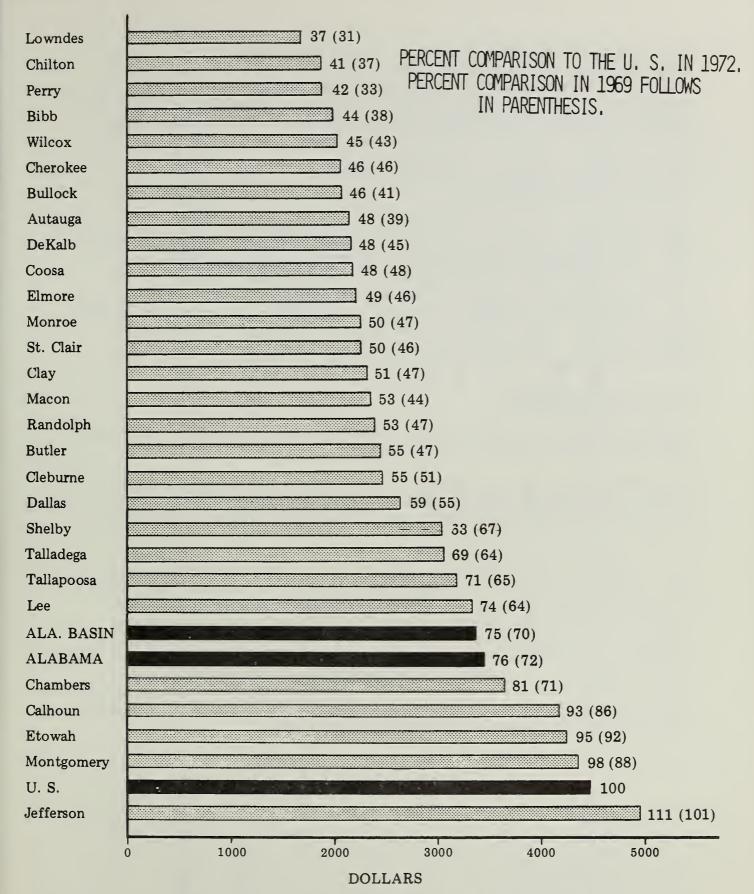


Figure 3-2 - Per capita income in Alabama River Basin counties compared to the United States, 1972 dollars.

the two largest sectors, table 3-3. These data account for civilian employment only and represent a work force of persons 14 years old and over. Total employment increased 25 percent, while population was increasing by only 2 percent during this period. Most of the employment growth in the basin paralleled the national growth rate, rather than increasing as a result of attractive employment conditions in the area.

Agricultural employment is declining rapidly. In 1970, less than one job in 20 was agricultural.

Unemployment in the basin reached 7 percent in January 1975, the highest rate since 1960 as shown in table 3-4 (county details in appendix table 22C). The figure was still below the average for the remainder of the southeast and the U. S., 8.2 percent. More than one-third (370,000 persons) of the basin's population reside in areas of high unemployment, i.e., unemployment exceeding 8 percent. Unemployment appears to be most critical in the Coosa Subbasin with Etowah, Talladega, Calhoun and Dekalb counties all reporting from 9 to 12 percent of the work force unemployed during the first quarter of 1975.

Industrial Development

Alabama finished last among eight southern states in expanding industrial employment in the last half of the 1960's.

The problem is not going unnoticed. The Alabama Development Office is placing top priority on attracting industry. In 1972, a record 193 new industries located in the state, up substantially from the 128 reported in 1969.

Basin industrial development is compared to statewide growth in table 3-5. Overall, the study area has been attracting a proportionate share of the new plants locating in Alabama; however, the average capital investment for new or expanded plants has been well below the state average. This is changing. In 1974, \$294 million of the \$843 million invested in new plants went to basin industries; a much higher share than in the past. The total of new industrial jobs dropped from a record 14,738 in 1972 to 3,864 in 1974. Employment statistics fluctuate widely from year to year, however, the Basin normally accounts for about 30 percent of the states' new industrial positions.

1970.
to
1940 to 19
Area,
Study
Basin Study
River
Alabama
by major categories,
y major
ployment b
Em
3-3
Table 5

Agricultural 121,037 77,373 32,276 19,360 Mining 5,664 3,439 1,881 1,200 Mining 5,664 3,439 1,881 1,200 Contract construction 8,732 17,023 20,765 24,079 Manufacturing 54,817 80,910 87,274 111,748 Transportation, comm., 10,101 16,105 16,721 17,445 Wholesale & ret. trade 26,692 45,580 52,118 64,280 Finance, ins., & real estate 3,557 6,397 9,099 10,948 Finance, ins., & real estate 3,553 6,397 9,099 10,948 Services 49,388 61,096 76,830 10,948 Government 10,163 19,968 31,867 43,044	EMPLOYMENT CATEGORIES	1940	1950	1960	1970
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			N	umber	
5,664 $3,439$ $1,881$ truction $8,732$ $17,023$ $20,765$ 2 $54,817$ $80,910$ $87,274$ 11 $54,817$ $80,910$ $87,274$ 11 $54,817$ $80,910$ $87,274$ 11 $5,0001$ $16,105$ $16,721$ 1 $6,001$ $16,105$ $16,721$ 1 $6,101$ $16,105$ $45,580$ $52,118$ 6 $6,1,101$ $16,105$ $6,397$ $9,099$ 12 $6,1026$ $3,557$ $6,397$ $9,099$ 12 $6,1026$ $61,096$ $76,830$ 12 $10,163$ $19,968$ $31,867$ 4 $290,151$ $327,891$ $328,381$ 41	ltural	121,037	77,373	32,276	19,360
truction $8,732$ $17,023$ $20,765$ 54,817 $80,910$ $87,27454,817$ $80,910$ $87,27481,0101$ $16,105$ $16,72116,72110,101$ $16,105$ $16,72110,9201$		5,664	3,439	1,881	1,200
$ \begin{array}{cccccc} 54,817 & 80,910 & 87,274 \\ & & & & & & & & & & & & & & & & & & $	ct construction	8,732	17,023	20,765	24,079
10,10116,10516,72126,69245,58052,1183,5576,3979,09949,38861,09676,83010,16319,96831,867290,151327,891328,381	cturing	54,817	80,910	87,274	111,748
26,692 45,580 52,118 3,557 6,397 9,099 49,388 61,096 76,830 10,163 19,968 31,867 290,151 327,891 328,381	ortation, comm., utilities	10,101	16,105	16,721	17,445
3,557 6,397 9,099 49,388 61,096 76,830 10,163 19,968 31,867 290,151 327,891 328,381	ale & ret. trade	26,692	45,580	52,118	64,280
49,388 61,096 76,830 nt 10,163 19,968 31,867 AL 290,151 327,891 328,381	e, ins., & real estate	3,557	6,397	، 660 A	10,948
10,163 19,968 31,867 290,151 327,891 328,381	es	49,388	61,096	76,830	120,858
290,151 327,891 328,381	ment	10,163	19,968	31,867	43,044
	OTAL	290,151	327,891	328,381	412,962

	PERCENT OF	WORK FORCE	UNEMPLOYED
ITEM	MAR. 1973	DEC. 1974	JAN. 1975
Alabama Basin	3.6	5.8	7.0
Alabama	3.8	5.7	7.2
Southeastern states	Not Ava	ailable	8.2
U.S.	4.8	6.7	8.2
Conter for Business and	Economic Research	University	of Alabama

Table 3-4 -- Unemployment rates, Alabama River Basin, March 1973 to January 1975.

center for Business and Economic Research, University of Alabama

Table 3-5 -- Industrial Development, Alabama River Basin, 1968-1974.

ITEM	UNITS	1968	1969	1972	2 1974	
New industries						
Plants	No.	33	31	46	21	
Capital investment	\$1,000	13,266	18,718	68,306	293,652 1	1/
New jobs created	No.	3,762	3,075		1,768	-
Avg. investment	\$1,000	402	604	1,485	13,983	
Avg. no. jobs	No.	114	99	121	84	
Expanded industries						
Plants	No.	75	60	105	164	
Capital investment	\$1,000	36,225	33,600	96,550	202,182	
New jobs created	No.		2,340		2,096	
Avg. investment	\$1,000	483		919		
Avg. no. jobs	No.	92	39	88	13	
Basin as a percent of						
the States						
New industries:						
Plants	Percent	28	24	24	24	
Capital investment	Percent	9	11	23	35	
New jobs	Percent	38	17	27	20	
Expanded industries:						
Plants	Percent	34	35	21	29	
Capital investment	Percent	12	10	18	17	
New jobs	Percent	46	24	41	23	
Alabama Development Office, I						

Alabama Development Office, Industrial Development Report, 1968, 1969, 1972, and 1974.

1/ Figure includes a \$250 million chemical refinery announced for Macon County. This one plant accounts for 85 percent of the new capital planned for investment in the Basin in 1974, and distorts the average investment per plant. Excluding the Macon County plant results in an average investment of \$2,183,000 per plant, rather than \$13,983,000.

Other Social and Cultural Factors

The 1970 Census of Population reported that 41 percent of the basin's residents over 25 had completed high school compared to only 27 percent in 1960. The State average in 1970 was also 41 percent. Median grade completed was 10.6 years compared to 10.8 years statewide. The pupil-teacher ratio of 27:1 is slightly higher than the national average of 22:1.

During the 1968-1969 school year, there were 3,555 dropouts from among the 253,000 school children, or 14 dropouts per 1,000 children, compared to 38 per 1,000 in the age 5 to 17 population nationwide.

There are definite problems in both the quantity and quality of medical aid, particularly in rural areas of the Alabama River Basin. Lowndes County, for example, with a 1970 population of 12,897, had no doctors, hospitals, or nursing homes in the county. Coosa County had only one doctor and no hospital facilities. The shortage of doctors appears to be most critical in the Coosa Subbasin where there were 200 physicians for a population of almost 400,000 or one doctor per 2,000 persons. The 1970 state average was one per 1,370 persons while the national figure was one per 1,200. In 1970, 43 of Alabama's 140 hospitals were located in the Study Area. Combined they offer approximately 4,000 beds, or one per 250 persons. This ratio is indicative of the severe shortage of hospital beds. In 1968, the American Hospital Association reported one bed for each 120 persons in the U. S.

The importance of good schools and hospitals, skilled physicians, adequate recreational areas, and other social and cultural opportunities is often overlooked. Existing conditons must be improved if the area is to significantly increase its desirability and growth potential.

Agricultural Economy

During the decade of 1959-1969, farm numbers in the study area decreased by 40 percent, dropping from 35,120 farms to 20,795 (see table 3-6). This rate of reduction was much greater than the national decline of around one-third of all farms during the same period. Farmland values in Alabama are increasing rapidly. Between 1970 and 1971, Alabama and Delaware led the U. S. in the amount of increase in average value of farmland. More recently, Alabama's average value per acre of farmland rose 25 percent between 1973 and 1974. This is placing additional pressure on the small operator, making it difficult to obtain good agricultural land, while creating a lucrative opportunity for him to enter other types of employment. Of the 20,795 farms, only 7,913 were classified as commercial, i.e., with sales of \$50 or more. Almost two-thirds of the basin's farms were operated on a part-time or part-retirement basis.

Table 3-6	Farm	characteristics,	Alabama	River	Basin,	and	Alabama,
	1954.	-1969.					

ITEM	1954	1959	1964	1969
Number of farms	1554		1504	1305
Study area	56,620	35,120	29,044	20,795
Alabama	176,956	115,788	92,530	72,491
Commercial				
Study area	26,628	16,350	14,925	7,913
Alabama	95,101	57,840	51,912	29,639
Average size, acres				
Study area	127	161	181	218
Alabama	118	143	164	188
U. S. Bureau of the (Census, Census (of Agriculture,	Alabama, select	ed years.

The trend as reflected by table 3-7 shows that poultry is firmly established as the most important enterprise in the basin, accounting for 40 percent of the increase in agricultural sales during the 1964-1973 period. Soybeans have emerged as a leading money crop and will undoubtedly replace cotton as the top money making crop in the basin in 1975.

Basin agricultural sales reached \$331 million in 1973, an average of about \$19,000 per farm (see table 3-7). The average basin farmer netted \$6,230 for his 1973 operations. This compared favorably with the \$6,370 average for all Alabama farms, but remained well below the U. S. net return of about \$10,000 per farm.

				AL DO	
	BAS	IN'S SHARE OF	STATE S	ALES	
ITEM	1964	1973	1964	1973	
	(Thousan	d Dollars)	(Per	cent)	
Total receipts 1/	157,300	331,000	26	25	
Livestock receipts	95,600	248,700	28	28	
Poultry	47,300	114,900	25	24	
Cattle and calves	29,100	86,900	41	35	
Dairy	14,000	25,300	35	38	
Hogs	5,200	21,600	16	21	
Crop receipts	61,700	82,300	23	22	
Cotton	47,100	32,400	31	33	
Soybeans	1,000	20,500	9	21	
Vegetables & potatoes	3,000	11,200	16	26	
All other crops	10,600	18,200	21	13	

Table 3-7 -- Cash receipts from farm sales, Alabama River Basin, 1964 and 1973.

1/ Current dollars.

U. S. Bureau of the Census, Census of Agriculture, Alabama, 1964, and Alabama Agricultural Statistics, 1973, Alabama Crop and Livestock Reporting Service.

Crop Production

Crops are no longer the major source of agricultural income in Alabama. In 1973, only one of every four dollars received from farming resulted from crop sales.

The rapid decline of cropland harvested in both the state and basin is shown graphically in Figure 3-3. Alabama's acreage dropped from 7.2 million harvested in 1935 to a record low 2.7 million in 1970, then climbed slightly to 3.4 million in 1975. Basin figures follow the same pattern.

In spite of this reduction in cropland used, output continued to increase as productivity per acre of major crops increased 225 percent, better than 5 percent a year (see table 3-8). This increased productivity was achieved through adoption of more efficient farm organization, greater use of chemicals and fertilizers, improved crop varieties, and shifts to more productive land.

Table 3-8 -- Average Yield of Major Crops, Alabama Basin, 1930 to 1975.

			Average	Yield Per	Acre		% Increase
		1930-	1940-	1950-	1960-	1970-	Mid 30's to
Crop	Unit	1939	1949	1959	1969	1975	Mid 70's
Corn	Bu.	12	16	22	33	43	258
Cotton	Lbs.	215	274	336	409	455	112
Soybeans	Bu.	5.7	13.2	19.5	22.7	23.0	304

Recent production of basin crops is shown in table 3-9. Acreage harvested dropped steadily between 1964 and 1970, however, strong consumer demand and record prices for farm products pushed acreage harvested to 823,000 acres in 1975.

Feed crops now account for 48 percent of the basins harvested acreage, followed by oil and fiber crops (47 percent) and food crops (5 percent).

In 1959, 576,000 acres of corn were harvested from basin farms; this figure fell to a record low of 114,000 acres in 1973, then rose to 123,400 acres in 1975. Yields reached 54 bushels per acre in 1975.

During the past ten years, basin farmers have consistently produced 35 to 40 percent of the states' hay. In 1975, 443,000 tons were grown on 243,600 acres, yielding 1.9 tons per acre. Oats and grain sorghum remain of minor importance.

Trends in cotton production are similar to those of corn. Acreage has declined, yields are erratic, and production is trending downward over the long run. More than 3 million acres of cotton were grown in Alabama as late as 1933. In 1975, the state harvested only 370,000 acres of

CROPLAND HARVESTED

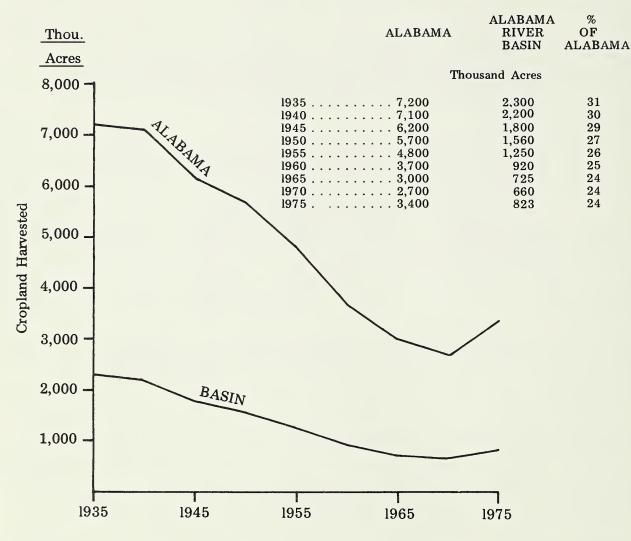


Figure 3-3 -- Trend in Cropland Harvested, Alabama and the Study Area, 1939 to 1975.

1975.
and
1970,
1964,
Basin
River
Alabama
production,
and
harvested
Acres
crops:
Principal
ł
3-9
Table

11117						
UNLT OF PRODUCTION	1964 ACRES	4 PRODUCTION	19 ACRES	1970 PRODUCTION	19 ACRES	1975 ACRES PRODUCTION
E	101 700			000 912	002 200	
IOUS	199, /UU	294,000	00c, 102	210,000	240, 200	401,910
Bushels	262,257	8,526,000	133,135	2,905,000	123,400	6,663,600
Bushels	13,210	538,000	9,415	357,700	9,900	336,600
Bushels	2,087	50,666	8,075	258,000	13,600	435,200
Bales	217.870	277.328	152.971	156.143	110.600	93.320
Bushels	14,704	407,400	140,962	3,177,000	275,000	6,600,000
Pounds	3,159	2,290,000	2,288	2,157,000	2,880	7,488,000
Bushels	5,914	164,400	15,133	430,000	30,000	744,000
Cwt	10,134	608,000	9,500	669,000	11,000	737,000
Cwt	886	83,600	1,200	152,650	750	108,750
	725,921		677,779		823,430	

which 110,600 were in the Basin. Yields average slightly less than one bale per harvested acre. Cotton acreage continues to shift from south to north Alabama, particularly into the Tennessee Valley area. Future prospects for an acreage increase will depend largely on government programs and acceptance of synthetic fibers.

Soybean production is booming in all parts of the south and the study area is no exception. Basin production is up from 407,000 bushels in 1964 to a record 6,600,600 bushels in 1975. Acreage is eighteen times the 1964 level with an increased share of the state's soybeans being grown on basin farms. Basin farmers produced 21 percent of Alabama's crop, compared to 9 percent in 1964. Production within the basin is concentrated in the Alabama Subbasin.

Livestock and Livestock Products

Poultry is the single most important basin farm enterprise with sales of \$115 million in 1973. Broiler production alone contributed greater income than all crops combined, about \$88 million. More than 100 million broilers were marketed from basin farms in 1973 (see table 3-10). Egg sales produced \$26 million in 1973 to rank third behind broilers and cattle in value of sales.

The number of hogs and pigs on farms has fluctuated widely over the past 20 years, ranging from a high of 260,000 in 1959 to a low of 141,000 in 1964. There were 201,000 on basin farms in 1973 with sales of 269,000 hogs and pigs during the year. Sales grossed \$21.6 million.

Milk production in the study area has been increasing slowly while the number of dairy cows has actually declined. Average production per cow remains about two-thirds the national average. In 1973, there were 43,500 milk cows reported averaging 7,195 pounds for a total production of 313 million pounds of whole milk.

Cattle and calf sales have increased slowly since 1959, with the basin's share of state sales flucuating between 35 and 40 percent. Sale of 288,770 animals in 1973 yielded \$86.9 million. Over half of the sales occurred in the Alabama Subbasin, primarily in the Montgomery market area.

In 1973, 638 million pounds of beef and veal were produced in Alabama; 223 million pounds were from basin cattle. A breakdown of the source of production shows that 10 percent of the gain was from feedlot operations, 10 percent was from hay and other wintering rations, while the balance of gain, 80 percent, was from grazing of some type. Growing of improved pastures yielded almost 100 million pounds of beef. Roughly, one-fourth of the basin's beef output comes from woodland grazing. Woodland grazing is concentrated in the Alabama Subbasin, and the Coosa Subbasin. Most grazing in forests is on bottom lands adjacent to pastureland.

Forest types (pine) with 100 percent grass cover produce about 2,500 pounds of oven-dried forage per acre.

The grass density was estimated at 30 percent in 1972. This indicates the grazing resource is one-third of its' potential and producing 725 pounds of forage per acre per year. This will support 1,741,000 AUM's (animal unit months) of moderate grazing on favorable forest types (see table 3-11). The need for woodland grazing of cattle, however, is expected to decline sharply by 1990 with the acceleration of improved pasture and forage production.

1973.
and
1970,
1964,
Basin,
ı River
Alabama
sold,
k products
livestock
and
Livestock
3-10
Table

LIVESTOCK AND	INITS	1964	QUANTITY SOLD	1072
61000		+02	0/ET	CIET
ivestock Cattle and calves	Number	270.900	303.600	288.770
	Number	165,000	230,000	269,200
	Thousand	59,045	97,500	103,500
	Number	273,050	8,900	1/
Sheep and lambs	Number	2,053	935	1/
Livestock products				
1	Thousand lbs.	292,500	304 , 400	313,740
	Thousand lbs.	10,003	11,870	12,800
	Million	632	843	557

 $\underline{1}$ Insignificant amount.

Census of Agriculture, Alabama, 1959 and 1964, and Alabama Crop and Livestock Reporting Service estimates for 1970.

3**-**1**6**

FOREST TYPE	ACRES	FORAGE	ANIMAL UNIT MONTHS
	Thousand	Pounds/Acre	Thousand
Pine	2,765	825	1,014
Oak-Pine	1,943	625	540
Bottom land hardwood TOTAL	673 5,381	625	187 1,741

Table 3-11 -- Forest range resource, Alabama River Basin, 1972.

Forest Products

The volume of growing stock (roundwood) in 1972 was 6.7 billion cubic feet, or 902.3 cubic feet per acre, which is about average for southeastern United States. Fifty-seven percent of the growth volume was softwood, while forty-three percent was hardwood. One-half of the volume was sawtimber-size trees* (see table 3-12).

Table 3-12 -- Roundwood volumes 1/ by size classes, Alabama River Basin, 1972.

			SEEDLINGS &	
TYPE	SAWTIMBER	POLETIMBER	SAPLINGS	TOTAL
		Million	Cubic Feet	
Softwood	1,921.3	1,383.4	538.0	3,842.7
Hardwood	1,449.5	1,072.6	376.8	2,898.9
TOTAL	3,370.8	2,456.0	914.8	6,741.6
1/ Roundw	ood volumes inc	ludes forest produc	ts from sawtimber	r and

pulpwood; measured in cubic feet.

Diameter size class shows the bulk of the volume is in smaller diameter growth, mainly 6 to 13 inches diameter breast height, as shown in figure 3-4.

* A sawtimber tree is described as a live tree containing at least a 12-foot saw log meeting grade specification. Softwoods are at least 9 inches diameter breast height, and hardwoods are at least 11 inches in diameter.

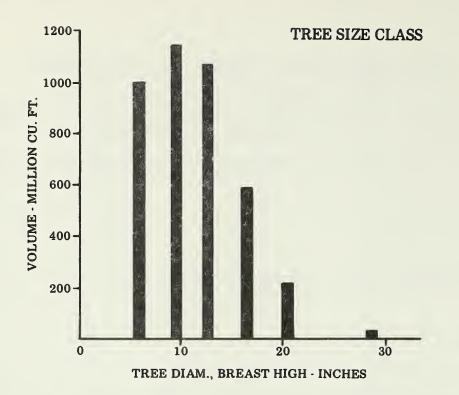


Figure 3-4 -- Roundwood volumes by tree size classes, Alabama River Basin, 1972.

An analysis of forest stands managed by landowners reveals that most stands are age classes 30 to 40 years as shown in figure 3-5. Ages of the most abundant dominant and codominant trees are used to determine stand age class.

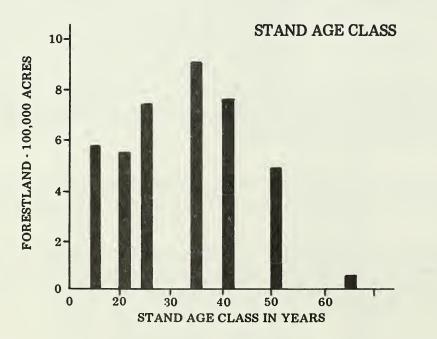
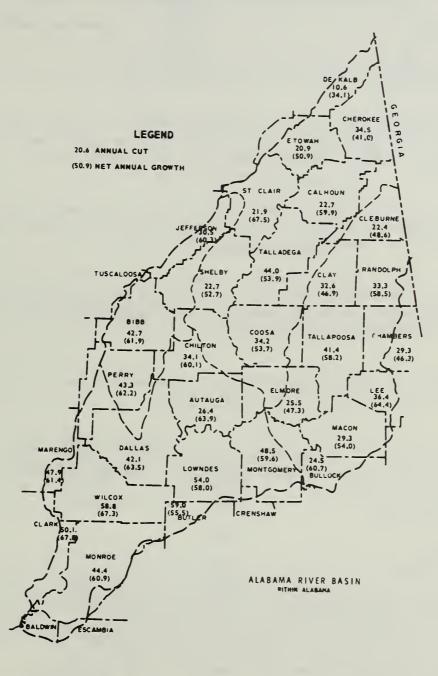
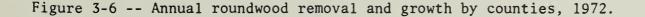




Figure 3-5 -- Forest land acres by the average age of the stands featured in management, Alabama River Basin, 1972.

Average net annual growth increased from 39.3 cubic feet per acre in 1962 to 56.1 cubic feet per acre in 1972. Net annual growth by counties is compared to removal in figure 3-6. Growth by subbasins is shown in table 3-13.

	AVERAGE
	NET ANNUAL GROWTH
SUBBASIN	CUBIC FT./AC.
Alabama	61.6
Cahaba	60.6
Coosa	51.6
Tallapoosa	54.0
Weighted average	56.1

Table 3-13 -- Average net annual roundwood growth, Alabama River Basin, 1972.

Timber removals between 1962 and 1972 increased from 27.7 cubic feet per acre to 34.1 cubic feet per acre. The 1971 cut for the basin was 255 million cubic feet. Timber removal volumes and net annual growth are shown in figure 3-6.

Increased capital investments in forest industry since the early 1960's have resulted in increased primary production as well as increased value added through secondary manufacturing (see figure 3-7).

Three paper mills, with a 24-hour pulping capacity of 2,850 tons, have been constructed in the basin since 1964. Locations of forest industries are shown in figure 3-8. Number of employees and wages for forest based industries for 1970 are shown in table 3-14.

Table 3-14 -- Number of employees and annual wages attributed to forest industry, Alabama River Basin, 1970.

		TOTAL ANNUAL WAGES
TYPE OF ACTIVITY	NO. EMPLOYEES 1/	(1,000 DOLLARS)
Management & harvesting 2/	1300	4,643.6
Primary industry	7900	52,706.8
Secondary manufacturing		
processes	2400	11,751.8
Associated industry &		
supporting activity	400	2,445.1
TOTAL	12,000	71,547.3
1/ Much of the nart time omr	lormont in foractmu	convisor and

1/ Much of the part-time employment in forestry services and on-farm labor in timber harvesting is not shown here.

2/ An additional 22,000 part-time employees are estimated to be associated with the forest industry of the basin. At \$1,500 per part-time employee, this amounts to an additional \$33 million dollars in wages.

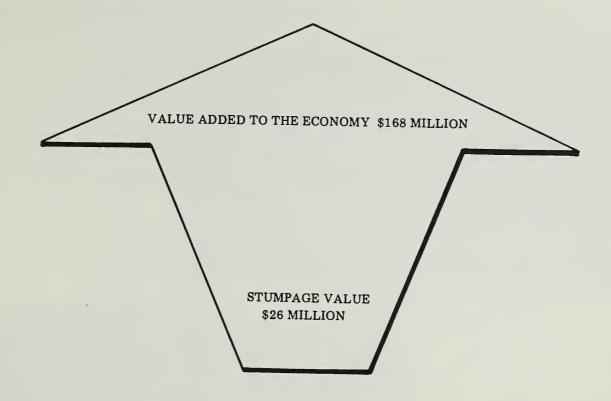


Figure 3-7 -- Stumpage values and value added to the economy by roundwood processing in the Alabama River Basin, 1970.

After the World War II building boom subsided in the late 1940's and early 1950's, profits declined for many producers in forest industry. Rising labor costs caused old plants and relatively inefficient operations to become unprofitable. Many sawmills and other manufacturers ceased operations.

New increments of forest industry are expected in the next 10 to 15 years, but not at the scale generated by the major installations of the pulp and paper industry since 1964. Increased mechanization and improved labor efficiency is the current trend in wood harvesting. Refinement in machinery in the manufacturing and harvesting process is expected in the future.

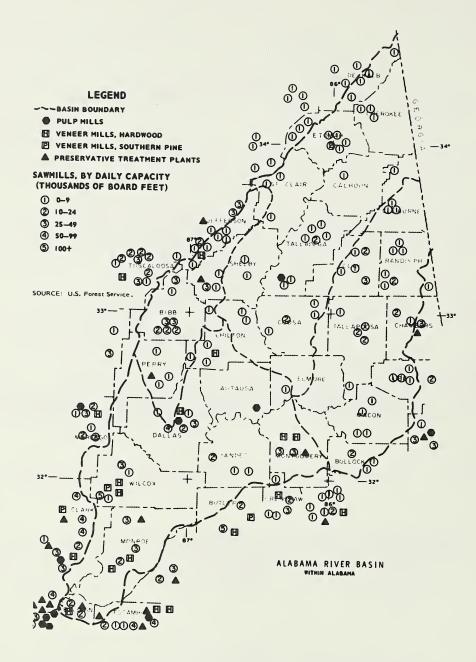


Figure 3-8 -- Primary forest industries, Alabama River Basin and adjacent counties, 1972.

Harvest from the land may be as diverse as . . .

beef,

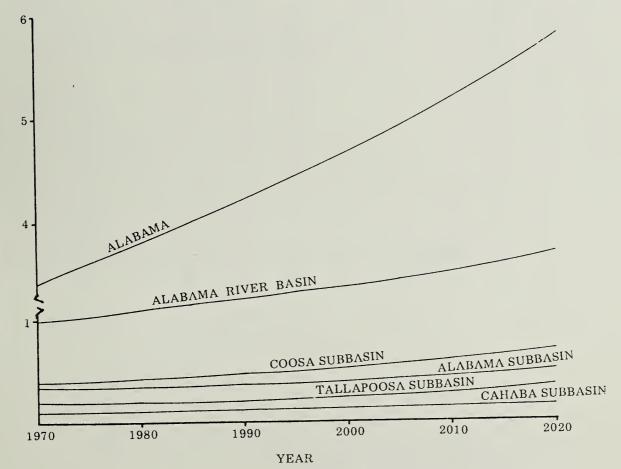
or timber.

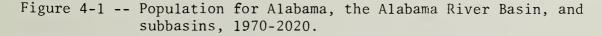

Income and employment is offered in industries such as . . .

forest management,

produce shipping,

and poultry packing.


CHAPTER 4


PROJECTIONS, PROBLEMS AND NEFDS

GENERAL PROJECTIONS

Population

Population projections for the study area counties and the state are based on estimates for Water Resource Subregions in Alabama prepared by the U. S. Departments of Commerce and Agriculture, for use in river basin planning. These estimates, commonly termed OBERS projections, assume Census of Population Series C growth rates which result in a doubling of U. S. population between 1968 and 2020. Alabama's population is projected to reach 5.8 million by 2020, with about 1.6 million residents in the Alabama River Basin (see figure 4-1). Autauga and Montgomery counties should continue to be the fastest growing basin counties, followed closely by Lee and Shelby.

In the Alabama Basin, urbanization has occurred steadily and uniformly in all subbasins. One-half of the basin population was listed as urban in 1950, two-thirds in 1970, and projections indicate about threefourths of the population will be urban by 1990 (see figure 4-2 or appendix table 22B).

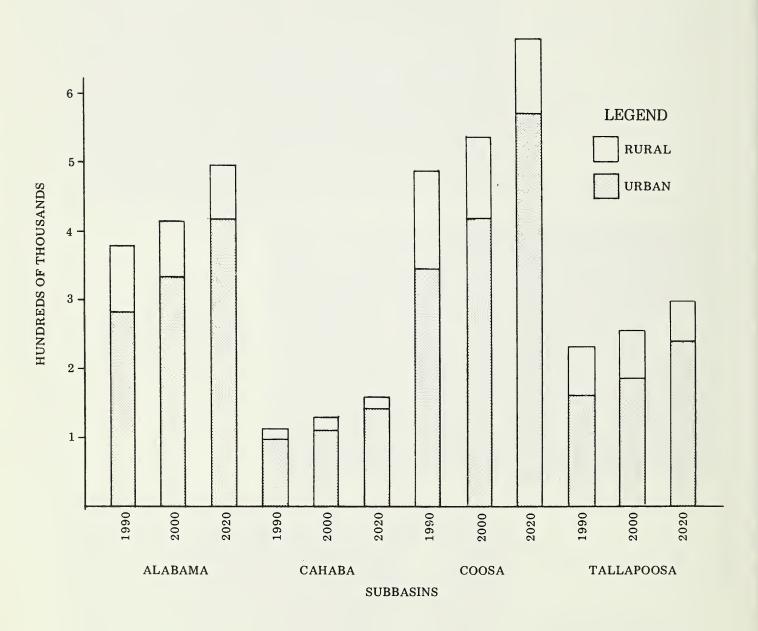


Figure 4-2 -- Urban-rural composition of population, by subbasins, Alabama River Basin, 1990-2020.

Income

In both 1959 and 1969, basin counties accounted for 28 percent of the state's total income. This share is projected to remain constant through 1990, reaching \$5.7 billion by that time (see table 4-1). This is a 4.3 percent annual increase in total personal income within the study area, equivalent to the expected national rate of growth.

Per capita basin income is expected to double by 1990, reaching almost \$4,800 (see figure 4-3). The yearly increase of 3.4 percent is slightly higher than the projected national increase of 3.0 percent annually.

Table 4-1	Total persona	l income,	United Sta	ates,	Alabama,	and	the
	Alabama River	Basin, 19	90, 2000,	2020.			

		PROJECTED	
UNITS 1/	1990	2000	2020
Bil. Dols.	1,663	2,540	5,690 2/
Mil. Dols.	20,400	31,200	70,400 -
Mil. Dols.	5,745	8,370	18,100
	Bil. Dols. Mil. Dols. Mil. Dols.	Bil. Dols.1,663Mil. Dols.20,400Mil. Dols.5,745	UNITS 1/19902000Bi1. Dols.1,6632,540Mi1. Dols.20,40031,200Mi1. Dols.5,7458,370

1/ 1967 dollars.

 $\overline{2}$ / Projections developed from U. S. Department of Commerce estimates of U. S. economic growth to 2020.

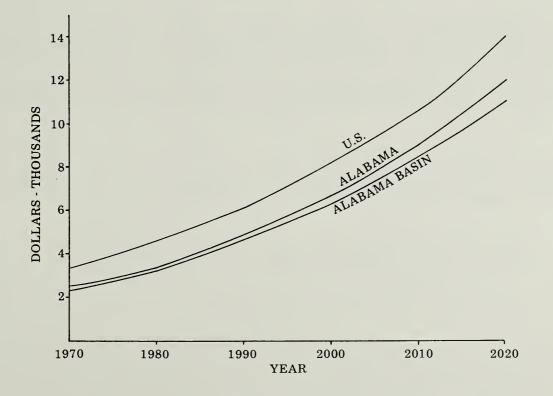


Figure 4-3 - Per capita income, U.S., Alabama, and the Alabama River Basin, 1970-2020.

Employment

The employment projections shown in table 4-2 are OBERS baseline estimates which are consistent with a projected national framework.

Employment projections should not be considered to be an optimum or idealized level of activity. They are simply conditional forecasts of the future based on an extension of past relationships.

As indicated in table 4-2, total employment in the study area should reach 487,000 by 1990, an increase of 18 percent over 1970. Most rapid gains are forecast in finance, insurance, and real estate, followed by services and trade employment.

Agricultural employment will continue to decline. By 1990, agricultural employment is expected to represent only 2 percent of total employment.

		PROJECTED	
EMPLOYMENT CATEGORIES	1990	2000	2020
		Number	
Agricultural	9,040	7,600	7,200
Mining	1/	1/	1/
Contract construction	28,500	31, 200	36,500
Manufacturing	129,500	140,700	164,100
Transportation,			
comm., & utilities	21,200	23,800	28,900
Wholesale & ret. trade	78,100	87,100	105,100
Finance, ins., & real			
estate	14,400	16,500	20,900
Services	154,200	174,900	221,600
Government	52,200	57,500	68,400
TOTAL	487,100	539,300	652,700
1/ Less than 500.			

Table 4-2 -- Employment by major categories, Alabama River Basin, 1990, 2000, and 2020.

Source: Projections developed from U. S. Department of Commerce estimates of U. S. economic growth to 2020.

Food and Fiber Output

State Production--A basic concept of river basin planning is that plans for resource development be related to the projected needs of the Nation as well as to regional needs. These needs, normally expressed in quantities of agricultural products expected from the river basin, are considered baseline estimates of future production rather than optimum levels of output. Baseline production estimates are used to pinpoint problems which may arise in the future. The estimates of future production are based on historical production relationships between the state and nation. They are in no way a goal or a constraint on the state or basin's economic activity. Neither are they a constraint in considering alternative levels of growth.

State estimates were prepared using two techniques. One was to allocate a part of the national food and fiber requirements to Alabama based on historical state-national production relationships. The other method was based on linear extension of historical production trends.

Production has been quite erratic in recent years making long term projections extremely difficult. The uncertainty of long run export demands and future energy supplies further clouds the picture. To estimate a single projected acreage or production level subject to these conditions seems very risky. For this reason, a range of future production levels was considered (see table 4-3).

Level A projections assume a continued moderate increase in the production of most commodities. Corn would continue to decline; soybean, peanut, wheat and hay output would increase though not as rapidly as in the past; beef production would expand about 2 percent annually, equivalent to the current rate of growth. Level A estimates for Alabama are related to OBERS Series C agricultural requirements.

Recent events, particularly the emphasis on increased exports of oil and grain crops, forced the consideration of an alternative higher production level, Level B, within the state. These estimates assume accelerated production of soybeans, corn, peanuts and beef. Level B figures for the state are related to OBERS E' needs.

Basin and Subbasin Analyses--Once the range of state estimates was determined, the anlysis shifted to probable developments within the Alabama River Basin. The study area was examined through the use of a state agricultural model encompassing the nine major river basins within the state.

A statewide approach was used to permit an analysis of probable production shifts in all areas of the state, rather than the Alabama River Basin alone. Least cost linear programming techniques were used to estimate land requirements, land use shifts, and cost and returns for 1990 and 2020. The cost

Alabama.
projected,
and
historical and projected
ral production, h
Agricultural
ł
4-3
Table

UNIT 1925 1935 1945 1955 1955 1975 LEVEL A 1/ LEVEL B 2/ L Thou. Thou. 35,200 48,400 43,400 59,900 37,500 35,000 10,000 33,000 33,000 50,000 10,000 33,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 53,000 50,000 5	UNIT 1925 1935 1945 1955 1965 1975 LE Thou. 35,200 48,400 43,400 59,900 37,500 35,000 42 Bu. 35,250 203,000 340 59,900 37,500 35,000 42 Bu. 35,250 203,000 340,900 209,600 258,020 55,000 42 Bu. 35,250 203,000 340 5,068 5,016 41 2 Bu. 1,352 1,059 931 1,045 85,3 312 2 Bu. 1,352 1,059 931 1,045 853 312 2 Bu. 1,379 1,746 6,292 3,848 1,400 1,134 Cons 1,348 1,400 1,134 2		CTION
UNIT 1925 1935 1945 1955 1955 1955 1955 1955 1955 1955 1955 1975 LEVEL A 1/ LEVEL B 2/ LI Thou. 35,200 48,400 43,400 59,900 37,500 35,000 10,000 33,000 33,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 66 70,00 310,1045 535,600 424,000 530,000 530,000 60,000 530,000 530,000 530,000 530,000 535,000 536,000 560,000 560,000 <td>UNIT 1925 1935 1945 1955 1965 1975 LE Thou. Thou. 35,200 48,400 43,400 59,900 37,500 35,000 42 Bu. 35,220 48,400 43,400 59,900 37,500 35,000 42 Bu. 35,220 203,000 340,900 209,600 258,020 535,600 42 Bu. 21 60 348 2,068 5,016 31,440 2 Bu. 21 059 931 1,045 853 312 2 Bu. 66 70 310 1,045 853 3,240 4 1,134 Bu. 1,372 1,059 931 1,045 853 3,240 1,134 Bu. 1,370 1,746 6,292 3,848 1,400 1,120 Bu. NA NA NA NA NA 874 1,134 Bu. NA NA</td> <td></td> <td>2020</td>	UNIT 1925 1935 1945 1955 1965 1975 LE Thou. Thou. 35,200 48,400 43,400 59,900 37,500 35,000 42 Bu. 35,220 48,400 43,400 59,900 37,500 35,000 42 Bu. 35,220 203,000 340,900 209,600 258,020 535,600 42 Bu. 21 60 348 2,068 5,016 31,440 2 Bu. 21 059 931 1,045 853 312 2 Bu. 66 70 310 1,045 853 3,240 4 1,134 Bu. 1,372 1,059 931 1,045 853 3,240 1,134 Bu. 1,370 1,746 6,292 3,848 1,400 1,120 Bu. NA NA NA NA NA 874 1,134 Bu. NA NA		2020
Thou. Bu. 35,200 48,400 43,400 53,500 33,000 33,000 33,000 33,000 33,000 33,000 33,000 33,000 33,000 530,000 540 530,000 530,000 540 530,000 530,000 530,000 530,000 540 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 540,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 500,000 500,000 500,000 500,000 500,000 500,000 500,000 500,	Thou.Bu. $35,200$ $48,400$ $43,400$ $59,900$ $37,500$ $35,000$ 12 bu. $35,250$ $203,000$ $340,900$ $209,600$ $258,020$ $535,600$ 42 Bu. 21 60 340 $340,900$ $209,600$ $258,020$ $535,600$ 42 Bu. 21 60 $340,900$ $209,600$ $258,020$ $535,600$ 42 Bu. $1,352$ $1,059$ 931 $1,045$ 853 312 $235,600$ Bu. $1,870$ $1,746$ $6,292$ $3,848$ $1,400$ $1,120$ Bu. $1,870$ $1,746$ $6,292$ $3,848$ $1,400$ $1,120$ Bu. $1,349$ 575 742 869 824 $1,134$ Pu.NANANANA 874 270 $1,220$ Bu.NANANA 869 $90,100$ $239,400$ $230,300$ 24 Bu.NANANANA $80,600$ $168,300$ $292,600$ $90,100$ $234,900$ $137,800$ 24 Parks $80,600$ $168,300$ $292,600$ $90,100$ $234,900$ $137,800$ 24 Parks $141,550$ $431,080$ $535,215$ $650,000$ 24	LEVEL A 1/ LEVEL B 2/ LEVEL A	A
Bu. 35,200 48,400 43,400 59,900 37,500 35,000 10,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 530,000 535,600 424,000 530,000 535,600 535,600 535,600 535,600 535,600 535,600 535,600 535,600 535,600 535,600 535,600 535,600 535,600 530,000 66 Bu. 1,352 1,059 931 1,045 853 312 29,360 590 500 500 510 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Bu. 21 60 348 2,068 5,016 31,440 29,360 38,500 480 290 Bules 1,352 1,059 931 1,045 853 31,440 29,360 38,500 290 Bu. 66 70 310 1,007 1,348 3,240 4,400 4,400 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 865 760 Bu. 1349 575 742 869 824 1,134 920 770 Bu. NA NA NA NA 874 270 1,280 1,975 50 770 bu. NA NA NA NA 874 270 1,280 1,975 50 770 bu. NA NA NA NA 874 270 1,280 1,975 50 770 bu. NA NA NA NA 874 270 1,280 1,975 50 770 bu. NA NA	Bu. 21 60 348 2,068 5,016 31,440 2 Bu. 1,352 1,059 931 1,045 853 31,240 2 Bu. 66 70 310 1,045 853 3,240 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 Bu. 1,870 1,746 6,292 3,848 1,134 Bu. NA NA NA NA 874 270 1,280 I.bs. 80,600 168,300 292,600 90,100 234,900 137,800 24 92,025 141,760 214,550 431,080 535,215 650,000 88	10,000 33,000 424,000 530,000 6	9
Bu. 66 70 310 1,007 1,348 3,240 4,400 4,400 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 865 760 Bu. 1349 575 742 869 824 1,120 865 760 Bu. 1349 575 742 869 824 1,134 920 770 Bu. NA NA NA NA NA 874 270 1,280 1,975 50 41 Ibs. 80,600 168,300 290,400 216,000 230,300 310,000 278,000 21 50 21 50 41 Diss. 80,600 168,300 291,000 234,900 137,800 270,000 278,000 21 50 27 50 27 Option 1060 234,900 137,800 234,000 270 1,37,800 270,000 278,000 27 27 27 27 27 27 27 27 27 27 27 27	Bu. 66 70 310 1,007 1,348 3,240 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 Bu. 1,349 575 742 869 824 1,134 Bu. NA NA NA NA NA 874 270 1,280 Bu. NA NA NA NA 60,000 209,400 216,000 230,300 31 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 24 92,025 141,760 214,550 431,080 535,215 650,000 88	29,360 480	3,750 61,000 540 170
Bu. 66 70 310 1,007 1,348 3,240 4,400 4,400 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 865 760 Tons 1,349 575 742 869 824 1,134 920 770 Tons 1349 575 742 869 824 1,134 920 770 Func NA NA NA NA 874 270 1,280 1,975 50 Lbs. 80,600 168,300 209,400 236,900 230,300 216,000 278,000 21 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 240,000 278,000 21	Bu. 66 70 310 1,007 1,348 3,240 Bu. 1,870 1,746 6,292 3,848 1,400 1,120 Tons 1,349 575 6,292 3,848 1,400 1,120 Bu. 1,349 575 742 869 824 1,134 Su. NA NA NA NA 874 270 1,280 Lbs. NA NA NA 60,000 209,400 216,000 230,300 24 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 24 92,025 141,760 214,550 431,080 535,215 650,000 88		
Bu. 1,870 1,746 6,292 3,848 1,400 1,120 865 760 Tons 1 349 575 742 869 824 1,134 920 770 Fons 1 349 575 742 869 824 1,134 920 770 Bu. NA NA NA NA NA NA S0 60,000 209,400 216,000 230,300 310,000 278,000 41 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 240,000 278,000 21 co 705 141<760	Bu. 1,870 1,746 6,292 3,848 1,400 1,120 Tons 349 575 742 869 824 1,134 Bu. NA NA NA NA 874 270 1,280 St Lbs. NA NA NA 60,000 209,400 216,000 230,300 31 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 24 92,025 141,760 214,550 431,080 535,215 650,000 88	4,400	7,400 6,500
Tons 349 575 742 869 824 1,134 920 770 Bu. NA NA NA NA NA NA S0 874 270 1,280 1,975 50 41 41 41 42 42 43 43 44<	Tons 349 575 742 869 824 1,134 Bu. NA NA NA NA NA 270 1,280 Lbs. NA NA NA 60,000 209,400 216,000 230,300 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 92,025 141,760 214,550 431,080 535,215 650,000	865 760	915 420
Bu. NA NA NA NA NA NA NA NA S0 S1 S0 S0 S1 S0 S0 S1 S1 S0 S1 S1 <ths1< th=""> S1 S1 S1<</ths1<>	Bu. NA NA NA NA 874 270 1,280 s Lbs. NA NA 60,000 209,400 216,000 230,300 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 92,025 141,760 214,550 431,080 535,215 650,000	920	
s Lbs. NA NA 60,000 209,400 216,000 230,300 310,000 278,000 41 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 240,000 278,000 21 02 02 025 141 760 214 550 471 080 535 215 650 000 805 000 1 050 000 1 24	s Lbs. NA NA 60,000 209,400 216,000 230,300 Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 92,025 141,760 214,550 431,080 535,215 650,000	1,975	2,750 0
Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 240,000 278,000 02 02 02 141 760 214 550 421 080 525 215 650 000 885 000 1 050 000	Lbs. 80,600 168,300 292,600 90,100 234,900 137,800 92,025 141,760 214,550 431,080 535,215 650,000	310,000 278,000 4!	0,000 270,000
03 032 141 760 314 550 421 080 525 315 650 000 - 885 000 - 1 050 000	92,025 141,760 214,550 431,080 535,215 650,000	240,000	
		00 885,000 1,050,000 1,365,000	5,000 1,540,000
Lbs. NA NA NA NA 170,000 282,000 540,000 640,000	Lbs. NA NA NA NA 170,000 282,000	540,000	0,000 1,125,000

Assumes a continuation of the present level of foreign export demands. Related to OBERS Series C U.S. needs. Assumes a substantial increase in agricultural exports. Related to OBERS Series E' requirements.

1212

4-6

minimization approach was selected on the assumption that in the long run farmers will tend to produce food and fiber efficiently. This is not always the case due to personal preferences, resource limitations, and/or legal arrangements, consequently, restraints on land use shifts were built into the model to keep projections realistic.

Throughout the study, programmed results were viewed as a starting point from which subjective changes were made as necessary. Consequently, projections in this report are not mechanical estimates. They have been tempered with the reasoning and knowledge of soil scientists, economists, and production specialists in both the USDA and the Agricultural Experiment Station of Auburn University.

Program Requirements and Assumptions - To project land use without accelerated resource development, the model required information on six items: (1) the acreage of openland available for agriculture in each subbasin in each time period; (2) current land use on each soil resource group (SRG) 1/; (3) yields on each soil resource group in each time period for each enterprise considered (see appendix 24F); (4) costs of production for each enterprise on each soil group; (5) projected state production of each commodity in each time period; and (6) rotation practices, or the percent of time each soil group can be used for row crops.

In each subbasin and within soil groups the acreage of cropland and pasture that could be used to grow specific crops served as a restraint for the model. Since land use is generally slow to change, the amount of change that could take place over time was limited. For each crop, up to one-half of the acreage on each soil group within a subbasin in 1967 was permitted to shift to other uses by 1990. For example, if a particular SRG in the Alabama Subbasin produced 20,000 acres of cotton in 1967 the model would require at least 10,000 acres of cotton in the Alabama Subbasin in 1990 grown on the same SRG as in the base year. The remaining cotton production could be grown anywhere in the state subject to the objective function of minimizing production costs.

Corn and oats were the only crops permitted to decline more than 50 percent by 1990. This change was allowed because acreage had declined rapidly in recent years. A requirement of only 15 percent of the base average of corn and 25 percent for oats was placed on each subbasin.

Projected Alabama agricultural production in 1990 and 2020 was the final control. Two levels of production were presented in Table 4-3. Each was examined separately.

1/ A soil resource group is a group of soils with similar productivity and limitations for agricultural use. These groups are described in detail in appendix 24E. In addition to the assumptions already discussed, the following was assumed:

- 1. Governmental farm programs will not restrict the location of agricultural production.
- 2. Capital and labor are available in sufficient quantities.
- 3. Management will continue to improve resulting in a more efficient allocation of resources for crop and pasture production.

For a more detailed discussion of assumptions and methodology, see appendix 24D.

Land Use--The category urban and other land encompasses all urban and built up areas including rural non-farm residences, roads, feed lots, marshes, and miscellaneous land uses. The most rapid urbanization will continue to be around Montgomery. Three of every ten acres expected to shift to urban uses in the basin by 1990 will be in the Montgomery SMSA (see appendix 24C for projection methodology).

Cropland in production should decline slightly from the 1970 level of 653,000 acres to around 614,000 acres by 1990 and 591,000 by 2020 (see table 4-4). Improved pasture will continue to climb, exceeding a million acres by 1990, and approaching 1.5 million by 2020.

LAND		PROJECTED	
USE	1970	1990	2020
		Thousands of Acres	
Urban and other land Cropland harvested, fallow, or in water	682	774	963
disposal	653	614	591
Other cropland	620	625	650
Improved pastureland	531	1,025	1,473
Unimproved pastureland	796	542	160
Forest land	7,471	7,155	6,862
Impounded water	245	263	300
Rivers and streams	17	17	16
TOTAL AREA	11,015	11,015	11,015

Table 4-4 -- Land use projections and needs, Alabama River Basin, 1970-2020.

Forest land acreage has declined in the past and will continue to decline in the future if its present poorly competitive economic position cannot be changed. Projections indicate an 8 percent decline from 7,471,000 acres in 1970 to 6,862,000 acres in the year 2020.

Impounded water (lakes and ponds) should increase from 245,000 acres in 1967 to 300,000 acres by 2020. Acreage of free-flowing streams will decrease from 17,000 acres in 1970 to 16,000 acres by 2020.

Agricultural Land Use--Projected agricultural land use for both the state and basin is shown in Table 4-5. Statewide, level B output would require about 20 percent more acreage for crops and pasture than level A in both time periods, an additional 900,000 acres in 1990, and 1.2 million extra acres by 2020. A substantial increase in corn acreage and improved pastures for beef cattle are the major factors causing the increase. Level B production would maintain state agricultural land requirements at current levels through 1990, with a gradual increase in land needs through 2020. Idle openland would drop from 3.1 million acres in 1975 to 1.6 million acres by 2020.

Within the basin, a shift from level A to level B production would require an additional 231,000 acres to be in production by 1990, bringing the total to 614,000 acres. This is well below the 823,000 acres utilized in 1975, but in line with the long run trend to fewer acres harvested.

The land use projections and associated data in tables 4-3, 4-5, and 4-6 are the result of the state agricultural model which was designed to meet the projected Alabama agricultural production without accelerated resource development. The model was based on minimization of production costs. The following crop and livestock discussions are based on these projections.

<u>Crop Production</u>--In 1975, basin farmers harvested 24 percent of the State's cropland. Baseline projections indicate that by 1990 this share will have reached 27 percent, on 614,000 of 2,247,000 acres utilized statewide (table 4-5). Subbasin detail is shown in appendix table 24A and figure 4-4.

Basin corn production in 1975 totaled 6.7 million bushels from 123,000 acres resulting in a record 54 bushels per acre average yield. By 1990 yields should approach 70 bushels with output from 146,000 acres totaling 10.1 million bushels (table 4-6). An increasing share of the state's corn crop will come from basin farms with production spread uniformly across the study area.

		199	90	202	20
ITEM	1975	LEVEL A	LEVEL B	LEVEL A	
-		Thousa	and acres-		
ALABAMA					
Cropland in production 1/	3,420	1,920	2,247	1,715	2,215
Feed Crops	1,363	383	698	309	628
Oil & Fiber Crops	1,886	1,363	1,373	1,205	1,422
Food Crops	171	174	176	201	165
Improved pasture	1,900	2,490	3,059	3,520	4,239
TOTAL Land used	5,320	4,410	5,306	5,235	6,454
Available open land	8,430	8,280	8,280	8,050	8,050
Idle cropland & pasture	3,110	3,870	2,974	2,815	1,596
ALABAMA RIVER BASIN					
Cropland in production 1/	823	383	614	565	591
Feed crops	393	144	236	142	214
Oil & Fiber Crops	388	210	286	332	343
Food Crops	42	29	92	91	34
Improved pasture	700	927	1,024	988	1,473
TOTAL Land used	1,523	1,310	1,634	1,553	2,062
Available open land	2,600	2,560	2,560	2,513	2,513
Idle cropland & pasture	1,077	1,250	926	960	451

Table 4-5 -- Agricultural land use, current and projected for Alabama and the Alabama River Basin.

1/ Harvested, conservation land used for water disposal, and fallow land in rotation supporting production.

			: LEVE	LB	: LE	VEL A
:		:	: SELECTE	D BASELINE	:	
COMMODITY GROUP :	UNIT	: 1975	: 1990	: 2020	: 1990	: 2020
Crops	Thou.					
Corn	Bu.	6,664	10,100	13,900	2,300	4,600
Cotton	Bales	93	54	22	95	250
Peanuts	Lbs.	7,488	4,500	23,000	9,680	30,000
Soybeans	Bu.	6,600	10,100	17,600	4,880	12,000
Wheat	Bu.	744	2,900	490	450	2,600
Oats	Bu.	337	195	285	275	560
Grain Sorghum	Bu.	435	0	0	1,740	20
Vegetables	Lbs.	73,700	123,000	203,000	111,000	380,000
Potatoes	Lbs.	10,875	18,000	156,000	18,000	130,000
Hay	Tons	468	470	670	320	780
Livestock products	Mil.					
Beef & Veal	Lbs.	240	345	530	330	375
Pork	Lbs.	52	49	65	57	85
Poultry	Lbs.	435	615	830	665	1,050
Eggs	Doz.	90	116	150	128	203
Milk	Lbs.	260	150	75	150	95

Table 4-6 -- Agricultural production, current and projected, Alabama River Basin.

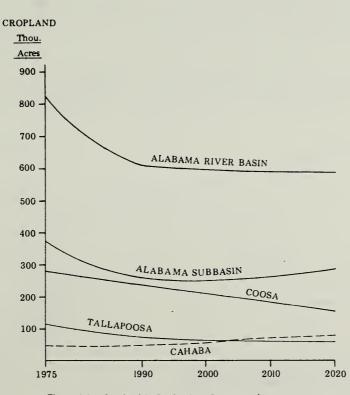


Figure 4-4 -- Cropland in Production, Current and Projected Without Accelerated Resource Development Alabama River Basin and Subbasins. Cotton production should continue to decline. Production dropped 40 percent between 1970 and 1975 (156,000 bales to 93,000 bales) and another 40 percent cut is projected by 1990. Production of 54,000 bales - about one bale in five statewide - will be supplied from the basin, with production centered in the Coosa Subbasin.

Soybean activity should follow much the same pattern as corn, with production increasing about 50 percent during the next 15 years. Two factors contribute to this: Alabama is producing an increasing share of the U. S. soybean crop, and a larger share of the state's output will come from basin farms (26 percent by 1990 compared to 21 percent in 1975). The Alabama Subbasin will continue to account for a majority of the study area's soybean acreage.

Together, corn, cotton and soybeans will account for 70 percent of the cropland harvested in 1990, and 80 percent by 2020. The only other crops expected to be of significance are wheat and hay with 76,000 acres and 87,000 acres harvested respectively by 1990. Wheat production will be concentrated in the Coosa Subbasin, while three-fourths of all hay will come from the Alabama Subbasin.

Livestock Production--Growth of the livestock industry should continue as in the past with substantial gains in the quantity of eggs, poultry, and beef leading the way (see table 4-6). More than one-half of the basin's beef currently comes from the Alabama Subbasin and this relationship should continue throughout the projection period. Improved pasture acreage in the Alabama Subbasin is projected to go from 350,000 acres in 1975 to 525,000 acres by 1990 and 700,000 acres by 2020 (see figure 4-5). The basin should continue to produce about one-third of the state's beef and yeal.

Only small gains are forecast for the dairy industry as a result of the expected decline in per capita utilization. Annual milk use per individual is expected to drop from 627 pounds to around 460 pounds by 1990.

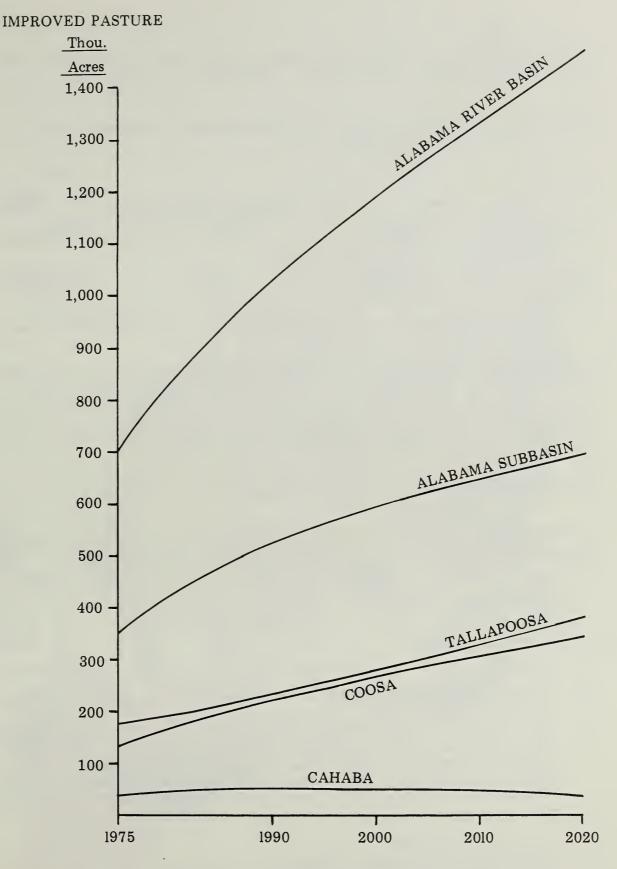


Figure 4-5 - Improved pasture, current and projected without accelerated resource development, Alabama River Basin and Subbasins. A portion of the basin's grazing demands can be met on favorable soil and vegetative types in the forest. Potentials are shown in table 4-7.

Table	4 . 7	 Acreages	by	forest	grazing	potential,	Alabama	River
		Basin, 19	€70	-2020.				

		RATING (1,000 Acre	s)
YEAR	GOOD	FAIR	TOTAL
1970	1,434.7	1,906.8	3,341.5
1990	1,377.3	1,830.5	3,207.8
2020	1,319.9	1,754.3	3,074.2

Forest grazing occurs mostly on bottom land hardwood sites in and near the Black Belt, and in the Coosa Valley. Most bottom land hardwood sites in the Black Belt which are suitable for improved pasture have already been cleared. Figure 4-6 shows areas of forest land that have the highest potential for development of forest grazing. Table 4-8 lists grazing production potential on forest lands.

Table 4-8 -- Projected forest-grazing production, Alabama River Basin, 1970-2020.

BEEF FROM YEAR FOREST GRAZING (MIL. LBS.)	ESTIMATED NUMBER OF ANIMALS (1,000)	ESTIMATED <u>1/</u> AUM's (1,000)	ESTIMATED ACREAGE NEED (1,000)
1970 2/ 59.3 1990 30.6 2020 25.6	194.5	1,556.0	3,112.0
	101.3	802.6	2,400.0
	83.9	671.5	2,000.0

1/ An AUM (Animal Unit Month) is described as a cow and calf grazing for one month.

2/ 1970 figured as heavy grazing, with 2000 pounds of forage per AUM. Years 1990 and 2020 are figured at moderate grazing, using 3000 pounds of forage per AUM to improve vegetation quality and lessen wildlife conflicts. Only a portion of the 3,000 pounds of forage is utilized (1,200 pounds) thus leaving a grass cover and reducing impacts.

SOIL CONSERVATION SERVICE

<u>Timber Production</u>--Forest roundwood* projections indicate an increase in demand from 255 million cubic feet (34 cubic feet/acre) in 1970 to 600 million cubic feet (87 cubic feet/acre) by 2020 (see figure 4-7).

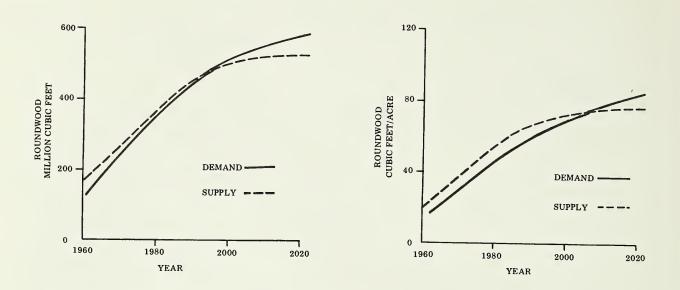


Figure 4-7 -- Roundwood supply and demand projections, Alabama River Basin, 1960-2020.

By 2020, demand will exceed supply. At the present management level, the trend indicates a demand-supply deficiency of 82 million cubic feet (12 cubic feet/acre) by 2020 (see figure 4-7). This deficit is critical to the future economy of the basin.

A balanced mixture of forest products is essential to provide needed lumber for construction, and pulp for paper products. Figure 4-8 compares sawtimber versus pulpwood needs through 2020. The greatest demand during this period will be for pulpwood.

*Roundwood includes volumes of forest products including sawtimber and pulpwood; measured in cubic feet. The size class distribution of hardwoods within the state will be of concern in the future. Prospective cut projections indicate demand will reduce the hardwood inventory in every diameter class over 12 inches, thus developing a shortage of hardwood sawtimber by the year 2010.

Projected demands are equivalent to 87 cubic feet per acre annually, and the basin is capable of producing 88 cubic feet per acre (see table 4-9).

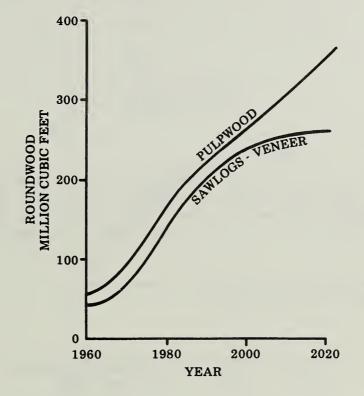


Figure 4-8 -- Roundwood demand by forest products Alabama River Basin, 1960-2020.

SUBBASIN	AVERAGE GROWTH POTENTIAL PER ACRE
	(Cu. Ft.)
Alabama	97.3
Cahaba	90.3
Coosa	80.8
Tallapoosa	84.6
Weighted average	88.0

Table 4-9 -- Average roundwood growth potential by subbasins (cubic feet/acre), Alabama River Basin, 1972.

Most opportunities for increased roundwood production rest with the private landowner. Individual private landowners and forest industry not only own the largest portion of forest land in the basin (95 percent), but also occupy the sites with the best growth potential (see table 4-10).

Table 4-10 -- Roundwood growth potential by ownership, Alabama River Basin, 1972.

OWNERSHIP	GROWTH POTENTIAL PER ACRE (Cu. Ft.)
Miscellaneous private	90
Farmer	90
Forest industry	89
National forest	73
Other public	78

Under present management trends, the growth is projected to increase from 56 cubic feet per acre in 1972 to 76 cubic feet per acre by 2020. This will leave a deficit of 82,000,000 cubic feet by 2020 (see figure 4-9). The maximum average growth potential for the basin is 88 cubic feet per acre annually. To meet the projected 2020 demands at 100 percent growth potential will require 6,861,400 acres, the projected forest land base. This means that to meet the 2020 demand, every acre of forest land will have to be producing to its' maximum growth potential under present levels of management; an unlikely probability.

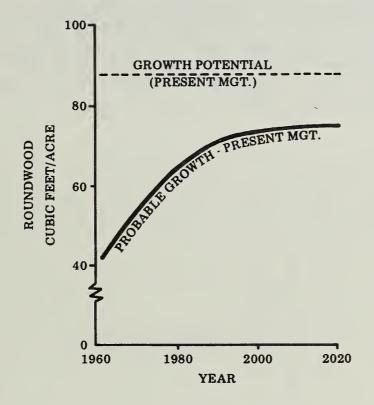


Figure 4-9 -- Projected and potential roundwood growth, and yield, Alabama River Basin, 1960-2020.

The supply of roundwood not meeting the projected demand is due primarily to the anticipated forest management. Only 8 percent of the stands have good stocking; the remaining stands are-not adequately stocked to meet future demands (see figure 4-10). Improved forest management could provide more roundwood. An immediate program is necessary to meet demands because the production of pulpwood and sawtimber products requires a minimum of 20 to 40 years respectively. This means that if a program is initiated in 1976, yields would not be realized until 1995 for pulpwood, and 2020 for sawtimber. Factors effecting an accelerated forest management program are quite varied, but the three most critical deterrents are capital expenditure, high risk, and lack of annual income to the landowners. In an area such as Alabama, where per capita income in many counties is less than 50 percent of the national average, adequate investment money often is not available. Many counties with per capita income less than 50 percent of the U. S. average have large acreages of low-productivity soils.

The area condition indicates an existing need for tree planting on 896,000 acres and interplanting and timber stand improvement on 6,000,000 acres on fair and poorly-stocked areas. These are mainly upland hardwood and oak-pine sites, which require more effort to increase production and provide lower rates of return for the dollar invested. Since per capita income is lower in these areas, an aggressive stimulus must be applied if the wood fiber demand is to be met.

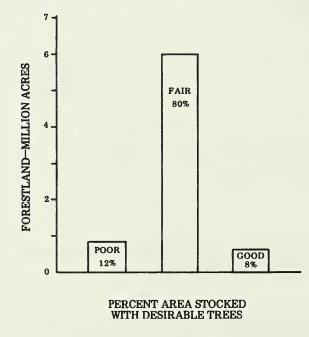


Figure 4-10 -- Forest land stocking, Alabama River Basin, 1972.

Factors such as high capital investment for reforestation, long-term investment, high risk, limited localized markets, and land and/or timber taxes have gradually caused landowners to favor land uses other than forest. Under going federal and state programs, this trend toward land uses other than forest is expected to continue. These factors relate to the demand-supply deficit in loss of forest acreage to other land uses such as urban, mineral development, cropland, or improved pasture. Need for recreation lands for camping, natural areas and modified timber harvest practices to improve the visual quality of the landscape will also hasten the deficit. Encroachment on forest land from urban areas will continue, particularly in Jefferson and Shelby counties. Most public lands such as National Forests and state-owned areas will receive increased recreation pressures.

Strippable minerals will be removed in the future thus reducing the forest base. Areas primarily affected in the basin will be in Tuscaloosa, Bibb, Shelby, and Wilcox Counties. Strip-mined areas will cause loss of forest acreage and wood volumes unless they are immediately rehabilitated.

Poor utilization is a factor contributing to the roundwood demand-supply deficit. This includes incomplete utilization of trees in the forest and at the mills.

A total of 211.3 million cubic feet, or 28.3 cubic feet per acre annually of the raw material is left in the woods after harvest. This volume is in stumps, tops, unused sections, and residual trees. Presently, a limited market exists for these products, but future demand should make it profitable to utilize these sections. Utilization losses are shown in figure 4-11.

Roundwood loss in the woods includes losses in small stems, stumps, etc. that are not included in growing stock volume estimates in <u>Alabama Forests:</u> Trends and Prospects.

Figure 4-11 -- Annual utilization and waste of roundwood, Alabama River Basin, 1972.

Less waste occurs once the products reach the mill. This amounts to approximately 8.1 million cubic feet, or 1.1 cubic feet per acre. About 97 percent of the coarse residues (slabs, edgings, cull pieces) are utilized versus only 70 percent of the fines (sawdust). Most of the material used is converted to chips for pulping.

Increased utilization of the wood in the forest would contribute to the supply and could meet the national demand. Proper training of woods workers and efficient use of existing equipment could increase the supply. Increased utilization is problematical requiring a high investment for research and technological development, plus heavy capital expenditure and training. Use of large machines to increase utilization is also complicated by steep terrain on the northern portion of the basin.

Utilization projections indicate that as much as 445 million cubic feet will be left in the woods and 17 million cubic feet lost at mills by 2020 (see figure 4-12).

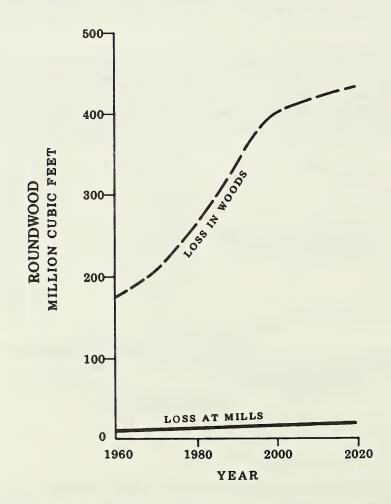


Figure 4-12 -- Projected losses of roundwood from woods and mill operations, Alabama River Basin, 1960-2020.

Factors such as fire, insects, and diseases reduce growth or cause mortality. Southern Pine Beetle damage was extensive during 1972, and 1973. Damages were common over large areas of Alabama and adjacent states; the damaged area covered the entire Alabama River Basin. This infestation decreased slightly during 1974 and 1975. Roundwood losses due to various causes are shown in table 4-11.

Table 4-11 -- Annual loss of forest volumes from insects, disease, and other causes, Alabama River Basin, 1972.

FACTORS	LOSS MILLION CUBIC FEET	CUBIC FEET PER ACRE
Fino	0.9	0.12
Fire Insects	2.2	0.29
Disease	1.6	0.22
Other <u>1</u> /	5.5	0.74
Unknown	26.2	3.50
TOTAL	35.5	4.75

1/ Other damages include crown defects such as forked trees, broken, spike, or flat top crowns.

About 63,500 acres of forest land burn annually in the basin. Figure 4-13 displays a 5-year average fire occurrence by counties. Most fires are kept under 20 acres due to the increased emphasis on detection and efficiency of fire crews and equipment. The average annual forest land burn is 0.8 percent. The state planning goal is to reduce the annual burn to 0.25 percent.

Fires within the basin destroy 900,000 cubic feet of timber growing stock per year.

Fires north of the Alabama and Mississippi Blackland Prairies are mostly in Oak-pine forest types, thus reducing the hardwood species in the stand. The fires south of this area are largely in pine types causing little damage except during high fire danger conditions.



Figure 4-13 -- Fire occurrence (wild fires) showing the percent of forest land area burned annually by county, Alabama River Basin, 1967-1971.

Railroad traffic in the southern portion of the basin causes a considerable number of fires, but the main cause is still the arsonist, who willfully starts fires. Figure 4-14 lists the causes of fire within the basin.

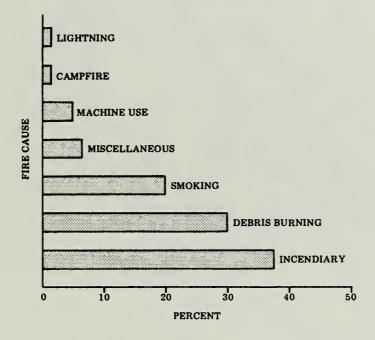
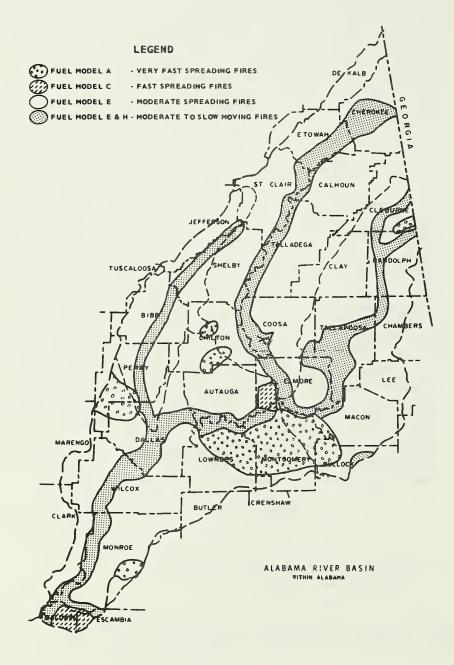
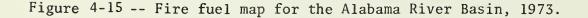




Figure 4-14 -- Causes of forest fire, by percent, Alabama, 1968-1970.

The Alabama Forestry Commission developed a fuel model map displaying hazardous fire conditions based on vegetation (see figure 4-15). This indicates the fire hazard potential by fuel conditions, and is used to locate state forestry manpower and personnel where they are most effective.

Controlled burning is an important forest management tool. Nearly 45,000 acres are burned annually according to prescription. The controlburned acreage is projected to increase by the year 2020 in pine types. Most burns are used to reduce undergrowth for timber marking, site preparation, improved wildlife habitat, improved forage for cattle, elimination of disease in longleaf stands, or fuel reduction. Prescribed burning is conducted mainly in the Southern Coastal Plain and Southern Piedmont land resource areas.

Location of manpower and equipment needed for fire control are provided in figure 4-16. Manpower and equipment needs in figure 4-16 refer to one tractor plow unit plus one man at each designated location. There are 39 existing units and an additional need for 31 units.

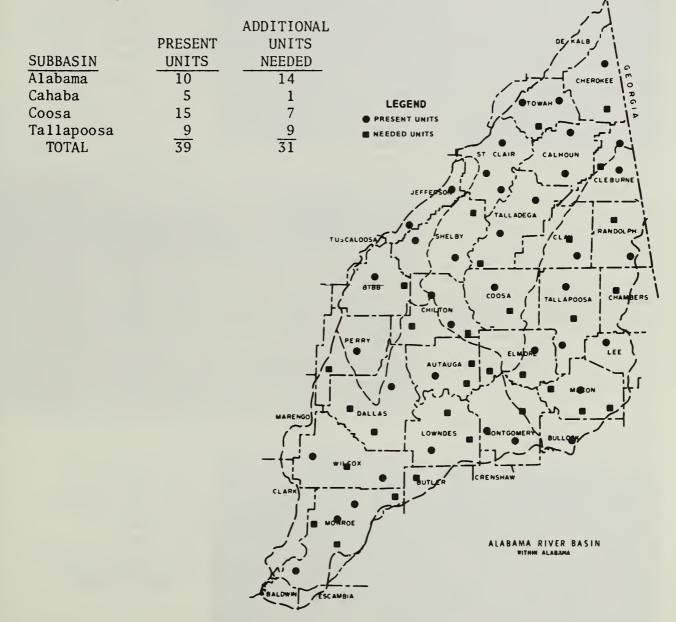


Figure 4-16 -- State manpower and equipment needs for fire control. Alabama River Basin, 1973.

Flood Prevention

Information from U. S. Geological Survey and U. S. Corps of Engineers river stage records indicate that flood stages are exceeded about 1.5 times annually on major rivers in the Alabama River Basin. During the spring months, particularly in March, high winds of cyclonic origin come into the area from the west and often produce intense local storms with heavy rainfall. A pre-record flood of March-April 1886, the greatest known in the basin, resulted from a general storm which centered over the Coosa River at Centre, Alabama. This storm produced the highest known stages along most of the principal streams with the exception of the lower Alabama River. Flooding was especially severe along the Coosa and Upper Alabama Rivers. It is estimated that the peak discharge for this flood was 322,000 c.f.s. at Montgomery on the Alabama River. The flood of April 1938 resulted in equally heavy agricultural damage because it occurred during the early part of the planting season. This flood produced the highest flow ever recorded in the basin, 298,000 c.f.s. at the Coosa River station just below Jordan Dam and was also critical along the lower Alabama River where near-record stages occurred. Damaging overflows were recorded at practically all stations in the basin.

Flood problems along the middle and lower reaches of the major streams are largely caused by comparatively infrequent general rains which cover large areas for prolonged periods of time. When such flood producing storms occur, they cause considerable urban and industrial damages as well as damages to agriculture. A list of urban places or communities within the basin having flood problems is included in appendix table 25. There are about 80 communities in the basin with an urban flood problem. While the number of communities experiencing flooding can be expected to increase, many communities are presently developing flood plain management This effort is expected to accelerate. The rate of development programs. within urban flood plains is therefore expected to decrease; however, urban development in the future is expected to increase the number of communities experiencing flooding to 90 in 1990 and 110 in 2020. These estimates are based on the HUD-FIA Type 21 Flood Insurance Study, July 1973 and similar data from other sources.

Flood plain acreage, land use along the major rivers of the basin is shown in table 4-12, (see appendix 25B for details). The total acres subject to flooding along these major rivers is estimated to be 398,200 acres. This area of flood plain is included in the flood plain of watersheds shown in Tables 4-14 and 4-15. Average annual damage to agricultural crops, urban properties, and roads, and railroads is included in table 4-13 (appendix table 25C). The total damage along the major rivers is estimated to be \$1,316,000 annually.

Flooding in the Alabama River Basin damages . . .

roads and bridges,

pastures and forests,

and crops.

Flooding results in . . .

damage to fixed improvements,

hazard to life and property,

and disruption of commerce.

Violent local storms, of both frontal and convective types, in the tributary areas create flash floods, the force of which is dissipated before the flood flows.progress very far downstream. However, those floods often cause severe land damages to streambanks and channels and to adjoining bottom lands. Also, prolonged periods of rainfall in the Piedmont Plateau area cause overflow of longer duration on tributary streams. These tributary flows are often absorbed by the impoundments on the main streams without appreciable rises in stage.

On the tributaries, an average of about three to four floods occur annually. Damages due to inundation occur on all the Southern Appalachian and Piedmont tributaries and on many Coastal Plain tributaries. Flood damages which may be alleviated by land treatment, structural measures and nonstructural measures are predominantly on those tributary streams located in the upper reaches of the Cahaba and Tallapoosa subbasins.

Flood plain land use and flood damage estimates for the small watersheds (250,000 acres or less) in each subbasin have been summarized in tables 4-14 and 4-15. Without project action, land use is expected to remain mostly unchanged. The dollar value of flood damages would normally increase consistent with the rate of inflation. For information concerning individual watersheds (CNI), see appendix table 25D. The primary purpose for including this information is to indicate the general magnitude of the flood problem. The total area subject to flooding in the basin is estimated to be 861,000 acres. Flood damage on this area currently amounts to about \$3,836,000 annually (see tables 4-14 and 4-15). There are some small watersheds within the basin that nave flood prevention and water resource plans already developed. The area that can be protected by these projects amounts to about 129,900 acres. Additional information concerning these water resource developments is shown in table 4-15 and figure 4-17.

1/	1
1972.	
Basin.	•
la River	
Alabama	
streams.	
n areas along principal	
along)
areas	
plain	•
Flood	
ł	
4-12	
Table	

				FLOOL	FLOOD PLAIN AREA IN ACRES	IN ACRES	
STREAM	STREAM FROM	STREAM MILE 2/ FROM TO	CLEARED	RURAL WOODS	TOTAL	URBAN	TOTAL 3/
Coosa River Subbasin	569.6	314.4	27,000	25,500	52,500	3,100	55,600
Alabama River Subbasin	314.4	0.0	94,700	130,800	225,500	7,700	233,200
Tallapoosa River Subbasin	137.7	0.0	30,000	26,000	56,000		56,000
Cahaba River Subbasin	88.8	8.2	27,800	25,600	53,400	:	53,400
TOTAL FOR BASIN			179,500	207,900	387,400	10,800	398,200
1/ Adapted from Corps of Engineers Data, Mobile District; area based on approximately the 100-year storm.	of Engi	neers Data,	, Mobile Distric	ct; area based	l on approxima	ately the 100.	-year storm.
2/ Miles shown are from the mouth of of Alabama River.	om the me		each respective river except that miles for Coosa River are from mouth	iver except th	at miles for	Coosa River a	are from mouth

This flood plain is included in small watersheds shown in Tables 4-14 and 4-15. 3/

4-32

				AGRICULTURAL DAMAGE	MAGE			
	STREAM	MILE 2/		OTHER THAN		ROADS		
STREAM	FROM	FROM TO	CROPS	CROPS	SUBTOTAL	RAILROADS URBAN	URBAN	TOTAL
					Dollar			
Coosa River	569.6	314.4	95,000	104,000	199,000	26,000	48,000	273,000
Alabama River	314.4	0.0	270,300	65,700	336,000	20,000	379,000	735,000
Tallapoosa River	137.7	0.0	143,800	39,200	183,000	8,000	I	191,000
Cahaba River	88.8	8.2	67,000	37,000	104,000	13,000	ı	117,000
TOTAL BASIN			576,100	245,900	822,000	67,000	67,000 427,000 1,316,000	1,316,000
1/ Adapted from Corps of Engineers Data, Mobile District.	corps of	Engineers	Data, Mobile	District.				

Table 4-13 -- Estimated average annual damage along the principal streams, Alabama River Basin, 1972. $\underline{1}/$

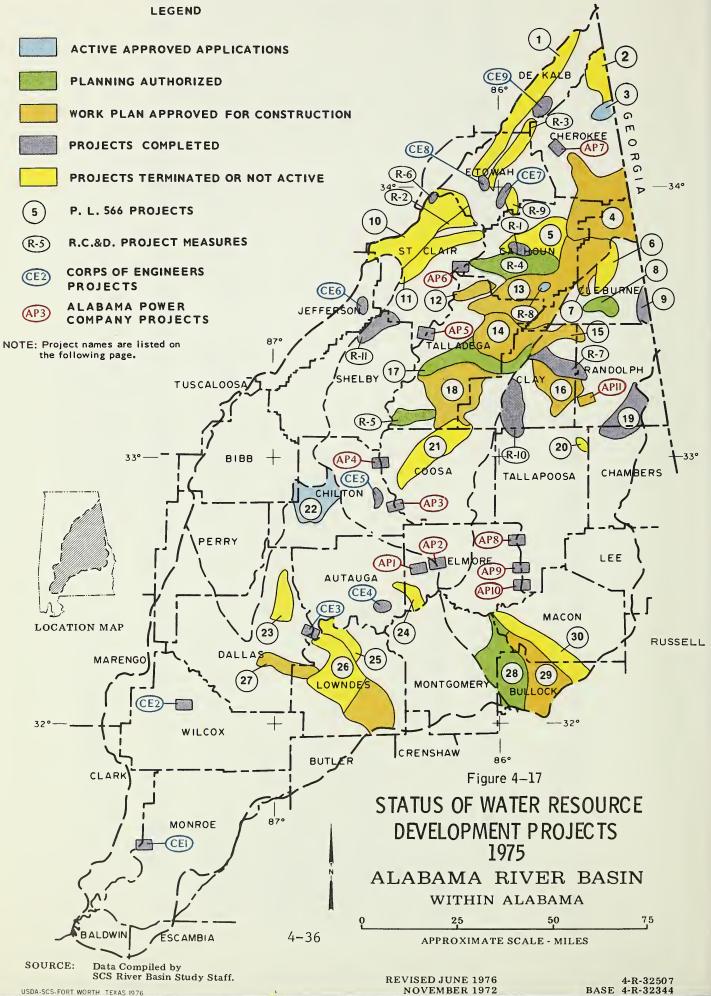
Miles shown are from the mouth of each river; Coosa River mileage is from mouth of Alabama River. 5

4-33

Table 4-14 -- Estimated flood plain land use and flood damage within small watersheds by subbasins, Alabama River Basin, 1972.

	FLOOD PLAIN LAND USE DISTRIBUTION	D USE DIST	RIBUTION			AVERAGE AND	AVERAGE ANNUAL FLOOD DAMAGE	DAMAGE
1						CROP	OTHER	
						AND	AND	
SUBBASIN	FLOOD PLAIN 1/ CRC	CROPLAND	DPLAND PASTURE	FOREST	MISC.	PASTURE	INDIRECT	TOTAL
			Acres				Dollar	
Coosa River Subbasin	132,600	7,100	26,300	95,400	3,800	268,200	100,500	368,700
Alabama River Subbasin	331,300	21,000	67,300	237,100	5,900	706,000	264,400	970,400
Tallapoosa River Subbasin	1 149,300	14,400	31,900	100,400	2,600	370,500	139,000	509,500
Cahaba River Subbasin	118,300	4,500	11,900	100,300	1,600	131,700	49,300	181,000
TOTAL BASIN	731,500	47,000	137,400	533,200	13,900	1,476,400	533,200	2,029,600

In some watersheds, the flood plain of major rivers (joint flood plain) is included with the flood plain of small streams. 1


Estimated flood plain land use and flood damage within P. L. 566 Watersheds and RC&D Project Measures, by subbasins, Alabama River Basin, 1972. 1 Table 4-15

	FLOOI	FLOOD PLAIN LAND USE DISTRIBUTION	USE DIST	RIBUTION		AVERAGE /	AVERAGE ANNUAL FLOOD DAMAGE	DAMAGE
						CROP AND	OTHER AND	
SUBBASIN	FLOOD PLAIN 1/ CROPLAND PASTURE	1/ CROPLAND	PASTURE	FOREST	MISC.	PASTURE	INDIRECT	TOTAL
		Ac	Acres	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1] 1 1 1 1		Dollar	
Coosa River Subbasin	55,600	14,200	24,200	16,000	1,200	510,000	350,500	860,500
Alabama River Subbasin	44,000	3,700	15,700	24,100	500	409,000	165,300	574,300
Tallapoosa River Subbasin	30,300	4,200	13,900	11,700	500	255,200	116,400	371,600
Cahaba River Subbasin	No Flood	No Flood Control Plans	ns	1	1	;	}	ł
TOTAL BASIN	129,900	22,100	53,800	51,800	2,200	2,200 1,174,200	632,200	632,200 1,806,4h0
Note: Flood protection has been or is expected to be provided for only 86,000 acres out of the total	has been or is expected to be provided for only 86,000 acres out of the t	xpected to b	e provide	d for only	86,000 a	cres out of	f the total	

129,000 acres. The remaining watersheds are in various stages of planning and development.

In some watersheds, the flood plain of major rivers (joint flood plain) is included with the flood plain of small streams. 1

4-35

USDA-SCS-FORT WORTH TEXAS 1976

NOVEMBER 1972

List of water resource development projects shown in figure 4-17

COOSA VALLEY RC&D PROJECTS

- R-1 Alexandria
- R-2 Ashville
- R-3 Black Creek
- R-4 Cane Creek
- R-5 Cedar Creek
- R-6 Chandler Mountain Lake

P. L. 566 PROJECTS

- 1 Big Wills Creek
- 2 Mills Creek
- 3 Chatooga River
- 4 Terrapin Creek
- 5 Tallahatchee Creek
- 6 Cane Creek Creek
- 7 Cahulga Creek
- 8 Dynne Creek
- 9 Lost Creek
- 10 Canoe Creek
- 11 Beaver-Shoals Creek
- 12 Blue Eye Creek
- 13 Choccolocco Creek
- 14 Cheaha Creek
- 15 Ketchepedrakee Creek

- R-7 Fox Creek R-8 - Friendship Community Drainage R-9 - Glencoe Creek R-10 - Little Hillabee Creek R-11 - Shoals Creek
 - 16 Crooked Creek
 - 17 Talladega Creek
 - 18 Tallaseehatchie Creek
 - 19 High Pine Creek
 - 20 Mill Creek
 - 21 Weogufka Creek
 - 22 Mulberry Creek
 - 23 Blue Girth-Beech Creek
 - 24 Mill Creek
 - 25 Lowndes-Cypress Creek
- 26 Big Swamp Creek
- 27 Mush Creek
- 28 Line Creek
- 29 Old Town Creek
 - 30 Cubahatchee Creek

CORPS OF ENGINEERS PROJECTS

- 1 Claiborne Lock & Dam
- 2 Miller Ferry Lock & Dam
- 3 Jones Bluff Lock & Dam
- 4 Prattville Levee & Clearing & Snagging
- 5 Clanton Clearing & Snagging

- 6 Trussville Clearing
 - & Snagging
- 7 Glencoe Clearing & Snagging
- 8 Black Creek Clearing & Snagging
- 9 Collinsville Levee & Clearing & Snagging

ALABAMA POWER COMPANY PROJECTS

- 1 Bouldin Dam
- 2 Jordan Lake
- 3 Mitchell Lake
- 4 Lay Lake
- 5 Logan-Martin Lake

- 6 H. Neely Henry Lake
- 7 Weiss Lake
- 8 Martin Lake
- 9 Yates Dam
- 10 Thurlow Dam
- 11 Crooked Creek Dam
 (R. L. Harris Reservoir)


Sheet and gully erosion damages the land and causes-

damaging sedimentation on lands and in the waters of the Basin.

Erosion is a problem on construction sites,

public lands,

unprotected rights-of-way,

and strip mines.

Erosion and Sedimentation

Table 4-16 summarizes acreage needing erosion reduction. The inventory of present needs on agricultural land was taken from the Alabama Conservation Needs Inventory, 1970 (CNI).

Future erosion reduction needs were projected based on capability class (erodibility) of the land, projected land use, and projected rate of application of erosion reduction measures. The future erosion reduction acreage needs are the needs which will not be met through ongoing programs.

		ALABAMA RIVER	BASIN
LAND USE	1970	1990	2020
		-Thousand Acres	
Harvested Cropland and			
Conservation Acres	483	396	392
Other Cropland	527	481	506
Improved Pasture	430	735	1,056
Unimproved Pasture	732	441	119
Forest	60	74	114
Total	2,232	2,127	2,187

Table 4-16 -- Land needing erosion reduction measures, Alabama River Basin, 1970 through 2020.

Erosion computations indicate that 65.1 million tons of soil are eroded annually from Alabama River Basin lands (Table 4-17). Serious erosion is occurring on 1.9 million acres or 17 percent of the basin including about 151,000 acres of gullies, roadsides and other critically eroding areas. The remaining land is eroding, but at rates which are tolerable in the sense that excessive sediment is not produced and the long-term productive capacity of the land remains high. Table 4-17 and figure 4-18 show erosion distribution by land uses.

An apparent contradiction exists between the projection of cropland needing erosion protection, which decreases as ongoing programs continue to operate, and gross erosion on cropland which is projected to increase. It should be noted that the major increase in erosion is on "Other Cropland", which consists of marginal land mostly too steep to efficiently crop. This abused land is not only the most erosive but is the most difficult to reach with voluntary treatment programs since the areas are generally small acreages not returning enough to the landowner to encourage investment in soil conservation practices.

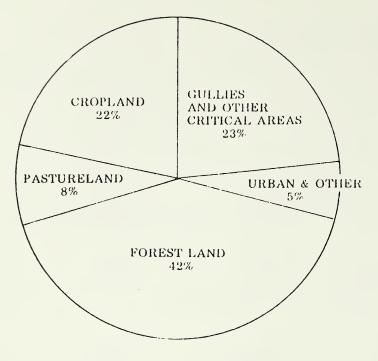

		PROJE	CTED
LAND USE	1970	1990	2020
		Thousands of Tons	;
Sheet & Rill Erosion			
Cropland			
Harvested cropland	6,204	4,666	4,433
Other cropland	8,308	7,125	10,660
Pastureland			
Improved pasture	1,805	2,870	5,008
Unimproved pasture	3,264	2,818	928
Forest			
Slight to			
undisturbed	6,583	5,798	4,103
Disturbed	20,546	26,400	32,952
Urban & Other land	3,615	3,850	4,622
Critical Erosion <u>1</u> /	14,847	14,937	15,337
TOTAL	65,172	68,484	78,043

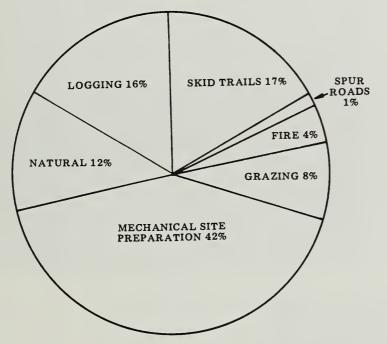
Table 4-17 -- Average annual gross erosion, Alabama River Basin, 1970-2020.

1/ Critical erosion includes badly eroding roadsides, streambanks, mined land and gullies.

Average annual erosion rates by major land uses are shown in table 4-18. Table 4-18 -- Erosion rates by land use, Alabama River Basin. 1970-2020.

		PROJECTED	
LAND USE	1970	1990	2020
		-Tons per acre per year	
Cropland			
Harvested Cropland	9.5	7.6	7.5
Other Cropland	13.4	11.4	16.4
Pastureland			
Improved Pasture	3.4	2.8	3.4
Unimproved Pasture	4.1	5.2	5.8
Forest			
Slight to undisturb	ed 0.9	0.9	0.7
Disturbed	33.6	33.0	33.0
Urban & Other Land	5.3	5.0	4.8

TOTAL ANNUAL EROSION 65.2 MILLION TONS


Figure 4-18 -- Distribution of annual erosion by major land use categories, Alabama River Basin, 1970.

Forest land, covering 68 percent of the basin, is experiencing 27.1 million tons of on-site erosion per year, or 42 percent of the total on-site erosion. The causes of on-site erosion by forest disturbances are listed in figure 4-19, see appendix table 26B for details.

The erosion rate for "disturbed" forest is higher than other land uses because the data includes four disturbances with high erosion rates. Two of these disturbances, skidding trails and mechanical preparation, occur on only three percent of the forest acreage yet are the source of 60 percent of the gross erosion. "Disturbed" forest is eroding at rates that are critical and are treated similarly (see table 5-1).

Major erosion problems result from improperly applied forest practices, leaving limited ground cover on steep slopes with little or no vegetative filter strips to absorb the soil movement.

CAUSE OF EROSION	THOUSAND	EROSION RATE	EROSION
BY DISTURBANCES	ACRES	TONS/ACRE/YEAR	TONS/YEAR
Natural	7,471.6	0.5	3,428,000
Logging 1/	358.6	12.0	4,325,000
Skid trails	109.9	41.0	4,524,000
Spur roads	25.4	13.5	343,000
Fire	186.8	5.5	1,041,000
Grazing	254.0	8.0	2,102,000
Mechanical site			
preparation 2/	117.6	96.5	11,366,000
		······································	
mom A t	7 471 6		27 120 000
TOTAL	7,471.6	-	27,129,000

TOTAL FOREST LAND EROSION 27,129,000 Tons/Yr. or 3.63 Tons/Ac./Yr.

- 1/ Includes general logging on clearcut areas with no mechanical site preparation.
- 2/ Mechanical site preparation on private lands, mainly on straight-bladed, disced and KG-bladed areas.

Figure 4-19 -- On-site erosion by disturbances on forest land, Alabama River Basin, 1970.

Exploitation may result in scenes such as . . .

forest land after abusive logging operations,

or excessive site preparation for tree planting.

Poor land and water management may result in streambank erosion. Figure 4-20 displays the degree of erosion hazard on basin lands. These ratings are based on natural erodibility and slope. Land use practices which expose the soil on severe and moderately hazardous sites should include conservation treatment measures to lessen or prevent erosion and sediment damage.

Critical area erosion is defined as erosion that is damaging to offsite or downstream areas. These are usually bare areas that not only produce extremely large amounts of sediment but large quantities of runoff as well. Table 4-19 shows the projected extent of critical areas. These critical areas are eroding at estimated average rates of about 100 tons per acre per year; a total of 14.8 million tons of soil loss annually.

Table 4-19 -- Critically eroding areas, Alabama River Basin, 1970-2020.

		ALABAMA RIVER BASIN	
CATEGORY	1970	1990	2020
		Acres	
Gullies and associated			
areas	115,000	113,000	117,000
Roadsides	2,800	2,300	2,300
Noausiues	2,000	2,300	2,500
Streambanks	21,000 1/	21,000	21,000
Mined Land	12,700	15,300	15,300
TOTAL	151,500	151,600	155,600
1/ 1,763 miles of erod	ing streambanks	, National Assessment o	f Streambank

1/ 1,765 miles of eroding streambanks, National Assessment of Streamb Erosion, 1970.

Roadside erosion and other critical erosion areas assume an importance out of proportion to their land area because of their degradation of the aesthetic quality of the landscape, the destruction of costly road structures and their sediment production potential. Mileage of roads in the basin and acreage of eroded roadsides is shown in table 4-20.

There are about 2,800 acres of eroding roadsides in the basin that produce an estimated 552,000 tons of eroded material per year. These roadsides are eroding at an average annual rate of about 200 tons per acre per year. Unlike most other forms of erosion, almost all of this eroded material becomes damaging sediment. About 80 percent of the material eroded from roadsides enters a stream whereas only 50 percent or less of the material eroded from fields, and 23 percent from forests enter streams and becomes damaging sediment.

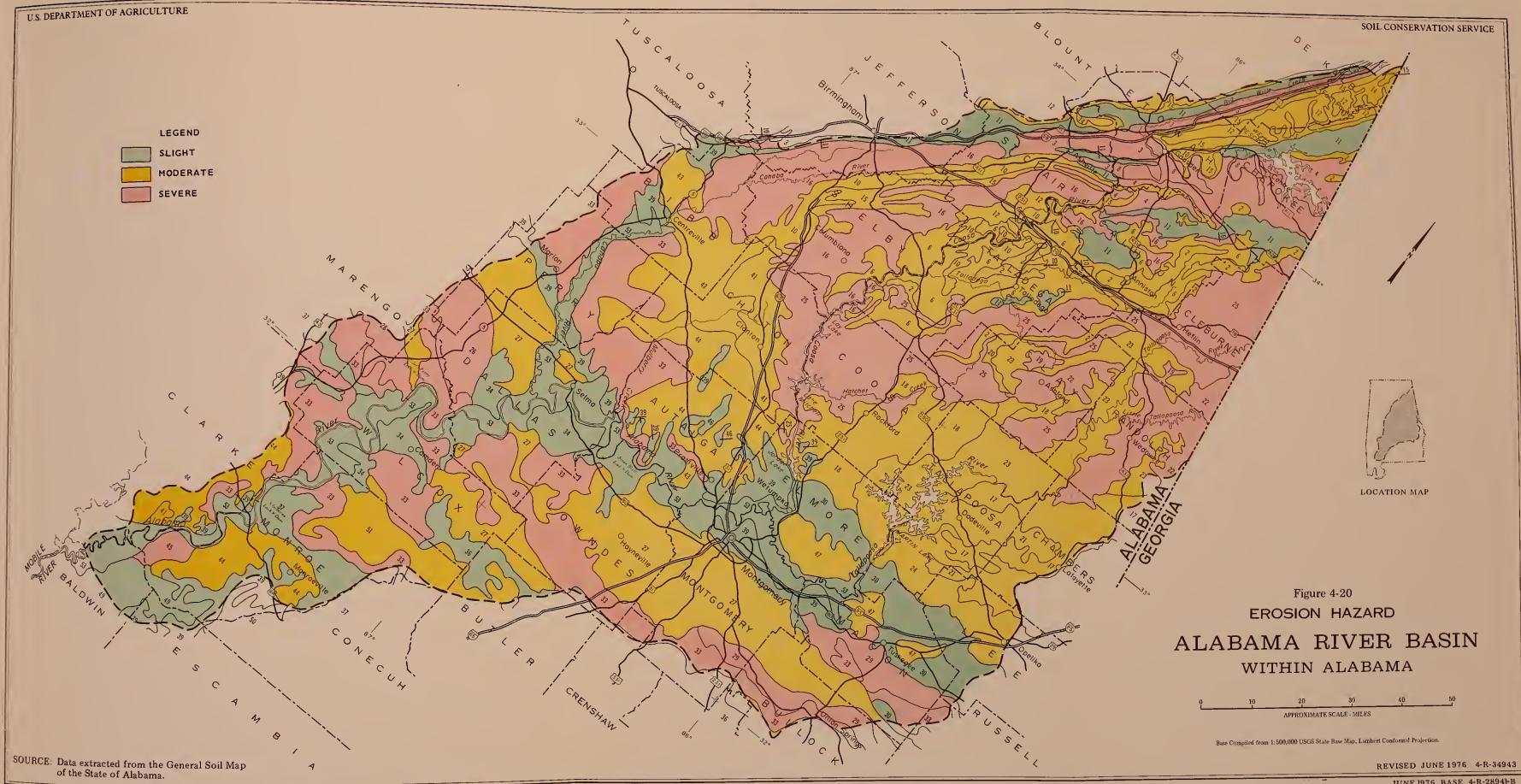

Acreage of eroding roadside is projected to decrease in the future. Highway departments now routinely require vegetative treatment on all new road construction and RC&D project measures are expected to rehabilitate 500 acres of existing roadside by 1990.

Table 4-20--Roadside erosion, total mileage of roads by categories and acreage of eroded roadbanks, Alabama River Basin, 1973.

									FEDERAL &	AL &
	ALL 1	ALL ROADS	UNPAVED	VED	COUNTY	COUNTY PAVED	STATE 1	STATE HIGHWAYS	INTER	INTERSTATE
		ACRES		ACRES		ACRES		ACRES		ACRES
	MILES	OF	MILES	OF	MILES	OF	MILES	OF	MILES	OF
	OF	ERODED	OF	ERODED	OF	ERODED	OF	ERODED	OF	ERODED
SUBBASIN	ROADS	BANKS	ROADS	BANKS	ROADS	BANKS	ROADS	BANKS	ROADS	BANKS
Alabama	5,213	695	3,001	431	1,289	225	586	28	337	11
Cahaba	1.570	241	166	189	397	43	125	v	57	V
						2	2	2	ò	F
Coosa	6,125	1,047	3,241	500	2,114	492	389	28	381	27
Tallapoosa	4,490	778	3,325	604	668	98	309	16	188	60
										2
TOTAL BASIN	17,398 2,761	2,761	10,558	1,724	4,468	858	1,409	77	963	102

Le

4-46

JUNE 1976 BASE 4-R-28941-B

Streambank erosion destroys land and clogs waterways with sediment and though the number of acres involved is small the damage to aesthetics and environmental quality is great. The Alabama River Basin has an estimated 1,763 miles of streambanks along small streams damaged by erosion with estimated annual damages of \$121,000, according to the National Assessment of Streambank Erosion made in 1970. Streambank erosion is expected to continue to damage about the same mileage annually in the future.

Erosion resulting from urban construction is a problem in developing areas of the basin such as in Shelby County and other areas. Erodibility of soils under poor construction practices varies from about 3 tons per acre per year on 1 percent slopes to as much as 3,000 tons per acre per year on 65 percent slopes. Urban developers often seek to use the steepest land for housing because of its scenic value. This is. overall, wise land use; preserving the better land for agriculture or other uses. However, careless or callous construction practices can, in a short time, create permanent problems downstream with clogged waterways and filled reservoirs and ponds. Construction erosion, included as a part of "urban and other" land erosion (Table 4-17 and 4-18), is projected to decrease due to new programs and practices. At the same time, "urban and other land" erosion will increase in the future as fairly large acreages are shifted from some other land use.

Strip mining and poor reclamation practices have left 12,700 acres of basin land in an eroding, bare condition. This land is eroding at estimated average rates of 150 tons per acre per year. Surface mining is annually active upon about 1,400 acres per year in the basin, but the rate could accelerate rapidly because of the energy shortage. Most of the land mined each year is reclaimed after a year or two but some is illegally abandoned and becomes "orphaned" with no one willing to accept responsibility for reclamation (for details see appendix Table 29). Acreage of mined land needing erosion control in the future was based on an estimated 20 percent increase in surface mining activity by 1990 with annual reclamation approximately equal to annual mining disturbance (Table 4-21).

"Orphan" mined land, which includes abandoned mines and some unreclaimable area (quarries, etc.), is projected to increase slightly in the future since there is presently no effective program for these lands (see Table 4-21). Mined lands are often serious erosion problems since they are usually steep, rough, and chemically or biologically inhospitable to plant growth.

······································	ALA	BAMA RIVER BASI	[N
CATEGORY	1974	1990	2020
	T	housands of Acr	es
Area needing reclamation			
"Orphan"	12	14	15
Active	1	2	2
Area reclaimed	40	60	108
TOTAL	53	76	125

Table 4-21 -- Surface-mined land needing erosion reduction, Alabama River Basin, 1974-2020.

Sediment is the product of erosion and is directly proportional to the amount of erosion in a watershed. Total sediment load is reduced by reduction in erosion; and also, stream sediment load may be reduced by trapping sediment with vegetative strips or with reservoirs.

Most of the sediment load of streams is caused by sheet and rill erosion on upland areas; however, only 50 percent or less of the eroded material usually reaches a stream system. Sediment transit losses are continuous and the larger a drainage area is, the lower the ratio of sediment yield to erosion. Topography, shape of the watershed and many other factors affect the percentage of eroded material that is carried as sediment load by a stream. Sediment production in the basin (see table 4-22) is the amount of sediment after transit losses in tributaries of the basin. Sediment is trapped in the slackwater portion of each reservoir on a stream.

Table 4-22 -- Annual sediment production, Alabama River Basin, 1970-2020

		PR	OJECTED	
SOURCE OF SEDIMENT	1970	1990	2020	
		Thousands of	Tons	
General erosion $1/$	12,734	13,384	14,782	
Critically eroding areas	8,714	8,631	8,871	
TOTAL	21,448	22,015	23,653	
1/ Includes "disturbed" f			. 11	

1/ Includes "disturbed" forest lands which are eroding at "critical" rates.

Most sediment in streams is carried by runoff from a few large storms. In some streams nearly 100 percent of the total sediment yield may be carried by storm runoff and almost none moved by low flows. The proportion of sediment carried by storms and low flows varies according to the kind of erosion in the watershed, cover conditions, pattern of water flow, degree of bank caving, and other factors. Sediment concentration in a stream varies even more than water flow in the same stream since sediment transport peaks during a storm and declines to a nominal amount during low flow.

Heavy flushes of sediment in a stream are harmful to downstream reservoirs and spawning areas; however, the short periods of muddy flow are somewhat mitigated by long periods of clear, low flow. In contrast, a stream receiving sediment pollution from gravel washing or dredging may stay "muddy" through low flows as well as storms. This chronic sedimentation, by sheer preponderance of time, may be quite harmful to water quality, fisheries, and aesthetics and may be as objectionable as the heavy sediment load carried by storm runoff.

Suspended sediment is a critical measurement of water quality and is expressed in parts per million (ppm) or milligrams per liter (mg/l). Water quality records in the basin are inadequate for estimating sediment concentrations; therefore, sediment concentrations were extrapolated from erosion data by using a delivery ratio, or percentage of erosion. Suspended sediment concentration of waters in the Alabama River Basin averages 290 ppm (average annual concentration). Figure 4-21 shows the estimated distribution by source of suspended sediment in the basin.

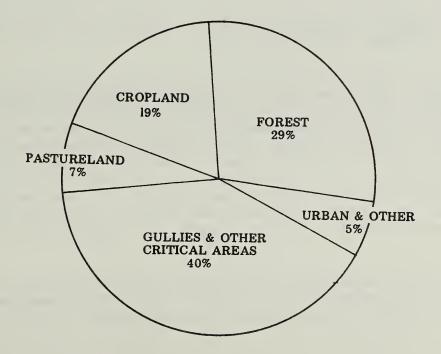


Figure 4-21 - Average annual sediment contribution distributed by land use (erosion source), Alabama River Basin, 1970.

The suspended sediment concentration from forest land totals 84 ppm or 29 percent of the total suspended sediment production in the basin. The sediment is attributed to the disturbances shown in figure 4-22.

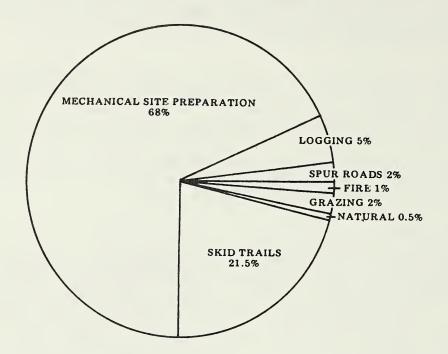


Figure 4-22 -- Annual sediment production by disturbances on forest land, Alabama River Basin, 1972.

The Environmental Protection Agency's <u>Proposed Criteria for Water Quality</u> (Vol. 1, October 1973) states that a good fishery cannot be established or maintained where the waters normally contain more than 80 milligrams per liter (mg/l) suspended solids. This "normal" suspended sediment concentration cannot be directly compared to average annual suspended sediment concentration since the average annual figure includes runoff from large storms and will usually be much higher than the "normal" concentration. For examples of downstream sediment yields and suspended sediment concentrations for selected streams, see appendix table 27B.

The goal set by the amendments to the Federal Water Pollution Control Act requires the clean-up of all streams by 1985. Forest management practices will strive for 80 ppm; the maximum allowable for good fisheries. The Alabama Water Improvement Commission's goal is to develop Water Quality Management Plans for the four subbasins by 1977 and present proposals to the Environmental Protection Agency (EPA) for erosion control on forestry practices. The State Forester has appointed a Committee to develop alternatives relative to the desirability of a forest practices act, with the intent of making recommendations for legislative action concerning erosion and sediment control on forest lands. All these actions must conform to the standards set by the EPA.

Primary erosion and sediment problems related to forestry practices in the basin are:

1. <u>Mechanical Site Preparation</u> - This practice on private lands, particularly straight blading with a bulldozer, produces an average erosion rate of 97 tons per acre per year for a 4-year period. The practice produces about 57 ppm in suspended sediment from forest land which is 68 percent of the total sediment produced by all forest practices.

2. <u>Skid Trails</u> - Trails made by skidding trees to landings cause ditches or gullies which concentrate water runoff. If skidding is up and downhill, the erosion hazard is increased. These trails produce an average erosion rate of 41 tons per acre per year for a 3-year period. They account for 21 percent of the total sediment load from forest lands, and contribute 17 ppm in suspended sediment to the rivers and streams.

3. Logging - Generally, logging practices (primarily clearcutting) produce an average erosion rate of 12 tons per acre per year for a 3-year period after logging. The areas produce 4 ppm in suspended sediment from forest land which is 5 percent of the total suspended sediment load.

These three major forestry activities contribute 80 ppm of the total 84 ppm suspended sediment for forests, consequently they must be modified if the 80 ppm water quality standard is to be met. This will require erosion control planning, implementation, and maintenance of those plans, which in turn, will increase timber production costs, and will be reflected in wood and fiber prices at the consumer level.

Urban and Industrial Water Use and Needs

An expanding population and an increase in industry will necessitate the development and protection of safe, adequate water supplies. Hydrologic data shows that the basin has an adequate supply of good quality water from surface and ground water sources to meet present and prospective needs. Table 4-23 gives withdrawal use of water by source, and principal use by subbasins. Total water withdrawal in 1970 was about 1.5 billion gallons per day. About 94 percent was surface water drawn from streams or reservoirs, while about 6 percent was ground water drawn from wells or springs. If distributed equally among the basin residents, this withdrawal rate would provide every person with nearly 1,500 gallons of water each day. Figure 4-23 presents water use in Alabama from 1955 to 1970 which is comparable to water use in the basin.

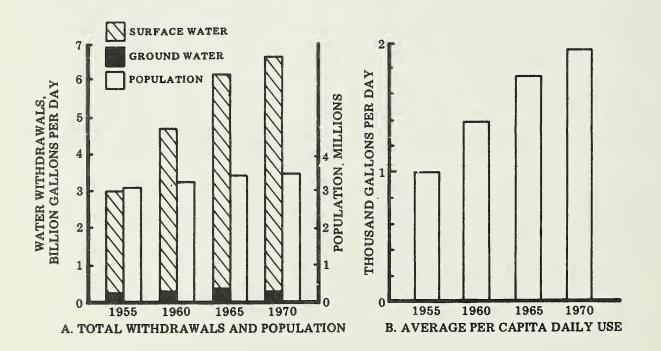


Figure 4-23 -- Trends in total water withdrawal, population, and per capita daily use, 1955-1970, State of Alabama.

Table 4-23 -- Withdrawal use of water (million gallons per day) by source and principal use by subbasin in the Alabama River Basin, 1970.

	PUBLI	PUBLIC SUPPLY				RURA	RURAL USE			SELF-SI	SELF-SUPPLIED	THERMOELECTRIC	LECTRIC			
			DOMESTIC		STOCK	IRRI	IRRIGATION	CATF ISH	<u> </u>	INDI	INDUSTRY	POWER	POWER PLANTS	SUBTOTAL	TAL	
SUBBASIN	GROUND	GROUND SURFACE WATER WATER	GROUND WATER	GROUND WATER	SURFACE WATER	GROUND WATER	GROUND SURFACE GROUND WATER WATER WATER	GROUND WATER	SURFACE WATER	GROUND	GROUND SURFACE WATER WATER	GROUND WATER	GROUND SURFACE GROUND SURFACE WATER WATER WATER WATER	GROUND WATER	SURFACE WATER	GRAND
Alabama	6.61	0	5.69	1.45	2.42	0.34	0.73	1.23	0.69	4.02	51.35	0	0	19.35	55.19	74.54
Cahaba	2.16	54.00	1.51	0.29	0.38	0.03	0.03	0.11	0.02	2.44	2.17	0	0	6.54	56.60	63.14
Coosa	21.58	13.52	8.38	1.22	1.16	0.65	1.32	0.56	0.26	15.56 213.02	213.02	0	1,008.40	47.95	1,237.68	47.95 1,237.68 1,285.63
Tallapoosa	12.53	17.54	4.32	0.96	1.12	1.63	1.57	0.31	0.70	0.86	3.21	0	0	19.61	24.14	43.75
Total By Source	42.88	85.46	19.90	3.92	5.08	1.65	3.65	2.22	1.67	22.88 269.75	269.75	0 1,	0 1,008.40	93.45	93.45 1,373.61 1,467.06	1,467.06
Total By Sub- Category			19.90	6.00	00	5.30	30	3.89								
Total By Category		127.94				38.09	6			292.63	.63	1,008.40	40			1,467.06
Source: Use of Water in Alabama, 1970, Geological Survey of Alabama.	e of Wa	ter in Al	<u>abama</u> , 19	970, Geo	logical S	urvey o	f Alabama									

Montgomery uses some surface water but withdrawal is from the Tallapoosa River. h Public water systems furnished water to over 60 percent of the basin's 998,000 people and 30 percent of the water utilized by industry. Seventytwo percent of the projected population is expected to use public water systems by 2020. Table 4-24 shows present and projected public water supply needs by subbasin. Public water supply, present and projected uses) are shown in figure 4-24 (for detail information see appendix table 30). On the average about 10 percent of the water withdrawal is consumed through public water systems and about 6 percent through industrial water systems.

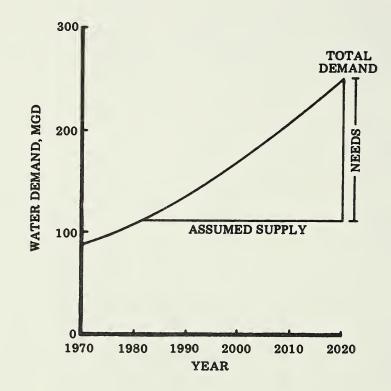


Figure 4-24--Projected public water supply needs, Alabama River Basin.

Total water withdrawal excluding hydro- and thermoelectric use, is projected to increase over five times from 1970 to 2020. This trend is shown in table 4-25. Estimated water use by hydroelectric and thermoelectric plants is shown in table 4-26. Water use in table 4-23 shows 1,373, MGD withdrawn from surface water including 1,008 MGD used by thermoelectric plants. The remaining 365 MGD is used by industrial, municipal, and rural water systems. A 10 percent consumptive use for public, industrial, and rural systems gives a maximum consumption of 37 MGD for the entire basin. A summary of surface water supply and use in 1970 is as follows:

Total Water Use	1,373	MGD	
Thermoelectric Plant Use	1,008	MGD	
Industrial, Municipal, and Rural Use	365	MGD	
10 Percent Maximum Consumptive Use	37	MGD	
Gross Potential Water Supply	21,200	MGD	
(Average Outflow at Claiborne, AL)			

Based on the above data the net reduction in surface water is small. With regard to quantity, there is no general limitation on water within the basin; and with good management of surface water, none should occur except in isolated areas.

Table 4-24 -- Present and projected public water supply needs by subbasins, Alabama River Basin.

		POP. SERVED	RESIDENTIAL	NEEDS	TOTAL	NEEDS 1/
SUBBASIN	YEAR	THOUSANDS	PER CAPITA	TOTAL	PER CAP	ITA TOTAL
			gpd	mgd	gpd	mgd
Alabama	1970	194.1	81 2/	15.7	136 2/	26.4
	1990	257.9	101 -	26.0	156 -	40.2
	2020	379.1	140	53.1	195	73.1
Coosa	1970	219.7	78	17.1	160	35.1
	1990	294.7	99	29.2	172	50.7
	2020	491.1	138	67.8	220	108.0
Tallapoosa	1970	74.7	81 2/	6.0	136 2/	10.1
-	1990	105.1	101 -	10.6	156 —	16.4
	2020	156.7	140	21.9	195	30.6
Cahaba	1970	72.4	116 3/	8.4	238 3/	17.2
	1990	96.9	141 -	13.7	263 —	25.5
	2020	138.9	175	24.3	297	41.3
TOTAL	1970	560.9	84	47.2	158	88.8
	1990	759.6	105	79.5	175	132.8
	2020	1168.9	143	167.1	194	253.0

1/ Total includes industrial and commercial from public supply.

Per capita use extended at present rate.

 $\frac{2}{\overline{3}}$ For Alabama and Tallapoosa subbasins combined.

Average use in Black Warrior and Cahaba subbasins.

Table 4-2 5	Present and	projected w:	ithdı	rawal	of wate	r for	resid	dential,
	industrial,	commercial,	and	rural	use by	subba	asin,	Alabama
	River Basin	. 1/						

			WATER WITHDRAWAL	
SUBBASIN	-	1970	1990	2020
			(Million gallons per dag	y)
			150	
Alabama		75	150	381
Cahaba		63	128	324
Coosa		277	560	1,424
Tallapoosa		44	89	225
TOTAL		459	927	2,354
-	0.11.	1 10 20 1		

Source: Use of Water in Alabama 1970 by Geological Survey of Alabama. Water use by hydroelectric and thermoelectric not included.

Table 4-26 -- Estimated water use by hydroelectric and thermoelectric plants by subbasins, Alabama River Basin, 1970.

	GROSS	AVERAGE	AVERAGE		
	POWER	ANNUAL	WATER		
OWNER 1/	NEED	GENERATION	USE		
	(ft.)	(1,000 mwh)	(mgd)		
APC	56	216	4,200		
APC	43	202	5,100		
APC	69	400	6,270		
APC	83	639	8,300		
APC	67	351	5,680		
APC	103	212	2,260		
APC	127	691	5,880		
APC	146	321	2,390		
APC	55	133	2,650		
APC	96	253	2,840		
C of E	-	329	-		
C of E	-	434	-		
APC			144.4		
SEGCO		—	864.0		
			1,008.4		
1/ APC-Alabama Power Company, C of E-Corps of Engineers, SEGCO-Southern					
Electric Generating Company.					
	APC APC APC APC APC APC APC APC APC APC	OWNER 1/ NEED (ft.) APC 56 APC 43 APC 69 APC 67 APC 103 APC 127 APC 146 APC 55 APC 96 C of E - C of E - APC SEGCO Power Company, C of Power Company, C of	OWNER 1/ POWER NEED ANNUAL GENERATION (ft.) (1,000 mwh) APC 56 216 APC 43 202 APC 69 400 APC 69 400 APC 67 351 APC 103 212 APC 127 691 APC 55 133 APC 96 253 C of E - 329 C of E - 434		

Source: Use of water in Alabama, 1970 by Geological Survey of Alabama.

Rural and Agricultural Water Use and Needs

Agricultural water requirements along with rural domestic needs are presented in figure 4-25 for the period 1970 through 2020. Projected water requirements for agriculture show an increase of 58 percent by 1990 or a total demand of 63.4 MGD by that time; a reflection of the growing needs of agriculture.

The rural domestic water demand of 31.4 MGD in 1990 is expected to be 44 percent greater than in 1970. The increase can be attributed almost entirely to increased per capita consumption. Population living on farms and rural areas not serviced by public water utilities in 1970 was estimated at 437,000 and anticipated to increase to 443,000 by 1990 and to 455,000 by 2020.

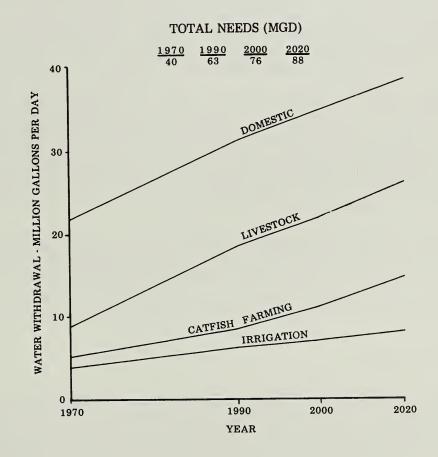


Figure 4-25 -- Rural withdrawal use of water, 1970-2020.

Total water use for irrigation should increase from about 5.3 MGD in 1970 to about 6.1 MGD by 1990. Demand will continue to be strongest in the Tallapoosa and Coosa Subbasins. If the basin continues to develop as in the past, irrigated land will increase from 10,500 acres in 1970 to 12,200 acres by 1990. As agricultural technology and better management methods are developed, soil moisture deficiency is likely to become a more generally limiting factor in crop yields.

Livestock water requirements should double in the next two decades, reaching 18.1 MGD by 1990. Other rural uses such as catfish farming are expected to require around 7.8 MGD.

Supplemental moisture (irrigation) is needed for maximum plant growth in most years though the increase in quality and yield cannot normally justify the capital expenditure necessary to develop and operate irrigation systems on general crops or pastures in the basin.

There are no serious shortages of water for livestock and rural domestic purposes in the basin. The source of water for livestock is generally streams and farm ponds and only during an extended drought period is the water supply limited. Wells are the normal source of water for rural domestic use and few cases of water shortages occur. These are generally caused by faulty pumping equipment or wells that are too shallow.

The average annual rainfall for the study area is 54 inches. This rainfall is not distributed uniformly throughout the growing season. Lack of sufficient soil moisture during parts of the growing season reduces yields and sometimes causes crop failures. Appendix table 31 gives, at different levels of probability, the number of drought days each month from April through October for soils with different available soil moisture capacities for each subbasin.

The vertical distance between available moisture and potential evapotranspiration curve in figure 4-26 is an indication of irrigation needs for the respective months for maximum plant growth. For the months of June, July, August, and September, three to four inches of water is needed to sustain maximum plant growth and to maintain the original soil moisture base.

Impaired Drainage

Drainage of excess water in the basin is not a major problem. Local areas exist where excess water is a problem to agricultural production and urban development. These areas are small and the wetness problem can normally be solved by ditches, drains, diversions or a combination of practices.

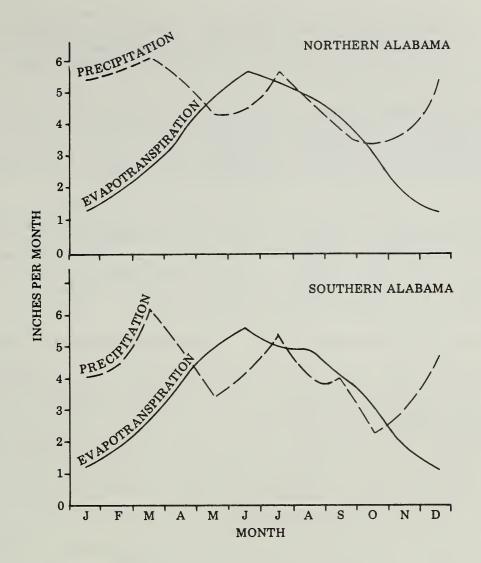


Figure 4-26 - Average monthly precipitation and evapotranspiration for Alabama in a typical year.

On-farm drainage systems are needed to provide for the orderly removal of excess water from the land. Open ditches are the most common measure used to remove surface water while subsurface drains are used for removal of internal water. Dikes, diversions, levees and land smoothing are sometimes needed to complete the collection system. An adequate outlet is a must for the system to be effective. If suitable outlets are not available, this development usually requires group or project-type action. There are 2,141,000 of the 11,015,000 acres in the basin that have excess water as the dominant hazard or limitation. There are 229,000 acres of cropland and 410,000 acres of pastureland with this characteristic. Drainage is needed on 32,000 acres of cropland and 137,000 acres of pastureland for a total of 169,000 acres.

A large portion of this area is located in the flood plain of rivers and streams and has a combined problem of drainage and flooding. A solution to the drainage problem only solves part of the excess water problem. Additional measures would be required to reduce the flood potential.

The installation of drainage measures on wetlands should presently be limited to those acres of cropland where the efficiency of crop production can be improved. Pastureland and forest land in land capability classes II and III, with drainage, could be converted to cropland if crop production from these areas is needed to supply the demands for food and fiber or to improve production efficiency.

Surface Storage for Flow-Augmentation, Recreation and Municipal Water

Certain specific water needs were recognized during the early phase of the basin study that might be met most efficiently through surface storage. The Alabama Water Improvement Commission identified 20 areas along streams and tributaries which have or will have a pollution problem during periods of low streamflow. The Economic Research Service has projected a demand for water-based recreation in the Cahaba River Subbasin. There will exist a need for additional municipal water throughout the river basin. A portion of these needs will have to be met through the use of surface storage.

Low-flow agumentation for pollution abatement is generally considered to be a last resort solution to water quality problems. After all practical levels of waste treatment have been achieved in a drainage basin, low flow augmentation could be used as a supplemental method of maintaining desired water quality requirements during periods of low flow. There are 10 of the 20 identified problem areas (Alabama Water Improvement Commission, 1975) where a reservoir site is available that could be used to alleviate the pollution problem (see table 4-27). These sites are located upstream from the problem area to utilize gravity flow. Ten of the identified problem areas have existing or potential pollution problems that cannot be solved by flow augmentation from a reservoir. These problems are physically located so that no upstream reservoir site exists, or the required minimum flow is greater than the dependable yield from the drainage area.

Table 4-27 -- Location of existing and potential water pollution problems, status of impoundment possibility for flow augmentation, and minimum flow requirements, Alabama River Basin, 1975.

LOCATION 1/	MINIMUM FLOW REQUIRED	RESERVOIR SITE AVAILABLE	DEPENDABLE YIELD FROM DRAINAGE AREA AND RESERVOIR
LOCATION 1/	CFS 2/	3/	CFS 4/
Alabama River Subbasin			
Wilcox County	2	Vaa	
Pursley Creek at Camden	2	Yes	3.97 & 3.75 <u>5/</u>
Chilton County Middle Fork of Mulberry			
Creek at Thorsby		No	
Cahaba River Subbasin		NO	
Shelby County			
Buck Creekvicinity of Siluri	a		
& Alabaster	u	No	
Jefferson County			
Cahaba River-vicinity of			
U. S. Highway 280	-	Yes	9.51, 8.52, 7.85 3.06 6/
Coosa River Subbasin			-
Coosa County			
Baker Creek at Goodwater	1.5	Yes	2.19
DeKalb County			
Big Wills Creek at Fort Payne	150	Yes <u>7</u> /	-
Shelby County			
Buxahatchee Creek at Calera		No	
Calhoun County			
Cane Creek at Anniston-Fort		N T -	
McClellan Talladara County		No	
Talladega County Shirtee Creek at Sylacauga		No	
Calhoun County		NO	
Tallahatchee Creek at			
Jacksonville	8	No	
Talladega County	Ŭ		
Tallaseehatchie Creek			
at Sylacauga	31.5	Yes	17.32 & 4.22 5/
Chilton County			· _
Walnut Creek at Clanton		No	
Shelby County			
Waxahatchee Creek at			
Columbiana	4.5	Yes	6.16

Table 4-27 (Cont'd)

LOCATION 1/	MINIMUM FLOW REQUIRED CFS 2/	RESERVOIR SITE AVAILABLE 3/	DEPENDABLE YIELD FROM DRAINAGE AREA AND RESERVOIR CFS 4/
	0.0 1)		
Tallapoosa River Subbasin			
Cleburne County			
Cahulga Creekvicinity			
of Heflin		No	
Macon County			
Calebee Creekvicinity			
of Tuskegee	2.5	Yes	1.05
Clay County			
Horsetrough Creekvicinity			
of Ashland	8	Yes	1.29
Bullock County			
Old Town Creekvicinity of			
Union Springs		No	
Lee County			
Parkerson Mill Creekvicinity			
of Auburn		No	
Lee County			
Sougahatchee Creekvicinity	0.5		
of Auburn-Opelika	23	Yes	3.22
Randolph County			
Wedowee Creekvicinity of	0.5	N	0.00
Wedowee	0.5	Yes	9.26

1/ Location of problem areas were identified by Alabama Water Improvement Commission.

2/ Flow required to maintain 5 ppm dissolved oxygen in stream. Furnished by Alabama Water Improvement Commission.

3/ For detail location and reservoir statistics see appendix table 7B.

 $\overline{4}$ / Estimated as being 50 percent of the average annual runoff.

 $\overline{5}$ / Two sites available.

 $\overline{6}$ / Four sites available.

7/ Several sites are available above problem area, however, these sites will not meet the flow requirements. Each site would involve an acquisition of extensive land rights. Four sites have been located in the Cahaba River Subbasin which could provide surface area for water-based recreation. A potential site located on Shades Creek in Bibb and Jefferson Counties will require considerable clean-up of the water draining into the reservoir before this reservoir could be used for water contact sports. These and other potential retarding structures which are planned under the small watershed program should be utilized as multiple-purpose structures whenever possible.

Needs for municipal water have been projected for all public supply systems. Eight area or county-wide studies have been made which included identification of the needs for municipal water and analyzed the potential for surface storage. Reservoirs which could satisfy these needs were located during these studies.

Appendix table 7B lists these sites as well as other poten al reservoir sites which could meet a wide range of surface area or sto ge needs.

Recreation and Related Needs

Introduction -- Alabamians now spend more hours engaging in recreation activities outdoors than ever before, and the demand for leisure-time facilities is soaring. Actually, the demand for outdoor recreation in the Alabama River Basin is increasing much faster than the population (figure 4-27). Participation in recreation is often measured in terms of "activity occasions", i.e., participation in a recreation activity for at least 30 minutes a day. In 1974, residents of the Alabama River Basin and tourists recreating within the basin participated in over 32 million activity occasions. By 1990, the number of occasions is expected to double, and by the year 2020, the number of recreationists is expected to be over three times greater than in 1974 (see table 4-28).

Water is vital to most outdoor recreation activity. In 1974, more than 60 percent of all basin recreation activity was water based. Water also enhances land based recreation such as camping and picnicking. Consequently, the recreational use of water must not be overlooked in planning.

Several state agencies are concerned with preserving and improving the recreational environment of Alabama. Chief among these is the Alabama Department of Conservation and Natural Resources, Division of Outdoor Recreation. In 1975, Auburn University completed an extensive Comprehensive Outdoor Recreation Plan for Alabama under contract with the Alabama Department of Conservation and Natural Resources. Since the planning regions in the state study did not coincide with the hydrologic

boundaries of the basin, and because of unexpected changes in the level of projected population, it became necessary to develop a separate recreational analysis for the basin study area. The methodology and assumptions utilized in the analysis, as well as the detailed subbasin projections are presented in appendix 32.

Table 4-28 -- Projected demand for outdoor recreation by residents and tourists in the Alabama River Basin, 1974, 1990, and 2020.

	DEMANDACTIVITY OCCASIONS					
ACTIVITY	1974	1990	2020			
		1,000				
Swimming	10,004	19,860	37,020			
Picnicking	6,292	9,930	14,100			
Boating	2,755	6,280	12,930			
Hunting	2,159	2,788	3,666			
Fishing	6,615	9,913	13,368			
Camping	1,520	3,910	8,330			
Golfing	1,326	2,934	5,868			
Water skiing	944	2,845	5,525			
Hiking	511	1,080	1,810			
Total	32,126	59,540	102,617			

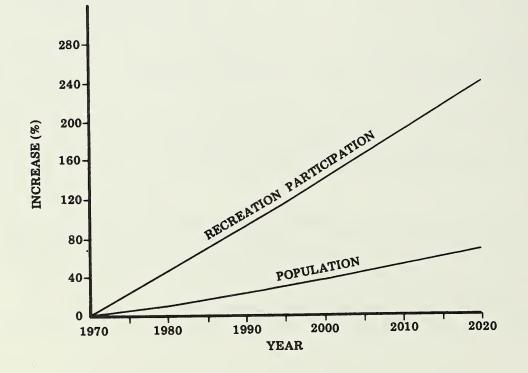


Figure 4-27 -- Projected outdoor recreation participation and population growth, Alabama River Basin, 1970-2020.

Recreation may be . . .

swimming,

camping,

skiing,

hunting of small game,

large game,

or fishing.

4-68

Demand, Supply and Facility Needs -- Nine land and water based activities were selected for analysis. They are fishing, hunting, boating, swimming, water skiing, camping, hiking, picnicking, and golfing. These are the primary recreation activities in the area and are those that would potentially be affected by land and water development activities. Each will be discussed separately. It is realized that much of the land and water area required can be used to satisfy several needs, either concurrently or at different seasons of the year. There is no general rule regarding how much of an area can serve dual purposes. This depends on the nature of the particular area.

Boating -- Boating demand is projected to increase from 2,755,000 activity occasions in 1974 to 6.3 million by 1990 and 12.9 million occasions by 2020 (see figure 4-28). Boating thus ranks third behind water skiing and camping in the rate of increase anticipated during the next 50 years. Currently, no need exists for additional boating waters as almost 200,000 acres are available for public use. One-half of this acreage is in the Coosa Subbasin, consequently, this area has the largest surplus of acreage. The basin can presently satisfy 11.6 million activity occasions of boating and no serious shortage of boating waters is expected by the year 2020. If boating demand is to be satisfied in the local area, a minor need exists for 2,800 acres in the Cahaba Subbasin within the next 20 years. As has been pointed out, however, this demand could easily be satisfied on one of the many reservoirs in the Coosa Subbasin.

Swimming -- Pressure for swimming areas should about double by the year 2020 (see figure 4-29). To satisfy the increased demand with lake, pond or river swimming would require the development of an additional 500 acres of beaches to supplement the 126 acres reported in 1974. These beaches together with public pools provide the opportunity for about 8 million activity occasions of swimming annually. Present demand of 10.0 million occasions already exceeds capacity. Most of the new beaches required during the next two decades will be needed in the Alabama Subbasin. Currently, this area can supply only 2,300,000 activity occasions of swimming, while demand is for 3.2 million activity occasions. At present, 40 acres of beach would be required to meet unsatisfied demand. The need in the Alabama Subbasin is expected to increase to 146 acres by 1990. With a metropolitan population approaching 200,000 in the Montgomery area, there is increasing pressure on the recreational resources of this area. Few beach areas were reported in either Montgomery or Autauga Counties in 1974 hence a real need exists in these counties.

Water Skiing -- This activity is expected to have the greatest relative increase in demand throughout the planning period; however, the percentage of the population participating will remain low (see figure 4-30). In 1974, only five persons in 100 participated in water skiing.

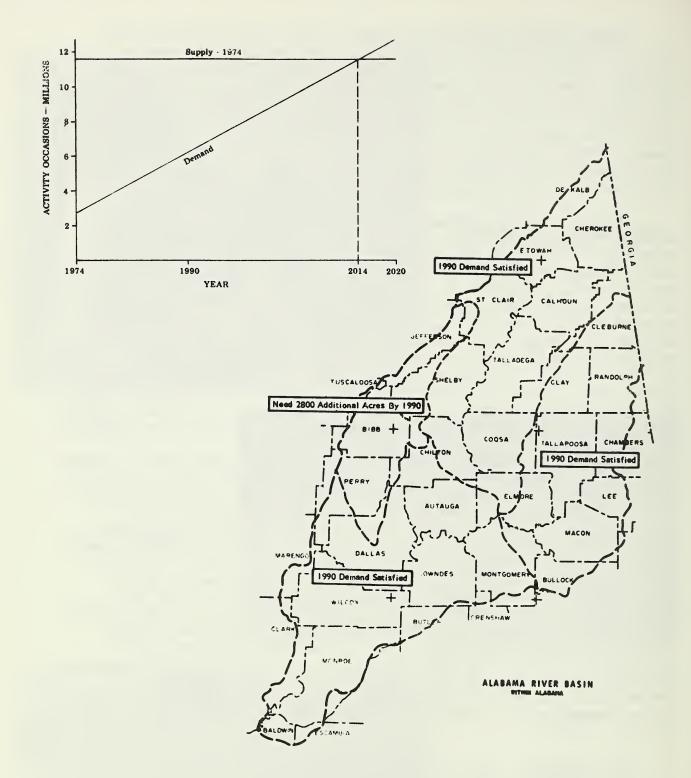


Figure 4-28 -- Water development needed for boating, 1974 to 1990.

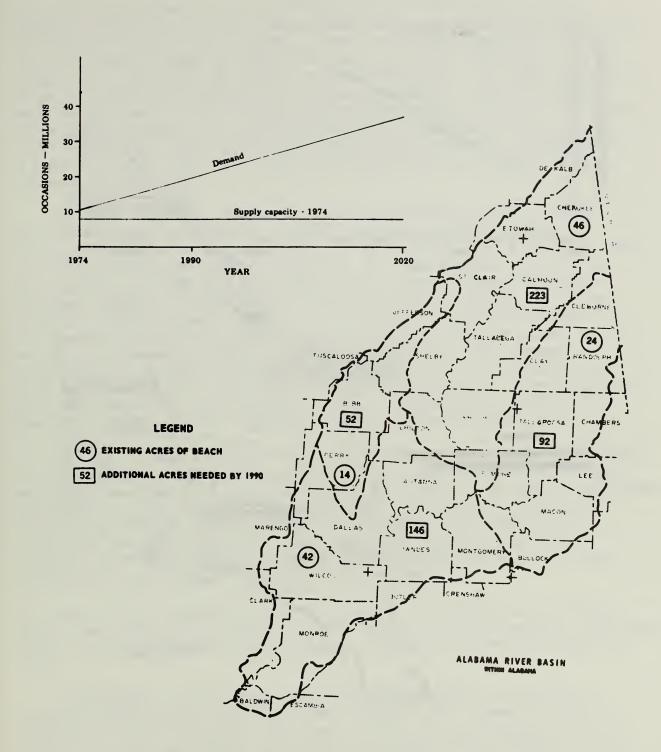


Figure 4-29 -- Beach acreage needed, 1974 to 1990.

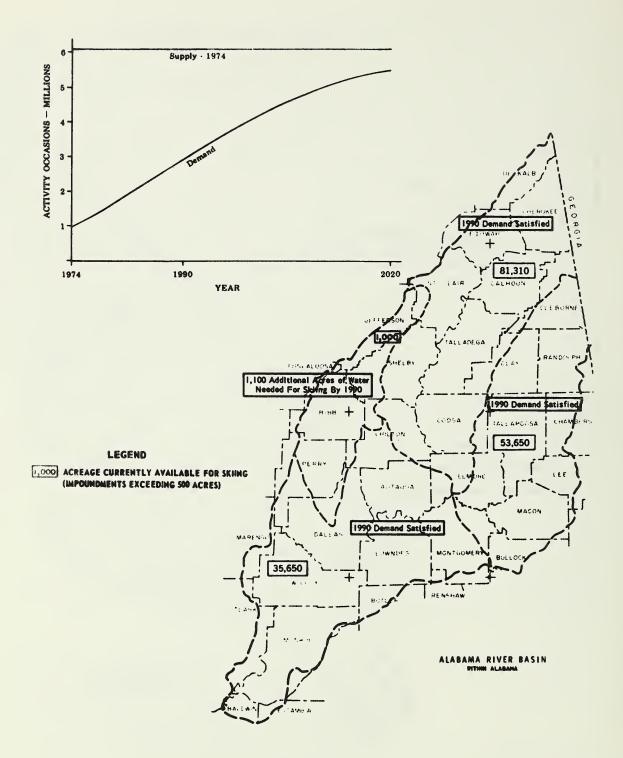
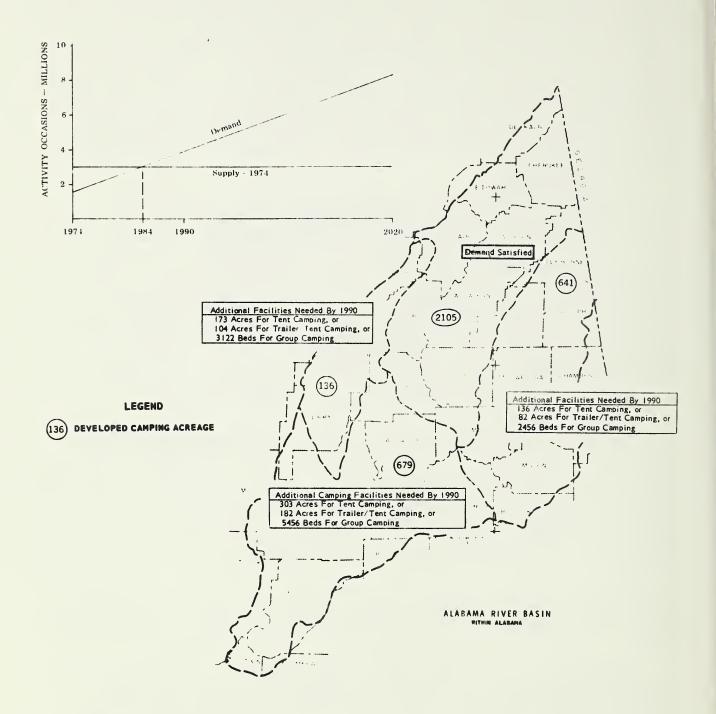
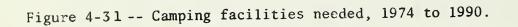


Figure 4-30 -- Water needed for skiing, 1974 to 1990.


By 1990, the estimate is for eight persons per 100 to participate. Demand is expected to climb from 944,000 occasions in 1974 to 2.8 million by 1990 and 5.5 million by 2020. Public large water impoundments can currently satisfy skiing demands in each of the four subbasins, but by 1990, 1,100 acres will be needed in the Cahaba area. A large surplus of water for skiing is available in the Coosa Subbasin. As with boating, unsatisfied demand in the Cahaba region could easily be met in the Coosa Subbasin if residents were willing to travel 100 miles or more to ski. In the past, most have not been willing or able to do so; consequently, a need will soon exist for skiing waters particularly in the populous Jefferson County area.


<u>Camping</u> -- Camping demand is usually satisfied in one of three ways -- through tent camping, trailer camping, or group camping in cabins or lodges (see figure 4-31). In 1974, there were 1,256 individual sites in the basin developed especially for tent camping, 6,284 sites for trailer/tent camping, and 4,873 beds in group camping facilities. Combined they had a capacity of 3.2 million activity occasions. More than one-half of these facilities are located in the Coosa Subbasin. The demand for camping facilities is expected to increase second only to water skiing among the nine activities considered. Total demand is expected to rise from 1.5 million occasions in 1974 to 3.9 million by 1990 and 8.3 million by the end of the planning period. As pointed out, the need can be satisfied in several ways; consequently, figure 4-31 specifies facility needs in terms of both acreages and beds.

<u>Hiking</u> -- Public hiking trails in the basin satisfy about 90 percent of the current demand (see figure 4-32). A total of 341 miles of trail exist, while another 78 miles are needed at present. By 1990 an additional 430 miles will be required to meet demands. The bulk of the current deficit is centered in the Alabama Subbasin where only 60 miles of developed trails are reported. The area has a present need for an additional 54 miles of trails. Both the Coosa and Cahaba basins have sufficient trail mileage to satisfy current demands.

No other activity appears to be so lacking in facilities as is hiking. With demand expected to double by 1990, there is a real need for additional public trails throughout the basin particularly near the more populated areas.

Picnicking -- Picnicking demand is not expected to increase as rapidly as most other activities (see figure 4-33). Demand by 1990 should be about 9.9 million occasions, 60 percent greater than in 1974. Presently, there are about 1,435 acres developed for picnicking in the basin. Approximately 4,500 tables are available; 1,900 are in the Coosa Subbasin. The Alabama Subbasin contains only 1,340 tables for a population

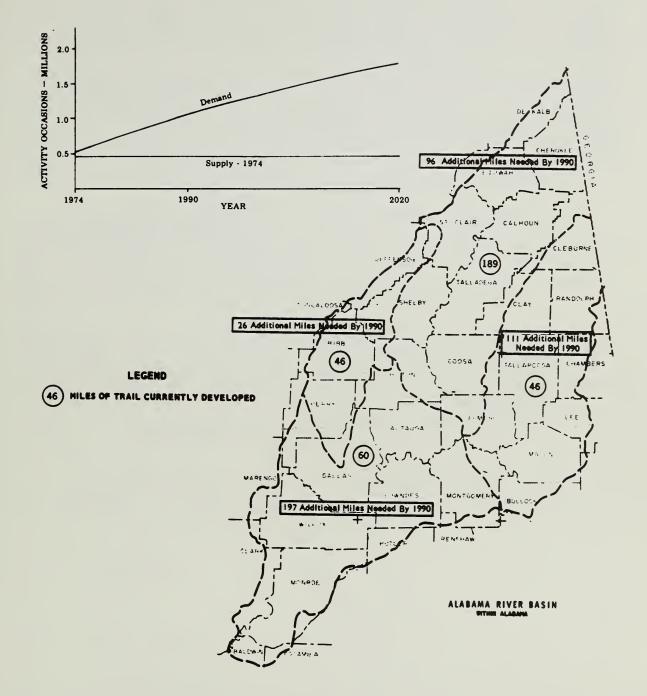
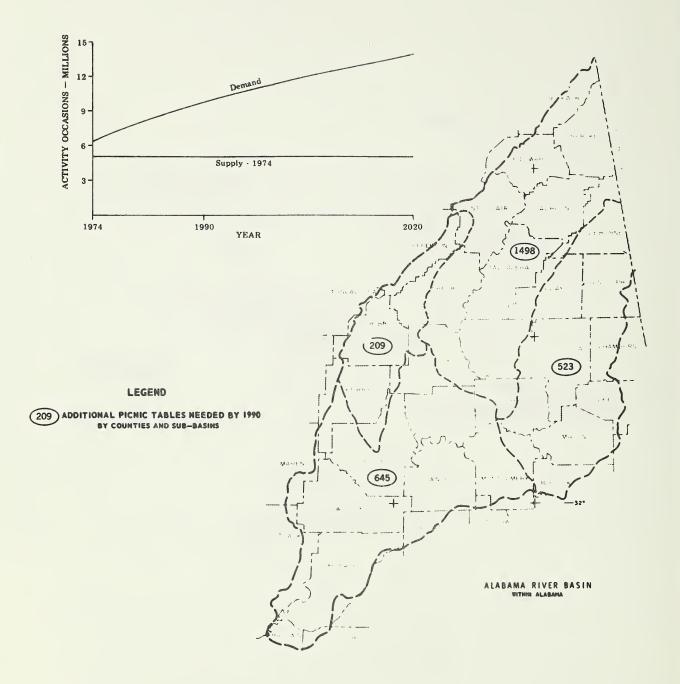
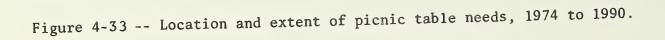




Figure 4-32 -- Hiking trails, 1974 to 1990.

of 321,000; consequently, the immediate need is greater here than in other subbasins. By 1990, however, needs of the Coosa area will surpass those in the Alabama Subbasin because of the heavy tourist activity in the Coosa area. During the next 15 years, an additional 2,900 tables will be needed within the basin -- 1,500 of these in the Coosa Subbasin.

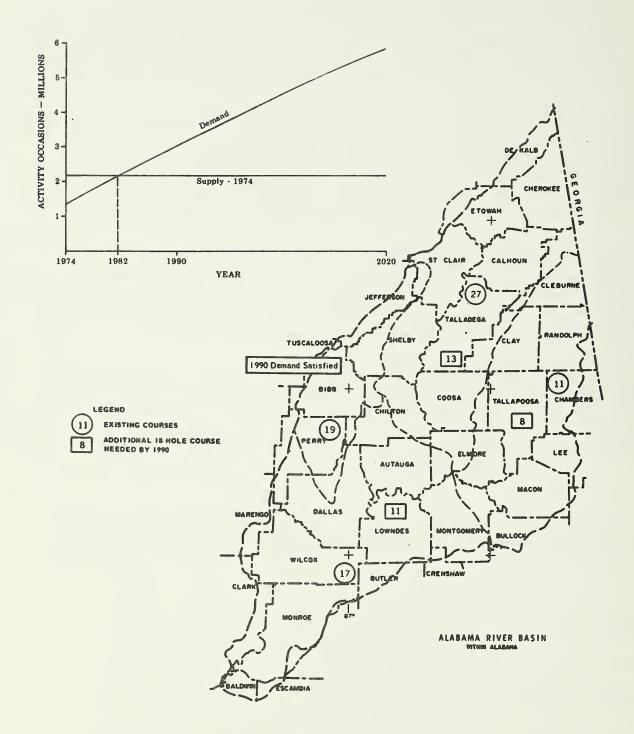
<u>Golfing</u> -- The current capacity of the 74 golf courses in the basin is 2.2 million activity occasions, while demand is for 1.3 million occasions (see figure 4-34). With demand increasing to 2.9 million occasions by 1990 and 5.9 million by 2020, the need for numerous new or expanded courses is quite evident. Currently, no additional courses are needed. By 1990, however, demand is expected to change dramatically as 32 additional 18-hole courses will be needed to satisfy demands.

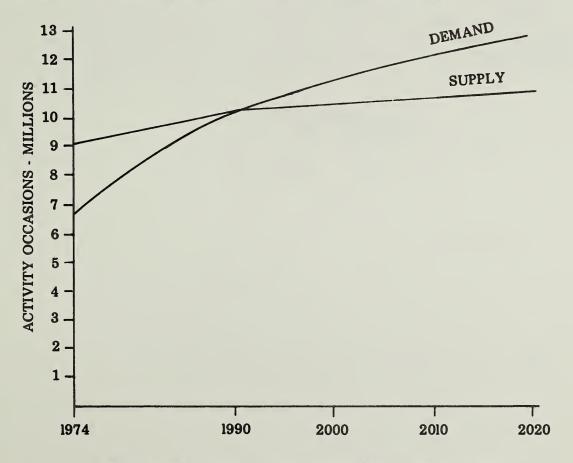
Forest Related Recreation -- Camping, hiking, and picnicking are usually forest related activities. Forested areas with the best recreation potential are located along rivers, lakes and in the mountainous area. Basic criteria for determining areas for potential development include soil suitability, vegetation, population, and travel distance. Water is also a basic criterion for intensive development.

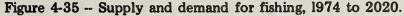
These favorable areas indicate general possibilities for recreation development. More detailed surveys are necessary to determine specific site locations within these areas. Ownership of forest land with recreation potential is shown in table 4-29.

	SITE	RATING
TYPE OWNERSHIP	GOOD (% OF AC.)	FAIR (% OF AC.)
Private individual	80.7	84.3
Private corporation	14.7	13.6
Federal military	2.7	1.7
National Forest System	0.9	0.2
Public non-federal	0.6	0.1
State park	0.4	0.1
	100.0	100.0
Acreage with recreation potential	462,750	1,136,550

Table 4-29 -- Ownership of forest land with recreation potential, Alabama River Basin, 1972.



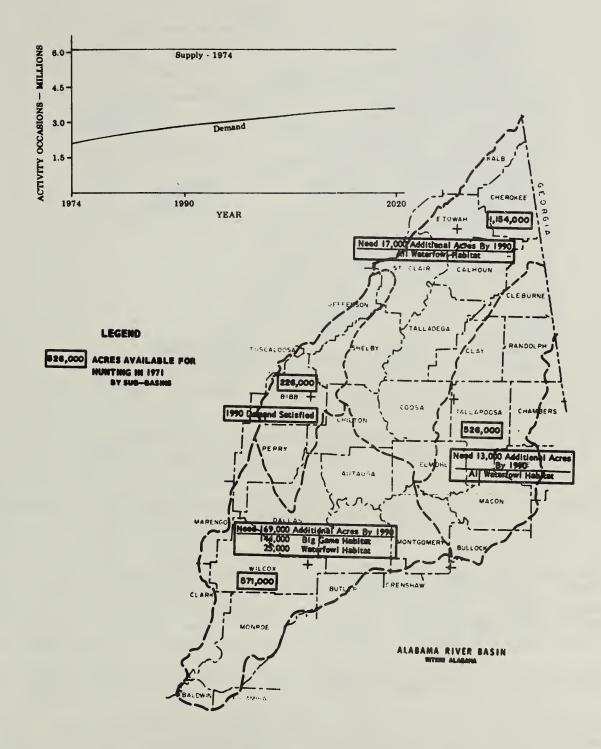

Figure 4-34 -- Golf course requirements, 1974 to 1990.

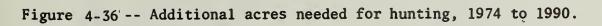

Wildlife Management Needs

Fishing -- Fishing demand has been estimated for four categories of water -- lakes and reservoirs, rivers and streams, small impoundments, and put-grow-and-take ponds. Brackish and salt water fishing is not available in the basin. This classification into separate types of fishing demand follows the method set forth in the State Recreation Plan and is consistent with other research on fishing being conducted as a part of the basin study.

Eighty-five percent of the basin's fishing waters are classified as large impoundments, i.e., lakes and reservoirs exceeding 500 acres. Almost 50 percent of the acreage is concentrated in the Coosa Subbasin (see table 15 in the appendix). For the purposes of this study, a manday of fishing is assumed to equal one activity occasion. Each reservoir, lake, river and stream in the basin was analyzed separately regarding man-days of fishing and sustained harvestable production of fish per acre. The potential capacity of all public fishing areas in 1974 was almost nine million activity occasions compared to a demand of 6.6 million occasions (see figure 4-35).

The demand for fishing is expected to equal the supply by 1990. The basin is projected to support 9,942,000 fishing occasions by 1990 to satisfy a projected demand of 9,913,000 occasions (see appendix 32N). After 1990, the demand for fishing is projected to exceed the supply.





Hunting -- Three types of hunting demand are considered in this study -- big game, small game, and waterfowl (see figure 4-36). The supply of land assumed to be available for hunting includes state wildlife management areas, National Forests, and all company and privately owned land open to public hunting. Shooting preserves and clubleased lands are not included in the acreage open to public hunting. In all, 2.4 million acres are available for public hunting in the basin. Almost one-half or 1.1 million acres are in the Coosa Subbasin.

Hunting demand is strongest in the Alabama and Tallapoosa Subbasins. A hunter in these two areas normally participates in about 29 hunting occasions per year, whereas in other parts of the basin the rate is only 15 occasions. Current demand in the basin is for about 2.2 million hunting trips each year. Seventy percent of the demand is for small game. The capacity of public hunting lands in the basin is 6.1 million hunting trips each year, hence there is no serious shortage. There are however, a few problems in satisfying two particular types of hunting. All areas are deficient in waterfowl hunting. Currently, 388,000 acres are available for waterfowl hunting, but an additional 8,000 acres are needed to satisfy the 1974 demand. By 1990, the acreaged need for waterfowl hunting is expected to increase by 24,000 acres. The other need is for additional big game hunting in the Alabama Subbasin.

The Wildlife Habitat Evaluation Program (WHEP) developed by the U.S. Forest Service was used in preparing the maps and numerical ratings of habitat potential for the four major game species on forest lands. This analysis indicates the most favorable conditions for forest game species based on existing habitat. These values are expressed in <u>potential</u> populations and potential hunting trips. Gray squirrel and deer hunting supplydemand data is most critical and is examined in this section as well as appendix 34. Quail and turkey habitat are also covered in appendix 34.

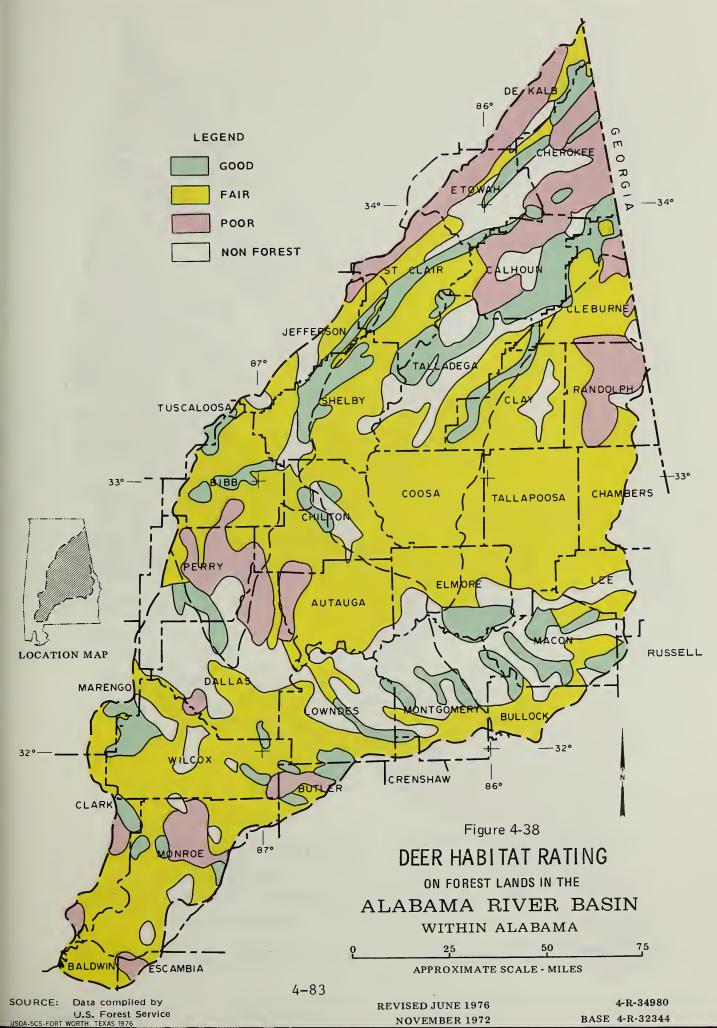
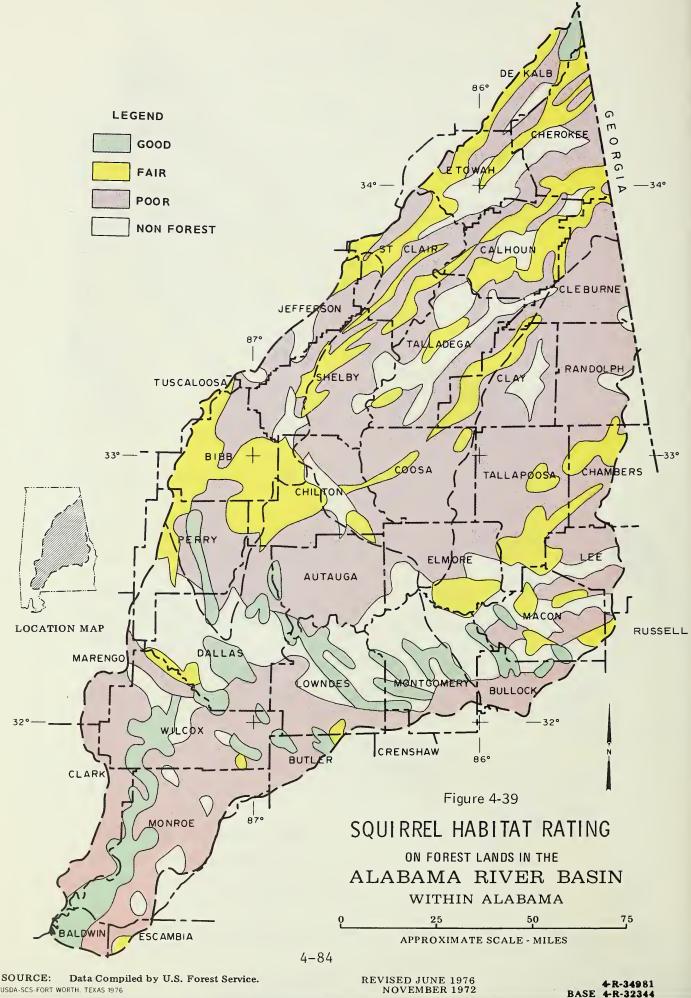
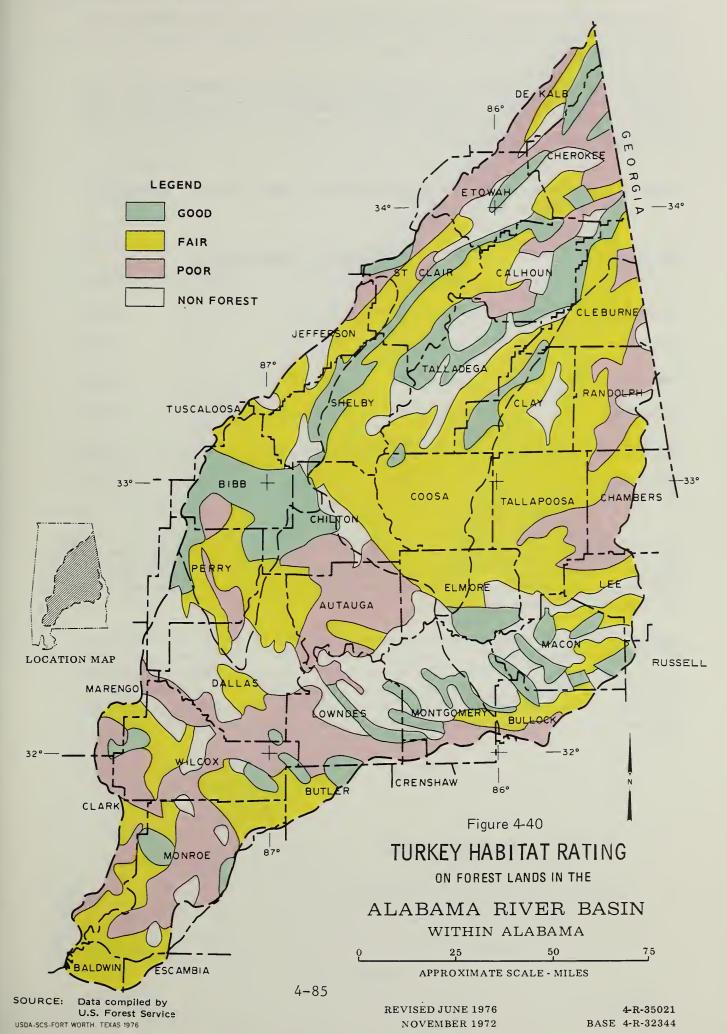



Figure 4-37 -- Supply and demand for hunting on forest lands, Alabama River Basin, 1970 to 2020.


The potential diversity of habitat for white-tailed deer is reflected by WHEP. Almost all forest types had either good or fair deer habitat (see figure 4-38). The oak-hickory and bottom land hardwood sites rate highest. Most of the oak-pine and loblolly-shortleaf types rate fair. Longleafslash types are poor deer habitat, probably because of insufficient data.

Gray squirrel habitat (see figure 4-39) is best in the bottom lands and in the oak-hickory forest type. It is fair in some oak-pine stands.


Hardwood sites provide the best turkey habitat (see figure 4-40). It is best on bottom land hardwoods and on upland oak sites. Oak-pine and longleaf-slash pine stands are fair to good turkey habitat.

SOIL CONSERVATION SERVICE

USDA-SCS-FORT WORTH. TEXAS 1976

Quail habitat is best in areas of the Coastal Plain and Piedmont land resource areas (see figure 4-41). It is fair in areas adjacent to crop and pastureland in the Coosa Valley.

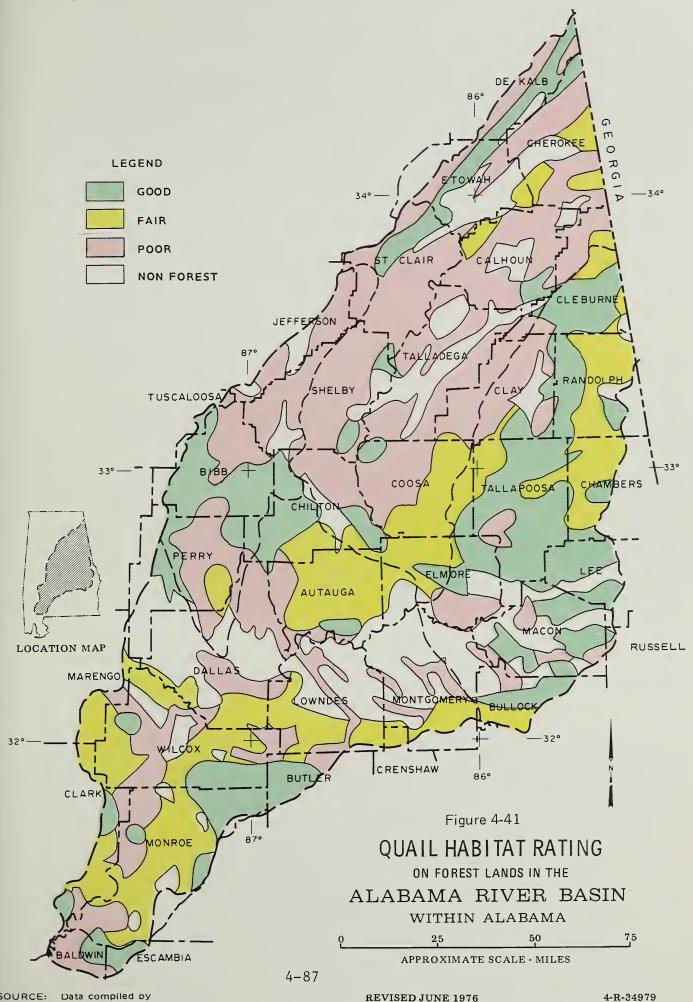

The population potential, as indicated by habitat evaluation, does not account for management factors such as poaching, hunting activity, and harvest. Table 4-30 lists the potential populations within the basin (see appendix 33 for details).

Table 4-30 -- Population potential of forest game species, Alabama River Basin, 1975.

MAJOR FOREST	NU	MBER OF GAME A	NIMALS	
TYPES	SQUIRREL	QUAIL	TURKEY	DEER
Loblolly-Shortleaf	Not Featured	351,000	26,000	50,000
Longleaf-Slash	Not Featured	50,000	3,000	7 000
Long rear-Stash	Not reatured	50,000	3,000	3,000
Oak-Pine	246,000	121,000	22,000	41,000
		,	,	,
Oak-Hickory	563,000	Not Featured	27,000	72,000
Bottomland Hardwood	1,463,000	Not Featured	12,000	41,000
TOTAL ANIMALS	2 272 000	E22 000	00 000	207 000
TOTAL ANIMALS	2,272,000	522,000	90,000	207,000

Table 4-31 reflects the hunter-trips that could be supported by the population potentials. The basin could support heavy deer and turkey hunting. Additional quail and squirrel hunting would also be available if these populations existed.

Numerous problems affect the management and use of wildlife resources within the basin. More and more privately owned land is being closed to public hunting. Reasons for this closure include increased hunting activity and realization by landowners that wildlife is a valuable resource. Deer and a few other species are heavily hunted, still other species such as the opossum, woodcock, and snipe, are hunted relatively little.

SOURCE: Data compiled by U.S. Forest Service USDA-SCS-FORT WORTH. TEXAS 1976

REVISED JUNE 1976 NOVEMBER 1972 4-R-34979 BASE 4-R-32344

	HU	NTING TRIPS		
MAJOR FOREST TYPES	SQUIRREL	QUAIL	TURKEY	DEER
Loblolly-Shortleaf	Not Featured	84,000	412,000	249,000
Longleaf-Slash	Not Featured	16,800	44,000	13,500
Oak-Pine	122,000	38,400	344,000	204,000
Oak-Hickory	252,000	Not Featured	436,000	363,000
Bottomland Hdws.	656,000	Not Featured	184,000	202,500
TOTAL	1,020,000	139,200	1,420,000	1,032,000

Table 4-31 -- Potential hunting trips for forest game, Alabama River Basin, 1972.

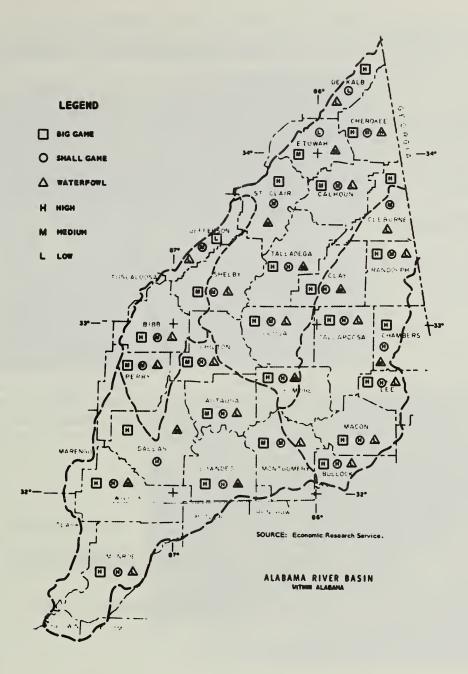
Obviously, the problem is to stimulate public interest in the sporting qualities of some of the less important species.

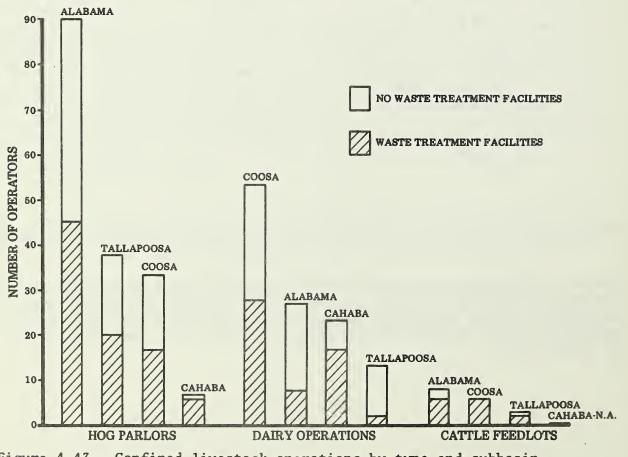
Illegal hunting and poaching are problems in many counties. Illegal hunting appears to be the limiting factor on big-game populations in several areas.

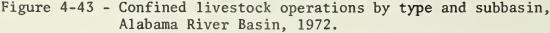
Although Alabama is not in a direct migration route, thousands of waterfowl pass through the state each year from both the Atlantic and the Mississippi flyways. In the basin, are many acres of streams, lakes, reservoirs, and beaver ponds with some waterfowl potential. The basin contains neither a waterfowl refuge nor a waterfowl management area; and most of the wetland habitat receives little, if any, management from private, state, or federal sources. The location of a potential waterfowl management area in the Alabama Subbasin is discussed in Volume II (Alternative Plans).

Figure 4-42 summarizes the potential in each county for developing hunting areas as recreational enterprises. generally, the basin has a high potential for developing hunting areas for both big game and small game. It has a low potential for developing hunting areas for waterfowl.

Beaver control seems to be the most prevalent wildlife problem in the river basin. There is no doubt that the beaver population needs close regulation even where beaver ponds are managed for either waterfowl or fish




Figure 4-42 -- Potential for developing hunting areas, Alabama River Basin.


however, authorities agree that beaver eradication must be avoided. Although most beaver damage occurs on areas with inferior, second-growth hardwood of rather low value, substantial losses of raw materials are occurring on the estimated 40,000 acres of forest lands that are flooded by beaver ponds. Table 35 in the Appendix shows the results of an aerial survey that was conducted of beaver ponds in 1967. Nine counties were chosen at random, beaver ponds were counted on all waterways, and the data were expanded for all counties in the State.

Trapping appears to be the most reliable and least costly method of beaver control, although chemical control is being tested at some research stations. According to information collected during the 1973-1974 trapping season, 16 trappers caught 1,792 beaver in 560 trapping days. The value of the catch, including fur and beaver carcasses, averaged about \$1,500 per trapper. There are approximately 600 trappers in the State.

Waste Disposal Problems

<u>Confined Livestock Operations</u> -- A potential land use or environmental quality problem is pointed out by the 1972 inventory of confined livestock operations and their waste handling facilities. Figure 4-43 summarizes the results of the confined livestock inventory for the total basin and each subbasin. According to the survey, 301 operators had approximately 75,890 hogs, dairy cattle, and beef cattle confined. This varied from about 6,000 animals in the Cahaba Subbasin to 40,000 animals in the Alabama Subbasin. The percentage of operations with some type of waste treatment facility ranged from 50 percent in the Alabama Subbasin to 86 percent in the Cahaba Subbasin. An evaluation of the adequacy of the facilities or the efficiency of the treatment was not a part of this inventory.

Waste disposal problems vary from . . .

open dumps,

to sanitary land fills,

and livestock waste lagoons.

Information gathered concerning confined livestock includes pertinent data on (1) all beef cattle feedlots where 100 animals or more are kept in continuous confinement, (2) all hog parlors, (3) all dairy operations where cows are kept in continuous confinement, (4) and all dairy operations milking more than 100 cows.

Large concentrations of animals have greatly magnified the problems of handling wastes, including health hazards and aesthetic nuisances. Economic studies indicate that the costs of handling manures make them no longer competitive in price with chemical fertilizers.

Approximately 168 hog parlor operators were housing 51,330 hogs in the Alabama River Basin.

Seventeen beef cattle feedlots were inventoried in the basin, 8 were in the Alabama Subbasin, 6 in the Coosa Subbasin and 3 in the Tallapoosa Subbasin. Only 3 of 17 beef cattle feedlots inventoried did not have waste facilities. For more detail information see appendix table 36.

As shown in table 4-32, the total solid waste production of the confined animals was estimated as exceeding 280,000 tons annually. More than half of the solid waste is generated by dairy cows. Using an average population equivalent factor from several sources, the 75,890 confined animals inventoried in this report would produce wastes equivalent to a human population of approximately 500,000.

		TOTAL PRODUCTION	TOTAL PRODUCTION
LIVESTOCK	POPULATION	OF SOLID WASTE 1/	OF LIQUID WASTE 1/
	Thousands	Thousands to	ons/year
	_		
Beef cattle	8	75.2	, 29.1
Up gg	51	FF 1	32.7
Hogs	51	55.1	32.7
Dairy cattle	16	150.4	58.4
	· · · · · · · · · · · · · · · · · · ·		
TOTAL	75	280.7	120.2

Table 4-32 -- Production of wastes by confined livestock, Alabama River Basin, 1972.

1/ Source: "Wastes in Relation to Agriculture and Forestry", USDA, Miscellaneous Publication No. 1065.

In April 1975, an inventory of animal waste treatment facilities permitted in the Alabama River Basin by the Alabama Water Improvement Commission was examined. A field check of these facilities was made to establish the actual number of the facilities that had been constructed. The results of this study are presented in table 4-33 below and in appendix table 36A.

Table 4-33 -- Animal waste stabilization basins, by subbasins, Alabama River Basin, April 1975.

SUBBASIN			RUCTED 1/			D 2/ O. OF ANIMALS
	Hogs		Layers $3/$		Cows	Layers <u>3/</u>
Alabama	27- 9,950	8-2,580	-	8-1,520	4- 425	-
Cahaba	4- 1,323	2- 350	-	2- 268	1- 150	-
Coosa	40-10,730	1-1,290	11-273,350	22-3,906	3- 240	14-264,000
Talla- poosa	10- 3,022	6-1,105	3- 93,000	8- 431	5-2,200	1- 95,000
TOTAL	88-25,025	25-5,325	14-366,350	40-6,125	13-3,015	15-359,000

- 1/ Number of facilities having a permit from the Alabama Water Improvement Commission (AWIC) and constructed before April 1975. Field check by Soil Conservation Service.
- 2/ Number of locations permitted by AWIC but not constructed by April 1975.
- 3/ Laying hens in egg producing operations.

<u>Solid Waste Disposal Systems</u>--A survey of the status of solid waste disposal systems (collected by the Soil Conservation Service in November 1972) indicated that 64 percent of the counties within the basin meet the requirements for the collection and disposal of solid wastes set forth by the Division of Solid Waste, State Department of Public Health. Considerable improvement has been made in the past three years.

According to data provided by the Division of Solid Waste in May 1975, the primary solid waste disposal problem areas in the basin were Wilcox, Monroe, Chambers, Randolph, and Dallas Counties and progress was being made by local officials in each of these counties. Wilcox County had an approved sanitary land fill site but no collection system. Monroe County had an approved disposal site, dumpster containers, and a truck on order. Chambers, Randolph, and Dallas Counties did not have organized collection systems that serve the entire county. There is an abundance of suitable land in the basin to meet future requirements for commercial and residential solid waste disposal. The primary problem is a need for public industrial solid waste disposal sites. Three sites, each ranging in size from 50 to 100 acres would meet the current and immediate future needs of the entire state. The most suitable area for these sites is in the Blackland Prairies Land Resource area in central Alabama. Much of this area is within the basin. State legislation regulating the disposal of hazardous industrial wastes and authorizing studies in the area of solid waste reclamation are also needed.

The rating of existing solid waste disposal areas as of May 1975 is shown in figure 4-44. This rating is conducted periodically and it reflects current conditions; therefore, the rating could be temporary. A rating system which measures various factors relating to the collection and disposal of solid waste is used as the basic criteria for determining the approval of a waste disposal system. However, the minimum state standards for a land disposal site require that; (1) no burning of refuse be permitted, (2) refuse be compacted and covered daily as used, (3) no pollution of ground or surface water occurs, (4) all hazardous waste such as pesticide containers be properly managed.

Other information concerning solid waste collection and disposal systems is contained in table 4-34. This information represents the status of each county system as of May 1975, and was developed from information provided by the Division of Solid Waste, State Department of Public Health. The acceptability of disposal area operation is temporary in nature and unacceptable disposal areas can often be brought up to standards with a minimum of effort. Detailed information on the requirements of an approved county-wide solid waste system may be obtained from the State Department of Public Health--Division of Solid Waste.

Visual Resource

The visual resource is defined as the scenic quality of the landscape. The visual resource of the basin varies from piney flatwoods of the Southern Coastal Plain to mountains of the Southern Appalachian Ridges and Valleys. Critical visual resource areas that should be preserved or enhanced are shown in figure 4-45.

The visual aspects of vegetation manipulation within these areas warrant particular attention. They are viewed by the recreating and traveling public and often provide their only impression of the region. Areas that are adjacent to water and in mountainous terrain also have favorable potential for dispersed recreation development such as hiking trails, nature study, etc. Acreages within these zones are shown in table 4-35.

	Dasin, M	ay 1.	575.	<u>-</u> /								
				COLL				FILL	DISF			· · · · · · · · · · · · · · · · · · ·
				SY: OPER/	STE		ST/ MAY	ATUS 1975	SYS MGN	TEM		OMMENTS
·			TION	UFER	ATE:		PIAT		MO			OMPLENTS
	Container	Mailbox	Bag System	County	Private	Franchised	Acceptable	Substandard	County	City	Private	
Autauga	<u> </u>			<u>-x</u>	<u> </u>	<u> </u>	<u> </u>	0)		X	<u> </u>	
Baldwin		Х				Х	3		1	1	1	
Bibb		Х		Х				1	Х			
Blount		Х				Х	1		Х			
Butler		X				х	2		Х			Basin residents use Greenville area
Calhoun	Х					Х	3		2		1	
Chambers		Х					1		Х			Collection being organized 5/75
Cherokee	Х			Х			2		1	1		
Chilton	Х			Х			1		Х			
Clarke		Х		Х			1	1	1	1		Thomasville sub- standard 5/75
Clay	Х			Х			1		Х			
leburne	Х			Х			1		Х			
Coosa	Х			Х			1		Х			
renshaw		X				Х	1		X			
Dallas		X					3	1	3	1		No organized collec- tion 5/75
)ekalb		Х				Х	2	1		2	1	
Elmore	Х			Х			1	2	2	1		
scambia		Х				Х	2		Х			
Etowah	Х	Х				Х	3		1	1	1	County containers phasing out 5/75
Jefferson		х				х	12	4	7	8	1	All County areas acceptable 5/75
Lee	Х	х				х	2		1	1		
owndes		X		Х			1		x	_		
lacon	Х			X			1		X			
larengo			Х	Х	Х			1	Х			
lonroe							1		Х			Collection not underway 5/75
lontgomery		Х				Х	3		1	2		
Perry	Х			Х				1	Х			
lando1ph		Х			Х		1	1	1	1		Collection needs upgrading 5/75
Russell		Х		Х			1				Х	
St. Clair		Х				X	1				Х	
Shelby		X		N		Х	3 2	2	X	1		Munford & Olana sites
Falladega		Х		X				2	3	1		Munford & Odena sites unacceptable 5/75
lallapoosa	X			X			3		2	1		
Tuscaloosa Wilcox	Х			Х			1		Х			No collection, landfi
HICOX												being implemented 5/7
1/ Source:	Solid W	laste	Div	ision	of	the	Alaba	na Der	artme	nt	of P	ublic Health.

Table 4-34--Status of rural solid waste collection and disposal systems, Alabama River Basin, May 1975. 1/

1/ Source: Solid Waste Division of the Alabama Department of Public Health.

.

The visual impacts of forest management and other vegetative manipulation, particularly along waterways and travel corridors are often negative. Mountainous areas should be given special attention since the height permits the landscape to be seen from longer distances. This, once again, will cause increased costs for wood and fiber production.

Table 4-35 -- Estimated acreage requiring visual resource management considerations, Alabama River Basin, 1972.

TYPE AREA	ACREAGE	
Travel corridor	18,500	
Water corridor	18,500	
Terrain features	151,000	
TOTAL ACRES	188,000	

Potential scenic rivers and streams are shown in figure 4-46. Little River is designated a state scenic river under Act No. 465 (Regular Session, 1969). The Cahaba River is now under consideration for possible designation as a national scenic river. Others are proposed for state wild and scenic river status in the Statewide Comprehensive Outdoor Recreation Plan.

Preservation of Historical, Archaeological, and Scenic Sites

There is increased public interest in Alabama and the basin in the preservation of historical, archaeological and scenic sites, much of which can be attributed to the efforts of local historical and archaelogical societies and the Alabama Historical Commission. Identification of those sites by this agency, other state agencies, and the Regional Planning and Development Commissions has resulted in more public awareness on the part of state and basin citizens.

As mentioned in Chapter 2, a list of sites of interest that should be considered for preservation is contained in appendix table 20. A more comprehensive list can be obtained from the Alabama Historical Commission, 725 Monroe Street, Montgomery, Alabama 36104. Persons or organizations interested in site acquisition for preservation purposes should examine

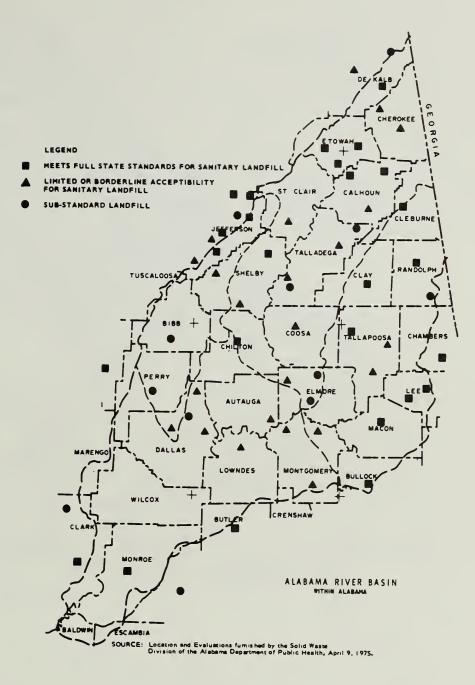


Figure 4-44 -- Location and evaluation of solid waste disposal areas, Alabama River Basin, 1975.

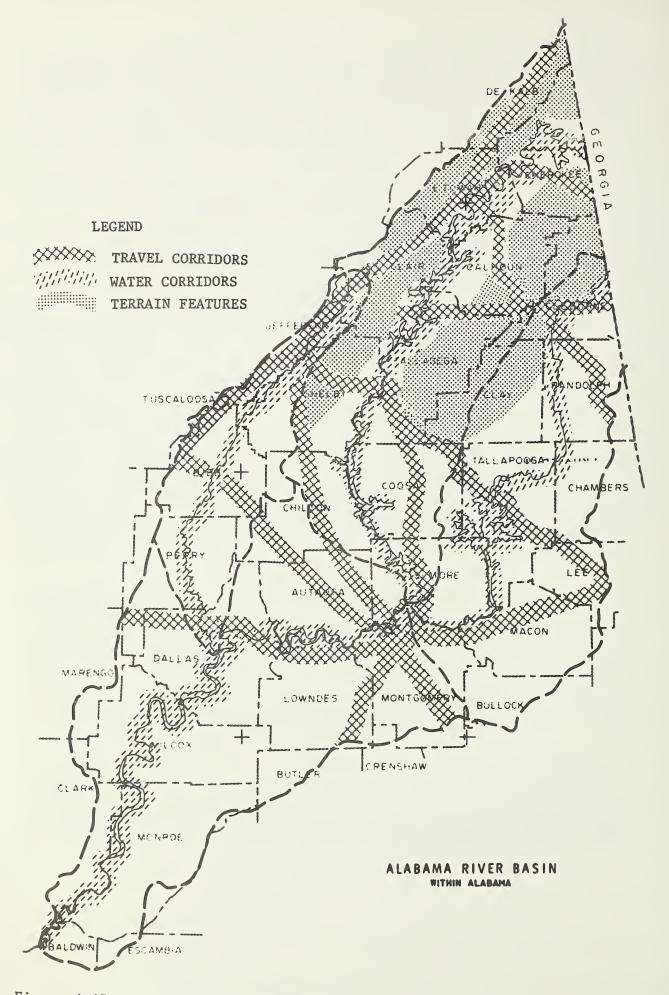


Figure 4-45 -- Critical visual resource areas in the Alabama River Basin, 1972. 4-98

Figure 4-46 -- Potential wild and scenic rivers, $\frac{1}{}$ Alabama River Basin 1971.

1/ Alabama Statewide Comprehensive Outdoor Recreation Plan

all possible sources of financial assistance as funds are available through various local, state and federal agencies and programs.

Two recent examples of co-operative efforts to preserve the rich heritage of the basin are the re-creation of Fort Toulouse in Elmore County and the effort being directed toward the designation of the Bartram Trail as an official trail under the National Trails Act.

Fort Toulouse, built in 1714, at the junction of the Coosa and Tallapoosa Rivers, is one of the most significant sites in the basin. It was at this site that William Weatherford, the Red Eagle, surrendered to General Andrew Jackson to end the Creek War. The fort is being recreated in authenic fashion under direction of the Alabama Historical Commission and with the expert assistance of competent archaeologists.

The effort to obtain official recognition of the Bartram Trail is a six-state effort and is being actively supported by numerous organi-Interest in designation of the route travelled by Bartram, zations. as a National Scenic and Historic Trail, approximately 215 miles in the state, has gained momentum since the passage of the National Scenic and Historic Trails Act of 1968, (see appendix 21). State and Federal legislation has been introduced on several occasions to further this cause. Federal legislation, H. R. 1524, was introduced in the U. S. House of Representatives, 94th Congress, 1st Session, on January 16, 1975 to provide for a feasibility study by the Secretary of the Interior. The effort to obtain official designation of this historic trail has accelerated since more than 90 trail enthusiasts from eight states convened in Montgomery on November 3-4, 1975 for the Bartram Trail Southeastern Conference, and mapped strategy for development of the route as a National Scenic Trail for Hiking. A detailed course of action is in the process of being formulated by leaders within each state, however, the majority of those attending the workshop agreed that legislation should be sought for a federally-funded Regional Bartram Trail Commission to conduct a feasibility study of the proposed trail. If such a trail were deemed practical, an amendment to the National Trails Act would make possible development of the Bartram Trail within the National Scenic Trails System.

Recent developments in this trail recognition effort include the dedication on April 24, 1976, of the one-mile stretch through the Tuskegee National Forest and the dedication of the Bartram State Canoe Trail on March 6, 1976. The canoe trail is the State's first officially recognized trail and the only official canoe trail in the Southeast to pinpoint the route of 18th Century naturalist-artist William Bartram. The Alabama Historical Commission owns a 5-acre site at Ft. Mims on the Alabama River at the extreme lower end of the basin and an additional 25 acres is needed prior to initiation of a restoration effort. Research is in progress at this site.

The Historical Commission owns a portion of the area known as Old Cahaba (the location of the first state capitol) at the mouth of the Cahaba River. This is considered a prime historical site in the basin but plans for restoration have not been developed.

Other current projects include the John Morgan House in Selma, the Scott-Yarbrough House in Auburn, the William Knox House in Montgomery, the First Presbyterian Church in Lownesboro, the Wilcox Female Seminary in Camden, the Francis Museum in Jacksonville, the Union Railway Station in Montgomery, and the Confederate Memorial Cemetery at Mountain Creek in Chilton County.

The future acquisition of additional historic or archaeological sites by the Alabama Historical Commission will be limited by the availability of funds. The degree of protection provided the abundance of sites in the basin will depend largely on the interest and resources of local units of government, citizens groups, and individuals. The above projects can be expected to ignite interest on the part of other organizations and individuals in the preservation of other significant sites in the basin.

Acquisition, operation and maintenance expenditures for historic and archaeological sites will increase tremendously as public use and awareness of the cultural resource broadens. The resultant wear and tear will necessitate higher expenditures especially considering that many of the materials and skills necessary for preserving older structures are already scarce and will become more so.

According to the Alabama Historical Commission, by 1990 the protection and preservation of archaeological and historic sites statewide will require 250 employees, \$20,000,000 annually in capital outlay expenditures and \$15,000,000 annually for maintenance expenditures. Admission fees will be charged at some sites such as Fort Mims and Fort Toulouse to offset total costs.

CHAPTER 5

COMPONENT NEEDS

SUMMARY OF COMPONENT NEEDS

The study results indicate projected increases in demand for food, feed and fiber from agricultural land can be met without accelerated resource development. The 1975 cropland base will not decline substantially in the future. Based on the assumptions used in this study and the potential yields utilized in the model, agricultural production is expected to equal or exceed projected demand and not provide significant component needs for increased food and fiber production. Component needs for improving use and management efficiencies of land and water resources, where problems have been identified, serve as the basis for alternative plan formulation.

Based on the comprehensive water and related land resources inventory of the basin presented in Chapter 2 and the problems and needs identified in Chapter 4, component needs were developed as shown in table 5-1.

Those component needs most likely to be applicable in achieving the national economic development objective have been identified as primarily NED and shown in table 5-1. Likewise, other component needs identified as being primarily EQ in table 5-1 are basic to achieving the environmental quality objective.

Agricultural Flood Damage Reduction

The need for flood damage reduction was determined by a reconnaissance study of all watersheds within the basin. Basic data on the extent of flood problems and conditions was obtained through interviews with watershed landowners and Soil Conservation Service field office personnel, and from published reports. Detailed information on the extent of the flooding problem can be found in Appendix tables 25D and 25E. The study revealed a flood problem on 861,000 acres of flood plain. Public Law 566 and Resource Conservation and Development projects (RC&D) for flood control in place or expected to be installed by 1990 would provide protection on about 86,000 acres which were therefore deducted from the total. In addition, there are 572,000 acres of forest in the flood plain where flood damages are insignificant. 1/ This area was also deducted leaving a net of 203,000 acres (49,000 acres of cropland and 154,000 acres of pastureland) needing flood damage reduction by 1990.

1/ Minor flood problems may exist on small areas of forest in the flood plain.

of major objectives and component needs, present and projected, 1975	
needs,	
component	
and	
objectives	
ajor 5	
of m 197	
Specific components Alabama River Basin,	
ific ama F	
Spec	
-	
Table 5-1	
Tab	

					QUANTITY	
SPE	SPECIFIC COMPONENTS	COMPONENT NEEDS	UNITS	PRESENT	1990	2020
PRII	PRIMARILY NED 1. Increased or more efficient output of food and fiber.					
	a. Improved efficiency of production and resulting	Flood reductionagricultural land Erosion damage reduction	Thous. acres	s 239	203	203
	agricultural income	Cropland and pastureland	Thous. acres Thous. tons	s 2,172 9,198	2,053 6,255	2,073 9,533
		Increased drainage - on farm Improved production efficiency	Thous. acres		170	202
		C 0	Thous. acres Thous. acres	s 738 s 603	614 1,024	591 1,473
	b. Increased forest produc-	Increased forest production	Mil.cu.ft./yr.		0	82.0
	tion and utilization	Reduction of fire losses Increased forest grazing	Ac./yr. Mil.lbs./yr.	7,429. 47.0	7,429 19.2	6,845 15.7
2.	Urban flood damage reduction	Urban damage reduction	No. of comm.	. 80	06	110
3.	Increased and more efficient production of agricultural, municipal, and domestic water supply	Create additional surface water supply	MGD	Q	25	71

5-2

				QUANTITY	
SPECIFIC COMPONENTS	COMPONENT NEEDS	UNITS	PRESENT	1990	2020
4. Increased output of outdoor	Increased recreation activities	ies			
recreation opportunities.	Boating	Thou. ac. of water	0	2.8	38
:	Water skiing	Thou. ac. of water	c	1.1	4
	Fishing	Thou. ac. of water	25	36	69
	Hunting	Thou. ac. of water	58	176	457
	Swimming	Mil. act. occas./yr.	2.0	11.9	29.0
	Camping	Mil. act. occas./yr	0.4	0.7	5.2
	Hiking	Miles of trails	78	400	950
	Picnicking	No. of tables	285	2,900	6,000
	Golfing	Thou. ac. of land No. of 18-hole courses	0 0 8	4.8	17.4
				1	
 PKIMAKILY EQ 5. Improved quality aspects of water, land and air 					
a. Improved waste disposal	Solid waste disposal	Industrial waste			
	improvement	disposal (ac.)	100	200	400
<pre>b. Improved stream water quality</pre>	Low quality streams improvement	Flow (cfs)	231.5	231.5	231.5
c. Reduction in sedimentation	Reduction in total sediment	Mil. tons/yr.	14.1	14.7	16.4
d. Reduction in point	Critical erosion reduction				
source erosion	Streambanks		21.0	21.0	21.0
	Dondeido amorian	Thous. tons	///	111	1/1
	HOTEDIA ANTENNON		390	449	449
	Critical areas		115.0	113.0	117.0
	Ctuin mino anotion	Thous. tons	10,225	10,735	11,115
	INTER TECTOMINALITY	Thous. tons	1,842	2,219	2,219
e. Reduction in "disturbed"	"Disturbed" forest erosion	Thous. acres	60	74	114
	reduction		12,187	17,888	23, 331

Table 5-1 -- cont'd

5-3

SPECIFIC COMPONENTS	COMPONENT NEEDS	UNITS	PRESENT	QUANTITY 1990	2020
6. Improvement, protection and/or preservation of areas of natural beauty for man's enjoyment.					
a. Protection of and increased access to scenic areas	Scenic streams Natural scenic sites	Miles Numbers	420 130	300 90	350 75
7. Enhancement or preservation of biological resources					
 Improved quality and in- creased quantity of fish and wildlife habitat 	Fish & wildlife habitat improvement Upland habitat	Thous. acres	100	150	220
	Wetland habitat		18	25	40
	Improved management	Thous. acres	7	80	10
	Stream improvement	Thous. acres	4	3	S
b. Protection of rare and	Protection of flora & fauna		č	4	C
enuargered species of 1101a and fauna	Fauna	No. of species	40	40 50	6 2
8. Preservation of archaeological and historical resources	Protection of archaeological and historical sites				
	Archaeological sites Historical sites	No. of sites $\frac{1}{1}$ No. of sites $\frac{1}{1}$	120 255	110 200	100 180

Table 5-1 -- cont'd

 $\underline{1}$ Based on recognized sites.

5-4

No flood control projects were identified for installation under future without accelerated resource development after 1990 therefore the 2020 needs would remain at 203,000 acres.

Erosion Reduction

Needs for cropland and pastureland were projected for the years 1990 and 2020. These projections assumed a continuing trend toward efficient agricultural land use allocation throughout the state. In 1970, 2,600,000 acres of the basin were devoted to cropland or pastureland uses. Total projected acreage of these uses is estimated to be 2,806,000 in 1990 and 2,874,000 in 2020 (see table 4-4).

Present erosion is estimated to be 65.2 million tons per year; 19.6 million tons from sheet erosion of crop and pasture lands; 27.1 million tons from forest land and 18.5 million tons from other sources (see also Reduction in Critical Erosion and Reduction in "Disturbed" Forest Land Erosion).

Treatment accomplishments to reduce erosion to the standard set by (SCS) Technical Guides for Alabama show going programs and planned projects can provide adequate treatment on 753,000 acres by 1990. This acreage was deducted from 2,806,000 to obtain a net treatment need of 2,053,000 acres for 1990. Net needs for 2020 were determined in a similar manner.

Erosion damage reduction needs may be expressed in number of acres that are eroding at excessive rates or in tons of excessive erosion. Either expression is based on the concept that each soil has a tolerance ("T") for some erosion and erosion in excess of that tolerance will be mining the resource base.* Areas that are eroding at rates of "T" or less can sustain crop yields and, conversely, areas that are eroding at rates in excess of "T" should be used differently or treated for erosion control in order to restore or maintain the resource base. Cropland and pastureland soil in the basin have "T" values averaging 4 tons per acre per year.

Erosion reduction needs were quantified by expressing the amount of total erosion in excess of the tolerance of the land use base. Net erosion reduction needs were determined by comparing "T" erosion with the projected erosion; the excess being the reduction need.

* Soil loss tolerance ("T") is the estimated maximum average soil loss that can be tolerated and still achieve the degree of conservation needed for sustained, economical production in the foreseeable future. These rates are expressed in tons of soil loss per acre per year. Rates of 1 through 5 tons are used in Alabama, depending upon soil properties, soil depth, and prior erosion. Erosion projections for 1990 indicate that 2,806,000 acres of cropland and pastureland can tolerate 11 million tons of erosion annually, but will be losing 17.5 million tons; 2,874,000 acres can tolerate 11.5 million tons but will be losing 21.0 million tons by 2020.

Agricultural Drainage

Drainage is needed on 32,000 acres of cropland and 137,000 acres of pastureland to provide orderly removal of excess water and improve production efficiency if the full agricultural potential is to be realized. This land is characterized by being periodically submerged or by having a constant or occasional high water table. Provisions for adequate drainage must be made before other needed conservation practices can be applied successfully.

An analysis of existing programs indicated they are adequate to satisfy the recurring needs. After considering the land use projections, the drainage needs for cropland and pastureland will be 36,000 and 134,000 acres respectively by 1990 and 33,000 and 169,000 acres by 2020 respectively.

Production Efficiency

All evidence points to a continuation of improvements in crop and pasture yields, as well as continued emphasis on improving production technology. Land Grant institutions and commercial agricultural interests are strengthening their efforts toward this goal. This study assumes a continuation of these efforts.

Projections indicate that even without accelerated water resource development, the state and study area should have little problem in producing at the levels projected for 1990 and 2020 (see table 4-3). Studies indicate a continuation of the trend to less cropland harvested. In short, land and water resource scarcities for agricultural production are not anticipated through 2020.

In this light, it would first appear that there is little need for additional USDA action to accelerate crop production efficiency. This is probably true if the goal is simply to assure that the area can produce the output presently anticipated in future planning periods. However, this could be a costly approach. There is always a need to produce food and fiber at less cost (i.e., increase production efficiency). Demands change, and in time, the State could be called upon to greatly expand its output to satisfy increased domestic or export needs. If this occurs, even marginal agricultural land could become quite valuable. Improvements in production efficiency will release land for other productive uses and increase net income.

Table 5-1 indicates a need to improve efficiency on 1.6 million acres of crop and pastureland by 1990. This is the amount of land projected to be in production without accelerated resource development, and as such, represents a maximum acreage on which efficiency could conceivably be improved. Theoretically, the aim should be to improve efficiency on all productive land, in this case, 1.6 million acres. Realistically, however, there is little chance of this. Even so, efforts should be focused in this direction.

Increased Forest Production

Projections of timber supply and demand in the basin indicate an increase in demand from 225 million cubic feet in 1970 to 600 million cubic feet in 2020 while forest acreage is projected to decline from 7,471,000 acres to 6,862,000. By 2020, demand will exceed supply at an annual rate of 82 million cubic feet per year assuming a continuation of present trends in management. This deficit is critical to the economy of the basin.

Fortunately, supplying the deficit is within the capability of the resource, for the basin's forests growth potential is 88 cubic feet per acre per year.

Reduction of Fire Losses

Protection of the forest resource from the destructive effects of fire is an essential part of the forest land treatment program. If the watershed goal of attaining a 0.25 percent fire loss index* is to be reached by 2020, then prevention, detection, and suppression facilities, personnel, and efforts need to be strengthened throughout the basin. Currently, 7,429,000 acres of forest land need fire protection. By 1990, this need will decrease to 7,129,000 acres, and by 2020, to 6,845,000 acres as forest land acreage declines.

* Fire loss index is the numerical expression of the percentage of acres burned in relation to total acres protected.

Increased Forest Grazing

As a result of the continuing shift of beef production from unimproved pastures and forest lands to improved pasture and feedlots, future demands allocated to forest lands will drop sharply from 59.3 million pounds of beef in 1970, to 30.6 million in 1990 and 25.6 million in 2020. As increased demands for timber rise, beef production from forest grazing will decline from 12.3 million pounds of beef in 1970 to 11.4 million in 1990, and 9.19 million by 2020.

Urban Flood Damage Reduction

The study identified 80 urban communities with existing flood problems. While the number of communities experiencing flooding can be expected to increase, many communities are presently developing flood plain management programs. This effort is expected to accelerate. The rate of development within urban flood plains is therefore expected to decrease; however, urban development in the future is expected to increase the number of communities experiencing flooding to 90 in 1990 and 110 in 2020. The extent of this problem will be influenced by increased runoff from urban development on uplands. These estimates are based on the HUD-FIA Type 21 Flood Insurance Study, July 1973 and similar data from other sources.

Water Supply

The projected water use shown in appendix table 30 uses the 1970 water use rate as a base coupled with basin population projections. The residential per capita use rate is assumed to increase 1.25 percent per year. Increased water-use efficiencies and reuse should result in very little change in industrial and commercial per capita use patterns.

Future sources of supply were estimated in cooperation with the Alabama Public Water Supply Division, Alabama Department of Public Health. The supply from impoundments, streams, wells, and purchase arrangements was considered. The areas identified as not being able to meet future needs from present sources of supply were reviewed with local community officials and planning agencies. Those areas with limited supply and available water storage sites were studied for feasibility.

Many communities will develop available wells and streams through ongoing programs to supply projected needs except where surface storage would provide the best source of additional water supply. Potential impoundment sites were studied with local representatives of the communities listed below. A total of 13 communities needing 25 MGD were identified for 1990; by 2020, 20 communities will need 71 MGD.

Table 5-2 -- Communities needing additional supply of municipal and industrial water by time frames - Alabama River Basin

Need Additional	Will Need Additional
Supply By 1990	Supply Between
	1990-2020

Piedmont Jacksonville Calera Columbiana Margaret Moody Odenville Wedowee Woodland Ranburne Fruithurst Opelika Lookout Mountain (Gadsden) Sterrett-Vandiver Westover Wilsonville Ashville Springville Steele Auburn

Increased Recreation

Outdoor recreational needs were quantified using methodology similar to that employed in the Statewide Comprehensive Outdoor Recreation Plan (SCORP). Primary data developed for the SCORP served as the foundation for estimation of demand (see Appendix 32). Demand determination involved resident population, preferences and participation rates for major outdoor recreation activities, and probable tourist activities within the basin.

Projected 1990 and 2020 demands were estimated for nine major outdoor recreation activities: fishing, hunting, boating, swimming, water skiing, camping, hiking, picnicking, and golfing. Current demand is for 32 million activity occasions; demand is expected to double by 1990. Demands were converted to facility needs using standards developed for the SCORP. Needs are expressed in terms of miles of trail, camp sites, beach area, etc., necessary to satisfy the anticipated demand.

An extensive survey of Alabama's recreational facilities in 1974 pinpointed the location and size of existing facilities. All recreation projects funded for construction were also assumed to be in place. The total of existing and funded facilities were deducted from anticipated needs, leaving a complement of facilities needed for development by 1990 and 2020 (see figures 4-28 to 4-34). These needs are presented in table 5-1.

Solid Waste Disposal

As discussed on page 4-93, the development of adequate collection systems and disposal sites for residential and commercial solid wastes will be a continuous process; however, this need can be met through ongoing programs. There is a need at present and in the foreseeable future for the development and operation of cooperative waste disposal sites for hazardous solid industrial wastes. Two sites, approximately 100 acres each, will be needed within the basin by 1990 while a total of 400 acres will be needed for this purpose by 2020.

Low Quality Stream Improvement

The Alabama Water Improvement Commission has identified a number of areas along streams which have now or will have a pollution problem during periods of low streamflow. The majority of these pollution problems are a result of insufficient streamflow to transport effluent from municipal and industrial waste treatment facilities. These problem points are shown in table 4-27. Total flow in these streams should be increased approximately 230 cubic feet per second to maintain the allowable dissolved oxygen content of 5 parts per million.

Reduction in Sedimentation

The need for reduction in sedimentation is difficult to quantify. Concern is expressed over improvement of general water quality, aesthetic quality, and fish habitat. Other efforts are aimed at reduced silting of streams and reservoirs, and reduced deposition on flood plains. The goal would, therefore, seem to be zero stream sediment load. This is an unreachable goal since geologic erosion takes place even under wilderness conditions.

One goal for sediment reduction in streams is the Environmental Protection Agency (EPA) fisheries goal stating that freshwater streams, where there is a fish population, should have no more than 80 milligrams per liter (mg/1) suspended solids. There is insufficient data available to determine whether the streams of the Alabama Basin are within the limit during periods of average

flow. However, the important fishing streams in the basin were identified by fisheries biologists who judged the streams on apparent water quality, productivity, and aesthetic quality (see figure 2-25). If these more important streams are in fact good fishery streams and within the 80 mg/l standard, a correlation might exist between the erosion estimates in appendix table 27C and the fisheries goal. These "good" fishery streams have average erosion rates from their watersheds approximately equal to that erosion which will permit sustained yield from the land without mining the resource base. The "sediment goal" was, therefore, set at that amount of sediment that would be produced if erosion could be reduced to "T" erosion basinwide. The sediment reduction need is the difference between "projected sediment yield without a plan" and the "sediment goal". The sediment goal is about 8.5 million tons annually for 1990 and 2020.

Projected annual sediment yield without a plan is expected to be about 22 million tons by 1990 and 23.7 million tons by 2020; consequently, the need is to reduce sediment yield 14.7 million tons by 1990 and 16.4 million tons by 2020.

Reduction of Critical Erosion

Reconnaissance surveys by SCS field personnel and figures presented in the 1969 National Assessment of Streambank Erosion indicate there are 151,500 acres of critically eroding land in the basin. These critical areas are active gullies or other seriously eroding lands which are sources of sediment contributing to downstream damages. They are small areas that contribute sediment directly into a channel and are therefore sometimes termed "point sources" of sediment in contrast to sheet erosion on fields and forests which are dispersed sources of sediment. Erosion from one percent of the land in the bas'in amounts to 23 percent of the total erosion and accounts for 40 percent of the sediment produced in the basin.

Existing Public Law 566 watershed projects, RC&D projects and other conservation efforts are expected to keep pace with the development of new gullies and critical areas. Mine operators will reclaim most land strip mined annually, but unreclaimed mined land is expected to increase from 12,700 acres to 15,300 acres by 1990. Future needs for point source erosion control were obtained by projecting the rate of development and subtracting out reclamation through ongoing programs. The remainder is the projected need; 151,600 acres by 1990, and 155,600 acres by 2020. Erosion reduction needs can also be expressed as the amount of erosion that could be prevented by rehabilitation of existing critical areas. Erosion can be reduced to about 5 tons per acre per year on areas that have high present erosion rates such as gullies at 100 tons per acre, critically eroding roadside at 200 tons per acre, eroding streambanks at 42 tons per acre, and unreclaimed mine land at 150 tons per acre. Net needs are derived by subtracting the erosion that will remain after treatment from the projected erosion in the untreated condition.

In 1990 gullies and associated areas will lose about 11.3 million tons of soil material which could be reduced to 565,000 tons by treatment, a net reduction need of 10.7 million tons. Needs for other categories and time periods were derived in the same manner (see table 5-1).

Reduction of Erosion on "Disturbed" Forest Lands

Reduction in "disturbed" forest land erosion is needed on 60,000 acres to bring the average forest erosion down to the level at which sediment goals expressed on page 4-52 may be reached. Erosion control practices and standards that will reduce erosion to an overall average of 2 tons per acre per year on forest lands will provide the needed reduction.

Net erosion reduction needs were determined by comparing the projected erosion with the erosion that the system can tolerate. Forest lands totalling 7,155,000 acres can tolerate annual erosion totalling 14.3 million tons and will be sustaining 32.2 million tons by 1990; 6,862,000 acres can tolerate 13.7 million tons erosion by 2020 and will be losing 37.0 million tons. Net reduction needs are 17.9 million tons and 23.3 million tons in the two projected time frames. Reduction is needed on 74,000 acres by 1990 and 114,000 acres by 2020.

Protection of Scenic Rivers and Streams

A list of rivers and streams having potential scenic qualities and needing protection was compiled primarily from the Natural Scenic Rivers Study, and suggestions from the fish and wildlife work group. Presently, 416 miles of scenic streams including all or portions of the Cahaba River, Tallapoosa River, Little River, Shoal Creek and Hatchett Creek need protection from unregulated development and special-interest exploitation. Needs by future planning time frames were determined by assessing proposed and potential programs of private, county, state, and federal agencies that might influence the status of a scenic stream. For example, about 16 miles of the Tallapoosa River will be inundated by a proposed impoundment. This impoundment will create about 10,600 acres of flat lake-type habitat for fish and waterfowl. The total recreational value of this stretch of river will be greatly increased by providing boating, swimming, water skiing, and other related activities. On the other hand, the R. L. Harris Reservoir will eliminate most of the float fishing opportunities now offered by the Tallapoosa River. It was assumed that the current mileage of scenic streams needing protection will be reduced about 25 percent by 1990 because 16 miles will be impounded and about 100 miles will be protected through current private, state or federal programs, leaving 300 miles to be protected. A projected 350 miles of stream will need protection by 2020 to preserve an ample supply of this resource for the increased population.

Natural Scenic Sites

A list of 130 natural scenic sites that need protection to preserve and maintain their unique or aesthetic qualities was developed from the Alabama SCORP, Volume 18 and the County Appraisals of Potential for Outdoor Recreation (see Appendix 20). Sites presently protected by law, managed on a commercial basis, or committed to other uses were not included.

A projection was made that by 1990 about 10 sites would be destroyed, commercialized, or otherwise be unavailable for public use. An additional 30 sites will receive adequate protection through ongoing state, federal, and privately funded programs, leaving a net of 90 sites that would need protection in 1990. By 2020, it was projected that an additional 15 sites would be eliminated for various reasons indicated above, leaving 75 sites to be protected.

Improve the Quality and Quantity of Fish and Wildlife Habitat

A field examination was made in each basin county on various soil associations by members of the planning staff to establish the existing supply and condition of fish and wildlife habitat available for public use. Also, areas were inventoried that could satisfy public recreation demand by improving the quality of existing habitat.

The demand for public use of fish and wildlife resources based on population projections and the capacity of the current supply was developed jointly with the ERS economist using standards developed by Auburn University. Needs shown in table 5-1 were developed by subtracting demand from supply for present and projected time frames. By 1990 the demand/supply relationships for both deer and squirrel will be critical. While the deer hunting relationship can be improved, the future for squirrel hunting is bleak. Unless large acreages of longer rotation hardwoods are developed (at a great loss of timber production) the capability to meet even the present level of demands by 1995 will be inadequate.

Protection of Endangered Species of Flora and Fauna

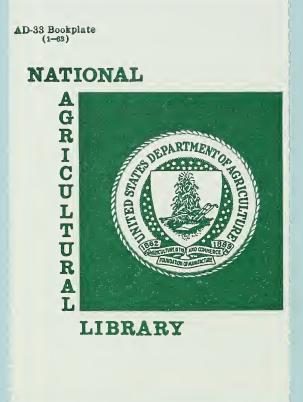
A list of endangered plants and animals that occur in Alabama and are believed to occur in the basin was compiled from current state and federal listings (see Appendix 17). Presently about 66 plants and animals are classified as "endangered" on a state or federal list. This number is expected to increase to 90 by 1990 and 112 by 2020. These organisms were assumed to be in need of protection even though an Endangered Species Act was passed by Congress in 1973 to conserve endangered and threatened organisms. The projected needs shown in table 5-1 for 1990 and 2020 reflect an increase from 35 to 70 percent, based on a general concensus from the basin biology work group and consultation with other recognized authorities.

Protection of Archaeological and Historical Sites

Known archaeological and historical sites in the basin that should be considered for preservation during future land and water resource development planning are listed in Appendix table 20. The Alabama Historical Commission has inventoried about 6,800 structures, sites, and objects statewide. Presently, there are approximately 120 recognized archaeological sites needing preliminary investigation and/or protection in the basin. Many sites will receive protection 'through ongoing programs, both federal and state. A few sites will be lost through various resource development efforts, both public and private. The number of known archaeological sites needing preservation by 1990 has been estimated at 110, and at 100 by 2020. The present estimate of 255 historical sites needing preservation can be expected to decline to 200 by 1990 and 180 by 2020. The primary need in assuring protection of these sites is thorough documentation of the location and value of these sites followed by an appropriate public awareness effort.

Expenditures to operate, improve and maintain sites will naturally increase as more and more sites are brought under protection and as more places are preserved. It is anticipated that a tremendous increase in employees and maintenance expenditures will be necessary to operate a state program to perpetuate this cultural heritage. Capital expenditures for site acquisition are expected to increase gradually as more funds become available. According to the Alabama Historical Commission, by 1990 the protection and preservation of archaeological and historic sites statewide will require 250 employees, \$20,000,000 annually in capital outlay expenditures and \$15,000,000 annually for maintenance expenditures. Admission fees will be charged at some sites, generating revenues to offset total costs.

.


APPENDIX TO VOLUME I app., v.1 **ALABAMA RIVER BASIN COOPERATIVE STUDY**

aTC425 .1305

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ECONOMIC RESEARCH SERVICE FOREST SERVICE

APRIL 1977

aTC 425 .A325 app. V.1

ALABAMA RIVER BASIN COOPERATIVE STUDY WITHIN ALABAMA APPENDIX

Prepared by

UNITED STATES DEPARTMENT OF AGRICULTURE Soil Conservation Service Economic Research Service Forest Service

In cooperation with the

ALABAMA DEVELOPMENT OFFICE

Auburn, Alabama

April 1977

U. S. DEPT. OF AGRICULTURE

MAR 221979

CATALOGING - PREP.

338333

TABLE OF CONTENTS

Table 1	Runoff Rates	A-1
Appendix 2 2A 2B 2C	Impoundment Statistics Methodology and Source of Data Major Stream Impoundments PL-566 and RC&D Floodwater Retarding	A-3 A-3 A-4
2D	Structures Tributary Impoundments	A - 5 A - 8
Appendix 3 3A	Water Quality Water Quality Characteristics and Their Effects	A-110 A-110
3B	Water Quality Parameters	A- 11
Appendix 4 4A 4B	Waste Disposal Municipal Waste Disposal Facilities Industrial Waste Disposal Facilities	A- 12 A- 12 A- 15
Appendix 5 5A 5B	Stream Use Classification Methodology Stream Classification Tables	A- 25 A- 25 A- 26
Appendix 6 6A 6B	Streamflow Classification Methodology Streamflow Classification by Type	A- 32 A- 32 A- 33
Appendix 7 7A 7B	Reservoir Site Availability Methodology Statistics of Potential Reservoir Sites	A- 34 A- 34 A- 36
Appendix 8 8A 8B 8C 8D	Ground Water Availability Geologic Units and Water-Bearing Characteristics Geologic Cross Section of the Coastal Plain Major Aquifers in the Coastal Plain Usual Cost of Rural Domestic Wells	A- 42 A- 42 A- 45 A- 46 A- 48
Appendix 9 9A 9B 9C	Ground Water Quality Use Limitations of Water Quality Parameters Chemical Analyses of Ground Water Samples Ground Water Quality Test Locations, 1974	A- 49 A- 49 A- 50 A- 53

CONTENTS (CONT'D)

NUMBER			PAGE
Appendix	10 10A 10B 10C 10D	Geology and Ground Water Publications References on Ground Water Availability Publications Available Status of Water Availability Mapping Status of Geologic Mapping	A-54 A-54 A-56 A-57 A-58
Appendix	11 11A 11B 11C 11D 11E 11F	<u>Minerals</u> Status of Mineral Resources Mapping Construction Aggregate, Agricultural Minerals, and Dimension Stone Metallic Minerals Special Purpose Minerals Bituminous Coal Reserves Lignite Reserves	A-59 A-59 A-60 A-61 A-62 A-63 A-64
Appendix	12 12A 12B 12C	<u>Soils</u> Soil Associations and Interpretations Selected Properties of Soil Series Status of Soil Surveys	A-65 A-65 A-69 A-76
Appendix	13 13A 13B 13C 13D 13E 13F	Soil Limitation Suitability Maps Roads and Streets Dwellings Without Basements Picnic Areas Septic Tank Absorption Fields Suitability for Cropland Suitability for Pasture	A-77 A-79 A-81 A-83 A-85 A-85 A-87 A-89
Appendix	14 14A 14B	Land Capability Classification Description of Land Capability Classes Land Use by Capability Class and Subclass	A-91 A-91 A-92
Appendix	15 15A 15B 15C 15D	Fish and Wildlife Methodology Freshwater Fish Habitat and Capacity Ponds Stocked by State and Federal Hatcheries Conversion of Habitat to Hunting Man-Days	A-93 A-93 A-95 A-96 A-97
Table	16	Recreation Facilities	A-98
Appendix	17	Threatened Endangered and Special Concern Organisms	A-99
Appendix	18	Plants, Endangered and Threatened	A-106

CONTENTS (CONT'D)

NUMBER			PAGE
Appendix	19 19A 19B	Wetlands of the Alabama River Basin Methodology Wetlands, Tabulation, by Counties	A-109 A-109 A-110
Appendix	20	Historic, Archaeological and Scenic Sites	A-111
Appendix	21	Bartram Trail, Historical Sketch	A-124
Appendix	22 22A 22B 22C	Population and Employment Urban-rural Population, Past Trend Urban-rural Population Projections Unemployment Rates	A-125 A-125 A-126 A-127
Appendix	23 23A 23B	Agricultural Production Major Farm Products, Past and Projections, State Agricultural Commodities, Projections, Basin	A- 128 A- 128 A- 129
Appendix	24 24A 24B 24C 24D 24E 24F 24F 24G	Land Use Agricultural Land Use, Current and Projected Total Land Use, Current and Projected Urban Land Requirements Methodology for State Agricultural Model Soil Resource Group Descriptions Crop Yields Hay and Improved Pasture Yields	A-130 A-130 A-132 A-133 A-135 A-137 A-146 A-147
Appendix	25 25A 25B 25C 25D 25E 25F	<u>Flood Problems</u> Communities Having Flood Problems Flood Plain Areas Along Principal Streams Flood Damage Along Principal Streams Flood Plain Use and Flood Damage by Watersheds Estimated Flood Plain Land Use and Flood Damages Major Drainage Basins and Subbasins	A- 148 A- 148 A- 152 A- 154 A- 156 A- 158 A- 159
Appendix	26 26A 26B	Forest Land Erosion Methodology Forest Land Erosion and Sediment Rates	A- 161 A- 161 A- 162
Appendix	27 27A 27B 27C	Sediment Yield Methodology Sediment Yield to Main Stream Reservoirs Sediment Yield, Selected Streams	A- 163 A- 163 A- 164 A- 165
Table	28	Land Treatment Needs	A- 169
Table	29	Surface Mining	A- 170

CONTENTS (CONT'D)

NUMBER			PAGE
Table	30	Public Water Supply, Present and Projected	A-171
Table	31	Drought Days and Soil Storage Capacities	A - 176
Appendix	32 32A 32B 32C	Recreation, Supply and Demand Methodology Recreation Facility Needs, Sample Worksheets Recreation, Participation by Population	A-179 A-179 A-180
	32D	Segment Annual Activity Occasions Per Person	A-181 A-182
	32D 32E	Recreation Satisfied Within the State	A-182 A-183
	32F	Outdoor Recreation, Use Standards	A-184
	32G	Boating Demand, Public Supply, and	1 105
	32H	Development Needs Swimming Demand, Public Supply, and	A-185
		Development Needs	A-186
	321	Water Skiing Demand, Public Supply, and	107
	32J	Development Needs Camping Demand, Public Supply, and	A-187
	520	Development Needs	A-188
	32K	Hiking Demand, Public Supply, and Development Needs	A-189
	32L	Picnicking Demand, Public Supply, and	
	32M	Development Needs Golfing Demand, Public Supply, and	A-190
	JZM	Development Needs	A-191
	32N	Fishing Demand, Public Supply, and	1 102
	32P	Development Needs Hunting Demand, Public Supply, and	A-192
	521	Development Needs	A-194
Appendix	33	Wildlife Habitat	A-196
	3 3A	Methodology and Objectives	A-196
	33B	Criteria for Habitat Evaluation	A-199
	33C 33D	WHEP Plot Rating Wildlife Potentials, Rating Standards	A-203 A-205
Appendix	34 34A	Forest Wildlife Resources White-tailed Deer	A-206 A-207
	34B	Gray Squirrel	A-209
	34C	Eastern Wild Turkey	A-212
	34D	Bobwhite Quail	A-214
Table	35	Beaver Ponds, Results of Aerial Survey	A-216
Appendix	36	Confined Livestock Operations	A-217
	36A	Confined Livestock Operations, Animals	
	7(D	and Waste Treatment	A-217
	36B	Animal Waste Stabilization Basins	A-218

Appendix Table 1 Maximum, minimum and average runoff rates for selected gaging stations, Alabama River Basin.	MINIMUM AND AVERAG	SE RUNOFF RATES FOR	SELECTED GAGIN	G STATIONS, A	Ilabama River	Basin.			
GAGING STATION	PERIOU OF RECORD	DRATFIAGE AREA SQ. MI.	AVERAGE IN. ZYR.	AVEPAGE C.F.S.	ED MAXIMUM C.E.S.	MINIMUM C.F.S.	AVERAGE C.F.S.	RE MILE MAXIMUM C.E.S.	MIMIMM C.E.S.
Alabama River Subbasin 02429500	44 years	22,000	19.86	32,170	267,000	2,850	1.5	12.1	0.130
Claiborne, Alabama 02423000 Selma, Alabama	1930-74 55 years 1900-13	17,100	20.78	26,170	284,000	2,600	1.5	16.6	0.156
02420000 Montgomery, Alabama	1928-70 44 years 1899-1903	15,100	20.95	23,290	283,000	2,180	1.5	18.7	0.144
02425500	1927-71 18 years	217	13.77	220	90,000	0.1	1.0	414.7	0.000
Minter, Alabama 02421000 Catoma Creek Montgomery, Alabama	19 years 1952-71	298	15.27	345	48,600	0	1.2	163.1	0.000
Cahaba River Subbasin 02425000 Marion Jct., Ala.	22 years 1938-54	1,768	21.17	2,757	83,400 1/	224	1.6	47.2	0.127
02424000 Centreville, Ala.	1968-70 47 years 1901-07 1929-31	1,029	20.71	1,569	83,600	06	1.5	81.2	0.087
02423630 Shades Creek	1955-74 8 years 1965	72.4	24.95	133	7,220	11	1.8	99.7	0.152
Greenwood, Ala. 02423800 Little Cahaba Brierfield, Ala.	1967-73 13 years 1957-70	148	17.89	195	10,000	36	1.3	67.6	0.243
Coosa River Subbasin 02411000 Wetumpka, Ala.	46 years 1912-14	10,200	21.54	16,180	298,000	54	1.6	29.2	0.005
02407000	1956-74 57 years	8,390	22.03	13,610	146,000	440	1.6	17.4	0.052
Childersburg, Ala. 02400500 Caladon Alo	1915-70 44 years	5,800	21.66	9,253	76,900	100	1.6	13.3	0.017
02408500 11atchett Creek	1920-70 30 years 1944-74	244	20.87	375	22,800	2	1.5	93.4	0.029
NOCKISORU, AIA. 02405800 Talladega Creek Talladega Ale	11 years 1959-70	67.3	21.39	106	6,550	8.5	1.6	97.3	0.126
tattauega, Ata. 02404000 Choccolocco Creek Jenifer, Ala.	41 years 1903-08 1929-32 *	281	19.53	404	22,500	30	1.4	80.1	0.107
02401000 Big Wills Creek Crudup, Ala.	1935-70 27 years 1943-70	185	22.32	304	14,800	21	1.6	80.0	0.114

A-1

GAGING STATION	RECORD	AREA SQ. MI.	AVERAGE IN. AR.	AVENAUE C.F.S.	MXXIMUM C.F.S.	MINIMUM C.F.S.	AVERAGE C.F.S.	MAX IMUM C.F.S.	C.F.S.
Tallapoosa River. Subbasin									
02418500	46 years	3,320	19.49	4,765	$128,000 \ \underline{2}/$	10	1.4	38.6	0.003
Tallasee, Ala. 02414500	1928-74 51 vears	1 660	70 34	2 487	52 800	54	۲ د	8 12	0 037
Wadlev. Ala.	1923-74					2			0.04
02412000	22 years	444	20.38	666	19,300	13	1.5	43.5	0.029
Heflin, Ala.	1952-74								
02415000	18 years	196	20.86	301	15,600	8	1.5	79.6	0.041
Hillabee Creek	1952-70								
Hackneyville, Ala.									
02419000	31 years	330	17.58	427	32,200	0.8	1.3	97.6	0.002
Uphapee Creek	1939-70								
Tuskegee, Ala.									

ECTED GAGING STATIONS, AI ABAMA PIVER BASIN (MMT'N). ULC ULC c D D DATEC DINIDEE AV/CDACE -- MAVINIM MINIMIM AND AppENDIX TABLE 1

A**-**2

Source: Water Resources Data for Alabama, 1970, Part 1, Surface Water Records; United States Department of the Interior, Geological Survey.

APPENDIX ² -- STATISTICS OF IMPOUNDMENTS

Appendix 2A -- Methodology and source of data for impoundments in the Alabama River Basin, 1975.

Data in table 2B was obtained from other published material. Status of the Crooked Creek reservoir was obtained from Alabama Power Company.

Data in table 2C was prepared from information on file in the design section of the Soil Conservation Service, Auburn, Alabama.

Data in table 2D was obtained through several sources. A questionnaire was solicated from each SCS District Conservationist, in the basin. Data provided name, location, use, surface area and height of all impoundments larger than 40 acres in the county. An estimate of the total number and total surface acres for three groups of impoundment; 5 to 40 acres; less than 5 acres; and natural impoundments was also provided. Natural impoundments include beaver ponds, river oxbows, wet borrow pits and Grady ponds (natural, swampy, rounded ponds or "bays" in the Coastal Plains Area).

The number of beaver ponds reported on the questionnaire was adjusted to parallel the results of an aerial beaver pond survey as published in Proceedings of the First Alabama Beaver Symposium, 1967.

Information on state owned public fishing lakes was furnished by the Alabama Development Office.

1975.
iver Basin,
Rive
Alabama
streams,
on major
uo
ipoundments
of
Statistics of in
I I
ppendix Table 2B

AND	MOUTH	DRAINAGE AREA		POWER	SURFACE AREA	STORAGE (1,000)	SHORE LINE	DEPTH AT DAM
IMPOUNDMENTS	(MILES)	(SQ. MILES)	PURPOSE 1/	ELEV. 2/	(ACRES)	(AC. FT.)	(WILES)	(FEET)
			Corps of Engineers	gineers				
Alabama River					,			l
Claiborne William F Dannellv	81.1 142 3	21,520 20 700	N-R-F&W N-P-R-F&W	35 80	5,930 17 200	96.4 331.8	160 516	33 56
Jones Bluff	245.4	16,300	N-P-R-F&W	125	12,300	247.0	368	61
		7	Alabama Power Company	Company				
Coosa River								
Bouldin 3/	4/	3/	P-R-F&W	252.0	3/	3/	3/	52
Jordan 37	18.8	$10, \overline{165}$	P-R-F&W	252.0	$6, \overline{800}$	233.5	$1\overline{18}$	110
Mitchell	37.3	9,827	P-R-F&W	311.9	5,850	177.0	147	90
Lay	51.3	9,087	P-R-RGW	396.0	12,000	241.5	289	88
Logan-Martin	98.4	7,700	FC-P-R-F&W	465.0	15,263	518.6	275	69
H. Neely Henry	148.0	6,600	P-R-F&W	508.0	11,200	121.9	339	53
Weiss	225.7	5,273	FC-P-R-F&W	564.0	30,200 5/	703.4	447	62
Tallapoosa River					l			
Crooked Creek 6/	138.0	1,453	FC-P-R-F&W	793.0	10,660	431.0	1/	118
Martin -	60.6	3,000	P-R-F&W	490.0	40,000	1630.0	700	155
Yates	52.7	3,250	P-r-F&W	344.0	2,000	54.0	40	46.5
Thurlow	49.7	3,300	P-R-F&W	288.8	574	18.4	6	54

1/10/14/10/1-

Bouldin about 15 miles off stream from Jordan Dam. Small acreage in Georgia.

Crooked Creek Reservoir as currently proposed.

Not available.

Normal operating pool level or summer pool level.

Jordan and Bouldin share the same reservoir.

LOCATION	SITE NO.	PURPOSE	DRAINAGE AREA (SO.ML.)	RUNKWAL POOL (MSL)	AREA AREA AC.)	SEDIMENT SEDIMENT ACLEL.)	MILLIPLE PURPOSE VOLUME (AC, FT,)	DETENTION VOLUME (AC. F1.)	PAXIMUM 2/ AREA FLOODED (AC.)	HE IGHT OF DAM (FT.)
				00	SA RIVER SUBBI	ASIN				
Blue Eye Creek W/S Talladega & Calhoun										
County	1	FР	5.29	555.5	15			588	95	42
	2	FP	3.23	545.0	10.5	46 3/		748	80	3.4
Cheaha Creek W/S										
Talladega & Clay Co.		ĿР	3.57	599.0	25			815	790	22
	3	Fр	2.40	685.0	7.7			628	599	41
	4	FР	5.82	699.2	10			2,109	72	68
	5	Fр	11.56	590.5	19			3,940	1,675	76
	9	FР	27.22	587.1	38	$190 \overline{3}/$		9,520	353	83
Choccolocco Creek W/S										
Calhoun, Cleburne,										
Talladega & Clay Co.		FP	21.35	772.0	31	324		4,987	249	72
		FP	2.76	765.3	6	62		818	38	47
	9	FP-WS	38.1	751.7	265	207	6,893	4,460	358	91.0
	7	FP-R	13.98	1027.1	58	224	326	6,060	234	72
	6	гр	1.50	729.3	7.6	42		376	28	37
	11	FP-WS	16.00	647.0	182	303	2.887	4.693	317	72
	14	FР	1.09	664.5	4.8	31		259	25	32
	15	FР	1.95	666.3	7.1	49		525	49	40
	17	FP	1.87	629.0	3.5	48		473	34	57
	24	Еb	12.87	870.9	17.7	227		6,926	286	86
Tallaseehatchie Creek			•		•			•		
W/S										
Talladega & Clay Co.		FР	3.9	612.3	19	141		1,332	96	55.8
	3	FР	5.6	578.3	23	200		2,060	118	64.1
	9	ΕP	2.7	636.0	16	97		923	69	39.5
	7	FP	2.05	600.5	11	85		657	42	52
Terrapin Creek W/S										
6 Calhoun Co.	9	ĿЬ	4.50	654.8	16.6	62		1.035	105	32
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FP	20.80	645.5	77.3			4,940	393	33
	6	FР	2.30	700.8	9.8			603	45	41
	11	ЕР	3,000	811.0	6			710	56	39
		Ер	2.70	858 5	C L			891	47	47
	17	Ч	5 10	846.2	2.2			862	120	25
		нр Н	17 50	010.2	2 C Z			200	325	2 C 2 C
	1 2 2 2	ЧЧ	21.60	901 5	25			4,808	154	100
	31	ЕD	29.01	747.1	49			062.2	345	72
	33	FP	15.90	814.5	38	226 3/		3,052	213	51

APPENDIX TABLE 2C -- STATISTICS OF IMPOUNDMENTS, P.L. 566 AND RC&D FLOODWATER RETARDING STRUCTURES, SINGLE- AND MULTIPLE-PURPOSE, ALABAMA RIVER BASIN, 1975.

		SITE	PURPOSE	DRAINAGE	NUR ML POOL ELEVATION	REA	SEDIMENT VOLUTE	MULTIPLE PURPOSE MULTIPLE	DETENTION	MAXIMUM 2/ Area Fladded	HEIGHT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LUCATION	101	7	( YA'MI')	(IVSL) TALLA	POOSA RIVER SI	IBBASIN	(ALIFI)	(ALIFI,)	(Hr,)	(11)
$\cdot$	Cahulga Creek W/S Cleburne Co.	Г	FP-WS	6.54	887.7	84.2	111	526	3,036	177	41
1, 2 $79, -165$ $5.34$ $1,030, 2$ $82.5$ $1,030, 2$ $82.5$ $750, 1$ $2,100$ $1010$ $6$ $79$ $8.51$ $779, 3$ $16$ $123$ $2,097$ $935$ $53$ $750$ $2,100$ $1010$ $6$ $792, 5$ $23$ $86$ $750, 6$ $8.51$ $779, 3$ $55$ $750$ $2,007$ $955$ $750$ $714, 73$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$ $734$	Crooked Creek W/S										
3 $PP-NS$ 5.22         1,041.9         5.3         1,041.9         5.3         1,041.9         5.3         1,041.9         5.3         1,001         1,033         1,033         1,033         1,033         1,033         1,033         1,033         1,033         1,033         1,033         2,037         1,033         2,037         3,3         2,037         3,3         2,037         3,3         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         2,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33         3,33 <th< td=""><td>Clay &amp; Randolph Co.</td><td></td><td>FP-WS</td><td>3.34</td><td>1,030.2</td><td>82.5</td><td>66</td><td>1,250</td><td>2,106</td><td>101</td><td>47</td></th<>	Clay & Randolph Co.		FP-WS	3.34	1,030.2	82.5	66	1,250	2,106	101	47
4         FP         5.0         92.55         2.2         88         7.4         7.4         7.3           16         FP         5.0         92.55         2.2         88         7.4         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7		3	FP-WS	3.82	1,041.9	53	85	750	1,808	100	51
5         F         1.1 $1,037,7$ 9         40 $2,07$ $33$ 2         7         1 $1,037,7$ 9         40 $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $35$ $2,07$ $2,07$ $35$ $2,07$ $2,07$ $2,07$ $2,07$ $2,07$ $2,07$ $2,07$ <td< td=""><td></td><td>4A</td><td>FP</td><td>3.0</td><td>992.5</td><td>22</td><td>88</td><td></td><td>744</td><td>74</td><td>30.0</td></td<>		4A	FP	3.0	992.5	22	88		744	74	30.0
10       17       8.51       7/9.3       16       1.25       2.007       95         2       1       1       5       1,034.8       6.3 $27\underline{3}/2$ 259       26         2       1       1       5       1,034.8       6.3 $27\underline{3}/2$ 253       26       260       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       27       27       27       27       27       27       26       27       27       26       27       26       27       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26       26 <td< td=""><td></td><td>S j</td><td>FP</td><td>1.1</td><td>1,037.7</td><td>6</td><td>40</td><td></td><td>247</td><td>33</td><td>24.2</td></td<>		S j	FP	1.1	1,037.7	6	40		247	33	24.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	For Freel W/S	10	÷-	8.51	1/9.8	16	125		7,097	95	53
$ \begin{array}{c cccc} \mbox{Wightharmond} & 1 & \mbox{F} & \mbox$	Clay & Randolph Co. Clay & Randolph Co. High Pine Creek W/S Pandolph & Chambers		Fр	1.35	1,034.8	6.3			259	26	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Co.		FΡ	2.60	860.0	9.8			554	25	52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C1	FР	6.95	741.5	54			1,808	150	39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	Fр	3.28	783.9	15			700	67	32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	FP	2.70	928.4	13			575	53	3.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	Fр	1.80	939.5	11			384	35	36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9	FP-WS	3.18	848.7	48.3		500	813	84	56
11       FP $2.90$ 710.3       35       123       37       775       102         hepedrake Creek       1.32       771.7       12.4 $47$ $\overline{3}$ 53       53       53         ay & Randolph Co.       1       FP       2.26       970.5       9       9       59       53       53         ay & Randolph Co.       1       FP       2.26       970.5       9       19       37       839       56         10       FP       3.09       996.8       14       61       37       839       78       50         10       FP       1.12       1,008.4       2       9       9       61       37       899       78       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9		10	Fр	2.70	755.7	18.5			575	102	30
12       FP       1.32       771.7       12.4 $47 \overline{3}/$ 282       53         hepedrakee Greek       9       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		11	FР	2.90	719.3	35			775	102	24
hepedrakee Creek       ay 4 Randolph Co.       1       FP       2.26       970.5       9       19 $5/$ 630       69         ay 4 Randolph Co.       1       FP       2.26       970.5       9       19 $5/$ 630       69         10       FP       1.92       1,017.7       5       24 $5/$ 455       50         11       FP       1.92       1,017.7       5       24 $5/$ 455       50         11       FP       1.92       1,017.7       5       24 $5/$ 455       50         11       FP       1.12       1,008.4       2       2 $9/$ $190$ $11$ ay 4 Tallapoosa       1       FP $3.22$ $906.0$ $6.5$ $70$ $752$ $51$ ay 4 Tallapoosa       1       FP $3.22$ $906.0$ $6.5$ $70$ $752$ $51$ $3$ FP       1.42 $838.0$ $111.5$ $64$ $223$ $50$ $50$ $3$ FP       1.42 $8326.0$ $5.2$ $14$ $523$ $23$		12	dц	1.32	771.7	12.4			282	53	22
ay f Randolph Co. 1 FP 2.26 970.5 9 19 $\frac{3}{2}$ 630 69 9 FP 2.26 970.5 9 14 61 $\frac{3}{2}$ 899 78 10 FP 1.92 1,008.4 2 990.8 14 61 $\frac{3}{2}$ 899 78 10 FP 1.12 1,008.4 2 990.9 190 14 11 FP 1.12 1,008.4 2 990.0 14 ay f Tallaposa 1 FP 3.22 906.0 6.5 70 752 51 ay f Tallaposa 1 FP 3.22 906.0 16.5 70 70 752 51 a FP 1.99 836.0 11.5 43 70 752 53 Creek W/S 6 FP 1.42 836.0 11.5 69 499 51 Creek W/S 1 FP 8.52 581.3 30 14.1 69 499 51 chure Co. 1 FP 8.52 581.3 30 170 130 5.2 FP 1.96 571.0 12 78 337 337 337 337 337 337 337 337 337	Ketchepedrakee Creek W/S										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Clay & Randolph Co.	-	FР	2.26	970.5	6			630	69	26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	FР	3.09	996.8	14			899	78	31
Image: Interpreted by the initial of the initial		10	FР	1.92	1,017.7	s s			455	50	30
ay f Tallapoosa1FP $3.22$ $906.0$ $6.5$ $70$ $752$ $51$ .2FP $2.85$ $921.0$ $11$ $64$ $508$ $34$ 3FP $1.99$ $870.7$ $11.5$ $43$ $208$ $34$ 4FP $1.99$ $870.7$ $11.5$ $43$ $292$ $30$ 6FP $3.09$ $838.0$ $14.1$ $69$ $223$ $27$ $Creck W/S$ 6FP $1.42$ $836.0$ $5.2$ $14$ $223$ $27$ burne Co.1FP $8.52$ $584.3$ $30$ $170$ $1,630$ $130$ $3$ FP $1.96$ $600.0$ $14$ $121$ $337$ $337$ $337$	Little Hillabee Creek	-	2	71.17	1,008.4	1	ת		061	14	Ŧ
2     FP     2.85     921.0     11     64     508     34       3     FP     1.99     870.7     11.5     64     508     34       4     FP     3.09     838.0     14.1     69     51       6     FP     1.42     826.0     5.2     14     223     27       1     FP     1.42     826.0     5.2     14     223     27       2     FP     1.96     600.0     14     121     337     33       3     FP     1.96     571.0     12     78     337     33	av	1	FР	3.22	906.0		70		752	51	55
3       FP       1.99       870.7       11.5       43       292       30         4       FP       3.09       838.0       14.1       69       51         6       FP       1.42       836.0       5.2       14       223       27         1       FP       1.42       836.0       5.2       14       69       51         2       FP       1.42       836.0       5.2       14       63       51         3       FP       1.42       8.52       584.3       30       170       1,630       130         3       FP       1.96       600.0       14       121       331       34         3       FP       1.66       571.0       12       78       337       33	Co.	2	FР	2.85	921.0		64		508	34	37
4       FP       3.09       838.0       14.1       69       51         6       FP       1.42       826.0       5.2       14       223       27         1       FP       8.52       584.3       30       170       1,630       130         2       FP       1.96       600.0       14       121       331       34         3       FP       1.66       571.0       12       78       337       32		3	Fр	1.99	870.7	11.5	43		292	30	22
6     FP     1.42     826.0     5.2     14     223     27       1     FP     8.52     584.3     30     170     1,630     130       2     FP     1.96     600.0     14     121     351     34       3     FP     1.66     571.0     12     78     337     32		4	FΡ	3.09	838.0	14.1	69		499	51	26
I         FP         8.52         584.3         30         170         1,630         130           2         FP         1.96         600.0         14         121         351         34           3         FP         1.66         571.0         12         78         337         32		9	FP	1.42	826.0	5.2	14		223	27	25
I         FP         8.52         584.3         30         170         1,630         130           2         FP         1.96         600.0         14         121         351         34           3         FP         1.66         571.0         12         78         337         32	Lost Creek W/S										
FP         1.96         600.0         14         121         351         34           FP         1.66         571.0         12         78         337         32	Cleburne Co.		ЕР	8.52	584.3	30	170		1,630	130	38
FP 1.66 571.0 12 78 337 32		.7 1	Η	1.96	600.0	14	121		351	34	38
		Ś.	44	1.66	571.0	12	78		337	32	31

APPENDIX TABLE 2C -- STATISTICS OF IMPOUNDMENTS, P.L., 566 AND RC&D FLOODWATER RETARDING STRUCTURES, SINGLE- AND MULTIPLE-PURPOSE, ALABAWA RIVER BASIN, 1975 (CONT'D).

3 STRUCTURES, SINGLE- AND MULTIPLE-PURPOSE,
ND RC&D FLOODWATER RETARDING STRUCTURES, SINGLE- AND MULTIPLE-PURPOSE
OF IMPOUNDMENTS, P.L., 566 AND R( VER BASIN, 1975 (CONT'D).
Appendix Table 2C Statistics Alabama Riv

	SITE	PURPOSE	DRAINAGE	POOL POOL ELEVALION	NOR POOL POOL AREA	SEDIMERIT VOLIME	PURPASE VOLUME	DETENTION	MAXIMUM: 2/ AREA FLOODED	HEIGHT
LOCALION	N0.	A	(SQ.MI.)	(MSL)	POOSA RIVER S	(AC, F.L.)	(AC.FL.)	(AC.F.I.)	(AC.)	(+1,)
Old Town Creek W/S										
Bullock & Macon Co.	22	FP	6.0	302.5	95	507		1,968	364	21.0
	24	FP	5.50	372.7	7.3	500		1,044	218	27
	25	FP	4.18	387.7	62	346		1,269	178	26
	26	FP	5.50	384.7	95	494		1,702	208	29
	28	FP-I	7.3	316.8	188	152	300	2,856	454	21.3
	29	FP	6.3	320.6 4/	143 4/	496		2,034	367	19.8
	31	FP	3.06	295.3	83	217		1,182	229	18
	32	FP	5.65 5/	334.1	91	971		3,080	285	29
	37	FР		342.4	61	217		1,073	184	19

FP - flood prevention, R - recreation, WS - water supply, I - irrigation. Area flooded at depth of flow in emergency spillway for the design storm. 50-year sediment volume. 100-year sediment pool, not inundated. Equivalent drainage area (5.65 sq. mi.) 100 percent of 2.46 sq. mi. plus 24 percent of 15.43 sq. mi. 12141212

Appendix Table 2D -- Statistics of impoundments on tributaries, by subbasins and by counties, Alabama River Basin, 1972.

$ \begin{array}{c ccc} \hline \hline control N & USE $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	MMELOCATIONUSE S/ NERSE OF DWA LOCATIONBridge Cr. Fishing Club6 mi. NPrattville $F$ Fittle RiverSubbasinDallas Co. Public Lake11 mi. SSelma $F_R$ Fittle RiverState Dark $F_R$ 75Valley Creek Park15 mi. NSelma $F_R$ 75Fittle RiverState Lake $0ff$ Hwy 21, State Park $F_R$ 75Dallas Co. Public Lake $3 mi. SW-BurkevilleF_R752Spencer Lake3 mi. SW-BurkevilleR_R20121Davis Lake3 mi. SW-BurkevilleR_R2020Davis Lake3 mi. SW-BurkevilleR_R2020Davis Lake1 mi. NRobinsons Crds. R.L6015Davis Lake1 mi. NRobinsons Crds. R.L6016Davis Lake1 mi. N-Robinsons Crds. R.L6016Chase Lake0 mi. N-Centr$		LARGE IMP	LARGE IMPOUNDMENTS 1/			HEIGHT	IMPOUNDME	IMPOUNDMENTS 2/	IMPOUN	IMPOUNDMENTS 3/		IMPOUNDMENTS 4/
	Bridge Cr. Fishing Club6 mi. NPrattville $F$ AlabamaSubbasinBridge Cr. Fishing Club6 mi. NPrattville $F$ $R$ $S$ $S$ $S$ Dallas Co. Public Lake11 mi. SSelma $F$ $R$ $75$ $S$ $S$ $S$ Little River State Lake0ff Hwy 21, State Park $F_R$ $75$ $S$ <td< th=""><th>YTNU0</th><th>NAME</th><th>LOCATION</th><th></th><th>SURFACE</th><th>OF DAM (feet)</th><th>NO.</th><th>SURFACE ACRES</th><th>. ON</th><th>SURFACE</th><th>NO.</th><th>SURFACE ACRES</th></td<>	YTNU0	NAME	LOCATION		SURFACE	OF DAM (feet)	NO.	SURFACE ACRES	. ON	SURFACE	NO.	SURFACE ACRES
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} Dilas Co. Public lake ll mi. SSelma F.R 100 20 15 mi. NSelma F.R 100 20 15 mi. NSelma F.R 100 20 15 mi. NSelma F.R 75 - 11 12 12 12 12 12 12 12 12 12 12 12 12 $	auga	Bridge Cr. Fishing Club	mi.		bama Subb 50	asin 12	30	500	230	560	104	2,921
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		dwin						2	14	7	11	2	22
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ler						20 3	200	130	500	18	428
		rke						0 0	16	20	40	41	422
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		weysu						ı	'	4	12	ı	1
	Little River State LakeOff Hwy 21, State ParkF, R75Beil Lake3 mi. Sw-Burkeville1, F, L4315Spence Lake3 mi. Sw-Burkeville1, F, L4021Spence Lake3 mi. Sw-Burkeville1, F, L4021Spence Lake3 mi. Sw-Burkeville1, F, L4021Suggs Lake2 mi. Sw-Hope HullR, L8015Davis Lake1 m. N-FletaR5015Davis Lake1 m. N-Robinsons Crds. R, L4016Davis Lake1 mi. N-Robinsons Crds. R, L4016Davis Lake1 mi. N-Robinsons Crds. R, L4016Davis Lake1 mi. N-Robinsons Crds. R, L406Davis Lake6 mi. N-CentrevilleF70Chase Lake8 mi. SW-BloctonF70Emerald Valley Lake6 mi. N-CentrevilleF70Shady Grove Lake8 mi. SW-BloctonF70Emerald Valley Lake2 mi. S-PlanerdaleF, R, M70Lake Purdy5-Interstate 59F4723Keese Murray705-Interstate 594723Co. Mtn. Public Lake3 mi. SW-MarkerF, R4060Oak Mtn. Publi	as	Dallas Co. Public Lake Valley Creek Park	mi.	F F,R	100 60	20 15	60	700	200	750	163	2,310
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Little River State Lake off HWy ZI, State Park F, R 75 - Little River State Lake off HWy ZI, State Park F, L 43 21 Spencer Lake of Co. Public Lake of Co. Public Lake Sugs Late 0. Morear Gallion R 2. Sugs Late 0. Public Lake 0. Sugs Late 0. Public Lake 0. Sugs Late 0. Public Lake 0. Normal Each 0. Davis Late 0. Public Lake 0. Subbasis Late 0. Davis Late 0. Lismi. NRobinsons Crds. R, L 40 16 Lismi. NRobinsons Crds. R, L 40 16 Lismi. NRobinsons Crds. R, L 40 16 Davis Late 13 mi. NRobinsons Crds. R, L 52 20 14 Ferry - Late Purdy 0. Lake 0.	ore			( 	i		4	32	15	45	90	394
Bell Late and the form of the second state of	Bell Lake is an SW-Burkeville F,L 43 IS Lake Berl Lake and SB-Burkeville F,L 43 IS Spencer Lake and SB-Burkeville F,L 40 IS Spencer Lake and SB-Borkeville F,L 40 IS Davis Lake 13 m. N-Fleta R 20 IS Davis Lake 13 m. N-Robinsons Crds. R,L 40 I6 Davis Lake 13 m. N-Robinsons Crds. R,L 40 I6 Early F,R 8 50 25 Norman Fountain SW-Blocton F 7034 - 794 - 794 Emerald Valley Lake 8 m. SW-Blocton F 7036 - 50 Lake Purdy Grove Lake 8 m. SW-Blocton F 7037 - 6 Lake Purdy Grove Lake 6 m. N-Centreville F 7 50 30 Conterstate 59 F,R,M 653 65 Norman Fountain Schwerstate 59 F 7, R,M 653 65 Lake Purdy 0 n Little Cahaba River F,R 400 60 Oak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Oak Mrn. Public Lake 0 and Mrn. State Park F,R 85 30 Fram Trucks Lake 34 m. S-Springville F,R 85 30 Margaret Lake 0 and Mrn. State Park F,R 85 30 Fram Rrucks Lake 34 m. N-Margaret 14 13 L,784 40 Dak Norman Lake 2 mi. N-Margaret 14 Broottin E, 2-Palmerdale F,R 400 60 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 0 and Mrn. State Park F,R 84 40 Dak Mrn. Public Lake 34 m. N-Margaret 2 m. N-Margaret	mbia	Little River State Lake	Off Hwy 21, State Park	F, R	75	1	1		2	3	14	59
	Spencer Lake Monroe Co. Public Lake Sugs Lake Davis Lake Sugs Lake Sublic Lake Sublic Lake Sublic Lake Sublic Lake Sublic Lake Sublic Lake Shady Grove Lake Shady Grove Lake Subrash Furdy Summan Fountain Summan Fount Summan Fountain Summan Founta	des	Bell Lake Lake Berry	3 mi. SWBurkeville 1 mi SBurkeville	г, г г п	43	15 21	71	650	840	2,854	06	2,510
Monroe Co. Tublic Lake         Tim W-Beatrice         R         94         21         12         124         215         245         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         155         156         157         119         156         157         119         156         157         119         156         157         119         156         157         119         156         157         119         156         157         119         156         157         119         156         157         119         156         157         119         156         157         119         156         157         156         156         156         156         156         156         156         156         156         156         156         156         156         15	Morrore Co.Public Lake $3 \text{ mi. W-Beatrice}$ $R$ $3 \text{ mi. S}$ $2 \text{ mi. N-Fleta}$ $R$ $2 \text{ mi. S}$ $2 \text{ mi. SW-Hope HullR_1L8012Davis Lake2 \text{ mi. N-Robinsons Crds. R, L6016Davis Lake1 \frac{1}{3} \text{ mi. N-Robinsons Crds. R, L6016Bain Henderson Lake1 \frac{1}{3} \text{ mi. N-Robinsons Crds. R, L6016Davis Lake1 \frac{1}{3} \text{ mi. N-Robinsons Crds. R, L6023Shady Grove Lake8 \text{ mi. SW-Blocton}F79420Chase Lake8 \text{ mi. SW-Blocton}F79420Chase Lake8 \text{ mi. SW-Blocton}F7040Chase Lake8 \text{ mi. SW-Blocton}F7025Shady Grove Lake8  mi. SW-LeadssF_14723Chase Lake8 \text{ mi. SW-LeadssF_1F4723Chase Lake8 \text{ mi. SW-LeadssF_1F_14723Chase Lake8 \text{ mi. SW-LeadssF_1F_14723Chase Lake8 \text{ mi. SW-LeadssF_1F_14723Camora Lake10 \text{ mittle cate ParkF_14322Lake Purdy<$	00ue	Snencer Lake	Near Gallion	, a		1.7	ď	20	77	1 20	1	1
Sugge lake       2 mi. SwHope Hull       R.L       80       12       130       1,050       2,255       2,955       155         Davis Lake       1% mi. NFobinsons Crds. R.L       60       16       32       432       42       129       20         Davis Lake       1% mi. NFobinsons Crds. R.L       60       16       32       432       42       129       20         Davis Lake       1% mi. NFobinsons Crds. R.L       50       15       32       432       42       199       109       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20	Sugge Lake2 mi. SwHope HullR.L6012Davis Lake2 mi. NFletaR015Davis Lake1 mi. NRobinsons Crds. R, L4016Davis Lake1 mi. NRobinsons Crds. R, L6015Davis Lake1 mi. NRobinsons Crds. R, L6016Bain Henderson Lake1 mi. NRobinsons Crds. R, L6016Bain Henderson Lake1 mi. NRobinsons Crds. R, L6016Rain Henderson Lake1 mi. NRobinsons Crds. R, L5020Rat Grove Lake8 mi. SwBloctonF79Emerald Valley Lake6 mi. NCentrevilleF5025Shady Grove Lake6 mi. NCentrevilleF70-Lake Purdy5 mi. SwLeedsF, R, M65355Norman FountainSuckvulle Et S9F43Berevalt Valley Lake2 mi. EPalmerdaleF, R, M65355Co. Hwy 3052 mi. EPalmerdaleF, R406035Lake Purdy0 n Little Cahaba RiverF, R406035Camora Lake2 mi. E-PalmerdaleF, R406035Lake Purdy0 n Little Cahaba RiverF, R43-Camora Lake3mi. MrState ParkF, R406035Co. My 30Co. My 30Co. My 30F, R43-Lake PurdyNucleurite RiskSim. S-SpringvilleF, R4060 </td <td>2900</td> <td>Monroe Co. Public Lake</td> <td></td> <td>: 2</td> <td>94</td> <td>16</td> <td>۲ ۲</td> <td>D21</td> <td>215</td> <td>010</td> <td>121</td> <td>066 1</td>	2900	Monroe Co. Public Lake		: 2	94	16	۲ ۲	D21	215	010	121	066 1
	Davis Lake2 mi. NFletaR5015Davis Lake1% mi. NRobinsons Crds. R, L6016Davis Lake1% mi. NRobinsons Crds. R, L6016Davis Lake1% mi. NRobinsons Crds. R, L6016Bain Henderson Lake1% mi. NRobinsons Crds. R, L6016Bain Henderson Lake1% mi. NBloctonF794Chase Lake8 mi. SWBloctonF794Chase Lake8 mi. SWBloctonF70Shady Grove Lake6 mi. NCentrevilleF50Shady Grove Lake6 mi. NCentrevilleF70SoundarinSubmasinBucksville ExitF47Reese MurrayNorman FountainBucksville ExitF47Reese MurrayNether State S9F4723Coak Mtn. Public LakeOn Little Cahaba RiverF, R8630Catamora Lake2 mi. EPalmerdaleF, R4060Oak Mtn. Public LakeOak Mtn. State ParkF, R432Coak Mtn. Public LakeOak Mtn. State ParkF, R432Sortsman Lake2 mi. SSpringvilleF, R4060Jarkaret Lake35 mi. SSpringvilleF, R4060Jarkaret Lake35 mi. SSpringvilleF, R4060Jarkaret Lake35 mi. SSpringvilleF, R4060Jarkaret Lake35 mi. SSpringvilleF, R4060 <trr>Jarkaret Lake<td< td=""><td>tgomery</td><td>Suggs Lake</td><td></td><td>R, L</td><td>80</td><td>12</td><td>130</td><td>1.050</td><td>2.225</td><td>2.955</td><td>155</td><td>2.040</td></td<></trr>	tgomery	Suggs Lake		R, L	80	12	130	1.050	2.225	2.955	155	2.040
	Davis Lake2 mi. NFletaR5015Davis Lake1½ mi. NRobinsons Crds. R, L4016Bain Henderson Lake1½ mi. NRobinsons Crds. R, L4016Bain Henderson Lake1½ mi. NRobinsons Crds. R, L5016Bain Henderson Lake1½ mi. NRobinsons Crds. R, L5220IdR794794794Chase Lake8 mi. SwBloctonF794Shady Grove Lake6 mi. NCentrevilleF5030Lake Purdy6 mi. NCentrevilleF5030Lake Purdy6 mi. SwLedsF, R, M5365Sanora Lake2 mi. SwLedsF, R, M5355Sanora Lake2 mi. SwLedsF4723Consar Lake2 mi. SwLedsF73Consar Lake0 Little Cahaba RiverF, R8440Oak Mm. Public Lake0 Mtm. State ParkF, R8440Oak Mm. Public Lake0 Mtm. State ParkF, R43-Jaten Purdy0 Mtm. State ParkF, R8440Oak Mm. Public Lake0 Mtm. State ParkF, R43-Jaten Purdy0 Mtm. Public Lake0 Mtm. State ParkF, R43-Jate Purdy0 Mtm. State ParkF, R43Jate Purdy0 Mtm. Public Lake35 mi. NOdenvilleF, R4060Jate Purdy0 Mtm. State ParkF, R43 <td></td> <td>Davis Lake</td> <td></td> <td>R</td> <td>50</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Davis Lake		R	50	15						
	Davis Lake $1\frac{1}{2}$ mi. NRobinsons Crds. R,L $60$ $16$ Davis Lake $1\frac{1}{2}$ mi. NRobinsons Crds. R,L $60$ $16$ Davis Lake $1\frac{1}{2}$ mi. NRobinsons Crds. R,L $52$ $20$ Davis Lake $1\frac{1}{2}$ mi. NRobinsons Crds. R,L $52$ $20$ Rundle $1\frac{1}{2}$ mi. NRobinsons Crds. R,L $52$ $20$ Rundle $1\frac{1}{2}$ mi. NRobinsons Crds. R,L $52$ $20$ Rundle $1\frac{1}{2}$ mi. NBlocton $F$ $794$ $794$ Chase Lake $8$ mi. SWBlocton $F$ $794$ $70$ Shady Grove Lake $8$ mi. NCentreville $F$ $70$ $20$ Shady Grove Lake $8$ mi. SWLeeds $F$ $70$ $20$ Lake Purdy $6$ mi. SWLeeds $F$ , $R,M$ $653$ $65$ Norman Fountain $8$ mi. SWLeeds $F$ , $R,M$ $653$ $65$ Lake Purdy $6$ mi. SWLeeds $F$ , $R,M$ $653$ $65$ Consta Lake $2$ mi. EPalmerdale $F$ , $R,M$ $653$ $56$ Samora Lake $0$ mi. State Park $F,R$ $40$ $60$ Dak Mtn. Public Lake $0$ mi. State Park $F,R$ $86$ $33$ Dak Mtn. Public Lake $0$ mi. State Park $F,R$ $42$ $15$ Dak Mtn. Public Lake $0$ mi. State Park $F,R$ $42$ $23$ Date Mtn. Public Lake $0$ mi. State Park $F,R$ $42$ $23$ Date Mtn. Public Lake $0$ mi. State Park $F,R$ $42$ $20$ Date Mtn.		Davis Lake		. 24	50	15						
Davis Lake         13 mi. NRobinsons Crds. R,L         40         16         33         42         42         129         10           Bain Henderson Lake         13 mi. NRobinsons Crds. R,L         794         367         3191         787         119           IA         Rerry         R-Millers         8         15         122         391         787         119           Chase Lake         8         mi. SWBlocton         F         50         30         5,914         4,574         9,470         895         10           Chase Lake         8         mi. SW-Blocton         F         50         30         5         18         10         10         250         188           Shady Grove Lake         6         mi. NCentreville         F         50         30         56         19         457         178         271         184           Norman Fountain         Buckville Exit         F         47         23         8         66         70         66         70           Emerald Valley Lake         6         mi. Sw-Distate S0-         65         65         457         178         271         184         71           Reses Murray         So	Davis Lake $1'_2$ mi. NRobinsons Crds. R, L4016Bain Henderson Lake $1'_2$ mi. NRobinsons Crds. R, L5220Bain Henderson Lake $1'_2$ mi. WMillers $R_1L$ 5220Chase Lake8 mi. SWBloctonF $\overline{F}$ $\overline{50}$ $\overline{25}$ Chase Lake8 mi. SWBloctonF $\overline{F}$ $\overline{50}$ $\overline{25}$ Shady Grove Lake6 mi. NCentrevilleF $\overline{50}$ $\overline{25}$ Chase Lake8 mi. SWBloctonF $\overline{7}$ $\overline{7}$ Emerald Valley Lake6 mi. SWLeedsF, R, M $\overline{653}$ $\overline{65}$ Sontran FountainSuchastate S9F $\overline{7}$ $\overline{7}$ Norman FountainBucksville ExitF $\overline{4}$ $\overline{7}$ $\overline{3}$ Reese MurrayNE corner of Co. offF $\overline{50}$ $\overline{35}$ $\overline{5}$ $\overline{5}$ $\overline{5}$ Const LakeOn Little Cahaba RiverF, R $40$ $\overline{6}$ $\overline{3}$ $\overline{5}$ $\overline{5}$ $\overline{5}$ Lake PurdyOn Little Cahaba RiverF, R $80$ $\overline{6}$ $\overline{5}$ <		Davis Lake	. NRobinsons		60	16						
Bain Henderson Lake         13 mi. WMillers         32 mi. Signed for the ferry         12 mi. Signed for the ferry         12 mi. Signed for the ferry         12 mi. Signed for the sin the signed for the signed for the signed for the sin the sin the	Bain Henderson Lake     14     13     50     50       14     Ferry     R,L     52     20       14     Ferry     R,L     52     20       14     Ferry     R,L     52     20       15     Shady Grove Lake     8 mi. SW-Blocton     F     50     35       5     Shady Grove Lake     8 mi. SW-Leeds     F,R,M     55     55       5     Shady Grove Lake     8 mi. SW-Leeds     F,R,M     50     35       5     Norman Fountain     SInterstate 59     F,R,M     65     5       8     Norman Fountain     Bucksville Exit     F,R,M     65     5       8     Sommar Sommar Lake     2     Mi. E-Palmerdale     F,R,M     66     6       1     S-montaine     F,R     84     40     60     60       2     Mtn. Public Lake     3     Min. State Park     F,R     84     60     55       3     Mtn. State Park     F,R <td></td> <td>Davis Lake</td> <td>mi. NRobinsons</td> <td></td> <td>40</td> <td>16</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>		Davis Lake	mi. NRobinsons		40	16					•	
neutron tare         Farry         R.L         52         20         12         331         3,914         4,574         9,470         855         113           Chase Lake         8 mi. SWBlocton         F $\frac{7}{50}$ 387         3,914         4,574         9,470         855         19         113           Chase Lake         8 mi. SWBlocton         F $\frac{5}{50}$ 367         3,914         4,574         9,470         855         19         100         250         18           Chase Lake         6 mi. NCentreville         F         50         30         50         50         50         50         100         250         18           Shady Grove Lake         8 mi. SWLeeds         F, R, M         53         55         46         457         178         271         184           Lake Purdy         6 mi. SWLeeds         F, R, M         53         55         46         457         178         271         184           Reses Murray         NE corner of Co. off         F         47         23         178         271         184           Reses Murray         NE corner of Co. off         F         50         53         55	Data reduction Lake     T_2 mi. n-millers     R,L     52     20       14     Ferry	, c	Brin Hondoncon Lobo					32	432	42	129	20	288
14         794         387         3,914         4,574         9,470         855         1           Chase Lake         8 mi. SWBlocton         F         50         25         14         190         100         250         188           Chase Lake         6 mi. NCentreville         F         50         25         14         190         100         250         188           Chase Lake         6 mi. NCentreville         F         50         30         5         83         50         60         70           Emerald Valley Lake         5 mi. SWLeeds         F, R, M         53         65         457         178         271         184           Norman Fountain         Buckville Exit         F         47         23         46         457         178         271         184           Norman Fountain         Buckville Exit         F         47         23         46         47         71           Reses Murray         Ne corner of Co. off         F         47         23         50         184         71           Reses Murray         Ne corner of Co. off         F         47         23         50         185           Zamora Lake <td>14     794       Tase Lake     8 mi. SWBlocton     F     794       Chase Lake     8 mi. SWBlocton     F     50     25       Shady Grove Lake     6 mi. NCentreville     F     50     25       Emerald Valley Lake     6 mi. NCentreville     F     50     25       Emerald Valley Lake     6 mi. SWLeeds     F, R, M     653     65       Lake Purdy     6 mi. SWLeeds     F, R, M     653     65       Norman Fountain     Bucksville Exit     F     47     23       Reese Murray     NE corner of Co. off     F     47     23       Reese Murray     Ne corner of Co. off     F     47     23       Zamora Lake     2 mi. EPalmerdale     F     47     23       Co. MMtn. Public Lake     On Little Cahaba River     F, R     40     60       Oak Mtn. Public Lake     Oak Mtn. State Park     F, R     84     40       Oak Mtn. Public Lake     Just NMargaret     F, R     85     50       Margaret Lake     Just NMargaret     F, R     82     50       A     3     Just NMargaret     F, R     60     30       A     3     Mi. NMargaret     F, R     86     30       Bee</td> <td>Yo,</td> <td>DAIN RENUCTION LANC</td> <td></td> <td>R.L</td> <td>52</td> <td>20</td> <td>c1</td> <td>771</td> <td>160</td> <td>191</td> <td>6TT</td> <td>1,/25</td>	14     794       Tase Lake     8 mi. SWBlocton     F     794       Chase Lake     8 mi. SWBlocton     F     50     25       Shady Grove Lake     6 mi. NCentreville     F     50     25       Emerald Valley Lake     6 mi. NCentreville     F     50     25       Emerald Valley Lake     6 mi. SWLeeds     F, R, M     653     65       Lake Purdy     6 mi. SWLeeds     F, R, M     653     65       Norman Fountain     Bucksville Exit     F     47     23       Reese Murray     NE corner of Co. off     F     47     23       Reese Murray     Ne corner of Co. off     F     47     23       Zamora Lake     2 mi. EPalmerdale     F     47     23       Co. MMtn. Public Lake     On Little Cahaba River     F, R     40     60       Oak Mtn. Public Lake     Oak Mtn. State Park     F, R     84     40       Oak Mtn. Public Lake     Just NMargaret     F, R     85     50       Margaret Lake     Just NMargaret     F, R     82     50       A     3     Just NMargaret     F, R     60     30       A     3     Mi. NMargaret     F, R     86     30       Bee	Yo,	DAIN RENUCTION LANC		R.L	52	20	c1	771	160	191	6TT	1,/25
	Chase Lake8 mi. SWBloctonFCahaba SubbasinShady Grove Lake6 mi. NCentrevilleF5025Shady Grove Lake6 mi. NCentrevilleF5025Emerald Valley Lake6 mi. SWLeedsF,R,M65365Lake Purdy6 mi. SWLeedsF,R,M65365Norman FountainBucksville ExitF4723Norman FountainBucksville ExitF4723Reese MurrayCo. Hwy 30F743-Zamora Lake2 mi. EPalmerdaleF,R4060Oak Mtn. Public LakeOak Mtn. State ParkF,R8440Oak Mtn. Public LakeOak Mtn. State ParkF,R8530Oak Mtn. Public LakeOak Mtn. State ParkF,R8530Oak Mtn. Public LakeOak Mtn. State ParkF,R8630Oak Mtn. Public Lake31SSpringvilleF,R82A3I.NAnnistonF,R4825Sportsman Lake5Mi. NNaeads MilleF,R4825ASSSSSS5Sportsman Lake5SSS55Sportsman Lake5S <t< td=""><td>otal</td><td>14</td><td></td><td></td><td>794</td><td></td><td>387</td><td>3,914</td><td>4,574</td><td>9,470</td><td>895</td><td>15,090</td></t<>	otal	14			794		387	3,914	4,574	9,470	895	15,090
Guade take       6 mi. NCentreville       F       50       23       190       100       250       136         Shady Grove Lake       6 mi. NCentreville       F       50       5       5       5       5       5       60       70         Lake Purdy       6 mi. N-Centreville       F       170       -       46       457       178       271       184         Lake Purdy       5       6 mi. SWLeeds       F       47       23       5       60       70       50       150       179       271       184         Norman Fountain       Bucksville Exit       F       47       23       5       65       70       184         Rese Murray       6       6 mi. SWLeeds       F       47       23       5       50       60       70         Rese Murray       0       60       60       7       8       8       4       71         Rese Murray       Co. Hwy 30       Co. Hwy 30       8       4       8       144       71         Lake Purdy       Oak Mrn. Public Lake       Oa Mrn. State Park       F,R       8       4       3       14       71         Lake Purdy	a       Jake       Durdy       Smalley Lake       Durdy       Smalley Lake       Durdy       Smalley Lake       Smalley Lak		chose late	.,			bbasin	2	001	001	C L	0	
Stady Grove Lake       0 ml. Ncentreville       F       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50<	adov urove Lake       0 ml. NCentreville       r       50       30         Emerald Valley Lake       2 mi. EPalmerdale       F,R,M       653       65         Lake Purdy       6 mi. SWLeeds       F,R,M       653       65         Norman Fountain       Bucksville Exit       F       47       23         Norman Fountain       Bucksville Exit       F       47       23         Reese Murray       NE corner of Co. off       F       47       23         Reese Murray       NE corner of Co. off       F       47       23         Zamora Lake       2 mi. EPalmerdale       F       47       23       -         Lake Purdy       0n Little Cahaba River       F,R       84       40       60       35       30         Dak Mtn. Public Lake       0ak Mtn. State Park       F,R       84       40       60       15         Margaret Lake       Just NMargaret       F,R       85       30       15         Anstaret Lake       Just NMargaret       F,R       42       15         Anstaret Lake       Just NMargaret       F,R       40       60       30         Anstaret Lake       Just NMargaret       F,R       42		CLETE CONTRACT		L, [	001	C7	14	1 A N	IUU	062	1 00	<b>3,</b> 549
Emerald Valley Lake       2 mi. E-Palmerdale       170       -       46       457       178       271       184         Lake Purdy       6 mi. SWLeeds       F,R,M       655       65       55       55       55       57       178       271       184         Norman Fountain       Bucksville Exit       F       47       23       55       55       57       184         Reese Murray       Ne corner of Co. off       F       50       55       55       55       57       184         Reese Murray       Ne corner of Co. off       F       50       55       56       55       57       57       57       57       57       57       184         Zamora Lake       2 mi. E-Palmerdale       7       27       8       84       48       144       71         Lake Purdy       0 n. Little Cahaba River       F,R       80       60       27       350       183         Lake Purdy       0 n. Little Cahaba River       F,R       84       48       144       71         Lake Purdy       0 n. Mm. State Park       F,R       84       40       60       50       15       350       183         Oak Mm. Publi	Emerald Valley Lake2 mi. EPalmerdale170Lake Purdy6 mi. SWLeeds55Lake Purdy6 mi. SWLeeds57Norman FountainSInterstate S9F47Reese MurrayBucksville ExitF4723Reese MurrayNE corner of Co. offF5035Zamora Lake2 mi. EPalmerdaleF43-Lake PurdyOn Little Cahaba RiverF, R4060Oak Mtn. Public LakeOak Mtn. State ParkF, R8530Oak Mtn. Public LakeOak Mtn. State ParkF, R8530Oak Mtn. Public LakeOak Mtn. State ParkF, R8530Oak Mtn. Public Lake34 mi. SSpringvilleF, R8530Oak Mtn. Public LakeOak Mtn. State ParkF, R8530Oak Mtn. Public Lake34 mi. SSpringvilleF, R4215Just NMargaretF, R853015A31.NOdenvilleF, R4215Just NOdenvilleF, R781,78430A3NWJacksonvilleF, R4825A53 mi. NWAnnistonF, R4825Nesbitt Lake3 mi. NWJacksonvilleF, R4825Nesbitt Lake3 mi. NWJacksonvilleF, R4825	ton	Shauy wrove Lake	ш1.	L.	50	50	S	83	50	60	70	556
Emerald valley Lake       2 ml. EPalmerdale       170       -       46       457       178       271       184         Norman Fountain       Se-Interstate 59       F,R,M       653       65       457       178       271       184         Norman Fountain       Bucksville Exit       F       47       23       65       457       178       271       184         Norman Fountain       Bucksville Exit       F       47       23       55       55       55       55       55       55       55       55       183         Reese Murray       Co. Hwy 30       F       50       35       55       55       183       55       183       55       183       55       183       55       183       55       183       55       183       55       183       55       183       55       183       55       183       55       183       55       183       55       184       71       55       55       175       55       183       55       56       56       56       55       183       56       56       56       55       55       15       55       15       55       15       55	Emerator Valley Lake2 ml. EPalmerdale $170$ -Lake Purdy6 mi. SWLeedsF,R,M65365Norman FountainBuckinterstet 59F4723Neese MurrayBuckonter of Co. offF5035Reese MurrayNE corner of Co. offF5035Zamora Lake2 mi. EPalmerdale43-Lake PurdyCo. Hwy 30F5035Zamora Lake2 mi. EPalmerdaleF,R40060Oak Mtn. Public LakeOak Mtn. State ParkF,R8440Oak Mtn. Public LakeOak Mtn. State ParkF,R8530Frank Trucks Lake3½ mi. SSpringvilleF,R8530Sportsman Lake2 mi. NOdenvilleF,R6030a13171784Harold Fink5 mi. NAnnistonF,R7815Nesbirt Lake3 mi. NMJacksonvilleF,R7825	las						00	100	50	150	19	248
Lake Furdy Norman Fountain         0 ml. SWLeeds S-Interstate 59         F, K,M         0.53         0.5           Reese Murray         SInterstate 59         F         47         23           Reese Murray         Bucksville Exit         F         47         23           Zamora Lake         Ducksville Exit         F         47         23           Zamora Lake         Zo. Hwy 30         F         50         35           Zamora Lake         Du Little Cahaba River         F,R         40         60         24         325         183           Oak Mtn. Public Lake         Oak Mtn. State Park         F,R         84         40         60         24         325         183           Oak Mtn. Public Lake         Oak Mtn. State Park         F,R         85         30         35         35         350         183           Margaret Lake         Just NMargaret         F,R         85         30         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35	Lake Furdy o ml. SwLeeds F,R,M 653 65 Norman Fountain SInterstate 59 Reese Murray NE correr of Co. off F 47 23 Reese Murray NE correr of So. off F 47 23 Zamora Lake Co. Hwy 30 F 50 35 Zamora Lake Purdy Co. Hwy 30 F 7 50 35 Co. Hwy 30 F 7 84 40 Oak Mtn. Public Lake Oak Mtn. State Park F,R 84 40 Oak Mtn. Public Lake Oak Mtn. State Park F,R 84 40 Oak Mtn. Public Lake Oak Mtn. State Park F,R 84 40 Oak Mtn. Public Lake Oak Mtn. State Park F,R 84 40 Margaret Lake Oak Mtn. State Park F,R 85 30 Frank Trucks Lake Oak Mtn. State Park F,R 85 30 Just NMargaret F,R 86 Just NMargaret F,R 86 Just NMargaret F,R 60 30 IS Just NMargaret F,R 78 13 Harold Fink 5 mi. NWReads Mill F,R 48 25 Nesbitt Lake 3 mi. NWJacksonville F,R 40 20	rerson	Emerald Valley Lake			170	• •	46	457	178	271	184	301
Moment outcase       Servet of Co. (My 30       F       47       23         Reese Murray       Bucksville Exit       F       50       35         Zamora Lake       Zamora Lake       Zamora Lake       ME corner of Co. (My 30       F       50       35         Zamora Lake       Zamora Lake       Zamora Lake       Zamora Lake       ME corner of Co. (My 30       F       50       35         Zamora Lake       Zamora Lake       Zamite Co. (My 30       F       S0       84       48       144       71         Lake Purdy       On Little Cahaba River       F, R       84       400       60       24       325       175       350       183         Oak Mtn. Public Lake       Oak Mtn. State Park       F, R       84       40       24       325       175       350       183         Oak Mtn. Public Lake       Oak Mtn. State Park       F, R       85       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       <	Montant Foundation       5       5       5         Reese Murray       Bucksville Exit       7       2         Reese Murray       NE corille Exit       7       2         Zamora Lake       0. Hwy 30       6       35       2         Zamora Lake       2 mi. E-Palmerdale       7       50       35         Lake Purdy       0. Little Cahaba River       7, R       43       -         Oak Mtn. Public Lake       0ak Mtn. State Park       7, R       84       40       60         Oak Mtn. Public Lake       0ak Mtn. State Park       7, R       85       30       15         Margaret Lake       34 mi. S-Springville       7, R       85       30       15         Margaret Lake       Just NMargaret       7       7       15       15         Sportsman Lake       2 mi. NOdenville       7, R       60       30         13       13       Coosa Subbasin       15       26       25         Nesbitt Lake       3 mi. NwAcsdonville       7, R       13       40       25		Lake Purdy Norman Fountain	0 ml. SWLeeds C Tr+ovc+c+c EO	F, K, M	653	65						
Reese Murray         Neconstruct of Co. off	Reese Murray       NE corner of Co. off       7       47       23         Zamora Lake       Deutsville Currer of Co. off       F       50       35         Zamora Lake       Co. Hwy S0       F       50       35         Lake Purdy       Co. Hwy S0       F       43       -         Dak Mrn. Public Lake       On Little Cahaba River       F, R       400       60         Oak Mrn. Public Lake       Oak Mrn. State Park       F, R       84       40         Oak Mrn. Public Lake       Oak Mrn. State Park       F, R       85       30         Margaret Lake       Just NMargaret       F, R       85       30       15         Margaret Lake       Just NOdenville       F, R       60       30       15         Sportsman Lake       2 mi. NOdenville       F, R       60       30         I3       I3       Coosa Subbasin       17       78       13         Lee Bros. Lake       5 mi. NWAnniston       F, R       78       13         Kesbitt Lake       5 mi. NWJacksonville       F, R       40       20			0INTELSTATE 33 Duckentille Evi€		1							
Zamora LakeCo. Hwy 30F5035Zamora Lake2 mi. EPalmerdale43-8844814471Lake Purdy0 n Little Cahaba RiverF, R406024325175350183Oak Mtn. Public Lake0 ak Mtn. State ParkF, R844024325175350183Oak Mtn. Public Lake0 ak Mtn. State ParkF, R85303535183Oak Mtn. Public Lake0 ak Mtn. State ParkF, R85303535350183Oak Mtn. Public Lake0 ak Mtn. State ParkF, R8530366013025Margaret Lake3 ½ mi. SSpringvilleF, R8530303025Margaret LakeJust NMargaretF, R6030216214714Margaret Lake2 mi. NOdenvilleF, R6030216214714Margaret Lake2 mi. NOdenvilleF, R6030216214714Margaret Lake2 mi. NMargaretF, R781001,3246821,402754Mardet Lake5 mi. NAnnistonF, R78131,251,402754Mardet Lake5 mi. NReads MillF, R78131251,402764Mardet Rouse5 mi. NReads MillF, R78131251	Zamora Lake     Co. Hwy 30     F     50     35       Zamora Lake     2 mi. EPalmerdale     43     -       Lake Purdy     0 n Little Cahaba River     F,R     400     60       Oak Mtn. Public Lake     0ak Mtn. State Park     F,R     84     40       Oak Mtn. Public Lake     0ak Mtn. State Park     F,R     84     40       Oak Mtn. Public Lake     0ak Mtn. State Park     F,R     85     30       Margaret Lake     34 mi. SSpringville     F,R     85     30       Just NMargaret     F     R     60     30       Sportsman Lake     2 mi. NOdenville     F,R     60     30       13     1     784     1     15       Harold Fink     5 mi. NAnniston     F,R     78     13       Lee Bros. Lake     3 mi. NWJacksonville     F,R     78     25		Reese Murray		-	Ť	C7						
Zamora Lake2 mi. EPalmerdale4384844814471Lake Purdy0n Little Cahaba RiverF, R $400$ $60$ $24$ $325$ $175$ $350$ $183$ Oak Mtn. Public Lake0ak Mtn. State ParkF, R $84$ $40$ $24$ $325$ $175$ $350$ $183$ Oak Mtn. Public Lake0ak Mtn. State ParkF, R $85$ $30$ $24$ $325$ $175$ $350$ $183$ Oak Mtn. Public Lake0ak Mtn. State ParkF, R $85$ $30$ $24$ $325$ $130$ $25$ Margaret Lake $3^{2}$ mi. SSpringvilleF, R $42$ $15$ $3$ $69$ $60$ $130$ $25$ Sportsman Lake $2$ mi. NOdenvilleF, R $60$ $30$ $2$ $16$ $21$ $47$ $14$ $13$ $13$ $1,784$ $110$ $1,324$ $682$ $1,402$ $754$ $13$ $13$ $1,784$ $110$ $1,324$ $682$ $1,402$ $754$ $13$ $13$ $1,784$ $110$ $1,324$ $682$ $1,402$ $754$ $13$ $13$ $1,784$ $110$ $1,324$ $682$ $1,402$ $754$ $13$ $13$ $1,784$ $110$ $1,324$ $682$ $1,402$ $754$ $14$ $14$ $1,784$ $14$ $1,784$ $14$ $14$ $14$ $15$ $1,784$ $1,80$ $1,900$ $400$ $500$ $15$ $14$ $1,784$ $1,8$	Zamora Lake     2 mi. EPalmerdale     43       Lake Purdy     0 Little Cahaba River     F, R     400     60       Uak Mtn. Public Lake     0ak Mtn. State Park     F, R     84     40       0ak Mtn. Public Lake     0ak Mtn. State Park     F, R     85     30       Frank Trucks Lake     0ak Mtn. State Park     F, R     85     30       Margaret Lake     0ak Mtn. State Park     F, R     85     30       Just NMargaret     F, R     85     30     15       Sportsman Lake     2 mi. NOdenville     F, R     60     30       13     1     784     1     784       Harold Fink     5 mi. NAnniston     F, R     78     13       Lee Bros. Lake     3 mi. NWReads Mill     F, R     78     26				۲.	50	35						
Lake Purdy Dak Mrn. Public Lake Oak Mrn. Public Lake Oak Mrn. State Park Frank Trucks Lake Sportsman Lake Just NMargaretR4006024325175350183Oak Mrn. Public Lake Oak Mrn. State Park Frank Trucks Lake Margaret Lake Just NMargaretOak Mrn. State Park F, RF, R844006024325175350183Margaret Lake Sportsman Lake $3_2$ mi. SSpringvilleF, R853030251525Margaret Lake Just NMargaretJust NMargaret F, RF, R6030216214714IJIIII, 784II0I, 324682I, 40275414Harold FinkS mi. NAnnistonF, R78131251, 00040050041	Lake PurdyOn Little Cahaba RiverF,R40060Oak Mnn. Public LakeOak Mtn. State ParkF,R8440Oak Mnn. Public LakeOak Mtn. State ParkF,R8530Frank Trucks LakeOak Mtn. State ParkF,R8530Sportsman Lake34 mi. SSpringvilleF,R4215Just NMargaretFF5015Sportsman Lake2 mi. NOdenvilleF,R603013ICoosa Subbasin1,78413Lee Bros. Lake5 mi. NAnnistonF,R7813Nesbitt Lake5 mi. NWJacksonvilleF,R7825		Zamora Lake	2 mi. EPalmerdale		43	ı						
Lake PurdyOn Little Cahaba RiverF, R4006024325175350183Oak Mtn. Public LakeOak Mtn. State ParkF, R84404024325175350183Oak Mtn. Public LakeOak Mtn. State ParkF, R85303035303535Frank Trucks Lake $3\frac{1}{2}$ mi. SSpringvilleF, R42153696013025Margaret Lake $3ust NMargaretF, R6030216214714Sportsman Lake2mi. NOdenvilleF, R603021621471413IIIIIII1246821,402754Harold Fink5mi. NWReads MillF, R78131251,00040050041$	Lake PurdyOn Little Cahaba RiverF,R40060Oak Mtn. Public LakeOak Mtn. State ParkF,R8440Oak Mtn. Public LakeOak Mtn. State ParkF,R8530Frank Trucks LakeOak Mtn. State ParkF,R8530Sportsman LakeJust NMargaretF75015Just NOdenvilleF,R603030IJICoosa Subbasin1,78413I3Lee Bros. Lake5 mi. NAnnistonF,R7813Lee Bros. Lake5 mi. NWBacksonvilleF,R7813Lee Bros. Lake3 mi. NWJacksonvilleF,R7825	ry						œ	84	48	144	71	987
Oak Mtn. Public Lake       Oak Mtn. State Park       F, R       84       40         Oak Mtn. Public Lake       Oak Mtn. State Park       F, R       85       30         Oak Mtn. Public Lake       Oak Mtn. State Park       F, R       85       30         Rank Trucks Lake $3^2$ mi. SSpringville       F, R       42       15       3       69       60       130       25         Margaret Lake       Just NMargaret       F, R       60       30       2       16       21       47       14         Sportsman Lake       2 mi. NOdenville       F, R       60       30       2       16       21       47       14         I3       I       I.784       II0       I.324       682       I.402       754         Harold Fink       5 mi. NAnniston       F, R       78       13       125       1,000       400       500       41	Oak Mtn. Public LakeOak Mtn. State ParkF,R8440Oak Mtn. Public LakeOak Mtn. State ParkF,R8530Frank Trucks LakeOak Mtn. State ParkF,R8530Margaret Lake $3^2$ mi. SSpringvilleF,R4215Just NMargaretFF5015Sportsman Lake2 mi. NOdenvilleF,R603013ISportsman Lake1,7841Harold Fink5 mi. NAnnistonF,R7813Lee Bros. Lake3 mi. NWReads MillF,R7825Spitt Lake3 mi. NWJacksonvilleF4020	lby	Lake Purdy	On Little Cahaba River	F <b>,</b> R	400	60	24	325	175	350	183	392
Oak Mtn. Public Lake         Oak Mtn. State Park         F, R         85         30           Frank Trucks Lake $3^2$ mi. SSpringville         F, R         42         15         3         69         60         130         25           Margaret Lake         Just NMargaret         F         R         60         30         2         14           Sportsman Lake         2 mi. NOdenville         F, R         60         30         2         16         21         47         14           13         13         1,784         110         1,324         682         1,402         754           13         Coosa Subbasin         -         -         15         30         15           Harold Fink         5 mi. NAnniston         F, R         78         13         125         1,000         400         500         41	Oak Mtn. Public Lake         Oak Mtn. State Park         F,R         85         30           Frank Trucks Lake         34 mi. SSpringville         F,R         42         15           Margaret Lake         34 mi. SSpringville         F,R         42         15           Margaret Lake         Just NMargaret         F         50         15           Sportsman Lake         2 mi. NOdenville         F,R         60         30           13         Coosa Subbasin         1,784         13           Harold Fink         5 mi. NAnniston         F,R         78         13           Lee Bros. Lake         3 mi. NWReads Mill         F,R         78         13		Oak Mtn. Public Lake	Oak Mtn. State Park	F,R	84	40						
Frank Trucks Lake $3_2$ mi. SSpringville       F,R       42       15       3       69       60       130       25         Margaret Lake       Just NMargaret       F       50       15       30       2       130       25         Sportsman Lake       Just NMargaret       F,R       60       30       2       16       21       47       14         13       13       1,784       110       1,324       682       1,402       754         13       Coosa Subbasin       -       1,784       110       1,324       682       1,402       754         Harold Fink       5 mi. NAnniston       F,R       78       13       125       1,000       400       500       41         Lee Bros. Lake       4 mi. NWReads Mil1       F,R       48       25       1,000       400       500       41	Frank Trucks Lake $31_2$ mi. SSpringvilleF,R4215Margaret LakeJust NMargaretFF5015Sportsman Lake2 mi. NOdenvilleF,R60301313Coosa SubbasinHarold Fink5 mi. NAnnistonF,R7813Lee Bros. Lake3 mi. NWReads MillF,R7813Nesbitt Lake3 mi. NWJacksonvilleF4020		Oak Mtn. Public Lake	Oak Mtn. State Park	F,R	85	30						
Margaret Lake         Just NMargaret         F         50         15           Sportsman Lake         2 mi. NOdenville         F,R         60         30         2         47         14           13         13         1,784         110         1,324         682         1,402         754           13         Coosa Subbasin         2         -         15         754         15           Harold Fink         5 mi. NAnniston         F,R         78         13         125         1,000         400         500         41           Lee Bros. Lake         4 mi. NWReads Mill         F,R         48         25         1,000         400         500         41	Margaret Lake         Just NMargaret         F         50         15           Sportsman Lake         2 mi. NOdenville         F,R         60         30           13         13         1,784         1,784           Harold Fink         5 mi. NAnniston         Ecoss Subbasin           Harold Fink         5 mi. NAnniston         F,R         78         13           Nesbitt Lake         3 mi. NWJacksonville         F, R         48         25	Clair	Frank Trucks Lake	vill	F,R	42	15	3	69	60	130	25	75
Sportsman Lake         2 mi. NOdenville         F,R         60         30         2         16         21         47         14           13         1.784         1.784         110         1.324         682         1,402         754           Coosa Subbasin           1.784         5 mi. N-Anniston         7.8         13         125         1,000         400         500         41           Lee Bros. Lake         4 mi. NWReads Mill         F,R         48         25         1,000         400         500         41	Sportsman Lake         2 mi. NOdenville         F,R         60         30           13         13         1,784         1,784         1,784           Harold Fink         5 mi. NAnniston         F,R         78         13           Harold Fink         5 mi. NAnniston         F,R         78         13           Lee Bros. Lake         3 mi. NWReads Mill         F,R         48         25           Nesbitt Lake         3 mi. NWJacksonville         F         40         20		Margaret Lake	Just NMargaret	ц	50	15						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 1,784 Coosa Subbasin Harold Fink 5 mi. NAnniston F,R 78 13 Lee Bros. Lake 4 mi. NWReads Mill F,R 48 25 Nesbitt Lake 3 mi. NWJacksonville F 40 20		Sportsman Lake		F,R	60	30						
13         1,784         110         1,324         682         1,402         754           Coosa Subbasin         -         1,402         754           Coosa Subbasin         -         15         30         15           Harold Fink         5 mi. NAnniston         F,R         78         13         125         1,000         400         500         41           Lee Bros. Lake         4 mi. NWReads Mill         F,R         48         25         1,000         400         500         41	13 I,784 Coosa Subbasin Harold Fink 5 mi. NAnniston F,R 78 13 Lee Bros. Lake 4 mi. NWReads Mill F,R 48 25 Nesbitt Lake 3 mi. NWJacksonville F 40 20	caloosa						2	16	21	47	14	81
Coosa Subbasin         -         -         15         30           Harold Fink         5 mi. NAnniston         F, R         78         13         125         1,000         400         500           Lee Bros. Lake         4 mi. NWReads Mill         F, R         48         25         1,000         400         500	Coosa SubbasinHarold Fink5 mi. NAnnistonF,R7813Lee Bros. Lake4 mi. NWReads MillF,R4825Neshitt Lake3 mi. NWJacksonvilleF4020	total	13			1,784		110	1,324	682	1,402	754	6,189
Harold Fink 5 mi. NAnniston F,R 78 13 125 1,000 400 500 Lee Bros. Lake 4 mi. NWReads Mill F,R 48 25	Harold Fink 5 mi. NAnniston F,R 78 13 Lee Bros. Lake 4 mi. NWReads Mill F,R 48 25 Nesbitt Lake 3 mi. NWJacksonville F 40 20					Subbasin				L 7		,	OFC.
Lee Bros. Lake 4 mi. NWReads Mill F, R 48 25 120 1,000 400 500	Lee Bros. Lake 3 mi. NWRado Mill F,R 40 25 Neshitt Lake 3 mi. NWJacksonville F 40 20	auga	Harold Fink	., E	C D	10	1 7	- 1.75	- 000	15	30	51	6/7
4 ml. NWKeadS MILL F,K 48	4 ml. NWKeadS Mill F,K 48 3 mi. NWJacksonville F 40	Inni	viit, nto pu		4 G	0/	10	C7 T	1,000	400	nne	14	601
	3 ml. NWJackSonville F 40		LEE DIUS. LANC		۲, ۲	4 0 7 0	C7						

A-8

	LARGE IN	LARGE IMPOUNDMENTS 1/			HEIGHT	INDUM	IMPOUNDMENTS 2/		IMPOUNDMENTS 3/		IMPOUNDMENTS 4/
COUNTY	NAME	LOCATION	USE 5/	SUKFACE	UF DAM (feet)	.ON	ACRES	NO.	ACRES	NO.	ACRES
Cherokee	Coley Bros.	5 mi. SCentre	L,R	100	26	4	9	146	450	27	83
Chilton						11	130	190	200	13	1,240
Cleburne						10	241	5 0	L	6	28
Coosa	Ann Jordan	2.3 mi. SWKellyton	Private	135	20	38	288	270	680	41	148
DeKalb	Camp Corner Lake	2 ¹ ₂ mi. SValley Head	R	75	20	6	111	70	140	23	68
	Fort Payne City Lake	NE sideFt. Payne	Ψ	06	50						
Elmore	Speigner Lake	Draper Prison Farm	F,I	500	32	9	52	352	722	45	1,249
Etowah	Meadow Lake	Eastern Etowah Co.	R	45	12	20	200	475	1,000	22	72
Shelby	Smyer's Lake #1	3 mi. SWDunavant	F,R	80	ı	32	359	225	450	20	66
	Smyer's Lake #2		F,R	100	30						
	Lake Wehapa	SWDunavant		200	25						
	Woodmere Lake	WColumbiana, AL	70 F,R	67	40						
	Yielding Lake	2 mi. W-Vandiver	F,R	40	20						
St. Clair	Chandler Mtn. Lake	Atop Chandler Mtn.	F,I	145	27	32	282	150	300	45	171
	Lake Joyce	4 mi. NEMoody	ц	46	12						
	Pinedale Shores	3 mi. WAshville	F,R	125	16						
	Sprinøville Lakes Est.		F,R	40	25						
	Sumatanoa		Ч	60	25						
Talladega	Candle Lake		F.R	65	22	21	278	105	210	45	185
rancea	Lake Elliott		F.R.	40	23	1	: 				
	Iske Howard		×	200	75						
	Muma Proof Deconvoir		. 2	- 42	40						
	Mumip Creek Neservori Lake Socanatov		2	40	25						
Cubtotol	Lanc occupato			101		102	3 048	2 403	4.699	396	3.780
rnra1	17		Tallapoosa	Subbasin							
Bullock						23	160	289	435	38	1.066
Chambers	J.W. Grady Lake	.5 mi. SWStroud	Ľ.	40	20	15	126	133	225	48	167
	LaFavette Reservoir		W	80	30	2		-	1	2	
Clav	Iske Gerald		. a	120	30	-	01	10	35	5	50
	State Lakes (3)	5 mi. WDelta	: 24	103	5 1	4	21	2	2	2	5
Clehurne	Lake Edmond		. a	165	35	37	444	181	5.70	16	99
	Cleburne Co. Boy Scout	2 mi. W- Hollis Cross	:	001	5	5			2		6
	Lake		В	63	40						
Coosa				)	2	0	12	ſ	10	Ŷ	16
Elmore	Seller Pond	S of Wetumpka	R	40	10	1 00	190	380	1.085	202	1.388
Lee	C.E. Lee Lake	4 mi. S- Opelika Hwy 37	Ŀ	60	20	100	1.150	364	1.110	36	1,004
	Ogletree #1Auburn										
	City Lake	3 mi. SEAuburn	F.M	200	50						
	Opelika City Lake	3 mi. NOpelika	F.M	560	40						
	Willow Run Lake	aure	` ш	60	15						
Macon	Tuskegee Public Lake	Adjacent-Tuskegee	R	100	30	50	600	640	580	98	2,896
Montgomery	)	5			1	70	350	500	1.100	32	790
Randolph						20	200	415	600	36	139
Tallapoosa	Russell Lake	4 mi. SAlexander City	ц	60	,	10	70	400	1,000	43	162
Subtotal	13			1,651		336	3,312	3,317	6,759	423	7,757
	L 64			6,630	1	,154	11,598 1	10,976	22,330 2	2,468	32,816
				All and a second s							

A-9

Appendix Table 2D -- Cont'd

1214121

Surface area of normal pool is less than 5 acres. This includes such impoundments as old river oxbows, beaver ponds, Grady ponds, inundated borrow pits, etc. F-fishing, R-water-based recreation, L-livestock watering, I-irrigation, M-municipal water storage.

FI
QUAL
Ø
WATER
ł
М
$\mathbf{X}$
2
PPE
A

Appendix Table 3A -- Water quality characteristics and their effects.

EFFECTS	Causes scale in boiler and deposits on turbine blades.	Stains laundry and porcelain, bad taste.	- Stains laundry and porcelain, bad taste.	Causes hardness, forms boiler scale, helps maintain good soil structure and permeability.	<pre>n Injurious to soils and crops, and certain physiological conditions in man.</pre>	Causes foaming in boilers, stimulates plankton growth.	Causes foaming in builers, and embrittlement of builer steel.	Cathartic, unpleasant taste.	Unpleasant taste, increases corrosiveness.	Over 1.5 ppm causes mottling of children's teeth, 0.88 to 1.5 ppm aids in preventing tooth decay.	High content in water indicates pollution, causes methemoglobinemia in infants.	Excessive soap consumption, scale in pipes interferes in industrial processes. Up to 60 ppm - soft 61 to 120 ppm - moderately hard 121 to 180 ppm - hard over 180 ppm - very hard
SOURCE OR CAUSE	Most abundant element in igneous rocks, resistant to solution.	Very abundant in igneous rocks, readily precipitates as hydroxide.	Less abundant than iron, present in sedi- mentary and metamorphic rocks.	Dissolved from most rock, especially limestone and dolomite.	Dissolved from feldspars and other common rocks, industrial wastes.	Abundant in many rocks and soils, but not very soluble.	Abundant and soluble from limestone, dolomite, and soils.	Sedimentary rocks, mine water, and industrial wastes.	Most rocks, soils, industrial wastes and sewage, and sea water.	Not very abundant, sparingly soluble, fluorite most common source, seldom found in industrial wastes except as spillage, some sewage.	Spoil, sewage, industrial waste, decomposition of plants and animals, bacteria.	
CONSTITUENT	Silica (SiO ₂ )	Iron (Fe)	Manganese (Mn)	Calcium (Ca)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₂ ) Carbonate (CO ₃ )	Sulfate (SO ₄ )	Chloride (C1)	Silica Fluoride (F)	Nitrate (NO ₃ )	Hardness as CaCO ₃

	USGS-GSA Partial	USGS-GSA Standard	USGS-EPA Field Analysis	Ala. Water Improvement Commission	Ala. Dept. of Public Health
	(1)	(2)	(3)	(4)	(5)
Time	x	X	X	X	
Discharge	X	X	X	X	
Silica	A	X	i i i i i i i i i i i i i i i i i i i	in the second se	
Dissolved Iron		X		Х	Х
Dissolved Manganese		X		A	X
Calcium		<u>X</u>			
Magnesium		X			Х
Sodium		X			X
Arsenic		А			X
Barium					X
Cadmium					X
Chromium					X
					X
Cyanide					X
Lead					X
Mercury					X
Selinium					X
Silver		V			X
Potassium		Х			
Zinc				Х	
Copper				Х	
Chromium				<u>X</u>	
Bicarbonate	X	X	X	Х	
Carbonate	Х	Х	Х		
Sulfate		Х			
Chloride	Х	Х		Х	Х
Flouride		Х			Х
Cyanide				Х	
Nitrate		X			X
Dissolved Solids (@ 180 [°] C)		Х		Х	Х
Dissolved Solids (sum of constituents)		Х			
Dissolved Solids (tons/acre-feet)		Х			
Total Solids				X X	
Hardness	Х	X		Х	Х
Non-Carbonate Hardness	Х	Х			
Specific Conductance	Х	Х	Х		
pH	Х	Х	Х	Х	Х
Dissolved Oxygen			<u>X</u>	X	Х
Temperature	Х	Х	Х	Х	
Nitrate				Х	
Phosphate				X	
Biochemical Oxygen Demand				X	
Coliform				Х	
Turbidity				Х	
Color				Х	
Alkalinity (Total)				Х	Х
Alkalinity (Phenolphalein)					Х
Acidity					Х
CO ₂					Х

### Appendix Table 3B -- Water quality parameters measured in the Alabama River Basin.

MUNICIPALITY	POPULATION 1970 CENSUS	WASTE DISPOSAL FACILITY	RECEIVING	REMARKS
		ALABAMA RIVER SUBBASIN		
Camden West Plant South Plant North Plant Frisco City Marion	1,742 1,286 4,289	Single-Cell Lagoon Single-Cell Lagoon Single-Cell Lagoon Imhoff Tank Imhoff Tank	Reed Creek Town Branch, Pursley Cr. Rockwest Creek Bear Creek Boguechitto Creek	٦
Monroeville Broughton St. Plant Hudson Branch Plant Montgomery	4,846 133,386	High-Rate Filter Aerated Lagoon	Limestone Creek Hudson Branch	
Catoma Plant Econchate Plant Towassa Plant Pine Hill Prattville	697 13,116 27,379	Bioactivation Process w/Cl2 Standard-Rate Filters w/Cl2 Standard-Rate Filters w/Cl2 One-Cell Lagoon High-Rate Filter w/Cl2 High-Rate Filter w/Cl2	Catoma Creek Alabama River Alabama River Cub Creek Autauga Creek Alabama River	2
		CAHABA RIVER SUBBASIN		7
Alabaster	2,642	Imhoff Tank	Buck Creek	<u>1</u> /
Birmingham Brent Centreville	500,910 2,093 2,233	(See Jefferson County) Single-Cell Lagoon Single-Cell Lagoon (Only	Cahaba River Cahaba River	
Homewood	21,245	partially sewered) (See Jefferson County chador Vallaw)		
Hoover	1,393	Snades Valley) (See Jefferson County Patton Creek)		
Irondale	3,166	(see Jefferson County Shades Valley)		
Jefferson Co. Sanitary District Cahaba River Chateau Orleans Shades Valley Leeds Plant Neely Trussville Plant Patton Creek Leeds Marion	6,991 4.289	Activated Sludge w/Cl2 STO Pkg. Plant Activated Sludge w/Cl2 Standard-Rate Filter w/Cl2 STO Pkg. Plant Standard-Rate Filter w/Cl2 Standard-Rate Filter w/Cl2 Standard-Rate Filter w/Cl2 (See Jefferson CoLeeds)	Cahaba River Little Shades Creek Shades Creek Little Cahaba River Little Shades Creek Cahaba River Patton Creek	
Ames MHP Montevallo Mountain Brook Truseville	3,719 19,474 2085	One-Cell Lagoon One Cell Lagoon Extended Aeration w/Cl2 (See Jefferson County Shades Valley)	Rice Creek Rice Creek Shoal Creek	
Vestavia Hills	e, 311 8, 311	Trussville) Trussville) (See Jefferson County Patton Creek)		

APPENDIX TABLE 44 -- MUNICIPAL WASTE DISPOSAL FACILITIES IN THE ALABAMA RIVER BASIN, BY SUBBASINS, OCTOBER 1974.

WPENDIA IABLE TIA INNICITAL WASIE I	MALL FAULTITES IN			
MUNICIPALITY	POPULATION 1970 CENSUS	WASTE DISPOSAL FACILITY	RECEIVING STREAM	REMARKS
		TALJAPOOSA RIVER SUBBASIN		
Alexander City Christian Creek Plant	12,358	Madifiad Act Sludge	Christian Creek	
Coley Creek Plant		Modified Act. Sludge w/Chlorination	Coley Greek	
Dobbs Plant		Modified Act. Sludge	Hillabee Creek	
Spring Ili11 Plant		W/UNIOTINATION Standard-Rate Filter	Elkahatchee Creck	
Sugar Creek Plant		w/Chlorination Aerated Lagoon/Nech.	Sugar Creek	
Young Plant		Clarificr w/Cl_2 STD Pkg. Plant	Sugar Creek	
Ashland	1,921			
Eastside		lligh-Rate Filter	Horsetrough Creek	2/
Westside	22, 767	Septic Tank	Enitachope Creck	1/
Northside		High-Rate Filter w/Cl2	Sougahatchec Creek	
Southside		Stage Filters w/Cl2	Parkerson's Mill Creek	<u>/</u>
camp Hill Dadeville	1, 554 2, 847	Single-tell Lagoon	so. sandy Greek	
Out fall		No Treatment	Chattashofka Creek	1/
Plant No. 1		Single-Cell Lagoon	Buck Creek	
lleflin	2,872	Single-Cell Lagoon	Cahulga Creek	
LaFayette Lineville	5,530 1 984	Acrated Lagoon w/Cl2 Sentic Tanks	Chatahospee Creek	1
Notasulga	833	Septic Tank	Red Creek	1/
Opelika	19,027			1
		Two-Cell Lagoon	Sougahatchee Creek	
Plant No. 3 Dispt No. 4		Une-Cell Lagoon Activated Studeo	Pepperell Branch Changels Creek	12
	5,251	wellvated bludge	CICMACIA CICCO	<u>ò</u> l
		One-Cell Lagoon	lligh Pinc Creek	
Plant No. 2		One-Cell Lagoon	lligh Pine Creek	
Tallassec Tuskegee	4,809 11 028	Two-Cell Lagoon in Scries	Tallapoosa River	
Plant No. 1	11,020	One-Cell Lagoon	Uphapee Creek	
			Uphapee Creek	
Plant No. 3 Plant No. 4		One-Cell Lagoon	Calabee Creek	
		Two-Cell Lagoon in Parallel	Calabee Creek	
Union Springs	4,324	High-Rate Filter	Town Creek	
Wedowee	842	one-Cell Lagoon One-Cell Lagoon	Hullon Creek Wedowee Creek	

MULCIPALITY	POPULATION 1970 CENSIS	WASTE DISPOSAL FACILITY	RECEIVITIO	REMARKS
		CODSA RIVER SUBBASIN		
Anniston	31,533	Activated Sludge w/Cl ₂	Choccolocco Creek	
Ashville	986	Septic Tank	Canoe Creek	1/
Attalla	7,510	Single-Cell Lagoon	Big Wills Creek	1
Blue Mountain	466	Standard-Rate Filter	Cane Creek	
Bon Air	214	Sentic Tank '	Griffin Branch	1/
			(Tallaseehatchee Creek)	I
Calera	1,655	Extended Aeration (Air)	Buxaahatchee Creek	
Cedar Bluff	956	Three-Cell Lagoon	Chattooga River (Coosa River)	
Centre	2,418	Single-Cell Lagoon	Terrapin Creek (Coosa River)	
Childersburg	4,831			
West Plant		Two-Cell Lagoon in Parallel	Coosa River	
Northeast Plant		One-Cell Lagoon	Talladega Creek	
Clanton	5,868	Standard-Rate Filter	Walnut Creek	
Collinsville	1,300	Single-Cell Lagoon	Little Wills Creek	
Columbiana	2,248	One-Cell Lagoon	Waxahatchee Creek	
Fort Payne	8,435	Aerated Lagoon w/Cl ₂	Big Wills Creek	
Gadsden	53,928	1		
West Side Plant		High-Rate Filter w/Cl ₂	Big Wills Creek	
East Side Plant		lligh-Rate Filter w/Cl ²	Coosa River	
Glencoe	2,901	Single-Cell Lagoon	Coosa River	
Goodwater	2,172	Single-Cell Lagoon	Baker Creek	
Jacksonville	7,715	High-Rate Filter w/Cl ₂	Tallahatchee Creek	
Oxford	4,361	City of Anniston Plant		
Pell City	5,381			
Plant No. 1		Primary w/Digestion	Dye Creek	1/
Plant No. 2		Extended Aeration	Wolf Creek	I
Piedmont	5,063	One-Cell Lagoon	Nances Creek	
Rainbow City	3,107	One-Cell Lagoon	Big Wills Creek	
Springville	1,153	PrimarySeptic Tank	Spring Creek	1/
Sylacauga	12,255			
Five Points STP		lligh-Rate Filter w/Cl ₂	Shirtee Creek	
Fairmont STP		Extended Aeration	Tallaseehatchee Creek	
Oldfield STP		Activated Sludge	Crooked Creek	
Talladega	17,662			
Plant No. 1		lligh-Rate Filters w/Cl2	Talladega Creek	
Brecon System		High-Rate Filter	Kelly Creek	
Bemiston Plant	, 1 1	High-Rate Filter	Talladega Creek	
Wetumpka Ecot Ionon	5,780			
East Lagour		Two-Cell Lagoon IN Farallel	Coss Biver	
Wilsonville	659	IWO-CCII LAGUON IN FAFAILEI Extended Aeration	COOSA KIVET Rullats fraak	

Inadequate Overloaded Inoperable-waste to lagon 351 Source: Alabama Water Improvement Commission, Municipal Inventory-October 1974.

WALE OF LIVERSTRY	SERVICE DISPOSAL FACILITIES	Industrial treatment facilities	PECEIVING	REMARKS
		ALABAMA RIVER SUBBASIN		
Vanity Fair Mills, Monroe- ville, Monroe County	Monroeville sewerage system	Pre-treatment screening 'lonroeville sewerage system: aerated lagoon and a mechanical clarifier.	Hudson Branch	Intrastate waters. Adequate
MacMillan Bloedel United, Inc., Pine Hills, Wilcox Co.	Treated with indus- trial wastes	<pre>!lechnical clarifier, 90-day oxidationstorage lagoon, diffusion in river.</pre>	Alabama River	Interstate waters. Adequate
All Lock Company, Selma, Dallas County	Selma Municipal STP	Sludge Lagoon or Drying Bed	Valley Creek	Intrastate waters. Adequate
Bush Hog MFG. Selma, Dallas County	Selma Municipal Valley Creek STP	No-or-pre-treatment	Valley Creek	Intrastate waters.
Cloverleaf Dairy, Selma, Dallas County	Septic Tank	No-or-pre-treatment	Valley Creek	Intrastate waters.
Dan River Mills, Benton, Dallas County	;	Stabilization Basin	01d Town Creek	Intrastate waters. Inadequate
General Battery, Selma, Dallas County	1	No-or-pre-treatment	Tributary Ala. River	Intrastate waters. Inadequate
Hammermill Paper Co., Selma, Dallas County	Treated with indus- trial wastes	Mechanical clarifier, 5-day retention basin and 60-day oxidation storage lagoon, diffusion in River	Alabama River	Interstate waters. Inadequate
Helena Chemical Company, Dallas County	;		Tributary Ala. River	
Selma Stop & Go Car Wash, Selma, Dallas County	Selma Municipal Valley Creek STP	No-or-pre-treatment	Valley Creek	Intrastate waters.
Southland Mower, Selma, Dallas County	Septic Tank	Equalization	Alabama River	Interstate waters. Inadequate
Ala. Rendering, Montgomery, Montgomery County	Montgomery Municipal Econchate STP	Sedimentation, segregation, and collection and collection	Tributary Ala.	Intrastate waters. Inadequate
American Oil Company Montgomery, Montgomery Co.	Septic Tank	Separators and Traps	Tri. Catoma Creek	Intrastate waters.
Brockway Glass, Montgomery, Montgomery County	1	No-or-pre-treatment	Tributary Ala. River	Intrastate waters. Adequate
Gunter AFS, Montgomery, Montgomery County	Montgomery Municipal Econchate STP		Tributary Ala. River	Intrastate waters. Adequate
Illinois Central Gulf RR, Montgomery, Montgomery Co.	1	No-or-pre-treatment	Alabama River	Interstate waters. Inadequate

NAVE OF TRUCKIRY AND LOCATION	SEWAGE DISPOSAL FACILITIES	Industrial treatment facilities	RECEIVING	REMARKS
Koppers Company, Montgomery Montgomery County	Montgomery Municipal Econchate STP	Segregation and collection	Tributary Ala. River	Intrastate waters. Adequate
Maxwell AFB, Montgomery, Montgomery County	Towassa STP		Alabama River	Interstate waters. Adequate
Pennault Corp, Montgomery, Montgomery County	Montgomery Municipal Econchate STP	No-or-pre-treatment	Tributary Ala. River	Intrastate waters.
Shell Oil Company, Montgomery, Montgomery Co.	Septic Tank	Separators and traps	Catoma Creek	Intrastate waters.
Stevens J. P. Montgomery, Montgomery Co.	Montgomery Municipal Econchate STP	No-or-pre-treatment	Alabama River	Interstate waters.
Whitfield Pickle Co. Montgomery, Montgomery Co.	Montgomery Municipal STP	Municipal system consists of a high rate trickling filter plant with chlorination.	Ala. River via Treatment Plant	Interstate waters. Adequate - Process Waste Inadequate
R. L. Ziegler, Inc. Selma, Dallas Co.	Selma Municipal STP	Selma sewerage system; high rate trickling filter with chlorination	Ala. River via Selma Plant	Interstate waters. Adequate - Process and Sanitation Inadequate
King Pharr Canning Company Uniontown, Perry County	Uniontown Municipal STP	Screening		Intrastate waters. Inadequate
Transcontinential Gas Billingsley, Chilton Co.	Septic Tanks	Recycle or reuse of water.	Day Light Creek	Adequate
Fox Lumber Company Plantersville, Autauga Co.	Septic Tank	No-or-Pre-treatment	Mulberry River	Intrastate waters.
Gurney Mfg. Company Prattville, Autauga Co.	Prattville Municipal STP	No-or-Pre-Treatment	Autauga Creek	Intrastate waters. Inadequate
Ring Around Products Prattville, Autauga Co.		No-or-Pre-Treatment	Tributary Ala. River	Intrastate waters. Inadequate
Union-Camp Corp. Prattville, Autauga Co.	Treated with indus- trial wastes	Settling basin, 1,500 acres (2,260 MG capacity) of oxida- tionstorage lagoons, diffusion in river.	Alabama River	Interstate waters. Adequate

NATE OF INUCSIRY AND LOCATION	SEMAGE DISPOSAL FACILITIES	Industrial treatment facilities	RECEIVING	REMARKS
		COOSA RIVER SUBBASIN		
Keystone Metal Mould, Clanton, Chilton Co.	Segregation and collection	Sludge lagoon or drying beds	Walnut Creek	Intrastate waters. Adequate
Avondale Mills, Rockford, Coosa Co.	11	Standard pkg. plant w/aerobic digest unit	Tributary of Davidston Creek	
Dixie Craft Mfg. Co., Goodwater, Coosa Co.	Hatchett Creek Lagoon	Segregation and collection	Hatchett Creek	Intrastate waters. Sanitary waste Adequate
Abex Corp., Calera, Shelby Co.	Calera Municipal STP	No-or-pre-treatment	Buxahatchee Creek	Intrastate waters. Sanitary waste Adequate
Alabama Plating Co. Vincent, Shelby Co.	Septic tank and absorption field	Chemical treatment facilities for metal plating wastes and a blending basin.	Tributary of Spring Creek	Intrastate waters. Inadequate
Alabama Power Wilsonville PL - Wilsonville, Shelby Co.	-	Sludge digestor	Coosa River	Interstate waters.
Catalytic Inc., Wilsonville, Shelby Co.			Bullets Creek	Intrastate waters. Adequate
Hackney Corporation, Columbiana, Shelby Co.	Columbiana Munici- pal STP	Chemical treatment facilities for metal plating wastes including sedimentation and storage basins.	Tributary of Waxahatchee Creek	Intrastate waters. Adequate. Sanitary Process waste Inadequate
Avondale Mills-Pell City, Pell City, St. Clair Co.	Pell City #1		Dye Creek	Intrastate waters. Sanitary waste Adequate
Custon Pack Poultry, Pell City, St. Clair Co.	:	Stabilization Basin	Wolf Creek	Intrastate waters. Adequate
Pell City Meat Process, Pell city, St. Clair Co.	1	Separators and traps. Stabilization basin and lagoon.	Tributary of Coosa River	Intrastate waters. Inadequate
Kimberly-Clark Corp., Talladega Co., Coosa Pines	Primary treatment. Imhoff tank.	Mechanical clarifier, 268-acre (960 MG capacity) oxidation- storate basin, diffusion in river.	Coosa River	Interstate waters. Inadequate
Alabama Industries, Sylacauga, Talladega Co.	Sylacauga Municipal STP	Sludge lagoon or drying bed.	Tributary of Shirtee Creek	Intrastate waters. Sanitary waste Adequate. Process waste. Inadequate

AND LOCATION	SEMAGE DISPOSAL FACILITIES	Industrial, treatment facilities	RECEIVING	REMARKS
		COOSA RIVER SUBBASIN		
Avondale Mills-Sylacauga Sylacauga, Talladega Co.	Sylacauga Municipal STP	Sludge lagoon or drying bed.	Tributary of Shirtee Creek	Intrastate waters. Sanitary waste Adequate. Process waste Inadequate.
Avondale Mills-Sycamore, Sycamore, Talladega Co.	1	Screening	Tributary of Emawhee Creek	Intrastate waters. Sanitary waste Inadequate. Cooling water Adequate.
Crown Textiles, Talladega, Talladega Co.	Talladega Municipal STP	Pre-treatment facilities consisting of blending and aeration basins.	Talladega Creek via Talladega Creek STP.	Intrastate waters. Adequate.
Bemis Co., Inc., Talladega, Talladega Co.	Talladega, Bemiston STP	Discharge to secondary municipal plant	Talladega Creek via Municipal Plant	Intrastate waters.
Wehadkee Yarn Mills, Talladega, Talladega Co.	Talladega municipal STP	No-or-pre-treatment.	Talladega Creek via Talladega treatment plant	Intrastate waters. Sanitary waste Adequate
Ga. Pacific Corp. Talladega Talladega Co.	Septic tank		Kelly Creek	Intrastate waters. Adequate
Alabama Department of Conser- vation, Eastaboga, Talladega County	1	•	Eastaboga Creek	Intrastate waters.
Clow Corp., Lincoln, Talladega Co.	Septic tank	-	Blue Eye Creek	Intrastate waters. Sanitary waste Adequate
Bannister Slaughter, Munford, Talladega Co.		Local separators and traps; Stabilization basin and lagoon.	Choccolocco Creek	Intrastate waters.
Anniston Army Ordnance Bynum, Calhoun Co.	Imhoff tank STP under construction.	Separators and traps	Dry Creek Eastaboga Creek	Intrastate waters. Inadequate. Federal installation.
Adelaide Mills, Anniston, Calhoun Co.	Anniston Municipal STP		Snow Creek	Intrastate waters.

Appendix Table 4B -- Industrial waste disposal facilities in the Alabama River Basin, by subbasins, 1974 (CONT'D).

AND LOCATION	SEWAGE DISPOSAL FACILITIES	INDUSTRIAL TREATMENT FACILITIES	RECEIVING	REMARKS
		COOSA RIVER SUBBASIN		
Boyles Galvanizing Co., Anniston, Calhoun Co.	Anniston Municipal STP	No-or-pre-treatment	Snow Creek	Intrastate waters. Inadequate.
Chicopee MFG, Anniston, Calhoun Co.	Anniston Municipal STP	•	Snow Creek	Intrastate waters.
Classe Ribbon Co., Anniston, Calhoun Co.	Anniston Municipal STP	;	Snow Creek	Intrastate waters.
Indian Head Yarn & Thread Co., Blue Mtn., Calhoun Co.	Anniston Municipal STP	Sedimentation and equalization	Tributary of Cane Creek	Intrastate waters.
Industrial Plating, Anniston, Calhoun Co.	;	Segregation and collection	Tributary of Snow Creek	Intrastate waters. Inadequate.
Kilby Steel, Anniston, Calhoun Co.	-	•	Snow Creek	Intrastate waters. Inadequate
Lee Bros. Corp. Anniston, Calhoun Co.	Septic tank	No-or-pre-treatment	Tributary of Choccolocco Creek	Intrastate waters. Inadequate.
Mead Standard Foundry Anniston, Calhoun Co.	1	No-or-pre-treatment	Tributary of Snow Creek	Intrastat <b>e</b> wat <b>e</b> rs. Inadequate.
Mead Union Foundary, Anniston, Calhoun Co.	;	Sedimentation and skimmer.	Tributary of Snow Creek	Intrastate waters. Inadequate.
Mead Water Pipe Plant Anniston, Calhoun Co.	1	No-or-pre-treatment	Snow Creek	Intrastate waters. Inad <b>e</b> quate
Monsanto, Anniston, Calhoun Co.	Anniston Municipal STP	•	Snow Creek	Intrastate waters. Sanitary waste Adequate. Process waste Inadequate.
National Gypsum Co. Anniston, Calhoun Co.	Anniston Municipal STP	Screening, sedimentation lagoon	Coldwater Creek	Intrastate waters. Adequate.
Southern Natural Gas Dearmanville, Calhoun Co.	1	No-or-pre-treatment.	Tributary of Choccolocco Creek	Intrastate waters.
Southern Plating and Mach. Anniston, Calhoun Co.	Anniston Municipal STP	Sludge lagoon or drying bed.	Choccolocco Creek	Intrastate waters. Adequate
Southern Tool & Mach. Oxford, Calhoun Co.	Anniston Municipal STP	No-or-pre-treatment	Choccolocco Creek	Intrastate waters. Sanitary waste

NAVE UF INUUSIRY AND LICATION	SEMAGE DISPOSAL FACILITIES	INDUSTRIAL TREATMENT FACTLITIES	RECEIVING	REMARKS
		COOSA RIVER SUBBASIN		
Tape Craft Corp, Anniston, Calhoun Co.	Anniston Municipal STP		Choccolocco Creek	Intrastate waters.
Triangle Refineries Oxford, Calhoun Co.	Septic tank	No-or-pre-treatment	Choccolocco Cr <mark>ee</mark> k	Intrastate waters. Adequate
Tull Chemical Co. Oxford, Calhoun Co.	1	No-or-pre-treatment	Snow Creek	Intrastate waters. Inadequate
Turner Dairies Inc. Oxford, Calhoun Co.	Septic tank	•	Tributary of Choccolocco Creek	Intrastate waters. Process waste Inadequate
U. S. Pipe & Foundry Co. Anniston, Calhoun Co.	Anniston Municipal STP	•	Snow Creek	Intrastate waters. Sanitary waste Adequate. Process waste Inadequate.
Alabama Power Co. Gadsden, Etowah Co.	Septic tank and absorption field	Ash settling ponds.	Coosa River	Interstate waters. Adequate.
Allis Chalmers Gadsden, Etowah Co.	Gadsden Municipal Eastside STP	:	Tributary of Coosa River	Intrastate waters. Sanitary waste Adequate. Process waste Inadequate.
Alpine Mills Atlanta, Etowah Co.	Attalla Municipal Lagoon	Segregation and collection screening		Adequate
Norris Cole Slaughter Gadsden, Etowah Co.	Local separators and traps	Stabilization basin and lagoon	Tributary of Coosa River	Intrastate waters.
Craft Plating and Finishing Attalla, Etowah Co.	Attalla Municipal lagoon	Sludge lagoon or drying bed		Inadequate
Attalla MFG Gadsden, Etowah Co.	Rainbow City Municipal Lagoon	Segregation and collection, sedimentation		Sanitary waste Adequate. Process waste Inadequate.
Goodyear Tire and Rubber Co., Gadsden, Etowah Co.	Gadsden Municipal Gadsden Eastside STP	Oil and solids removal equipment for the waste stream which is composed principally of cooling water and surface drainage. Facilities include an oil separation equipped with mechanical equipment for removal of oil and solids and a polishing basin.	Coosa River	Interstate waters. Adequate.
Health-Tex Gadsden, Etowah Co.	Attalla Municipal Lagoon.			

AND LOCATION AND LOCATION	SPARTE DISPOSAL FACILITIES	INDUSTRIAL TREATMENT FACILITIES	RECEIVING	REPWARKS
		COOSA RIVER SUBBASIN		
Owens Plating Co. Gadsden, Etowah Co.	Rainbow City Municipal Lagoon			
Republic Steel Corp.	Gadsden Municipal	In-plant control, 2.5 acre	Black Creek	Intrastate waters.
Gadsden, Etowah Co.	Gadsden West STP	sedimentation, blending, and oil removal basin.		Adequate.
Spring Valley Farms Gadsden, Etowah Co.		Local separators and traps; and sedimentation lagoon	Coosa River	Interstate waters. Adequate.
Texaco-Gadsden Gadsden, Etowah Co.		· ·	Coosa River	Interstate waters.
Big Wills Poultry, Inc.	Treated with	Screening, grease and solids removal, an anaerobic	Big Wills	Intrastate waters.
Collinsville, DeKalb Co.	industrial wastes	lagoon having a water surface area of 7.0 acres.	Creek	
Manufacturers Inc. Collinsville, DeKalb Co.	1		;	!
Bailey Knit Copr.	Ft. Payne Municipal	No-or-pre-treatment	Big Wills	Intrastate waters.
Ft. Payne, Dekalb Co.	Big Wills STP		Creek	Inadequate.
Cooper Hosiery Mills I	Ft. Payne Municipal	No-or-pre-treatment	Big Wills	Intrastate waters.
Ft. Payne, Dekalb Co.	Big Willls STP		Creek	Inadequate.
Davis W. B. Hosiery	Ft. Payne Municipal	Screening to municipal system	Big Wills	Intrastate waters.
Mills, Inc., Ft. Payne	Big Wills STP		Creek	Inadequate.
Demuth Steel	Ft. Payne Municipal	Segregation and collection, sedimentation	Big Wills	Intrastate waters.
Ft. Payne, DeKalb Co.	Big Wills STP		Creek	Inadequate.
Desotocho Inc.	Ft. Payne Municipal	No-or-pre-treatment	Big Wills	Intrastate waters.
Ft. Payne, DeKalb Co.	Big Wills STP		Creek	Adequate.
Ft. Payne DeKalb Hosier,	Ft. Payne Municipal	Screening	Big Wills	Intrastate waters.
Ft. Payne, DeKalb Co.	Big Wills, STP		Creek	Inadequate.
Heil Co <b>rp.</b> Fort Payne	Ft. Payne Municipal		Big Wills	Intrastate waters.
DeKalb Co.	Big Wills STP		Creek	Adequate.
Merico Inc.	Ft. Payne Municipal	Local separators and traps.	Big Wills	Intrastate waters.
Ft. Payne, DeKalb Co.	Big Wills STP		Creek	Inadequate.
Prewett VI & Son	Ft. Payne Municipal	Screening	Big Wills	Intrastate waters.
Ft. Payne, DeKalb Co.	Big Wills STP		Creek	Adequate

THE ALARAMA PIVER RACIN, BY SIRPASINS, 1974 (CONT'N). N TIFS LUU D **NI CDOCAL** No. Inter = LLR mrv TAP

NATE OF INUUSIRY AND LOCATION	SEWAGE DISPOSAL FACILITIES	INDUSTRIAL TREATMENT FACILITIES	RECEIVING	REMARKS
		COOSA RIVER SUBBASIN		
Serv-I-Soft Ft. Payme, KeKalb Co.	Ft. Payne Municipal Big Wills STP	No-or-pre-treatment	Tributary of Dye Branch	Intrastate waters. Sanitary waste Adequate. Process waste Inadequate.
Shugart, W. Y. & Sons Ft. Payne, DeKalb Co.	Ft. Payne Municipal Big Wills STP	Screening	Big Wills Creek	Intrastate waters. Adequate.
Texaco-Ft. Payne Ft. Payne, DeKalb Co.			Big Wills Creek	Intrastate waters.
Vulcraft Div. Nucor Ft. Payne, DeKalb Co.	Septic tanks			Adequate
Ellis Brothers Centre, Cherokee Co.		·	Lagoon	Inadequate
Texaco-Centre Centre, Cherokee Co.			Coosa River	Interstate waters.

NAME OF TRUCSTRY	SEMAGE DISPOSAL	INDUCTOR AND TREATMENT EACTLETTES	RECEIVING	DEMARKS
		CAHABA RIVER SUBBASIN		
Marion Fish Hatchery Marion, Perry Co.				
Deason Slaughterhouse Centerville, Bibb Co.		Local separators and traps lagoon	Haysor Creek	Intrastate waters.
Canton Textile Mills Alabaster, Shelby Co.	Alabaster Municipal STP	(2ero discharge)	Buck Creek	Intrastate waters. Sanitary wastes Adequate. Process wastes Inadequate.
Dunn Construction Co. Helena, Shelby Co.	Septic tank	Segregation and collection	Rock Creek Roy Branch	Intrastate waters.
Anderson Electric Co. Leeds, Jefferson Co.	Leeds Municipal STP	Nutralization, sludge lagoon, and drying beds.	Tri. of Little Cahaba River	Intrastate waters. Adequate
Birmingham Sal.ƙ Steel Drum, Irondale, Jefferson Co.			Tributary of Shades Creek	Intrastate waters.
Mann Brothers Plating Co. Trussville, Jefferson Co.	Trussville Municipal STP	Pre-treatment consisting of chemical treatment of metal plating wastes. Municipal facilities consist of a slow rate trickling filter and chlorination.	Cahaba River via Trussville Treat- ment Plant	Intrastate waters. Provess waste Inadequate.
Lumber Jack Meats, Leeds, Jefferson Co.	Leeds Municipal STP	Local separators and traps	Tributary of Cahaba River	Intrastate waters.
Mirro Metal Plating Lovick, Jefferson Co.	Septic tank	No-or-pre-treatment	Tributary of Cahaba River	Intrastate waters.
Ralston Purina Co. Trussville, Jefferson Co.	Lagoon	Screening-sedimentation	Cahaba River	Intrastate waters. Inadequate.
Rock Wool MFG Leeds, Jefferson Co.	Septic tank	No-or-pre-treatment	Tri. of Little Cahaba River	Intrastate waters. In process of upgrading.
Southern Railway Irondale, Jefferson Co.	Septic field	Sludge lagoon or drying bed.	Shades Creek	Intrastate waters. Adequate.
U.S. Steel University Atlas, Leeds, Jefferson Co.	Leeds Municipal STP	No-or-pre-treatment.	Moores Creek	Intrastate waters. Sanitary waste Adequate.

	INDUSINIAL WASIE DISCOME FACILIT	I'LD THE LEVER WINNER THAT IN THE SUBBASING THE STREAM AND THE STREAM AND THE STREAM AND THE STREAM AND THE STR		
AND LOCATION	SEVAGE DISPOSAL FACILITIES	INDUSTRIAL TREATMENT FACILITIES	PECETVING	REMARKS
		TALLAPOOSA RIVER SUBBASIN		
Neptune Meter Co. Tallassee, Tallapoosa Co.	Tallassee Municipal STP	No-or-pre-treatment		
Southern Car Service Maugh, Macon Co.			Line Creek	
Welsh Co. Union Springs, Bullock Co.	Union Springs Municipal STP	Pre-treatment chemical flocculating and filter press. Municipal facilities consists of neutralization and sedimentation.	Old Town Creek	Intrastate waters. Adequate.
Ampex Corporation, Opelika Lee Co.	Opelika Municipal STP	Neutralization and pH control equipment-sedimentation	Pepperell Branch	Intrastate waters. Adequate.
Uniroyal, Inc. Opelika Lee Co.	Opelika Municipal STP	Two separate systems; system No. 1 consists of a 0.5 acre settling basin and system No. 2 consists of a 0.7 acre basin.	Chewacla Creek	Intrastate waters. Adequate.
West Point Pepperell, Opelika, Lee Co.	Opelika Municipal STP	In plant facilities including a caustic recovery system, an aerated lagoon having a retention of 2.9 days, a trickling filter 39 feet in diameter and 28 feet deep, an aerated lagoon having a retention of 2.6 days and a 15 acre polishing lagoon.	Pepperell Branch	Intrastate waters. Adequate.
Auburn University Fisheries Auburn, Lee Co.			Saugahatchee Creek	Intrastate waters. Adequate
Avondale Mills, Alexander City, Tallapoosa Co.	Alexander City sewerage system	Municipal facilities consist of an activated sludge type treatment plant with chlorination.	Coley Creek via municipal sewage system.	Intrastate waters. Adequate.
Russell Mfg. Co., Alexander City, Tallapoosa Co.	Alexander City Municipal STP	Aerated lagoon system including aerobic digester, mechanical clarifiers and chlorination.	Sugar Creek via municipal sewage system.	Intrastate waters. Adequate.
Avondale Mills LaFayette, Chambers Co.			Mill Creek	Intrastate waters.
C. F. Clegg Poultry Proc. Ashland, Clay Co.	Ashland Municipal East STP	Separation and traps, screening	Horsetrough Creek	Intrastate waters.
Matthews Meat Market Lineville, Clay Co.		Local separators and traps, Lagoon	Fox Creek	Intrastate waters.
C. F. Clegg Poultry Proc. Heflin, Cleburne County	Lagoon	Sludge lagoon or drying bed.	Tallapoosa River	Interstate waters. Adequate.

## APPENDIX 5 -- USE CLASSIFICATION OF STREAMS, ALABAMA RIVER BASIN.

5A -- Methodology and classification notes.

## EXPLANATION REGARDING FISH AND WILDLIFE CLASSIFICATION

On September 17, 1973, the Alabama Water Improvement Commission adopted a Fish and Wildlife Goal for certain waters of the State. These waters were previously classified as something less than Fish and Wildlife and the Commission, through its action, established, as an objective, the attainment of water quality in these areas compatible with the criteria applicable to such classification. Waters included in this category are listed under the classification "Fish and Wildlife as a Goal".

Since these segments of water were previously classified as something other than Fish and Wildlife, and have had this classification assigned as an objective, the criteria applicable to such classification are not descriptive of current conditions. Information on current water quality may be obtained by contacting the Commission's office (State Office Building, Montgomery, AL 36130, 269-7971).

## SEGMENTS OF WATER NOT LISTED IN CLASSIFICATIONS

On September 17, 1973, the Alabama Water Improvement Commission adopted, as a goal, a classification of Fish and Wildlife for all waters of the State which were unclassified at the time. Most of the major water segments are shown on this classification map; however, for any segments which are not shown, a goal of water quality commensurate with the criteria applicable to a Fish and Wildlife classification is appropriate.

<u>Stream</u> ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER <u>1</u> / ALABAMA RIVER <u>1</u> / ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER					Fish and	
RIVER RIVER RIVER 1/ RIVER 1/ RIVER RIVER RIVER RIVER RIVER RIVER	From	To	Public Water Supply	Swimming	ATTOTA	Fish and Wildlife as a goal
RIVER <u>1/</u> RIVER <u>1/</u> RIVER RIVER RIVER RIVER RIVER	MOBILE RIVER Claiborne Lock & Dam	Claiborne Lock & Dam Frisco Railroad Crossing		×	××	
RIVER RIVER RIVER RIVER RIVER	Frisco Railroad Crossing River Mile 131	River Mile 131 Miller's Ferry Lock & Dam	X		××	
RIVER	Miller's Ferry Lock & Dam Blackwell Bend (Six Mi Ck )	Blackwell Bend (Six Mile Ck.) Iones Bluff Lock E Dem		Х	××	
	Jones Bluff Lock & Dam Pintlalla Creek	Pintlalla Creek Its source		×	< × ×	
	INTRASTATE BY THE W	INTRASTATE WATERS OF THE ALABAMA RIVER SUBBASIN ADOPTED BY THE WATER IMPROVEMENT COMMISSION ON JUNE 19, 1967	N ADOPTED .9, 1967			
Little River		Its source		Х	X	
Randons Creek		Its source			х	
Limestone Creek					Х	
Big Flat Creek				X	X	
Pursiey Ureek					×	
lurkey Ureek Pine Barren Creek	ALABAMA KIVEK Alarama Piver	Its source Its source		>	×	
Chilatchee Creek				<	< ×	
Boguechitto Creek				:	×	
Sand Creek	Boguechitto Creek	Its source			Х	
	Sand Creek	Marion Sewage Treatment Plant				Х
eek	ALABAMA RIVER			X	X	
Valley Creek	Scime Summerfield Dd	Selma-Summerfield Rd.		2	×	
ید. ه	JELMA-JUMMETILEIU KU. AIARAMA RIVEP	Its Source Distersville		< >	×	
	Plantersville	Its source		<	< >	
Big Swamp Creek	ALABAMA RIVER	Its source		х	×	
	ALABAMA RIVER	Its source		X	X	
ý	ALABAMA RIVER	Its source		х	Х	
	ALABAMA RIVER	Western boundary of Prattville			x	
~	Western boundary of Prattville	Its source		×	х	
Catoma Creek	ALABAMA RIVER	Catoma Creek Sewage				>
Catoma Creek	Catoma Creek Sewage Treatment	Its source				<
	Plant, Montgomery				×	
		Its source		:	×	
valley Cleek Lake Little River Lake	Within Valley Creek State Park Within Valley Creek State Dorb	Park Dowy		××	~ `	

APPENDIX TABLE 5B --- USE CLASSIFICATION OF STREAMS, ALABAMA RIVER BASIN.

APPENDIX TABLE 5B -- USE CLASSIFICATION OF STREAMS, ALABAMA RIVER BASIN, (CONT'D)

	INTRASTATE THE WATE!	INTRASTATE WATERS OF THE CAHABA RIVER SUBBASIN ADOPTED BY THE WATER IMPROVEMENT COMMISSION ON OCTOBER 16, 1972	ADOPTED BY 5, 1972			
			Public Water		Fish and	Fish and Wildlife
Stream	From	10	Supply	Swimming	Wildlife	as a goal
Cahaba River	Alabama River	Junction of Lower Little <u>2</u> / Cahaba River		×		
Cahaba River	Junction of Lower Little <u>2</u> / Cahaba River	Dam near U.S. Hwy 280			×	
Cahaba River	Dam near U.S. Hwy 280	Grant's Mill Road	Х			
Cahaba River	Grant's Mill Road	U.S. Hwy 11			×	
Cahaba River	U.S. Hwy 11	Its Source			×	
Childers Creek	Cahaba River	Its Source			×	
Oakmulgee Creek	Cahaba River	Its Source		X <u>2</u> /		
Little Oakmulgee	Oakmulgee Creek	Its Source		x <u>2</u> /		
Rice Creek	Cahaba River					x
Waters Creek	Cahaba River					
01d Town Creek	Cahaba River	Its Source				
Blue Outtee Creek	Cahaba River	Its Source		X 2/		
Affonee Creek	Cahaba River	Its Source		X 2/		
Haysop Creek	Cahaba River	Its Source		I	×	
Schultz Creek	Cahaba River	Its Source		X 2/		
Little Cahaba River	Cahaba River	Its Source junction of Mahan		8		
(Bibb County)		and Shoal Creeks)			×	
Six Mile Creek	Little Cahaba River	Its Source		X 2/		
Mahan Creek	Little Cahaba River	Its Source		I	×	
Shoal Creek	Little Cahaba River	Its Source			×	
Caffee Creek	Cahaba River	Its Source			×	
Shades Creek 3/	Cahaba River	Jefferson County Line			×	
Shades Creek $\overline{3}$ /	Jefferson County Line	Shades Creek Sewage Treatment				
		Plant				X
Shades Creek $\underline{3}$	Shades Creek Sewage Treatment	Its Source			;	
Book Brook	riant Chadae Garat				×	;
Puck Fronk	Shades Ureek	rts source			>	Y
Buck Creat	Cababa Vollas Caaab	Lanada Valley Ureek			×	\$
Cababa Vallan Ch	Callada Yaliey Licen				>	<
Canada valley uk.	buck treek				<b>×</b> :	
Peavine Creek	Buck Creek	Its Source		3	x	
Date Carol				X		;
Vatton Creek	Canada Kiver	Its Source				×
LITTLE SNADES LK.	Canada River	Its Source	:			x
Little Canaba Kiver	Cahaba Kiver	Head of Lake Purdy	X			
(Jetterson-Shelby Counties)	ities)					
Little Cahaba River Head of Lake Purdy	ead of Lake Purdy	Corporate Limits,				
(Jefferson County)		City of Leeds				X <u>4</u> /
Little Canaba Kiver Corporate Limits,	Supprate Limits,	Its Source				3
(Jefferson County)	City of Leeds					X
PINCHGUT UTEEK	Cahaba River	Its Source				X

Stream	From	티	Public Water Supply	Swimming	Fish and Wildlife	Fish and Wildlife as a goal
COOSA RIVER	Its junction with the TALLAPOOSA RIVER	Alabama Hwy 14 bridge at Watimmka			×	
COOSA RIVER	Alabama Hwy 14 bridge	Jordan Dam	*		< >	
COOSA RIVER	ar merumpka Jordan Dam	Mitchell Dam	<	Х	< ×	
Lake Jordan COOSA RIVER	Mitchell Dam	Lav Dam	×	X	×	
Lake Mitchell			:	:	¢	
COOSA RIVER	Lay Dam	Southern RR Bridge (1-1/3	х	Х	Х	
LAY LAKE COOSA RIVER	Southern RR Bridge (1-1/3	miles above rellowlear CK.) River Mile 89 (1-½ miles				X
Lay Lake	miles above Yellowleaf Ck.)	Talla				
COOSA RIVER	River Mile 89 (1-½ miles shove Talladers (reak)	Logan Martin Dam	x		×	
LAY LANC	above lattauega creek) Iogan Martin Dam	McCardnavie Earry		×	٨	
Logan Martin Lake	0			:	:	
COOSA RIVER	McCardnev's Ferry	City of Gadsden's water			X	
Lake Henry		supply intake			:	
COOSA RIVER	City of Gadsden's water	Weiss Dam powerhouse	Х		X	
Lake Henry	supply intake					
COOSA RIVER	Weiss Dam powerhouse	Weiss Dam			×	
COOSA RIVER	Weiss Dam and Weiss Dam	Spring Creek	Х	×	Х	
Weiss Lake	powerhouse					
COOSA RIVER	Spring Creek	Alabama-Georgia state		×	×	
Weiss Lake		line				
Terrapin Creek	COOSA RIVER	Alabama Hwy 9	×		Х	
Terrapin Creek	Alabama Hwy 9	U.S. Hwy 278			×	
Terrapin Creek	U.S. Hwy 278	Borden Springs	Х		X	
Terrapin Creek	Borden Springs	Alabama-Georgia state line			X	
Little River	COOSA RIVER (Weiss Lake)	Alabama-Georgia state line	X	×	×	
West Fork of	Little River	Alabama-Georgia state line	х	×	х	
Little Kiver	COOSA BIVEB (Woise Lebe)			,	;	
Cliat touga NI VEI	COUDA MIVER (MEISS LAKE)			Y	Y	
Chattooga River	Gaylesville	Alabama-Georgia state line			X	

APPENDIX TABLE 5B -- USE CLASSIFICATION OF STREAMS, ALABAMA RIVER BASIN. (CONT'D)

APPENDIX TABLE 5B -- Use classification of streams, Alabama River Basin. (CONT'D)

Stream	From	10	Public Water Supply	Swimming	Fish and Wildlife	Fish and Wildlife as a goal
Weoka Creek	COOSA RIVER (Lake Jordan)	lts source		Х	X	
Chestnut Creek	COOSA RIVER (Lake Jordan)	Its source			×	
Hatchet Creek	COOSA RIVER (Lake Mitchell)	Socapatoy Creek		>	×	
Hatchet Creek	Socapatoy Ureek	Lentral of Georgia KK	7	< >	< >	
Hatchet Ureek	Central of Georgia KK		<	<	< >	
Socapatoy	Hatchet Creek Untetet Creek (1sk: Mitchell)	Its source		,	< >	
Weogurka Ureek	MALCHEL LIEEN (LAKE MILCHEII) CONSA DIVED (1944 Mitchell)	ILS SOULCE Interstate Hav 65		ĸ	< >	
Walnut Creek	LUGARITER LANG MILLUEIL) Interstate Huv 65	lts source			¢	×
Wayahatchee Creek	COOSA RIVER (Lake Mitchell)	Its source			X	:
Buxahatchee Creek	Waxahatchee Creek				×	
Yellowleaf Creek	COOSA RIVER (Lay Lake)			X	x	
Tallaseehatchie	COOSA RIVER (Lay Lake)	City of Sylacauga's water			×	
Creek		supply reservoir dam				
Tallaseehatchie	City of Sylacuaga's water	lts source	X		X	
Creek	supply reservoir dam					
Shirtee Creek	Tallaseehatchie Creek	Its source				×
Talladega Creek	COOSA RIVER (Lay Lake)	Its source			X	
Mump Creek	Talladega Creek	City of Talladega's water			X	
		supply reservoir dam				
Mump Creek	City of Talladega's water	lts source	X		X	
	supply reservoir dam			:	:	
Kelly Creek	COOSA RIVER (Lay Lake)	lts source		×	X	
Choccolocco Creek	COOSA RIVER (Logan Martin Lake)				X	
Eastaboga Creek	Choccolocco Creek	Its source		:	X	
Cheaha Creek	Choccolocco Creek	Lake Chinnabee		×	X	
Lake Chinnabee	Within Talladega National Forest	rest		×	X	
Coldwater Creek	Choccolocco Creek	lts source			X	
Snow Creek	Choccolocco Creek	Its source				×
Dye Creek	COOSA RIVER (Logan Martin Lake)	County road one mile east			×	
•		of Pell City				:
Dye Creek	County road one mile east	Pell City sewage treatment				x
Journ Carel	OT PELL CITY	plant Southorn by Brider			,	
cane creek	COUCH KIVER (LOGAN MATTIN LAKE)	Southern KK Bridge	•		Y	;
cane Creek	Southern KK Bridge	Ft. McClellan Reservation			;	×
Lave Creek		Ft. McClellan Reservation		:	X	
Ohatchee Creek				x	×	
Canoe Creek	COOSA RIVER (Lake Henry)	Its source			×	
Big Wills Creek	COOSA RIVER (Lake Henry)	Mouth of Little Wills Creek			×	
	Marriel of Plant - Million - Million	near Alabama Hwy 35	3		;	
BIG WILLS UTCER	MOULT OF LITTLE WILLS CREEK near Alahama Hwv 35	Its source	¥	•	×	
Rlack Creek	Ria Wills Creek (Lobe Henry)	11 S 14-55 421				
Black Creek	DIG WILLS UTEEN (LANE DENLY) II S HIGHWOW ATI	1.5. NWY 4.51			;	х
	0.0. 112611747 701				¥	

A-29.

	INTRASTATE THE WAT	INTRASTATE WATERS OF THE COOSA RIVER SUBBASIN ADOPTED THE WATER IMPROVEMENT COMMISSION ON JUNE 19, 1967	PTED BY 1967			
Stream	From	ę	Public Water Supply	Swimming	Fish and Wildlife	Fish and Wildlife as a goal
Coleman Lake Sweetwater Lake	Talladega Talladega		×	××	××	
High Rock Lake Hillabee Lake			×	××:	× × ;	
salt Ureek Lake Shoal Creek	MITNIN IAIIAGEGA NATIONAL Choccolocco Creek	onal Forest Sweetwater Lake		××	××	
	INTERSTATE   THE WA	INTERSTATE WATERS OF THE TALLAPOOSA RIVER SUBBASIN ADOPTED THE WATER IMPROVEMENT COMMISSION ON MAY 5, 1967	LIN ADOPTED BY 1967			
TALLAPOOSA RIVER TALLAPOOSA RIVER	ALABAMA RIVER U.S. Hwy 231	U.S. Hwy Macon-Tallapoosa County Line	×		××;	
TALLAPOOSA RIVER	macon-lallapoosa county Line Thurlow Dam	inuriow Dam Yates Dam	X	Х	××	
TALLAPOOSA RIVER TALLAPOOSA RIVER	Yates Dam Martin Dam	Martin Dam Hillabee Creek	Х	××	××	
(Lake Martin) TALLAPOOSA RIVER LITTLE TALLAPOOSA RIVER	Hillabee Creek TALLAPOOSA RIVER	Alabama-Georgia State Line Alabama-Georgia State Line			××	
	INTRASTATE THE WA	INTRASTATE WATERS OF THE TALLAPOOSA RIVER SUBBASIN ADOPTED THE WATER IMPROVEMENT COMMISSION ON JUNE 19, 1967	N ADOPTED BY 1967			
Oakfuskee Creek	TALLAPOOSA RIVER	Its source			Х	
01d Town Creek	Oakfuskee Creek (Line Creek)	Two miles downstream from 1 S Have 20			×	
Old Town Creek	Two miles downstream from U S Hurv 20	Its source				×
Cubahatchee Ck. Calebee Creek	TALLAPOOSA RIVER TALLAPOOSA RIVER	Its source Its source		×	××	
Uphapee Creek	TALLAPOOSA RIVER	City of Tuskeegee water			×	
Uphapee Creek	City of Tuskeegee water	supply intake Opintlocco Creek	Х		Х	
Uphapee Creek	supply intake Opintlocco Creek	Its source			×	
Chinquapin Creek	Uphapee Creek	Its source	X		×	
Chewacla Creek Chewacla Creek	Uphapee Creek Mahone Creek	Mahone Its source	X	×	××	
Chewochleehatchee Creek	Uphapee Creek	Chewacla State Park Lake		:	×	
Chewochleehatchee Creek	Chewacla State Park Lake	Its source	×		x	

APPENDIX TABLE 5B -- USE CLASSIFICATION OF STREAMS, ALABAMA RIVER BASIN. (CONT'D)

APPENDIX TABLE 5B -- USE CLASSIFICATION OF STREAMS, ALABAMA RIVER BASIN. (CONT'D)

INTRASTATE WATERS OF THE TALLAPOOSA RIVER SUBBASIN ADOPTED BY

Fish and Wildlife × × × as a goal Fish and Wildlife ×× × Swimming Public Water Supp1y × × × × × × × × × × THE WATER IMPROVEMENT COMMISSION ON JUNE 19, 1967 County road two miles north its junction with Pepperell County road bridge 3 miles Central of Georgia RR east of Hackneyville Opelika water supply 49 63 22 Alabama Hwy 22 6 0 of Loachopoka Alabama Hwy Alabama Hwy Alabama Hwy Alabama Hwy Alabama Hwy Sandy Creek J.S. Hwy 78 Its source Its source Its source Its source ts source ts source ts source ts source Its source Its source ts source ts source ts source ts source Its source ts source Its source ts source reservoir **Branch** ല Amended in accordance with public hearing held April 1, 1970. Opelika water supply reservoir TALLAPOOSA RIVER (Lake Martin) TALLAPOOSA RIVE (Lake Martin) County road two miles north ts junction with Pepperell County road bridge 3 miles South Fork of Sandy Creek Chewochleehatchee Creek LITTLE TALLAPOOSA RIVER Central of Georgia RR east of Hackneyville Sougahatchee Creek Elkahatchee Creek Chatahospee Creek **TALLAPOOSA RIVER** FALLAPOOSA RIVER TALLAPOOSA RIVER **TALLAPOOSA RIVER TALLAPOOSA RIVER** TALLAPOOSA RIVER Alabama Hwy 49 Alabama Hwy 63 Alabama Hwy 22 Alabama Hwy 22 Hillabee Creek Alabama Hwy 9 **Crooked Creek** Alabama Hwy 9 of Loachopoka J.S. Hwy 78 Sandy Creek Sandy Creek Sandy Creek Branch From Sougahatchee Creek Sougahatchee Creek Sougahatchee Creek Sougahatchee Creek Chatahospee Creek Elkahatchee Creek Horsetrough Creek Horsetrough Creek Elkahatchee Creek Elkahatchee Creek Pepperell Branch Moore's Mill Ck. Little Sandy Ck. Little Sandy Ck. High Pine Creek High Pine Creek Hillabee Creek Hillabee Creek Hillabee Creek North Fork of **Crooked Creek** Wedowee Creek South Fork of **Crooked Creek** Cahulga Creek Hackney Creek Cahulga Creek Finley Creek Sandy Creek Sandy Creek Sandy Creek Sugar Creek Stream 4101014

Amended on June 18, 1973, in accordance with a public hearing conducted on May 3, 1973.

Amended on October 16, 1972, in accordance with a public hearing conducted September 18, 1972. Fish and Wildlife classification is an objective to be attained when the Jefferson County Commission completes its program under which the Leeds sewage discharge will be abandoned. This discharge will go to the Cahaba River interceptor sewer upon its completion.

APPENDIX 6 -- STREAMFLOW CLASSIFICATION, ALABAMA RIVEP. BASIN, 1975.

6A -- Methodology

Studies have been made by the Soil Conservation Service on the number of miles of streams per square mile of drainage area. The estimated total mileage for the state is 41,153.

This is based on random samples taken from USGS  $7\frac{1}{2}$ ' quadrangle maps. The studies have categories of land resource areas, river basin and stream classes. The U.S. Corps of Engineers has mileage tables of major streams in Alabama.

Table 6B shows the class of sample streams in each subbasin. The streams studied are mostly developed watersheds and the mileage of natural streams is low. Most of the channels have been improved many years ago. The studies show considerable variance among the ratios and no systematic relationship between the ratio and river basins or physiographic resource areas.

Methodology: Classification is made by four categories of flow: A. Perennial: Flow at all times except during extreme drought.

- B. Intermittent: Continuous flow during some seasons of the year but little or no flow during other seasons.
- C. Ephemeral: Flow only during periods of surface runoff, otherwise dry.
- D. Ponded: No noticeable flow, caused by lack of outlet or high ground water table.

Step One: Streams were selected to represent drainage patterns, river subbasins and land resource areas. Fifteen streams were selected throughout the Alabama River Basin.

Step Two: Maps of each stream were studied by field office personnel of the Soil Conservation Service. Classification was determined for each segment of stream.

Step Three: The thread of each stream was coded and measured on watershed maps. Measurement was made on streams with one square mile of drainage area or larger. The length was determined by a standard map measure (wheel) and converted to miles. Each flow class was tabulated.

Step Four: The ratio of length of miles of stream per square mile drainage area in square miles is "stream density" and is usually written as miles per square mile.

The density of streams can be used to evaluate the quality of streams, amount of streams by class as resource use and availability, and erosion and pollution problems.

WATERSHED	DRAINAGE AREA SQ. MI.	MI.	PERENNIAL MI./SQ.MI.	INTE MI.	TYPE OF INTERMITTENT . MI./SQ.MI.	F FLOW EPHE MI.	OW EPHEMERAL . MI./SQ.MI.	P. IN	PONDED MI./SQ.MI.	To To	TOTAL MI./SQ.MI.	° D/A BY LRA	LRA
Alabama River Subbasin Turkey Creek Big Swamp Creek	29.5 411.6	22.2 70.2	0.75 0.17	146.5	0.36					22.22 216.7	0.75	C-100 B-100	
Cahaba River Subbasin Buck Creek Mahan Creek	58.1 66.8	49.5 23.9	0.85 0.36	6.9	0.10			1.4	0.02	50.9 30.8	0.88 0.46	<b>S-1</b> 00 C-100	
Coosa River Subbasin Blue Eye Creek Cheaha Creek	22.1 114.0	8.5 72.8	0.38 0.64	7.2	0.33	1.1	0.05	0.5	0.02 0.06	17.3 99.0	0.78	R-100 P-50	R-50
Talladega Creek		110.9	0.55	37.8	0.19			3.8	0.02	152.5	0.76	P-50	R-50
big canoe creek Terrapin Creek Choccolocco Creek	308.0 379.0 379.0	152.6 214.6	0.57	55.0 50.0	0.18 0.13 0.13	6.5 8.9	0.02	8.1 10.6	0.03	222.2 222.2 284.2	0.72	к-о0 Р-30 Р-63	8-70 R-35 R-35
Tallapoosa River Subbasin Cahulga Creek Ketchepedrakee Creek	in 27.5 54.9	13.5 51.6	0.49 0.94					1.2	0.08 0.02	5.'.5 52.8 6	0.57	P-100 P-100	
Crooked Creek 01d Town Creek	98.2 163.4	97.0 7.8 7.8	0.09	129.2	0.79			r 00 17 1 00 10	0.03	99.8 140.6	1.02 0.86	P-100 C-10	B-9()

Coastal Plain Black Belt Piedmont Ridge & Valley Sand Mountain

S B B I I

A-33 .

## APPENDIX 7 -- RESERVOIR SITE AVAILABILITY STUDY, ALABAMA RIVER BASIN.

7A -- Methodology of potential reservoir site study.

This study is an inventory of available reservoir sites in the Alabama River Basin and presents certain perameters of each site. It is not the intent of the study to locate every possible available site, but to select the better sites within an area.

Topographic quadrangle maps were the primary tool used to locate potential reservoir sites. Very few of the sites were visited by the study group during the inventory and none were surveyed. Therefore, some unknown features such as sinks, faults, roads, power lines, building, etc., could exist in the reservoir site. It is hoped that this will be at a minimum.

Consideration to topography, land use, fixed improvements, known geographical features, and location was given during site selection. Location as to a particular need was not a consideration. A stage versus storage and area flooded was developed for each site. A storage pool elevation was selected based on a study of the quadrangle coverage. The top of dam elevation was selected based on drainage area size and Land Resource Area. Storage volume and surface area were read from the stage versus storage and area curves. Embankment volume was computed using the formula H/162 (TW + 2TL + 2BW + BL), were H=height of embankment; W=flood plain width; L=top length of embankment; B=base width of embankment in the flood plain; and T=top width of embankment. A volume was added for cutoff and old channel bankfill. The embankment volume and the storage pool area can be used in estimating structural cost. Storage volume and surface area can be used to determine how well a given need could be met.

Complete coverage of the study area is available in topographic maps of the Army Map Service (AMS) at a scale of 1:250,000 (50 ft. and 100 ft. contour intervals). In addition partial coverage is available in topographic maps of the U.S. Geological Survey (USGS), either in the 7½ minute quadrangle series (1:24,000 scale, 10-ft. or 20-ft. contour interval) or the earlier 15 minute quadrangle series 1:62,500 scale, 10ft. or 20-ft. contour interval).

The upper third of the Cahaba Subbasin is covered by  $7\frac{1}{2}$  minute quadrangles. The center and lower quarters of the subbasin are covered by minute quadrangles. The lower portion of Bibb County and the upper portion of Perry County have no coverage other than the AMS series. 7A -- Cont'd

The upper two-thirds of the Coosa Subbasin has the best coverage in the river basin. This area has solid coverage of  $7\frac{1}{2}$  minute and 15 minute quadrangles. The lowermost point in the subbasin and a strip through Shelby, Talladega, Chilton, and Coosa Counties is covered by 15 minute quadrangles.

Most of the Tallapoosa Subbasin is covered with  $7\frac{1}{2}$  minute quadrangles. A portion of Elmore and Montgomery Counties is covered by 15 minute quadrangles. Only AMS coverage is available for a portion of Macon and Bullock Counties.

About one-third of the Alabama Subbasin in the Chilton, Dallas, Autauga, and Montgomery County area is covered by 15 minute quadrangles. A few  $7\frac{1}{2}$  minute quadrangles are available in the Selma, Montgomery, and Monroeville areas. The remainder of the subbasin is covered by the AMS series.

Scattered areas in the river basin are covered with 30 minute quadrangles. These are mostly repetitious of  $7\frac{1}{2}$  minute and 15 minute quadrangle coverage and are of early edition.

The reliability of the reservoir data depends upon the scale and contour interval of the maps used. In spite of this weakness, information derived from these maps is not without value. As more detailed maps become available the reservoir data developed from the existing maps can be revised.

The general location of sites studied is shown on page 2-19, figure 2-8 of Volume I.

					DIVINUL TUNNUL		1				
	Site Location (Site No.) (Creek: Township; Range: Section)	Quandrangle Sheet Used (name and size) 1/	Con- tour Inter- D (ft.) (s)	D. A. ( <u>s</u> q.mi.)	Elev. (msl)	Sur- face Area (ac.)	Total Storage (ac.ft.)	Elev. (msl)	Sur- face Area (ac.)	Height (ft.)	Emb. Volume (cu.yds.)
	ALABAMA SUBBASIN Autauga County. 1 2/ Autauga; T 19 N; R 15 E; Sect. 8 § 9 2 Bridge; T 19 N; R 15 E; Sect. 36 3 Buck; T 19 N; R 12 E; Sect. 22 4 1.0 T 17. N; R 13 E. Sect. 22	Billingsley (15') Billingsley (15') Plantersville (15') Benton (15')	20 20 20	19.6 10.9 21.0	440.0 370.0 300.0	405 450 405 162	7,242 9,600 7,042 3,405	446.0 375.0 306.0		44 57 38 56	405,900 482,000 144,500
	4 IV) I V N N I E, Sect. 25 5 Turnpike Br.; T 19 N; R 14 E; Sect. 2 & 3	Billingsley (15 ¹ )	50 20	9.1 9.1	390.0	208	4,300	395.0	247	54	246,300
	Bibb County 6 Elam; T 22 N; R 12 E; Sect. 20 & 21	Maplesville West (7	$(7^{1}_{2})$ 20	8.0	434.0	184	2,760	438.0	206	41	220,000
	Butler County 7 Cedar; T 11 N; R 13 E; Sect. 22 8 Mussel; T 11 N; R 13 E; Sect. 10 9 Wolf; T 11 N; R 12 E; Sect. 17	Andalusia (AMS) Fort Dale (7 ¹ ₂ ) Adnalusia (AMS)	50 2 20 4 50 3	23.0 46.0 30.7	305.0 280.0 280.0	1090 1076 -	25,000 11,120 12,300	315.0 288.0 288.0	1450 1925 -	65 38 45	1,094,000 197,900 273,800
A–	Chilton County 10 Middle Fork; T 22 N; R 13 E; Sect. 20 11 Trib. of Middle Fork; T 22 N; R 15 E; Sect. 30 12 East Fork; T 22 N; R 13 E; Sect. 27 13 Trib. of East Fork; T 22 N; R 13 E; Sect. 54 14 Trib. of East Fork; T 21 N; R 15 L; Sect. 16 15 Trib. of Middle Fork; T 21 N; R 15 L; Sect. 7 16 Trib. of Mulberry; T 22 N; R 12 E; Sect. 54	Montgomery (AMS) 0 Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS)	<b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b>	21.0 25.5 5.1 4.1	457.2 418.6 460.0 166.0 155.0 585.0 511.0	450 125 44 62 100 152 152	11,550 1,008 445 500 1,150 1,790	461.0 422.0 470.0 470.0 140.0 590.0 590.0 116.0	485 137 105 120 155 90 190	54 21 36 37 36	413,100 51,000 64,000 65,000 60,000 60,000
	<pre>Uallas County 17 Bear: T 16 N; R 7 E; Sect. 16 &amp; 20 18 Boguechitto; T 17 N; R 7 E; Sect. 1 19 Trib. of Cedar Cr.; T 13 N; T 11 E; Sect. 35 20 Chaney; T 17 N; R 8 E; Sect. 3 &amp; 4 21 Mud; T 17 N; R 7 E; Sect. 7 &amp; 8 22 Rogers; T 15 N; R 6 E; Sect. 2</pre>	(centeral Mills $(7_{1_{2}}^{1})$ Browns $(7_{1_{2}}^{1})$ Braggs $(15^{1})$ Browns $(7_{1_{2}}^{1})$ Uniontown E $(7_{1_{2}}^{1})$ Central Mills $(7_{1_{2}}^{1})$	) 10 20 20 20 20 20 20 20 20	96.8 3.9 5.6 16.8 10.4	178.8 164.0 179.0 185.9 180.2 200.0	1050 1550 170 432 870 567	5,220 16,400 1,560 2,450 7,100 5,575	185.0 170.0 183.0 183.0 185.0 205.0	1500 1850 225 564 1180 722	23 23 35 35 35 35 35 35 35 35 35 35 35 35 35	251,000 554,500 55,000 79,000 195,000 250,100
	Elmore County 23 Kenner; T 18 N; R 17 E; Sect. 7	Elmore (15')	20 1	11.3	340.0	350	8,470	345.0	400	65	491,200
	Lowndes County 24 Green Br.; T 13 N; R 12 E; Sect. 14 25 Middle; T 12 N; R 12 E; Sect. 1 26 Mussel; T 12 N; R 14 E; Sect. 31 27 Big Swamp; T 12 N; R 15 E; Sect. 13 28 Cherry; T 12 N; R 15 E; Sect. 15 30 Possum; T 13 N; R 15 E; Sect. 16 31 Fort Deposit; T 12 N; R 15 E; Sect. 16 33 Lake; T 13 N; T 14 N; S E; Sect. 18 33 Lake; T 13 N; T 14 N; Sect. 35 & 36 35 Trib. of Big Swamp; T 14 N; R 14 E; Sect. 18 36 Trib. of Big Swamp; T 14 N; R 14 E; Sect. 16 37 Trib. of Big Swamp; T 14 N; R 14 E; Sect. 16 36 Trib. of Big Swamp; T 14 N; R 14 E; Sect. 16 36 Trib. of Big Swamp; T 14 N; R 14 E; Sect. 16 37 Trib. of Big Swamp; T 14 N; R 14 E; Sect. 16 36 Trib. of Big Swamp; T 13 N; R 14 E; Sect. 16 37 Trib. of Big Swamp; T 14 N; R 13 E; Sect. 6 38 Halls Br.; T 14 N; R 13 E; Sect. 6	Braggs (15') Braggs (15') Braggs (15') Braggs (15') Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS) Montgomery (AMS)	M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	325.5 32.5 33.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	220.0 245.0 325.0 373.0 273.0 273.0 273.0 273.0 273.0 253.6 253.6 253.6 193.7 193.7 2253.6 2253.6 239.6	573 334 1500 299 254 247 247 177 192 192 195 248 178 248 177 248 195 229	8,710 3,380 24,000 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 2,490 1,730 1,730 1,750 1,760	225.0 250.0 335.0 305.0 276.0 276.0 237.0 237.0 237.0 256.1 197.0 197.0 228.3 228.0 228.3 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 228.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.00	720 1930 371 371 371 371 371 371 285 285 285 285 285 202 285 202 205 205 205	202 20 202 20 202 20 202 20 202 20 202 20 21 21	154,000 42,400 572,000 94,900 112,200 82,700 82,700 82,700 82,700 83,200 95,800 93,000 91,500 90,500

Appendix Table 7B - Statistics of potential reservoir sites, by subbasins, by counties, Alabama River Basin, 1975.

				ST	STORAGE POOL	001	TOP OF DAM	DAM		
	Site Location (Site No.) (Creek; Township; Range; Section)	Quandrangle Sheet Used (name and size) 1/	Con- tour Inter- D. A.	EI	Sur- face Area	Total Storage	Elev.	Sur- face Area	Height	Emb. Volume
	Shelby County	(2740		-		(ac. It.)	(IISI)	(ac.)	(IT.)	(cu.yds.)
	71 Big; T 21 S; R 4 W; Sect. 23	Montevallo (15')	50 7.6	446.0		8,000	456.0	210	.85	269,900
	72 Dry Brook; T19S; R2W; Sect. 32 § 33 73 Maybarry: T 24 N: D 11 E. Soct 2	Helena (7½ [†] ) Montervollo (154)		500.0		2,713	506.0	250	39 85	82,000
	74 Peavine; T 20 N; R 2 W; Sect. 30	Helena $(7i_2^{1})$	20 8.0	445.U 500.0	) 262	8,500 4,026	455.0 507.0	295 330	85 44	544,200 $198,900$
	COOSA SUBBASIN									
	Calhoun County 75 Tittle Tallahatchee: T 14 S: D 8 F: Sect 27	Ischeonuille (7L1)		0 077					C t	
	76 Tallahatchee; T 14 S; R 8 E; Sect. 5	Jacksonville	20 I4.0 20 5.3	640.0	) 182	1,516	645.0	230 230	32 45	93,900 230,300
	Cherokee & DeKalb Counties									
	77 Little River; T 7 S; R 10 E; Sect. 29	Jamestown $(7^{1}_{2})$	20 110.3	1250.0	1110	25,000	1265.0	1550	81	561,500
	Cleburne County									
	78 Little Hillabee; T 17 S; R 9 E; Sect. 5 79 Shoal: T 14 S: R 10 F: Sect. 35	Hollis Crossroads (7	$(7^{1}_{2}, 1) 20$ 3.1	780.0	71	1,400	784.0	80	59	61,500
				1100.0		1,451	1108.0	120	48	92,100
A	Clay County									
-38	80 Buzzard; 1 19 5; K / E; Sect. 51 81 Caten Shoals; T 20 S; R 6 E; Sect. 1	Clairmont Springs (7 Clairmont Springs (7	$(7\frac{1}{5}^{1})20$ 7.8 $(7\frac{1}{5}^{1})20$ 4.0	963.9		7,572	971.2 975 7	235 76	101 50	328,900
3	82 Gold Mine; T 19 S; R 7 E; Sect. 23	Springs		1019.3	3 42		1024.8	49	78 78	125,200
	83 Talladega; T 19 S; R 7 E; Sect. 13	Lineville West (7 ¹ ₂ ¹ )		1015.5			1024.8	226	57	251,600
	Coosa County									
	84 Baker (Socapatoy); T24N; R20E; Sect. 23 85 Baker (Socanatov): T23N: D20E: Soct 4:5 E	Goodwater (15')	20 2.5	9 800.0	) 143	2,180	808.0	195	48	127,400
	86 Brestworks: T 24 N; R 17 E; Sect. 8	Gantts Quarry (15 ¹ )	۲	0.000 0		2,24U	696 8	065	97 7	29,400 77 200
	87 Chipco; T 23 N; R 18 E; Sect. 27	Flagg Mountain $(7^{1}_{2})$	20 1			2,380	468.0	210	53	99,300
	88 Davidson; T 23 N; R 19 E; Sect. 33	Rockford $(7_{12}^{1})$				1,860	526.0	80	66	245,200
	90 Trib. of Hatchet: T 24 N; K 20 E; Sect. /	Goodwater (15')	20 8.4 20 9.7	720.0	118	1,920 7 590	748.0	182	4 8 7 8	46,500
	91 Jacks; T 23 N; R 19 E; Sect. 33	Rockford $(7_{2}^{1})$	7			7.190	528.0	416	4 / 68	99.500
	92 Mill; T 23 N; R 18 E; Sect. 5	Quarry				2,937	658.1	169	46	104,800
	Committee 1 24 N; K 1/ E; Sect. 30 Committee T 22 N: D 10 E: Cont	Gantts Quarry (15')				3,110	528.0	337	38	36,500
	94 SUCAPALOY; 1 23 N; K 19 E; SECT. 23 95 Shalton: T 24 N: R 19 E: Sact 6	Kockford (/2')	45.	-		11,061	612.0	920	20 2	152,200
	96 Swamp; T 21 N; R 19 E; Sect. 6	Bockford S.W. (751)	20 0.5 75 75 7	7 566 0	158 158	2,289 0,200	75 0	188 050	36	81,000
	97 Weogufka; T 24 N; R 19 E; Sect. 6	Goodwater (15')	. 6			3,910	744.4	408	39	103.100
	98 Weoka; T 21 N; R 17 E; Sect. 34	Richville $(7\frac{1}{2}^{1})$	ŝ			3,360	405.0	590	38	40,300
	DeKalb County									
	99 Big Wills; F 6 S; R 9 E; Sect. 2 100 Jacks: T 7 S: R 8 F: Sect. 21	Dugout Valley (7 ¹ ₂ ')	-			3,430	940.0	400	40	188,700
	101 W. Fork of Little River; TSS; RIOE; Sect. 23		20 29.1	1684.0	310	1,6/0 8,000	816.0 1694.0	57 400	51 58	136,500 $168,800$

Appendix Table 78 -- Cont'd

Site Location (Site No.) (Creek; Township; Range; Section)	Quandrangle Sheet Used (name and size) 1/	Con- tour Inter- (ft.)	D. A. (sq.mi.)	E E	STORAGE POOL Sur- face T ev. Area St sl) (ac.) (a	0L Total Storage (ac.ft.)	TOP OF Elev. A (msl) (	OF DAM Sur- face /. Area 1) (ac.)	Height (ft.)	Emb. Volume (cu.yds.)	
102 Sofkahatchee; T 19 N; R 19 N; Sect. 3 103 Weoka; T 20 N; R 18 E; Sect. 20	Wetumpka (15') Elmore (15')	20 20	144.4 75.3	410.0 340.0	275 411	4,300 6,850	415.0 350.0	324 680	45 50	73,600133,600	
Etowah County 104 Ballplay; T 11 S; R 8 E; Sect. 22 105 Black; T 10 S; R 7 E; Sect. 11 106 Black; T 10 S; R 7 E; Sect. 29	Ballplay $(7^{1}, 1)$ kenner $(7^{1}, 1)$ kenner $(7^{1}, 1)$	20 20 20	57.5 9.1 29.8	550.0 808.2 773.2	2152 287 845	34,195 4,425 9,960	556.0 814.0 779.0	3000 350 1070	26 37 34	294,700 90,000 29,000	
<pre>St. Clair County 107 Big Canoe; T 14 S; R 2 E; Sect. 21 108 Broken Arrow; T 16 S; R 3 E; Sect. 1 108 Broken Arrow; T 15 S; R 3 E; Sect. 34 110 Dry; T 17 S; R 3 E; Sect. 9 111 Gulf; T 13 S; R 4 E; Sect. 17 &amp; 18 112 Kelly; T 17 S; R 2 E; Sect. 16 113 Shoal; T 15 S; R 3 E; Sect. 21 114 Shoal; T 17 S; R 2 E; Sect. 29</pre>	Springville $(7_{1_2}^{i_1})$ Wattsville $(7_{1_2}^{i_2})$ Wattsville $(7_{2_1}^{i_2})$ Pell City $(7_{2_1}^{i_2})$ Hyatt Gap $(7_{1_2}^{i_2})$ Cooks Spring $(7_{1_2}^{i_2})$ Wattsville $(7_{1_2}^{i_2})$ Cooks Springs $(7_{1_2}^{i_2})$	20 20 20 20 20 20 20 20 20 20 20 20 20 2	37.8 14.0 10.7 4.5 4.5 4.4 4.1 4.4 6.8 5.8 28.2	695.0 540.0 560.0 540.0 600.0 535.0 680.0 520.0	730 367 103 422 265 356 301 328	16,090 7,055 1,380 8,640 4,650 4,522 3,472 3,472	705.0 548.0 570 570 544.0 608.0 543.0 690.0 528.0	900 488 482 482 412 550 550	73 - 53 - 52 - 38 - 338 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	860,000 152,900 154,900 272,200 33,300 169,700 82,800	*
<pre>Shelby County 115 Bear; T 18 S; R 1 E; Sect. 15 116 Buxahatchee; T 24 N; R 14 E; Sect. 5 117 Camp Br.; T 21 S; R 1 W; Sect. 31 117 Camp Br.; T 21 S; R 1 W; Sect. 31 118 South Fork Yellowleaf; T20S; R1W; Sect. 20 119 Waxahatchee; T21S; R1W; Sect. 21</pre>	Vandiver $(7_{2}^{1,1})$ Columbiana $(15^{1})$ Columbiana $(15^{1})$ Chelsea $(7_{2}^{1,1})$ Columbiana $(15^{1})$	20 50 50 50	13.6 21.1 21.5 16.6 12.8	516.0 475.0 519.6 520.0 509.0	550 548 632 624 780	8,684 7,287 9,125 8,272 6,640	522.0 483.0 525.0 528.0 515.0	650 822 730 820 820	39 43 40 35	121,000 80,500 80,500 187,600 160,000	
	Gantts (uarry (15') Clairmont Springs (7 Gantts Quarry (15')	7 ¹ ² ¹ ) 20 20	9.9 6.4 2.9	640.0 881.7 807.6	200 104 127	7,679 1,929 3,181	645.8 884.9 812.8	244 122 146	108 60 70	514,700 126,000 155,800	
TALLAPOOSA SUBBASIN           Bullock County           123 Trib. of Line Cr.; T 14 N; R 21 E; Sect. 24           124 Trib. of Line Cr.; T 14 N; R 21 E; Sect. 34           125 Line; T 13 N; R 21 E; Sect. 16           126 Trib. of Line Cr.; T13N; R22E; Sect. 7 § 18           127 Panther; T 14 N; R 21 E; Sect. 17 § 20	Phenix City (AMS) Phenix City (AMS) China Grove $(7_{2}^{*})$ Phenix City (AMS) Phenix City (AMS)	50-100 50-100 10 50-100 50-100 50-100	4.1 3.8 9.1 7.0	291.0 335.0 380.0 342.0 290.9	230 336 1014 220 520	1,953 3,073 14,890 1,723 3,240		280 440 1228 265 720	22 23 21 21 21 21 22 22 22 23 22 23 22 22 23 22 22 23 22 22	65,600 84,600 450,400 100,700 173,800	
Chambers County 128 Allen; T 23 N; R 26 E; Sect. 19 129 Carlise; T 24 N; R 26 E; Sect. 33 130 Chikasanoxee; T 24 N; R 26 E; Sect. 24 131 Chikasanoxee; T 24 N; R 25 E; Sect. 27 132 Little Chatahospee; T 22N; R25E; Sect. 27 133 Mill & Chatahospee; T22N; R26E; Sect. 7	LaFayette $(7_{1_2}^{i_1})$ Milltown $(7_{1_2}^{i_2})$ Milltown $(7_{1_2}^{i_2})$ Madley $(7_{1_2}^{i_1})$ Uudleyville $(7_{1_2}^{i_1})$ LaFayette $(7_{1_2}^{i_1})$	20 20 20 20 20 20	12.1 8.6 17.2 69.0 23.4 26.3	740.0 690.0 700.0 660.0 660.0	1012 280 243 805 553 347	17,420 3,140 3,326 10,212 7,840 4,357	748.0 696.0 708.0 668.0 668.0	1260 400 380 1070 742 606	48 46 41 33 33	423,500 171,100 55,100 93,200 75,000 75,000	
Clay County 134 Crooked; T 20 S; R 9 E; Sect. 23 135 Crooked; T 20 S; R 9 E; Sect. 19	Wildwood S.W. $(7^{1}_{2}^{1})$ Ironaton S.E. $(7^{1}_{2}^{1})$	20 20	49.7 30.4	790.0 940.0	270 310	3,450 4,430	800.0 948.0	370 410	45 58	54,800 88,600	

Appendix Table 7B -- Cont'd

				CTOB	CTOBACE DOOL	IUC	TOD OF DAW	1110		
		Con-			Sur-		5	Sur-		
Site Location (Site No.) (Creek: Townshin, Range, Section)	Used		D. A.		face Area	Total Storage		face Area	Height	Emb. Volume
(nothing fagure demonstration from and	(name and size) 1/	(ft.) (;	(sq.mi.)	(ms1)	(ac.)	(ac.ft.)	(ms1)	(ac.)	(ft.)	(cu.yds.)
Cleburne County 136 Cane; T 15 S; R 11 E; Sect. 3	0ak Level (7½')	20	5.4	1000.0	138	2,594	1005.0	155	50	102.000
137 Trib. of Cane; T 15 S; R 11 E; Sect. 17		20	5.2	950.0	204	2,900	956.0	246	38	56,900
138 Dynne; T 17 S; R 10 E; Sect. 12	Ross Mountain (7½')	20	7.8	930.0	166	4,300	940.0	205	70	280,000
0 6 6	High Tower (75)	50 50	10.3	980.0	134	2,215	988.0	180	50	82,400
140 LOCHCHELOOGE; I I/ 3; K IU E; SECT. 32 9 33 141 Miscadine: T 15 S. R 13 F. Sect. 5	ROSS MOUNTAIN (/2')	02	9. / 17. 1	0.268	180	4,460	902.0	200	62 • 7	133,100
141 MUSCAULIUS, 1 13 3, N 16 E; 35CL, 3 143 Cilas, T 16 C, D 13 E, Cart 21	Udk Level (72.)	0, 6	4.07	9.0.0	400	6,6UU	980.0	840	45	80,000
142 STIAS, I TO S, N 12 E, SECU. 31 143 Shake, T 16 S, R 10 F, Sect 30	Hallis (rocerde (761)		2.UI	945.U	14.7	5,200 7,6E0	955.0	101	43	98,000
144 Verdin; T 16 S; R 11 E; Sect. 26			7.3	885.0	107 55	775	900.0 891.0	191 92	4 <i>c</i> 33	46,500 22,200
Coosa County 145 Elkahatchee; T 22 N; R 20 E; Sect. 12	Kellyton $(7^{1}_{2}^{1})$	20	12.9	650.0	460	7,200	657.0	640	47	78,300
Elmore County 146 Chubbehatchee; T 18 N; R 20 E; Sect. 20	Wetumpka (15')	20	41.0	280.0	2528	47,966	285.0	2650	48	455,400
Lee County 147 Choctafaula; T 18 N; R 25 E; Sect. 16 149 Choctafaula; T 10 N: D 25 E. Coote 5 6	Loachapoka (7 ¹ ,2 ¹ )	10	8.6	470.0	184	2,519	475.0	240	43	58,500
149 Ropes; T 19 N; R 24 E; Sect. 3 4 0 149 Ropes; T 19 N; R 24 E; Sect. 30 150 Trih of Sourabatchee: T 19N; R 26F; Sect. 2211	Notasulga (751) Notasulga (751) Obelika w (711)	20 20	40.2 18.7 5	470.0	0/0 366	• •	478.0	1400 480	36 43	72,000
The state of soughtarchies, itsue, seel, sell, sell		10	4.0	020.0	1/8	د/د,2	0.580	87.7	40	163,400
Macon County 151 Trib. of Calebee Cr.; T 16 N; R 23 E; Sect. 4 152 Long Br.; T 16 N; R 25 E; Sect. 1	LaPlace (7½') Society Hill (7½')	10	7.4 10.5	300.0 380.0	441 323	6,652 4.179	305.0 384.0	507 382	38	124,600
153 Long Br.; T 16 N; R 25 E; Sect. 2 154 Miles; T 18 N; R 24 E; Sect. 24		01	13.2 9.9	360.0	485	7,060	368.0	644 189	45 34	260,200 158,200
<pre>155 Wauxamaka; T i8 N; R 23 E; Sect. 30 156 Trib. of Wolf Cr.; T 18 N; R 23 E; Sect. 14</pre>	Carrville $(7_{1_2}^{i_1})$ Notasulga $(7_{1_2}^{i_2})$		7.0 4.5	320.0	314	5,850	325.0	386 217	52 53	538,100 288,700
Montgomery County 157 Johnson; T 15 N; R 21 E; Sect. 31 158 McDowell; T 15 N; R 20 E; Sect. 35	Phenix City (AMS) Montgomery (AMS)	50-100 50	6.7 4.4	259.8 266.0	412 280	2, <b>9</b> 80 2,040	264.0 270.0	510 370	19 20	110,000
Randolph County		ç	r		ļ				;	
160 Cohobadian T 18 5, 8 12 E; Sect. 7 161 Combuse: T 21 S; 8 11 E; Sect. 7 161 Combuse: T 21 S; 8 11 E; Sect. 10	Newell $(7_2^{+})$ Reserve $(7_2^{+})$	2 2 2	15.6	940.0	114	3, 390 1, 800	948 948	161 175 207	<b>48</b>	95,000 133,400
162 Cutnose; T 18 N; R 12 E; Sect. 34	Graham N. E. (75)		8.2	964.7	111	9, 835 2, 835	016.U 973.0	507 134	63	266,000
10. HILL OF CULINOSE; HEN; KIZE; SECT. 54 164 Green; T 20 S; R 11 E; Sect. 12	しraham N. E. (7½') Wedowee (7½')		4.2 5.6	957.0	67 91	1,470 1730	963.0	80	63 55	168,000
	Malone $(7^{1}_{2}^{\dagger})$		11.9	770.0	183	3,743	770.0	219	53	107,300
166 Shoal; 1 18 5; K 15 E; Sect. 29 167 Wedowee; 7 20 S; R 11 E; Sect. 2 168 Majauros; 7 20 S; R 11 E; Sect. 2		5 2 3	11.0 37.2	1010.0 877.0	125 480	1,990 12,550	1017.0 887.0	149 580	52 62	143,700 254,000
100 MENOWEE; I 20 3; K IZ E; SECL. D	Wedowee (121)		26.4	940.0	190	3,200	948.0	280	70	223,500

Appendix Table 7B -- Cont'd

Cont'd
;
7B
Table
ix
<b>vppend</b>

				STOF	STORAGE POOL	JOL	TOP OF DAM	F DAM		
		Con-			Sur-			Sur-		
Cito Locotion	Quandrangle	tour			face	Total		face		Emb.
(Site No.) (Creek; Township; Range; Section)	Sheet Used	Inter.	Inter-D.A.		Area	Storage	Elev.	Elev. Area	Height	Volume
			(•TIII·he)	_	(90.)	(III) (ac.) (ac.II.) (IISI) (ac.) (II.)		(ac.)	(11)	(cu.yds.)
169 Trib. of Wedowee Cr.: T20S: R11E: Sect. 2	Wedowee $(7\frac{1}{2}^{1})$	20	3.0	860.0	66	2.461	864.0 106	106	63	308 400
170 Wolf; T 19 S; R 11 E; Sect. 2	Newell $(7^{1}, 1)$	20	4.9	860.0	82	1,620	866.0	100	66	176,400
Russell County										
171 Opinflocco; T 16 N; R 26 E; Sect. 11 & 14	Society Hill $(7^{l_2})$	10	14.6	400.0	465	3,935	404.0	617	24	163,400
Tallapoosa County										
172 Broken Arrow; T 24 N; R 21 E; Sect. 11	Hacknevville (7½')	20	[.5	650.0	150	1 760	655 0	186	45	112 600
172 Chatabosnoo, T 32 N, D 34 E, Soot 14	D									114,000
I/J CHARCANDER, I ZJ N, K Z4 E; JECL, 14	Dudleyville (12, )	70	۲.811	0.000	852	11,125	610.0	1200	40	103,800
174 Emucktaw; T 24 N; R 24 E; Sect. 19	Daviston (7½')	20	27.2	670.0	206	2,870	678.0	292	40	40,200
175 Emuckfaw; T 23 N; R 23 E; Sect. 10	Daviston $(7_2^1)$	20	62.7	620.0	1787	37,842	628.0 2160	2160	63	124,500
176 Hackney; T 24 N; R 21 E; Sect. 36		20	6.9	600.0	154	2,058	606.0	204	34	42,500
177 Little Emuckfaw; T 24 N; R 23 E; Sect. 26	Daviston $(7\frac{1}{2})$	20	14.8	680.0	208	4,820	688.0	267	68	278,700
178 Little Sandy; T 21 N; R 24 E; Sect. 22	Camp Hill $(7^{1}_{2})$	20	31.9	640.0	1184	19,935	648.0	1600	56	275,600
179 Trib. of Sandy Cr.; T 21 E; R 24 E; Sect. 8	Camp Hill $(7^{1}_{2})$	20	6.1	640.0	114	1,340	645.0	176	30	38,400
180 Stone; T 18 N; K 22 E; Sect. 10	Carrville $(7^{1}_{2})$	20	10.5	360.0	69	777	367.0	113	32	33,600
181 Timbergut; T 23 N; R 23 E; Sect. 6	New Site $(7^{1}_{2})$	20	i1.0	720.0	217	3,510	727.0	274	47	49,200
182 Town; T 24 N; R 21 E; Sect. 33	Hackneyville (7 ¹ 2 ¹ )	20	13.8	660.0	320	5,300	668.0	400	64	146,300

 $(7^{1}_{2})$  or (15') indicates  $7^{1}_{2}$  and 15 minute quadrangle series; (AMS) indicates Army Map Service series.

Site numbers correspond to numbers on Site Potential Location Map, Volume I, Figure 2-8. 15 <u>1</u>

Appendix Table 8A Description of geologic units and waterbearing characteristics <u>1</u> / <u>WATER_F</u>			WATER_REARING		RANGE IN WATER
MAP SYMBOL	GEOLOGIC UNITS	LITHOLOGY	WAIEK-BEAKING CHARACTERISTICS	WATER QUALITY	
		APPALACHIAN RIDGES AND	APPALACHIAN RIDGES AND VALLEYS PHYSIOGRAPHIC AREA		
s	Weisner Formation, Red Mountain Formation, Frog Mountain Form- ation, Pennington Formation, Parkwood Formation, and Potts- ville Formation.	Chiefly sandstone with interbedded shale and siltstones; some quartz- ite and conglomerate.	Water for individual farm or family wells is usually available throughout the area. Many small springs issue from subsoil and out- crops. Steep ridges and shaly units are usually non- aquifer areas.		
sib.	Shady Dolomite, Conasauga Limestone, Knox Dolomite, Oden- ville, Newala, Longview and Chickamauga Limestone, Fort Payne Ghert, Bangor Lime- stone, Rome Formation and Floyd Shale.	Chiefly cherty dolomites and cherty limestones of Paleozoic Age. Some shaly limestone and pure (non- cherty) limestone, with interbedded silt stone.	The limestones and dolomites are generally good aquifers with success of wells de- pendent upon size and capac- ity of solution channels. Large capacity wells may be developed and many large springs issue from these springs issue from these formations. Wells in a few areas may encounter shaly rock or massive limestone without cavities.	Pollution from surface sources can be a problem where crevices and cavities are open to the surface. Hard water is a problem in some areas with occasional wells having highly min- eralized waters.	
		PIEDMONT PH	PIEDMONT PHYSIOGRAPHIC AREA		
ς ν	Ashland Mica Schist and others.	Chiefly quartz-mica-garnet graphitic schist, some quartzite and basic igneous intrusives.	y quartz-mica-garnet The occurrence of water is tic schist, some controlled by the size and zite and basic pattern of fracture, the topography, and the character and thickness of the sapro- lite. Most drilled wells produce water from the sapro- lite or from fractures in the	Water is usually of good quality for household use.	Wells generally yield from 10 to 250 gpm. Most drilled wells range from 100 to 250 feet in depth.

A-42

upper 100 feet of bed rock. Same as above but likely to Same as above. be intensely fractured. Sericite phyllite and slate interbedded with quartz schist, marble, and quartzite. Fine-monly micaceous, inter-bedded with schist, phyl. lite and marble. Wedowee Formation and slaty members of the Talladega Series. Butting Ram Sand-stone, Cheaha Sandstone and ferruginous sandstone member of Talladega Series; Shady Limestone and Hollis Quartzite.

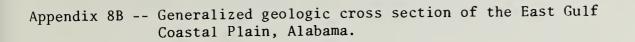
ps

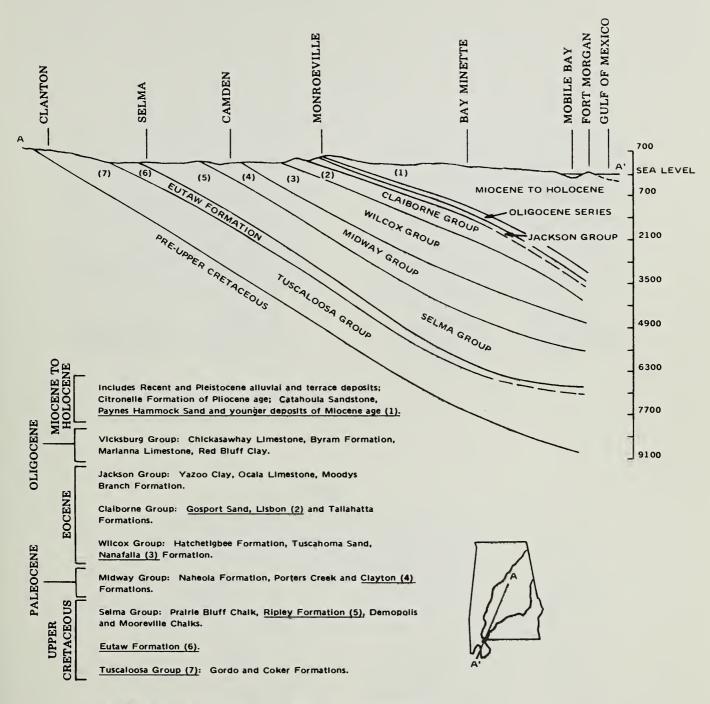
Yields vary widely; 2 to 250 gpm. Depths generally less than 300 feet.

gnPinkneyville Granite and others.agagbibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibibi <th>L1710L0CY</th> <th>WAIEK-BEAKING CHARACTERISTICS</th> <th>WATER QUALITY</th> <th>RANGE IN WATER YIELD AND DEPTH</th>	L1710L0CY	WAIEK-BEAKING CHARACTERISTICS	WATER QUALITY	RANGE IN WATER YIELD AND DEPTH
	Gray, coarse-grained biotite granite and quartzdiorite gneiss.	Same as unit "sc".	Same as above.	Yields vary from 2 to 75 gpm. Average 16 gpm.
	Míca schist intruded by granite with long feldspar crystals. In- cludes biotite augen gneiss.	Same as unit "sc".	Same as above.	Yields vary from 2 to 75 gpm. Average 12 gpm.
	Green schistose mafic rocks, chlorite schist, hornblende schist and amphibolite.	Same as unit "sc".	Same as above.	Yiolds vary from 2 to 75 gpm. Average 16 gpm.
	Chiefly mica schist, granit- gneiss, bio- tite-hornblende gneiss, marble, quartzite, my- lonite, and basic igneous rocks.	Same as unit "se".	Same as above.	Yields range from 2 to 100 gpm. Average 25 gpm.
	COASTAL PLAINS	COASTAL PLAINS PHYSIOGRAPHIC AREA		
	Silt, <u>cla</u> y, sand, and gravel.	Wells yield small to mod- erate quantities of water where sands are thick enough.	Water is generally of good quality but may be high in iron content.	Yields vary from 5 to 100 gpm. Depths arc usually less
	Fine to coarse-grained gravelly sand, clayey sand and clay.	Wells yield small to large quantities of water.	Same as above.	Yields range from 5 to 500 gpm. Depth generally less than 150 feet
	Fine to coarse-grained gravelly sand, claycy sand and clay.	Limited areal extent and insufficient thickness limit productivity of aquifer in basin. Wells tapping sand beds yield moderate quantities of water.	Same as above.	Yields range from 10 to 500 gpm. Uepth generally less than 300 feet in the Alahama River Basiu.
	Soft argillaceous lime- stone with tough ledges, hard crystalline lime- stone and sandy, clayey marl.	Limited areal extent makes the aquifer of secondary importance. Wells may yield adequate quantities of water for domestic or stock use.	Same as above.	Yields vary from 5 to 100 gpm. Depths less than 500 feet.
	Fine to coarse-grained sand with wedges of carbonaceous shale; calcareous, glauconitic sand, and sandy clay.	Wells tapping sand beds yield moderate to large quantities of water.	Same as above.	Onc mgd f700 gpm) or more can be obtained from individual wells. Usual range is 50 to 500 gpm. Depth of fresh-water wells ranges from less than 100 feet in the outcrop area to as much as 1,500 feet downdin.

Appendix Table 8A -- Cont'd

A-43


.

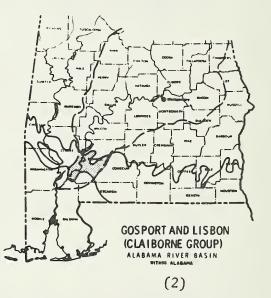

Cont'd
3
8A
Table
Appendix

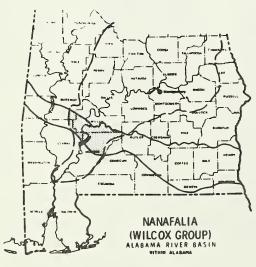
MAP SYMBOL	GEOLOGIC UNITS	LITHOLOGY	WATER-BEARING CHARACTERISTICS	WATER QUALITY	RANGE IN WATER Y1ELD AND DEPTH
Tt	Tallahatta Formation.	Claystone with beds of glauconitic sand and sandstone.	• Well yields are generally small.	Same as above.	Yields 0 to 10 gpm. Depths are shallow, generally less than 150 feet.
Ę.	Hatchetigbee Formation.	Gray and yellow fine- grained sand, olive-gray marls, gray silt, and clay.	Wells yield small to mod- erate quantities of water.	Same as above.	Where sufficient thickness of sand is present yields range up to 350 gpm. Usual range is 5 to 100 gpm. Depth range same as unit "To!"
Ttu	Tuscahoma Sand.	Fine-granimed sand, clayey silt, glauconitic marls, scme coarse-grained sand near the base of the formation.	Well yields are generally small to moderate.	Same as above.	Lower sands may yield 150 to 350 gpm. Usual range is 5 to 100 gpm. Depth range same as unit
Tnf	Nanafalia Formation	Coarse-grained sand near hottom, glauconitic sand, sandy clay, and massive clay near top.	Wells tapping the coarse sands of the formation yield large to very large quanti- ties of water.	Same as above.	Individual wells may yield 1 mgd (700 gpm) or more. Range is normally 100 to more than 500 gpm. Depth range same as unit "Y21".
Tna	Naheola Formation and Porters Creek Formation (undifferentiated).	Massive clay, sandy silt, silty clay and fine- grained sand.	Will yield small quantities to wells.	Same as above.	Normal range in yield is 5 to 10 gpm. Depth range same as unit "Tgl".
Tc	Clayton Formation.	Limestone, sandy lime- stone and sand.	Wells yield moderate quan- tities in easternmost part of the basin, yields de- crease westward.	Same as above.	Yields 10 to 100 gpm in eastless westward. Depth range same as unit "Tg1".
Кr	Ripley Formation (including Prairie Bluff Chalk).	Very fine to coarse- grained sand interbedded with sandy limestone and clay (Prairie Bluff con- sists of compact white chalk).	Wells yield large to very large quantities of water. Yields decrease westward.	Same as above.	Normal range in yield is 100 to more than 500 gpm. Depth range same as unit "Tgl".
ks	Selma GroupDemopolis Chalk, Blufftown Formation, Mooreville Chalk.	Pure chalk, marly chalk, sandy chalk, sandy clay and calcareous marl.	Formations do not yield water to wells.	Same as above.	Dug wells yield small to very small quantities
ke	Eutaw Formation and McShan Formation (undifferentiated).	Fine to coarse-grained sand interbedded with fossiliferous clay and beds of sandy clay.	Yields very large quantities of water in western and central Alabama. Yields are moderate in eastern part of the state.	Same as above.	Normal range in yield is 50 to more 500 gpm. Depth range same as unit
kt	Tuscaloosa GroupGordo Formation, Coker Formation.	Very fine to very coarse grained sand, sandy gravel, sandy clay, and massive clay.	Well yields range from mod- erate to very large. The Tuscaloosa Group includes some of the most productive aquifers in Alabama.	Same as above.	Normal range 50 to more than 500 gpm. Depth range same as unit

werry wormpre. We summanus quartaite and sandstone; "dls" is dominantly dolomite and limectone). Map symbols in the Coastal Plains are standard geologic abbreviations combining the System and Formation name (Example: "Qbt" is Quaternary System, alluvial terrace; "Tci" is Tertiary System, Citronelle Formation).

<u>1</u>/ See Alabama River Basin Study, Volume 1, Figure 2-9.

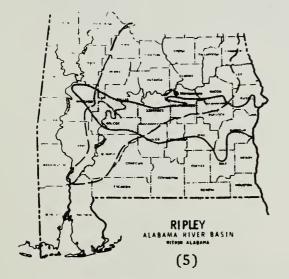






NOTE: Numbers in parenthesis refer to aguifers shown on following pages.

Source: Modified from Report for Development of Water Resources in Non-Appalachia Alabama, Appendix G - Geology, Geological Survey of Alabama, 1968.

Appendix 8C -- Generalized areas where major aquifers are tapped in the Coastal Plains.



















Source: Report for Development of Water Resources in Non-Appalachia Alabama, H - Hydrology and Ground Water, Geological Survey of Alabama, 1968.

Appendix Table 8D -- Usual cost of rural domestic wells, Alabama River Basin, 1975.

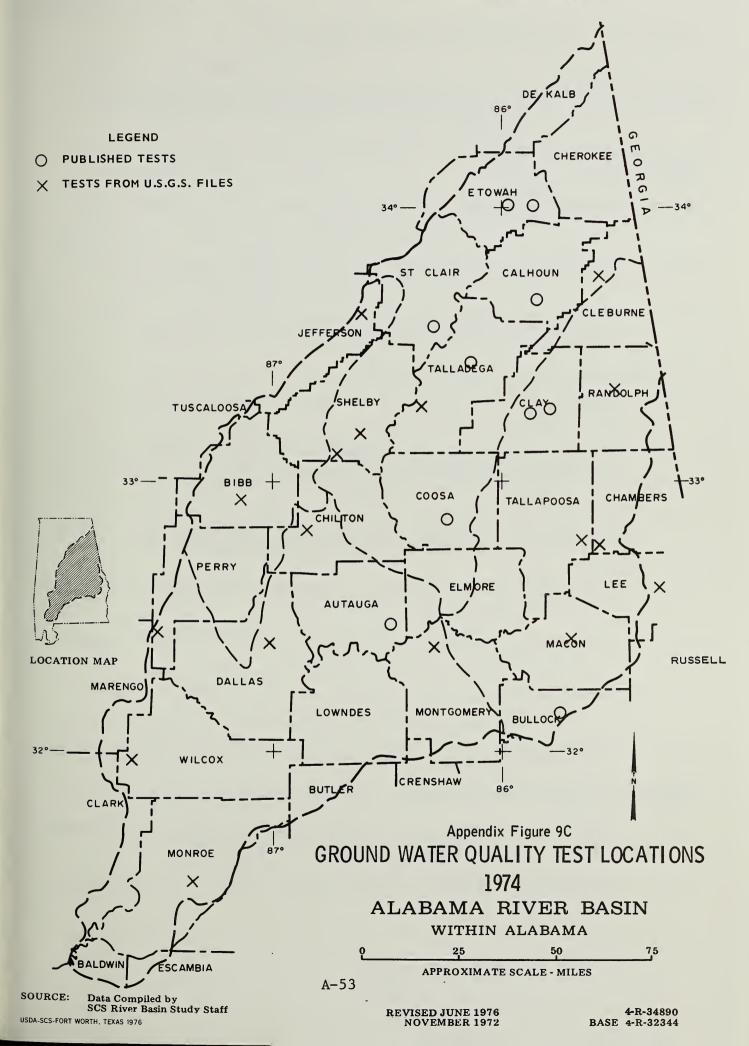
AREA	SIZE <u>WELL</u> (inches)	COST PER * FOOT (dollars)
Appalachian Ridges and Valleys Sandstone Ridges Limestone Valleys	6 6	5 5 to 10
Piedmont	6	5 to 10
Coastal Plain (including the Black Belt)	4	4 to 6

* Cost includes casing but no development or improvements. Source: Graves Well Drilling Co., Inc., Sylacauga, Alabama. APPENDIX 9 -- GROUND WATER QUALITY, ALABAMA RIVER BASIN.

Appendix Table 9A -- Use limitations of water quality parameters.

	OBJECTIONABLE	RECON	MENDED LIM	ITING CONCE	NTRATION	RECOMMENDED LIMITING CONCENTRATION FOR INDICATED USE (ppm) 1/	D USE (ppm	) 1/
	FEATURES OF	PUBLIC		FOOD	PULP &	PLASTICS		TEXTILE
	EXCESSIVE	WATER	COOLING	<b>PROCESS-</b>	PAPER	- MANU		-UNM
CONSTITUENT	CONCENTRATION	SUPPLY 2/	2/ WATER	ING	MAKING	FACTURING	BOILERS	FACTURING
Sulfate	Diuretic effect,	250		20-250				100
	bitter taste.							
Hardness as	Boiler scale, pro-		50	10-400	100-200		2-80	0-50
CaCO ₃	duces insoluble							
	"curd" when it							
	reacts with soap.							
Dissolved	Diuretic effect,	500		850	200-500	200	50-3,000	
Solids	unpleasant taste.							
Iron	Unpleasant taste,	0.3	0.5	0.2	0.1 - 1.0			0.1 - 1.0
	stains porcelain							
	and linen.							
Manganese	Unpleasant taste,	0.05	.2-0.5	0.2	0.055	0.02		0.1 - 1.0
	stains porcelain							
	and linen.							
Aluminum	Boiler scale.						0-3	
Suspended	Clogs treatment	S	50	1-10	10-100		0-10	0.3-25
Solids $\frac{3}{2}$	facilities and							
	water courses.							
pH <u>4</u> /	Increases corrosive-	1		7.5			8.0-9.6	
	ness.							

California Water Quality Control Board (1963). U. S. Public Health Service (1962). Turbidity, as silica, in parts per million. Value not to be less than limits shown.


141212

			_	10	~	-	-	-	
	DEPTH OF WELL (FT)	631	320	1365	253	119	109	219	8
	согов	2	3 1	:	;	5		6	1
	Нд	7.	7.3	7.9	6.6	7	6.2	7.5	7.5
	SPECIFIC CONDUCTANCE (MICROMHOS AT 25 ^O C)	263	274	741	121	230	34	253	321
	500s5 2A	0	6	0	∞	7	0	0	S
	hardness as Caco ₃ Noncarbonate hardness	20	150	10	55	118	10	138	171
	DOBI TA NOITA	158	163	1	ł	;	26	;	;
River Basin.	ATOS	y J-3 163	L-10 165	U-3 422	0-2 106	P-5 126	K-3 	DD-5 135	AA-7 172
liver		County .1	unty 3.0	nty .1	nty .1				
ıma F	NITRATE (NO ₃ )		- C	Cou .2	County .3 .1	County .0 3.1	Lounty 0.1 1.5	County .1 .2	County .1 .9
, Alabama	ETNOKIDE (E) CHFOKIDE (CI)	Montgomery 7.8.3	Jefferson Co 4.0 0.1	Monroe County 49 .2 .1	Chilton 2.4	Bibb 2.0	Randolph 1.6 0	Shelby 1.2	Shelby 1.8
samples,		1	Jef			.11e,	Ran		
	(\$08) BTARIUS	omery. 6.6	'ille, 3.9	Monroeville, 0 25	svill( 13	Centreville, 1.0	lowee, 0.2	Columbiana, 0 .2	Montevallo, 0 3.0
ground water	( ₅ 00) ATANOBAAD	f Montgomery, 0 6.6	Trussville, 0 3.9	of Monr 0	f Maplesville, 0 13	of (	of Wedowee, 0 0.2	of Colu 0	of Mont 0
	BICARBONATE (HCO ₃ )	City of 137	City of 172	City ( 342	Town of 57	City 141	Town 14	City ( 163	City 6 202
es of		3.6	1.0	1.4	2.2	ł	1.6	. 2	6.
analyses	POTASSIUM (K) POTASSIUM (K)	48	2.4	164	3.2	2.4	1.6	. 7	1.5
	(gM) MUISENDAM	1.0	3.1	.6	3.6	12	1.0	15	19
Chemical		6.4	55	3.0	16	27	2.4	30	37
1	CALCIUM (ca)	.01 6							
e 9B	(nm) 323NADNAM				2		2	+	:
Tabl	IRON (Fe)	.00	.00	.02	7 8.7	4 .02	5.07	8.04	3.02
xibr	SILICA (Si02)	22	7.8	11	37	9.4	00	7.8	8.3
Appendix Table	Frad TSFT	5-7-73	12-11-69	6-27-67	2-19-70	5-13-69	5-12-70	7-17-69	7-16-69

(	DEPTH OF WELL (FT)	420	237	150	203	409	150	300	200	150
	согок		-	:	1	:	!		!	1
	Hq	6.7	6.0 -	7.6 -	7.7 -	;	7.4 -	7.1 -	7.8 -	5.5
	SPECIFIC CONDUCTA MICROMHOS AT 25 ⁰	123	1	{	;	;	;	1		1
SSE	NONCARBONATE HARDI AONCARBONATE HARDI AONCARBONATE HARDI	0	- [	1	1- I	ł	-	1	1	1
	HARDNESS AS CaCO ₃	18		1	1	1		1	1	
.VED	RESIDUE ON EVAPOR- D ^O 081 TA NOITA	89	1	:	1	;	1	-	-	-
DISSOLVED	CALCULATED	P-6 73	1		- 1			l I	}	:
	( ₅ ON) JTAATIN	County 6 2.0	17.7	0.	0.8	3.2	I I	1	ł	ł
	FLUORIDE (F)			a 0.1	1	ł	1		-	
	CHFORIDE (CI)	Co., Lee 2.6	Alabama 12.4	Alabama 0.5 0	Alabama 1.6	Alabama 7.0	Alabama 2.9	Alabama 10.5	Alabama 54	Alabama 11.0
	(\$02) JTAJUS	ria Gas 1.8	Rockford, 4.0	1 City, 0.8	Talladega, 0.9	Anniston, 0	Gadsden, A 	s Bluff, 6.5	Ashland, A 0.8	Lineville, Alabama 11.0
	( ₅ OS) ETANO88AS	Georgia 0	Rc 	Pell 	Tal	An	 	Hokes 	As 	Lin 
	BICARBONATE (HCO3)	South 61	25.4	122	157.1	157	1	449.3	1	1
	(X) MUISSATO9	1.8	1	ł	1	1	ł	}	ł	ł
p	(&N) MUIDOS	5.2	$\{\cdot\}$	1	1	1	1	1	1	ł
Cont'd	(&M) MUISƏNDAM	1.2	ł	;	ł	ł	1	}	;	ł
9B	CALCIUM (ca)	6.0	1	1	1	-	;		l I	:
	(mm) <b>BEANADNAM</b>		ł	ł	1	ł	ł	1	1	ł
Appendix Table	ІКОИ (Fe)	. 12	1.0	.04	0.4	0.7		0.2	27	0.2
endi	SILICA (Si0 ₂ )	3.9.			0	-			•	
App		5-5-70 3	-	2-8-61	7-19-55	9-22-56	1-26-52	Ì2-3-51	10-27-65	11-24-64
	<b>TEST DATE</b>	<u>ې</u> ا	11	2-2	7	-0	1-	Ì2-	10-	11.

sodium.
as
potassium
plus
*Sodium

(TT) JIE WELL (FT)	1049	945	500	711	420	345	335	194	400	436
согов		ł		1	S	1	7	ъ	0	ł
но		7.4	6.9	6.8	7.5	6.2	6.4	8.1	6.6	7.0
(MICROMHOS AT 25 ^O C)		210	112	06	248	24	38	1780	101	1
400CARBONATE HARDNESS AGCO ₃	I I	0	0	0	ы	0	0	0	0	:
ARDNESS AS CaCO3		4	36	29	na 127	9	5	44	26	ł
CLIDS SOLUTION EVENOR- SECTIDUE ON EVEPOR- CLIDS SOLUTION EVENOR- CLIDS SOLUTION ED SOLUTICOLUTICON ED SOLUTICOLUTICON ED SOLUTICOLUTIC		129	8	1	Alabama 137 1	Y-3 17	ł	ł	86	:
		130	P-2 103	62	Talladega, .2 1.0 130	Cleburne County .0 0.1 18	ł	1 961	91	ł
ITRATE (NO ₃ )	0.5	0.		K-8 5 .1	alla 1.0	urne C. .0 0.1	ty 2.0	K-1 0.7	W-1 2.1	ł
FUORIDE (F)	.	V-3 0.2	County 0.2 0		d, T 0.2	eburi 0	Count	nty 0.6	nty 0.2	ł
стовтре (ст)	Alabai	County 0.6	Tallapoosa ( 4 2.4		Gas Board, 4.2 0.	0	Macon County 1.9 .0 2	Wilcox County 280 0.	Chambers County 2.0 6.0 0.	Alabama 2.0
SULFATE (SO4)	N N	, Perry 4.8	_	a, Dallas, 6.4	and 0.0	Conservation, .0 2.	Tuskegee Institute, 17 0 1.9	Hill, Wil 46		Prattville, 2.0
CCO3) SARBONATE (CO3)	Union	Uniontown, 122 0	of Camp Hill 470	E Selma, 0	Sewage, 0	of 0	ee In 0	of Pine H 498 0	School, 0	Prat 
SICARBONATE (HCO ₃ )	101	Unic 122	Town of Ca 1 47	City of 43	Water, 149	Alabama Department 1.4 0.6 8	Tuskeg 17	City of F 498	Waverly 42	61.0
(X) MUISSATO	I	ł	To 3.1	7.4	burg 0.9	a De 0.6	4.1	1	1.7	ł
(Na) MUIDO	s   ;	8	8.4	2.2	Childersburg 13 1.8 0.9	labama D 1.4 0.6	3.3	372*	8.4	:
Control (Mg) MUISENDAN	۲ ۲	0.4	2.1	3.2	Chi 13	A 0.5	80	2.2	1.9	1
(so) MUIDIA:		1.0	11	6.5	29	1.4	1.2	14	7.2	ł
ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ	4	ł	ł	.13	ł	100.	ł	ł	:	1
Appendix IRON (Fe) Table Table (mp) of the second s	.07	00.	.02	.37	.04	.04.	;	.05	.02	.07
SILICA (Si02)		16	39	13	6.9	7.7	16	27	40	1
ataq tsat g	1-24-41	7-24-68	2-5-70	5-8-73	3-25-63 6	1-20-71 7	4-29-55	8-4-67	9-12-69	9-26-44



APPENDIX 10 -- GEOLOGY AND GROUND WATER PUBLICATIONS.

Appendix Table 10A -- Selected references on ground water availability, Alabama River Basin, Geological Survey of Alabama, December 1974.

## COUNTY REPORTS

- CR 4. Geology and ground water resources of Wilcox County, Alabama, by P. E. LaMoreaux and L. D. Toulmin.
- CR 5. Geology and ground water resources of Marengo County, Alabama, by J. G. Newton, Horace Sutcliffe, Jr., and P. E. LaMoreaux.
- CR 7. Geology and ground water resources of Calhoun County, Alabama, by J. C. Warman and L. V. Causey.

BULLETINS - Equivalent to county reports.

- B 66. Geology and ground water in the Monroeville area, Alabama, by J. B. Ivey.
- B 68A. Geology and ground water resources of Montgomery County, Alabama, with special reference to the Montgomery area, by D. B. Knowles, H. L. Reade, Jr., and J. C. Scott.
- B 68A. Geology and ground water resources of Montgomery County, Alabama, with special reference to the Montgomery area, basic data, by D. B. Knowles, H. L. Reade, Jr., and J. C. Scott.
- B 73. Geology and ground water resources in St. Clair County, Alabama, a reconnaissance report, by L. V. Causey.
- B 74. Geology and ground water resources of Escambia County, Alabama, by J. W. Cagle, Jr., and J. G. Newton.
- B 79. Geology and ground water resources of Cherokee County, Alabama, a reconnaissance report by L. V. Causey.
- B 81. Availability of ground water resources in Talladega County, Alabama, a reconnaissance, by L. V. Causey.

INFORMATION SERIES - Interim reports, preliminary reports, etc.

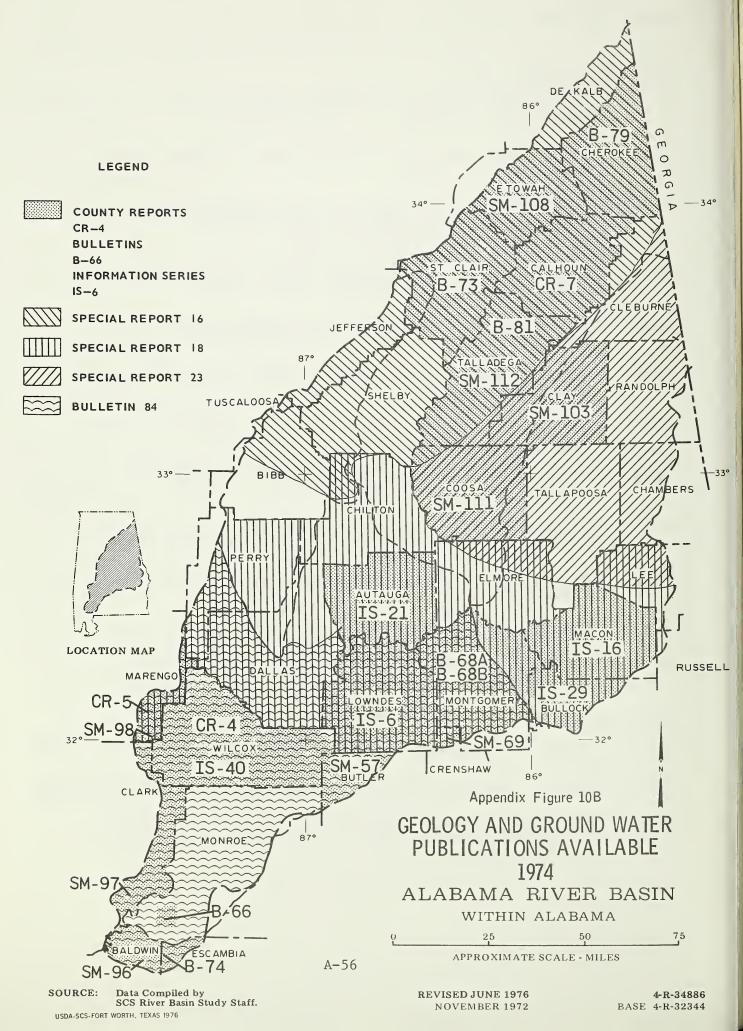
- IS 6. Ground water resources of Lowndes County, Alabama, a reconnaissance report, by J. C. Scott.
- IS 16. Ground water resources of Macon County, Alabama, a reconnaissance report, by J. C. Scott.

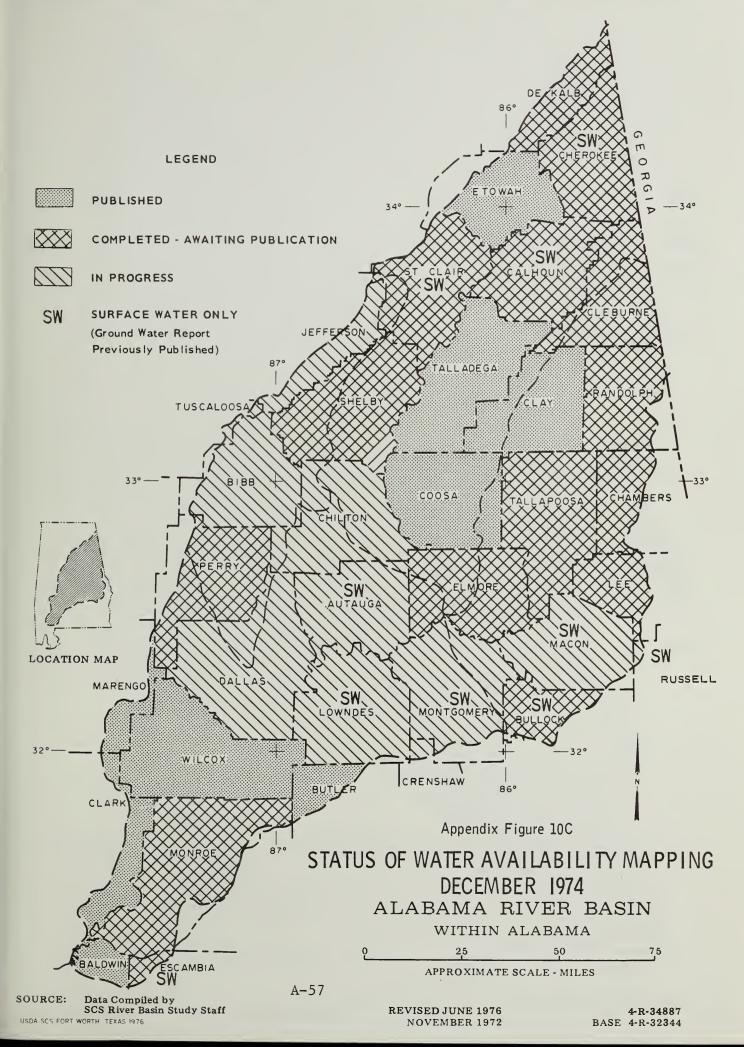
INFORMATION SERIES (Cont'd)

- IS 21. Ground water resources of Autauga County, Alabama, a reconnaissance report, by J. C. Scott.
- IS 29. Ground water resources of Bullock County, Alabama, a reconnaissance report, by J. C. Scott.
- IS 40. Mineral, water, and energy resources of Wilcox County, Alabama.

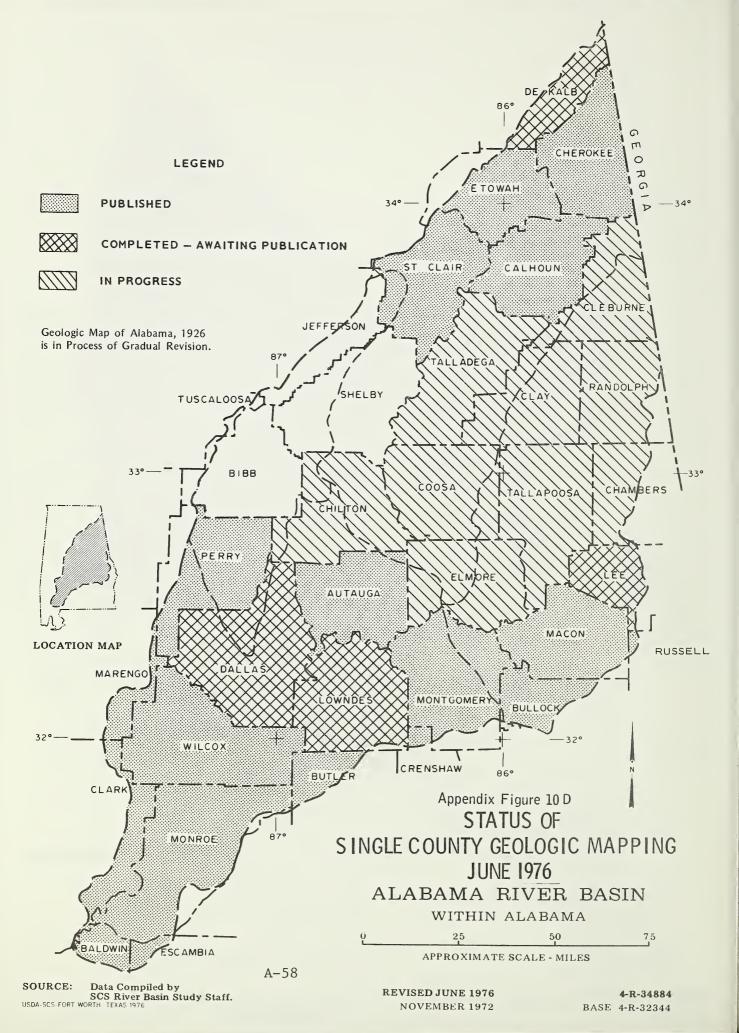
SPECIAL MAPS - Ground water availability maps.

- SM 57. Water availability map of Butler County, Alabama, by J. C. Scott, H. G. Golden, and J. R. Avrett.
- SM 69. Water availability map of Crenshaw County, Alabama, by R. G. McWilliams, J. C. Scott, H. G. Golden, and J. R. Avrett.
- SM 96. Water availability map of Baldwin County, Alabama, by Philip C. Reed and J. F. McCain.
- SM 97. Water availability map of Clarke County, Alabama, by Lawson V. Causey and Jerald F. McCain.
- SM 98. Water availability map of Marengo County, Alabama, by J. G. Newton, J. F. McCain, and A. L. Knight.
- SM 103. Water availability, Clay County, Alabama, by R. C. Chandler, G. C. Lines, and J. C. Scott.
- SM 108. Surface water availability, Etowah County, Alabama, by J. R. Harkins.
- SM 111. Water availability, Coosa County, Alabama, by G. C. Lines.
- SM 112. Surface water availability, Talladega County, Alabama, by J. R. Harkins.

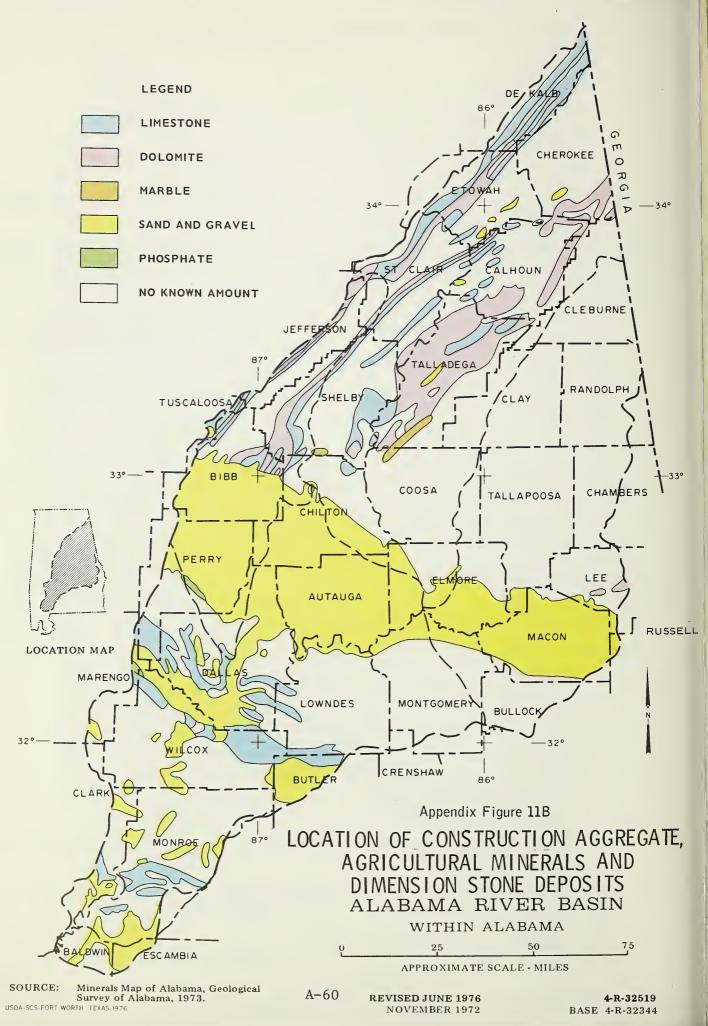

SPECIAL REPORT 16 - Ground waters of Northern Alabama.

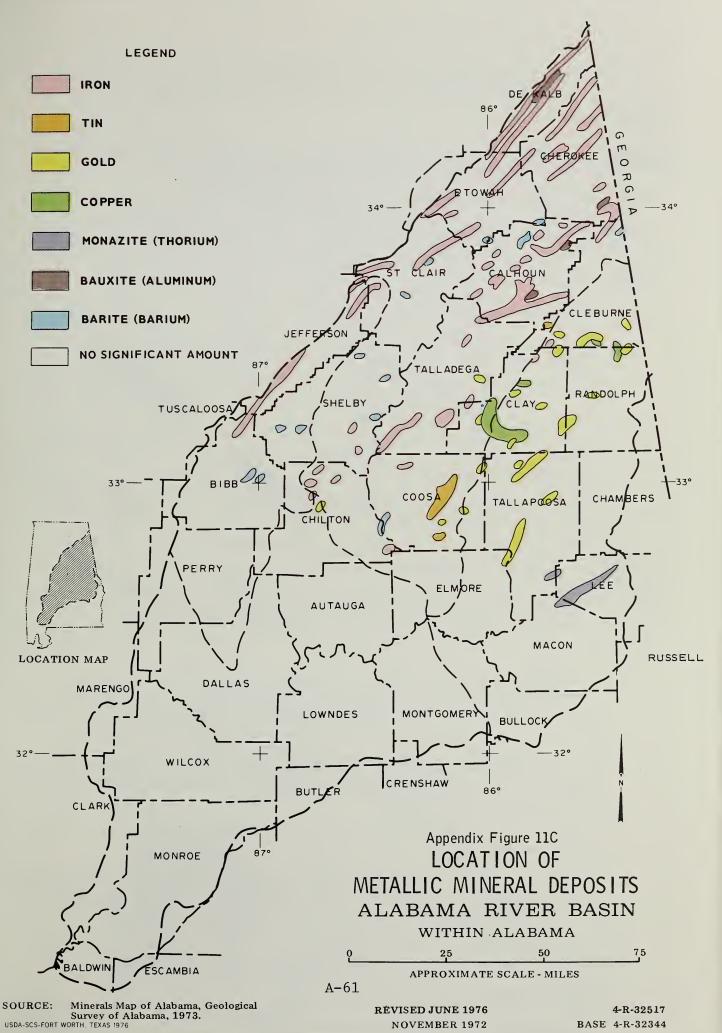

SPECIAL REPORT 18 - Ground water resources of the Cretaceous area of Alabama.

SPECIAL REPORT 23 - Geology and ground water of the Piedmont area of Alabama.

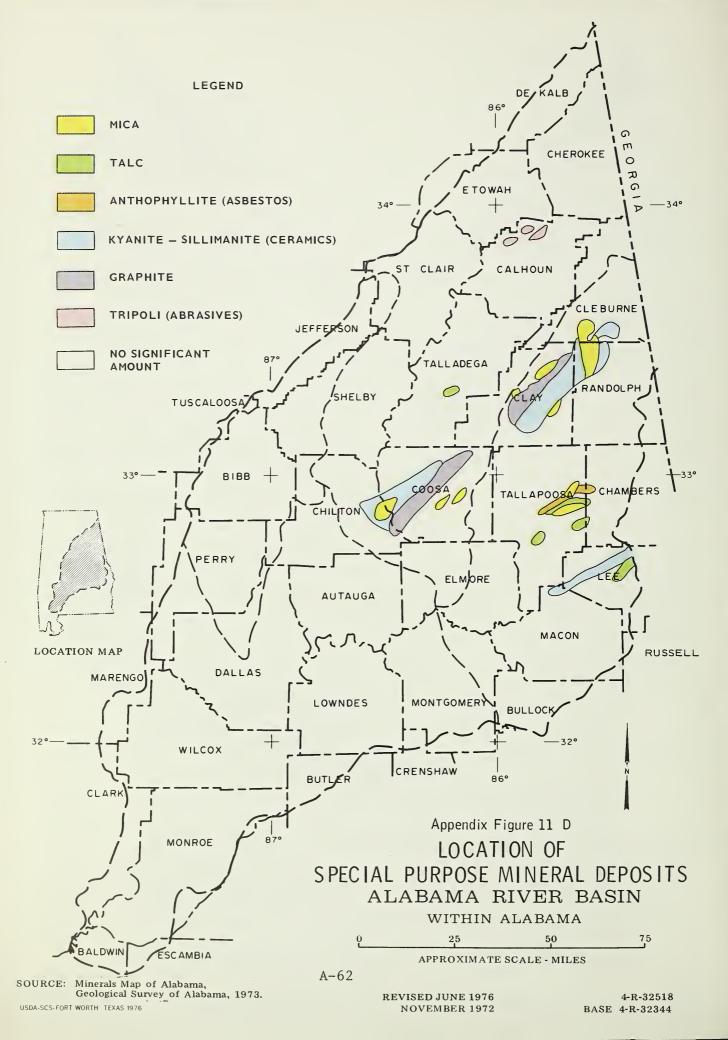

BULLETIN 84 - Surface water in Southwestern Alabama, by L. B. Pierce, with a section on chemical quality of surface water, by S. M. Rogers.

.




U.S. DEPARTMENT OF AGRICULTURE










U.S. DEPARTMENT OF AGRICULTURE



Appendix Ta	ble l	1E ·	 Esti	mated s	trippat	ole res	erves	of	Bitum	ninous	coal	in
			the	Alabama	River	Basin,	by c	ount	ies,	1974.	1/	

	RESERVES CONT	AINED IN BEDS	14 INCHES O	R MORE IN THICKNESS
	0-100 FT. OF (	OVERBURDEN 2/	100-300 FT.	OF OVERBURDEN 2/
		APPROXIMATE		APPROXIMATE
AREA	MILLIONS	MINABLE	MILLIONS	MINABLE
	OF TONS	ACREAGE 3/	OF TONS	ACREAGE 3/
Alahama	627.74	179 740	1 255 49	276 690
Alabama		138,340	1,255.48	276,680
Alabama Basin	80.30	16,250	160.60	32,500
Coosa Subbasin	5.95	1,730	11.90	3,460
Coosa Field	3.24	900	6.48	1,800
St. Clair Co.	2.82	840	5.64	1,680
Shelby Co.	0.42	60	0.84	120
Plateau Field	2.71	830	5.42	1,660
(Lookout Mtn. Porti	on)			
Cherokee Co.	1.04	330	2.08	660
DeKalb Co.	1.67	500	3.34	1,000
Cahaba Subbasin	74.35	14,520	148.70	29,040
Cahaba Field	74.35	14,520	148.70	29,040
Bibb Co.	34.41	6,490	68.82	12,980
Jefferson Co.	8.50	1,570	17.00	3,140
St. Clair Co.	1.56	320	3.12	640
Shelby Co.	29.88	6,140	59.76	12,280

- 1/ Source: Culbertson, Geology and Coal Resources of the Coal-bearing Rocks of Alabama, Geological Survey Bulletin 1182-B, U. S. Geological Survey, Washington, 1964. (Updated to 1974 by Geological Survey of Alabama.)
- 2/ Estimated as directly proportional to Culbertson's reserves under 0-1,000 ft. of overburden; projected strippable depth of 300 feet based on expected advance in technology by 2020 (T. W. Daniel, Geological Survey of Alabama).
- 3/ Based on average thickness as shown in Culbertson's tables and average weight of coal at 1,800 tons per acre foot.

Appendix Table 11F -- Estimated reserves of strippable lignite in the Alabama River Basin, by counties, 1973. 1/

		INED IN THE OAK HILL ING 5 FEET IN THICK-
	NESS AND 0-250	FEET OF OVERBURDEN
AREA		ACREAGE
	MILLIONS OF TONS	POTENTIALLY AFFECTED
Alabama	2,000	228,000
Alabama River Subbasin <u>2</u> /	679	77,600
Marengo County	231	26,400
Wilcox County	448	51,200

- 1/ Daniel, T. W., Jr., <u>A Strippable Lignite Bed in South Alabama</u>, Geological Survey of Alabama Bulletin 101; University, Alabama, 1973.
- 2/ Alabama Subbasin is the only subbasin within the Alabama Basin in which minable lignite occurs.

A<del>.</del>64

BASIN.
RIVER
ALABAMA
用
Р
SOILS
12—
APPENDIX
12 SOILS OF THE ALABAMA I

Appendix Table 12A -- Soil associations and interpretations for selected uses.

	SOIL ASSOCIATION NAME & NO. 1/	DOM1NANT SLOPE (%)	SOLL MAJOR CROPLAND	SOIL SUITABILITY AND MAJOR LIMITATION FOR CROPLAND PASTURELAND	AND FOR D WOODLAND	SEPTIC TANK ABSORPTION FIELDS	1.0CAL ROADS AND STRELTS	SMALL COMMERCIAL BUILDINGS	DWELL INGS W1THOUT BASEMENTS	CAMP AREAS	PICNIC AREAS	PLAY - GROUNDS	PATHS AND TRAILS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	20-50	Poor: slope, large stones	Poor: slope	Good	Severe: slope, depth to rock	Severe: slope	Severc: slope	Severe: slope	Severc: slope, large stones	Severe: slope	Severe: slope, large stones	Severa slope, large stones
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Colbert- Conasauga- Firestone (3)	1-6	Fair: too clayey	Good	Fair: too clayey	Severe: percs slowly	Severe: low strength, shrink- swell	Severe: low strength, shrink- swell	Severe: low strength, shrink- swell	Severe: percs slowly	Moderate: wetness	Severe: M percs slowly	Moderate: wetness
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Conasauga- Firestone- Talbott (4)	1 - 6	Fair: slope, too clayey	lood	Fair: too claycy	Severc: percs slowly	Severe: low stength	Moderate: low strength, shrink- swell	Moderate: low strength, shrink- swell	Moderate percs slowly, wetness	: Moderate: wetness	Moderate: wetness, percs slowly, slopc	Slight
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-10	poot	Good	Good	Slight	Moderate: low strength	Moderate: low strength	Moderate: low strength	Slight	Slight	Slight	Slight
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0-6	liood	Good	poot	Slight	Moderate: low strength	Moderate: low strength	Moderate: low strength	Slight	Slight	Slight	Slight
11)     2-20     Fair: Good     Good     Muderate: stope strength, rock     Noderate: stope stope stope strength, stope strength, stope depth to rock     Noderate: stope depth to depth to depth to rock     Noderate: stope depth to depth to rock     Noderate: stope depth to depth to depth to rock       (12)     0-15     Good     Good     Good     Severe: Moderate: Moderate: Moderate: Moderate: Moderate: Moderate: Moderate: Moderate: Moderate: Took     Noderate: Took     Noderate: Took     Noderate: Took       (14)     0-15     Good     Good     Good     Severe: Sever	Minvale- Bodine- Fullerton (10)	6 - 35	Poor: slope, small stones, droughty		poot	Severe: slope	Severe: slope	Severe: slope	Severe: s lope	Severe:	Severe: stope	Severe: M slope s	Moderate: slope
2-15       Good       Good       Good       Severe:       Moderate:       Moderate:       Moderate:       Moderate:       Slight       S         (12)       0-15       Good       Good       Good       Good       Good       Good       Severe:       Moderate:       Moderate:       Moderate:       Slight       S         (14)       0-15       Good       Good       Good       Good       Good       Severe:       Moderate:       Moderate:       Moderate:       Slight       S         (14)       25-40       Poor:       Poor:       Poor:       Poor:       Severe:       Sever	Minvale- Fullerton (11)	2-20	Fair: slope	iood	Good	Moderate: slope	Moderate: low strength, slope	Severe: slope	Moderate: slope	Moderate slope	Moderate: slope	Moderate: slope	Slight
0-15       Good       Good       Good       Severe:       Moderate:       Moderate:       Moderate:       Slight         1(14)       1       0       depth to       depth to       depth to       depth to       depth to         25-40       Poor:       Poor:       Poor:       Poor:       Severe:       Se	Hartsells- Linker- Albertville (12)	2-15	(jood	(iood	poot	Severe: depth to rock	Moderate: depth to rock	Moderate: slope, depth to rock	Moderate: depth to rock	Slight	Slight	Moderate: slope	Slight
25-40Poor:Poor:Poor:Severe:Severe:Severe:Severe:slope,slope,depthdepthdepthslope,slope,slope,depthdroughtyto rockto rock,to rock,depth todepth toronorosloperock,to rock,to rock,depth tob-40Poor:Poor:Poor:Poor:Slopeslopecdepthdepthdepthdepth toslopeslopeto rockslopeslopeslopeslopesloperockslopeslopeslopeslopesloperockslopeto rockrock, slopeslopesloperocksloperock, slopeslopeslopesloperocksloperock, slopeslopeslopeslope	Hartsells- Wynnville Albertville (14)	0-15	Good	Good	Good	Severe: depth to rock	Moderate: depth to rock	Moderate: depth to rock	Moderate: depth to rock	Slight	Slight	Moderate:	Slight
<ul> <li>6-40 Poor: Poor: Poor: Severe: Se</li></ul>	Hector- Rockland, Limestonc- Allen (15)	25-40	Poor: slope, depth ro rock	Poor: slope, droughty	Poor: depth to rock	Severe: depth to rock, slope	Severe: depth to rock, slope	Severe: slope, depth to rock	Severe: slope, depth to rock	Severe: slope,	Severe: slope,	Severe: slope, depth to rock	Severe: slope
	Montevallo- Townley- Enders (16)	6 - 40	Poor: slope, depth rock	Poor: slope, droughty	Poor: depth to rock	Severc: depth to rock, slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: depth to rock	Severe: slope

PICNIC PLAY- AND AREAS GROUNDS TRAILS	•		Severe: slope slope slope Severe: slope	Severe: slope Severe: slope Severe: slope Moderate: Mo Percs t slowly, c slope slope	Severe: slope Severe: slope slope percs slope slope slope slope slope slope slope slope slope	Severe: slope slope slope slope moderate: percs slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope	Severe: slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slop	ate: Severe: ' ate: Severe: ' ate: Severe: ' ate: Severe: Mo ate: Moderate: Mo slope Mo slope S e'e: Severe: Mo ate: Severe: S slope S e'e: Severe: Mo slope S e'e: Severe: Mo slope S e'e: Severe: Mo slope S e'e: Severe: S e'e: S e'e: Severe: S e'e: Severe: S e'e: Severe: S e'e: S e'e: Severe: S e'e: S	ate: Severe: " ate: Severe: " "ate: Severe: " "ate: Severe: Mo "ate: Moderate: Mo "ate: Severe: Mo " " " " " " " " " " " " " " " " " " "	ate: Severe: slope 'ate: slope 'ate: slope 'ate: slope 'slope 'slope 'slope 's slope
	Moderate: slope	Moderate: slope	Moderate: slope Moderate: slope	Moderate: slope Moderate: slope Moderate: too clayey	Moderate: slope Moderate: slope too clayey clayey slope slope	Moderate: slope Moderate: Moderate: too clayey Severe: slope slope	Moderate: slope Moderate: slope too clayey Severe: slope slope slope slope slope	Moderate: slope slope Moderate: too clayey Severe: slope slope slope slope slope slope	Moderate: slope slope Moderate: Moderate: Clayey clayey Severe: slope slope slope slope slope slope slope slope	Moderate: slope slope Moderate: Moderate: clayey slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope slope
ite:	ite:		ate:	te: ,	te ::		tte:	te : : : : : : : : : : : : : : : : : : :		
Moderate: Modera slope slope Moderate: Modera		Moderate: Moder				at a st				at a t a t a a at t
Severe: Mode slope slop Severe: Mode slope slop		Severe: Mode slope slop		Severe: Seve shrink- shri swell swel						
Moderate: low strength Moderate: low strength		Moderate: low strength	ere:	low strength, shrink- swell		gth :: :: t	é, e e	- 	<del>.</del>	
Moderate: percs slowly Moderate: percs slowly		Moderate: percs slowly	Severe: percs	slowly	siowly Severe: slope	siowly Severe: slope Severe: slope	<pre>\$iowly Severe: slope Severe: slope Moderate: slope, percs slowly</pre>	<pre>\$iowly Severe: slope Severe: slope Moderate: slope, percs slope, slowly</pre>	<pre>\$iowly Severe: slope Severe: slope Moderate: slope, percs slope, percs slope, percs slope, tock to rock</pre>	<pre>\$iowly Severe: slope Severe: slope Moderate: slope, percs slope, percs slope, tock for to rock slowly, slope, tock slowly, slope, tock slowly, tock slowly, tock</pre>
Good		Good	Fair: too	clayey	c layey Good	c layey Good Good	c layey Good Good	c layey Good Good Good	c layey Good Good Good Good	clayey Good Good Good Good Good Caod to clayey, to rock
bood Good		Good	Good		Good	Good Fair: slope	Good Fair: slope Fair: slope	Good Fair: slope slope slope Good	Good Fair: slope fair: slope Poor: slope	Good Fair: slope fair: slope Poor: slope Fair: droughty
Fair: slope Poor: slope		Fair: slope	Fair: too clayey		Fair: slope	Fair: slope Poor: slope	Fair: slope Poor: slope Poor: slope	Fair: slope Poor: slope slope fair: slope, droughty	Fair: slope Poor: slope slope fair: slope, droughty foor: slope, droughty	Fair: slope poor: slope fair: slope, droughty droughty poor: poor: droughty
2-15	2-25	2-30	2-10		2-30	2-30 6-40	2-30 6-40 2-25	2-30 6-40 2-25 1-25	2-30 6-40 2-25 1-25 6-50	2-30 6-40 2-25 1-25 6-50 3-17
Appling-	Cecil (17) Cecil- Grover- Madison (18)	Davidson- Hiwassee- Gwinnett (19)	Iredell- Mecklenburg (20)		Gwinnett- Cecil- Appling (21)			Gwinnett- Cecil- Appling (21) Madison- Louisa (22) Tallapoosa (23) Musella- Gwinnett- Gwinnett- Cwinnett-	Gwinnett- Cecil- Appling (21) Madison- Louisa (22) Tallapoosa (23) Hiwassee (24) Hiwassee (24) Tallapoosa- Tallapoosa- Tatum (25)	Gwinnett- Cecil- Appling (21) Madison- (22) Louisa (23) Musella- Gwinnett- Gwinnett- Gwinnett- Tallapoosa- Tallapoosa- Tatum (25) Demopolis- Sumter- Oktibbeha (26)

Appendix Table 12A -- Cont'd

Appendix Table 12A -- Cont'd

Wilcor- Maynew- Lutaw0-5 too clayeyPoor: too clayeyFair: clayeyGood too clayeyBoswell- Susquehanna292-15Fair: clayeyGood coodGoodBoswell- Susquehanna292-15Fair: clayeyGood clayeyGood coodBoswell- Susquehanna292-15Fair: clayeyGood clayeyGood coodBoswell- Susquehanna2-15Poor: slopeFair: slopeGood coodGood coodDothan- Fuquay- Boswell2-15Poor: slopeFair: slopeGood coodGood coodDothan- Pansey0-5Good slopeGood coodGood coodGood coodMalbis- Boswell0-5Good slopeGood coodGood coodGood coodDothan- Luverne- Bay Dothan-Troup2-15Fair: slopeGood coodGood coodLuverne- Luverne- Bay Stough0-5Good coodGood coodGood coodLuverne- Luverne- Stough0-6Good coodGood coodGood coodGood coodLuverne- Luverne- Stough0-5Poor: slopeFair: slopeGood coodGood coodGood coodLuverne- Luverne- Stough0-6Good coodGood coodGood coodGood coodGood coodLuverne- Luverne- Stough0-5Poor: slopeFair: slopeGood <br< th=""><th>ood Severe: percs slowly Severe: percs slowly percs slowly slowly slowly slowly</th><th>Severe: shrink- swell, low strength Severe: low</th><th>Severe:</th><th></th><th></th><th></th><th>GROUNDS</th><th>IKAILS</th></br<>	ood Severe: percs slowly Severe: percs slowly percs slowly slowly slowly slowly	Severe: shrink- swell, low strength Severe: low	Severe:				GROUNDS	IKAILS
		Severe: low	shrink- swell, low strength	Severe: shrink- swell, low strength	Severe: percs slowly	Moderate: too clayey, wetness	Severe: percs slowly	Moderate wetness, too clayey
2-15 Good Good 6-30 Poor: Fair: 6-30 Poor: Fair: 0-5 Good Good 2-15 Fair: Good 2-10 Fair: Good a (39) 0-5 Good Good a (39) 0-5 Good Good a (39) 0-5 Good Good a (37) Slope slope Slope Slope 1000 Good 5-30 Poor: Fair:		strength shrink- swell	Severe: low strength, shrink- swell	Severc: low strength, shrink- swell	Severe: percs slowly	Moderate: slope, wetness	Severe: percs slowly, slope	Moderat <b>e</b> wetness
6-30 Poor: Fair: 0-5 Good Good 2-15 Fair: Good 2-15 Fair: Good 2-10 Fair: Good 2-10 Fair: Good 13(3) 0-5 Good Good 13(3) 0-5 Good Good 13(3) 0-5 Good Good 14(3) 6-35 Poor: Fair: 10 (43) 6-35 Poor: Fair:		Slight	Moderate: slope	Slight	Slight	Slight	Moderate: Slight slope	: Slight
0-5 Good Good 2-15 Fair: Good 2-10 Fair: Good 2-10 Fair: Good (37) . Slope (37) . Good Good .0-6 Good Good .0-6 Good Good .0-6 Good Good .0-6 Good Good .0-6 Good Good	61 401 6	Severe: slope, low strength	Severe: slope, low strength	Severe: slope, low strength	Severe: slope	Severe: slope	Severe: slope	Moderat <b>e</b> slope
2-15Fair:Good2-10Fair:Good37)-Slope39)0-5Good39)0-6Good0-6GoodGood(43)6-35Poor:5-30Poor:Fair:slopeslopeslopeslopeslopeslopeslope	od Moderate: percs slowly	Moderate: low strength	Slight	Slight	Slight	Slight	Moderate: Slight slope	: Slight
2-10 Fair: Good 37) slope 39) 0-5 Good Good 0-6 Good Good (43) slope Fair: 5-30 Poor: Fair:	od Slight	Slight	Moderate: slope	Slight	Slight	Slight	Moderate: slope	: Slight
<ul> <li>39) 0-5 Good Good</li> <li>.0-6 Good Good</li> <li>.0-6 sood sood</li> <li>(43)</li> <li>5-30 Poor: Fair:</li> <li>slone slone</li> </ul>	od Slight	Slight	Moderate: slope	Slight	Slight	Slight	Moderate: Slight slope	: Slight
.0-6 Good Good (43) 5-30 Poor: Fair: 5-30 Poor: Fair: slone slone	od Slight	Slight	Slight	Slight	Slight	Slight	Slight	Slight
(43) 5-35 Poor: Fair: (43) 5-30 Poor: Fair: slone slone	od Severe: percs slowly	Moderate: low strength	Moderate: wetness	Moderate:	Slight	Slight	Moderate: sjope	: Slight
5-30 Poor: Fair: slone slone	ood Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Moderat <i>e</i> slope
	od Severe: slope	Severe: slope	Severe: slopc	Severe: slope	Severe: slope	Severe: s lope	Severe: slope	Moderate slope
Smithton- 0-5 Poor: Fair: Good Escambia-Troup(45) wetness wetness	od Severe: wetness	Severe: wetness	Severe: wetness	Severe: wetness	Severe: wetness	Severe: wetness	Severe: wetness	Severe: wetness
Troup-Alaga- 0-6 Fair: Fair: Good Lucy (46) droughty droughty	od Slight	Slight	Slight	Slight	Moderate: too sandy	Moderate: too sandy	Severe: too sandy	Moderate too sandy

A-67

.

Appendix Table 12A -- Cont'd

Soil	DOMINANT		SOTI, SHITABILITY AND	0	SEPTIC TANK	LOCAL.	SMALL SMALL	SOIL LIMITATIONS FOR DWELLINGS	JR			PATHS
	SLOPE		MAJOR LIMITATION FOR	R Income	ABSORPTION	ROADS AND	COMMERCIAL	WITHOUT	CAMP	PICNIC	PLAY -	AND
NAME & NU. 1/	(%)	CKOPLAND	CROPLAND PASIUKELAND WOODLAND	MOODLAND	FIELUS	SIREEIS	BUILDINGS	BASEMENTS	AKEAS	AKEAS	(rkonnds	IRAILS
Troup- Luverne- Dothan- Orangeburg (47)	2-30	Poor: slope	Poor: slope	Good	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Moderate too sandy, slope
Troup- Smithdale- Esto (49)	2-25	Poor: slope	Poor: slope	Good	Severe: slope	Severe: s¦lope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Severe: slope	Moderate too sandy, slope
Luverne- Boswell- Quitman- Smithdale (51)	0-30	Fair: slope	Fair: slope	Good	Severe: slope, percs slowly	Severc: low strength, slope	Severe: low strength, slope	Severe: low strength, slope	Severe: slope	Severe: slope	Severe: slope	Moderate slope
Cahaba- Chewacla- Myatt (53)	0-5	Good	Good	Good	Severe: floods	Severe: floods	Severe: floods	Severe: floods	Severe: floods	Severe: floods	Severe: floods	Severe: floods

Soil association numbers correspond to those used on the General Soil Map of Alabama; SCS and Alabama Agricultural Experiement Station, Auburn University, Auburn, Alabama 1974. 7

Appendix Table 128	SERIES AND <u>1</u> / ASSOCIATION NO. <u>1</u> /	Alaga [ (46) i	Albertville E (12) i (14) c c	Allen [6]	Appling E (17)	Bama
Appendix Table 12B Selected properties of soil series found within soil associations shown in figure 2-12.	PROFILE CHARACTERISTICS	Deep soil with brown- ish & yellowish sandy surface & subsoil.	Deep soil with brown- ish loamy surface over brownish clayey subsoil.	Deep soil with brown- ish loany surface over reddish loany subsoil.	Deep soil with brown- ish loamy surface over brownish & yellow- ish clayey subsoil.	Deep soil with brown- well
of soil ser	DRA INAGE CLASS	well to somewhat excessive	well	well	well-	well
ies found	PERME- ABILITY CLASS	rapid	mod. slow	. pou	. pom	. pom
within soil	REACTION 2/	strongly acid	strongly acid	strongly acid	strongly acid	strongly
l associa	DEPTH TO BEDROCK HARD RIP	60	60	60	60	60
ations sho	I TO K (IN.) RIPPABLE	60	40-72	60	40-60	60
own in fi	HIGH M DEPTH (FT.)	¢	ې	Ŷ	Q	ç
igure 2-	HIGH WATER TABLE EPTH FT.) KIND NONT	1	ı	I.	1	I
.12.	III				1	ī
	F FRE- QUENCY	none	none	none	none	none
	FLOODING DURATION MONTHS	I	1		1	,
	SHLLNOW		ł	,	1	ł
	SIRTINK - SWELL POTENTIAL (SUBSOIL)	low	moderate	low	moderate	low
	SLOPE RANGE (%)	0-25	2-25	2-40	0-15	0-12

	0-15	0-12	5-60	r.  -	0 - 5	52-()	15-60	~ - 0
	moderate	low	low	high	low	moderate	low	low
	I	,	I.		Nov - Feb	,		Feb- May
	1	r	T		very bricf	,	,	brief
	none	none	none	none	none - occasional	none	none	frequent
	1	I.	i.	1	1	1	r.	Nov- Apr
	1		ł		1		ı	appar- rent
	ç	ع	S	S	6	+ ¢	¢\$	1.0-1.5 appar- Nov- rent Apr
	40-60	09	6()	99	÷09	+()9	1	÷09
	60	90	99	09	• 09	+()9	20-40	+ () 9
acid	st rongly acid	strongly acid	strongly acid	strongly acid	strongly acid	st rongly acid	st rongly acid	strongly acid
	. pom	. po <b>m</b>	rapid	very slow	. po	. po <b>m</b>	. pom	. pom
	well	well	somewhat excessive	moderately well	well	well	well	somewhat poorly
ish loany surface over reddish loany subsoil.	Deep soil with brown- ish loamy surface over brownish & yellow- ish clayey subsoil.	Deep soil with brown- ish loamy surface over reddish loamy subsoil.	Deep soil with brown- ish loamy & cherty surface & subsoil.	Deep soil with brown- ish loany surfaces & reddish & grayish subsoils.	Deep soil with brown- ish loamy surface over reddish loamy subsoil.	Deep soil with brown- ish loamy surface over reddish clayey subsoil.	Moderately deep soil with brownish, stony, loamy surface & subsoil.	Deep soil with brown- ish loamy surface over brownish & gray- ish loamy subsoil.
(9)	Appling (17)	Bama (39)	bodine (10)	Boswell (33) (29)	Cahaba (53)	Cecil (17) (18) (21)	Cheaha (2)	Chewacla (8)

J         Constraints         Class         J         Gene of the binomial classes         Classes         Classes <thclasses< th="">         Classes         <thclas< th=""><th>SERIES AND</th><th></th><th>DRAINAGE</th><th>PERME- ABILITY</th><th>REACTION</th><th>DEPTH TO BEDROCK</th><th>TO K (IN.)</th><th>HIGH</th><th>HIGH WATER TABLE EPTH</th><th><b>TABLE</b></th><th>FRE-</th><th>-</th><th></th><th>Po. S</th><th>SHR INK - SWELL POTENTIAL</th></thclas<></thclasses<>	SERIES AND		DRAINAGE	PERME- ABILITY	REACTION	DEPTH TO BEDROCK	TO K (IN.)	HIGH	HIGH WATER TABLE EPTH	<b>TABLE</b>	FRE-	-		Po. S	SHR INK - SWELL POTENTIAL
ItDery solit sith brownishandertetyVery andStrong by andDery andDery andDery andDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDery andDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDeryDery	ASSOCIATION NO.	1/ CHAR	CLASS	CLASS	2/	HARD	RIPPABLE	(FT.)	KIND	MONTHS	QUENCY	DURATION	MONTHS	(SUBSOIL)	011.)
sugaModerately deep soil active bounds) and suffice overtholismsdoef actively active bounds) and suffice overtholismsdoef actively active bounds)doef actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively actively acti	Colbert (3)	Deep soil with brownish loamy surface over brownish clayey subsoil		very slow	strongly acid	40-60	r	+ y	ı.	•	none	1	ı	high	
SolutionDeep solution thrownish distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions distinctions 	Consasuga (4)	Moderately deep soil with brownish loamy surface over brownish clayey subsoil.	moderately well	slow	strongly acid	+09	20-40	* \$	ı		none		,	high	
urDeep soil with brownish dish cirkby subsoil.wellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwellwell <th< td=""><td>Davidson (19)</td><td>Deep soil with brownish loamy surface over red- dish clayey subsoil.</td><td></td><td>. pom</td><td>st rongly ac id</td><td>+09</td><td>÷09</td><td>¢*</td><td></td><td></td><td>none</td><td></td><td>,</td><td>moder</td><td>ate</td></th<>	Davidson (19)	Deep soil with brownish loamy surface over red- dish clayey subsoil.		. pom	st rongly ac id	+09	÷09	¢*			none		,	moder	ate
OlisShallow calcarcous soilwellmod.mod.mod.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.i.l.	Decatur (6)	Deep soil with brownish loamy surface over red- dish clayey subsoil.		. pom	very strongly acid	+04	+09	÷	•		none	1	ı	moder	ate
Deep soil with brownish well       mod. strongly       strongly       600       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60	Demopolis (26)	Shallow calcareous soil with brownish loamy surface over chalk.		. pom	mod. alkaline	+()9	1- Ite	֍			none			moder	ate
an       Deep soil with brownish well       woll.       strongly       60+       5.5-4.5       perched Jan-       none       -       -       -         is ubsoil.       subsoil.       slow       acid       slow       acid       Apr       Apr       none       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	Dewey (6)	Deep soil with brownish loamy surface over red- dish clayey subsoil.		. pom	st rongly acid	+09	+09	÷.	I.		none		•	moder	ate
¹⁵ Dep soil with brownish well very very both the total loamy surface over redish clayey strongly face over redish clayey somewhat slow strongly be total loamy surfaces over poorly strongly strongly for the total loamy surfaces over poorly strongly strongly for the total loamy surface over a moderately strongly strongly for the total loamy surface over a moderately activity strongly activity is strongly for the total loamy surface over a moderately activity strongly for total loamy surface over a moderately activity activity activity is strongly activity strongly activity brown.	Dothan (30) (36)	Deep soil with brownish loamy surface and subsoil.	we11	mod. slow	st rongly acid	+(19)			perchec	J Jan- Apr	none			low	
DiamDeep soil with brownishsomewhatslowvery60+60+1.5-2.5Appar-lec-none-loamy surfaces overpoorlystronglystronglycutNarvellowish loamy subsoilsthat have grayish andstronglyentNarthat have grayish andreddish mottles in theentNarlower part.beep soil with brownishwell orslowvery60+60+60+-noneDeep soil with brownishwell orslowvery60+60+60+nonenoamy surface over amoderatelystronglyacidacidacid	Enders (16)	Deep soil with brownish gravelly and loamy sur- face over reddish cluye; subsoil with grayish mottles in lower part.	~	very slow	very strongly acid		40-96	* G		ı	none			high	
Deep soil with brownish well or slow very 60+ 60+ 60+ none	Escambia (45)	Deep soil with brownish loamy surfaces over yellowish loamy subsoil that have grayish and reddish mottles in thc lower part.		s low	very strongly	•09	*09	1.5-2.5	Appar- ent		none		•	low	
	Esto (49)	Deep soil with brownish loamy surface over a clayey subsoil that is mottled in shades of yellow, gray, brown, and red.		slow	very strongly acid	•09	*09	¢	(	1. 1	none		•	moder	ate

Appendix Table 12B -- Cont'd

<u> </u>
-
Con
0
0
1
-
3
- i-
_
6)
Tabl
· ·
ment .
X
5
0
X
0
2

IK- L SLOPE 11AL RANGE 01L) (°)	0- 2	2-25	- 40	1-5	ate 3-25	ate 2-45	3-35	2-60	ate 2-25	0- 20	0-10
SHRINK- SWELL POTENTIAL (SUBSOIL)	very high	high	Ток	low	moderate	moderate	low	low	moderate	low	very high
SHLNOW	i.	1	•	,	i.	,	•	,			i.
FLOODING DURATION		ı.				1		•			
FRE- QUENCY	none	none	none	none	none	none	none	none	none	none	none
ABLE	Dec- Apr	1		4	1	ı.			i.		Nov- Mar
HIGH WATER TABLE EPTH FT.) KIND MONT	perched	1		1		1	•	1	1		perched
HIGH DEPTH (FT.)	0.5	÷9	ż	÷ \$	* s	* 9	* <b>\$</b>	÷.	÷	¢*	1-2
DEPTH TO BEDROCK (IN.) HARD RIPPABLE	60+	20-40	+ 09	÷0+	•09	20-40			+ ()9	+09	20-40
DEPTH TO BEDROCK HARD R1P	+09	÷09	+09	+ ()9	+()+	•09	20-40	10-20	+09	•09	40-60
REACTION 2/	extremely acid	very strongly acid	very strongly acid	strongly acid	strongly acid	strongly acid	very strongly acid	strongly acid	medium acid	very strongly acid.	neutral
PERME- ABILITY CLASS	very slow	s low	. pom	slow	. pom	. pom	. pou	mod. rapid	. pou	. pom	s low
DRA1NAGE CLASS	poorly	we 1 1	we 1 1	wel1	we11	wc11	well	wc   ]	well	well	moderately well to somewhat poorly
PROFILE CHARACTERISTICS	Deep woil with grayish clayey surface and sub- soil.	Moderately deep soil with brownish loamy and gravelly surface over reddish clayey subsoil.	Deep soil with brownish well cherty and loamy sur- face over reddish cherty and clayey subsoil.	Deep soil with thick brownish sandy sur- faces over brownish loamy subsoil.	Deep soil with brown- ish loamy surface brownish and reddish loamy subsoil.	Moderately deep soil with reddish loamy surface over reddish claycy subsoil.	Moderately deep soil with brownish loamy surfaces and subsoils.	Shallow soil with brownish gravelly surface over brownish laomy subsoil.	Deep soil with brown- ish loamy surface over reddish clayey subsoil.	Deep soil with brown- ish loamy surface and subsoil.	Moderately deep soil with brownish loamy surface over brownish clayey subsoil.
SERIES AND ASSOCIATION NO.	Eutaw (28)	Firestone (3)	Fullerton (10)	Fuquay (30)	Grover (18)	Gwinnett (21)	Hartsells (12)	Hector (15)	Hiwassee (19)	Holston (8)	Irede11 (20)

SERIES AND ASSOCIATION NO.			PERME-		DEPTH TO		HIGH	HIGH WATER TABLE	BLE		FLOODING		SWELL	SLOPE
	PROFILE CHARACTERISTICS	DRAINAGE CLASS	ABILITY CLASS	REACT ION 2/	BEDROCK (IN.) HARD RIPPABLE	(IN.) IPPABLE	DEPTH (FT.)	KIND M	MONTHS	FRE- QUENCY	DURATION	MONTHS	POTENTIAL (SUBSOIL)	RANGE (%)
Leeper (27)	Deep soil with brownish loamy surface over brownish and grayish clayey subsoil.	somewhat poorly	very slow	moderately alkaline	+09	÷0+	1 1	appar- ent	Jan- Mar	common	hrief	Jan- Mar	high	0-3
Leesburg (2)	Deep soil with brownish gravelly and loamy sur- face and subsoil.	we]]	. pom	very strongly acid	60+	+09	6+		1	none	ı	1	low	2-30
Linker (12)	Moderately deep soil with brownish loamy surface over reddish loamy subsoil.	we]]	. pom	very strongly acid	20-40		<b>*</b> 9	ı	ı	none		,	low	1 - 20
Louisa (22)	Shallow soil with brown- ish gravelly and loamy surface and subsoils.	well to somewhat excessively	mod. rapid	very strongly acid	36-120	10-20	÷9	ı		none	ı	ı	low	2-40
Lucedale (39)	Deep soil with reddish and brownish loamy subsoil.	we]]	mod.	strongly acid	+()9	+09	÷9	ı		none	i	,	low	0-15
Lucy (46)	Deep soil with thick brownish sandy surface over reddish loamy subsoil.	we]]	. pom	strongly acid	•09	¢()+	<b>+</b> 9	ı		none	ı	ı	low	0-15
Luverne (33) (51)	Moderately deep soil with brownish loamy surface over reddish clayey subsoil over stratified materials.	we 1 1	mod. slow	strongly acid	+0+	+09	¢		I.	none	,	ı	moderate	0-35
Madison (22)	Moderately deep soil with brownish loamy and gravelly surface over reddish clayey subsoil.	we 1 1	. pom	st rong ly acid	36-120	21-48	¢		I.	none	•		moderate	0-35
Malbis (34)	Deep soil with brownish loamy surface and sub-	moderately well	mod. slow	strongly acid	+09	+()9	2.5-4	perched	Dec- Mar	none	·	ı	low	0-8
Mayhew (28)	Deep soil with brownish loamy surface over gray- ish clayey subsoil.	poorly	very slow	very strongly	÷()9	+09	0-1	appar- ent	Jan- Mar	none	,	ı.	high	1-12
McQueen (8)	Deep soil with brownish loamy surface over red- dish clayey subsoil.	well	slow	strongly acid	÷09	+09	ę.	ı	ı	occa- sional rare	hrief to very hrief	Jan- Mar	moderate	9-0

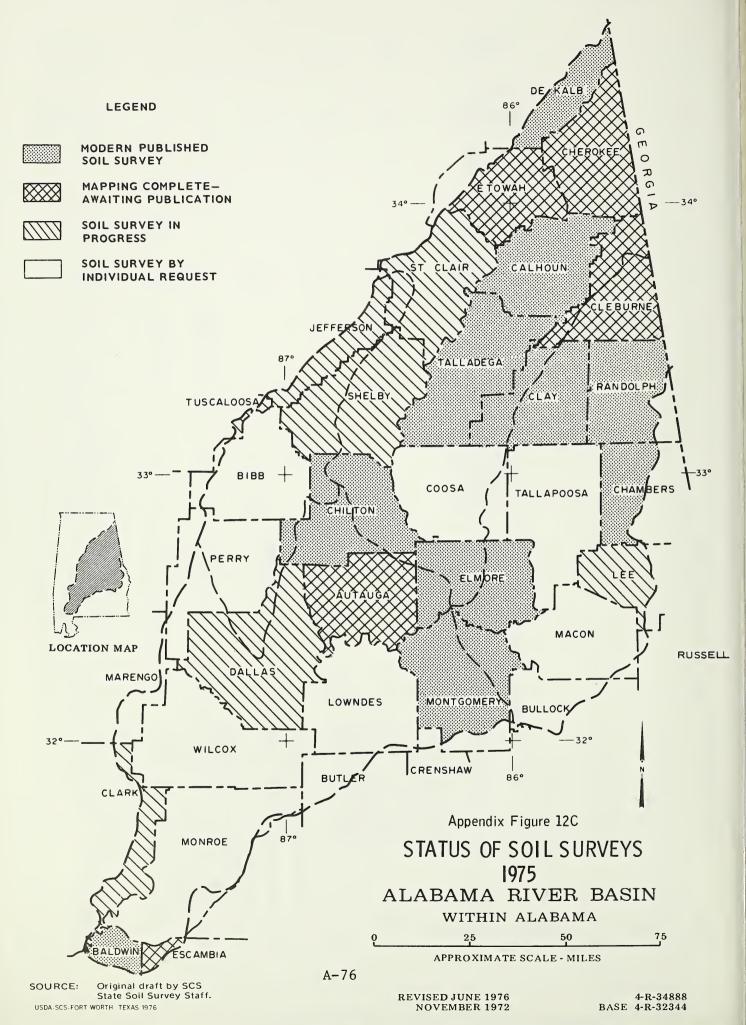
Appendix Table 12B -- Cont'd

Ρ
•
Cont
5
പ്
-
1
i .
8
28
•
6
Table
Ë.
×
vendix
2
ā.
a
-

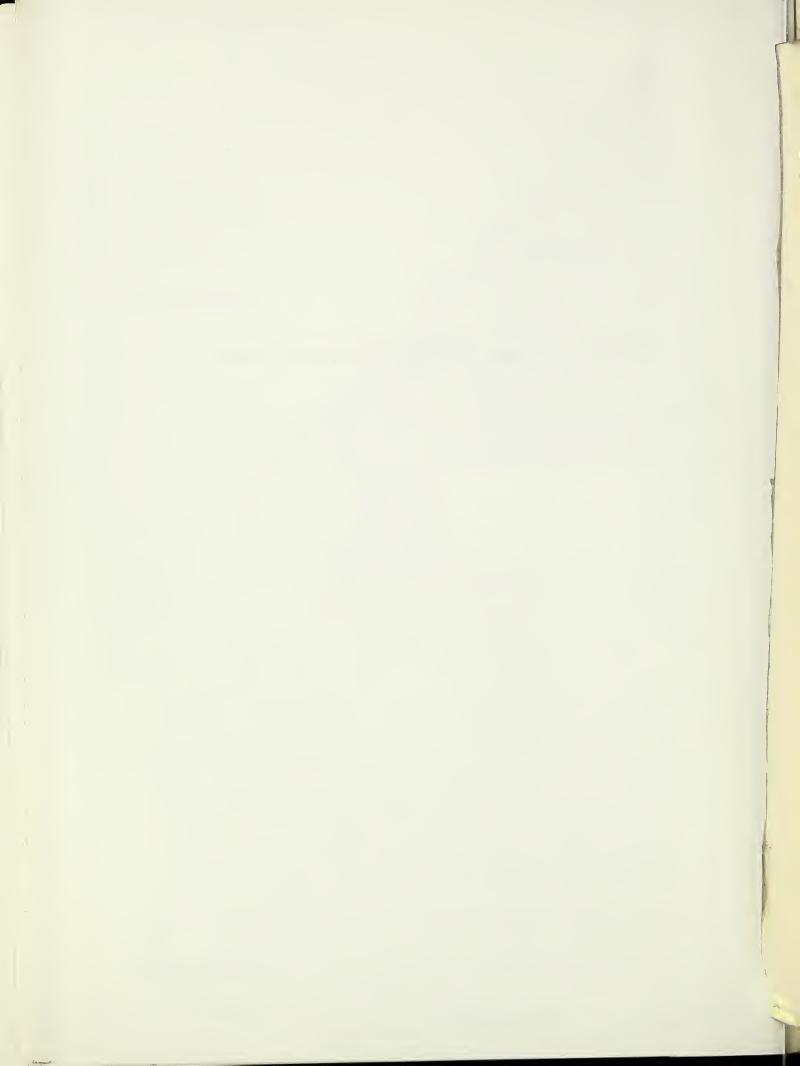
			DEDME		DEDTH TO		HICH	ATED T/	BIE		ELOOD I VC		SHR INK - SWELL	SLODE
SERIES AND ASSOCIATION NO.	PROFILE 2/ CHARACTERISTICS	DRA INAGE CLASS	ABILITY CLASS	REACTION 2/	BEDROCK HARD RI	CK (IN.) RIPPABLE	DEPTH (FT.)	DEPTH (FT.) KIND MONT	MONTHS	FRE - QUENCY	DURATION	MONTHS	POTENTIAL (SUBSOIL)	RANGE (%)
Mecklenburg (20)	Moderately deep soil with brownish loamy surface over reddish clayey sub- soils.	well	slow	slightly acid	48-96	20-45	¢			none	•	ı	moderate	2-20
Minvale (10) (11)	Deep soil with brownish cherty and loamy surface over reddish cherty and loamy subsoil.	we]]	. pom	strongly acid	+09	÷0+	÷ 9	I.	1	none		·	low	2-45
Montevallo (16)	Shallow soil with grayish shaly and loamy surface over brownish shaly and loamy subsoil.	wel]	. ров	strongly acid	+09	10-20	¢	,	i.	none	•		low	5+-2
Muse 11a (24)	Shallow soil with brown- ish gravelly and loamy surface over reddish gravelly and loamy sub- soil.	well	. pod	medium acid	40-60	10-20	÷.	•		none	1	•	low	6-60
Myatt (53)	Deep soil with grayish loamy surface and subsoil.	poorly	slow	very strongly	+04	+ () 9	0-1-0	appar- ent	Nov-	common	brief	Nov- Mar	low	<b>C-0</b>
Oktibbeha (26)	Moderately deep soil with brownish clayey surface over reddish clayey sub- soil.	mod. well	very slow	very strongly acid	+ ()9	20-50	+ ç	i.	i.	none	ı	i.	high	1-12
Orangeburg (34)	Deep soil with brownish loamy surface over red- dish loamy subsoil.	well	. po	very strongly acid	+()4	4U+	•9		1	none	ı	ı	low	0-15
Pansey (34)	Deep soil with grayish loamy surface and subsoil.	poorly.	slow	st rongly ac i d	+()9	+()+	0-1.5	appar- ent	Dec- Mar	common	hrief	Dec- Mar	low	2-0
Quitman (51)	Deep soil with brownish loamy surface and subsoil.	somewhat . poorly to moderately well	. pom	st rongly acid	+()()	60+	1.5-2.0	perched Jan- Mar	Jan- Mar	none	1	1	lo.	-0 0
Red Bay (36) (37)	Deep soil with brownish loamy surface over red- dish loamy subsoil.	well	, bom	strongly acid	()() +	4()+	* 9	i.	I.	none	i.	i.	low	-15
Ruston (41)	Deep soil with brownish loamy surface over red- dish loamy subsoil.	we]]	. pom	strongly acid	+04	+()4	+ c	ı	•	none	i.		low	0 - 8
Savannah (41)	Deep soil with a fragipan, mod. brownish loamy surface, well subsoil, and fragipan.	, mod. well	mod. slow	very strongly	+09	+()4	1.5-5	1.5-5 perched Jan- Feb	Jan- Feb	none		1	1 cm	0 - 8

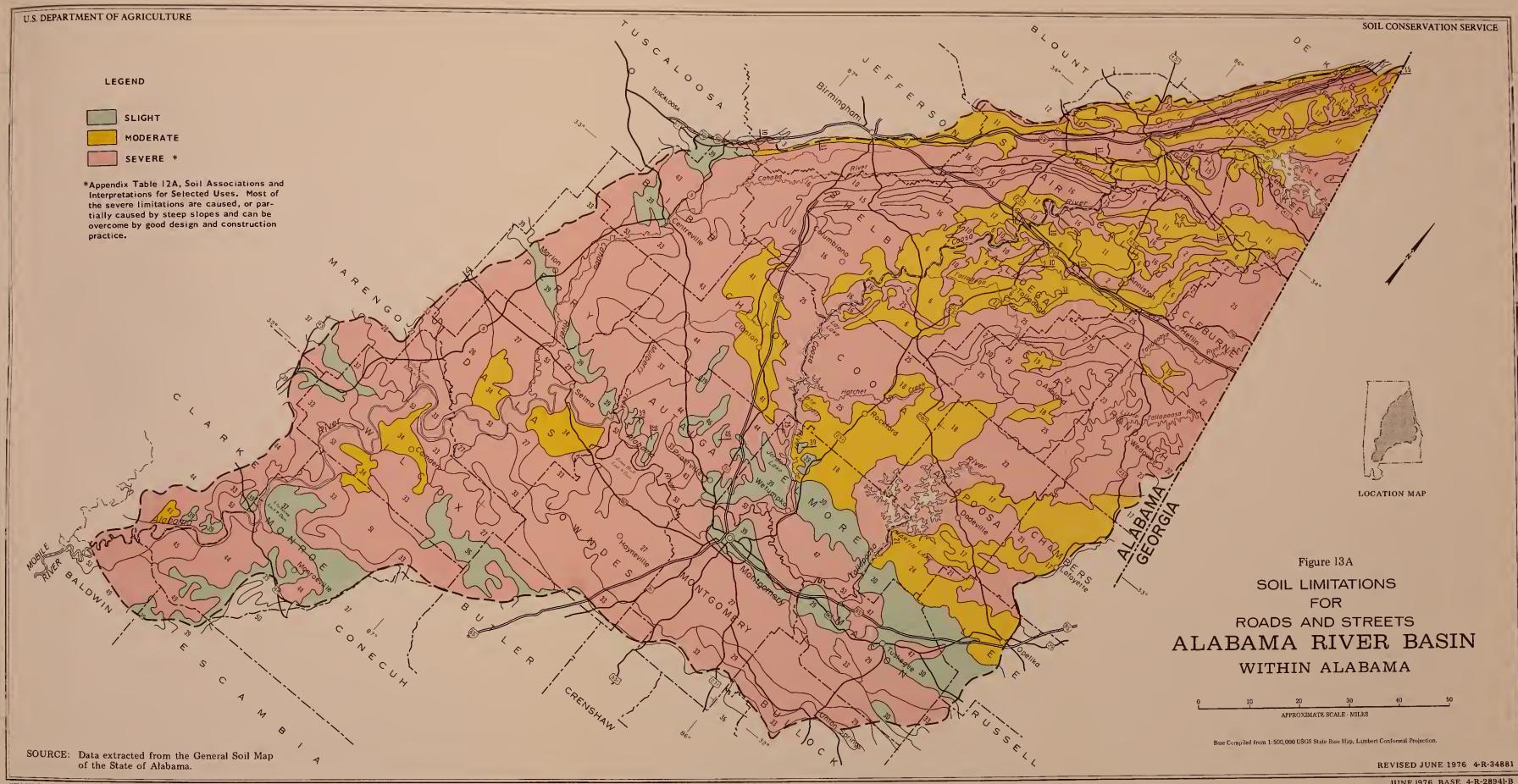
PERME- DEPTH TO HIGH WATER PROFILE DRAINAGE ABILITY REACTION BEDROCK (IN.) DEPTH CHARATTERISTICS CLASS 2/ HARD RIPARLE (FT.) KIND	sh well moderate strongly 60+ 60+ 6+ d- acid	Deep soil with brownish poorly moderately very 60+ 60+ 0-1.0 pe loamy surface over slow strongly grayish loamy subsoil. acid	Deep soil with brownish somewhat moderately strongly 66+ 60+ 1.0-1.5 pe loamy surface over poorly slow acid brownish and grayish loamy subsoil.	Moderately deep soil well slow mod. 60+ 20-40 6+ with grayish clayey alkaline surface over grayish and olive clayey subsoil.	Deep soil with grayish somewhat very very (40+ 60+ 6+ loamy surface over poorly slow strongly mottled grayish, red- dish, and brownish clayey subsoil.	Moderately deep soil well moderately strongly 20-40 - 6+ with brownish loamy slow acid surface over reddish clayey subsoil.	Shallow soil with well moderate very 60+ 3-20 6+ brownish loamy surface strongly over reddish loamy acid acid subsoil.	Moderately deep soil well moderate very 6(0+ 4(0-6(0 4-6 app: with brownish loamy strongly ent surface over reddish acid clayey subsoil.	Moderately deep soil well slow strongly 60+ 20-40 6+ with brownish loamy acid acid clayey subsoil.	Troup Deep soil with very well moderate strongly 60+ 60+ 6+ 6+ (87) (43) (44) (45) thick brownish sandy (46) (47) (49) surface over reddish loamy subsoil.	Deep soil with thick well moderately strongly 60+ 60+ 6+ brownish sandy surface acid acid acid
ATER TABLE FRE- KIND MONTHS OUENCY		perched Dec-none- May occas- sional	perched Jan- none Apr	none	none .	SUOU -	- none	appar- Jan- none ent Apr	- попе	- none	- none
FLOODING DURATION MONTHS		brief- Dec- long May			•	•	•	1		• •	
SHR INK- SWELL POTENTIAL (SUBSOIL)	low	low	low	h i gh	h i gh	h i gh	low	moderate	moderate	low	low
SLOPE RANGE (°)	5 - 40	<i>2</i> -0	0-5	1+1	- 1 - 1		5 - 60	0- 25	2-45	1-25	1 - 8

"Appendix Table 12B -- Cont'd


				PERME-		DEPTH TO	1 T0	HIGH	HIGH WATER TABLE	TABLE		FLOODING		SHKINK-	SLOPE
SERIES AND ASSOCIATION NO. $\frac{1}{2}$		PROFILE CHARACTER ISTICS	DRAINAGE CLASS	ABILITY R CLASS	ABILITY REACTION CLASS 2/	BEDROC	BEDROCK (IN.) HARD RIPPABLE	DEPTH (FT.)	KIND	SHLINOW	FRE- QUENCY	DEPTH FRE- (FT.) KIND MONTHS QUENCY DURATION MONTHS	MONTHS		RANGE (1)
Wilcox (28)	Deep soil loamy sur ish, brown ish vlaye)	Deep soil with brownish somewhat loamy surface over gray-poorly ish, brownish, and red- ish vlayey subsoil.	somewhat poorly	slow	very strongly	60+	60+ 40-80 1.5-3.0 perched Jan- r Apr	1.5-3.0	perche	d Jan- Apr	none		1	high	1-25
Mynnville (14)	Deep soil Brownish over brown soil and l	Deep soil with fragipan. mod. Brownish loamy surface well over brownish loamy sub- soil and brownish and grayish loamy fragipan.	mod. well	slow	very strongly	48-84	1	1.5-2.5 perched Dec-none Feb	perche	Feb	none		1	low	0- 10

See General Soils Map, figure 2-12.

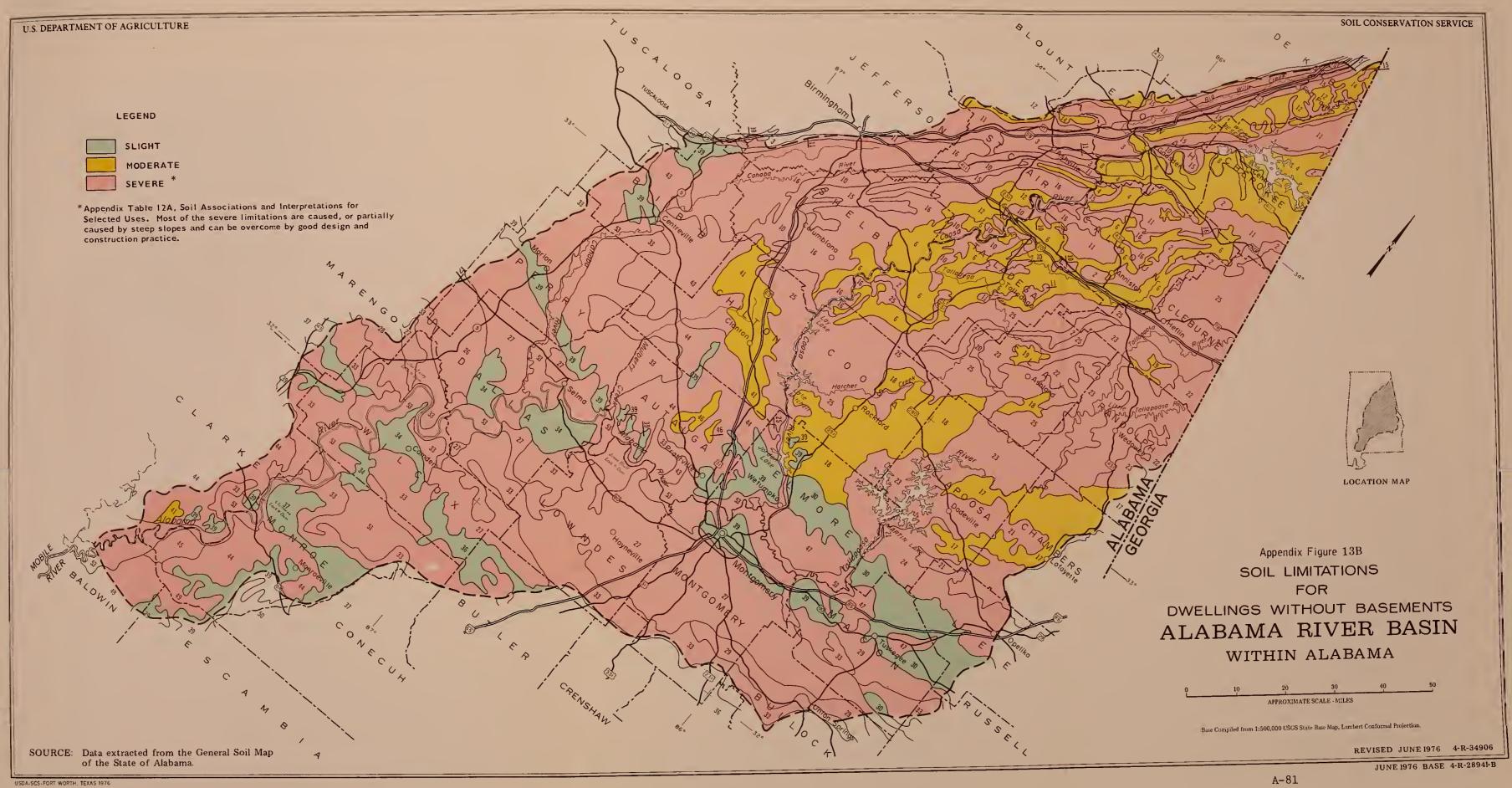

Reaction refers to degree of acidity of the upper subsoil layer: ای ا<del>ر</del>


4.5+	5.1-5.5	6.1-6.5	7.9-8.4
4.5-5.0	5.6-6.0	6.6-7.3	
extremely acid	strongly acid	slightly acid	mildly alkaline
very strongly acid	medium acid	neutral	moderately alkaline

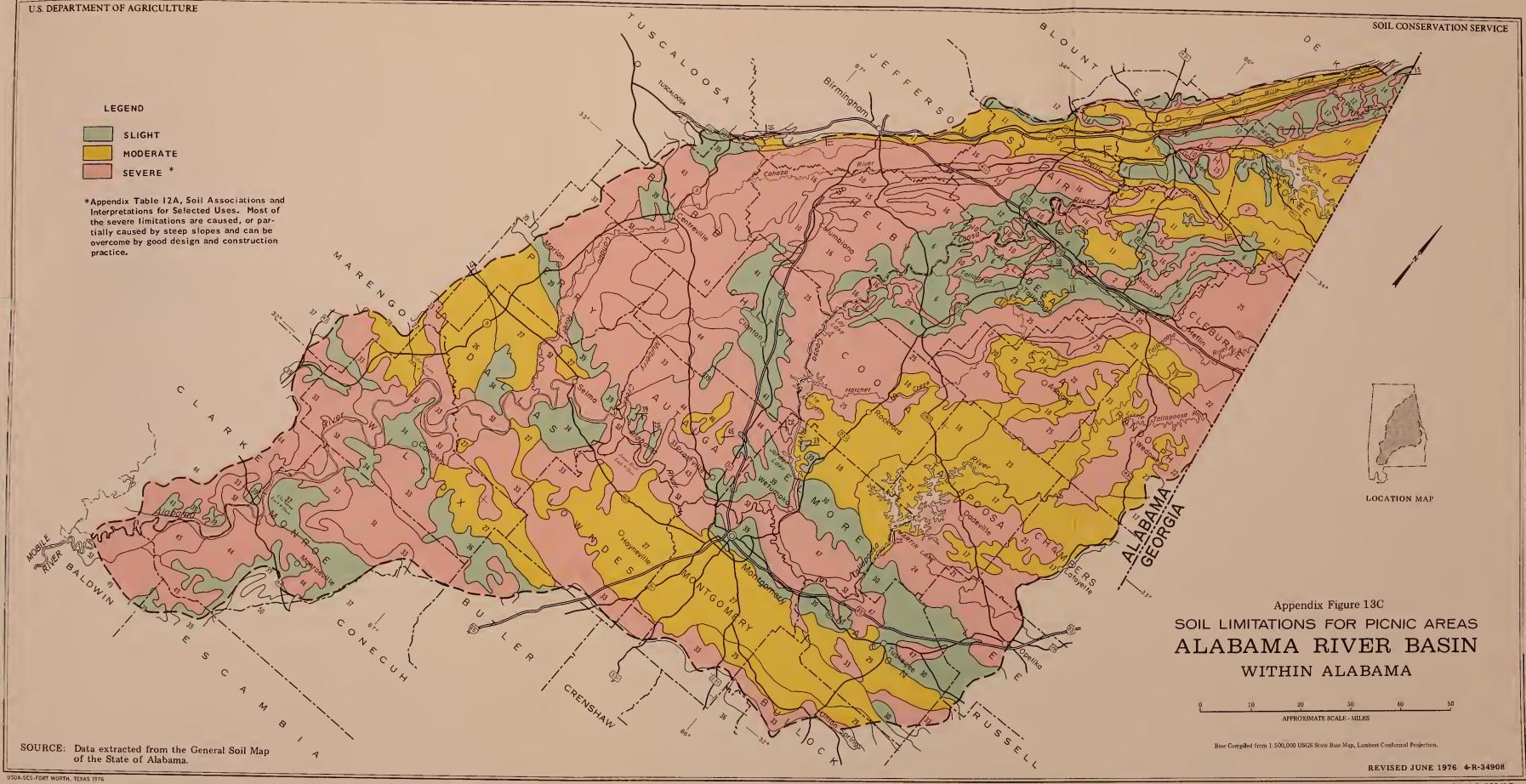
U.S. DEPARTMENT OF AGRICULTURE



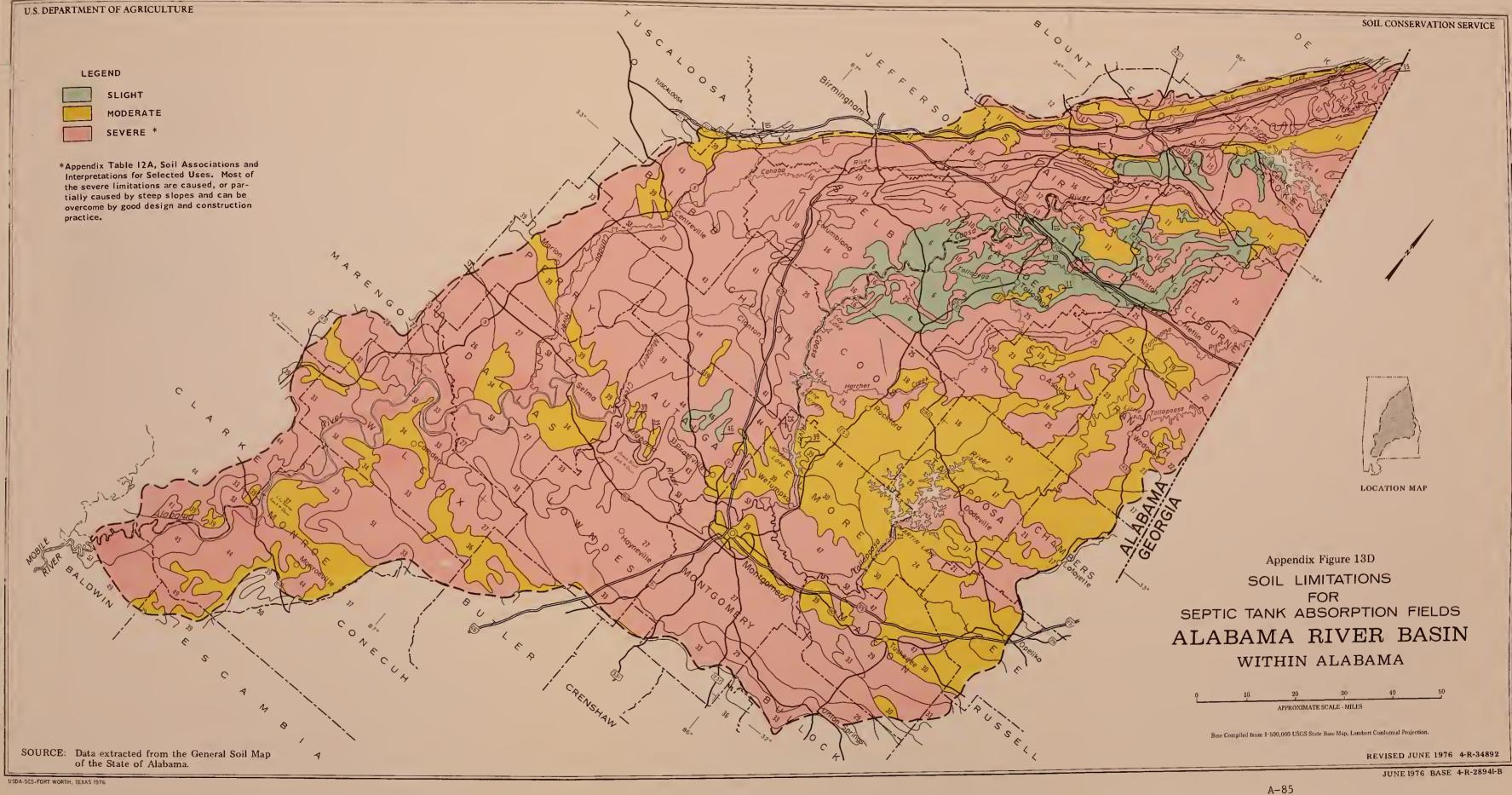
APPENDIX 13 -- SOIL LIMITATION AND SUITABILITY MAPS

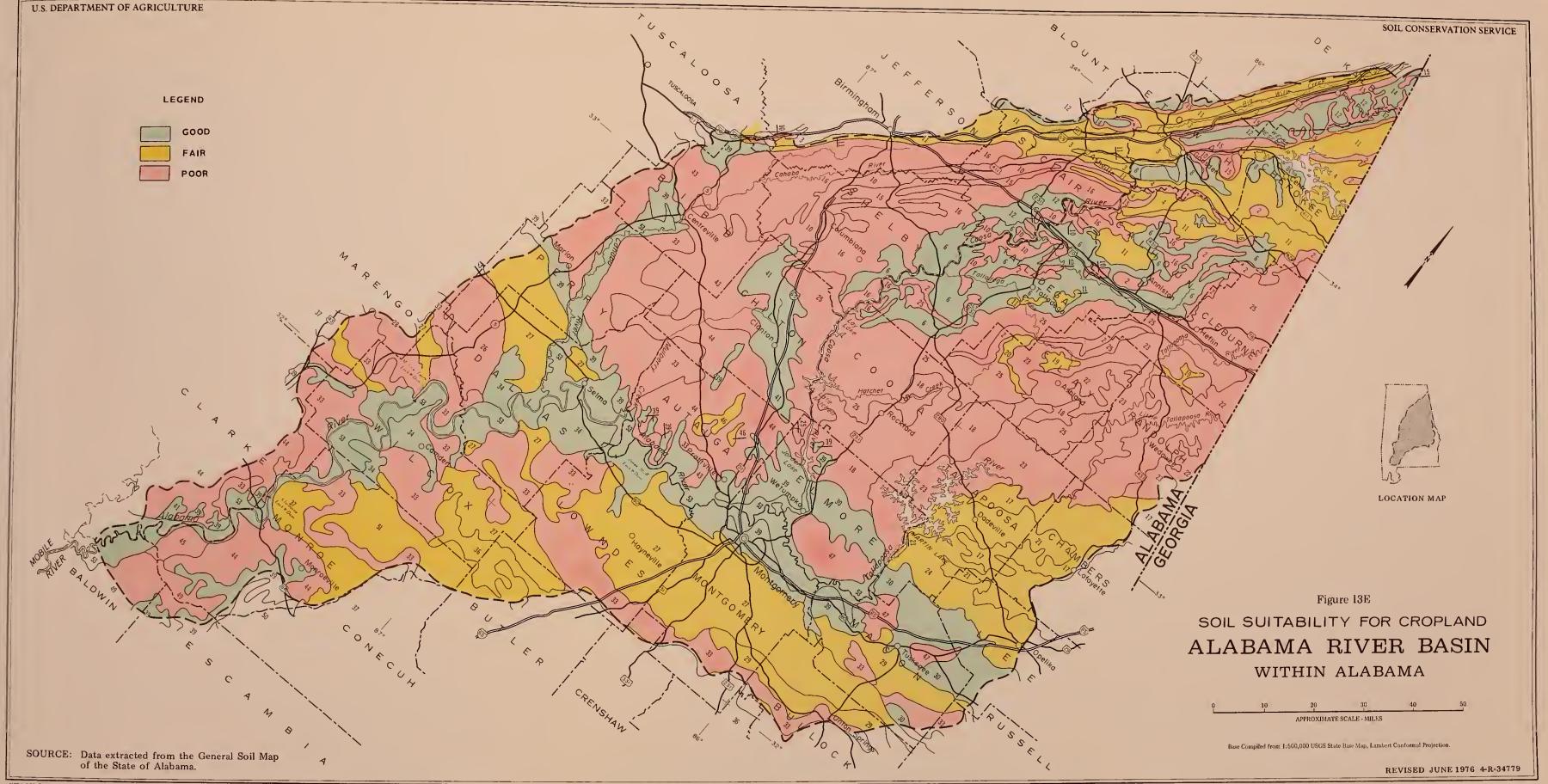




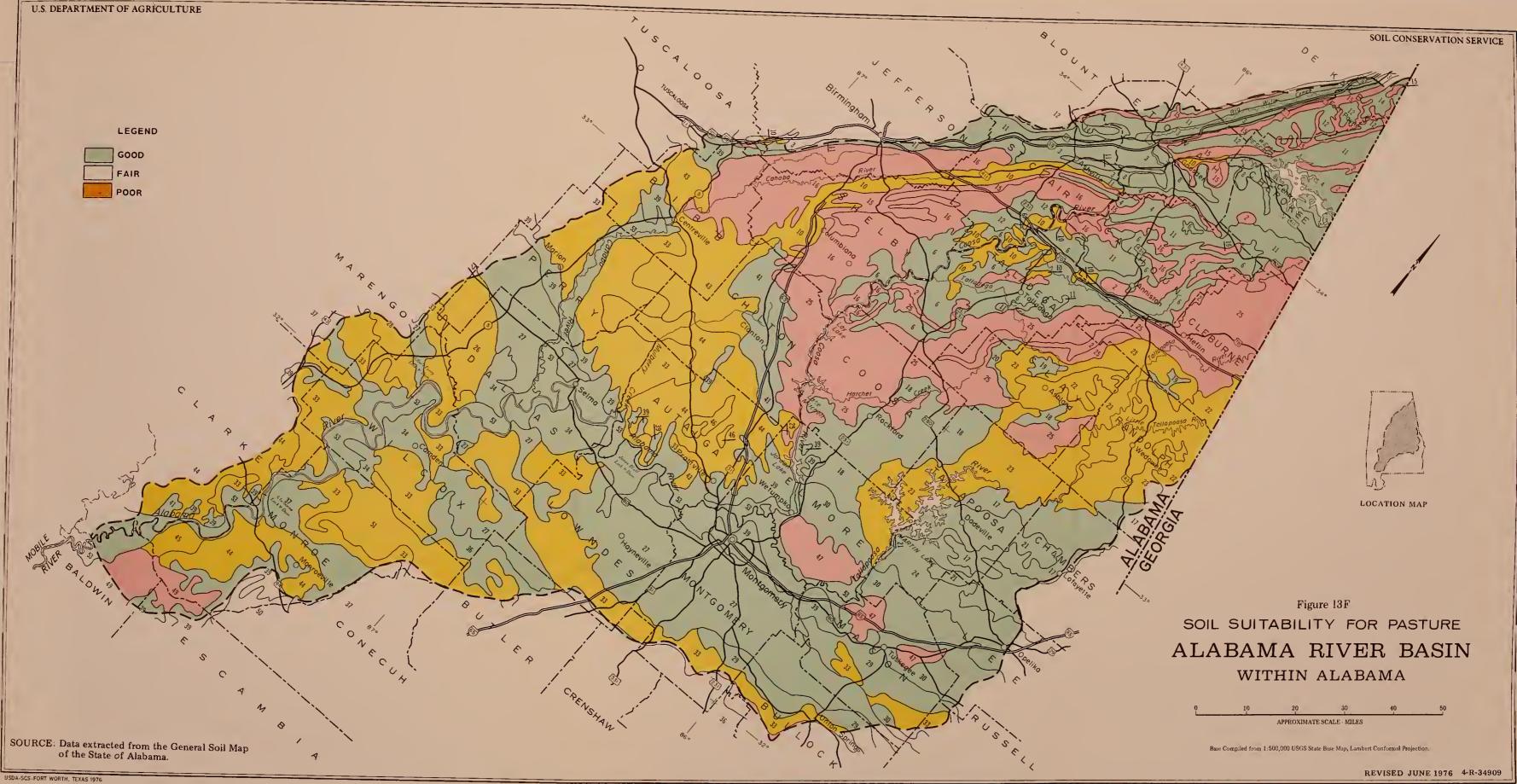


A-79

JUNE 1976 BASE 4-R-28941-B
















JUNE 1976 BASE 4-R-28941-B



### APPENDIX 14 -- LAND CAPABILITY CLASSIFICATION

14A -- Description of land capability classes and subclasses.

Class I lands have few limitations that limit their use.

Class II lands have moderate limitations that reduce the choice of plants or require moderate conservation practices.

Class III lands have severe limitations that reduce the choice of plants or require special conservation practices, or both.

Class IV lands have very severe limitations that restrict the choice of plants, require careful management, or both.

Class V lands have little or no erosion hazard but have other limitations that are impractical to remove, that limit their use largely to pasture, forest land, or wildlife.

Class VI lands have severe limitations that make them unsuitable for cultivation and limit their use largely to pasture, woodland, or for wildlife. Some can be used for grazing.

Class VII lands have very severe limitations that make them unsuitable to cultivation and restrict their use largely to woodland or wildlife. Some can be used for grazing.

Class VIII lands have limitations that preclude their use for commercial plant production and restrict their use to recreation, wildlife, water supply, or aesthetic purposes.

Appendix table 14B shows major land uses by land capability classes for the total basin and for each subbasin. The major portion, or 74 percent, of the cropland is on land capability classes I, II, and III. Pastureland is about equally distributed on land capability classes II, III, and IV, with about 78 percent of all pastureland on these three capability classes. Only about 19 percent of all forest is on class I, II, and III land; however, 55 percent of all forest land is on capability classes VI and VII.

The kind of limitation (subclass) is designated by a small letter, e, w, or s following the class numeral; e.g. IIe, IIw, IIs. The letter "e" indicates the main limitation is erosion, "w" indicates that the main limitation is excess water in or on the soil, and "s" indicates the limitation is due to soil properties such as drouthiness or limited soils depth for root growth. Subclasses are not shown in table 14B, but are described here in order to describe the condition that limit capability and because they are commonly shown in land capability tables for more detailed studies.

				LAND CAF	LIT				2	
LAND USE	Ц	II	III	(Thousand IV	s o	t Acres) VI	VII	VIII	WITHOUT A CLASSIFICATION	TOTAL
Alabama Subbasin										
Cropland	85	239	126	56	8	20	8	I	ı	542
Pasture	27	208	153	170	25	54	21	I	I	658
Forest	16	224	301	481	338	328	693	I	9	2,387
Other	4	29	20	13		9	3	I	45	121
Urban	ı	I	I	ı	ı	I	I	I	93	93
Subbasin Total	132	700	600	720	372	408	725	1	132	3,789
Cahaba Subbasin										
Cropland	9	38	13	11	1	3	I	I	ı	72
Pasture	ഹ	23	18	18	2	9	S	I	ı	78
Forest	4	49	80	124	62	77	422	1	109	928
Other	I	4	4	2	I	2	ъ	I	53	70
Urban	ı	ı	I	I	I	I	I	I,	54	54
Subbasin Total	15	114	117	155	66	86	432	-1	212	1,198
Coosa Subbasin										
Cropland	25	141	114	78	I	18	9	I	ı	382
Pasture	7	64	86	58	S	24	15	I	I	259
Forest	6	128	330	338	27	297	1,116	I	202	2,447
Other	7	15	16	20	1	6	11	I	123	197
Urban	ı	ı	I	ı	I	I	ı	I	185	185
Subbasin Total	43	348	546	494	33	348	1,148		499	3,459
Tallapoosa Subbasin										
Cropland	20	61	72	75	4	34	11	I	,	277
Pasture	6	59	79	97		49	20	I	ı	332
Forest	6	57	189	312	148	317	630	1	46	1,709
Other	ഹ	7	∞	13	I	4	10	1	88	136
Urban	I	I ,	I	I	I	I	I	I	88	88
Subbasin Total	43	184	348	497	171	401	671	2	214	2,534
Entire Basin										
Cropland	136	479	325	220	13	75	25	I	I	1,273
Pasture	48	354	336	343	52	133	61	I	ı	1,327
Forest	38	458	006	1,255	575	1,019	2,861	2	363	7,471
Other	11	55	48	48	2	21		1	309	524
Urban	I	ı	I	1	1	ı	I	1	420	420
Total	233	1.346	1.609	1.866	642	1.248	2.976	3	1,092	11,015

#### APPENDIX 15 -- FISH AND WILDLIFE IN THE ALABAMA RIVER BASIN,

#### 15A -- Methods of Inventory and Evaluation

An inventory and evaluation of the fish and wildlife resources in the Alabama River Basin were made by a multiple-agency work group composed of representatives from the Bureau of Sport Fisheries and Wildlife, Department of Conservation and Natural Resources, Auburn University, U. S. Forest Service, Economic Research Service, and the Soil Conservation Service. The Soil Conservation Service representative was designated as chairman of the work group. The objective of the work group was to determine the problems, needs, and possible solutions in the management of fish and wildlife resources in the basin.

This report presents basic information regarding opportunities for sport and commercial fishing, hunting, and such non-consumptive aspects of fish and wildlife as bird watching and nature photography in the Alabama River Basin.

Resource capacities are based on standards developed for the basin from research studies, recorded data, and by field observations conducted by one or more members of the work group.

Fisheries Resource -- It was necessary to inventory areas of freshwater habitat to establish a breakdown of the different types of fishing waters of varying capacities in the basin. Acres of fresh water were inventoried as follows: large impoundments (over 500 acres), small impoundments (both public and private), rivers, streams, and put, grow, and take ponds (see appendix tables 15B and 15C). The following agencies contributed to the water resource data: Department of Conservation and Natural Resources, U. S. Forest Service, Corps of Engineers, Alabama Power Company, Auburn University Agricultural Experiment Station, and the Soil Conservation Service.

Appraisal of the man-day fishing capacity in each type of freshwater habitat was based primarily on (1) the standing crop of sport fisheries, (2) the ratio of the standing crop to the harvestable crop, and (3) the average catch in pounds per man-days.

The standing crop, measured in pounds of fish per surface acre of water, is used as the index for productivity of a given body of water. The standing crop varies because habitat quality, fishing success, management of waters, fish migrations, and many other factors vary from season to season and from year to year. It was agreed that the average harvestable crop of fish is one-half of the standing crop. It was agreed, also, that one pound of fish is the standard harvest per man-day of fishing. Appendix 15A -- Cont'd

True fishing capacity is reached when increased fishing activity decreases fishing success to the extent that the number of new fishermen being attracted is balanced by those who stop fishing because of an unsatisfactory creel return. The minimum acceptable creel is understandably nebulous and varies by location, type of fishing, tolerance to crowding disturbance, past fishing experience, availability of other fishing, and numerous other factors. An average catch of one pound per man-day appears to be a realistic standard for this basin.

Outstanding wade and float fishing streams were selected by a concensus of field biologists and work group members. Size, productivity, water quality, and aesthetic values were considered in making the selections.

<u>Wildlife Resource</u> -- Wildlife resources within the basin were inventoried as a basis for establishing their potential capacities. Acreage of small game, big game, and waterfowl habitat available for public use was determined by a field survey in each county and from information supplied by the Department of Conservation and Natural Resources.

Capacity standards 1/ developed by the Agricultural Experiment Station of Auburn University were used to convert acres of habitat to man-days of hunting. The following standards were used.

Wildlife population studies in the basin are rather limited; consequently, much of the information obtained represents the best estimate of professional biologists and other field personnel. Deer and turkey populations were estimated in each county by experienced persons with knowledge of check station data, field studies, hunter surveys, or other information.

Estimates of hunting activity for small game were derived from the 1974-75 mail survey conducted by the Department of Conservation and Natural Resources. In the survey, questionnaires were mailed to randomly chosen individuals who had purchased hunting licenses. Technical assistance was provided for the survey by Dr. Don Hayne of the School of Statistics of the University of North Carolina.

The land area of the river basin is approximately 33 percent of the total land area of the state; and the percentages of cropland, forest land, pastureland, and other land in both the state and basin are almost identical. Therefore, with the exception of waterfowl, it is assumed that 33 percent of the total small game killed in Alabama is harvested in the Alabama River Basin.

The potential for developing hunting and fishing as recreational activities is summarized from recent county outdoor recreation potential studies. Information on non-consumptive activities related to fish and wildlife was gathered by a review of published literature and personal communications.

<u>1</u>/ Participation in Outdoor Recreation in Alabama, Agricultural Experiment. Station, Auburn University, Agricultural Economics Series 20, October 1970.

Appendix Table 15B -- Freshwater fish habitat available for public use, and associated capacity, Alabama River Basin and subbasin, 1971.

SUBBASIN	EXISTING ACREAGE	ANNUAL 1/ HARVESTABLE PRODUCTION/AC.	ACTIVITY OCCASIONS PER ACRE 2/	TOTAL ACTIVITY OCCASIONS
Alabama				
Rivers	4,916	70 lbs.	70	344,120
Streams	1,362	25	25	34,050
Large impoundments		50	50	1,782,500
Small impoundments		75	75	216,825
Put, grow & take	279	1,500	500	139,500
Subtotal	45,098			2,516,995
Cahaba				
Rivers	1,440	40 lbs.	40	57,600
Streams	185	20	20	3,700
Large impoundments	1,000	75	75	75,000
Small impoundments	352	80	80	28,160
Put, grow & take	83	1,500	500	41,500
Subtotal	3,060			205,960
Coosa				
Rivers	2,663	50 lbs.	50	133,150
Streams	2,073	22	22	45,606
Large impoundments	81,313	40	40	3,252,520
Small impoundments	2,677	80	80	214,160
Put, grow & take	430	1,500	500	215,000
Subtotal	89,156	-,		3,860,436
Tallapoosa				
Rivers	3,091	50 lbs.	50	154,550
Streams	1,362	25	25	34,050
Large impoundments	43,125	40	40	1,725,000
Small impoundments	•	80	80	186,960
Put, grow & take	452	1,500	500	226,500
Subtotal	50,367	1,000	000	2,327,060
Total	187,681			8,910,451

1/ Based on information from district fishery biologist, Alabama Department of Conservation and Natural Resources.

 $\frac{2}{3}$ One pound per acre used as standard.

Impoundments larger than 500 acres.

4/ Availability for public use estimated by state and federal agencies in each county, includes all public fishing lakes.

COUNTY	NUMBER	ACREAGE
Autauga	200	1,194
Baldwin	349	2,919
ВіЪЬ	122	547
Bullock	882	2,347
Butler	576	1,377
Calhoun	392	1,652
Chambers	280	1,274
Cherokee	92	271
Chilton	314	804
Clarke	198	485
Clay	260	973
Cleburne	229	1,112
Coosa	200	667
Dallas	356	1,839
DeKalb	1,217	1,911
Elmore	566	1,857
Etowah	371	1,223
Jefferson	401	2,760
Lee	697	3,406
Lowndes	971	4,674
Macon	464	2,029
Monroe	230	804
Montgomery	1,990	6,437
Perry	187	1,099
Randolph	243	877
Shelby	441	2,361
St. Clair	360	1,091
Talladega	225	1,490
Tallapoosa	357	934
Wilcox	277	751
TOTAL	13,437	51,165

Appendix Table 15C -- Numbers and acres of ponds stocked by State and Federal Hatcheries through September 30, 1970, by counties, Alabama River Basin.

Source: Alabama Department of Conservation, Department of Natural Resources.

HUNTING ACTIVITY	NUMBER OF HUNTERS/AC. OF HABITAT	DAILY RATE OF TURNOVER	LENGTH OF HUNTING SEASON (DAYS)	ACTIVITY OCCASIONS/AC. OF HABITAT
Big game	0.0055	1	90	0.50
Small game	0.0167	1	120	2.00
Waterfowl	0.0167	1	60	1.00

# Appendix Table 15D -- Conversion of acres of wildlife habitat to man-days of hunting.

### APPENDIX TABLE 16 -- MAJOR RECREATION FACILITIES AT STATE-OWNED FISHING LAKES, ALABAMA RIVER BASIN, 1975. 1/

- A. Clay County Lakes three lakes totaling 65 acres, on a 360 acre tract, 2 miles west of Delta and 30 miles south of Anniston; first lake opened in 1951; concession stand with restrooms, 16 picnic tables, and 13 boats for rent.
- B. Oak Mountain State Park this park is located in Shelby County approximately 16 miles south of Birmingham. Two 85-acre fishing lakes are located in the northeast end of the park, and there is an 18-acre lake near the middle of the park. Facilities presently available include swimming, rental boats, fishing and boat access areas.
- C. Dallas County Lake 100-acre lake on 306-acre site, 15 miles south of Selma; restrooms, picnic tables, rental boats, and earthen launching ramp.
- D. Monroe County Lake 94-acre lake on 245-acre site; 1 mile from Beatrice; opened in 1969, concession stand, 31 boats for rent, and concrete launching ramp.
- 1/ See Volume I, figure 2-26--State-operated public hunting and fishing areas, Alabama River Basin, 1975.

## Appendix 17 -- Threatened, Endangered, and Special Concern Organisms in Alabama. 1/

Threatened and Endangered Vertebrates -- The following is an explanation of some of the terms used in this inventory.

#### 1. Endangered

Any species or subspecies occurring in Alabama threatened with extinction through: the destruction, drastic modification, or severe curtailment, or the threatened destruction, drastic modification or severe curtailment, of its habitat, or its overutilization for commercial or sporting purposes, or the effect on it of disease or predation, or other natural or man-made factors affecting its continued existence.

#### 2. Threatened

Any species or subspecies occurring in Alabama which is likely to become endangered within the foreseeable future throughout all, or a significant portion of its range.

#### 3. Special Concern

A species or subspecies that, although not presently threatened or endangered, exists in such small numbers that it may be endangered if its environment deteriorates.

### ENDANGERED VERTEBRATES 1/

#### Birds

Brown Pelican Bald Eagle Osprey Peregrine Falcon Snowy Plover Red-cockaded Woodpecker Ivory-billed Woodpecker Backman's Warbler Golden Eagle

#### Amphibians and Reptiles

Atlantic Ridley Green Seat Turtle Red Hills Salamander Flatwoods Salamander Florida Pine Snake Black Pine Snake Eastern Indigo snake Atlantic Hawsbill Atlantic Loggerhead

#### Fishes

Alabama Carefish Shovelnose Sturgeon Frecklebelly Madtom Cahaba Shiner Pygmy Sculpin Watercress Darter Goldline Darter American Brook Lamprey Spring pygmy sunfish

#### Mammals

Gray Myotis Indiana Myotis Alabama Gulf Beach Mouse Perdido Bay Beach Mouse Northern Black Bear Florida Black Bear Florida Panther Pelecanus occidentalis Haliaeetus leucocephalus Pandion haliaetus Falco peregrinus anatum Charadrius alexandrinus Dendrocopos borealis Campephilus principalis Vermivora bachmanii Aquilia chrysaetos

Lepidochelys kempi Chelonia mydas Phaeognathus hubrichti Ambystoma cingulatum Pituophis melanoleucus mugitis Pituophis melanoleucus lodungii Drymarchon carais couperi Erctmochelys imbricata imbricata Caretta C. caretta

Speoplatyrhinus poulsoni Scaphirhynchus platorynchus Noturus minitus Notropis sp. (Undescribed species) Cottus pygmaeus Etheostoma nuchale Percina aurolineata Lampetra lamotteni Elassoma sp.

Myotis grisescens Myotis sodalis Peromyscus polionotus ammobates Peromyscus polionotus trissyllepsis Ursus americanus americanus Ursus americansus floridanus Felis concolor coryi

#### THREATENED

#### Birds

Reddish Egret Mottled Duck

Amphibians and Reptiles

Alabama Red-bellied Turtle Dusky Gophen Frog Gopher Tortoise American Alligator Hellbender Atlantic Leatherback Flattened Mush Turtle

#### Fishes

American Brook Lamprey Atlantic Sturgeon Alabama Shad Flame Chub Blue Sucker Harelip Sucker Whiteline Topminnow Least Killifish Bluespotted Sunfish Ashy Darter Crystal Darter Slackwater Darter Coldwater Darter Tuscumbia Darter Freckled darter Warrior muscadine darter Dichromanassa rufescens Anas fulvigula

Pseudemys alabamensis Rana areolata sevosa Gopherus polyphemus Alligator mississippiensis Cryptobranchus a. alleganiensis Dermochelys coriacea Sternothaerus depressus

Lampetra lamottei Acipenser oxyrhynchus Alosa alabamae Hemitremia flammea Cycleptus elongatus Lagochila lacera Fundulus albolineatus Heterandria formosa Enneacanthus gloriosus Etheostoma cinereum Ammocrypta asprella Etheostoma boschungii Etheostoma ditrema Etheostoma tuscumbia Percina lenticula Percina sp.

#### SPECIAL CONCERN STATUS

#### Mammals

Southeastern Shrew Florida Yellow Bat Meadow Jumping Mouse Prarie Vole Bayou Gray Squirrel New England Cottontail Marsh Cottontail Little Brown Bat Southeastern Myotis Rafinesque's Big-eared Bat Keen's myotis

#### Birds

Swallow-tailed Kite Sharp-skinned Hawk Cooper's Hawk Sandhill Crane American Oystercatcher Bewick's Wren Little Blue Heron Black-crowned Night Heron Wood Stork Red-shouldered Hawk Merlin Black Rail Swaninson's Warbler Bachman's Sparrow

Amphibians and Reptiles

Tennessee Cave Salamander Mountain Dusky Salamander Wood Frog Eastern Diamond-back Rattle Snake Sipsey waterdog Seepage Salamander Sorex 1. longirostris Lasiurus floridanus Zapus hudsonius americanus Microtus ochrogaster ochrogaster Sciurus carolinensis fuliginosus Sylvilagus transitionalis Sylvilagus palustris palustris Myotis lucifugus lucifugus Myotis a. austroriparius Plecotus rafinesquii Myotis Keenii Septentrionalis

Elanoides forficatus Accipiter straitus Accipiter cooperii Grus canadensis Haematopus palliatus Thryomanes bewickii Florida caerulea Nycticorax nycticorax Mycteria americana Buteo lineatus Fako colambarius Laterallus jamaicensis Limnothlypis swainsonii Aimophila aestivalis

Gyhinophilus palleucus palleucus Desmognathus ochrophaeus Rana sylvatica Crotalus adamanteus Necturus malculosus Desmognathus aeneus

#### Appendix 17 -- Cont'd

#### Amphibians and Reptiles (Cont'd)

Least Tree Frog River Frog Greater Siren Red-backed Salamander Barbour's Map Turtle Florida Softshell Turtle Florida Green Water Snake Northern Florida Black Swamp Snake Pinewoods Snake Red Milk Snake Eastern Milk Snake Eastern Spiny Softshell

#### Fishes

Flame Chub Bigeye Shiner Warpaint Shiner Dusky Shiner Sawfin Shiner Stargazing Minnow Southern Redbelly Dace Elegant Madtom Stonecat Brindled Madtom Southern Cavefish Pygmy Killifish Bluefish Killifish Mottled Sculpin Shoal Bass Blotchside logperch Blotched Chub Broadstripe Shiner Banded Top Minnow Northern Banded Darter Blue Shiner Bluestripe Shiner Blenny Darter (Unnamed) Snubnose Darter

#### .* .

Hyla ocularis Rana hecksheri Siren lacertina Plethodon cinereus ssp. Graptemys barbouri Trionyx ferox Natrix cyclopion floridana Seminatrix p. pygaea Rhadinaea flavilata Lampropeltis doliata syspila Lampropeltis triangulum triangulum Trionyx spiniferus spiniferus

Hemitrimia flammea Notropis boops Notropis coccogenis Notropis cummingsae Notropis sp. (Undescribed species) Phenacobius uranops Phoxinus erythrogaster Noturus elegans Noturus flavus Noturus miurus Typhlichthys subterraneus Leptolucania ommata Lucania goodei Cottus bairdi Micropterus sp. Percina burtoni Hybopsis insignis Notropis earyzonus Fundulus ungulatus Etheostoma z. zonale Notropis caeruleus Notropis callitaenia Etheostoma blennius Etheostoma sp. (Undescribed species)

### ENDANGERED INVERTEBRATES 1/

#### Naiad Mollusks

Margaritifera-hembeli ssp Alasmidonta mccordi Pegias fabula Lasmigona holstonia Quadrula cylindrica cylindrica Quadruls intermedia Quadrula stapes Fusconaia maculata maculata Fusconaia cuneolus Fusconaia cor Fusconaia barnesiana Lexingtonia dolabelloides Plethobasus cicatricosus Plethobasus cooperianus Pleurobema altum Pleurobema nucleopsis Pleurobema clava Pleusobema oviforme Pleurobema decisum Pleurobema perovatum Pleurobema curtum Pleurobema showalteri Pleurobema hartmanianum Pleurobema altum Pleurobema bulborum Pleurobema rubellum Pleurobema plenum Pleurobema taitianum Pleurobema marshalli Elliptio arcus Hemistena lata Ptychobranchus subtentum Cyprogenia stegaria Dromus dromus Actinonaias ligamentina lignamintina Actinonaias pectorosa Obtovaria olivaria Obovaria jacksoniana Obovaria unicolor Obovaria subratunda Obovaria retusa Leptodea leptodon

Appendix 17 -- Cont'd

Naiad Mollusks (Cont'd)

Potamilus inflatus Potamilus laevissimus Toxolasma lividus lividus Toxolasma cylindrella Medionidus conradicus Medionidus mcylameriae Villosa fabalis Villosa taeniata taeniata Lampsilis virescens Lampsilis ovata Lampsilis binominata Lampsilis perovalis Epioblasma triquetra Epioblasma penita Epioblasma othcaloogensis

#### THREATENED

#### Naiad Mollusks

Pleurobema pyriforme Ptychobranchus greeni Truncilla truncata Epioblasma brevidens Epioblasma metastriata

#### SPECIAL CONCERN

#### Naiad Mollusks

Cumberlandia monodonta Alasmidonta marginata Alasmidonta wrightiana Alasmidonta triangulata Quadrula apiculata apiculata Quadrula nodulata Fusconaia escambia Plethobarus cyphyus Ptychobranchus fasciolaris Lampsilis orbiculata

1/ Adapted from the unpublished proceedings of a symposium on Endangered and Threatened Plants and Animals of Alabama held March 6-7, 1975, at the University of Alabama.

#### APPENDIX 18 -- ENDANGERED AND THREATENED PLANTS, ALABAMA, 1975. 1/

ENDANGERED

Aconitum uncinatum L. Aster chapmanii T & G Aster eryngiifolius T & G Castauea deutata Clematis gattingeri; small Croton alabamensis Echinacea laevigata (Bognton & Beadle) Blake Epidendrum conopseum R. Br. Eriogonum harperi Goodman Hexastylis speciosa Harper Hibiscus cocineus Walt. Hydrastis canadensis L. Hymenocallis coronaria (Le Conte) Kunth Ilex amelanchier M.A. Curtis Jamesianthus alabamensis Black & Sherff Leptograma pusila Lilium iridollae M.G. Henry Lilium superbum L. Lindera melissaefolium (Walter) Blume Lysimachia fraseri Duby Lysimachia graminea (Greene) Hand-Mazzetti Marshallia mohrii Beadle & Bognton Nexiusia alabamensis H. Gray Oenothera grandiflora ait. Panax quinquefolium L. Parassia asarifolia Vent. Parnassia caroliniana michx. Phlox pulchra Wherry Plantago cordata Lam. Rhododendron prunifolium Millais Sarracenia oreophila (Kearney) Wherry Schizandra glabra (Brickell) Rehder Selaginella tortipila R. Braun Synandra hispidula (Michx.) Baillon Talinum appalchianum W. Wolf Trichomanes buschianum Sturm ex Bosh. Trichomanes petersii Gray Trillium pusillum Michx. Cyclodon alabamensis Arabis perstellata Levenworthia alabamica var. brachystyla Leavenworthia crassa Leavenworthia crassa var. elongata Leavenworthia exiqua var. Lutea Lesquerella densipila Lesquerella lyrata Viburnum bracteafum Rhynchospora crinipes

#### THREATENED

Asplenium bradleyi Asplenium ebenoides Asplenium rutamarina Brickellia cordifolia Robinson Cacalia diversifolia T & G Canna Flaccida Salisb. Cheilanthes alabamensis (Buckley) Kumze Cleistes divaricata (L.) Ames Coreopsis gladiata Wather Croomia pauciflora (Nutt.) Torr. Cyprepedium acaule Ait. Cyprepedium calceolus var. pubescens (Wild.) Cornell Disporum maculatum (Buckley) Britton Echinacea pallida Nutt. Gordonia loasianthus (L.) Ellis Heuchera longiflor (Ryd.) Rosend Hypericam nitidam Lam. Lilium canadense Lycopodium porophylliam Lloyd & Underwood Lygodium palmatum Monusia iguanea (L.) Rose & Standley Nestronia umbellula Raf. Quercus georgiana M.A. Curtis Rhapidophyllum hystrix (Pursh) Wendland & Drude Rhexia salicifolia Kral & Bostich Ribes curvatum Small Sabatia brexifolia Raf. Sagerretia minutiflora (Michx.) Trel. Sarracenia psittacina Sarracenia rubra Stylophoram diphyllum (Michx) Nutt. Thalictrum debile Buckley Trillium erectum L. var. suleatum Barksdale Trillium lancefolium Raf. Viquiera porteri (A. Gray) Blake Warea amplexifolia Small Warea sessilifolia Ptilimium fluviatile Rudbeckia auriculata Leavenworthia alabamica Leavenworthia torulosa Arenaria godfreyi

Appendix 18 -- Cont'd

Carex baltzellii Astragalus tennesseensis Petalostemon Foliosum A. Gray Quercus georgiana Hypericum dolabriforme Scutellario alabamense Linum sulcatum var. Harperi Panicum nudicaule Talinum mengesii Xyris drummondii Pieris phillyreaefolia Luduigia arcuata

1/ Adapted from the unpublished proceeding of a symposium on Endangered and Threatened Plants and Animals of Alabama. The symposium was held The symposium was held on March 6-7, 1975, at the University of Alabama. APPENDIX 19 -- WETLANDS INVENTORY, ALABAMA RIVER BASIN, 1974.

19A -- Methodology

The basic approach utilized in the wetlands inventory involved a field survey conducted by the district conservationist in each county. The district conservationist was usually assisted by a district biologist or conservation officer from the Alabama Department of Conservation and Natural Resources. In some counties, employees of other state and federal agencies made valuable contributions to the field survey.

District conservationists were instructed to use Types 1, 2, 3, 4, 6, and 7 as defined in Circular 39, Wetlands of the United States, to classify wetland areas in the Alabama River Basin. Photo index sheets, soils maps, aerial photographs, flood prone area maps, quadrangle sheets, and other available information were used to assist field personnel. All wetland areas inventoried were delineated in red on a county photo index map and returned to the SCS state office for review and tabulation.

After review of the wetlands survey data collected by field personnel, some apparent inconsistencies occurred in interpretation of Circular 39 wetland types. The differing opinions stemmed primarily from three aspects of the definitions:

- 1. Deciding what portion of the flood plain should be Type 1 wetland.
- 2. Determining average depths of water and periods of inundation.
- 3. Defining a conglomerate of wetland types where vegetation and eutrophication is in various stages of development.

To eliminate as many inconsistencies as possible in classification, the river basin staff grouped Wetland Types 2, 3, 4, and Types 6 and 7 as shown in figure 2-31, Volume I. Type 1 wetlands were considered as being a percent of the 861,400 acres of flood plain area in the basin.

# Appendix Table 19B -- Selected Wetland types, by counties, Alabama River Basin, 1974

		WETLAND '	ТҮРЕ				
COUNTY	1 2	3	4	5	6	7	TOTAL
Autauga			260	70	10	920	1190
Baldwin							
Bibb						100	100
Bullock				220	60		60
Butler							
Calhoun							
Chambers		50	40	50	130	1360	1580
Cherokee							
Chilton						330	330
Clarke				70	3530		3530
Clay					40	40	70
Cleburne							
Conecuh							
Coosa						20	20
Crenshaw						160	160
Dallas		10		140	90	6160	6260
DeKalb							
Elmore		410		60	1050	2760	4220
Escambia		20				420	440
Etowah						4250	4250
Jefferson	80						80
Lee				60		860	860
Lowndes				220	540	830	1370
Macon					1330	190	1520
Marengo						20	20
Monroe		20				520	545
Montgomery				400		990	990
Perry				70	60	600	660
Randolph							
Russell							
She1by	120	360		320		620	1100
St. Clair						250	250
Talladega		80			30	20	130
Tallapoosa						200	200
Tuscaloosa					30		30
Wilcox		50				6830	6880
TOTAL	200	1000	300	1/	6900	28500	36900

 $\underline{1}/$  Type 5 consists primarily of farm ponds and was, therefore, not shown in the Total column.

#### APPENDIX 20 -- LISTING OF HISTORIC ARCHAEOLOGICAL, AND SCENIC SITES BY COUNTIES, ALABAMA RIVER BASIN.

COUNTY SITE AND LOCATION

Autauga

Autaugaville Methodist - Autaugaville, 1829; oldest Methodist Church building in the state; early Greek Revival architecture, white clapboard construction; 6 columns and a recessed portico. "Crown of Thorns" spire atop steeple; a cemetery adjoins the church grounds and the church has been in constant use now for almost a century and a half.(4)

Jones - (1875-1910) The rural community of Jones, in northwest Autauga County, is scattered around a complex consisting of a general store, Post Office, gasoline pumps and a grist mill and water wheel, now in disuse. The most prominent building is a two-story pioneer-type combination dwelling and commercial structure. (4)

Grist Mill, Whitewater Pond - In the vicinity of Whitewater Pond, south of U. S. Highway 82, north and slightly east of Autaugaville; 1875. It is still intact and was formerly used to grind rice, wheat and corn. (4)

Huffman's Bluff Site - along the Alabama River approximately 4 miles south of Alabama Highway 14 between Prattville and Autaugaville; about 2 miles from the Creek Indian "Holy Ground" in Lowndes County. William Weatherford, Chief Red Eagle, is reputed to have escaped the Mississippi Militia on Christmas Eve, 1813, by jumping his horse from the bluff into the Alabama River. (4)

Old Kingston Site - 1829-1868; the deserted site of Old Kingston consists of approximately 15 acres adjacent to the present small rural community of Kingston in central Autauga County 4 miles north of U. S. Highway 82. The town was the second seat of Autauga County government moved from Washington. (4)

Old Milton - 1820-1880; The Town of Milton located approximately a mile southeast of the present community of Milton is now a ghost settlement. Abandoned because of repeated flooding of Mulberry Creek. (4)

Montgomery-Janes-Whittaker House - "Buena Vista" Autauga County Road 4 between Prattville and the Alabama River; 1821; three-story white clapboard house with four lonic columns and brick portico. (1)

Vernon Fields - Located 2 miles south of Autaugaville where Swift Creek joins the Alabama River, contains the remains of an aboriginal Indian Village and Indian burial ground. The village, called Kinsha-Chapinta has never been scientifically excavated to any extent. (4)

Washington Site - 1818; the site of the town of Washington, now abandoned; located 4 miles south of Prattville; covering approximately 10 acres; first seat of government when the county was delineated by the second Territorial Legislature in 1818. Location is now called "Washington Hill". (4)

White Oak Tree - This tree located on the site of the Judge C. E. Thomas home is authenticated as the tallest White Oak Tree in the United States. It measures approximately 25 feet in circumference. (4)

Baldwin

Fort Mims - Four miles from Tensaw on the Alabama River; home of Samuel Mims who settled here in 1778; stockade built around his house for defense against Indians; Fort Mims massacre occurred here in 1813. (1) (2) (4)

Weatherford (William) Grave - near Old Montepellier at Tait's Old Brickyard Plantation on Little River; grave of noted Creek Chief, Red Eagle, who was accused of leading the Fort Mims Massacre. (4)

Bibb

Bibb Naval Furnaces-Brierfield Furnaces - One-half mile, located on Alabama Highway 25 west of Wilton; principal iron producer for Confederate foundry at Selma. Furnaces destroyed 1865 by Wilson's Raiders; rebuilt 1866; owned by Kimberly-Clark Corporation; c. 1851. Arched tunnel goes through structure. (1) (2) (4)

Ebenezer Church - April 1, 1865; cavalry engagement here among the fiercest of the Civil War; fought between Forrest and Wilson; church owned. (2) (4)

Montebrier - Near Montevallo; 1854; Victorian with gingerbread. (1) (4)

First Bibb County Courthouse - Antioch; c. 1820's; two-story frame. (4)

Piper-Coleanor (Little Cahaba Coal Co. Site) - Mining towns, mines opened 1900; closed 1950; reunion held each year for residents, families, and friends associated with the old mines. (4)

Bullock Chunnenuggee Gardens, Site of - First formal garden in the United States. (4)

Chunnenuggee Female College - Chunnenuggee Ridge; 1844; college was closed down at the outbreak of the Civil War. (4)

Fort Coffee, Site of - four miles east of the Fitzpatrick settlement south of Hobdy's Bridge and about eight miles from Williams settlement; built during Indian uprising in 1836. (4)

COUNTY	SITE AND LOCATION Appendix 20 Cont'd
Calhoun	Cane Creek Furnace - Highway 78 cast of Eastaboga; 1840; ruins of one of the earlier pig iron furnaces built in Alabama; destroyed 1864 by U. S. Calvary raiders under General Rousseau. (2) (4)
	Coldwater Covered Bridge - Six miles southwest of Anniston and visible from 1-20; one- span, 60'; modified King post truss; c. 1900. (1) (4)
	Ft. McClellan Indian Site - 700 year old Indian village.
	Weaver Cave - Weaver; $^{1}_{2}$ mile southeast of Weaver on county road, natural and undeveloped cave. (3)
	Tallahatchee Covered Bridge - North of Anniston, 2½ miles east of U. S. 431 and 1½ miles east of Wellington, c. 1900; 60' long, of rare King post design; owned and maintained by the Calhoun County Commission.
	J. C. Francis Doctor's Office and Apothecary Shop - 100 Gayle Street, Jacksonville. (1) (2) (4)
	Crowan Cottage – 1427 Woodstock Avenue, Anniston; 1872; two story, shingle-style structure designed for James Noble, Sr., by Stanford White.
	Tallishatchee Town - Three miles southwest of Jacksonville; large Upper Creek town; site of battle between Creeks and General John Coffee, November 3, 1813; one of the first engagements of the Creek War; first American victory to avenge Fort Mims (2) (4)
	Aderholt's Mill - Three miles north of Anniston, off Highway 21; 1832; one of the state's oldest surviving grist mills. (4)
	Anniston Inn Kitchen - 120 W. 15th Street, Anniston; 1885; the kitchen and dining room of the Anniston Inn; two story brick and stone; National Register. Art-Architecture, Victorian.
	Booker T. Washington Park - Blue Mountain Ridge, c. 1900; recreation park for citizens of Hobson City. (4)
	Boozer Site - intersection of Glover and Clark Drive unclassified; projectile points, pot-sherds and statite sherds urcovered here.
	Choccolocco Village - 4 miles southeast of Oxford on North bank of Big Shoal Creek; Upper Creek town, friendly to whites during the Creek War 1813-1814. (4)
	Janney Furnace - Ohatchee; ruins of early furnace. (4)
	Ladiga Cavalry Skirmish Site – Piedmont last fighting between armies of Hood and Sherman, 1864. (4)
Chambers	Bibby's Ferry - 15 miles northwest of LaFayette; operated since mid-1800's; last county operated ferry in Alabama; still in use. (4)
	Ripville (Rock Shoals) - Hoototchlocco Creek; c. 1840; stone and frame grist mill; mill stones were made and purchased in France. (4)
Cherokee	Cornwall Furnace - 1862; made iron for Confederacy; best preserved furnace in the state; Cedar Bluff area. (1) (4)
	Yellow Creek Falls-Blue Pond; Near U. S. 411; beautiful waterfall off Lookout Mountain into Lake Weiss. (3)
	Barry Springs - near Georgia line, large stockade built here for Indians before their removal to the west.
	Blacksmith Shop - Cedar Bluff; 1832; log.
	Braswell Mill - Pleasant Gap; c. 1868-70; two-story frame.
	Broomtown Valley - named for Cherokee Indian Chief Broom, a national council of Cherokee Indian Chiefs held here September 11, 1808, on September 5, 1863, Brigadier General George Crook commanding second division U.S. Army engaged Confederate forces in this valley on October 14, 1864, located on State Route 35 at intersection with County Road 15 at Blanche. (4)
	Cobia's Mill - State Route 68, two miles north of Cedar Bluff; mid-19th century; two- story frame; grist, flour and saw mill. (4)
	Costa Indian Village - Cedar Bluff; DeSoto camped here in 1540. (4)
	Edgins (G. Jeff) Grave - Moshat Church Cemetery; grave of G. Jeff Edgins born in Spartanburg, South Carolina, October 28, 1838, died near here January 24, 1890, he was a member of the battery that fired the shot at Fort Sumter, South Carolina on April 12, 1861, which began the Civil War. (4)
	Forrest Defeats Streight Site - May 3, 1863, site where General Forrest with about 500 men forced surrender of Colonel Streight's army of about 1,500. (4)
	Fort Armstrong - two miles south of Cedar Bluff on Williamson Island; 1813.
	Little River Canyon - 14 miles northwest of Gaylesville; evidence of early aboriginal habitation; deepest gorge east of the Rockies; scenic tourist attraction. (4)

McElrath Mill (Old Ice Plant) - Centre; 1842; corn and flour mill, cotton gin and ice plant, was one of four ice plants in the world that made ice by water power. (4)

#### x 20 -- Cont'd

COUNTY	SITE AND LOCATION Appendix 20 C
Cherokee (cont'd)	Rock City - along brow of Lookout Mountain; very large rocks, columns of boulders of eroded limestone and sandstone; Indians inhabited this area from aborigines to Cherokees (1838). (4)
	Split Rock - in the wall of Little River Canyon; large Crevasse, "Indian Smoke House" used by Indians and early settlers-favorite picnic area 1890-1930. (4)
	Turkey Town Council Site - located at Centre; in front of Junior High School; important Indian Council site from about 1707; named for noted Chief "the Turkey", October, 1816, a council of Cherokees, Creeks, and Chickasaws met to settle boundaries and ratify a peace treaty, General Andrew Jackson, Samuel Dale and David Crocket were there. (4)
	Union Occupation of Cedar Bluff Site - Major General J. M. Schofield, commanding the U. S. Army of the Ohio, occupied Cedar Bluff with about 9,000 troops on October 20, 1864, Major General O. O. Howard, commanding U. S. Army of the Tennessee, with about 10,000 joined him on October 28, 1864, General W. T. Sherman ordered both armies to begin their "March to the Sea through Georgia" from here on October 30, 1864. (4)
	Yellow Creek Mill - near Sand Rock; 1880-1970; water powered grist mill. (4)
Chilton	Verbena Historic District - Settled by people fleeing from epidemics of yellow fever; the town once had a gold mine, and was one of the leading producers of gold in Alabama. District includes at least 13 structures. (4)
	Battle of Abenezer Church - Stanton Community; April 1, 1865. C.S.A. forces under General N. B. Forrest engages Union forces under General James H. Wilson here April 1, 1865 in one of the fiercest cavalry engagements of the war. Forrest was seeking to block Wilson's mission of capturing the Confederate Arsenal at Selma. Swollen streams and intercepted orders blocked aid for Forrest and forced his retreat. (4)
	Confederate Memorial Cemetery - Mountain Creek; 1902-1933; two cemeteries several yards apart; an old soldier's home; small cottages; a hospital; a meeting house and a dairy made up the community.
	Old Indian Fort - near Blue Creek; c 500 AD; rock rubble ruins; walls were probably six to eight feet high.
	Plier's Mill - Route one, Clanton; 1918; several worker's cottages remain. Yellow Leaf Creek Grist Mill - built 1830; still in operation. (4)
	H. H. Miller Grist Mill - Cane Creek Community, 1 ¹ ₂ miles off Lay Dam Road; only water grist mill in county. (3)
Clarke	Choctaw Bluff Earthworks - Between Alabama and Tombigbee Rivers, Civil War fortifications constructed on the west bank of the Alabama River to guard the salt works near Jackson and the naval foundry and arsenal at Selma. Cannons were never fired but blown up by Col. Mims in 1865, later Choctaw Bluff was a busy river port but today nothing remains. (4)
	Fort Madison Site - 12 miles S. E. of Grove Hill, 1812; site of pioneer stockade; commanded by Captain Sam Dale and Evan Austill; Choctaw chieftain Pushmataha often visited; nothing remains of original. (4)
Clay	Hillabi Town On Koufadi or Little Hillabi Creek; near the line of Clay and Tallapoosa Counties, in the vicinity of Gilbert's Mill, opposite to, and a short distance from, present Pinkneyville; a main Hillabee town which prior to 1761 threw off several settlements nearby.
	Potus-Hatchi (Potchushatchi) On the headwaters of Hatchet Creek, 6 miles from the present town of Hatchet Creek and a short distance from the present community of Coleta; this was an Upper Creek Town that extended 1 mile up and down the creek.
	Hugo Black Home - 15 miles south of Ashland, brithplace of Hugo Black, U. S. Supreme Court member. (1) (4)
	Clairmont Springs Historic District - Off Highway 77 between Ashland and Talladega; c. 1908 district includes two-story frame, 50 room hotel, resort and mineral springs. (4)
	East Mill - On Mad Indian Creek 4 miles east of Barfield off Highway 9; c. 1900; water powered, cotton gin, grist mill and saw mill. (4)
	Simmons Mill - On Little Hillaby Creek, 3/4 mile west of Millerville; pre-Civil War; first wheat mill constructed in Alabama, water powered wheat, grist, saw and handle mill; wheat stones imported from Ireland. (4)
Cleburne	Oakfuskee - On the Tallapoosa River; Upper Creek town; considered the largest Creek community of the Creek Confederacy.

Arbacoochee-Indian Village - near present community called Arbacoochee, Creek Village. (4)

Arbacoochee Site - 8 miles south of Heflin; gold capital of the country in 1840's. (4)

Cheaha Mountain State Park - Able; highest mountain in Alabama, elevation 2,407 feet; very scenic view. (3) (4)

Atchinalgi - On the east bank of the Tallapoosa River near the mouth of Cedar Creek, Upper Creek town destroyed during Creek War in 1813. (4)

COUNTY	SITE AND LOCATION	Appendix 20 Cont'd
Cleburne	Neufaka - On the south bank of the Tallapoosa River; an Upper Creek town	n. (4)
	Oakfushee - On the Tallapoosa River; an Upper Creek town; oldest Creek o Confederacy. (4)	community of Creek
	Shoal Creek Church - Shoal Creek; c 1814; log structure, one-story, expo rafters. (4)	osed beams and
	Wehogan – Creek Indian Village. (4)	
Coosa	Itaba (Itawa) - On Hatchett Creek, 4 miles north of Rockford, on highway Sylacauga at point where the stream flows through deep gulches; an Upper great antiquity; visited by DeSoto in 1540. (4)	
	Okachoy Covered Bridge - Southeast of Rockford on Alabama 22, turn right near Nixburg; built of homemade timber, one-span 56 foot modified Queen 1915. (4)	
	Sakapataye - On Socapatoy branch of Hatchett Creek, a few miles west of small Upper Creek town. (4)	Kellyton; a
	Shepherd Falls - Hissop; 1 mile north of Highway 22; 30 foot waterfall s natural wooded area. (3) East Wetumpka - Idian village. (4)	surrounded by
	Lalokalka - East of Hissop, upstream on one of the branches of Elkhatche	ee Creek; an
	Upper Creek town. Opil'ako - On Picthlocco Creek, 20 miles upstream from the Coosa River,	a few miles
	west of Nixburg, in Picthlocco Creek swamps; Upper Creek town; appeared of 1733 as Pitlacco. (4)	
	Pakana-Talahassi - At Hatchett Creek, on right bank 4 miles from its inf Coosa River, and in the fork formed by Weogufka Creek; an Upper Creek to	
	Rockford Jail (Old Coosa County Jail) - Rockford; mid-19th century; thre building; in operation until 1938. (1) (4)	e story rock
	Weogufki (Uiukufki) - On the east bank of Weogufka Creek, 5 miles above with Hatchett Creek; an Upper Creek town. (4)	its confluence
Dallas	Cahawba Historic District - Site of Alabama's first permanent capital 18 seat of Dallas County, 1820-66; Confederate Prison during the Civil War.	
	Caxa - On the Alabama River just below the mouth of Cedar Creek; Indian by DeSoto's expedition in 1540. (4)	village visited
	Morgan (Sen. John T.) House - 719 Tremond St., Selma; two-story frame. federate general and U. S. Senator. (1) (4)	Home of con-
	Live Oak Cemetery -West Dallas Avenue, Selma; mausoleum contains the rem King, Vice-President of the United States; a marble shaft marks the grav Senator John T. Morgan. (4)	
	Sturdivant Hall - 713 Mabry St., Selma; 1853; designed by Thomas Helm Le Watts; two-story brick and stucco; Neo-classic architecture. (1) (2) (4)	
	Talasi - At Durant's Bend, 35 miles from Montgomery; an aboriginal town DeSoto stayed here for 20 days in 1540.	of great antiquity;
	Water Avenue Historic District (21 structures) - Water Riverfront, Selma buildings within five blocks; built between the late 1830's and the end century; all buildings are brick or stone, from one to three stories and two story iron verandahs; architectural styles are varied.	of the 19th
	Blue-Girth Swamp - 6 miles east of Selma; 200 acre natural swamp of exce value.(3)	ptional wildlife
	Bienville Monument - Alabama River Bluff; commemorates meeting of Bienvi Indians in the 18th century. (4)	lle and the Alabama
	Brooke Gun Foundry Site - Selma; one of two heavy gun foundries of the C destroyed by Federal Troops in 1865, a number of cannons survived; priva	
	Cahawba Mounds - At the old town of Cahawba; two extensive mounds believ part of earthworks which fortified French encampments; c. 1750.	ed by some to be
	Casiste - On the left bank of the Alabama River opposite the mouth of the DeSoto's expedition visited this town October 5, 1540 and departed Octobe Creek town. (4)	
	Confederate Arsenal Monuments - Church Street at Water Avenue; two marble mark entrance to Arsenal Place.	e monuments which
	Confederate Naval Foundry Site - Sylvan Street at Water Avanue; site of during Civil War; Tennessee Confederate ironclad steam ram built here.	Confederate foundry

COUNTY	SITE AND LOCATION	Appendix 20 Cont'd
Dallas	Kenan's Mill - two miles north of Selma off Summerfield Road; c. 1825; powe of Valley Creek; has been in operation since its construction; owned by Mrs	red by water . James Kenan. (4)
	Federal Building - Courthouse, Selma; built in 1909; heavily influenced by Florentine Palazzo; owned by the U.S. Government. Political Affairs-Estab and Administration of Government.	the lishment
DeKalb	Fort Payne Opera House - Fort Payne; 1889 structure from Fort Payne's days built from native stone. (1) (2) (4)	as a "Boom tow <b>m</b> ";
	Manitou Cave - Fort Payne; home of early man, 250 million years old; Indian: large cave room used as ballroom during the ante-bellum and Civil War period	
	Will's Town - Will's Valley; a short distance north of present Lebanon, 6 m. Fort Payne; Cherokee town of considerable importance founded in 1770. (4)	iles south of
	Railway Terminal - Fort Payne; c. 1889; large hewn stone block construction Romanesque. (1) (4)	; Richardsonian
	Casey Grist Mill - Near Colbran; two story, rock. (4)	
	Cherokee - Fort Payne; mansion built in the late 1800's around a two story may have been huilt by John Ross, Cherokee Indian chief in 1790; Sequoyah ta Cherokee alphabet in this general area; two story frame structure. (4)	
	Desoto Falls - Near Valley Head; scenic water fall - 70 feet drop to Little explored this area. (4)	River; Desoto
Elmore	Bibb (William Wyatt) - Grave site; private cemetery near home, Millbrook; f Alabama, 1819-1820; only governor of Alabama Territory 1817-1819. (2)	irst governor of
	Fuoihatchi - One mile above Ware's Ferry, on the right bank of the Tallapoo miles below the old Indian town of Huithelwalli; an Upper Creek town; some b united with the Creeks here. (4)	
	Hoithlewalli (Ulibahali) Town and Mound - On the right bank of the Tallapoo of the influx of Mitchell Creek and extended one-half mile back from the Cru was visited by DeSoto on August 31, 1540. Extensive mound located on this	eek; this town
	Ikanhbatki Mounds - About opposite the influx of the Eight Mile Creek into a River; extensive mounds.	the Tallapoosa
	Koasati - On the right bank of the Alabama River, three miles below the con- the Coosa and Tallapoosa Rivers, near Coosada; this was an Alibamon town of Creeks. (4)	
	Tomonfa (Tomopa) - On the west bank of the Coosa River, opposite old Fort To Alibamon town of great antiquity which lost its identity to the Indian town	
	Fort Toulouse (Fort Alabamu: Fort Jackson Site): Within the junction of th and the Coosa Rivers, three miles west of Alabama Highway 9, about 13 miles built in 1714 by French Captain de La Tour, by orders of Bienville, at the Chiefs of the Alibamu for a trading center; here in 1814 William Weatherford surrendered to Gen. Andrew Jackson, signalling the end of the Creek War. (1)	from Montgomery; request of the d, the Red Eagle
	Tuckabatchi Mound (Tookabatcha) - Large mound on the west bank of the Tallaj miles below the present city of Tallassee; site of an influential town and t capital of the Upper Creeks. (4)	
	Witumpka - Practically on the site of the present city of Wetumpka; an Upper this town incorporated the small Indian village of Tomonpa which was adjoin	
	Wi-Wux-Ka (Weewoka) - On the left bank of Wewoka Creek, four miles from the an Upper Creek town; the name meaning "Roaring Waters". (4)	Coosa River;
	Woksoyudshi - East of the Coosa River, two miles east of Fort Toulouse; an U town of several villages adjoining one another at this location. (4)	Jpper Creek
	Alabama State Penitentiary - One mile north of Wetumpka on Highway 231; 1841 of three brick structures. (1) (4)	l; consists
	Atchinanhinahatchi - On the present Cheneyhatchie or Channahatchie Greek, so the village of Cotton and just east of Central; an upper Creek town, settled town of Kailaidshi. (4)	
	First United Methodist Church - 306 West Tuskeena Street, Wetumpka; 1854; mc Revival with Italianate influences. (1) (4)	dified Greek
	Hut-Chit-Chapa - On the headwaters of Mitchell Creek, a few miles south of y town of Central; this village was settled in a pine forest by people from K destroyed by hostile Creeks in 1813, but later rebuilt. (4)	present ailaidohi;
	Ikanhbatki - At the site of the Rifle Range of the U. S. Army in 1917-18; of influx of the Eight Mile Creek into the Tallapoosa River; an Upper Creek to	ppsite the wn. (4)

#### COUNTY SITE AND LOCATION

Etowah

Elmore (cont'd) Jackson's Lake Mounds - At old club on Jackson's lake near Millbrook; burial mound near present course of Alabama River; also two mounds and burial site near clubhouse. (4)

> Kailaidshi (Kowiija) (Kialigi) - South of Little Kowaligi Creek, near the present Prospect Methodist Church, One mile west of Kowaligi; an Upper Creek town. (4)

Koasiti Mound - Just above the Coosada Ferry; large mound.

McGillivray Planation Site ("Little Talisi") - Wallsboro; 1740-1800; first white settler in the region; married half Indian daughter of French Commandant of Fort Toulouse. (4)

Okchayudshi - On east bank of Coosa River, about two miles below Wetumpka; a small Upper Creek village.

Parker's Island Mound - At the junction of the Coosa and Tallapoosa Rivers-area dotted with towns and villages. (4)

Tallassee Armory Site - Tallassee; 1864; only Confederate armory not destroyed by Federal forces; Colonel Gorgas, ordinance chief, had carbine shop moved here into the Tallassee Manufacturing Company mill in spring of 1864 as war threatened Richmond, Virgina armory.

Taskigi Mound - large Indian mound at the junction of the Tallapoosa and Coosa Rivers, three miles off Alabama Highway 9.

Fort Toulouse (Fort Alabama - Fort Jackson Site) - Within the junction of the Tallapoosa and the Coosa Rivers, three miles west of Alabama Highway 9, about 13 miles from Montgomery; built in 1714 by French Captain de la Tour, by orders of Bienville at the requests of the Chiefs of the Alibamu for a trading center; here in 1814 William Weatherford, the Red Eagle surrendered to General Andrew Jackson, signalling an end of the Creek War.

Woksoyudshi Mound - East of the Coosa River, two miles upstream from its junction with the Tallapoosa River; mound. (4)

Gilliland Covered Bridge (Old Reece City Bridge) - In Gadsden at Noccalula Falls; 1899; one-span, 40 foot town bridge; first completely restored covered bridge in Alabama. (4)

Noccalula Falls Park - Gadsden on Alabama Highway 227; park, pioneer museum, botanical garden; contains authentic post office, covered bridge; meeting house, grist mill, barn, and pioneer house; name of falls came from a legend that an Indian girl, Noccalula, jumped to her death when refused permission to marry. (4)

Natural Bridge - Gallant, County Highway 35; natural rock bridge on Little Canoe Creek. (3)

Atall Village Site - Attalla; Cherokee Inidan village until 1832. (4)

Bull Town Site - A branch of Turkeytown. (4)

Estanaula Village Site - not far from Turkeytown; branch town of Turkeytown. (4)

Rock City - Five miles south of Gadsden, on Alabama 1; natural rock formations and aboriginal dwellings carved in solid rock. (4)

Sansom (Emma) Memorial Statue - Gadsden; she led General Forrest, in pursuit of Colonel Streight, to shallow place in the creek after the bridge was burned. (4)

Sullysqash Village Site - Near Turkeytown; branch town of Turkeytown. (4)

Turkeytown Site - Ballplay; at site of Turkeytown; Ballplay on U. S. 411; capital of the Cherokee Indian nation. (4)

Vann's Town Site - Near Turkeytown; branch town of Turkeytown. (4)

Duck Springs Bridge - Ten miles north of Gadsden between Kenner and Duck Springs; one span, 119 feet long, resembles the hull of a boat. Partially destroyed by arson, the steel truss remains. Restoration may be attempted as funds permit.

Jefferson Indian Burial - Near Pinson; 500-1000 AD; remains of 44 corpses.

Alabama Caverns - Near Clay, 18 miles from Birmingham and Gadsden Road; used commercially just after their discovery in 1840; and used as a saltpeter mine during the Civil War. (4)

Genery's Gap - Old Montevallo Road, Southern part of county; gateway to Birmingham cut 1869-71; huge piles of rock are still neatly along the cut. (4)

Lee Noble Hall - On Shelton's Mill Road, N.E. of Auburn; 1854; two story rock and mortar; Greek Revival. (1) (4)

Auburn University Players Theater - Auburn; 1850; log and brick structure; used as church, hospital and in 1926 became a theater. (4)

Chewacla Lime Works - Chewacla, mid 19th Century, stone and stucco.

Lee County Courthouse - South 9th Street, Opelika; 1896; two-story, brick.

COUNTY	SITE AND LOCATION	Appendix 20 Cont'd
Lee (cont'd)	Loachapoka Historic District - Mid 19th Century village; l and Victorian influences; commercial center during the mid	
	Scott-Yarborough House, 101 DeBardeleben Street, Auburn.	
	Ebeneezer Missionary Baptist Church on Summer Hill, built Society-Religion; Black History.	in 1865, Negro.
Lowndes	Holy Ground Battle Site (Ikan-A-Cha-Ka) - 2½ miles due nor River Break; Creek Indians soundly defeated here in 1813; n of the Corps of Engineers.	
	Lowndes County Courthouse - Washington Street, Hayneville only four ante-bellum courthouses still in use in Alabama.	
	Lowndesboro - Village contains 20 structures 1818-1888; Greante-bellum community. (1) (4)	eek Revival; predominately
Macon	Atassi (Autosee) - 20 miles east of the mouth of the Coosa Calebee Creek, on the south side of the Tallapoosa River; De Crenay's map of 1733; Indians from this Red Stick tribe massacre; in November 1813, General John Floyd burned the is a large flat-topped mound in regular shape. (4)	an Upper Creek town shown on took part in the Fort Mims
	Conaliga - Southwest of Society Hill; Upper Creek town; fr fought against the Upper Creeks. (4)	iendly with whites; in 1813
	Nafolee (Yufali) - On the east bank of the Tallapoosa Rive Eufaubee Creek; shown on De Craney's map of 1733; an Upper Oxceola, the great Seminole Chief, was born here. (4)	
	Thloblocco - On the Thloblocco Creek, a tributary of Cubah of the Montgomery to Tuskegee Highway, U. S. 80; Upper Cree leader during the Civil War. (4)	
	Tuskegee Institute; Tuskegee - early 1900's; educational la Booker T. Washington and George Washington Carver. (1) (2)	
	Calebee, Battle of - West of Tuskegee; 1813; Creeks attack an Indian victory.	ed General Floyd's men, nearly
	Carver (George W.) Museum - Tuskegee; had a fire four years is still standing. (4)	s ago; lost some paintings but
	Fort Decatur - On the Tallapoosa River, near the present s from the old Indian town of Atassi, two miles from U. S. H erected by Carolina trops in March, 1814; John Sevier of To was later removed and returned to Knoxville, Tennessee. (4	ighway 80; an American fort ennessee buried here; his body
	Fort Hull - five miles southeast of Tuskegee; 1813; built defense against the Indians. (4)	by General John Floyd as a
	Oaks, The - Tuskegee; 1887; one story brick; home of Booke first Presidnet of Tuskegee Institute. (4)	r T. Washington, founder and
	Talisi - East bank of Tallapoosa River and just above its Upper Creek town of great antiquity; shown on De Crenay's	
	Yafalo - On Yaphapee Creek, 15 miles from its confluence w. Creek town; French census of 1760 showed it to have 100 wa	
Monroe	Atahatchee - On the east bank of the Alabama River near Tin Chief Tuscaloosa prisoner. (4)	nela; here, in 1540 DeSoto took
	Fort Claiborne - At the mouth of Limestone Creek, on the exmiles east of Monroeville; 1813-1814; used in the Creek Wa	
	Lisbon Formation, Gosport Sand & Moody's Branch Formation on the east side of the Alabama River; beds under bridge an Claiborne Landing; pelecypods; gastropods and echinoids.	
	Piachi - At the old town of Claiborne; aboriginal Indian v. 1540. (4)	illage visited by DeSoto in
	Anderson Stage Stop - Old Federal Road between Montgomery a with two exterior chimneys on either end. There is a long enclosed to provide another room. The out buildings inclu shed, smoke house, livery stable, and a corncrib; privately	porch with part of one end de a separate kitchen, carriage
	Burnt Corn Creek Battle Site - Burnt Corn Community; spring and the white settlers fought along the creek; the Indians rallied and defeated the settlers, burning their cornheno marked the beginning of the Creek War (1813-1814). (4)	were first driven back, but
	Flat Creek Indian Site - Village was located where Flat Cre River. (4)	eek flows into the Alabama
	4 117	

COUNTY	SITE AND LOCATION	Appendix 20 Cont'd
Monroe (cont'd)	Limestone Creek Indian Mound - Near Claiborne; 17th or 18th Century; burial mound, about 40' x 100' x 18' high. (4)	man-made earthen
	Monroe County Courthouse - Monroeville; 1903; moved the Claiborne co old court room is used as a museum; "To Kill a Mockingbird" was film the National Register. (4)	
	Mystery Stones - Pine Orchard Community, ante-18th Century; wheel sh limestone from 18" to 40" in diameter and from 30 to 1,500 pounds; m hole in the center; they were possibly used by the Indians as a cal ceremonial purposes. (4)	nost stones have a
	Primitive Indian Fire Pit - Pine Orchard Area; contains crude circle Indians as a fire pit about 700 years ago; privately owned. (4)	e of stones used by
	Stage Coach Inn - On the Old Federal Road near Old Texas, mid-19th C with siding; "dogtrot" style with full width front porch; one of few stage coach inns in the state, owned by Ziba M. Anderson. (4)	surviving old
Montgomery	Alibamu Town Mounds - One mile south of Jackson's Ferry, on the west Jackson Ferry Road within a half mile of each other; three mounds, t mound of Alibamu Town. (4)	
	First White House of the Confederacy - 664 Washington Avenue, Montgo two story frame; Greek Revival; home of Jefferson Davis, first Presi from early March until the end of May 1861; moved to its present loc	ident of the Confederacy
	Gilmer-Thomas House - 3175 Thomas Avenue, Montgomery; 1821; Greek Re oldest houses in Central Alabama; oldest planation house intact in M	
	Hu-Ithie-Walli - At the mouth of Mitchell's Creek, on the Tallapoosa branch village of the Creek Indians. (4)	a River; an extensive
	Kulumi (Caloomi) - On the Tallapoosa River, one mile below old Ware' east of Montgomery; a town of great antiquity, visited by DeSoto on	
	Muklassa - On the left bank of Eight-Mile Branch, 1½ miles from the Tallapoosa River; very old Upper Creek town, home of Wolf Kong, impo Creek leader; belonged to the Red Sticks during the Creek War, 1813-	ortant 18th Century
	Rice-Semple House (Haardt Building) - 725 Monroe Street, Montgomery; of a Chief Justice of the Alabama Supreme Court, Samuel F. Rice; Vic architectural influences. (1) (4)	
	Sawonogi - On the south bank of the Tallapoosa River, near Ware's Fe below and adjoining what was later the pioneer town of Augusta; a Sh town; Shawnees were of the Hatawekela Bank; Red Stick town during th of Savannah Jack, a Creek leader. (4)	awnee and Creek
	Ordeman-Shaw House - 230 North Hull Street, Montgomery; 1850; two st with scored stucco finish and partially raised basement; early Itali Tuscan influences, interior trim is Greek Revival; outbuildings. (1)	anate Style with
	State Capitol - Head of Dexter Avanue, Montgomery; 1851; built on "G D. Button, architect; east wing added, 1885; south wing, 1905; north Confederate government organized here; Greek Revival; spiral stairca	wing, 1911:
	Winter Building - Southeast corner of Court and Dexter, Montgomery; story brick structure; Southern Telegraph office on the second floor through this office was transmitted the order that resulted in the f	for many years;
	DeSoto Trail - Montgomery; 1540; route traveled by first Europeans t marker on Bell Street near Maxwell Air Force Base.	o visit Alabama,
	Dexter Avenue Baptist Church - 454 Dexter Avenue, Montgomery; 1877; several ministers have attracted national attention; most notably Dr Dr. Martin Luther King. Society-Religion; Black History.	
	Iconchati - Vicinity of I-65 Alabama River Bridge; c. 1500-1814; Cree Iconchati, village most nearly on the site of the City of Montgomery	
	Governor's Mansion (Ligon House) - 1142 South Perry Street, Montgome: Neo-Classical structure, home of General R. F. Ligon; since 1950 has residence of Alabama Governors. (1) (4)	ry; 1907; two story been official
	Line Creek Village - On the south bank of Line Creek; site of a small	l Creek village. (4)
	Montgomery Union Station - Water Street, Montgomery; 1898; three stor	ry masonry structure. (4)
	A-118	

#### Appendix 20 -- Cont'd COUNTY SITE AND LOCATION Montgomery (cont'd)Murphy House - Corner of Bibb and Coosa Streets, Montgomery; 1851; two story brick stuccoed over and scored; Greek Revival; Corinthian capitals; constructed as town house of wealthy cotton merchant: National Register. Old Continental Gin - east of U. S. Highway 231, near Teasby's Mill, Pine Level vicinity; 1927; one of the two oldest Continental Gins from the Prattville factory still being operated in the South from the original plant founded by Daniel Pratt. Pakana - South bank of Tallapoosa River, east of William L. Yancey Bridge; c. 1650-1814; site of Upper Creek town; significant archaeological finds. (4) Perry Street Historic District - Montgomery; 19 structures including two churches and the Teague, Washburn, Cody, Lomax, Knox, Griel, and Falcomer Houses and four Victorian row houses. (1) (4) Powder Magazine - Eugene Street, Montgomery; 1840; commercial gun powder warehouse; later confederate army magazine; brick with barrell-vaulted arches in ceiling; the site is being converted into a riverside park area. (1) (4). Powokti Mounds - South bank of Alabama River near Washington Ferry Road; site of Powokti Village, believed to be Mississippian, five mounds. (4) Thomas Home (Edgewood) - 3175 Thomas Avenue, Montgomery; 1821; two story frame structure with two story portico, elements of Federal and Greek Revival; oldest house in Montgomery. (1) (4)William Lowndes Yancey Home - Across from Gunter Air Force Station, U. S. Highway 231; c. 1850; one-story frame house; last home and death place of William L. Yancey; prominent secessionist Perry Marion Female Seminary (Perry County High School) - Marion; 1836; formerly three story brick (two stories since 1930); Greek Revival; Nicola Maroschall (musician and artist) designed the first Confederate flag and Confederate uniform here. (1) (3) (4) Brave Harry's Grave - Marion Cemetery, Marion, in 1854 a slave named Harry died from burns and a fall he sustained trying to awaken all the students in the burning dormitory of old Howard College (now Samford University) when it was located in Marion. He was the first black buried in the Marion Cemetery and a marble shaft was erected at his grave by Howard College students and the Alabama Baptist Association. Owned by the city of Marion. (4) Confederate Cemetery - Behind St. Wilfrid's Episcopal Church, Marion, Perry County; the graves of 77 soldiers of the Civil War were moved to this location from the old Howard College present Marion Institute campus in 1872 by the Ladies Memorial Association; here is also what is supposed to be the largest redwood in the eastern United States. Owned by St. Wilfrid's Episcopal Church. (4) Randolph Aboriginal Structure - Seven miles northeast of Wedowee; at this point is seen a circular stone structure, two or three feet high, with two entrances, one on the east side and the other on the west; running from this structure, in a northeasterly direction, can be seen traces, for more than a mile, stone pillars about two feet high, located 100 yards apart. (4) Kitcho Pataki - On a creek by the same name, locally spelled Ketchapedrakee, at its influx into the Tallapoosa River, a few miles below the present village of Okfuski; this was an Upper Creek town. (4) Lutchapoga - On the Tallapoosa River, nearly opposite the mouth of Corn House Creek; and below Welborne's Ferry; this was an Upper Creek town, the name signifies "Terrapin gathering place." (4) Wah-Wah-Wee (Wee-Dah-Wee) - One-half mile south of Trylett's Ferry, on the west bank of The Tallapoosa River, near the present town of Wedowee, this was the village of the Indian Chief "Wee Dow Wee", whose name was given to the modern town near this location. (4) Horton's Waterfall - Rock stand, off U. S. 431; beautiful waterfall. Bald Rock - Three miles northeast of Wadley on Highway 78; eighty acres granite out crop has c. 1900 syrup mill, grist mill, and home; used as school; listed in Registry of National Environmental Education Landmarks. Foster's Bottoms - Near Wedowee; excavation produced projectile points and gorgets of the Woodland Period. Grist Mill - Northwest Randolph County near Rockdale; on Piney Woods Creek; built 19th century by Jeptha Smith and his son William Hush Smith who was one of Alabama's reconstruction governors. 'Lap'Lako - On the Tallapoosa River this was an Upper Creek town that was destroyed by the forces of General Adnrew Jackson in 1814. Louina - In the east central part of the county, on the west bank of the Tallapoosa River, at Hunter's Ferry; this was the site of the old trading post, established by an Indian woman, Louina, about 1830, and was named for her; this post was the metropolis of its day and section; she sold the trading post when the Indians were removed to the west, 1836; the grist mill of the old trading post still stands.

COUNTY	SITE AND LOCATION	Appendix 20 Cont'd
St. Clair	Tasqui - Aboriginal town on the Coosa River; visited by DeSoto on mentioned in his chronicles.	July 14, 1540 and
	Horse Pens 40 - Near Steele; unusual rock formation on Chandler M	ountain.
	Broken Arrow - Indian Village Historic Site; first white settleme Cross Roads.	nt here called Bolton's
	Fort Strother - Six miles east of Ragland on Coosa River in St. C for General Andrew Jackson during his campaign against the Creek	
	Inzer House - Ashville; one story; built 1852 of handpressed bric property of John W. Inzer in 1866; owned and occupied by Miss Sal	
	Litafatchee - Eight miles north of Ashville on Canoe Creek; Gener out foraging party under Colonel Dyer who discovered and destroye 29, 1813, Chief Cataula.	
	Looney-Lonnergan House - Beaver Valley, six miles from Ashville,; with dog trot; built 1818-19; excellent example of pioneer archit Clair Historical Society. Art-Architecture, Log Cabin Style.	
	Otipalin - Four miles west of Ohatchee on Coosa River in St. Clai "Ten Islands"; later site of Fort Strother.	r County; name means
	St. Clair Springs Historic District - Late 19th century resort to Victorian.	wn; 21 structures; mostly
Shelby	Athens Shale of Ordovician age; roadcut on south side of Alabama miles west of intersection of Alabama Highway 25 & U. S. Highway are preserved as carbonaceous films in dark gray shale.	
	King Mansion House and Cemetery - Montevallo; 1823; two story bri the county and had first glass windows to be used in that part of on campus.	
	Tulauhabsho (Tulawahajah - Old Mad Town) - About ten miles south on the east bank of the Cahaba River; Upper Creek town in the ext of Creek Territory.	
	Falling Rock Falls - Between Dogwood and Pearidge; water plunges rock formation and plant life.	60 feet vertically, unusual
	Columbiana City Hall - Columbiana; 1850.	
	Hotel Shelby - Shelby; 1900; oldest hotel in state operating dail have running water and lights; has 30 rooms; used for political c still operating; first constructed in 1863, totally destroyed by 1900; two story frame with porch running entire length of house, columns and small balcony on second floor.	onventions in early 1900's; fire in 1898; rebuilt in
	Shelby Furnace - Shelby; 1850; only ruins now; some ovens intact.	
	Shelby Springs - At Shelby Springs between Calera and Columbiana; state's most notable resorts (1830's to 1861); used as a Confeder the Civil War; many of the patients who died are buried in the ad	ate Hospital during
	Wihasha - Identified with town of Breed Camp; 1761; Upper Creek to "Home of Emigrants."	own; name signifies
Talladega	Abi'hka - In Talladega County, near the Coosa River, south of Tal about 2½ miles south of Rendalia; Upper Creek town considered one town was located in the northern limits of the Creek Country; and against hostile tribes from the north.	of the oldest; this
	Abiku'dshi - Five miles east of the Coosa River, on the right ban Creek, on the property of Adam Riser, of Childersburg; inhabitant Chickasaw, and they lived among white people.	
	Cedar Creek Village - On the Coosa River, at the mouth of Cedar C Talladega Springs; old Upper Creek Village.	reek, near present
	Chickasaw Town (Tchikachas, Chicachas) - On the south bank of the Creek, just north of Chandler Springs; inhabitants were Chickasaw	
	Curry (J.L.M.) Home - Talladega; three miles northeast of Tallade 1830's.	ga on Alabama Highway 31;
	Cosa (Coca, Coosa Old Town) - Between the mouths of the Talladega Creeks, 1½ miles northeast of Childersburg on the Central of Geor great antiquity; DeSoto arrived here with his expedition on July	gia Railroad; town of

Talladega (cont'd) Istapoga - At the mouth of Eastabova Creek, which flows into Choccolocco Creek, whoit 10 miles above it's influx into the Coosa River; Upper Creek settlement, the name meaning "where people reside'; remains of this town are still visible.

Kymulga Cave - 18 miles south of Anniston, three miles west of Winterboro; largest natural cave in the state; has colorful stalactites and stalagmite formations and a small lake; supposed to have been used in prehistoric times and is referred to in the Indian tradition and legends.

Naotche (Nachez) - On the flats below the ford of Tallaseehatchie Creek, about four miles west of Sycamore; a Natchez town; the people here were friendly to the whites and they took refuge with other tribes in Talladega County.

Fort Williams Site - At the mouth of Cedar Creek, about six miles southwest of Fayetteville, and three miles below Talladega Springs, erected by General Andrew Jackson as a base of supplies shortly before the Battle of Horseshoe Bend, which was fought in 1814, now underwater (Lay Lake).

Salt Creek Falls - Hight miles southeast of Munford near Salt Creek Road; 50 foot waterfall.

Sulphur Springs - Talladega Springs, three miles west of Fayetteville; large boiling springs of sulphur water.

Oakchinawa - On both banks of Oakchinawa Creek, or Salt Creek, near its influx into Big Shoal Creek; Upper Creek town of great antiquity.

Chalykagay (Sylacoggy, Sauwanoos) - Near the present waterworks of the town of Sylacauga; town of great antiquity; inhabited as early as 1740; the name signifies or means "Buzzard's Roost."

Coosa - May be oldest city in United States; DeSoto visited here in 1540; and it was already an old town of 30,000 to 50,000 residents.

Fort Lashley Site (Leslie's Trading Post) - Near present town of Talladega; 1813; built by Alexander Leslie, around his trading post, for protection against hostile Indians.

Gantt's Quarry - Sylacauga is built on a marble foundation; 32 miles long and 400 feet deep; marble taken from Gantt's Quarry, two miles from Sylacauga, for U.S. Supreme Court.

Kymulga (Kiamulgy, Kayomulga) - In the western part of the county 14 miles southwest of Talladega; small Indian town near the old town of Coosa.

Kymulga Covered Bridge - Between Childersburg and Alpine on Laniers Road; two-span, Town-type bridge, 105 feet long is near one of Alabama's most prominent grist mills. Kymulga Grist Mill - Between Childersburg and Alpine; 1864-1867; water power and old original turbines buildings; completely operated by water power.

Pattillo's Mill - Carrsville; c. 1930; credited with developing self-rising corn meal.

Prievil Forest - 5.3 miles northeast of Childersburg; a stand of gigantic hardwoods with possibly the largest white oaks east of the Rockies.

Riddle's Old Mill - Near Talladega on Alabama Highway 77 by Talladega Creek; 1820; machinery made from some of the first Alabama iron; ruins.

Sulphur Springs - Natural sulphur springs; health resort of the mid-19th Century.

Swayne Hall - Talladega; 1879; three-story brick, built by the Freedman's Bureau as part of Talladega School.

Talladega Court Square District - Town Square, Talladega; 39 structures include 1834 courthouse and late 19th Century commercial buildings.

Talladega Furnace Site - U.S. Highway 231, just south of Talladega; 1889-1930; the International Furnace.

Talladega Village - Between Cosa and Eufaula old town, a later day Upper Creek town.

Waldo Covered Bridge - Four miles southwest of Talladega off Alabama 77; date of construction unknown, but may have been built as early as the turn of the century; one span, Town truss, 115 feet long. Partially restored; part of Alabama Hocutt Park.

Chattukchufaula - A short distance north of the present town of East Tallassee; Upper Creek town, home of Peter McQueen, Indian leader of 1813; destroyed 1813 by Indians friendly to the white settlers.

Horseshoe Bend Battle - Now a National Military Landmark; in a bend of the Tallapoosa River, 12 miles north of Dadeville; also site of Fort Tohopeka; known by Indians as Cholocco Litabixee; March 26, 1814; scene of a battle between General Andrew Jackson and the Creek Red Sticks; Jackson's victory broke the power of the Creeks, and on August 9, 1814, they signed a peace treaty at Fort Jackson.

Tallapoosa

Tallapoosa (cont'd)

COUNTY

Imuckfa - At the mouth of Hmuckfa Creek near Horseshoe Bend; Upper Creek town used as a concentration point by the Creeks during the Creek War.

Okfuski - On both banks of the Tallapoosa River at the mouth of Sandy Creek; largest town in the Creek Confederacy.

Soapstone Quarry - Near Horseshoe Bend; Indian soapstone quarry; three of the largest soapstone bowls found in America have been found near Horseshoe Bend and are believed to have come from here.

Suk-At-Ispoka - 12 miles upstream from Okfuski; Upper Greek town; here on May 14, 1760; the first white trader in what is now Alabama was killed by Indians.

Archibald Patterson Cabin - Carrville, 1845; the notched log cabin has a double signifance: first, it stands on land which was completely controlled by the Creek Indian Nation until after 1830; second, the builder was the ancestor of the Patterson family whose prominence and leadership in the Tallassee area and the State has been continuous well over a century; structure is a large pioneer dwelling rustic design, end gable roof, shed roof porch, end exterior chimmeys, three doors at front and shed addition at rear; notched, hewn timbers, foundation pillars and chimneys entirely of fieldstone.

Emuckfaw Creek Battle - At influx of Emuckfaw Creek into the Tallapoosa River; January 21, 1914: battle between Jackson's forces and the Creeks; Creek victory:

Enitachopoko, Battle of -  $2^{1}_{2}$  miles northeast of Hackneyville; Creeks attacked Andrew Jackson; minor Creek victory.

Hornsby's Mill - On Highway 50, 3½ miles north of Mountain Dam; 1870. Owner V. L. Boulware still uses mill for grinding corn.

Instudshilaiki - Four miles south of mother town of llillabee; small llillabee village.

Jackson's Oak - Near Horseshoe Bend; it is believed General Andrew Jackson held staff meetings under this tree's boughs in March 1814.

Nafolee - A short distance from East Tallassee; Upper Creek town shown on Mitchell map of 1755.

Niuyaka (Niuyaka) - On the left bank of the Tallapoosa; a short distance above Horseshoe Bend; Upper Creek town.

Okfuski Fort - Near Indian town of Idfuski; 1735; built by British to counteract the French influence among the Upper Creek Indians; result was a failure.

Saugahatchi - On a stream by the same name; Upper Creek town in the northern part of the Creek Nation.

Talimuchasi (Taluc-Mutchasi) - Across from Little Okfuski; Upper Creek town.

Tallassee Mills - Tallassee, 1841; supplied mill goods to the Confederate Army and when it became necessary to move the arsenal at Richmond further south, the Tallassee facility was converted to production of weapons and ammunition.

Ufawlee (Yufala) - Two miles downstream from Okfuski, and southwest of Horseshoe Bend; Upper Creek town and one of several of that name.

Uktahassi - At the mouth of Sandy Creek, about five miles east of Kellyton; small branch Hillabee town.

Wilcox

Clifton Ferry Landing - South of the intersection of Highway 35 and the east bank of the Alabama River; early 19th century settlement; originally called Upper Standing Peach Tree for the peach trees found there, at the site of an abandoned Indian village during the 1813 Creek War; it was once an important cotton shipping point.

Davis Ferry - Lower Peach Tree, ferry crossing to Monroe County; still in operation.

Drake Field Mounds - Four miles south of Furman at property called Drake Fields; three mounds; privately owned.

Hamburg Cemetery - Near Allentown Community; 19th century; rural cemetery where two Revolutionary and several Confederate veterans as well as many other early settlers are buried here; enclosed by an iron fence; owned by Bethel Associate Reformed Presbyterian Church.

Humati - On the west bank of the Alabama River, north of Camden; Choctaw Indian town, probably visited by DeSoto in 1540; privately owned.

Lower Peach Tree Community - ca. 1820; oldest settlement in the county; was a bustling 19th century commercial center on the Alabama River; Governor Benjamin M. Miller taught school here; the Methodist organized a church in 1825; early private schools, Lower Peachtree Academy and Montgomery Institute were established here about 1820.

## COUNTY SITE AND LOCATION

Wilcox (cont'd) Uxapita - At the mouth of Pursley Creek, at its junction with the Alabama River, eight miles southwest of Camden; ancient Maubillian town.

Wilcox Female Institute - Canton Street, Camden; built 1850; brick; two story; the rear is greatly changed; the original institute became a Presbyterian school and later Wilcox County High School; owned by Wilcox County.

NOTE: Special notation has been given to certain items and is indicated by the number (1) places appearing on the National Register of Historic Places, (2) places designated by historic highway markers, (3) places of scenic value recorded in the Appraisal of Potentials for Outdoor Recreation Development of each county, or (4) places included in the draft Inventory for the Statewide Plan prepared by the Alabama Historical Commission. APPENDIX 21 -- A SYNOPSIS OF THE BARTRAM TRAIL RECOGNITION EFFORT, PREPARED BY THE ALABAMA HISTORICAL COMMISSION, DECEMBER 14, 1974.

Definition: The path traveled by William Bartram from Philadelphia to the Louisiana Delta through Alabama and several other Southern states in the 1770's. Bartram, a famous naturalist and botanist, entered Alabama in 1775 near Fort Mitchell in Russell County. He headed west through Macon, Elmore and Montgomery Counties and turned south through Lowndes, Butler, Conecuh, Monroe, Baldwin and Mobile Counties. He traveled extensively by canoe along both shores of Mobile Bay and touched upon or crossed the Chattahoochee, Coosa, Tallapoosa, Alabama, Tombigbee and Mobile Rivers in Alabama. Following an examination of the Mississippi and Louisiana coasts, the self-taught Bartram returned through Alabama in 1776. Bartram's Trail covered some 215 miles in Alabama.

## Discoveries:

Botanical -- Franklinia (named for his close personal friend Benjamin Franklin, who later published his travels) and the Giant Primrose, still found fighting for survival in Baldwin and Monroe Counties.

Historical -- The French Fort Toulouse (in Elmore County near Montgomery) and its adjacent Indian mound and village, Fort Mitchell and Uchee Village, Fort Conde-Charlotte and the settlement called Mobile. Bartram also walked the future sites of Tuskegee, Fort Jackson, Tuskegee National Forest, Montgomery, the Battle of Holy Ground, Greenville, Blakley, Fort Morgan, Fort Gaines, Claiborne and portions of Interstates 85 and 65.

<u>Collections</u> -- Bartram, botanist to King George of England, collected samples, conducted studies and made excellent drawings of plants, birds, insects, reptiles, mammals and fish. His journal also includes excellent anthropological accounts of the Uchee and Alibamos (Creek Confederacy) and Choctaw Indians.

<u>Proposals</u> -- (1) To mark the Bartram Trail as part of America's Bicentennial Celebration in 1976. (2) To develop the Bartram Trail in Alabama and other states as a visual learning center for hikers, students, bicyclists and canoers where the botanical, zoological, geological, archaeological and historical features and landmarks may be explored and enjoyed in their natural settings. (3) To include the Bartram Trail in the National Trails Systems created in 1968, beginning with a feasibility study funded by the United States Congress.

Sponsors -- The Alabama Environmental Quality Association, the Garden Club of Alabama (Mrs. James T. Durden, Miss Martha McInnis, James J. Britton, Montgomery and others), the Alabama Conservancy (Mrs. Thomas Horne of Fairhope and others), the Alabama Historical Commission, the Sierra Club and the Alabama Revolutionary Bicentennial Commission.

# APPENDIX 22 -- POPULATION AND EMPLOYMENT, ALABAMA RIVER BASIN.

Appendix Table 22A -- Urban-rural composition of the population, Alabama River Basin and subbasins, 1950 and 1970.

AREA & COMPOSITION	1950	1970
	Th	ousand
Alabama River Basin		
Total population	949	998
Urban	474	655
Rural	475	343
Farm <u>1</u> /	319.4	88.3
Alabama Subbasin		
Total population	298	308
Urban	162	213
Rural	136	95
Farm <u>1</u> /	105.8	36.0
Tallapoosa Subbasin		
Total population	189	195
Urban	72	113
Rural	117	82
Farm <u>1</u> /	76.9	19.4
Coosa Subbasin		
Total population	365	393
Urban	196	255
Rural	169	138
Farm <u>1</u> /	117.1	29.0
Cahaba Subbasin		
Total population	96	102
Urban	44	74
Rural	<b>52</b> - ¹	28
Farm <u>1</u> /	19.6	3.9

1/ Alabama Social Science's Advisory Committee estimates of 1970 farm population.

U. S. Bureau of the Census, Census of Agriculture, 1950 and 1970.

		PROJECTED	
TEM	1990	2000	2020
		Thousand	
labama River Basin			
Cotal population	1,203	1,324	1,624
Urban	887	1,045	1,365
Rural	316	279	259
Farm <u>1</u> /	67.7	63.0	56.0
labama Subbasin			
Total population	374	413	496
Urban	287	332	416
Rural	87	81	80
Farm <u>1</u> /	27.3	25.5	23.0
Tallapoosa Subbasin			
Total population	227	251	296
Urban	159	186	237
Rura1	68	65	59
Farm <u>1</u> /	14.5	13.6	12.2
Coosa Subbasin			
Total population	486	534	678
Urban	342	415	570
Rural	144	119	108
Farm <u>1</u> /	22.7	20.9	18.2
Cahaba Subbasin			
Total population	116	126	154
Urban	99	112	142
Rural	17	14	12
Farm 1/	3.2	3.0	2.6

Appendix Table 22B -- Urban-rural composition of the population, Alabama River Basin and subbasins, 1990-2020.

1/ Alabama Social Science's Advisory Committee estimates of farm population 1990 to 2020.

Economic Research Service, USDA, population projections.

Appendix	Table	22C	 Unemployment rates in Alabama River	Basin
			counties, and selected study areas,	March
			1973 to January 1975.	

ITEM	PERCENT O MAR. 1973	F WORK FORCE DEC. 1974	
I I EM		-Percent	
High unemployment			
Etowah	4.8	8.5	12.0
Bibb	6.0	11.2	11.9
Talladega	4.6	9.4	10.5
Lowndes	6.3	7.5	9.8
Calhoun	3.4	6.6	9.3
DeKalb	3.8	9.3	N.A.
Dallas	4.7	8.4	N.A.
Medium unemployment			
Lee	1.8	3.8	6.9
Rando1ph	2.7	4.7	6.8
Cleburne	4.1	6.2	N.A.
Coosa	3.3	3.3	6.2
Wilcox	3.9	6.0	N.A.
Montgomery	2.4	4.3	5.9
Jefferson	3.8	4.8	5.8
Monroe	3.8	5.7	N.A.
St. Clair	5.7	4.7	5.7
Shelby	3.8	4.4	5.4
Bullock	4.4	5.3	N.A.
Butler	4.0	5.0	N.A.
Low unemployment			
Perry	4.6	4.8	N.A.
Chilton	3.4	4.8	N.A.
Cherokee	7.6	4.8	N.A.
Elmore	2.4	3.5	4.8
Tallapoosa	2.0	4.8	4.2
Clay	2.0	4.3	4.1
Autauga	3.6	2.9	4.0
Chambers	1.8	3.4	3.7
Macon	2.0	3.8	2.6
Alabama basin	3.6	5.8	7.0
Alabama	3.8	5.7	7.2
Southeastern states	N.A.	N.A.	8.2
U. S. Center for Business and			8.2

Center for Business and Economic Research, University of Alabama.

N.A. -- Not available.

# APPENDIX 23 -- AGRICULTURAL PRODUCTION, ALABAMA RIVER BASIN.

# Appendix Table 23A -- Production of major farm products, 1975 with projections to 2020, Alabama.

			ALABAMA I	PRODUCTION
Corn Cotton Peanuts Soybeans Wheat Oats Grain Sorghum Vegetables Potatoes	UNIT	1975	1990	2020
			Thousand	ls
Crops				
Corn	Bu.	35,000	33,000	50,000
Cotton	Bales	312	290	170
Peanuts	Lbs.	535,600	530,000	650,000
•	Bu.	31,440	38,500	61,000
Wheat	Bu.	3,240	4,400	6,500
Oats	Bu.	1,120	760	420
Grain Sorghum	Bu.	1,280	50	1
Vegetables	Lbs.	230,300	278,000	270,000
Potatoes	Lbs.	137,800	278,000	275,000
Hay	Tons	1,134	770	870
Livestock Products	2/			
Beef and Veal	Lbs.	650,000	1,050,000	1,540,000
Pork	Lbs.	250,000	305,000	353,000
Poultry	Lbs.	1,500,000	2,480,000	3,776,000
Eggs	Doz.	250,000	340,000	491,000
Milk	Lbs.	686,000	450,000	226,000

 $\frac{1}{2}$ Less than 50,000 bushels.

Livestock estimates are liveweight.

Alabama Agricultural Statistics, 1975, Alabama Crop and Livestock Reporting Service, and ERS, USDA estimates of future production. Source:

Crops Corn Cotton Peanuts Soybeans Wheat Oats Grain Sorghum Vegetables Potatoes Hay Livestock Products Beef and Veal Pork			PRO	DJECTED
COMMODITY GROUP	UNIT	1975	1990	2020
Crops	Thou			
Cotton Peanuts Soybeans Wheat Oats Grain Sorghum Vegetables Potatoes	Bu. Bales Lbs. Bu. Bu. Bu. Lbs. Lbs. Tons	6,664 93 7,488 6,600 744 337 435 73,700 10,875 468	$10,100 \\ 54 \\ 4,500 \\ 10,100 \\ 2,900 \\ 195 \\ 0 \\ 123,000 \\ 18,000 \\ 470 \\ \end{bmatrix}$	$13,900 \\ 22 \\ 23,000 \\ 17,600 \\ 490 \\ 285 \\ 0 \\ 203,000 \\ 156,000 \\ 670 \\ \end{array}$
	Mil Lbs. Lbs. Lbs. Doz. Lbs.	240 72 435 90 260	345 49 615 116 150	530 65 830 150 75

# Appendix Table 23B -- Production of agricultural commodities, 1975, with projections to 2020 for the Alabama River Basin.

Source: Alabama Agricultural Statistics, 1975, and Economic Research Service estimates of future production.

# APPENDIX 24 -- LAND USE, ALABAMA RIVER BASIN

Appendix Table 24A -- Agricultural land use, current and projected assuming no accelerated development, Alabama, the Alabama River Basin and its subbasins.

	1975	1990	2020
	Th	ousands of Acre	S
Alabama			
Cropland in production $1/$	3,420	2,247	2,215
Improved pasture	1,900	3,059	4,239
Total	5,320	5,306	6,454
labama Basin			
Cropland in production	823	614	591
Corn	123	148	128
Cotton	111	40	13
Peanuts	3	3	8
Soybeans	275	239	322
Wheat	30	75	12
Oats	10	4	3
Grain Sorghum	13	1	0
Vegetables	11	15	18
Potatoes	1	1	5
Hay	246	88	82
Improved pasture	700	1,024	1,473
Total	1,523	1,638	2,062
Alabama Subbasin			
Cropland in production	379	255	288
Corn	48	49	27
Cotton	42	8	5
Peanuts	2	1	1
Soybeans	126	123	175
Wheat	15	4	2
Oats	5	2	1
Grain Sorghum	10	0	0
Vegetables	7	3	16
Potatoes	1	0	0
Hay	123	65	61
Improved pasture	350	525	701
Total	729	780	989
Coosa Subbasin			
Cropland in production	278	235	159
Corn	48	46	47
Cotton	42	20	5
Peanuts	0	1	1

	1975	1990	2020
	TI	housands of Acre	S
Coosa Subbasin (Cont'd)			
Soybeans	94	90	90
Wheat	7	63	2
Oats	2	1	2
Grain Sorghum	1	0	0
Vegetables	1	3	2
Potatoes	0	1	5
Нау	82	10	5
Improved pasture	136	222	347
Total	414	457	506
Tallapoosa Subbasin			
Cropland in production	115	78	62
Corn	22	40	33
Cotton	20	4	2
Peanuts	1	1	0
Soybeans	27	13	12
Wheat	4	1	1
Oats	2	1	0
Grain Sorghum	1	1	0
Vegetables	1	8	0
Potatoes	0	0	0
Hay	37	9	14
Improved pasture	173	224	384
Total	288	302	446
Cahaba Subbasin			
Cropland in production	51	46	82
Corn	5	13	21
Cotton	7	8	1
Peanuts	0	0	6
Soybeans	28	13	45
Wheat	4	7	7
Oats	1	0	0
Grain Sorghum	1	0	0
Vegetables	1	1	0
Potatoes	0	0	0
Hay	4	4	2
Improved pasture	41	53	41
Total	92	99	123

Source: Statistical Reporting Service 1975 and projections developed by Economic Research Service USDA.

1/ Harvested, conservation land used for water disposal, and fallow land in rotation supporting production.

	TTME		CALLADA	COOSA		TOTAL
LAND USE	TIME	ALABAMA	CAHABA		TALLAPOOSA	BASIN
C			Thousan	nas or Acre	es	
Cropland	1070	200	70	224	0.0	(
harvested,	1970	289	39	226	99	653
fallow, or	1990	255	46	235	78	614
in water	2020	288	82	159	62	591
disposal					w	
Other	1970	253	33	156	178	620
cropland	1990	255	33	157	180	625
	2020	265	35	163	187	650
Improved	1970	263	31	104	133	531
pasture	1990	525	53	222	225	1,025
	2020	701	41	347	384	1,473
Unimproved	1970	395	47	155	199	796
pasture	1990	269	32	106	135	542
	2020	80	9	31	40	160
Forest land	1970	2,387	928	2,447	1,709	7,471
	1990	2,220	893	2,326	1,716	7,155
	2020	2,129	856	2,231	1,646	6,862
Urban and	1970	129.7	107.4	307.6	137.3	682.0
Other land	1990	184.6	126.1	346.4	116.6	773.7
	2020	230.2	155.9	454.6	122.0	962.7
Impounded	1970	65.0	11.0	94.7	74.3	245.0
water 1/	1990	73.1	13.3	97.9	79.0	263.3
	2020	88.8	18.0	104.9	88.6	300.3
Rivers and	1970	6.3	1.6	4.7	4.4	17.0
streams 2/	1990	6.3	1.6	4.7	4.4	17.0
·'	2020	6.0	1.1	4.5	4.4	16.0
TOTAL AREA		3,788	1,198	3,495	2,534	11,015

APPENDIX TABLE 24B -- LAND USE WITHOUT ACCELERATED RESOURCE DEVELOPMENT, ALABAMA RIVER BASIN, 1970-2020

1/ Includes surface areas of large impoundments, small impoundments, oxbows, dead lakes, beaver ponds, borrow pit lakes, etc.

2/ Includes surface area of rivers and streams with drainage areas greater than one square mile.

Appendix Table 24C

#### URBAN LAND REQUIREMENTS

None of the areas are densely populated and are not expected to be by 2020. This statement is based in part on analysis of 1967 population densities for various sizes of cities in Alabama. CNI county-urban land use figures for 1967 were used to update land use information in the 1960 Census of Population in arriving at the estimated urban land area of all basin cities in 1967. These data were coupled with population estimates provided by the University of Alabama Bureau of Business Research to determine the densities shown in the table below.

Population density by size of city, Alabama, 1967. 1/

POPULATION	ACRES PER PERSON	PERSONS PER SQ. MILE
0-2,499	1.10	582
2,500-4,999	0.95	674
5,000-9,999	0.56	1,143
10,000-25,000	0.42	1,524
Over 25,000	0.25	2,560

1/ Developed from the 1967 CNI and population estimates provided by the Bureau of Business Research, University of Alabama.

The densities are quite low when compared to other areas. This condition is expected to continue in view of the level of projected population. Anniston was the most densely populated basin city in 1967, with 2,900 residents per square mile, followed by Montgomery (2,700), and Auburn (2,100).

Future land requirements for urban expansion can be estimated based on the projected urban population, population distribution by size of city, and the densities in the table above.

The projections in the table below indicates that more than 100,000 additional acres will be needed for urban development in the Study Area between 1967 and 1990. The most rapid urbanization and resulting loss of agricultural land will continue to be around Montgomery. Of the 104,000 acres projected to shift to urban uses by 1990, 28,000 acres (27 percent) are in the Montgomery SMSA (Standard Metropolitan Statistical Area).

		PROJECTED	
1967	1990	2000	2020
	Thousa	and Acres	
1,364	1,908	2,145	2,690
420	524	590	719
185	227	258	319
93	122	136	170
88	105	117	135
54	70	79	95
	1,364 420 185 93 88	Thousa 1,364 1,908 420 524 185 227 93 122 88 105	1967         1990         2000          Thousand         Acres           1,364         1,908         2,145           420         524         590           185         227         258           93         122         136           88         105         117

Urban land use projections to 2020, Alabama, and the Alabama River Basin and its subbasins.

Source: CNI 1967 - ERS Projections.

## METHODOLOGY AND ASSUMPTIONS IN STATE AGRICULTURAL MODEL

## Grouping of Soils

Alabama soils were classified into 39 soil resource groups, hereafter referred to as SRG's on the basis of their degree of productivity and their hazards. Groupings were prepared with the assistance of the Soil Conservation Service Agronomist and State Soil Scientist. Soil groups are described in appendix 24E. Row crops could be produced on 17 groups. Fifteen SRG's would support improved pasture only, while 7 soil groups composed of beach areas and swamps were judged completely unproductive and not used in the model.

## Land Availability and Use

The 1967 Alabama Conservation Needs Inventory (CNI) was selected as the appropriate land inventory for the study. The CNI is the only source of agricultural land use information by soil capability and by hydrologic subbasin, both necessary for the programming model. Alabama Crop and Livestock Reporting Service estimates were used to disaggregate CNI acreages to determine detailed cropland use by SRG, by subbasin, in the base year. The amount of land available for future agricultural production in each subbasin was projected by deducting non-agricultural land requirements for 1990 and 2020 from the 1967 land base. The remaining openland, i.e., cropland and pasture, was assumed to be available for agricultural use. Woodland clearing was not an option in the baseline assessment due to the large acreage of idle crop and pastureland available for production.

## Yields

Technical yield guides prepared by the SCS were used to determine base (1967) yields for each enterprise by soil groups. Base yields assuming average management are shown in appendix 24F. Trends in Alabama yields for the period 1950 to 1970 were studied and projections developed for 1990 and 2020. These extrapolations were discussed with specialists at Auburn University and with the SCS Agronomist and State Resource Conservationist. Projected yields finalized during these meetings are also shown in appendix 24F. These are yields that can be expected under average management assuming improvements in crop varieties and fertilizers, and private expenditures for land and water development as in the past.

## Cost and Returns

Production costs for the 21 crops considered in the model were estimated by soil groups from budgets prepared by Auburn University and the USDA. Cost per unit of output varied considerably depending upon the requirements of each SRG. Production inputs were assumed to increase at the same rate as had occurred during the past two decades, or about  $1\frac{1}{2}$  percent annually Appendix 24D - (Cont'd)

on a constant basis. Prices received for commodities were current normalized prices authorized for use in river basin planning by the Water Resources Council. These prices, however, had no effect upon the utimate solution, as the objective function was to minimize production costs rather than to maximize returns.

## Appendix 24E

#### SOIL RESOURCE GROUP DESCRIPTIONS (SRG) 1/

#### Coastal Plain Soils

#### Group 1

Classes (1-12), 1-11, 1-13. Deep, well drained soils on uplands and stream terraces. O to 2 percent slopes with slight erosion. Gray, brown or reddish-brown fine sandy loam surfaces and yellowish-brown, yellowish-red or red friable fine sandy clay loam to clay loam subsoils. May be underlain by loamy sand at three to five feet. Rapid to medium rate of infiltration. Permeability is moderate. Major soils are Cahaba, Kalmia, Norfolk, Orangeburg, Red Bay, and Ruston.

#### Group 2

Classes (2E-12, 3E-12), 2E-11, 2S-11, 2E-112, 3E-10, 3E-11. Deep, well drained soils on uplands and stream terraces. 2 to 8 percent slopes with slight to moderate erosion. Gray, brown or reddish-brown surfaces and yellowish-brown, yellowish-red or red fiable fine sandy loam, fine sandy clay loam to clay loam subsoils. May be underlain by beds of loamy sand at three to five feet. Water moves through the soil at a moderate rate. Storage of water for plant use is low to medium. Principally Cahaba, Kalmia, Norfolk, Orangeburg, Red Bay, Ruston, and Saffell soils.

## Group 3

Classes (2E-15), 2E-13, 2E-14, 2E-16, 2S-12, 2S-14, 2S-15, 3E-16, 3E-17, 3E-111, 4E-11, 4E-12, 4E-111. Moderately deep to deep, moderately well to well drained soils on uplands and stream terraces. 2 to 5 percent slopes with slight erosion. Dark gray to light gray fine sandy loam or silt loam surfaces and yellowish-brown, yellowish-red to red firm clay subsoils which become plastic when wet and hard when dry. Water moves through the soils at a slow to very slow rate. Storage of water for use by plants is low to medium. Mostly Angie, Sawyer, and Shubuta soils.

#### Group 4

Classes (3E-14, 3E-15), 3E-19, 4E-15. Deep to moderately deep, moderately well drained soils on uplands. 2 to 8 percent slopes with slight to moderate erosion. Grayish brown fine sandy loam surface soils and brownish-yellow or red friable to-firm sandy clay subsoils which become mottled with gray at 15 to 30 inches. Subsoils are sticky when wet and hard when dry. Water moves through the soil at a slow rate. Storage of water for plant use is low to medium. Major soils are Sawyer and Shubuta.

1/ Soil groupings are based upon similarity of productivity, water hazards, and production costs. The descriptions given are for the dominant land capability unit (LCU) within each SRG and may not be entirely descriptive of minor soils in the group. The dominant LCU(s) is shown in ().

 $\frac{2}{1}$  Land capability units (LCU) are described in the SCS technical guide for field offices.

Classes (2W-11), 2W-12, 2W-14. Deep, moderately well drained and well drained soils in depressions in the uplands and around stream heads and on broad flood plains. Brown friable fine sandy loam and loam surfaces and suboil. Water enters these soils at a medium rate and moves through the subsoil at a moderate rate. Storage of water and natural fertility are moderately high. Water may stand on these soils for short periods after rains. Principally Iuka and Ochlockonee soils.

#### Group 6

Classes (2W-16), 2W-13, 2W-15, 2W-17. Deep and moderately deep, moderately well drained to somewhat poorly drained soils on uplands and stream terraces. O to 2 percent slopes with slight erosion. Dark gray to gray sandy loam surfaces and yellowish-brown to pale yellow fine friable sandy loam or fine sandy clay loam upper subsoil and yellowish-brown mottled with gray and brown sandy clay loam or sandy clay lower subsoil. Water moves through the soils at a moderately slow rate. Storage of water is medium to low. Surface runoff after rains is slow. Major soils are Goldsboro, Irvington, Dothan, Ora, Angie, and Lynchburg.

#### Group 7

Classes (3S-11), 3S-110, 3S-120, 3S-19, 3S1EO, 3S011, 3S-111. Deep, well drained to excessively drained soils on uplands and stream terraces with slight erosion on 0 to 5 percent slopes. Gray to brown loamy fine sand surfaces and subsoils. Water enters and moves through these soils at a very rapid rate. Storage of water is low to very low. Fertility and organic matter are very low. Fertilizer is leeched out rapidly. Mostly Americus, Eustis, Lakeland, and Alaga soils.

#### Group 8

Classes (4E-130), 3E-112, 3E-114, 3E-115, 3E-130, 3E-174, 4E-113, 4E-014, 4E-115, 4E-140. Moderately deep, moderately well drained soils on uplands. 5 to 12 percent slopes with slight to moderate erosion. Gray to brown fine sandy loam or gravelly fine sandy loam surfaces. Subsoils are yellowish-brown or yellowish-red friable sandy clay loam. Water moves through the upper subsoil at a moderate rate and through the lower subsoil at a slow rate. Storage of water is low. Principally Dothan, Gilead, Ora, and Prentiss soils.

#### Group 9

Classes (4W-11), 3W-11 through 3W-16, 4W-12, 4W-14, 4W-19. Deep, poorly drained and somewhat poorly drained soils on stream flood plans and uplands. Nearly level areas with slight erosion. Brown or gray fine sandy loam, loam or silt loam surfaces and gray mottled with yellow and brown fine sandy loam, loam, silt loam or sandy clay subsoils. Subsoils of the Leaf and Chastain series are sticky and plastic. These soils have a high water table and the Mantachie, Bibb and Chastain are subject to frequent overflow. Major soils include Bibb, Chastain, Leaf, Mantachie, Myatt, and Rains.

Classes (5W-12), 5W-11, 5W-13. Deep, poorly drained to somewhat poorly drained soils on stream flood plains. These soils have gray to brown silt loam, loam or sandy loam surfaces and subsoils. Gray and yellow mottles occur at 0 to 24 inches below the surface. These soils will flood occasionally for long periods or frequently for short periods. Mostly wet alluvial land and poorly drained sandy alluvial soils. Severe flood damage conditions.

## Group 11

Classes (4S-11), 4S-12, 4S-14, 4S-19, 4E-19. Excessively drained to moderately well drained soils on uplands with 5 to 8 percent slopes and slight erosion. Gray or brown loam fine sandy surfaces and subsoils. Water moves through these soils at a rapid rate. Low in organic matter and natural fertility and fertilizer leeches at a rapid rate. Principally Americus, Eustis, Chipley, Lakeland and Flomaton soils.

## Group 12

Classes (6S-11), 5S-11, 6E-11 through 6E-14, 6E-19, 6S-12, 6S-19. Deep, excessively drained and somewhat excessively drained soils on uplands with 8 to 12 percent slopes and slight erosion. These soils have gray, brown, or reddish-brown loamy fine and surfaces and yellow-brown or red loamy fine sand subsoils. Water enters and moves through these soils at a rapid rate. Major soils include Americus, Eustis, and Lakeland.

## Group 13

Classes (6E-113), 6E-111. Deep and moderately deep, well drained soils on uplands with 8 to 12 percent slopes that have lost more than 75 percent of the top soil. Reddish-brown or brown clay loam or sandy clay loam surfaces with a few areas of fine sandy loam. Subsoils are red, brown or yellow friable fine sandy loam or fine sandy loam. Water enters soil at a slow to medium rate and runoff may be very rapid. Mostly Lucedale, Carnegie, Greenville, Gilead, Luverne, Ora, Orangeburg, Red Bay, Ruston, and Saffell soils.

## Black Belt Soils

## Group 14

Classes (2E-22, 2E-24), 2E-21, 2E-26, 2S-21, 3E-21. Moderately deep, well drained alkaline and acid soils on prairie uplands with 1 to 3 percent slopes. Sumter soils have olive gray to dark gray clay or silty clay surfaces and gray or pale olive gray clay subsoils. Oktibbeha soils have greyishbrown sandy surfaces and red clay subsoils that are intensely mottled in the lower part. Infiltration and permeability are slow. Storage of water is moderately high. Fertility is medium. Primary soils are Sumter, Oktibbeha, and Houston.

Classes (3E-23, 3E-22, 2E-23), 3E-24 through 3E-26, 4E-23, 4E-29, 4E-22. Moderately deep, moderately well drained, strongly acid soils on uplands in the prairie section with slopes ranging from 1 to 5 percent. These soils are underlain by calcareous material at 24 to 48 inches. They have reddish-brown clay surfaces and red clay subsoils that are mottled in the lower part. Water enters these soils slowly but their capacity to store water for plant use is moderately high. Principally Oktibbeha soils.

## Group 16

Classes (4E-25), 2E-24, 3E-222, 3E-253, 4E-222, 4E-223, 4E-225. Shallow to moderately deep, moderately well drained and somewhat poorly drained acid soils on prairie uplands with slopes between 3 to 8 percent. Erosion has been moderate to severe. In some areas the underlying calcareous material is less than 20 inches below the surface. Water enters these soils slowly and surface runoff is rapid. Fertility is low. Mostly Vaiden soils.

## Group 17

Classes (2W-23, 2W-21, 2W-22). Deep, moderately well drained to somewhat poorly drained, alkaline, local alluvial soils at the head of small streams and on prairie stream flood plains. Dark gray to black plastic clay surfaces and gray to dark olive gray plastic clay subsoils. Infiltration and permeability are slow. Natural fertility is high and capacity to store water for plant use is moderately high. Major soils are Trinity and Catalpa.

## Group 18

Classes (4W-23), 3W-21 through 3W-24, 4W-21, 4W-22. Deep, poorly drained and somewhat poorly drained, medium to strongly acid soils on prairie uplands and stream terraces with 0 to 1 percent slopes. These soils have dark grayishbrown sandy loam, silty clay or clay surfaces and gray mottled clay subsoils. Infiltration, permeability and surface runoff are slow. Capacity to store water for plant use is medium. Fertility is medium. These soils flood frequently. Primary soils include Eutaw, Una, and Leeper.

## Group 19

Classes (6E-24), 6E-22, 6E-29. Shallow to moderately deep, well drained to somewhat poorly drained acid and alkaline soils on prairie uplands and stream terraces with slopes ranging from 3 to 12 percent. Oktibbeha and Vaiden soils have grayish-brown thin sandy or clayey soils surface and red or yellowishbrown clay or silty clay subsoils that are mottled in the lower part. Binnsville soils have gray to dark gray surfaces and light gray very hard chalk subsoils. Fertility and organic matter content are low. Permeability is very slow and surface runoff is rapid. Major soils include Oktibbeha, Vaiden and Binnsville.

#### Piedmont Soils

#### Group 20

Classes (2E-31), 1-31, 1-32, 2E-32. Deep, and moderately deep well drained soils on uplands and stream terraces, Slopes are 0 to 6 percent with slight to moderate erosion. Brown or reddish-brown sandy loam, loam or silt loam surfaces and red or dark red friable to firm sandy clay or clay subsoil. Infiltration is moderate to rapid and permeability is moderate. Storage of water is medium. Mostly Cecil, Madison, Davidson, and Wickham soils.

## Group 21

Classes (3W-32), 2W-32, 2W-34. Deep, moderately well drained to somewhat poorly drained soils on stream flood plains with 0 to 2 percent slopes. They have brown fine sandy loam or silt loam surfaces and brown mottled with gray silt loam or fine sandy loam friable subsoils. Water and air moves through the soils at a rapid rate. The soils are flooded frequently for periods of one to two days. Includes Chewacla soils.

#### Group 22

Classes (3W-31, 2W-31). Moderately deep, moderately well to somewhat poorly drained, soils on stream terrace and uplands. Slopes are 0 to 6 percent. Grayish-brown sandy loam surfaces and grayish-brown mottled with brown firm silty clay or sandy clay subsoils. Movement of air and water through these soils is slow. Water may stand for short periods after rains. Major soils are Augusta, Colfax, and Altavista.

#### Group 23

Classes (3E-31, 4E-31), 3E-32, 3E-34, 4E-32. Deep and moderately deep, well drained soils on uplands and stream terraces. Slopes are 6 to 15 percent with slight to moderate erosion. Brown or reddish-brown sandy loam, gravelly silt loam or gravelly sandy loam and friable to firm sandy clay or silty clay subsoils. Infiltration is medium and permeability is moderate. Storage of water is low to moderately high. Primary goils are Appling, Cecil, Madison, Helena, Gwinnett, Mecklenburg, and Wickham.

#### Group 24

Classes (4E-331), 2E-312, 2E-330, 2E-340, 3E-33, 3E-39, 3E-312, 3E-331, 3E-335, 3S-31, 4E-33, 4E-39, 4E-332. Moderately deep, well drained, soils on uplands and stream terraces slopes are 10 to 15 percent with severe erosion. Yellowish-brown, brown or reddish-brown sandy loam, gravelly silt loam or gravelly sandy loam surfaces and yellowish-brown, yellowish-red or red friable to firm sandy clay subsoils. Movement of air and water through these soils is moderate. Storage of water is medium. Includes Appling, Cecil, Helena, Gwinnett, Mecklenburg, Madison, Vance, and Wickham soils.

Classes (4W-31), 5W-31, 5W-32. Deep, poorly drained soils on nearly level stream terraces and flood plains. Dark gray silt loam and sandy loam surfaces and mottled gray, yellow and brown silty clay and sandy clay subsoils. Water stands on these soils for long periods. Mostly Roanoke, Wehadkee, and poorly drained alluvial soils.

## Group 26

Classes (6S-31, 6E-31), 6E-32, 6E-34, 6E-39. Moderately deep and shallow well drained, soils on uplands slopes are 6 to 25 percent. Slopes with slight to severe erosion. These soils have stony sandy loam or stony sandy clay loam surfaces and yellowish-red to red sandy clay or clay subsoils. Water and air move through these soils at a moderate rate. Storage of water in these soils for plant use is low to medium. Major soils are Appling, Cecil, Gwinnett, Louisa, Louisburg, Madison, and Wilkes.

## Group 27

Classes (6E-331), 6E-335, 6E-339, 6E-341. Moderately deep, well drained soils on uplands. Slopes are 15 to 25 percent slopes with severe erosion. They have yellowish-brown, brown or reddish-brown sandy clay loam or gravelly sandy clay loam surfaces and yellowish-brown, yellowish-red or red friable to firm sandy clay subsoils. Water and air move through the soil at a moderate rate. Storage of water for plant growth is low to medium. Principally Appling, Cecil, Gwinnett, and Madison soils.

## Limestone and Shale Soils

## Group 28

Classes (1-43), 1-41, 1-42, 1-460, 1-510. Deep, well drained, nearly level, friable soils, developing in local alluvium. Commonly in depressional areas, and along narrow drainageways and draws. Grasmere soils are red to dark reddish-brown throughout. Staser and Priutton soils generally are somewhat coarser in texture than the Grasmere. Major soils are Grasmere, Priutton, and Staser.

## Group 29

Classes (2E-42, 2E-45), 2E-41, 2E-43, 2E-44, 2E-48, 2E-49, 2E-451. Moderately deep and deep, well drained, and moderately well drained permeable soils on uplands, stream terraces, and footslopes on the plateaus, and on stream terraces and footslopes in the valleys. Slopes range from 2 to 6 percent, and the erosion is slight to moderate. Friable grayish-brown, and dark reddish-brown fine sandy loam, or silty loam surface soils, five to eight inches thick, that may be gravelly or shaly, and friable to firm, yellowish-brown, yellowish-red to dark red sandy clay loam, clay loam, or silty clay loam subsoils which may also be gravelly or shaly. Mostly Allen, Linker, Hartsell, Dickson, Locust, Decatur, Dewey, and Wynnville. Dickson, Locust and Wynnville soils have a fragipan.

Classes (2W-41), 2W-42, 2W-45. Deep, well drained and moderately well drained soils with somewhat poorly drained inclusions. In local and general alluvium positions on the plateaus and in the valleys. Surface soil and subsoil textures range from fine sandy loam, loam, silt loam, and silty clay loam. The moderately well-drained soils will have drainage mottles at about 18 inches in depth, whereas the well drained soils are mottle free to a depth of at least 30 inches. Subject to not more than moderate damage from ponding or stream overflow. Major soils are Pruitton, Lobelville, and Ellisville.

## Group 31

Classes (3W-41), 3W-42, 3W-43, 3W-48. Deep, moderately well drained to poorly drained, nearly level, medium and fine textured soils developing in local and general alluvium in depressional areas, at the heads of and along narrow drainageways and draws, on first bottoms and flood plains, and on plateaus. The soils are subject to not more than moderate crop damage from excess standing water, ponding, or stream overflow. The water table is at or near surface during wet seasons. Primarily Taft, Lee, Gaylesville, and Tupelo soils.

## Group 32

Classes (3E-42, 3E-43), 2S-42, 2S-44, 2S-45, 3E-41, 3E-45, 3E-441, 3E-442, 3E-443, 2S-43, 2S-451. Moderately deep and deep, well drained, permeable soils on uplands, stream terraces, and footslopes on the plateaus, and on stream terraces and footslopes in the valleys. Baxter, Fullerton, Minvale, and Bodine soils are Cherty derived principally from limestone. Slopes range from 6 to 10 percent, and the erosion is slight to moderate. They have friable grayish-brown, dark brown, and dark, reddish-brown, fine sandy loam and loam surface soils, that may be gravelly or shaly, five to eight inches thick, and friable to firm, yellowish-brown, yellowish-red to dark red sandy clay loam or clay loam subsoils which may also be gravelly or shaly. Includes Allen, Hartsells, Holston, Minvale, Fullerton and Waynesboro soils.

## Group 33

Classes (4E-43), 4E-41, 4E-42, 4S-42. Moderately deep and deep, well drained permeable cherty soils on uplands and footslopes in the limestone valleys and chert ridges derived principally from cherty limestone. Slopes range from 10 to 15 percent. Erosion is slight to moderate. Friable grayish-brown to dark brown, cherty silt loam surfaces five to eight inches thick, and friable yellowish-brown, yellowish-red, or dark red cherty silty clay subsoils. Mostly Fullerton, Dellrose, and Bodine.

Classes (4E-441), 4E-442 through 4E-445, 3E-444, 3E-445, 4E-448, 4E-449, 3E-446, 3E-449, 4E-446. Moderately deep and deep, well drained, permeable severely eroded soils on uplands, stream terraces, and footslopes in the limestone valleys. Some friable cherty soils. Slopes range from 6 to 10 percent. Thin reddish clay loam, silty clay loam, silty clay or clay surface layers over red to dark-red firm clay loam, silty clay loam, silty clay, or clay subsoils. May be shaly in places. Major soils are Decatur, Dewey, Fullerton, Minvale, and Etowah.

## Group 35

Classes 4W-41. Deep, poorly drained, medium and fine-textured soils in upland depressions and on low stream terraces. Surface soils are faintly to distinctly mottled silt loams and fine sandy loams, 6 to 18 inches thick. Subsoils are distinctly to prominently mottled silt loams to silty clay loams. Water may stand on these soils for long periods after intensive rains or prolonged wet periods. Chiefly Guthrie and Dowellton soils.

#### Group 36

Classes (3E-44), 3E-49, 4E-44, 4E-45. Moderately deep to deep, well drained soils on uplands derived primarily from shales with some sandstone influence. Slopes range from 2 to 15 percent and the erosion is slight to moderate. Friable grayish-brown very fine sandy loam, loam, or silt loam surface soils, five to seven inches thick, and yellowish-brown to yellowish-red or red friable silty clay loam to firm silty clay or clay subsoils. Mostly Albertville, Nectar and Enders soils.

### Group 37

Classes (4E-49), 3S-41, 3E-46, 3E-48, 4E-46, 4E-48. Moderately deep to shallow, well drained soils on uplands derived from sandstones and shales. Slopes range from 6 to 10 percent, and the erosion is slight to moderate. Friable, medium textured surface soils that may or may not be gravelly or shaly, and friable to firm medium to fine textured subsoils. Depth to bedrock ranges from 12 to 40 inches. Major soils are Hector, Montevallo, and Townley.

## Group 38

Classes (6E-49, 6E-43), 6E-42, 6E-44, 6E-46, 6E-48, 6S-42, 6S-48, 6S-49. Deep to shallow, well drained to excessively drained upland soils derived from sandstone, shale, and cherty limestone. Slopes range from 10 to 25 percent, and the erosion is slight to moderate. Friable, medium-textured surface soils and friable to firm medium to fine textured subsoils. Depth to bedrock ranges from 10 to 60 inches or more. Mostly Enders, Hartsells, Montevallo, Fullerton, and Bodine soils.

Classes (6E-441, 6E-443), 6E-442, 6E-446, 6E-448, 6E-449. Moderately deep and deep, well drained permeable, Cherty and severely eroded soils on uplands, stream terraces, and footslopes in the limestone valleys and on the plateaus. Slopes range from 10 to 25 percent. Friable, fine textured surface soils and subsoils that may be gravelly, shaly, or cherty in places. Primary soils include Decatur, Dewey, Albertville, and Enders.

	tatoes (2)			195	70				225													210	35					
	sh Po		Cwt																									
	Iri (1)		-	140	120				160													150	180					
	bles (2)		t	95	77			73		53			59			60	53					77	66	62		52		39
	Vegetables (2		Cwt	76	62			58		42			47			48	42					62	53	50		42		31
	Peanuts ) (2)		Pounds	2,275	2,050	1,525	1,425	1,930	1,860	1,870																		
	Pea (1)		Po	1,650	1,486	1,250	1,170	1,580	1,430	1,355																		
	Cotton (2)		Pounds	832	711	500	486	810	477	320	351		526	369		558	580			446	360	945	868	832		806	554	608
	(1)	re	Po	628	536	376	365	614	360	295	266		398	277		418	436			337	270	706	653	624		607	414	472
CROP	Grain Sorghum (1) (2)	-Yield Per Acre	els	49	48		46		41				46	42		52							53		46			
	Grain ( (1)	Yield	Bushels	35	34		33		29				33	30		37							38		33			
	0ats (2)		Bushels	70	69	57	50	06	61	57	49		66	47	32	71	65		52	52	29	115	96	77	47	06	69	73
	0 ⁶ (1)		Bus	54	53	49	43	69	53	44	38		51	36	25	55	50		40	40	22	89	74	59	36	69	53	56
	Wheat (2)		hels	41	35	26	24	29	29	28	26		40	30	24	44						48	43	39		33	24	28
	(1) ¥		Bush	31	26	22	20	22	22	21	19		30	23	18	33						36	29	29		25	18	21
	eans (2)		els	36	38	28	27	46	36	27		22	39	27		46						55	36	50	39	34	27	30
	Soybeans (1) (2		Bushels	27	26	21	22	35	27	20		16	29	20		34						41	27	37	29	27	20	22
	n (2)		ls	75	69	54	41	97	71	39	34		53	42	32	80	59	100	56	49		108	83	88	56	78	59	56
	Corn (1)		Bushe 1s	54	49	38	29	69	52	32	24		38	30	23	<b>S</b> 7	42	75	40	38		80	59	60	40	56	35	40
SOIL GROUP 1/	it.			1	2	3	4	S	9	7	80	6	14	15	16	17	20	21	22	23	24	28	29	30	31	32	34	36

APPENDIX 24F -- Crop yields without accelerated water resource development, Alabama, 1967-69, and 1990.

S

A-146

(1) Base condition yields, 1967-1969.

Projected yields, 1990, assuming normal increases in technology and management. (2)

 $\underline{1}$  Soil groups not used for a specific crop are omitted in this table.

Fescue (1)	AUM 1/		
			יין היא מימי מימי מימי מימי מימי מימי מימי
ss-Clover (2)	AUM 1/	0 0 0 0 0 0	1
ra	AUM	بر <del>به به</del> ۱۰ ۱۰	
Bahia (2)	AUM 1/		
(1)	Acre	0.0470 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.05000 0.05000 00000000	
<pre>&amp; Coastal</pre>	Tons		40041.0 0041.0
Serecia (1)			5
Johnson Grass () (2)	Tons	بې بې د ب به	0.0.0.1 0.0.1
Johnso (1)	To		1.3 9 9 2
Bermuda (2)	S	7.7.8.8.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.	65.5 6.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7
Coastal Bermuda (1) (2)	Tons	84 % 8 4 % 6 8 9 4 % 6 8 9 4 9 8 9 9 4 4 9 8 9 9 4 4 9 8 9 4 4 9 8 9 4 4 9 8 9 4 4 9 8 9 9 4 4 9 9 9 9	000 000 00 000 000 07

APPENDIX 24G -- Hay and Improved pasture yields without accelerated water resource development, Alabama, 1967-69, and 1990.

1

1

 $\underline{1}$  Animal unit months of grazing.

A-147

## APPENDIX 25 -- FLOOD PROBLEMS, ALABAMA RIVER BASIN.

Appendix Table 25A -- Communities having flood problems by source, by counties, Alabama River Basin, 1974.

## COMMUNITY NAME/POPULATION

Autauga County Autaugaville, Town of/870 Prattville, City of/13,116 Bibb County Brent, Town of/2,100 Centreville, Town of/2,233 West Blocton, Town of/1,800 Bullock County Union Springs, Town of/4,324 Calhoun County Alexandria/600 Anniston, City of/31,637 Coldwater/300 Hobson City, City of/1,124 Jacksonville, City of/7,715 Oxford, City of/6,486 Piedmont, City of/5,063 Weaver, City of/2,091 West Anniston/5,515 Chilton County Clanton, Town of/5,885 Coopers/596 Maplesville, Town of/200 est. Dallas County Hwy. 14 East/300 Orrville, Town of/400 Selma, City of/30,000 Selmont/2,500DeKalb County Collinsville, Town of/1,271 Fort Payne, Town of/8,435 Valley Head, Town of/470

#### SOURCE(S) OF FLOODING

Swift, Whitewater, Yellowater Creeks Auatuga Creek

Local drainage Cahaba River Local drainage

Town Creek, Local drainage

Alexandria Branch Snow Creek Coldwater & Choccolocco Creeks Secondary drainageways Jacksonville Branch Snow & Choccolocco Creeks Nance Creek & Tributaries Weaver Secondary drainageways

Poley & Goose Pond Creeks Chestnut Creek Mulberry Creek

Alabama River & Local drainage Local drainage Alabama River & Local drainage Alabama River & Local drainage

Stream overflow & Local drainage Stream overflow & Local drainage Stream overflow & Local drainage

## COMMUNITY NAME/POPULATION

Elmore County Millbrook, Town of/3,513 Tallassee, Town of/3,404

Wetumpka, Town of/3,786 Coosada

Etowah County Attalla, City of/7,510

Gadsden, City of/53,928

Glencoe, Town of/2,901 Coats Bend/500 Southside, Town of/500 Tidmore Bend/1,000 Tillison Bend/1,000 Wills Valley/880 Whorten Bend/2,000

Jefferson County Birmingham, City of/300,910 Homewood, City of/20,958 Hoover, Town of/1,393 Irondale, Town of/3,143 Leeds, City of/6,979 Mountain Brook, City of/19,287 Vestavia Hills, City of/8,323 Trussville, City of/2,923

Lee County Auburn, City of/22,767

Opelika, City of/19,027

Lowndes County Benton, Town of/115 SOURCE(S) OF FLOODING

Alabama River, Mill Creek Tallapoosa River, Graveyard Creek Coosa River Coosada Creek

Little Wills, Big Wills, & Dry Creeks Black Creek, Big Wills Creek & Coosa River Air Service Depot Branch Coosa River Coosa River Coosa River Big Wills, Little Wills Creeks Coosa River

Shades, Five Mile, Village Creeks Shades Creek Patton Creek Shades Creek Little Cahaba River Shades Creek Patton Creek Little Cahaba River

Sougahatchee, Moores Mill, & Parkerson Mill Creeks Sougahatchee, Hallawakee, & Chewacla Creeks

Alabama River, Old Town Creek & Big Swamp Creeks

## COMMUNITY NAME/POPULATION

## SOURCE(S) OF FLOODING

Macon County Armstrong/75 Fort Davis/100 Hardaway/75 Milstead/50 Notasulga, Town of/833 Roba/50 Tuskegee, City of/11,028

Monroe County Monroeville, City of/4,846

Montgomery County Montgomery, City of/133,386

Perry County Cunningham/40 Hamburg/25 Heiberger/45 Marion/4,289 Sprott/20 Suttle/15

Randolph County Wadley, City of/700 Roanoke/5,200

St. Clair County Ashville, City of/986 Moody, Town of/504 Odenville, Town of/533 Pell City, City of/5,602 Ragland, Town of/1,239

Shelby County Alabaster/4,300 Pelham/3,047 Cahaba Valley/400 Montevalla/3,700 Local drainage Local drainage Local drainage Local drainage Local drainage Local drainage Local drainage

Local drainage (sinks)

Alabama River, Catoma Creek, White's Slough, Geneta Ditch

Washington Creek Boguechitto Creek Cahaba River Rice Creek Cahaba River Cahaba River

Tallapoosa River High Pine Creek

Canoe Creek Little Cahaba River Beaver Creek Dye Creek Trout Creek

Buck Creek Buck Creek Cahaba Valley Creek Shoal Creek

## COMMUNITY NAME/POPULATION

Talladega County Childersburg, City of/4,200

Lincoln, Town of/1,127 Sylacauga, City of/12,255 Talladega, City of/17,662

Tallapoosa County Alexander City/12,358 Dadeville/2,847 SOURCE(S) OF FLOODING

Talladega Creek, Tallaseehatchie Creek, & Trib. Surface water Blue Eye Creek Shirtee Creek & Surface drainage Isbell Branch & Trib. surface drainage

Hillabee Creek Tribs. Sandy Creek

Source of Data: HUD Type 21 Flood Insurance Study July 1973, prepared by the Soil Conservation Service and supplemented by data from the Alabama Development Office and the Corps of Engineers.

1
Basin,
River
Alabama
streams,
Flood plain areas along the principal streams, Alabama River Basin, $\underline{1}$
t,
along
areas
plain
Flood
ł
25B
Table
Appendix

	STREAM MILE	MILE 2/		FLOOD P RURAL	LAIN AREA	RES	
	FROM	TO	CLEARED	D WOODS	S TOTAL	URBAN	TOTAL
River	569.6	540.1	100	0 100	200	I	200
River	540.1	520.7	5,000			ı	8,600
River	520.7	493.4	6,800				13,500
River	493.4	462.4	5,100			1,000 3/	11,200
River	462.4	414.1	1,70			•	4,900
River	414.1	333.3	4,800				9,280
Coosa River	333.3	314.4	3,500	0 4,100	7,600	350 5/	7,950
Subtotal for					1		
Coosa River	569.6	314.4	27,000	0 25,500	) 52,500	3,130	55,630
Alabama River	314.4	245.4	33,700		59,400	1.650 6/	61,050
Alabama River		203.9	21.400	0 13,800		$6.000 \overline{7}/$	41,200
	203.9	142.3	21,500				37,800
	142.3	36.6	18,100			ı	93,100
Alabama River	36.6	0.0	<b>,</b> 1			ı	
Subtotal for							
Alabama River	314.4	0.0	94,700	0 130,800	0 225,500	7,650	233,150
Tallapoosa River	137.7	123.6	1,000	0 1,000	2,000	I	2,000
Tallapoosa River	123.6	112.2	1,40				2,900
Tallapoosa River	112.2	92.0	2,50	0 2,900			5,400
	49.7	0.0	25,100	(1)	45,700	1	45,700
subtotal tor Tallapoosa River	137.7	0.0	30,000	0 26,000	56,000	ı	56,000
Cahaba River	88 8	64.8	000				10 600
Cahaba River	64.8	25.10	11 100	0 15 000			20 000 20 000
Cahaba River	25.1		8 800		12 800		30,000
Subtotal for	-	1	00	<u>+</u>		•	17,000
Cahaba River	88.8	8.2	27,800	0 25,600	53,400		53,400
TOTAL FOR BASIN							
WITHIN ALABAMA			179,500	0 207,900	387,400	10,780	398,180

Appendix Table 25B -- Cont'd

- Adapted from Corps of Engineers Data, Mobile District; area based on approximately the 100 year storm. 1
- Miles shown are from the mouth of each respective river except that miles for Coosa River are from mouth of Alabama River. 5

  - Gadsden, Alabama Childersburg, Alabama
    - Wetumpka, Alabama
      - Montgomery, Alabama
  - Selma and Selmont, Alabama 1/10/21/412

Appendix Table 25C -- Estimated average annual damage along the principal streams, Alabama River Basin. 1/

			AGRIC	AGRICULTURAL DAMAGE	GE			
				OTHER		ROADS		
	STREAM	STREAM MILE 2/		THAN		AND		
STREAM	FROM	TO	CROPS	CROPS	SUBTOTAL	RAILROADS	URBAN	TOTAL
					dollars			
Coosa River	569.6	540.1	600	1,400	2,000	2,000	ı	4,000
Coosa River	540.1	520.7	2,000	3,000	5,000	1	ı	5,000
Coosa River	520.7	493.4	6,000	31,000	37,000	8,000	ı	45,000
Coosa River	493.4	462.4	38,000	46,000	84,000	11,000	40,000 3/	135,000
Coosa River	462.4	414.1	12,900	8,100	21,000	4,000		
Coosa River	414.1	333.3	3,800	5,200	<b>000</b> , 6	1	5,000 4/	
Coosa River Subtotal for	333.3	314.4	31,700	9,300	41,000	1,000	3,000 5/	45,000
Coosa River	569.6	314.4	95,000	104,000	199,000	26,000	48,000	273,000
Alabama River	314.4	245.4	71,000	17,000	88,000	4,000	178,000 6/	, 270,000
Alabama River	245.4	203.9	45,800	11,200	57,000	2,000	201,000 7/	
Alabama River	203.9	142.3	40,800	10,200	51,000	, 1		51,000
Alabama River	142.3	36.6	112,700	27,300	140,000	14,000	ı	154,000
Alabama River	36.6	0.0	1	1	1	1	1	, 1
Subtotal for								
Alabama River	314.4	0.0	270,300	65,700	336,000	20,000	379,000	735,000
	137.7	123.6	16,000	4,000	20,000	2,000	ı	22,000
	123.6	112.2	31,800	8,200	40,000	3,000	ı	43,000
	112.2	92.0	7,300	2,700	10,000	2,000	ı	12,000
Tallapoosa River	49.7	0.0	88,700	24,300	113,000	1,000	ı	114,000
Subtotal for				1				
lallapoosa kiver	137.7	0.0	143,800	39,200	183,000	8,000	ı	191,000

Appendix Table 25C -- Cont'd

			AGRIC	AGRICULTURAL DAMAGE	3E			
				OTHER		ROADS		
	STREAM	STREAM MILE 2/		THAN		AND		
STREAM	FROM	TO	CROPS	CROPS	SUBTOTAL	RAILROADS	URBAN	TOTAL
				5 5 6 5 5 5 6 6	dollars	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	555	* * * * * * *
Cahaba River	88.8	64.8	13,000	8,000	21,000	2,000	I	23,000
Cahaba River	64.8	25.1	23,500	13,500	37,000	3,000	ı	40,000
Cahaba River	25.1	8.2	30,500	15,500	46,000	8,000	ì	54,000
Subtotal for								
Cahaba River	88.8	8.2	67,000	37,000	104,000	13,000	1	117,000
TOTAL FOR BASIN WITHIN ALABAMA			576,100	245,900	822,000	67,000	427,000	427,000 1,316,000

Adapted from Corps of Engineers Data, Mobile District.

Miles shown are from the mouth of each river; Coosa River mileage is from mouth of Alabama River. Gadsden, Alabama 1/10/14/13/1/

Childersburg, Alabama

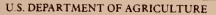
Wetumpka, Alabama

Montgomery, Alabama Consists of \$145,000 at Selma and \$56,000 at Selmont, Alabama.

Appendix Table 25D -- Estimated flood plain land use and flood damage by watersheds and subbasins, Alabama River Basin, 1972.

					ELOOD PI	I UN I AND I	ELOOD PLAIN LAND LISE DISTRIBUTION	TTON	AVFRAGE	AVERAGE ANNIAL FLOOD DAMAGE	DOD DAMAG	
												S
		AVG. NU. DAMAGING FLOODS	DRAINAGE	FLOOD					CROP	OTHER AND	0	DAMAGE (PERCENT OF TOTAL FLOOD
WATERSHED	CNI NO. 1/	PER YEAR	AREA	PLAIN	CROPLAND	PASTURE	FOREST	MISC.	PASTURE	INDIRECT	TOTAL	DAMAGE )
		- Ala	bama River	Subbasin	(35a) Acre:						Dollars-	
Mulberry River	1,2,4,5	1.5	174,296	17,430	2,614	3,486	10,458	872	48,800	18,300	67,100	40
Valley Creek	3,12,15,16	4.5	55,727 76 530	2,786	1 1	418	2,368		3,300	1,300	4,600	20
Suift frank uters	, ° °	· · ·	01 220	(00°/	00	000	0 105		00/ °C	1,400	5,100 6 = 500	0.9
Upper AlaWest Tribs.	10,11,13,14,	C • 1	070 4 1 6	70/ 1	00	60+	Cel 'e		00 · • +	1,000	000.00	00
	20	1.5	210,300	21,030	210	631	20,189		6,700	2,500	9,200	55
Blue Girth Beech Creek	17	1.5	43,210	12,963	1,296	4,926	6,482	259	49,800	18,700	68,500	30
Upper Alabama Tribs.	18, 32-36	2.25	164,589 37 565	32,918	2,633	5,267	24,689	329	63,200	23,700	86,900	15
Galdraith Mill Creek	02 06 26-26	1.5	33,595 775 557	11,/85 77 EE 7	5,892 7 756	1,1/9	2,946	1, /08	56,600	20,200	74 400	ς Γ
Middle Alabama Tribs.	28.31.44.55	2.25	180.891	9.045	007 * 7	905	8.140		7.200	2.700	9,900	10
Wilcox Tribs.	42,43,53,54,											
	58, 59, 63, 64, 67	3.0	428,201	25,692		3,854	21,838		30,800	11,600	42,400	10
Cypress (Lowndes) Creek	38	4.5	29,766	2,977	60	893	2,024		7,600	2,900	10,500	S
Pintlalla-Tallawassee Creek	39,40,47-49	4.5	195,492	25,413	254	9,657	15,248	254	79,300	29,300	108,600	S
Catoma Creek	41,50-52	4.5	243,056	24,306		10,937	10,937	2,432	87,500	32,800	120,300	S I
Cedar Creek	45,61,62	2.25	175,249	17,525	175	6,835	10,515		56,100	21,000	77,100	.r. i
Ury uedar ureek Louen Alo - Mast Tribs	50 57 72	۲.25 کړ ر	85,U/5	8,3U8 76 607	552	5,15/ 707 7	4,819		006,72	10,500	58,400	0 Q
Flat Creek	68-70	57.7 26.6	241 031	36, 155	1,400 3,616		50, 66 707 30		29,400 86,800	32 500	119 300	01 %
Lower Alabama Tribs.	71.72.74-81	4.5	207.742	6.232	010 0	112	5 920		2,500	006	3 400	,
SUBTOTAL		2	-	331,250	20,981	67,274	237,081	5,914	706,000	264,400	970,400	
		Consa Ri	ver Subhasin (35a-1	n (35a-1)								
Chatooga & Little Rivers	2,3,5	3.0	197,612	3,952	988	1,581	1,383		20,600	7,700	28,300	2
Big Wills Creek	1,6	3.0	164,347	8,217	41	7,395	740	41	59,500	22,300	81,800	5
Upper Coosa Tribs.	4,9	3.0	132,902	6,645	1,994	465	3,654	532	19,700	7,400	27,100	15
LILLE WILLS - BLACK Unsur Widdle Conco Tribe	0 11 12 17	4°.4	90,502	4,818	241	5,5/2	964	147	106,82	10,800	59, /UU	15
Big Canoe Creek	10.16	C 2 . 4	164.247	276,6	980	1,0,1 7,717	20 947	100	19 700	4,500	00/ CT	0 v v
Chatchee Creek	18	4.5	56,102	2,805	280	533	1,964	80	6,500	2,400	8,900	10
Tallahatchee Creek	20	4.5	86,811	5,209	1,042	1,042	3,021	104	16,700	6,300	23,000	10
Middle Coosa Tribs.	22,26-28,34	2.25	205,210	10,261	103	103	9,952	103	1,600	600	2,200	S
Vallanians Const (Shalker)	24,25	2.25	123,515	6,176	31	62 1 1	5,990	93	700	300	1,000	; n
Tellowlear Creek (Snelby)	51-55,50 77 45	4.5	152,033	7,652	765	765	5,724	582	12,200	4,600	16,800	-4
Meaduatonee ofeek Yellowleaf-Walnut Creek	28,52	62.2 2 [	154,949 07 171	0,/4/	561	202	6,0/3 8 780	55/	2,/00	1,000	5, /UU 5 100	ກຈ
Lower Middle Coosa Tribs	38 39 44 45 49	5.4	136 388	13 630	275	2010 2	0,500	1 76	3, 700 20 500	11 000	40 500	° 02
Cedar Creek (Talladega)	43	4.5	33,737	3,374	101	844	2,395	34	7.600	2.800	10.400	10
Hatchet Creek	41,51,54	2.25	239,300	7,179	144	862	6,101	72	8,000	3,000	11,000	10
Lower Coosa Tribs.	53,55-59,61	1.5	217,373	6,521	326	1,565	4,565	65	15,100	5,700	20,800	5
Yellow-Taylor Creek cumernan	60,62	1.5	67,768	2,033	102	407	1,524		4,100	1,500	5,600	S
20810176				460,261	/,16/	26,35/	45,5/8	5, 157	268,200	100,500	368, /UU	

1	- Cont'd
	e 25D -
-	lix Tabl
	Append


					FLOOD PLA	IN LAND US	FLOOD PLAIN LAND USE DISTRIBUTION	UT ION	AVERAGE	AVERAGE ANNUAL FLOOD DAMAGE	OOD DAMAG	E
												SEDIMENT
		AVG. NO.							(BOP	OTHI-R	_	DAMAGE PERCENT OF
		FLOODS	DRA LNAGE	F1.000					(INV	(INV	-	0
WATERSHED	CN1 NO. 1/	PER YEAR	AREA	PLAIN	CROPLAND	PASTURE	FOREST	MISC.	PASTURI:	<b>INDIRECT</b>	FOTAL.	DAMAGE)
		Talla	Tallapoosa River	Subbasin (35a-2)	(35a-2)					Dollars	ars	
Muscadine Creek	<b>C</b> 3	4.5	15,017	106	ACTES	06	196	06	2,500	006	3,400	S
Upper Tallapoosa Tribs.	3,5,6,8,10,											
	15,18	2.25	168,725	8,436	169	2,158	6,158		18,200	6,800	25,000	S
Chickasanoxee-Chatahospec	11,12,14,16,				:							:
Creek	17,19-22,24	3.0	138,047	6,902	68	1, 26	5,108		11,400	2°100	19,800	10
Lake Martin-West Tribs.	40-41	6.5	131,124	6,556	65	328	6,165		5,100	1,200	4,500	ı
Lake Martin-East Tribs.	42,46-50,52	6.5	241,852	12,093	121	1,209	10, 765	i	10,600	1,000	14,000	1
Sougahatchee Creek	53,54,59	3.5	129,190	3,876			5,857	<u>3</u> 9				,
Uphapee-Storie;	60-64, 73	2.25										
Deine Locoo Chook	7 /	0	(12 061	15 017	0210	0 1 0 0	10 457	021	10 800	002 31	002 89	1.1
Upint locco treek	60	U +	1, Kul	122 01	000) 1	0,100 1,070	19,45	2017 11 C	10, 500	10, 00, 15	002,50	20
Calabaa Cureek	12 12 12	5 U	02,20	10, 046	1 005	4,070	1-2 01	200	000,04	007.61	00. 30	0.0
Latevee Ureek Lower Tallamones_So Tribe	66 67	2. t 20	100 HT	5 1 2.1	1 1 1 1 1 1 1 1 1 1 1 1	10210	136 1	1 580 1		001 1	000 80	2 L/
Lower rallapoosa-30. Tubb.	50,00 56,57,65		01- 001		192 -	1 010				005 72	135 000	. 1
	60, / 6-66	0.1	10 118	010, 51	+0C '	102	1 405		002 2	000,00	000,661	<u>0</u> v
	00,10	, - , -	011.01		001	100	COO. 1		00-10 20 - 100		005.4	۰.
Middle Tallapoosa Tribs. SURTOTAL	26,27,51-34,37	6.5	175,891	1.10 365	880	110 12	1.0, 11	351 768	$\frac{25,500}{500}$	000 621	504 500	10
THINTOP				000 6 04 1	0001141	140.10	0000 * 0001	0001 -	nor n r		one tene	
		Cahaba R	Cahaba River Subbasin (35a-3	in (35a-3)								
Upper Cahaba Tribs.	1.2.4.5	3.75	230.589	1.612		46	1.520	91	1001	100	500	<i>.</i> ~,
Shades Creek	3	4.5	86,546	1, 731		52	1,662	<u>.                                    </u>	100	007	600	50
Upper Middle Cahaba Tribs.	8-10,14	2.25	142,387	14,239	۲.	142	$15,6^{-0}$	356	1,~00	600	2,300	6
Cahaba Valley Creek Tribs.	(0,7	2.25	50,288	2,514	25	503	1,860	126	4,200	1,600	5,800	10
Little Cahaba Tribs.	11,12,15,16	2.25	190,297	19,030	190	1,142	17,698		10, 700	1,000	11,700	25
Affonee Creek	13	2.25	121,435	14,572	438	874	15,260		10,500	3,900	11,400	20
Middle Cahaba Tribs.	17,18	5.0	100,559	10,056	2,011	5,017	1,525	503	40,200	15,100	55,300	
Lower Cahaba-Oakmulgec	į							1				
Tribs.	24	1.5	202,501	40,500	810	2,835	36,450	405	29,200		47,500	50
Lower Middle Cahaba Tribs.	21,32	55	73,408	11,011	116	3,303	6.60	110	34,400	12,900	1.200	30
SUBTOTAL				118,265	4,536	11,914	100,252	1,563	131,700		181,000	
TOTAL BASIN				731,539	47,072	137,486	533,079	15,902 4,476,400	,476,400	553,200 2,029,600	,029,600	

Alabama Conservation Needs Inventory, 1967 (see map, appendix 25F).
 Gravel pits.

Appendix Table 25E -- Estimated flood plain land use and flood damages within PL-566 and RCGD Watersheds by subbasins, Alabama River Basin, 1972.

$ \begin{array}{c cccc} CROP & OTHER & ( \\ AND & AND $						FLOOD PLAI	FLOOD PLAIN LAND USF DISTRIBUTION	DISTRIBUT	LION	AVERAGI	AVERAGE ANNUAL FLOOD DAMAGE	OOD DAMAG	1
1         1         2.5         8.6         1.7         2.6         1.7         2.5         8.6         1.7         1.6         1.1         1.1         2.5         1.7         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1 <th1.1< th=""> <th1.1< th=""> <th1.1< th=""></th1.1<></th1.1<></th1.1<>	WATERSHED	CNI NO. 1/	AVG. NO. DAMAGING FLOODS PER YEAR	DRA I NAGE AREA	FL00D PLA1N	CROPLAND	PASTURE	FOREST	MISC.	CROP AND PASTURE	OTHER AND INDIRECT		SED IMENT DAMAGE (PERCENT OF TOTAL FLOOD DAMAGE)
Ref         11         2.25         103, 65         15, 78         5, 20         5, 20         5, 21         15, 21         15, 23         23, 20         24, 25         23, 20         24, 25         23, 20         24, 25         24, 200         24, 25         23, 20         24, 25         24, 200         24, 25         24, 200         24, 25         24, 200         24, 25         24, 200         24, 25         24, 200         24, 25         24, 200         24, 25         24, 200         24, 25         24, 200         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         24, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26         26, 26 </th <th>COOSA - 35a - 1</th> <th></th> <th></th> <th></th> <th></th> <th>acr</th> <th>es</th> <th></th> <th>1 1 1 1 1 1</th> <th></th> <th>dollars-</th> <th></th> <th></th>	COOSA - 35a - 1					acr	es		1 1 1 1 1 1		dollars-		
Creek         21         2.5         2.0000         6.129         5.81         10000         2.758         10000         2.768         10001         2.676         2.753         2.750         11.75         2.676         2.753         2.750         11.75         2.760         2.75         2.760         2.75         2.760         2.75         2.760         2.75         2.760         2.75         2.760         2.75         2.760         2.75         2.760         2.75         2.760         2.75         2.760         2.77         2.760         2.760         2.775         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.775         2.760         2.775         2.760         2.760         2.775         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760         2.760	Terrapin Creek	14	2.25	183.675	13.786	5.927	3.309	4.155	. 115	111.979	28,502	173 481	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Choccolocco Creek	21	2.5	240,600	16,129	3,871	10,000	2.258		169.611	58. 382	228, 393	, E
the $\frac{30}{10}$ $\frac{1.5}{1.5}$ $\frac{7.93}{10,10}$ $\frac{1.1716}{10,11}$ $\frac{2.865}{5.647}$ $\frac{2.17}{10,12}$ $\frac{1.060}{5.000}$ $\frac{2.000}{2.000}$ $\frac{9.000}{2.000}$	Blue Eye	29	4.5	14,131	1,402	308	883	211		10.049	11.416	21.465	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cheaha	30	4.5	72,934	4,341	1.216	2.865	213	43	54.860	14.778	19.638	00
the $\frac{10}{16}$ , $\frac{1}{15}$ , $\frac{1}{15}$ , $\frac{1}{15}$ , $\frac{1}{15}$ , $\frac{1}{16}$ , $\frac{1}{15}$ , $\frac{1}{5}$ , $\frac{1}{16}$ , $\frac{1}{15}$ , $\frac{1}{16}$ , $\frac{1}{15}$ , $\frac{1}{16}$ ,	Talladega	35	6.5	105,970	5,014	1,705	2,105	1,052	152	42,000	50,000	92.000	07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tallaseehatchie	40	4.5	131,077	10,139	1,014	3,547	5,070	506	-2,606	154,375	226.981	10
19         4.5         21,120 $\frac{831}{5642}$ $\frac{14}{14}$ $\frac{3.22}{51,23}$ $\frac{455}{596}$ $\frac{11}{119}$ $\frac{21}{50,374}$ $\frac{10,94}{50,554}$ $\frac{3.568}{50,556}$ $\frac{7}{7}$ $\frac{1}{1,5}$ $\frac{1}{1,5}$ $\frac{1}{1,213}$ $\frac{1}{21,233}$ $\frac{13}{51,100}$ $\frac{1}{55,645}$ $\frac{1}{51,113}$ $\frac{3}{50,551}$ $\frac{1}{51,113}$ $\frac{3}{50,551}$ $\frac{1}{500,979}$ $\frac{3}{50,551}$ $\frac{1}{500,556}$ $\frac{1}{51,113}$ $\frac{3}{50,551}$ $\frac{3}{500,551}$ $\frac{1}{51,113}$ $\frac{3}{50,551}$ $\frac{1}{51,113}$ $\frac{3}{50,551}$ $\frac{1}{51,113}$ $\frac{3}{500,556}$ $\frac{1}{51,113}$ $\frac{3}{500,551}$ $\frac{1}{51,113}$ $\frac{3}{51,110}$ $\frac{1}{51,113}$ $\frac{1}{51,113}$ $\frac{3}{51,110}$ $\frac{1}{51,113}$ $\frac{1}{50,123}$ $\frac{1}{50,113}$ $\frac{1}{50,113}$ $\frac{1}{50,113}$ $\frac{1}{50,123}$ $\frac{1}{50,123}$ $\frac{1}{51,113}$	Weogufka	46,47,50	5.5	85,632	4,000	160	1,200	2,600	40	53,400	31,600	65,000	10
$\frac{153 - 2}{12}$ $\frac{1}{25,642}$ $\frac{1}{1,10}$ $\frac{1}{25,642}$ $\frac{1}{1,12}$ $\frac{1}{24,12}$	Shoal Creek	19	4.5	21,120	831	17	322	45.3	7	2,474	1,094	3,568	10
$ \frac{353 - 2}{7} $ $ \frac{1}{7} $	SUBIUIAL				55,642	14,215	24,223	15,996	1,197	509,979	350,547	860,526	
1         1.5         12,032         578         132         170         45         31         7,657         4,456         12,115           7         7         4.5         5,110         2,367         5,31         1,44         2,41         6,131           23         6.5         5,110         2,367         5,31         1,183         5,351         1,141         5,41         2,41         6,131         6,131           23         6.5         6,556         5,75         1,10         80         5,61         1,118         6,131           23         6.5         6,557         896         5,41         2,43         1,0         1,4,46         2,525         6,971           23         6.5         6,556         1,200         1,539         1,509         1,536         6,123         5,517         1,1199           23         6.5         6,556         7,60         1,398         1,536         6,556         2,158         6,123         5,517         1,1199           23         15,00         1,239         1,590         1,539         5,517         1,1199         2,558         2,158         2,128         2,128         2,128         2,158         2,1	- 35a -												
the $\begin{bmatrix} 7 \\ 1 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	Cahulga	-7	4.5	12,032	378	132	170	45	31	7.657	4.456	12.113	5
tee $\begin{pmatrix} 9 \\ 13 \\ 13 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	Dynne	7	4.5	16,200	1,183	331	544	284	54	7,685	8, 116	16,131	o N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ketchepedrakee	6	4.5	35,110	2,367	876	1,184	284	23	24,814	9,301	34,115	10
$\frac{23}{25} \qquad 6.5 \qquad \frac{27,237}{5.5} \qquad 800 \qquad 56 \qquad 440 \qquad \frac{264}{1.240} \qquad 40 \qquad 4.446 \qquad \frac{2,525}{5.55} \qquad 6.971 \\ \frac{25}{28} \qquad 5.5 \qquad 51,590 \qquad 5.3495 \qquad 2.34 \qquad 2.493 \qquad 1,528 \qquad 5.169 \qquad 10.672 \qquad 5.557 \qquad 7.555 \qquad 64,274 \\ \frac{23}{20} \qquad 5.5 \qquad 51,590 \qquad 5.481 \qquad 60.4 \qquad 1.528 \qquad 5.181 \qquad 15,557 \qquad 8,550 \qquad 51,536 \qquad 64,274 \\ \frac{23}{30} \qquad 5.5 \qquad 51,590 \qquad 5.491 \qquad 5.902 \qquad 1,230 \qquad 1.558 \qquad 5.187 \qquad 15,657 \qquad 8,550 \qquad 59,152 \\ \frac{23}{30} \qquad 5.5 \qquad 51,590 \qquad 5.7 \qquad 5.899 \qquad 7.633 \qquad 518 \qquad 15,557 \qquad 8,550 \qquad 22,207 \\ \frac{23}{30} \qquad 5.0 \qquad 8,567 \qquad 14,445 \qquad 5.78 \qquad 5,499 \qquad 8,578 \qquad 5,439 \qquad 21,507 \qquad 24,590 \qquad 24,590 \\ \frac{21}{57} \qquad 5.0 \qquad 83,667 \qquad 14,445 \qquad 5.78 \qquad 5,489 \qquad 8,578 \qquad 5,492 \qquad 24,500 \qquad 54,920 \\ \frac{21}{57} \qquad 5.0 \qquad 8,567 \qquad 14,445 \qquad 5.78 \qquad 5,499 \qquad 8,578 \qquad 5,492 \qquad 24,500 \qquad 54,50 \\ \frac{21}{57} \qquad 5.0 \qquad 8,567 \qquad 14,445 \qquad 5,78 \qquad 5,499 \qquad 8,578 \qquad 5,492 \qquad 24,500 \qquad 54,50 \\ \frac{21}{57} \qquad 5.0 \qquad 8,567 \qquad 14,445 \qquad 5,78 \qquad 5,499 \qquad 8,578 \qquad 146,072 \qquad 54,53 \qquad 24,100 \qquad 67,00 \qquad 65,937 \\ \frac{21}{5} \qquad 5,0,0,044 \qquad 5,667 \qquad 14,445 \qquad 5,567 \qquad 14,445 \qquad 5,563 \qquad 5,141 \qquad 295,712 \qquad 54,50 \qquad 54,120 \\ \frac{21}{5} \qquad 5,0,0,04 \qquad 5,067 \qquad 14,445 \qquad 5,667 \qquad 14,445 \qquad 5,568 \qquad 5,141 \qquad 295,712 \qquad 54,50 \qquad 54,120 \\ \frac{21}{5} \qquad 5,0,0,04 \qquad 5,0,04 \qquad 54,00 \qquad 56,00 \qquad 5,00,04 \qquad 55,006 \qquad 54,00 \\ \frac{22}{5} \qquad 5,006 \qquad 5,007 \qquad 54,00 \qquad 55,006 \qquad 54,00 \qquad 55,006 \qquad 54,00 \\ \frac{22}{5} \qquad 5,006 \qquad 1,0,04 \qquad 5,006 \qquad 14,006 \qquad 11,000 \qquad 55,100 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,0,014 \qquad 5,067 \qquad 14,006 \qquad 11,000 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,0,014 \qquad 5,006 \qquad 14,006 \qquad 11,000 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,0,014 \qquad 5,006 \qquad 14,006 \qquad 11,000 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,0,014 \qquad 5,006 \qquad 1,000 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,000 \qquad 10,000 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,000 \qquad 10,000 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,000 \qquad 10,001 \qquad 55,206 \qquad 5,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,000 \qquad 10,001 \qquad 55,100 \\ \frac{23}{5} \qquad 5,006 \qquad 1,000 \qquad 10,014 \qquad 10,000 \qquad 55,100 \\ \frac{23}{5} \qquad 5,002 \qquad 53,002 \qquad 51,000 \qquad 10,014 \qquad 10,000 \qquad 52,005 \qquad 1,000 \\ \frac{23}{5} \qquad 53,002 \qquad 53,002 \qquad 53,002 \qquad 51,000 \qquad 10,014 \qquad 10,000 \qquad 10,000 \\ \frac{23}{5} \qquad 53,002 \qquad 53,002 \qquad 53,002 \qquad 51,000 \qquad 10,014 \qquad 10,000 \qquad 10,000 \qquad 10$	Lost	13	1.0	17,139	995	375	510	80	30	7,851	2,449	10,300	5
$\frac{25}{73} = \frac{5.5}{5.5} = \frac{5.5}{51,590} = \frac{5.3}{5,995} = \frac{5.4}{5.995} = \frac{2.34}{1,230} = \frac{2.93}{1,528} = \frac{1.169}{1,528} = \frac{10,672}{5,518} = \frac{5.517}{5,456} = \frac{11,189}{4,274}$ abee $\frac{73}{30} = \frac{5.5}{5.55} = \frac{51,590}{5.554} = \frac{1,230}{1,200} = \frac{1,398}{155} = \frac{1,528}{5,499} = \frac{10,672}{15,657} = \frac{5,555}{6,595} = \frac{19,282}{19,1282}$ $\frac{11,691}{30,255} = \frac{1,528}{5,509} = \frac{1,529}{11,691} = \frac{1,557}{166} = \frac{5,555}{187} = \frac{116,395}{116,395} = \frac{311,582}{371,582}$ $\frac{21}{30,255,187} = \frac{1.5}{15,55} = \frac{6,790}{6,790} = \frac{679}{679} = \frac{20}{2,000} = \frac{11,691}{13,899} = \frac{10,672}{11,691} = \frac{24,590}{116,631} = \frac{22,200}{25,187} = \frac{10,672}{15,657} = \frac{24,590}{571,582} = \frac{22,200}{22,200}$ $\frac{21}{37} = \frac{1.5}{5,0} = \frac{2,044}{3,100} = \frac{2,294}{25,821} = \frac{2,93}{5,131} = \frac{24}{5,192} = \frac{24,590}{23,12} = \frac{24,590}{23,712} = \frac{24,590}{23,12} = \frac{24,590}{23,712} = 24,590$	Fox	23	6.5	27,237	800	56	110	264	40	4,446	2,525	6,971	S
28         5.5         51,590         5,495         7.69         1,328         1,528         50,818         15,456         64,274           30         4.5         106,554         15,902         1,272         6,679         7.653         318         15,456         64,274           30         4.5         106,554         15,902         1,272         6,679         7.653         318         15,456         64,274           30         55.5         1,240         15,902         1,272         6,679         7.653         318,577         65,590         221,207           amp         37         5.0         83,667         14,445         578         5,489         8,378         146,072         54,590         24,590           37         5.0         100,045         5,821         7,73         9,554         15,492         24,590         24,590           46         255,415         778         5,439         8,378         146,072         54,590         24,590           57         5.0         100,045         5,821         7,794         24,190         146,072         54,590         24,590           46         215,492         14,4445         5,667         15,704	Crooked	25	6.5	63,558	3,896	234	2,493	1,169		10,672	3,517	14,189	10
7.5 $6.5$ $106,554$ $15,902$ $1,272$ $6,679$ $7.653$ $518$ $127,587$ $63,695$ $191,282$ abee $30$ $4.5$ $44,894$ $1,230$ $1,272$ $6,679$ $7.653$ $51,857$ $63,695$ $191,282$ $30,256$ $4,200$ $17,200$ $15,899$ $11,691$ $466$ $255,187$ $116,395$ $571,582$ $amp$ $37$ $50,200$ $679$ $20$ $41,445$ $578$ $5,489$ $8,378$ $24,5412$ $24,55,187$ $116,002$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$ $24,590$	High Fine	8 1	5.5	51,590	3,495	769	1,398	1,328		50,818	15,456	64,274	13
abee $30$ $4.5$ $44,834$ $1,240$ $155$ $481$ $604$ $15,657$ $8,550$ $22,207$ amp $37$ $30,256$ $4,200$ $15,899$ $11,691$ $466$ $255,187$ $116,395$ $371,582$ amp $37$ $30,256$ $14,445$ $578$ $5,489$ $8,378$ $146,072$ $54,590$ $24,590$ $64,90,604$ $37$ $30,215$ $38,726$ $14,445$ $578$ $5,489$ $8,378$ $146,072$ $54,590$ $24,590$ $37$ $30,0145$ $25,821$ $775$ $9,554$ $15,492$ $218,571$ $54,590$ $24,590$ $46$ $2.25$ $38,726$ $31,100$ $21,6,01$ $218,571$ $54,112$ $293,712$ $46$ $2.2.25$ $38,726$ $31,000$ $2.2,91$ $21,131$ $293,712$ $593,712$ $46$ $2.2.25$ $38,726$ $31,92$ $218,90,013$ $116,002$ $55,265$ $51,131$	LIMOL PIO	/3	6.5	106,554	15,902	1,272	6,679	7,633	318	127,587	63,695	191,282	۲.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Little Hillabee	50	4.5	44,894	1,240	155	481	604		13,657	8,550	22,207	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SUBIOIAL				30,256	4,200	13,899	11,691	466	255,187	116,395	371,582	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ALABAMA - 35a								2,				
Swamp $37$ $5.0$ $83,667$ $14,415$ $578$ $5,189$ $8,578$ $146,072$ $54,532$ $200,604$ Swamp $37$ $3.0$ $100,045$ $25,821$ $775$ $9,554$ $15,492$ $218,571$ $54,141$ $293,712$ Swamp $37$ $3.0$ $100,045$ $25,821$ $775$ $9,554$ $15,492$ $218,571$ $51,411$ $293,712$ Add $2.225$ $38,726$ $3,100$ $2,294$ $620$ $186$ $44,400$ $11,000$ $11,000$ $55,400$ Add $A6$ $2,204$ $5,131$ $245,4131$ $545,400$ $144,400$ $11,000$ $55,400$ Add $A6$ $2,2,04$ $24,131$ $545,400$ $44,004$ $15,704$ $24,131$ $165,265$ $57,400$ Add $A6$ $2,2,04$ $15,704$ $24,131$ $545,265$ $57,306$ $57,306$ Add $A6$ $A6$ $2,2,082$ $53,082$ $51,818$ $2,206,1,114,209$ $632,205,1,806,4114$	Mill Creek	21	1.5	6,790	629	20	11	ŝ	545		24,590	24,590	10
Swamp $57$ $5.0$ $100,045$ $25,821$ $775$ $9,554$ $15,492$ $218,571$ $55,141$ $293,712$ $46$ $2.25$ $38,726$ $3,100$ $2,294$ $620$ $186$ $44,400$ $11,000$ $55,400$ $7L$ $44,045$ $5,667$ $15,704$ $24,131$ $545$ $409,043$ $165,265$ $574,306$ $7L$ $8$ $8,067$ $15,704$ $24,131$ $545$ $409,043$ $165,265$ $574,306$ $7L$ $8$ $8,067$ $15,704$ $24,131$ $545$ $409,043$ $165,265$ $574,306$ $8a - 3$ No Flood Control Plans $129,945$ $22,082$ $53,082$ $51,818$ $2,206$ $1,174,209$ $632,205$ $1,806,4114$	Upper Big Swamp	37	3.0	83,667	14,445	578	5,189	8,378		146,072	54,532	200,604	S
40 2,23 $^{38}, /26$ 3,100 2,294 620 186 44,100 11,000 55,400 rAL 3,10 3,100 3,100 3,100 55,400 51,31 545 49,043 165,265 574,306 $a - 3$ No Flood Control Plans       129,945 22,082 53,082 51,818 2,206 1,174,209 632,205 1,806,4114	LOWET BIG SWAMP	5.	3.0	100,045	25,821	5:2	9,554	15,492		218,571	75,141	293,712	S
TAL     44,045     3,667     15,704     24,131     543     409,043       a - 3     No Flood Control Plans     129,945     22,082     53,082     51,818     2,206     1,174,209	HERN	07	C	58,726	3,100	t67 -	6.20	186		11,100	11,000	55,400	,
a - 3 No Flood Control Plans 129,945 22,082 53,082 51,818 2,206 1,1 ⁻ 4,209	SUBTOTAL				44,045	3,667	15,704	24,131	543	\$t0*60t	165,265	5-1,306	
129,945 22,082 53,082 51,818 2,206 1,1 ⁻¹ ,209	[	No Flood Conti	rol Plans										
	TOTAL BASIN				129.945	22.082	53.082	51 818	ו שוור ר	006 1-1	1 306 (24	111 900	
									-		1 00-1-00	+1+ '0000'	
	<u>2</u> / Urban - Residential												

NOTE: These watersheds are in various stages of planning and development.







APPENDIX 26 -- FOREST LAND EROSION, ALABAMA RIVER BASIN.

26A -- Methodology

This analysis is based on 435 one-quarter acre plots used for 7,741,600 acres. The sample area was stratified by soil associations and forest land. Sample intensity varied in proportion to the size of each strats.

Various forest disturbances were sampled to determine the average erosion conditions for natural conditions versus each forest disturbance. The plot data is run through KAOS II which involves a modified Musgrave equation to determine the erosion rates for each forest disturbance.

The sediment delivered to the stream is a percentage estimate by the observer recording the field plot data. The soil triangle and the analysis of soil texture downslope toward the stream is used to estimate this percent.

The result of this analysis is shown in the following table.

Appendix Table 26B -- Forest land erosion and sediment rates, Alabama River Basin, 1972.

			PERCENT OF TOTAL	AVERAGE	ESTIMATED	PERCENT EST IMATED SED IMENT	SUSPENDED	YRS. TO RECOVER TO
CAUSE OF EROSION	AREA (ACRES)	EROSION (TONS/YR.)	EROSION EROSION (TONS/YR.) (PERCENT)	EROSION RATE (TONS/AC./YR.)	SEDIMENT (TONS/YR.)	PRODUCTION (PERCENT)	SEDIMENT (PPM)	NATURAL (RATE )
Natural	7,471,600	3,428,300	12.6	0.46	27,100	0.4	0.3	
Logging	358,600	4,325,300	16.0	12.06	335,500	5.4	4.5	3
Skid Trails	109,900	4,523,900	16.7	41.16	1,326,000	21.5	18.1	3
Spur Roads	25,400	342,700	1.3	13.49	98,600	1.6	1.3	3
Fire	186,800	1,041,200	3.8	5.57	47,700	0.8	0.7	3
Grazing	254,000	2,101,400	7.7	8.27	135,900	2.2	1.8	
Mechanical Site Preparation	117,600 11,366	11,366,200	41.9	96.65	4,192,700	68.1	57.3	4
TOTAL	7,471,600	27,129,000	100.0	3.63	6,163,500	100.0	84.0	

APPENDIX 27 -- ESTIMATES OF SEDIMENT YIELD, ALABAMA RIVER BASIN.

27A -- Methodology

The attached tables of average annual sediment yield were produced in response to ADO's request for the information concerning the watersheds indicated in the tables.

Sediment yield was estimated by standard SCS procedures in use across the South Region and outlined in Fort Worth, Engineering and Watershed Planning Unit, Technical Guide - 12. These procedures relate sediment yield as a percentage of gross erosion. The basic data were average erosion rates developed for selected PL-566 watershed projects. The proportion of total sediment carried as bedload suspended load was estimated based on the geologic nature of the material eroded from the watersheds. Sediment concentration is the average annual suspended sediment load compared to the average annual runoff and expressed as parts per million (ppm approximately equals milligrams per liter in the range 0-16,000).

It should be recognized that the figures are expanded from a sample and should not be used for operational planning. They should, however, serve as indicators of long term average annual amounts, remembering that long term averages may not be indicative of conditions in any one year.

REACH	EROSION RATE	UNCONTROLLED DRAINAGE AREA	SED IMENT FROM UNCONTROLLED AREA	SED IMENT FROM UPSTREAM RESERVOIRS	TOTAL SEDIMENT	SEDIMENT TRAPPED (EST. 85%)	SEDIMENT PASSING TO NEXT RESERVOIR
	Tons/Sq. Mi.			1,0			
Tallapoosa System To Martin Lake	5,030	2,963	2,981		2,981	2,534	447
Martin Lake to Yates Dam Yates Dam to	5,030	302	349	447	796	677	119
Thurlow Dam Thurlow Dam Thurlow Dam to Confluence with	5,030	32	56	119	175	149	26
Coosa	5,030	1,367	1,375	26	1,401		1,401 <u>1</u> /
<u>Coosa System</u> From Georgia to Weiss Lake	3,430	3,784	2,596	153 <u>2/</u>	2,749	2,337	412
Weiss Lake to H. Neely Henry	0,100	0,701	2,000	100 _/	2,745	2,007	412
Lake H. Neely He <b>n</b> ry Lake to Logan	3,430	1,330	912	412	1,324	1,125	197
Martin Lake Logan Martin Lake	3,430	1,170	803	197	1,000	850	159
to Lay Lake Lay Lake to	3,430	1,317	903	150	1,053	895	158
Jordan Lake Jordan Lake to Confluence with	3,430	1,005	689	158	847	720	127
Tallapoosa	3,430	174	137	127	264		264 <u>2</u> /
<u>Cahaba System</u> To Confluence with Alabama							
River	2,942	1,821	1,071		1,071		1,071 <u>3</u> /
<u>Alabama System</u> From Confluence of Coosa- Tallapoosa to Jones Bluff							
Lock & Dam Jones Bluff Lock & Dam to Wm. F. Dannelly	5,114	1,370	1,041	1,665 <u>4</u> /	3,066	2,606	460
Reservoir Wm. F. Dannelly Reservoir to	5,114	4,400	4,500	1,531 <u>5</u> /	6,031	5,126	905
Claiborne Lock & Dam Claiborne Lock &	5,114	820	839	905	1,744	1,482	262
Dam to Tombigbe Cut-Off	e 5,114	1,128	1,269	262	1,531		1,531

Appendix Table 27B -- Estimated average annual sediment yield to main stream reservoirs, Alabama River Basin, 1972.

1/ Passed downstream to Jones Bluff Lock and Dam.
 2/ Sediment passed downstream from lakes on Coosa Tributaries in Georgia.
 3/ Passed downstream to Wm. F. Dannelly Reservoir.
 4/ Combined sediment passing Thurlow Dam and Jordan Lake.
 5/ Combined sediment from Cahaba system and sediment passed through Jones Bluff Lock and Dam.

A-164

# Appendix Table 27C -- Estimated average annual sediment yield at the mouth of selected streams; Rev. January 1975.

ALABAMA RIVER SUBBASIN - NUMBER 35a 1/

WATERSH	ED		ON-SITE	SEDIMENT	TOTAL	BED	SUSPENDED	SEDIMENT
		DRAINAGE	EROSION	DELIVERY	SEDIMENT	MATERIAL	MATERIAL	CONCEN-
	CNI	AREA	RATE	RATIO	1,000	1,000	1,000	TRATION
NAME	NO. 2/	ACRES	TON/AC. 3/	(%) 4/	TON/YR.	TONS 5/	TONS 6/	PPM 7/
10000 C								
Little River								
Creek	79,81	85,129	10.4	24	212.5	42.5	170.0	882
Randons Creek		55,146	10.4	27	154.8	31.0	123.8	991
Limestone Cr.	71,72,75	127,313	10.4	22	291.3	58.3	233.0	808
Big Flat Cr.	68,69,70		5.4	23	260.5	52.1	208.4	439
Pursley Cr.	59,64	72,308	6.6	25	119.3	23.4	95.4	582
Pine Barren								
Creek	60,65,66	241,031	6.0	23	332.6	66.5	266.1	487
Chilatchee								
Creek	28	105,688	5.8	24	147.1	29.4	117.7	492
Turkey Creek	53,54	163,905	6.6	23	248.8	49.8	199.0	536
Boquechitto								
Creek	23-30	225,570	9.6	23	498.1	99.6	398.5	780
Big Cedar	45,46,56							
Creek	61,62	258,324	6.0	23	356.5	71.3	285.2	487
Big Swamp Cr.		24,020	9.9	28	66.6	13.3	53.3	980
Valley Creek	3,12,15	55,727	5.8	27	323.2	64.6	258.6	205
Big Mulberry								
Creek	1,2,4,5	174,296	6.1	23	244.5	48.9	195.6	495
Swift Creek	8,9	97,820	9.4	25	229.9	46.0	183.9	830
Pintala	40,47							
Creek	48,49	162,936	5.9	23	221.1	44.2	176.9	479
Catoma	41,50							
Creek	51,52	243,056	6.3	23	352.2	70.4	281.8	512
Autauga Creek		97,820	8.9	25	217.6	43.5	174.1	786
Mortar Creek	11,14	60,305	8.9	26	139.5	27.9	111.6	817

1/ Atlas of River Basins of the United States, Second Edition; June 1970; USDA-SCS, Washington, D. C. 20250.

 Conservation Needs Inventory - Alabama, June 1970; USDA-SCS, Auburn, Alabama 36830 and unpublished map with subbasin numbers updated to R/B Atlas, Second Edition 1/.
 Average annual gross erosion rates on open land from selected watersheds, USDA-SCS,

3/ Average annual gross erosion rates on open land from selected watersheds, USDA-SCS Auburn, Alabama. Forest land erosion rates by USDA, Forest Service, 1974.

4/ Delivery ratio is the percentage of sediment delivered to a given point compared to the gross erosion; from curves developed by USDA-SCS.

5/ Estimated at 20 percent of total sediment load.

 $\overline{6}$ / Estimated at 80 percent of total sediment load.  $\overline{7}$ / Average annual suspended sediment concentration

7/ Average annual suspended sediment concentration--related to average annual runoff; expressed as parts per million.

### Appendix Table 27C -- Cont'd

### TALLAPOOSA RIVER SUBBASIN - NUMBER 35a2 1/

WATERSH	ED		ON-SITE	SEDIMENT	TOTAL	BED	SUSPENDED	SEDIMENT
		DRAINAGE	EROSION	DELIVERY	SEDIMENT	MATERIAL	MATERIAL	CONCEN-
	CNI	AREA	RATE	RATIO	1,000	1,000	1,000	TRATION
NAME	NO. 2/	ACRES	TON/AC. 3/	(%) 4/	TON/YR.	TONS 5/	TONS 6/	PPM 7/
Line Creek	68-73	205,612	6.6	23	312.1	62.4	249.7	536
Cubahatchee								
Creek	69	82,225	9.6	25	197.3	39.5	157.8	847
Calebee Creek	70,71,74	124,661	11.1	24	332.1	66.4	265.7	941
Uphapee Creek	61-64,72	290,471	8.6	22	549.6	164.9	384.7	585
Saugahatchee								
Creek	53,54,59		5.0	24	155.0	62.0	93.0	318
Sandy Creek	46-49	241,852	5.4	23	300.4	120.2	180.2	329
Elkahatchee								
Creek	40	16,442	5.4	29	25.7	10.3	15.4	414
Hillabee Cr.	29,30,36	179,251	5.8	23	239.1	95.6	143.5	353
Chatahospee								
Creek	43-45	87,110	5.7	26	129.1	51.6	77.5	393
High Pine Cr.	28	49,108	5.8	26	74.1	29.6	44.5	400
Crooked Creek	25	62,861	6.7	26	109.5	43.8	65.7	461
Cahulga Creek		17,585	5.6	29	28.6	11.4	17.2	432
Wedowee Creek	24	37,055	5.7	27	57.0	22.8	34.2	407
Shoal Creek	17	14,274	5.7	29	23.6	9.4	14.2	439

1/ Atlas of River Basins of the United States, Second Edition; June 1970; USDA-SCS, Washington, D. C. 20250.

2/ Conservation Needs Inventory - Alabama, June 1970; USDA-SCS, Auburn, Alabama 36830 and unpublished map with subbasin numbers updated to R/B Atlas, Second Edition 1/.

3/ Average annual gross erosion rates on open land from selected watersheds, USDA-SCS, Auburn, Alabama. Forest land erosion rates by USDA, Forest Service, 1974.

4/ Delivery ratio is the percentage of sediment delivered to a given point compared to the gross erosion; from curves developed by USDA-SCS.

5/ Estimated at 20 percent of total sediment load.

6/ Estimated at 80 percent of total sediment load.

7/ Average annual suspended sediment concentration--related to average annual runoff; expressed as parts per million.

### Appendix Table 27C -- Cont'd

WATERSHE	ED		ON-SITE		SEDIMENT	TOTAL	BED	SUSPENDED	SEDIMENT
		DRAINAGE	EROSION		DELIVERY	SEDIMENT	MATERIAL	MATERIAL	CONCEN-
	CNI	AREA	RATE		RATIO	1,000	1,000	1,000	TRATION
NAME	NO. 2/	ACRES	TON/AC.	3/	(%) 4/	TON/YR.	TONS 5/	TONS 6/	PPM 7/
Hatchet Creek		239,300	2.7		23	148.6	59.4	89.2	164
Weoka Creek	58	70,871	3.6		25	63.8	25.5	38.3	239
Weogufka Cr.	46,47,50	81,929	4.5		25	92.2	38.9	55.3	298
Walnut Creek	52	33,565	3.2		27	29.0	11.6	17.4	229
Yellowleaf									
Creek (lower)	48	58,859	3.2		26	49.0	19.6	29.4	220
Waxahatchee									
Creek	37,42	134,949	3.7		23	114.8	45.9	68.9	225
Yellowleaf	31,32								
Creek (upper)	33,36	152,633	3.8		24	139.2	55.7	83.5	242
Tallaseehatche	ee								
Creek	40	128,284	4.6		24	141.6	56.6	85.0	293
Talladega Cr.	35	125,528	3.7		24	111.5	44.6	66.9	235
Kelly Creek	24,25	123,513	2.8		24	83.0	33.2	49.8	178
Choccolocco									
Creek	21	315,731	5.7		22	395.9	158.4	237.5	332
Dye Creek	26	5,680	3.0		32	5.4	2.2	3.2	249
Cane Creek	23	60,751	2.6		26	41.1	16.4	24.7	180
Ohatchee Cr.	18,20	142,913	3.0		23	98.6	39.4	59.2	183
Big Canoe Cr.		164,247	3.8		24	149.8	59.9	89.9	242
Big Wills Cr.	1-6	220,052	4.2		23	214.5	85.8	128.7	258
Terrapin Cr.	14	197,114	3.0		23	136.0	54.4	81.6	183
Chattooga Cr.	3,5	262,004	3.1		22	178.7	71.5	107.2	162
Little River									
Creek	2	171,167	3.1		23	122.0	48.8	73.2	189
Spring Creek	9	30,590	3.1		28	26.5	10.6	15.9	229
Chestnut Cr.	55	49,225	3.0		26	38.4	15.4	23.0	206

#### COOSA RIVER SUBBASIN - NUMBER 35a1 1/

Atlas of River Basins of the United States, Second Edition; June 1970; USDA-SCS, 1/Washington, D. C. 20250.

Conservation Needs Inventory - Alabama, June 1970; USDA-SCS, Auburn, Alabama 36830 2/ and unpublished map with subbasin numbers updated to R/B Atlas, Second Edition 1/.

Average annual gross erosion rates on open land from selected watersheds, USDA-SCS, 3/ Auburn, Alabama. Forest land erosion rates by USDA, Forest Service, 1974.

4/ Delivery ratio is the percentage of sediment delivered to a given point compared to the gross erosion; from curves developed by USDA-SCS.

<u>5</u>/ Estimated at 20 percent of total sediment load.

Estimated at 80 percent of total sediment load.

 $\frac{\overline{6}}{\overline{7}}$ Average annual suspended sediment concentration -- related to average annual runoff; expressed as parts per million.

A-167

### Appendix Table 27C -- Cont'd

### CAHABA RIVER SUBBASIN - NUMBER 35a3 1/

WATERSH	ED.		ON-SITE	SEDIMENT	TOTAL	BED	SUSPENDED	SEDIMENT
		DRAINAGE	EROSION	DELIVERY	SEDIMENT	MATERIAL	MATERIAL	CONCEN-
	CNI.	AREA	RATE	RATIO	1,000	1,000	1,000	TRATION
NAME	NO. 2/	ACRES	TON/AC. 3/	(%) 4/	TON/YR.	TONS 5/	TONS 6/	PPM 7/
Big Oakmulgee								
Creek	19,20	155,219	6.1	24	227.2	90.9	136.3	338
Rice Creek	21	27,618	6.4	28	49.5	19.8	29.7	475
Little Cahaba	11,12							
River (lower)	15,16	190,297	5.5	23	240.7	96.3	144.4	335
Shades Creek	3	86,546	8.5	25	183.9	73.6	110.3	563
Buck Creek	6,7	50,288	5.6	26	73.2	29.3	43.9	385
Patton Creek	5	40,817	5.2	27	57.3	22.9	34.4	372
Little Cahaba								
River (upper)	4	80,007	5.5	25	110.0	44.0	66.0	364
Upper Cahaba								
River	1	109,765	5.1	24	134.4	53.8	80.6	324

1/ Atlas of River Basins of the United States, Second Edition; June 1970; USDA-SCS, Washington, D. C. 20250.

2/ Conservation Needs Inventory - Alabama, June 1970; USDA-SCS, Auburn, Alabama 36830 and unpublished map with subbasin numbers updated to R/B Atlas, Second Edition 1/.

3/ Average annual gross erosion rates on open land from selected watersheds, USDA-SCS, Auburn, Alabama. Forest land erosion rates by USDA, Forest Service, 1974.

4/ Delivery ratio is the percentage of sediment delivered to a given point compared to the gross erosion; from curves developed by USDA-SCS.

5/ Estimated at 20 percent of total sediment load.

6/ Estimated at 80 percent of total sediment load.

7/ Average annual suspended sediment concentration--related to average annual runoff; expressed as parts per million.

APPENDIX TABLE 28 -- LAND TREATMENT NEEDS BY SUBBASINS, ALABAMA RIVER BASIN, 1970.

	TOTAL		SUBBASINS		
CONSERVATION	STUDY				TALLA-
TREATMENT NEEDS	AREA	ALABAMA	CAHABA	COOSA	POOSA
		Thc	usand Acres	5	
Cropland					
Land Adequately Treated	241	74	13	60	94
Treatment Needs:	- • -				
Crop Residues or Annual					
Cover Crops	392	229	28	88	47
Sod in Rotation	207	63	11	85	48
Contouring Only	36	21	2	2	11
Strip Cropping, Terraces					
and Diversions	292	110	13	116	53
Change to Permanent Cover,					
Grass or Trees	83	37	3	20	23
Drainage	32	12	3	16	1
Total Needing Treatment	(1,042)	(472)	(60)	(327)	(183)
TOTAL CROPLAND	1,273	542	72	382	277
Pastureland					
Land Adequately Treated	163	46	13	57	47
Treatment Not Feasible	2	1	15	57	47
Treatment Needs:	2	1			1
Protection from Over-grazing	118	27	10	31	50
Improvement in Plant Cover	697	382	47	113	155
Reestablishment of Vegeta-					
tive Cover	345	202	8	56	79
Change of Land Use to Trees	2	-	-	2	-
Total Needing Treatment	(1,162)	(611)	(65)	(202)	(284)
TOTAL PASTURELAND	1,327	658	78	259	332
Forest Land	1 505		100		
Land Adequately Treated	1,727	578	199	546	404
Treatment Needs:					
Establishment and	2 5 2 4	016	201	707	500
Reinforcement	2,524	846 957	291 329	797 902	590 669
Timber Stand Improvement Total Needing Treatment	2,857 (5,381)	(1,803)	(620)	(1,699)	(1,259)
TOTAL FOREST LAND	7,108	2,381	819	2,245	1,663
TOTAL TOREOT LAND	/,100	2,501	019	2,245	1,005
Other Land					
Land Adequately Treated	130	46	10	45	29
Land Needing Treatment	85	30	7	29	19
TOTAL OTHER LAND	215	76	17	74	48
TOTAL LAND IN THE INVENTORY	9,923	3,657	<b>9</b> 86	2,960	2,320
	.,	0,007	200	_,000	2,020

Source: Alabama Conservation Needs Inventory, 1970.

1/ Treatment needs and standards are different than those in table 4-16, Vol. I.

				ALABAMA RIVER	R BASIN	
		BASIN TOTAL	ALABAMA SUBBAS IN	CAHABA SUBBAS IN	COOSA SUBBASIN	TALLAPOOSA SUBBASIN
				Acres		
A. T	A. Total Land Disturbed (Items 1 & 2 below)	52,942	5,560	16,318	23,246	7,818
-	f b below)	12,729	3,080	2,165	3,604	3,880
	a. "Orphan" surface-mined areas for which there is no obligation to					
	reclaim them in accordance with any law.					
	(Items 1 + 2 + 3 below) Subtotal	11,369	2,815	1,290	3,484	3,780
		1,400	0	200	1,200	0
		6,909 2	2,681	365	1,222	2,641
	(5) All other surface mined commodifies	3,060	134	725	1,062	1,139
	b. Surface-mined areas (active or inactive which must he reclaimed					
	according to law).					
	(Items 1 + 2 + 3 below) Subtotal	1,360	265	875	120	100
	(1) Coal mines	625	0	625	0	0
		335	265	0	20	50
	(3) All other surface mined commodities					
	including rock quarries	400	0	250	100	50
	2. Land Not Requiring Reclamation	40,213	2,480	14,153	19,642	3,938
в.	Total Mined Land Reclaimed in Conservation					
	Districts	21,356	1,170	13,318	5,106	1,762
	Number of District Cooperators Involved	67	35	15	23	24

STATUS OF LAND DISTURBED BY SURFACE MINING, ALABAMA RIVER BASIN AND SUBBASINS, JANUARY 1974. APPENDIX TABLE 29 ---

Appendix Table 30 -- Public water supply present and projected use by towns, counties, and subbasins in the Alabama River Basin.

FUTURE 2/ SOURCE OF SUPPLY		3 2	P-Monroeville W	2	S-R	2	2 2	D_Eart Dance it	P-Fort Deposit	3	3	E 32	* *	×		W W-S-R	3	r (r	*	3	2 2	3	<u>s</u> :	22	×
E 2020		1.30		0.46	0.70		0.40		0.04				11.30 0.70	2.36		0.09 8.00	22	60.16							
PROJECTED USE		1.00		0.39	0.50		0.22		0.03				9.10 0.50	1.79		0.07 6.20		c.cu							
0	r Day	0.80 2.40		0.35	0.40		0.16		0.02				6.30 0.45	1.50		0.05	2	01.16							
MAX IMUM USE 1973	Million Gallons Per Day	0.30	0.05	0.22	0.20	0.023	0.86	0.06		0.14 0.03	C0 1	0.70	5.80 0.40	0.95		0.04	20 7	0.25	0.09	0.065	0.10	0.25	0.66	0.22	0.10
POPULATION SERVED 1973	1 i.w	1,500	1,450	2.500	800	500 500	1,407	1,000 520	650	235 1,000	281 1	500 S	30,000 6,000	4,289		850 17,000		1.500	500	500	500	1,000		2,500	704
MAXIMUM CAPACITY OF SOURCE OF SUPPLY 1973		0.86	0.29	0.75	1.00	0.24	0.07 0.86	0.14		0.29	9,4	0.10	6.00 1.00	3.00		0.22	00.00	0.25	0.216	0.144	0.22	2.88	0.36	0.45	0.29
SOURCE OF SUPPLY 2/ 1973		2-W	P-Monroeville 2-W	M- 5	S-R	N-1	1-W 2-W	D Fout Denorie	P-Fort Deposit	1-W 1-K	3	M- [	5-W 2-W	3-W		1 -W 8 -W	2 2 2 2	N-0-1-7+	ж	38 (	# <u>3</u>	2-W	18 1 (	32 32  - 1 (1	1 - W
COMMUNITIES 1/ WATER SYSTEM	ALABAMA SUBBASIN	Monroe County Frisco City	Mostowille Mexia Uriah	Wilcox County Canden	Pine Hill	Lowndes County Black Belt	Crosby Fort Deposit	Haynoville	Logan	Lowndesboro Moses	Dallas County	craig Arb Plantersville	Selma Selmont	<u>Perry County</u> Marion	Autauga County	Marbury Prattville	Montgomery County	Pine Level	Pintlalla	Ramer	Snowdown	Draper Prison	Elmore	Holtville Millbrook	<u>Chilton County</u> Maplesville

Appendix Table ³⁰ Cont'd								
COMMUNITIES 1/ WATER SYSTEM	SOURCE OF SUPPLY 2/ 1973	MAX IMUM CAPAC ITY OF SOURCE OF SUPPLY 1973	POPULATION SERVED 1973	MAXIMUM USE 1973	1990	PROJECTED USE	Е 2020	FUTURE 2/ SOURCE OF SUPPLY
COOSA SUBBASIN			II !W	Million Gallons Per Day-	er Day			
Elmore County Blue Nidge Estates	M- 1	0.1	640	0.05				P-Wetumpka
Noltville Vetunpka	2-W S-R	0.432	2,200 3,912	0.15 0.621	0.95	1.66	3.70	P-Wetumpka S-R
Coose County Goodwater		0.50	2,107	0.30	0.36	0.40	0.60	S-C
Kelleyton Rockford	P-Alexander City W	0.288 0.07	<b>600</b>	0.40	0.08	0.08	۹ 0.09	P-Alexander City S-C-I
Chilton County Clanton	8-S	2 60	9 000	00 6	2 40	00 2		
Jemison	4	0.25	2,660	0.26	0.37	0.45	0.52	P-Clanton
South Chilton Thorsby	1 - W 3 - W	0.07	4,000	0.07 0.10	0.09	0.13 0.18	0.15 0.20	P-Clanton
Shelby County								
Calera Columbiana	1-Sp 1-W 2-W	0.75 2.00	8,000 7,000	0.75 2.00	0.75 2.80	1.16	1.93	P-Columbiana
Harpersville	2	0.60	600	0.58	0.10	0.20	0.30	: 32
Vincent Westover	3-5p	0.72	3.000	0.10	0.40	0.50	0.60	Sp
Wilsonville Sterrett-Vandiver	2-W 1-W	0.216	<b>590</b> 700	0.10	0.38	0.49	0.78	33
Talladega County Avondala Milla (Svlacanoa)	3- Sn-2-W-D	2 10	000 6	1 75				D Culanara
Childersburg	5 1	1.00	6,000	1.00	1.27	1.77	2.57	r - Jy lacauka W
Handley Hill WW Inc.	2 - 10 C	0.10	1,200	0.10	L # -	0, 1	1 27	3= 3
Munford	2-W	0.49	1,500	0.30	cc.1	1.00	00.1	E 32
Sycamore	2 - M - K	0.10	1,200	0.06				، عد (
Talladega	3-W-S-C-I	7.31	12,000	4.00	5.50	8.00 6.40	12.00	W-S-C-I
St. Clair County Acmar	P-Moody		4.500					P-St Clair Suctor
Ashville	1-Sp	1.469	986	0.095	0.20	0.30	0.06	P-St. Clair System
Mays Bend Inc.	31 - 10 11 - 10	0.07	760 100	0.03				3
Moody	P-Leeds		1,800	0.20				P-Leeds
Dell City	2-W 2-W	0.26	750 5 602	0.10	0.12	0.14	0.24	P-St. Clair System
Ragland Sarineville	2 - K	0.58	1,804	0.20	0.23	0.30	0.58	P-St. Clair System
N. W. St. Clair	P-Springville	06.1	600	nc.1	7.00	00.6	4.50	P-Springville
Steele Wattsville	2-W 2-W	0.32	798 2,000	0.12 0.24				P-St. Clair System P-Pell City

_
5
•
-
Cont
5
0
i.
0
2
~
•
4
Tabl
-
-
11.
-
-
2
X
100
- 54

		CAPACITY OF						
COMMUTTIES 1/ MATER SYSTEM	SOURCE OF SUPPLY 2/ 1973	SOURCE OF SUPPLY 1973	POPULATION Served 1973	MAX IMUM USE 1973	1990	PROJECTED USE 2000	SE 2020	FUTURE 2/ SOURCE OF SUPPLY
COOSA SUBASIN (Cont 'd)			11 i M	Million Gallons Per Day	er Day			1
Calhoun County	1-Sn	2 16	1 800	0.72				Sn
Apriston	1-Sp-2-S-C-1	23.00	50,000	18.00	27.60	31.30	62.80	Sp-S-C-I
Habson City	1-W-P-Anniston	0.144	2,000	0.06	10.01	1.20	2.10	P-Anniston
Jacksonville	2-Sp	2.348	8,663	1.00	2.00	3.00	4.00	P-Anniston
Ohatchee	1-Sp-1-W	0.29	550	0.10	0.08	0.09	0.16	P-Alexandria
Oxford	P-Anniston		6,800					P-Anniston
Piedmont	1-Sp-5-C	1.50	5,063	1.01	1.60	2.20	3.00	S-C-1
Weaver	3 - W	1.40	4,500	0.70	1.00	1.20	1.50	P-Anniston
Etowah County								
North East Etowah	1-W	0.14	500	0.14				S-P-Gadsden
Fords Valley	P-Hokesbluff	0.216	684	0.14				P-Gadsden
Gadsden	S-R	15.00	66,000	16.20	19.40	26.00	39.00	S-R
Attalla	P-Gadsden		10,500					P-Gadsden
Rainbow Lity		2 16	005'5 1 500	1 00	1 40	1 80	2 80	P_Gadsden
utericos Materialise	n-2-dc-1	0.648	2000,0	0.60	0.66	0 74	1 00	P-Gadsden
Southside	1-SD-1-W	0.68	2.500	0.30	0.40	0.50	0.70	P-Gadsden
Resch City		0 42	510	0.02				3
Ridgeville	3	0.11	220	0.02				:
the state of the s								
Cedar Bluf	S-R	0.17	956	0.09	0.12	0.14	0.18	S-R
Centre	S-R	1.00	2,418	0.34	0.45	0.51	0.66	S-R
Cherokee Co. Water Authority	1-Sp	0.029	1,500	0.90				Sp-P-Centre
Gaylesville	1-W	0.07	210	0.25				
DeKalb County								
Collinsville	1-W-1-Sp	0.32	1,300	0.32				×
Fort Payne	-	3.00	13,600	1.85	2.50	3.00	4.30	S-C-1
Mentone	s s	0.20	1,000	0.15				s c
ABILDY NEGO	de-1	2.88	800	0.10				de
TALLAPOOSA SUBBASIN								
Montgomery County Mitylene-Arrowhead	×	0.50	800	0.24				×
Bullock County Union Springs	3-W	1.94	4,200	1,90	2.39	2.59	2.98	2
Marion County Notasulga	S-P-Tallassee	0.72	880	0.30				P-Tuskegee
Tuskegee	S-R	4.00	17,000	2.00	3.00	4.00	6.35	S-R

P
Cont
1
30
Tabl
1×
bre
dd

		MAY TURM						
	SOURCE OF	CAPACITY OF	POPIILATION	MAXIMIM				FUTURE 27
COMMUNITIES 1/		SUPPLY	SERVED	USE	1000	PROJECTED USE	3030	SOURCE OF
WATER SYSTEM	19/3	1975	1975	9/3 19/3 19/3 19/3 19/0	er Dav	0007		
TALLAPOOSA SUBBASIN (Cont'd)					(ma +			
Lee County						:	:	
Auburn Loschanoka	1-W-S-I-C P-Thskegee	8.70	24,000	4.00	9.60	10.80	11.80	S-I-C P-Tuskegee
Opelika	1-Sp-S-1-C	10.90	20,000	6.00	10.00	12.00	13.00	S-1-C
Elmore County	2							e C
Tallassee	3	2.80	10,000	1.80	2.50	5.80	5.40	D-K
cciectic Friendship Redland	P-Tallassee P-Tallassee P-Montgomery	17.0	1,100 2,000 1,280	0.08 0.08	0.32	0.40	09.0	r-iallassee P-Tallassee P-Montgomery
Tallanoosa County								
Alexander City	S-C	8.00	14,000	6.00	11.00	14.30	20.00	S-C-1
New Site Russell Mills	2-W S-I-C-P-Alexander Citv	0.05	548 4 000	0.07				P-Alexander City P-Alexander City
Camp Hill	S-C		1,554	0.27	0.36	0.48	0.62	S-C-I
Reeltown-Liberty City	P-Tallassee	0.36	2,500	0.07				P-Tallassee
carrville Wall Street	P-Iallassee P-Tallassee		1,000					P-Tallassee
Dadeville Jackson's Gap	S-I-R P-Dadeville	0.72	3,300 1,360	0.675	0.94	1.06	1.36	S-I-R P-Dadeville
<u>Chambers County</u> LaFayette	S-C-1	0.57	3,940	0.47	0.60	0.70	06.0	S-C-1
Randolph County								
Roanoke Docarbe (Hadley Mfg Co.)	S-C-I	1.40	5,288	1.00	0.94	1.07	1.38	S-C-1
Wadley	3-W	0.23	658	0.05	0.05	0.60	0.07	M N
Wedowee Woodland	3-E	0.22 0.09	842 350	0.08	0.28	0.40	0.57	S-R-I P-Wedowee
Clay County								
Ashland Lineville	1-Sp-F-W-S-C-1 6-W-S-C-1	1.00	1,921 1,984	0.54 0.052	0.75	0.80	1.05	S-C-I S-C-I
Cleburne County	3		101					
Heflin Ranburne	8-W-S-C-I 6-W + C	0.07	3,300 400	0.10 0.50 0.07	1.00 0.10	1.40	1.73	P-Heflin P-Heflin

A-174

Appendix Table 30 -- Cont'd

CAMARA SUBBASIN	5/61	SUPPLY 1973	POPULATION SERVED 1973	MAX IMUM USE 1973	1990	PROJECTED USE	2020	FUTURE 2/ SOURCE OF SUPPLY
			Milli	Million Gallons Per Day	Per Day			1
Bibb County Brent	M - M	0.72	2,500	0.28	0.30	0.35	0.40	2
Green Pond Randolph P-	l-W P-Wilton	0.14	550 550	0.028 0.07				W P-Wilton
cton	1-Sp	1.51	1,200	0.50	0.60	0.70	0.80	M
Centreville	3-14	1.40	2,633	0.70	1.00	1.20	1.50	3
Shelby County Alabatar Silina	11 L	2 40	7 000	2 50	4 00	00 5	900	3
	- II	0.14	1,110	06.0	1.40	1.70	00 2	: 34
Montevallo	1 - W	1.08	6,000	1.00	1.70	2.40	3.90	: 32
Pelham	3-M	4.40	4,000	1.30	3.50	4.00	5.50	3
Wilton	1-W	0.72	1,200	0.14	0.24	0.30	0.40	3
Jefferson County								
Irondale	3-W	1.77	3,164	1.30	1.36	1.59	2.06	P-Birmingham
Loeds	3-Sp	2.00	9,500	1.75	2.35	2.71	3.64	Sp-W
	6-W	4.22	6,000	2.88	4.40	5.50		3
Vestavia Hills P-Bi	P-Birmingham						-	P-Birmingham

# APPENDIX TABLE 31 -- MINIMUM NUMBER OF DROUGHT-DAYS FOR DIFFERENT MONTHS, SOIL STORAGE CAPACITIES AND PROBABILITIES.

	3.01				
				S IF SOIL HAS	
				IN THE ROOT	
MONTH 1/	PROB.	1 INCH	2 INCHES	3 INCHES	5 INCHES
April	l in 10	16	9	0	0
-	2 in 10	14	6	0	0
	3 in 10	12	3	0	0
	5 in 10	8	0	0	0
May	1 in 10	26	21	15	5
•	2 in 10	23	18	12	0
	3 in 10	21	15	10	0
	5 in 10	18	11	6	0
June	1 in 10	26	25	23	19
	2 in 10	24	2.2	20	15
	3 in 10	22	20	18	12
	5 in 10	19	16	13	6
July	1 in 10	22	20	19	19
	2 in 10	18	16	15	14
	3 in 10	16	13	12	11
	5 in 10	12	8	6	5
August	1 in 10	28	26	24	22
	2 in 10	24	21	17	15
	3 in 10	21	16	12	9
	5 in 10	16	10	4	0
September	1 in 10	25	25	24	21
-	2 in 10	21	21	19	16
	3 in 10	19	18	16	11
	5 in 10	16	11	8	2
October	1 in 10	28	28	27	27
	2 in 10	26	25	25	23
	3 in 10	24	23	21	19
	5 in 10	21	18	15	11

ALABAMA SUBBASIN

1/ January, February, March, November, and December not shown because crops are rarely damaged by drought in these months.

Source: Bulletin 316 Agricultural Drought in Alabama September 1959, Alabama Agricultural Experiment Station.

			1 DROUGHT DAY: TURE CAPACITY		
MONTH 1/	PROB.	1 INCH	2 INCHES	3 INCHES	5 INCHES
April	1 in 10	15	7	0	0
	2 in 10	12	5	0	0
	3 in 10	11	2	0	0
	5 in 10	8	1	0	0
May	1 in 10	25	21	19	7
	2 in 10	23	18	14	4
	3 in 10	21	16	11	1
	5 in 10	17	12	6	0
June	1 in 10	25	25	24	21
	2 in 10	23	22	20	16
	3 in 10	20	19	18	12
	5 in 10	17	14	13	6
July	1 in 10	22	20	20	18
	2 in 10	18	17	16	14
	3 in 10	16	13	13	11
	5 in 10	12	9	7	5
August	1 in 10	22	18	17	16
	2 in 10	19	14	12	10
	3 in 10	17	12	8	6
	5 in 10	14	8	3	0
September	1 in 10	26	25	24	21
	2 in 10	22	20	20	15
	3 in 10	20	17	16	10
	5 in 10	16	12	8	3
October	1 in 10	26	26	26	26
	2 in 10	24	23	22	22
	3 in 10	22	20	18	16
	5 in 10	19	14	8	1

### CAHABA AND TALLAPOOSA SUBBASINS

1/ January, February, March, November, and December not shown because crops are rarely damaged by drought in these months.

Source: Bulletin 316 Agricultural Drought in Alabama September 1959, Alabama Agricultural Experiment Station.

				S IF SOIL HAS IN THE ROOT	
MONTH 1/	PROB.	1 INCH	2 INCHES	3 INCHES	5 INCHES
April	1 in 10	14	5	0	0
	2 in 10	11	0	0	0
	3 in 10	9	0	0	0
	5 in 10	5	0	0	0
May	1 in 10	24	21	14	1
	2 in 10	21	16	8	0
	3 in 10	18	12	4	0
	5 in 10	14	6	0	0
June	1 in 10	25	25	25	17
	2 in 10	22	20	19	11
	3 in 10	19	17	15	7
	5 in 10	16	12	8	1
July	1 in 10	23	22	20	17
	2 in 10	20	17	15	12
	3 in 10	17	13	11	8
	5 in 10	13	7	5	1
August	1 in 10	21	18	15	13
	2 in 10	18	14	11	7
	3 in 10	16	11	7	3
	5 in 10	13	6	2	0
September	1 in 10	25	24	22	19
	2 in 10	21	19	16	13
	3 in 10	18	16	12	8
	5 in 10	14	10	5	0
October	1 in 10	25	23	22	21
	2 in 10	21	18	17	15
	3 in 10	18	15	12	10
	5 in 10	14	9	6	3

### COOSA SUBBASIN

1/ January, February, March, November, and December not shown because crops are rarely damaged by drought in these months.

Source: Bulletin 316 Agricultural Drought in Alabama September 1959, Alabama Agricultural Experiment Station.

### 32A--Methodology

The methodology involved in the basin analysis is the same as that used by Auburn University in developing the State Comprehensive Outdoor Recreation Plan (SCORP). A detailed discussion of the methodology involved has been published as a separate planning document by Auburn University. 1/ A sample worksheet used in estimating facilities is presented in appendix table 52-1. Facility needs can be estimated from population projections alone, however, much background research has been accomplished to derive the coefficients found in supporting appendix tables 52-2 through 52-14. The Auburn study considered 13 socio-economic factors such as age, education, race, mobility, income, sex, residence, employment, and family size among other factors in estimating local demand for various activities. For purposes of the Alabama Basin Study, the coefficients for Region 2 in the State Plan were applied to the Coosa and Cahaba Subbasins, while estimates for Region 4 were used for the Alabama and Tallapoosa Subbasins.

The recreation population was assumed to be those persons 12 years of age and over, except for swimming, camping, boating, and picnicking. For these four activities, persons under 12 were considered as recreating also. Tourist demand for recreation in the basin was estimated from the projected regional tourist demand data found in Volume 2 of the Statewide Comprehensive Outdoor Recreation Plan. 2/

Inventory data were obtained from the 1974 Alabama Survey of Outdoor Recreation Sites by major river basins. This inventory conducted as a part of the SCORP effort. Fishing and hunting resources were inventoried independently by Soil Conservation Service biologists working closely with state and county conservation personnel. Once supply and demand were determined, the obvious step was to pinpoint areas of need, both current and anticipated.

An example of the derivation of picnicking facility needs for the Alabama Subbasin is shown in appendix table 32B. In 1974, 157 acres developed for public picnicking were needed along with 1,414 tables.

Following the picnicking example for the Alabama Subbasin, 480 acres of developed picnicking acreage was available in 1974 along with 1,340 tables. Acreage is more than sufficient to satisfy current demand, but there is a need for an additional 74 tables throughout the subbasin. Results are shown in appendix table 32L under picnicking.

- 1/ Participation in Outdoor Recreation In Alabama (A Guide For Establishing Recreational Needs), Agricultural Economics Series 20, Agricultural Experiment Station, Auburn University, October 1970.
- 2/ Demand for Outdoor Recreation in Alabama, Agricultural Economics and Rural Sociology Department, Auburn University, Volume 2, pages 67-77, May 1970.

Appendix Table 32B -- A sample of the worksheets used for estimating picnicking facility needs, Alabama River Basin, 1974.

	ALABAMA SUBBASIN	SOURCE	FACTOR
Picn	icking		
1.	Area population	OBERS Projections	321,000
2.	Percentage participation of region residents (insert local estimates when avail- able).	Appendix Table	37%
3.	Number of residents participating	1 x 2	118,770 (164,258) <u>1</u> /
4.	Average number of activity occasions per participant per year (insert local estimates when available).	Appendix Table	14
5.	Total resident activity occasions.	3 x 4	2,299,612
6.	Percentage resident partici- pation with State (insert local estimates when avail- able).	Appendix Table	50%
7.	Total resident within State activity occasions.	5 x 6	1,149,806
8.	Percentage resident partici- pation within local area.	Local Data	90%
9.	Total resident activity occasions within local area.	7 x 8	1,034,825
10.	Number of tourist activity occasions.	Local Data	873,676
11.	Total activity occasions in local area.	9 x 10	1,908,501
12.	Conversion standard for activity (insert local estimates when available).	Appendix Table	12,150 A.O./ac. 1,350 Table
13.	Facility needs for local area	11 - 12	157 ac. & 1,414 Tables

 $\frac{1}{2}$ Adjusted to include children under 12.

r

The existing supply facilities should be subtracted from facility needs to determine unmet needs.

Appendix Table 32C -- Present and projected percentage of the population over 12 participating in selected activities by subbasins, Alabama River Basin, 1974, 1990 and 2020.

ACTIVITY		A AND CAI SUBBASINS		ALABAMA A SUBE	ND TALLA	POOSA
	1974	1990	2020	1974	1990	2020
Picnicking	45	54	66	37	45	51
Fishing, all waters	37	40	40	37	40	40
Swimming	27	31	37	30	35	37
Playing golf	5	6	7	5	6	7
Boating	15	20	28	13	17	22
Water skiing	6	8	12	4	6	10
Camping	8	10	12	6	8	9
Hiking	12	13	10	5	5	4
Hunting	11	11	11	11 <u>1</u> /	′ 11 <u>1</u> /	11 <u>1</u> /

1/ 12 percent in the Tallapoosa.

Source: Participation In Outdoor Recreation in Alabama (A Guide for Establishing Needs), Auburn University, Agricultural Economics Series 20, October 1970.

		ACTIV	ITY OCCA	SIONS PE	R PERSON	
ACTIVITY	C00	SA & CAH	ABA	ALABAM	A & TALL	APOOSA
	1974	1990	2020	1974	1990	2020
Picnicking	10	10	9	14	12	12
Fishing, all waters	8	9.5	11	9	13	15
Swimming	25	28	46	24	28	32
Playing golf	26	33	64	27	36	71
Boating	16	21	30	21	26	37
Water skiing	21	28	37	26	38	50
Camping	13	22	33	20	30	44
Hiking	6	11	20	16	32	42
Hunting	15	20	20	31	41	41

Appendix Table 32D - Annual participation in selected recreation activities, present and projected, Alabama River Basin

Source: Participation In Outdoor Recreation in Alabama (A Guide for Establishing Needs), Auburn University, Agricultural Economics Series 20, October 1970. Appendix Table 32E - Percentage of recreation activities satisfied within the state, present and projected, Alabama River Basin

ACTIVITY	PERCENT OF DEMAND SATISFIED WITHIN THE STATE           COOSA & CAHABA         ALABAMA & TALLAPOOSA						
	1974	1990	2020	1974	1990	2020	
Picnicking	54	58	70	50	62	70	
Fishing, all waters	98	90	80	96	90	80	
Swimming	73	67	66	69	67	61	
Playing golf	82	58	51	77	61	55	
Boating	67	59	55	63	62	59	
Water skiing	59	62	60	59	65	65	
Camping	32	23	21	28	27	24	
Hiking	53	48	43	48	52	47	
Hunting	95	93	90	97	97	97	

Source: <u>Participation In Outdoor Recreation in Alabama (A Guide for</u> <u>Establishing Needs)</u>, Auburn University, Agricultural Economics Series 20, October 1970.

ITEM	ACTIVITY OCCASIONS					
ishing						
per acre of water:						
Lakes and reservoirs	Range of: 4(	) to 8(				
Rivers and streams		to 61 51				
Small impoundments		5 to 90				
Put, grow and take ponds		500				
inting						
per acre of habitat:						
Big game	0.5					
Small game	2					
Waterfow1	1					
Dating						
per acre of water	72					
vimming						
per acre of beach:	27 100					
Lakes and reservoirs	23,100					
per sq. ft. in pools	8					
ter skiing						
per acre of water	45					
mping						
per acre of land:						
Tent	1,620					
Trailer	2,700					
per bed, group	90					
iking						
per mile of trail	1,400					
cnicking	10.150					
per acre	12,150					
per table	1,350					
olfing	27 7/0					
per 9 hole course	23,760					

Appendix Table	32F -	- Annual	use	standards	for	selected	outdoor	recreation
		activi	ties	, Alabama	Rive	r Basin.		

Source: Participation In Outdoor Recreation In Alabama, Agricultural Experiment Station, Auburn University, Agricultural Economics Series 20, October 1970, and internal data, USDA.

		·····	SUE	BASINS	
	ALA. RIVI				
ITEM	BASIN	A LA BAMA	COOSA	TALLAPOOSA	CAHABA
		1000	Activity Oc	casions	
<u>1974</u>					
Demand	2,755	945	1,060	600	150
Existing facilities:					
Water, acres 1/	197,540	44,820	88,725	61,015	2,980
Ramps, number	392	51	282	58	1
Supply capacity	11,633	2,735	5,235	3,478	185
Surplus (+)	8,878	+1,790	+4,175	2,878	+35
Water need, acres	0	0	0	0	0
<u>1990</u>					
Demand	6,280	1,950	2,780	1,180	370
Deficit or surplus	•	+785	+2,455		-185
Water need, acres	2,800	0	0	0	2,800
2020					
Demand	6,280	3,720	6,210	2,220	780
Deficit or surplus	-1,297	-985	-975	•	-595
1	,			,	
Water need, acres	38,300	14,900	14,800	0	8,600

Appendix Table 32G -- Boating demand, public supply, and development needs by subbasins, Alabama River Basin, 1974, 1990, and 2020.

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan.

1/ Includes all streams, rivers, and impoundments open to the public.

		·····			
	ALA. RIVE	R			
ITEM	BASIN	<b>ALA BAMA</b>	COOSA	TALLAPOOSA	CAHABA
		1000	Activity Oc	casions	
1074					
1974					
Demand	10,004	3,219	3,784	2,019	982
Existing capacity: 1/					
Beach	2,913	977	1,074	543	319
Pools	5,090	1,326	2,440	784	540
TOTAL	8,003	2,303	3,514		859
Deficit	-2,001	-916	-270	-692	-123
Beach needed, acres	87	40	12	30	5
1000					
1990					
Demand	19,860	5,670	8,660	3,460	2,070
Deficit	-11,857	-3,367	-5,146		-1,211
Beach needed, acres	513	146	223	92	52
2020					
Demand	37,020	9 080	18,290	5,410	4,240
Deficit	-29,017		-14,776	•	-3,381
	0 ± 1	0,777	14,770	7,005	5,501
Beach needed, acres	1,257	294	640	177	146

Appendix Table 32H -- Swimming demand, public supply, and development needs, by subbasins, Alabama River Basin, 1974, 1990, and 2020.

1/ Recreation projects funded for construction are assumed to be a part of existing capacity in all recreation tables.

### Appendix Table 32I -- Water skiing demand, public supply, and development needs by subbasin, Alabama River Basin, 1974, 1990, and 2020.

	ALA. RIV		SUE	BASINS	
ITEM	BASIN	ALABAMA	COOSA	TALLAPOOSA	CAHABA
				casions	CAIADA
		1000		.casions	
1974					
	0.4.4	265	400	270	20
Demand	944	265	420	230	29
Capacity of large	( 110	1 710	2 0 2 7	1 0 2 4	40
impoundments	6,110	1,319	2,927		40
Surplus	+5,166	+1,054	+2,507	+1,594	+11
Additional water needs,					
acres	0	0	0	0	0
1990					
Demand	2,845	780	1,340	640	85
Deficit or surplus	+3,265	+539	+1,587		-45
Additional water needs,					
acres	1,100	0	0	0	1,100
2020					
Demand	5,525	1,240	2,960	1,150	175
Deficit or surplus	+585	+79	- 33	+674	-135
•					
Additional water needs,					
acres	3,940	0	800	0	3,140

			SUBBASINS				
ITEM	ALA. RIVE BASIN	R ALABAMA	COOSA	TALLAPOOSA	CAHABA		
				casions			
		I000 A	cervicy oc	casions			
1974							
Demand	1,520	446	631	279	164		
Existing capacity 1/	3,166	644	1,934	464	124		
Deficit (-) or surplus (+)	+1,646	+198	+1,303	+185	-40		
Additional needs:							
Tent camping, acres or Trailer/tent camping,	25	0	0	0	25		
acres	15	0	0	0	15		
or Group camping, beds	444	0	0	0	444		
1990							
Demand	3,910	1,135	1,685	685	405		
Deficit or surplus	-744	-491	+249	-221	-281		
Additional needs:							
Tent camping, acres or Trailer/tent camping,	612	303	0	136	173		
acres	368	182	0	82	104		
or Group camping, beds		5,456	0	2,456	3,122		
2020							
Demand	8,330	2,220	3,900	1,320	890		
Deficit	-5,164	-1,576	-1,966	-856	-766		
Additional needs:							
Tent camping, acres or Trailer/tent camping,	3,188	973	1,214	528	473		
acres	1,913	584	728	317	284		
or Group camping, beds		17,511	21,844	9,511	8,267		

1/ Developed camping facilities.

# Appendix Table 32K -- Hiking demand, public supply, and development needs, by subbasin, Alabama River Basin, 1974, 1990, and 2020.

	ALA. RIVER	SUBBASINS				
ITEM	BASIN	ALABAMA	COOSA	TALLAPOOSA	CAHABA	
				casions		
1974						
Demand	511	159	202	98	52	
Developed trail, miles	341	50	189	46	46	
Capacity of existing trails	477	84	265	64	64	
Additional trail needed,			<u></u>			
miles	78	54	0	24	0	
1990						
Demand	1,080	360	400	220	100	
Deficit	-603	-276	-135	-156	- 36	
Additional trail needed,	· ····					
miles	403	197	96	111	26	
2020						
Demand	1,810	490	840	290	190	
Deficit	-1,333	-406	-575	-226	-126	
Additional trail needed,						
miles	952	290	411	161	90	

Appendix Table 32L	Picnicking demand, public supply, and development
	needs, by subbasin, Alabama River Basin, 1974,
	1990, and 2020.

	SUBBASINS						
ITEM	ALA. RIV BASIN	ER ALABAMA	COOSA	TALLAPOOSA	САНАВА		
	BASIN			casions	CARADA		
		1000	Accivity of	.casions			
1974							
Demand Capacity of:	6,292	1,909	2,545	1,179	659		
Developed acreage	14,884	4,702	5,006	3,937	2,138		
Tables	5,165	1,809	2,548	894	798		
Deficit or surplus							
of acres	+9,671	+2,793	+2,641	+2,758	+1,479		
of tables	- 243	- 100	+ 3	- 285	+ 139		
Additional acres needed	0	0	0	0	0		
Additional tables needed	285	74	0	211	- 0		
1990							
Demand	9,930	2,680	4,570	1,600	1,080		
Deficit or surplus							
of acres	+5,853	+2,022	+ 436	+2,337	+1,058		
of tables	-3,881	- 871	-2,022	- 706	- 282		
Additional acres needed	0	0	0	0	0		
Additional tables needed	2,875	645	1,498	523	209		
2020							
Demand	14,100	3,900	6,100	2,500	1,600		
Deficit or surplus							
of acres	+1,683	+ 802	-1,094	+1,437	+ 538		
of tables	-8,051	-2,091	-3,552	-1,606	- 802		
Additional acres needed	90	0	90	. 0	0		
Additional tables needed	5,964	1,549	2,631	1,190	594		

## Appendix Table 32M-- Golfing demand, public supply, and development needs, by subbasin, Alabama River Basin, 1974, 1990, and 2020.

	ALA. RIVER	SUBBASINS				
ITEM	BASIN	ALABAMA	COOSA	TALLAPOOSA	САНАВА	
				Occasions		
1974						
Demand	1,326	393	543	249	141	
Existing capacity	2,194	578	753	317	546	
Deficit or surplus	+868	+185	+210	+68	+405	
Additional needs:						
9 hole or	0	0	0	0	0	
18 hole courses	0	0	0	0	0	
1990						
Demand	2,934	932	1,161	564	277	
Deficit or surplus	-740	-354	-408	-247	+269	
Additional needs:						
9 hole or	42	15	17	10	0	
18 hole courses	32	11	13	8	0	
2020						
Demand	5,868	1,830	2,401	1,092	545	
Deficit		-1,252	-1,648	-775	+1	
Additional needs:					<u></u>	
9 hole or	155	53	69	33	0	
18 hole courses	116	40	52	24	0	

		SUBBASINS				
ITEM	ALA. RIVER BASIN	ALABAMA	COOSA	TALLAPOOSA	CAHABA	
				Occasions		
1974						
Demand in:						
Lakes & reservoirs	3,564	1,200	1,336	663	365	
Rivers & streams	1,244	419	466	231	128	
Small impoundments 1/	1,478	498	554	275	151	
Put, grow & take ponds	339	111	123	61	34	
TOTAL	6,615	2,228	2,479	1,230	678	
Capacity of:						
Lakes & reservoirs	6,835	1,782	3,253	1,725	75	
Rivers & streams	807	378	179	189	61	
Small impoundments	646	217	214	187	28	
Put, grow & take ponds	623	140	215	226	42	
TOTAL	8,911	2,517	3,861	2,327	206	
Total deficit or surplus	+2,296	+289	+1,382	+1,097	-472	
Additional needs:						
Lakes & reservoirs, acres	3,410				3,410	
Rivers & streams, acres	10,990	680	7,550	1,000	1,760	
Small impoundments, acres	10,360	3,475	4,250	1,100	1,540	
Put, grow & take ponds,						
acres						
TOTAL	24,760	4,150	11,800	2,100	6,710	
1990						
Demand in:						
Lakes & reservoirs	5,453	1,868	2,091	974	520	
Rivers & streams	1,387	475	532	248	132	
Small impoundments	2,478	849	950	443	236	
Put, grow & take ponds	595	204	228	106	57	
TOTAL	9,913	3,396	3,801	1,771	945	
Capacity of;						
Lakes & reservoirs	7,280	1,782	3,253	2,165	80	
Rivers & streams	849	383	185	219	62	
Small impoundments	1,053	342	315	288	108	
Put, grow & take ponds	760	160	250	250	100	
TOTAL	9,942	2,667	4,003	2,922	350	
Total deficit or surplus	+29	-729	+202	+1,151	-595	

Appendix Table 32N -- Fishing demand, public supply, and development needs, by subbasins, Alabama River Basin, 1974, 1990 and 2020.

		<u> </u>		SUBBASINS	
ITEM	ALA. RIVER BASIN	ALABAMA	COOSA	TALLAPOOSA	САНАВА
				Occasions	CAILADA
<u>1990</u> (Cont'd)					
Additiona' needs:					
Lakes & reservoirs, acres	7,220	1,720			5,500
Rivers & streams, acres	12,921	1,508		674	1,842
Small impoundments, acres Put, grow & take ponds,	15,830	5,630		1,720	1,420
acres	88	88			
TOTAL	36,059	8,946	15,957	2,394	8,762
2020					
Demand in;					
Lakes & reservoirs,	7,353	2,476	2,917	1,273	687
Rivers & streams,	1,871	630		324	175
Small impoundments	3,342	1,125		. 578	313
Put, grow & take ponds	802	270		139	75
TOTAL,	13,368	4,501	5,303	2,314	1,250
Capacity of:					
Lakes & reservoirs	7,280	1,782	3,253	2,165	80
Rivers & streams	850	383	185	219	63
Small impoundments	1,215	405		315	135
Put, grow & take ponds	862	175	275		150
TOTAL	10,207	2,745	4,073	2,961	428
Total deficit or surplus	-3,161	-1,756	-1,230	+647	-822
		<u></u>			
Additional needs:					
Lakes & reservoirs, acres	21,468	13,880			7,588
Rivers & streams, acres	23,721	4,049	14,282	2,442	2,948
Small impoundments, acres Put, grow & take ponds,	23,620	8,000	10,730	2,920	1,970
acres	275	190	86		
TOTAL, acres	69,085	26,119	25,098	5,362	12,506

## 1/ Under 500 acres.

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A., Alabama Department of Conservation and Natural Resources, and Bureau of Sport Fisheries and Wildlife U.S.D.I.

Appendix	Table	32P	 Hunting	de	emand, pu	ublic	supp1	ly, and	develo	opment
			needs, b	by	subbasin	n, Ala	ibama	River	Basin,	1974,
			1990, ar	nd	2020.					

			SUB	BASINS	
ITEM	ALA. RIV BASIN	ALABAMA	COOSA	TALLAPOOSA	CAHABA
				casions	
<u>1974</u>					
Demand for:					
Big game	640	300	145	165	30
Small game	1,470	645	355	390	80
Waterfowl	49	19	15	11	4
TOTAL	2,159	964	515	566	114
Existing capacity:					
Big game	1,223	278	575	259	111
Small game	4,893	1,111	2,300	1,037	445
Waterfowl	57	21	16	13	7
TOTAL	6,173	1,410	2,891	1,309	563
Deficit or surplus:					
Big game	+583	-22	+430	+94	+81
Small game	+3,423	+466	+1,945	+647	+365
Waterfow1	+8	+2	+1	+2	+3
Hunting needs:					
Big game, acres	44,000	44,000	0	0	0
Small game, acres	0	0	0	0	0
Waterfowl, acres	14,000	0	11,000	3,000	0
TOTAL, acres	58,000	44,000	11,000	3,000	0
1990					
Demand for:					
Big game	782	350	200	190	42
Small game	1,920	850	490	480	100
Waterfowl	86	40	21	21	4
TOTAL	2,788	1,240	711	691	146
Deficit or surplus:					
Big game	+441	-72	+375	+69	+69
Small game	+2,973	+261	+1,810	+557	+ 345
Waterfow1	- 29	-19	-5	-8	+3

		SUBBASINS				
ITEM	ALA. RIVE BASIN	R ALABAMA	COOSA	TALLAPOOSA	CAHABA	
<u>1990</u> (Cont'd)			*****			
Needs:						
Big game, acres	144,000	144,000	0	0	0	
Small game, acres	0	0	0	0	0	
Waterfowl, acres	32,000	19,000	5,000	8,000	0	
TOTAL, acres	176,000	163,000	5,000	8,000	0	
		1000 A	ctivity Oc	casions		
2020						
Demand for:						
Big game	1,020	460	260	250	50	
Small game	2,530	1,130	650	620	130	
Waterfowl	2,330	1,130	30	30	130	
TOTAL	3,666	1,640	940	900	186	
TOTAL	5,000	1,040	540	900	100	
Deficit or surplus:						
Big game	+203	-182	+315	+9	+61	
Small game	+2,363	-19	+1,650	+417	+315	
Waterfow1	- 59	- 29	-14	-17	+1	
Needs:						
Big game, acres	364,000	364,000	0	0	0	
Small game, acres	10,000	10,000	0	0	0	
Waterfowl, acres	60,000	29,000	14,000	17,000	0	
TOTAL, acres	475,000	403,000	14,000	17,000	0	

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A., Alabama Department of Conservation and Natural Resources, and Bureau of Sport Fisheries Wildlife, U.S.D.I. APPENDIX 33 -- WILDLIFE HABITAT EVALUATION PROGRAM (WHEP).

33A -- Methodology and Objectives

WHEP (Wildlife Habitat Evaluation Program) is designed to provide broad interpretation of wildlife and other forest resource data for use in framework studies such as USDA River Basin Plans. This Forest Service program provides a general overview of the existing wildlife potential for forest game species.

The survey consists of 435 one-quarter acre plots. Sample intensity varied in proportion to the size of each strata. The sample area was stratified by soil associations and forest land. These soils were then grouped by forest types. Some overlap of forest type occurs on the soil associations, but the decision was made to use soils as the basis for the study due to the inherent productivity characteristics. The smallest mapping unit for the soil association is 6 square miles. Forest land is mapped on a 330-acre cell size MIADS - (Map Information Assembly and Display System) system, using 1/20,000 scale photo index sheets.

OBJECTIVE: To evaluate and describe the existing and potential wildlife resource on forest land in the Alabama River Basin.

- A. Evaluate habitat condition for forest game species.
  - 1. Gray squirrel
  - 2. Bobwhite quail
  - 3. Turkey
  - 4. White-tailed deer
- B. Assumptions
  - 1. Water is not a critical factor in the Alabama River Basin; average rainfall 54", and water can be developed to meet the needs.
  - 2. A breedable population of species under consideration exists on the site, or can be stocked.
- C. Stratification

Determine basic strata for the survey. Soil associations and forest land are the basic strata for the Alabama study. MIADS (Map information assembly and display system) provided acres of forest land by each soil association. Sampling was proportioned by the size of the strata.

- D. Habitat Evaluation
  - 1. Through a review of wildlife research literature, and a cooperative effort of wildlife biologists, the following is accomplished:
    - a. Habitat requirements in terms of canopy levels of the forest are identified and rated good, fair, and poor for each of the species studied.
    - b. Quantitative values are placed on habitat condition. Good receives 3 points, while poor is valued 1 point. The total points varying with the number of significant habitat conditions provides the overall rating for the strata.

Appendix 33A (Cont'd)

#### E. Potential Populations

1. Compute habitat rating for individual field plots; then group into plots by strata:

EXAMPLE:

Strata A.

	iled Deer	Gray Squirrel	<u>Quail</u>	Turkey
Rating	% of Plots	% of Plots	% of Plots	% of Plots
~ .				
Good	50	60	00	10
Fair	40	60	00	10
Poor	10	10	80	50

2. Multiply the percent of total rating for each species by the total acres within the strata:

EXAMPLE:

#### White-tailed Deer

								Acres by Habitat
Rating	% of Plots	х	Total	Acres	in	Strata		Condition
Good	50	x		100			=	50
Fair	40	х		100			=	40
Poor	10	х		100			=	10

4. Multiply the number of animals per acre by the acres in each condition class within the strata:

### EXAMPLE:

Strata A.

White-tail	ed Deer					
Rating	Acres by Strat	<u>a A</u> .	Animals Per A	с.	Potentials Po	op.
Good Fair Poor	50 40 10	x x x	.056 .029 .015	= =	3* 1 0	
* (Rounded	to nearest who	ole numb	er)		4	

.

Appendix 33A (Cont'd)

#### F. HUNTER DAYS

1. Determine the allowable harvest through research literature and assistance of wildlife biologists. This is the amount of animals or birds that can be harvested, but will sustain relatively the same population from year to year.

Percent Allowable Harvest by Species

Gray Squirrel	Bobwhite Quail	Turkey	Deer
20%	40%	33%	20%

2. Determine the number of hunter days required to kill one game species.

Number of Days to	Kill One Game S	Species	
Gray Squirrel	Bobwhite Quail	Turkey	White-Tailed Deer
. 56	. 33	9.5	16.7

3. Multiply the potential population by the allowable percent harvest by the number of days it takes to harvest one game species. This gives the potential hunter days by habitat condition class.

EXAMPLE:

Strata A.

White-tailed Deer

Rating	Potential Populations		Allowable <u>Harvest</u>		Days/Kill	ŀ	Potential Aunter Days
Good Fair	3 2	x x	.20 .20	x x	16.7 16.7		10 7
Poor TOTAL H	0 UNTER DAYS	x	. 20	х	16.7	=	$\frac{0}{17}$

Appendix 33

33B--Criteria for Habitat Evaluation

GRAY SQUIRREL Category III - 81 - 100% Hdw. type. 3 Points Each - 3 den trees/Ac. - Stand Age - 61 + Yrs. (Bottom lands 41 + Yrs.) - Overstory 76 - 100% of total ground cover. - 26 + % midstory plants; nut or fruit bearing. Category II 2 Points Each - 51 - 80% Hdw. type. - 2 den trees/Ac. - Stand Age - 41 - 60 Yrs. (Bottom lands 30 - 40 Yrs.) - Overstory composes 51 - 75% ground cover. - 11 - 25% midstory plants; nut or fruit bearing. Category I 1 Point Each - 1 - 50% Hdw. type. - 1 den tree/Ac. - Stand Age 10 - 40 Yrs. (Bottom land 15 -29 Yrs.) - Overstory composes 25 - 50% ground cover. - Less than 1 - 10 midstory plants; nut or fruit bearing. RATING TOTAL POINTS Good 11 - 15 Fair 6 - 10 Poor 1 - 5

Appendix 33B BOBWHITE QUAI		
Category III	-	
3 Points Each		<ul> <li>61 - 100% Pine Type.</li> <li>Midstory - 0 - 10% or less of total ground cover.</li> <li>Grass 20 - 30" tall.</li> <li>Grass &amp; Herbs - 41 - 60% of total ground cover.</li> <li>Burning within past 1 - 2 Yrs.</li> <li>Stand Age - 1 - 5 or 41 + Yrs.</li> <li>Edge Effect - 3</li> </ul>
Category II		
2 Points Each		<ul> <li>51 - 60% Pine Type.</li> <li>Midstory - 11 - 2-% total ground cover.</li> <li>Grass - 10 - 20" tall.</li> <li>Grass &amp; Herbs - 31 - 40, or 61 - 70% of total ground cover.</li> <li>Burning within past 3 - 5 Yrs.</li> <li>Stand Age - 21 - 40 Yrs.</li> <li>Edge Effect - 2</li> </ul>
Category I		
l Point Each		<ul> <li>1 - 50% Pine Type.</li> <li>Midstory - 21 - 40% of total ground cover.</li> <li>Grass - 0 - 10" tall.</li> <li>Grass &amp; Herbs - 1 - 30, or 71 - 100% total ground cover.</li> <li>Burning within past 6 - 9 Yrs.</li> <li>Stand Age - 5 - 20 Yrs.</li> <li>Edge Effect - 1</li> </ul>
RATING	TOTAL POINTS	
Good Fair Poor	15 - 21 8 - 14 1 - 7	

Appendix 33B (Cont'd) TURKEY Category III 3 Points Each - 31 - 100% Hdw. Type. - Stand Age - 1 - 6 or 61 + - Midstory 0 - 40% of total ground cover. - Midstory 41 - 100% plants; nut or fruit bearing. - Years since last burn - 1 - 3. - Edge Effect - 3. Category II 2 Points Each - 16 - 30% Hdw. Type. - Stand Age 31 - 60 Yrs. - Midstory 41 - 70% ground cover. - Midstory 16 - 40% plants; nut or fruit bearing. - Years since last burn - 4 - 5. - Edge Effect - 2.

Category I

I Point Each	- 1 - 15% Hdw. Type.
	- Stand Age 6 - 30 Yrs.
	- Midstory 70 - 100% total ground cover.
	- Midstory 1 - 15% plants; nut or fruit bearing.
	- Years since last burn - 6 - 9. - Edge Effect - 1.

RATING	TOTAL POINTS
Good	13 - 18
Fair	7 - 12
Poor	1 - 6

Appendix 33B (Cont'd)

## WHITE-TAILED DEER

Category III	
3 Points Each	<ul> <li>21 - 100% Hdw. Type.</li> <li>Stand Age 1 - 5 or 41 + Yrs.</li> <li>Understory Browse 51 - 100% total ground cover.</li> <li>Understory grass &amp; herbs 61 - 100 total ground cover.</li> <li>Edge Effect - 3.</li> </ul>
Category II	
2 Points Each	<ul> <li>- 11 - 20 Hdw. Type.</li> <li>- Stand Age 5 - 15 or 26 - 40 Yrs.</li> <li>- Understory Browse 21 - 50% total ground cover.</li> <li>- Understory Grass &amp; Herbs 21 - 60 total ground cover.</li> <li>- Edge Effect - 2.</li> </ul>
Category I	
l Point Each	<ul> <li>1 - 10% Hdw. Type.</li> <li>Stand Age 16 - 25 Yrs.</li> <li>Understory Browse less than 1 - 20 % total ground cover.</li> <li>Understory Grass &amp; Herbs 1 - 20% of total ground cover.</li> <li>Edge Effect - 1.</li> </ul>

RATING	TOTAL POINTS
Good	11 - 15
Fair	6 - 10
Poor	1 - 5

Appendix 33C -- Example of WHEP plot rating.

Appendix Table 33C gives an example of how each plot is rated. The field plot data is in the upper right hand corner of the sheet. Each habitat characteristic is analyzed and receives either 3, 2, or 1 points based on the criteria described for the species being evaluated. The points by habitat characteristics are totaled. In this example, the plot totals 9 points and is rated fair. All field plots are analyzed for each of the game species.

## Appendix Table 33C -- Gray squirrel worksheet

EXAMPLE ONLY

3 Points	(3) <u>X</u>	81-100% HDW	FIELD PLOT DATA
		3 den trees/ac.	90% HDW
		Stand age 61 +	1 Den tree/ac.
		Overstory 76-100%	Stand age 55
		Midstory N & F 26+%	Overstory 75 %
			N & F Mid. 5%
2 Points		51-80% HDW	
		2 Den trees/ac.	
	(2) <u>X</u>	Stand age 41-60	
	(2) <u>X</u>	Overstory 51-75%	
		Midstory N & F 11-25	5%
1. D. 1		1 50% 1004	· ·
l Point		1-50% HDW	
	(1) <u>X</u>	1 Den tree/ac.	e
	<u> </u>	Stand age 10-40	
		Overstory 25-50%	
	(1) <u>X</u>	Midstory N & F 1-10%	6
TOTAL POINTS	9	POINTS	ATING
		11-15	Good
		6-10	Fair
		1-5	Poor

# Appendix 33D -- Potential populations by forest types and condition class (WHEP), rating standards, Alabama River Basin.

## ACRES/ANIMAL

	GOOD	FAIR	POOR
Longleaf Slash			
Squirrel Deer Turkey Quail	1/45 Ac. 1/50 Ac. 1/2 Ac.	- 1/60 Ac. 1/65 Ac. 1/4 Ac.	- 1/90 Ac. 1/90 Ac. 1/8 Ac.
Loblolly-Shortleaf			
Squirrel Deer Turkey Quail	1/25 Ac. 1/65 Ac. 1/4 Ac.	1/45 Ac. 1/80 Ac. 1/6 Ac.	- 1/80 Ac. 1/100 Ac. 1/10 Ac.
Oak-Pine			
Squirrel Deer Turkey Quail	1/2 Ac. 1/20 Ac. 1/35 Ac. 1/7 Ac.	1/5 Ac. 1/40 Ac. 1/65 Ac. 1/12 Ac.	1/10 Ac. 1/70 Ac. 1/90 Ac. 1/18 Ac.
Oak-Hickory			
Squirrel Deer Turkey Quail	1/1.5 Ac. 1/18 Ac. 1/35 Ac.	1/4 Ac. 1/35 Ac. 1/65 Ac.	1/8 Ac. 1/65 Ac. 1/90 Ac.
Oak-Gum-Cypress			
Squirrel Deer Turkey Quail	3/1 Ac. 1/13 Ac. 1/35 Ac.	1.3/1 Ac. 1/20 Ac. 1/60 Ac.	1/2 Ac. 1/40 Ac. 1/85 Ac.

#### APPENDIX 34 -- FOREST WILDLIFE RESOURCES, ALABAMA RIVER BASIN.

Forest management practices influence these game species. Squirrel is the most vulnerable, seeking a hardwood site with specific habitat criteria. A reduction in hardwood age class, species, or size class of trees could be extremely detrimental to this species.

A reduction of hardwood species is also detrimental to deer and turkey. Impacts on habitat criteria will be evaluated in alternative plans. These key limiting habitat factors are rated as the highest being 3, while the lowest is 1. Forest type is used to determine habitat deficiencies, for example, if the goal is to improve squirrel habitat in the Oak-pine type, the following practices might be implemented:

- 1. Favor hardwoods in management.
- 2. Increase the length of the cutting cycle.
- 3. Favor soft mast-producing species in the midstory.

These practices would create a more dense overstory (dominant and codominate trees) and increase the number of den trees. This management system would increase the squirrel habitat elements in the Oak-Pine type on table 53-3.

Computations for Potential Population of Hunter Days

Acreages in the longleaf-slash and loblolly-shortleaf pine types were not included since squirrel is not featured in management in these types. Also acreages in 0-20 year age classes are not included in the calculations for potential squirrel populations.

The data generally indicates stands 11-20 years of age had limited potential for quail, turkey, and deer. These acreages were excluded in the calculation. Quail is not featured in oak-hickory or bottom land hardwood types, so these reductions were also made.

WHEP output is summarized as follows:

Appendix 34A -- White-tailed deer

The diversity of deer habitat is also reflected in the WHEP program. Almost all forest types had good, or fair ratings (see appendix figure 34A). The oak-hickory and bottom land hardwood sites rated highest. Most of the oak-pine and loblolly-shortleaf types rated fair. Longleaf-slash types rated poor, probably due to insufficient plot data. Ratings by forest types are shown in the following table.

## Appendix 34A -- Cont'd

FOREST TYPE	WHEP NUMERICAL RATING
LoblollyShortleaf	8.0
Oak-Pine	8.0
Oak-Hickory	8.5
Bottom land Hardwoods	9.6

White-tailed Deer - WHEP Rating - All Plot Data

Figure 34Al graphically displays the ratings by forest type and age class. Bottom land hardwoods far exceed other types in productivity. OakPine and Loblolly-Shortleaf types reflect similar productivity due to the high percent of pine in the oak-pine stands. This probably reflects the overlap of forest types on soil associations. Ratings showing percent of plots rated good, fair, and poor are in the table below.

### WHITE - TAILED DEER

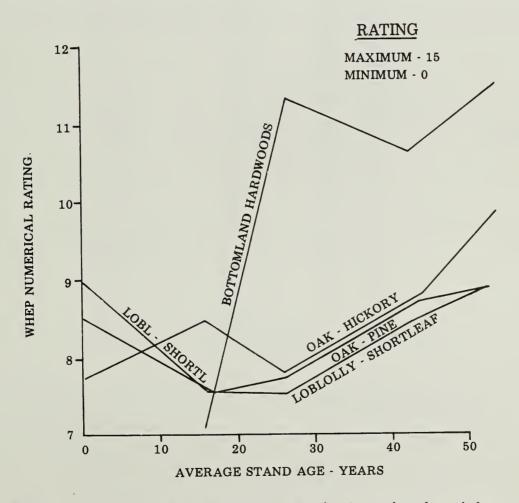



Figure 34A1 -- White-tailed deer WHEP numerical rating by timber type by stand age, Alabama River Basin.

				·····
	STAND		PERCENT PLOTS RATED	
FOREST TYPE	AGE (YRS.)	GOOD	FAIR	POOR
Longleaf-Slash	0 - 10	-	-	-
	11 - 20	-	-	-
	21 - 30	0	0	100
	31 - 50	0	80	20
	51 -100	-	-	-
	A11	0	67	33
Lob1o11y-Shortleaf	0 - 10	24	76	0
	11 - 20	0	88	12
	21 - 30	3	91	6
	31 - 50	9	89	2
	51 -100	19	81	0
	A11	10	82	8
Oak-Pine	0 - 10	19	79	2
	11 - 20	13	76	11
	21 - 30	22	59	19
	31 - 50	13	87	0
	51 -100	13	87	0
	A11	13	80	7
Oak-Hickory	0 - 10	0	100	0
	11 - 20	0	92	8
	21 - 30	22	59	19
	31 - 50	20	80	0
	51 -100	35	65	0
	A11	19	75	6
Bottom land	0 - 10	-	-	-
Hardwoods	11 - 20	0	80	20
	21 - 30	67	33	0
	31 - 50	48	52	0
	51 -100	-	_	-
	A11	40	49	11

Deer habitat rating by forest type and stand age.

### Appendix 34B -- Gray Squirrel

Squirrel habitat received best ratings in the bottom lands and in the oak-hickory forest type (see appendix figure 34B). Fair ratings also occurred in some oak-pine stands. The numerical ratings for all plot data by forest type are shown on the table on the following page.

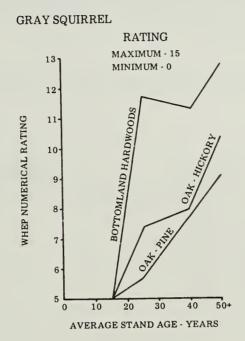



Figure 34B1 -- WHEP Habitat Rating for Grey Squirrel

Gray Squirrel - WHEP Rating - All Plot Data

FOREST TYPE	WHEP NUMERICAL RATING
Longleaf-Slash	5.2
Loblolly-Shortleaf	4.5
Oak-Pine	5.8
Oak-Hickory	6.8
Bottom land Hardwoods	9.7

The plot data is further disaggregated by forest type and groupings of age classes (see figure 4-41). Longleaf-Slash and Loblolly-Shortleaf types are not shown in this figure since these types would not feature gray squirrel management. Some irregularities in the graphic display are attributed to sample. Insufficient plot data is the probable cause.

The table on the following page presents the percent of plots rated good, fair, or poor. In all types, as the stand age increased, the habitat improved for squirrel.

	STAND	F	PERCENT PLOTS RA	TED
FOREST TYPE	AGE (YRS.)	GOOD	FAIR	POOR
Longleaf-Slash	0 - 10			
Long leat-Stash	11 - 20	-	-	-
	21 - 30	0	- 0	100
	31 - 50	0	60	40
	51 - 100	0	00	40
	A11	0	50	50
	AII	0	50	50
Loblolly-Shortleaf	0 - 10	0	11	89
dobiolity shortloar	11 - 20	0 0	46	54
	21 - 30	0	56	44
	31 - 50	Ő	53	47
	51 -100	0	68	32
	A11	0	41	59
Oak-Pine	0 - 10	0	12	88
	11 - 20	0	42	58
	21 - 30	0	69	31
	31 - 50	4	87	9
	51 -100	19	75	6
	A11	4	55	41
Oak-Hickory	0 - 10	0	6	94
	11 - 20	0	46	54
	21 - 30	4	81	15
	31 - 50	16	72	13
	51 - 100	39	61	0
	A11	12	59	29
		12	55	25

Squirrel habitat rating by forest type and stand age class.

# Appendix 34B (Cont'd)

Bottom land	0 - 10	-	-	-
Hardwoods	11 - 20	0	60	40
	21 - 30	67	33	0
	31 - 50	76	20	4
	51 -100	100	0	0
	A11	59	25	16

Appendix 34C -- Eastern wild turkey

Turkey habitat rated most productive on the hardwood sites (see figure 34C). The bottom land hardwoods and upland oak sites received the highest ratings. Oak-pine and Longleaf-slash pine stands received fair to good ratings.

Turkey ratings by forest types are listed in the table below.

Eastern Wild Turkey - WHEP Rating - All Plot Data

FOREST TYPE	WHEP NUMERICAL RATING
Longleaf-Slash	7.0
Loblolly-Shortleaf	7.7
Oak-Pine	8.5
Oak-Hickory	8.7
Bottom land Hardwoods	8.8

The table on the following page lists the percent of plots rated good, fair, or poor by stand age. The habitat gradually improves as the stand age increases. Young stands 0-10 years of age also received fair ratings in the Oak-Pine forest type.

#### EASTERN WILD TURKEY

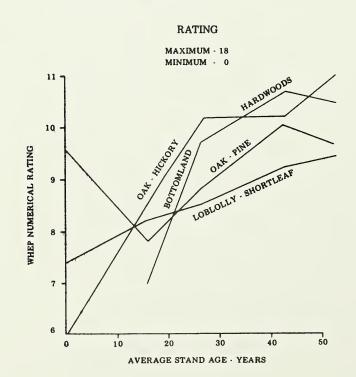



Figure 34C -- Eastern Wild Turkey - WHEP Rating-All Plot Data

# Appendix 34C -- Cont'd

	STAND		RCENT PLOTS R	ATES
FOREST TYPE	AGE (YRS.)	GOOD	FAIR	POOR
Longleaf-Slash	0 - 10	_	-	_
	11 - 20	-	-	-
	21 - 30	0	0	100
	31 - 50	0	80	20
	51 -100	-	-	-
	A11	0	50	50
Loblolly-Shortleaf	0 - 10	4	42	54
	11 - 20	0	75	25
	21 - 30	3	75	22
	31 - 50	4	93	3
	51 -100	6	88	6
	A11	3	65	32
Oak-Pine	0 - 10	19	70	11
	11 - 20	3	68	29
	21 - 30	4	88	8
	31 - 50	4	93	3
	51 -100	0	87	13
	A11	5	77	18
Oak-Hickory	0 - 10	13	19	68
	11 - 20	0	77	23
	21 - 30	4	85	11
	31 - 50	8	88	4
	51 -100	9	91	0
	A11	5	75	20
Bottom land	0 - 10	-	_	-
Hardwoods	11 - 20	0	60	40
	21 - 30	0	100	0
	31 - 50	4	96	0
	51 -100	20	80	0
	A11	0	84	16

Turkey habitat rating by forest type and stand age class

Appendix 34D -- Bobwhite Quail

Quail habitat received best ratings in areas of the Coastal Plain and Piedmont land resource areas (see appendix figure 34D). Fair conditions also exist in areas adjacent to crop and pastureland in the Coosa Valley.

Quail ratings by forest type are shown in the table below. Longleaf-Slash pine types rated highest while bottom land hardwood types received the lowest rating.

FOREST TYPE	WHEP NUMERICAL RATING	
Longleaf-Slash	10.8	
Loblolly-Shortleaf	10.4	
Oak-Pine	9.2	
Oak-Hickory	8.8	
Bottom land Hardwoods	7.4	

Bobwhite Quail - WHEP Rating - All Plot Data

The plot data is further displayed by forest type and age class categories in figure 34D1.

### BOBWHITE QUAIL

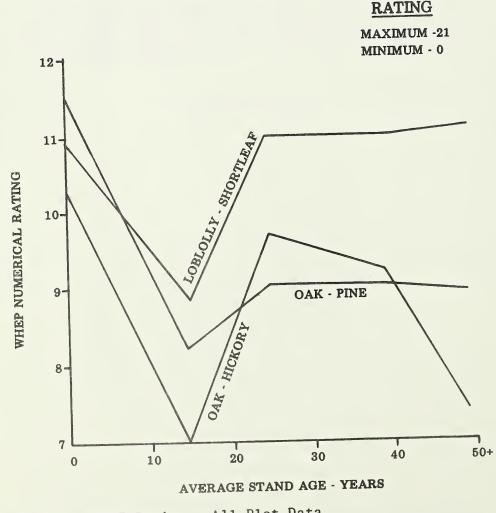



Figure 34D1 -- WHEP Rating - All Plot Data

Appendix 34D -- Cont'd

The table below list the percent of plots rated good, fair, or poor by stand age.

Quail habitat rating by forest type and stand age class.

	STAND		PERCENT PLOTS RATED			
FOREST TYPE	AGE (YRS.)	GOOD	FAIR	POOR		
Longleaf-Slash	0 - 10		-	-		
	11 - 20	-	-	-		
	21 - 30	0	100	0		
	31 - 50	0	100	0		
	51 -100	-	-	-		
	A11	0	100	0		
Loblolly-Shortleaf	0 - 10	7	89	4		
	11 - 20	4	67	29		
	21 - 30	11	67	22		
	31 - 50	11	74	15		
	51 -100	6	84	10		
	A11	8	73	19		
Oak-Pine	0 - 10	16	72	12		
	11 - 20	0	55	45		
	21 - 30	12	54	34		
	31 - 50	9	60	31		
	51 -100	0	78	22		
	A11	8	62	30		
Oak-Hickory	0 - 10	0	100	0		
	11 - 20	0	23	77		
	21 - 30	11	63	26		
	31 - 50	12	52	36		
	51 -100	0	39	61		
	A11	6	56	38		
Bottom land	0 - 10	-	-	-		
Hardwoods	11 - 20	0	60	40		
	21 - 30	0	0	100		
	31 - 50	0	48	52		
	51 -100	0	40	60		
	A11	0	43	57		

# APPENDIX TABLE 35 -- BEAVER PONDS IN ALABAMA, EXPANDED DATA AND ESTIMATES BY COUNTY, ALABAMA RIVER BASIN, 1967.

COUNTY	BEAVER PONDS	POND ACRES	STREAM MILES	COUNTY	BEAVER PONDS	POND ACRES	STREAM MILES
Autauga	222	3112	230	Jefferson	48	119	160
Baldwin	212	1121	305	Lee	179	2510	185
Bibb	272	3389	185	Lowndes	179	2510	185
Bullock	169	2369	175	Macon	188	2636	195
Bulter	237	2853	250	Marengo	266	1926	240
Calhoun	47	74	125	Mobile	181	957	260
Chambers	70	133	160	Monroe	160	846	230
Cherokee	53	83	140	Montgomery	183	2566	199
Chilton	199	2480	135	Perry	199	1441	180
Clarke	163	862	235	Rando1ph	81	154	185
Clay	75	108	130	She1by	57	141	190
Cleburne	59	93	155	St. Clair	97	186	220
Coosa	73	139	165	Talladega	79	150	180
Dallas	316	2288	285	Tallapoosa	86	163	195
DeKalb	70	110	185	Wilcox	238	1723	215
Elmore	198	2776	205				
Etowah	53	83	140	TOTAL	4691	40101	7215

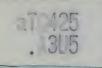
Source: Alabama Beaver Symposium, 1967.

APPENDIX 36 -- CONFINED LIVESTOCK OPERATIONS, ALAPAMA RIVER BASIN, 1972 1/

Number of confined livestock operations, animals and waste treatment systems, by subbasins, Alabama River Basin, 1972. 1 Appendix table 36A

				ТҮРІ	TYPE OF OPERATION 2/	TION 2/					
	HOCH	HOG PARLORS		Dł	DAIRY OPERATIONS	LIONS		CAT	CATTLE FEEDLOTS	DTS	
			NO. & % OF OPERATIONS								
SUBBASIN	NO. OF OPERATOR	NO. OF ANIMALS	WITH TREATMENT	NO. OF OPERATORS	NO. OF ANIMALS	TREATMENT NO. %	IENT %	NO. OF OPERATORS	NO. OF ANIMALS	TREA NO.	TREATMENT NO. %
Coosa	33	11,105 17	17 52	53	5,860	28	53	9	2,640	9	100
Cahaba	7	2,000	6 86	23	3,635	17	74	I	I	I	1
Alabama	06	29,200	45 50	27	4,919	8	30	ø	5,350	9	75
Tallapoosa	38	9,025	20 53	13	1,756	2	15	м	400	7	67
TOTAL	168	51,330 88	88 52	116	16,170	55	47	17	8,390	14	82
<u>1/ Data v</u> river	Data was compilec river basin.	l from que	Data was compiled from questionnaires river basin.	completed by each Soil Conservation Service field office in the	each Soil	Conserv	atior	Service fi	leld office	e in t	he
	•	,									

A-217


Appendix Table 36B -- Summary of existing animal waste stabilization basins permitted by the Alabama Water Improvement Commission, by counties and subbasins, Alabama River Basin, April 1975. 1/

	NUMBERS OF	FACILITIES-NUMBERS	OF ANIMALS 2/
SUBBASIN/COUNTY	HOGS	COWS	LAYERS
ALABAMA		· · · · · · · · · · · · · · · · · · ·	
Autauga	13-4,730		
Chilton	2-475		
Dallas	2-1,850	1-150	
Lowndes	1-20		
Monroe	5-2,050		
Montgomery	4-825	6-2,230	
Perry		1-200	
Subbasin Total	27-9,950	8-2,580	
САНАВА			
Chilton	1-50		
Jefferson		1-150	
Perry	2-665	1-200	
St. Clair	1-608		
Subbasin Total	4-1,323	2-350	
COOSA	· · · · · · · · · · · · · · · · · · ·		
Cherokee	4-1,565		1-14,000
Calhoun	8-1,644		í.
DeKalb	21-4,249	4-370	10-259,350
Etowah	6-333		,
Talladega	3-754	1-70	
Elmore	3-1,610	3-700	
Shelby	2-575		
St. Clair		1-150	
Subbasin Total	47-10,730	9-1,290	11-273,350
TALLAPOOSA			
Chambers	3-560		2-85,000
Bullock	1-300	1-150	
Clay		1-60	
Cleburne		2-395	
Tallapoosa		1-200	
Elmore	1-50	1-300	
Lee	1-1,000		
Rando1ph	4-1,112		1-8,000
Subbasin Total	10-3,022	6-1,105	3-93,000
TOTAL	88-25,025	25-5,325	14-366,350

1/ Listing of permits issued by the Alabama Water Improvement Commission was field checked by Soil Conservation Service personnel to determine the number of permitted facilities that were actually constructed in April 1975.

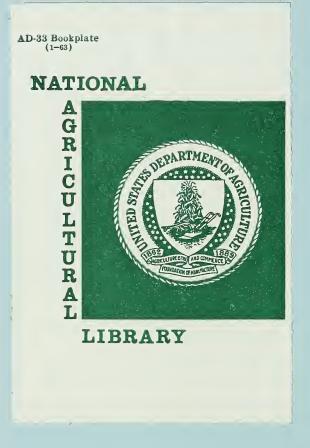
2/ Number of animals that systems are designed to accomodate.





# **VOLUME II**

(***)


# ALABAMA RIVER BASIN COOPERATIVE STUDY

# **RESOURCE DEVELOPMENT OPPORTUNITIES**



UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ECONOMIC RESEARCH SERVICE FOREST SERVICE

**APRIL 1977** 



500 capies

# RESOURCE DEVELOPMENT OPPORTUNITIES

ALABAMA RIVER BASIN

WITHIN ALABAMA

B. S. DEPT. OF AGRICULTUR

# VOLUME II

FEB 1 3 1978

COOPERATIVE STUDY

CATALOGAN . MEZ

Prepared by

UNITED STATES DEPARTMENT OF AGRICULTURE Soil Conservation Service Economic Research Service Forest Service

In cooperation with the

ALABAMA DEVELOPMENT OFFICE

Auburn, Alabama

August 1977

. 454226

# TABLE OF CONTENTS

CHAPTER

DA.	CE
- 4	

1.	RESOURCE DEVELOPMENT NEEDS
	Introduction
	Agricultural Flood Damage Reduction 1-4
	Erosion Reduction
	Agricultural Drainage
	Production Efficiency
	Increased Forest Production 1-5
	Reduction of Fire Losses 1-5
	Increased Forest Grazing 1-5
	Urban Flood Damage Reduction 1-5
	Water Supply
	Increased Recreation 1-6
	Solid Waste Disposal
	Low Quality Stream Improvement 1-6
	Reduction in Sedimentation 1-7
	Reduction of Critical Erosion 1-7
	Reduction of Erosion on "Disturbed" Forest
	Lands
	Protection of Scenic Rivers and Streams 1-7
	Natural Scenic Sites
	Fish and Wildlife Habitat Improvement 1-8
	Protection of Endangered Species 1-8
	Protection of Archaeological and Historical
	Sites
2	
2.	NED AND EQ ALTERNATIVES
	General Introduction
	NED Alternative
	Land Use
	Agricultural Flood Damage Reduction 2-4
	Changed Land Use
	Structural Measures
	Erosion Reduction
	Agricultural Drainage 2-12
	Production Efficiency
	Increased Forest Production
	Reduction of Fire Losses
	Increased Forest Grazing 2-16
	Urban Flood Damage Reduction 2-16
	Watershed Treatment 2-16
	Floodwarning Systems 2-16
	Flood Proofing 2-17
	Flood Plain Use Regulations 2-17
	Water Supply
	Increased Recreation
	Solid Waste Disposal

## PAGE

Reduction in Sedimentation							2-19
Reduction of Critical Erosion.							
Scenic Rivers and Streams							
Natural Scenic Sites							
Fish and Wildlife Habitat Impro							
Upland Habitat							
Wetland Habitat							
Impoundments							
Streams							
Protection of Endangered Specie							
EQ Alternative							
Land Use							
Agricultural Flood Damage Reduc							
Erosion Reduction							
Improved Production Efficiency							
Increased Forest Production							
Forest Acreage Increase .							
Utilization							
Accelerating Forest Manage	ment		•	•	•	•	2-42
Reduction of Fire Losses		•	•	•			2-43
Increased Forest Grazing							2-43
Urban Flood Damage Reduction .				•			2-43
Water Supply							
Increased Recreation							
Solid Waste Disposal							
Low Quality Stream Improvement							
Reduction of Critical Erosion.							
Reduction in Sedimentation							
Scenic Rivers and Streams							
Natural Scenic Sites							
Fish and Wildlife Habitat Impro							
Upland Habitat							
Wetland Habitat							
Impoundments					•	•	
Streams	•••	•	•	•	•	•	2-50
Protection of Flora and Fauna.							2-51
Protection of Archaeological an							
Sites	•••	•	•	•	•	•	2-51
AUGORATED BLAN							
SUGGESTED PLAN							77 - 1
Introduction							3-1
Plan Elements							
Land Use							3-5
Erosion Reduction							3-9
Reduction of Critical Erosion.							
Reduction in Sedimentation							
Improved Production Efficiency			•	•			3-13

3.

## PAGE

	Increased Recreation		
	Increased Forest Production		3-14
	Reduction of Fire Losses		3-14
	Increased Forest Grazing		3-15
	Agricultural Flood Damage Reduction		
	Urban Flood Damage Reduction		
	Watershed Treatment		
	Floodwarning Systems		
	Flood Proofing.	Ī	3-20
	Flood Plain Use Regulations	Ī	3-20
	Water Supply	•	3-21
	Water Supply	•	$3^{-}21$
	Low Quality Stream Improvement	•	3 - 21 3 - 21
	Scenic Rivers and Streams	•	3-21
	Natural Scenic Sites		
	Fish and Wildlife Habitat Improvement		
	Upland Habitat		
	Wetland Habitat		
	Impoundments		
	Streams	•	3-25
	Protection of Flora and Fauna	•	3-25
	Protection of Archaeological and Historica Sites	1	
	Sites	•	3-25
	Solid Waste Disposal	•	3-26
	Environmental Impacts of USDA Plan Elements		3-40
	General Introduction		3-40
	Environmental Impacts		3-41
	Non-structural Measures		3-41
	Structural Measures		3-42
	Alternatives		3-42
	Short-Term Vs. Long-Term		
	Irreversible and Irretrievable Commitments		
		Ĩ	0 11
N	IMPLEMENTATION		
	Implementation of the Early Action Portion		4-1
	Erosion Damage Reduction	•	4-1
	Critical Erosion Reduction	•	4-7
	Non-USDA Programs for Critical Erosion	•	4-8
	Reduction of Sedimentation	•	4-8
	Non-USDA Implementation - Sediment	•	4-9
			4-9
	Flood Damage Reduction		
	Agricultural Drainage		4-9
	Water Supply		4-10
	Low Quality Stream Improvement		4-11
	Improved Production Efficiency		4-11
	Recreation	•	4-12

4. PLAN IM

# CONTENTS (CONT'D)

## PAGE

Solid Waste Disposal								
Reduced Fire Losses								
Increased Forest Grazing	•	• •	٠			•	•	4-14
Increased Forest Production.								
Fish and Wildlife Habitat	•	• •					•	4-14
Scenic Rivers and Streams		• •					•	4-15
Natural Scenic Sites		• •						4-15
Protection of Flora and Fauna		• •						4-16
Protection of Archaeological	an	d H	ist	or	ic	al		
Sites		• •	•	•		•		4-16

TABLES

CHAPTER AND TABLE NUMBER		PAGE
CHAPTER 1 1-1 1-2	RESOURCE DEVELOPMENT NEEDS Specific components and needs Communities needing M&I water	
CHAPTER 2 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26	NED AND EQ ALTERNATIVESMeasures included in NED alternativeLand use, NED.Projected production and net returns, NED.Benefits and costs for watersheds, NED.Total erosion, NEDErosion reduction measures, NED.Erosion rates, NED.Water supply sites, NED.Proposed recreation sites, NED.Sediment production, NEDNED alternative, four accountsMeasures included in EQ alternativeProjected production and net returns, EQBenefits and costs for watersheds, EQ.Total erosion, EQ.NED alternative, four accountsLand use, EQProjected production and net returns, EQBenefits and costs for watersheds, EQ.Total erosion, EQ.Total erosion, EQ.Erosion rates, EQ.Erosion	$\begin{array}{c} 2-5\\ 2-6\\ 2-8\\ 2-12\\ 2-13\\ 2-14\\ 2-18\\ 2-20\\ 2-23\\ 2-26\\ 2-27\\ 2-34\\ 2-35\\ 2-36\\ 2-38\\ 2-39\\ 2-40\\ 2-41\\ 2-42\\ 2-44\\ 2-48\\ 2-49\\ 2-52\\ 2-53\\ \end{array}$
CHAPTER 3 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10	SUGGESTED PLAN Measures included in the suggested plan Land use, suggested plan	3-6 3-8 3-10 3-11 3-12 3-13 3-16 3-19

## TABLES (CONT'D)

### PAGE

3-11	Low-flow augmentation sites, suggested
	plan
3-12	Benefits and costs, suggested plan 3-27
3-13	Suggested plan, four accounts
3-14	Effectiveness of plan elements, suggested
	plan
3-15	Summary comparison between suggested plan
	and NED and EQ alternatives
CHAPTER 4	PLAN IMPLEMENTATION
4-1	Means of implementation, suggested plan 4-2
4-2	Programs for implementation, suggested plan. 4-17

## FIGURES

PAGE

CHAPTER AND FIGURE NUMBERS

CHAPTER 1	RESOURCE DEVELOPMENT NEEDS	
CHAPTER 2 2-1	NED AND EQ ALTERNATIVES National economic development alternative (NED), waterfowl habitat development, water impoundment sites, and watershed projects	-9
2-2	Environmental quality (EQ), and national economic development (NED) elements for recreation	-21
2-3	Proportion of needs accomplished NED and EQ alternatives	
2-4	Environmental quality alternative (EQ), waterfowl habitat development, water impoundment sites, and watershed projects. 2-	
CHAPTER 3	SUGGESTED PLAN	
3-1	Waterfowl habitat development, water impoundment sites, and watershed projects, suggested plan	- 3
3-2	Agricultural land use, with and without, suggested plan	-7
3-3	Suggested plan elements for recreation 3-	
3-4	Proportion of needs accomplished, suggested plan	-39
CHAPTER 4	PLAN IMPLEMENTATION	

#### PREFACE

A basic tenet of Alabama's water resources policy is that the total water resources of the state shall be conserved, developed, and used for the maximum benefit of all the people of the state and that development of the state's water and related land resources shall complement and be compatible with the development plan for the total resources of the state. State policy encourages economic development at greater than the National average, but at the same time calls for protection and conservation of natural and human resources.

Three U. S. Department of Agriculture agencies, the Soil Conservation Service, the Economic Research Service, and the Forest Service are completing an extensive study of water and related land resource problems in the Alabama Basin under sponsorship of the Alabama Development Office. The inventory of basin resources and projection of the future demands on these resources is presented in Volume I, Alabama River Basin Cooperative Study, May 1977.

The final phase of the basin study is presented herein. Chapter 2 of this Volume, presents two alternatives for water and land resource development in the Alabama River Basin that were designed to satisfy varying levels of economic development and environmental quality enhancement. These alternatives were developed by the USDA staff with input by numerous interested local, state and federal agencies and organizations. Following an extensive review of these alternatives, the Suggested Plan, Chapter 3, was developed from comments received and earlier expressions of interest in the individual plan elements. Implementation opportunities are identified in Chapter 4.

.

#### ADDENDUM

#### Alabama River Basin, Alabama

This addendum shows the costs, benefits, and benefit-cost ratio based on 6 3/8 percent interest rate, 1975 installation costs, and current normalized prices for agricultural commodities. Annual costs, benefits, and benefit-cost ratio for three alternatives are as follows:

#### NED Alternative - Table 2-11

- 1. Costs are \$5,895,000.
- 2. Benefits are \$14,500,000.
- 3. Benefit-cost ratio is 2.5:1.

#### EQ Alternative - Table 2-24

- 1. Costs are \$6,190,000
- 2. Benefits are \$11,800,000.
- 3. Benefit-cost ratio is 1.9:1.

#### Suggested Plan - Table 3-12

- 1. Costs are \$5,895,000.
- 2. Benefits are \$14,500,000.
- 3. Benefit-cost ratio is 2.5:1.



### CHAPTER 1

### RESOURCE DEVELOPMENT NEEDS

#### INTRODUCTION

A comprehensive water and related land resources inventory for the Alabama River Basin was completed in 1976. Results are documented in a separate report, Alabama River Basin, Cooperative Study, Volume I, hereafter referred to as Volume I. Major areas covered include natural resource availabilities, human and economic resources, projections, problems, and development needs.

Component needs were classified by the major planning objective to which they are primarily related. National Economic Development (NED) components will enhance national economic development by increasing the value of the nation's output of goods and services and improving national economic efficiency. Environmental Quality (EQ) components will enhance environmental quality by the management, conservation, preservation, creation, restoration or improvement of the quality of certain natural and cultural resources and ecological systems. The classification of components or component needs as primarily NED or EQ does not preclude the use of elements of those components in planning toward either objective.

Emphasis was given to determining gross needs under present conditions and projected needs for 1990 and 2020 without accelerated resource development activities. Those needs that could be satisfied with existing facilities and ongoing programs were subtracted from gross needs to obtain the net needs for 1990 and 2020. For a more detailed discussion of methodologies and assumptions, the reader is referred to Chapter 5 of Volume I, Component Needs. These needs are shown in table 1-1, along with a brief resume of information presented in Chapter 5, Volume I.

Land use under present conditions and projected for 1990 and 2020 without accelerated resource development is the basis for most planning. Present and projected land use is shown in Chapter 4 of Volume I, table 4-3, and in tables 2-2, 2-14, 3-2, and 3-16 of this volume.

SPI	SPECIFIC COMPONENTS	COMPONENT NEEDS	UNITS PI	PRESENT	QUANTITY 1990	2020
PR.	PRIMARILY NED 1. Increased or more efficient output of food and fiber.					
	<ul> <li>Improved efficiency of production and resulting</li> </ul>	Flood reductionagricultural land Erosion damage reduction	Thou. acres	239	203	203
	agricultural income	Cropland and pastureland	Thou. acres Thou. tons	2,172 9,198	2,053 6,255	2,073 9,533
		Increased drainage - on farm Improved production efficiency	Thou. acres	169	170	202
		Cropland Pastureland	Thou. acres Thou. acres	738 603	614 1,024	591 1,473
	<pre>b. Increased forest produc- tion and utilization</pre>	Increased forest production Reduction of fire losses Increased forest grazing	Mil.cu.ft./yr. Ac./yr. Mil.lbs./yr.	0 7,429 47.0	7,129 19.2	82.0 6,845 16.4
2.	Urban flood damage reduction	Urban damage reduction	No. of comm.	80	06	110
ŝ	Increased and more efficient production of agricultural, municipal, and domestic water supply	Create additional surface water supply	MGD	\$	25	71
4.	Increased output of outdoor recreation onnortunities	Increased recreation activities Roating	Thou ar of			
		0		0	2.8	38
		Water skiing	Thou. ac. of		•	
		Fishing	water Thou. ac. of	0	1.1	4
		•	water	25	36	69
		Hunting Swimming	Thou. ac. Mil. act.	58	176	457
			occas./yr.	2.0	11.9	29.0
		Lamping	MIL. act.		E	1

Table 1-1 -- Specific components and component needs, present and projected, Alabama River Basin, 1975

5.2 950 6,000

0.7 400 2,900

0.4 78 285

occas./yr. Miles of trails No. of tables Thou. ac. of land

Hiking Picnicking Golfing

17.4 116

4.8

0 0

No. of 18-hole courses

32

Table 1-1 -- cont'd

					QUANTITY	
SPE	SPECIFIC COMPONENTS	COMPONENT NEEDS	UNITS	PRESENT	1990	2020
PRI 5.	PRIMARILY EQ 5. Improved quality aspects of water, land and air					
	a. Improved waste disposal	Solid waste disposal improve- ment	Industrial waste disposal (ac.)	100	200	400
	b. Improved stream water quality	Low quality streams improve- ment	Flow (cfs)	231.5	231.5	231.5
	<ul> <li>Reduction in sedimenta- tion</li> </ul>	Reduction in total sediment load	Mil. tons/yr.	14.1	14.7	16.4
	d. Reduction in non-point critical erosion	Critical erosion reduction Streambanks		21.0	21.0	21.0
		Roadside crosion	Thou. tons Thou. acres	2.0 390	2.3 2.40	2.3
		Critical areas		115.0	113.0	117.0
		Strip mine reclamation		12.7	15.3 2,219	15.3 2,219
	e. Reduction in "disturbed" forest erosion	Disturbed forest erosion reduction	Thou. acres Thou. tons	60 12,200	74 17,900	114 23,300
6.	Improvement, protection and/or preservation of areas of natural beauty for man's cnjoyment					
	<ul> <li>a. Protection of and increased access to scenic areas</li> </ul>	Scenic streams Natural scenic sites	Miles Numbers	420 130	300 90	350 75
7.	Enhancement or preservation of biological resources					
	a. Improved quality and increased quantity of fish and wildlife habitat	Fish & wildlife habitat improvement Upland habitat Wetland habitat Improved management Stream improvement	Thou. acres Thou. acres Thou. acres Thou. acres	100 18 7 4	150 25 8 3	220 40 10
	b. Protection of rare and endangered species of flora and fauna	Protection of flora & fauna Flora Fauna	No. of species No. of species	26 40	40 50	50 62
×.	Preservation of archaeological and historical resources	Protection of archaeological and historical sites Archaeological sites Historical sites	No. of sites $\frac{1}{2}$ No. of sites $\frac{1}{2}$	120 255	110 200	100 180

 $\underline{1}$  Based on recognized sites.

#### Agricultural Flood Damage Reduction

The study revealed a flood problem on 861,000 acres of flood plain. Two-thirds of this area is forest land with insignificant flood damages. 1/ This land, along with 86,000 acres having flood control projects installed or expected to be installed by 1990, was deducted from the total, leaving 203,000 acres (49,000 acres of cropland and 154,000 acres of pastureland) needing flood damage reduction by 1990. No flood control projects were identified for installation under future without accelerated resource development after 1990, therefore the 2020 needs would remain at 203,000 acres.

#### Erosion Reduction

In 1970, 2,600,000 acres of the basin were devoted to cropland and pastureland. Total projected acreage of these uses is estimated to be 2,806,000 in 1990 and 2,874,000 in 2020, a two percent increase.

Treatment accomplishments to reduce erosion show going programs and planned projects can provide adequate treatment on 753,000 acres by 1990. This acreage was deducted from 2,806,000 to obtain a net treatment need of 2,053,000 acres for 1990. Net needs for 2020 were determined in a similar manner.

Net erosion reduction needs were determined by comparing the projected erosion with the erosion that the resource base can tolerate. Erosion needs to be reduced by 6.3 million tons in 1990 and 9.5 million tons by 2020.

#### Agricultural Drainage

Improved drainage is needed on 32,000 acres of cropland and 137,000 acres of pastureland to provide orderly removal of excess water and improve production efficiency.

An analysis of existing programs indicated they are adequate to satisfy the recurring needs. The future drainage needs for cropland and pastureland will be 36,000 and 134,000 acres respectively by 1990 and 33,000 and 169,000 acres by 2020 respectively.

#### Production Efficiency

Projected increases in the demand for food, feed, and fiber from agricultural land can be met in 1990 and 2020 without accelerated resource development; however, continued unwise land use will result in deterioration of the land resource base. Much misuse of the land and water base is occurring, and will continue to occur without some form of accelerated resource development programs.

^{1/} Minor flood problems may exist on small areas of forest in the flood plain.

Depletion of the resource base cannot continue if we hope to satisfy long run commodity needs. In this sense, there is a definite component need to improve use and management efficiencies on 1.6 million acres of land projected to be in crops and pasture by 1990. This figure will exceed 2 million acres by 2020.

#### Increased Forest Production

Projections of timber supply and demand in the basin indicate an increase in demand from 225 million cubic feet in 1970 to 600 million cubic feet in 2020 while forest acreage is projected to decline from 7,471,000 acres to 6,862,000. By 2020, demand will exceed supply at an annual rate of 82 million cubic feet per year assuming a continuation of present trends in management.

#### Reduction of Fire Losses

Currently, 7,429,000 acres of forest land needs accelerated fire protection in order to reach the goal of 0.25 percent of the forest burned annually. By 1990, this need will decrease to 7,129,000 acres, and by 2020, to 6,845,000 acres as forest land acreage declines.

#### Increased Forest Grazing

Projections indicate that demand for beef from forest grazing will drop sharply from 59.3 million pounds of beef in 1970, to 30.6 million in 1990 and 25.6 million in 2020. As demands for timber rise, beef production from forest grazing will decline from 12.3 million pounds of beef in 1970 to 11.4 million in 1990, and 9.2 million by 2020.

#### Urban Flood Damage Reduction

Eighty urban communities were experiencing flooding in 1970. Unless necessary conservation treatment is installed and zoning measures are implemented, the number of communities suffering flood damage is expected to reach 90 by 1990 and 110 by 2020.

#### Water Supply

The study focused on those communities with significant increases in future water supply needs that could not be met through additional wells or from available stream flows. Water supply treatment and distribution were considered to be outside the scope of this study. Thirteen communities needing additional supplies of municipal and industrial water by 1990 were identified; by 2020, seven other communities will need new water supplies as is shown in table 1-2 below. Supply deficits of 25 MGD by 1990, and 71 MGD by 2020 are projected.

Table 1-2 -- Communities needing additional supply of municipal and industrial water by time frames - Alabama River Basin

Need Additional	Will Need Additional
Supply By 1990	Supply Between 1990-2020
Piedmont	Sterrett-Vandiver

Jacksonville Calera Columbiana Margaret Moody Odenville Wedowee Woodland Ranburne Fruithurst Opelika Lookout Mountain (Gadsden) Sterrett-Vandive: Westover Wilsonville Ashville Springville Steele Auburn

#### Increased Recreation

Currently, the Basin supplies an average of about 32 million activity occasions of recreation annually. By 1990 demand is expected to double. Development of swimming, fishing, and hiking facilities is particularly critical as is shown in table 1-1.

#### Solid Waste Disposal

Currently there is a need for the development and operation of two cooperative waste disposal sites for hazardous solid industrial wastes. These sites, approximately 100 acres each, will be needed within the basin by 1990 while a total of 400 acres will be needed for this purpose by 2020.

#### Low Quality Stream Improvement

Twenty streams have been identified which have now or will have a pollution problem during periods of low streamflow. The majority of these are a result of insufficient streamflow to transport effluent

from municipal and industrial waste treatment facilities. Total flow in these streams should be increased approximately 230 cubic feet per second to maintain the allowable dissolved oxygen content of 5 parts per million.

#### Reduction in Sedimentation

For the Alabama River Basin Study, a reduction in sedimentation goal was set at that amount of sediment that would be produced if erosion could be reduced to "T" erosion basinwide. 1/ The sediment goal is 7.3 million tons annually for both 1990 and 2020. Projected annual sediment yield without a plan is expected to be about 22 million tons by 1990 and 23.7 million tons by 2020. The sediment reduction need is the difference between projected sediment yield and the "sediment goal"; consequently, the need is to reduce sediment yield 14.7 million tons by 1990 and 16.4 million tons by 2020.

#### Reduction of Critical Erosion

Reconnaissance surveys indicate there are 150,700 acres of critically eroding land in the Basin. Projections weighing the effects of ongoing conservation programs against the development of new gullies and critical areas estimate that 151,600 acres and 155,600 acres will need critical area treatment in 1990 and 2020, respectively.

#### Reduction of Erosion on "Disturbed" Forest Lands

By 1990 there will be 74,000 acres of highly disturbed forest land that are actively eroding and by 2020 this figure will reach 114,000 acres. Erosion on these areas is critical and must be reduced if the overall erosion average on forest lands is to be reduced to 2 tons per acre per year. Annual erosion on forest land needs to be reduced by 17.9 million tons in 1990 and 23.3 million tons in 2020.

#### Protection of Scenic Rivers and Streams

Currently, 416 miles of scenic streams including all or portions of the Cahaba River, Tallapoosa River, Little River, Shoal Creek and Hatchett Creek need protection (see Volume I, p. 2-47). It was assumed that the current mileage of scenic streams needing protection will be reduced about 25 percent by 1990 because 16 miles will be impounded and about 100 miles will be protected through current private, state, or federal programs. There will remain about 300

^{1/} Soil loss tolerance "T" on open land averages 4.0 tons per acre per year.

miles to be protected from unregulated development, special interest exploitation, or other unwanted abuse. A projected 350 miles of streams will need protection by 2020 to preserve an ample supply cf this resource.

#### Natural Scenic Sites

A list of 130 natural scenic sites that need protection to preserve and maintain their unique or aesthetic qualities was developed (see Volume I, p. 2-61). By 1990 about 10 sites will be irreversibly degraded, commercialized, or otherwise be unavailable for public use. An additional 30 sites will receive adequate protection through ongoing programs, leaving a net of 90 sites that would need protection in 1990. By 2020, at least 75 sites should need protection.

#### Improve the Quality and Quantity of Fish and Wildlife Habitat

Landowners in the basin have made substantial contributions toward fish and wildlife habitat improvement through expenditure of private funds. Future needs are based on the assumption that this interest in, and effort toward, natural resources conservation and development will continue.

Currently, (1976) there is a need for fish and wildlife habitat improvement on 129,000 acres in the Basin. By 2020, this figure is projected to be 275,000 acres. The future for squirrel hunting is bleak unless large acreage of hardwoods can be preserved or developed; the demand-supply relationship for waterfowl hunting is becoming critical also.

#### Protection of Endangered Species of Flora and Fauna

Presently, about 66 plants and animals native to the basin are classified as "endangered" on a state or federal list. This number is expected to increase to 90 by 1990 and 112 by 2020. These organisms were assumed to be in need of adequate protection although the Endangered Species Act was passed in 1973.

#### Protection of Archaeological and Historical Sites

The basin contains 120 recognized archaeological sites needing preliminary investigation and/or protection. This number is expected to decline to 110 by 1990, and 100 by 2020. The present estimate of 255 historical sites needing preservation can be expected to decline to 200 by 1990 and 180 by 2020. The primary need in assuring protection of these sites is thorough documentation of the location and value of these sites followed by an appropriate public awareness effort.

### CHAPTER 2

# NATIONAL ECONOMIC DEVELOPMENT AND ENVIRONMENTAL QUALITY ALTERNATIVES

#### GENERAL INTRODUCTION

Many state and federal agencies in the study area are concerned with resource planning. Among those groups actively developing proposals are the USDA through RC&D and watershed work, the U. S. Army Corps of Engineers, the National Forest System, several planning and development commissions, and various city and county planners. The work of each of these groups was reviewed to determine to what extent plans, currently being developed, might satisfy component needs. Priorities for development, types of facilities desired, and possible funding were assessed through contacts with knowledgeable groups. The list of possible projects was based upon local interest, location in relation to existing facilities, population centers, future growth corridors, and previously determined needs for specific facilities.

Projects of highest priority were identified for further assessment. Project proposals were developed for each element based on the component needs expressed earlier. The development alternatives contain USDA project proposals as well as projects of other agencies.

Neither alternative completely satisfies all future demands. This was not the intention of the study. A plan to fully satisfy all needs would be both unrealistic and uneconomical. Each alternative simply represents a set of projects with high priority and expressed local interest.

The formulation of alternatives to meet specified component needs included the development of alternatives for national economic development (NED) and environmental quality (EQ). Alternatives for NED and EQ were formulated to achieve varying levels of contributions to the specified components of the objectives. Effectiveness of both the NED and EQ alternatives is shown in figure 2-3 and table 2-8, and indicates possible tradeoffs among components and resource allocation. The beneficial and adverse effects of each alternative have been evaluated and displayed for the four accounts of national economic development, regional development, environmental quality, and social well-being (see table 2-12). The identification of effects from various elements are presented in monetary and/or non-monetary terms. An element or measure may accrue effects to more than one account.

#### NATIONAL ECONOMIC DEVELOPMENT ALTERNATIVE

The overall purpose of the NED alternative is to promote national economic development by increasing the value of the nation's output of goods and services and improving national economic efficiency. The NED alternative reflects increases in the nation's productive output measured by the continuous flow of goods and services into direct consumption or investment. Elements included in the NED alternative were selected on the basis of their ability to satisfy component needs while emphasizing national economic development (table 2-1). Benefits and costs for those elements adaptable to monetary evaluations are shown in table 2-11.

#### Land Use

The NED alternative includes four elements designed specifically to reduce erosion and to improve production efficiency through proper use of land resources. Necessary land use changes would be accomplished through increased technical assistance to landowners in the development and implementation of sound conservation plans. The elements include provisions to:

1. Gradually shift row crops to capability class I through III soils; limit improved pasture to classes I through IV land (see Appendix to Volume I, p. A-91).

2. Require additional conservation or support acreage for each acre harvested--the additional acres to be used for proper water disposal, field borders, and fallow land to support crop production.

3. Remove high risk flood plain land (primarily subclasses IIIw and IVw) from possible use for crops and pasture.

4. Accelerate the current rate of land use change.

Economic analyses of factors affecting land use, particularly land availability, resource productivity, and consumer demands, indicate that without accelerated resource development, approximately 614,000 acres of basin cropland will be harvested in 1990. Elements included in the NED alternative would increase this figure by about 25 percent to 766,000 acres (see table 2-2). This increase is largely due to the movement of 130,000 acres of corn and cotton into the basin. There would be very little effect upon other major crops, i.e., soybeans, wheat, or hay. Table 2-1 -- Measures included in the early action portion of the NED Alternative, Alabama River Basin

#### Land Resource Development

- Conservation treatment on 1,271,000 acres of agricultural and forest land for erosion reduction.
- Drainage of 7,000 acres of cropland, 32,000 acres of pastureland, and 6,000 acres of converted woodland and unimproved pastureland would improve production efficiency.
- Changed land use for improved production efficiency on 382,000 acres of cultivated land.
- Conservation measures to reduce sediment in streams by 7.7 million tons/year.
- Roadside and gullied area stabilization to reduce critical erosion on 46,000 acres.
- Reduction of forest fire losses from 0.54 to 0.35 percent on 7,129,000 acres of forest land.
- Prescribed burning on 110,000 acres of forest to increase beef production.

Improve timber production efficiency on 530,000 acres. 1/

#### Water Resource Development

Changed land use on 38,000 acres to reduce flood damage. Six watershed flood control projects. Six reservoirs for municipal and industrial water supply:

Recreation and Culture

- Recreational development at 27 sites to provide 2.9 million activity occasions annually.
- Acquisition and protection of 75 miles of scenic streams and 5 natural scenic sites.
- Wildlife habitat improvement on 63,000 acres.
- Identification and protection of 7 species of flora and fauna.

Waste Disposal

Acquisition of 200 acres for solid waste disposal.

1/ This area needs treatment during the early action period in order to meet harvesting requirements in 2020. Under the NED alternative, basin farmers would account for a third of the State's cropland harvested in both 1990 and 2020, rather than the 28 percent projected without development. Net return to land, labor and management would increase about \$10 million annually by 1990. Both net returns and production are shown in table 2-3.

This alternative is strongly oriented to the reduction of soil losses from erosion. Implementation of NED elements would shift 55,000 acres of capability classes IVe through VIe soils, projected to be in crop production without development, to timber by 1990. Erosion control measures in support of harvested cropland would necessitate an additional 45,000 acres of supporting conservation land by 1990. This acreage would be used for proper water disposal and/or grass rotations to reduce sheet and rill erosion from row crops to acceptable levels.

Forest land acreage would remain at 7,155,000 acres in 1990. A total of 136,000 acres of capability class I and subclass IIw and IIIw forest land would be cleared for crops between 1975 and 1990. This acreage would be replaced by an equal amount of subclass IVe cropland to be reforested.

The category "urban and other land" includes all urban and built-up areas, home sites, farm roads, feed lots, ditch and road banks, non-farm or "urban" residences, and marshes. The NED option would have no effect upon the total acreage shifting to urban uses. However, the alternative calls for reservoirs that will inundate 4,000 acres of "other land" by 1990; consequently, the projected total in these uses would be reduced slightly in both 1990 and 2020.

#### Agricultural Flood Damage Reduction

<u>Changed Land Use--An opportunity exists for using nonstructural</u> means to reduce flood damage in small watersheds. To meet the needs for flood damage reduction in agricultural areas, study participants evaluated the effects of changing a portion of the flood plain use from crops and pasture to other uses having less damageable values. Flood damage in these watersheds could be reduced by nonstructural elements such as changed land use (i.e., by relocating a portion of the crops and pasture out of the lower levels of the flood plain where flooding is most severe and dollar damages are highest). This change could be accomplished through intensive conservation planning efforts that would utilize flood hazard information in selecting the best use for current cropland and pastureland being grown on soil capability subclasses IIIw and IVw.

	W/0 NED NED			591 718	560 658					6,862 6,862				11,015 11,015
PROJECTED	1/ NED	PLAN	1,000 Acres	766	687	29	610	872	558	7,155	770	267	17	11,015
	M/0 1/			614	580	34	625	1,025	542	7,155	774	263	17	11,015
		1970		1				531	796	7,471	682	245	17	11,015
		LAND USE		Cropland & conservation acres:	Harvested acres	Supporting conservation ac. <u></u>	Other cropland	Pasture, improved	Pasture, unimproved	Forest land	Urban and other land	Impounded water	Rivers & streams	TOTAL

Table 2-2 -- Land use, present, projected and NED alternative, Alabama River Basin, 1990 & 2020

Future "WITHOUT" accelerated resource development. Used for proper water disposal and/or grass rotations to reduce erosion. 151

2-5

ITEM	UNIT	1990	:	2020
Crop Production	Thou.			
Corn	Bu.	16,160		21,900
Cotton	Bales	150		47
Peanuts	Lbs.	13,200		39,700
Soybeans	Bu.	10,650		22,200
Wheat	Bu.	2,280		430
Oats	Bu.	525		300
Нау	Tons	500		690
Livestock	Mil.			
Beef & Veal	Lbs.*	300		420
Pork	Lbs.*	49		65
Poultry	Lbs.*	615		830
Eggs	Doz.	116		150
Milk	Lbs.	150		75
Net Returns	<u>Mil.</u>			
NED Plan Without Accelerated	Dol.	50.3		84.8
Resource Development	Dol.	40.3		70.8

Table 2-3 -- Projected production of major farm commodities, and total net returns, NED alternative, Alabama River Basin, 1990 & 2020.

*Liveweight

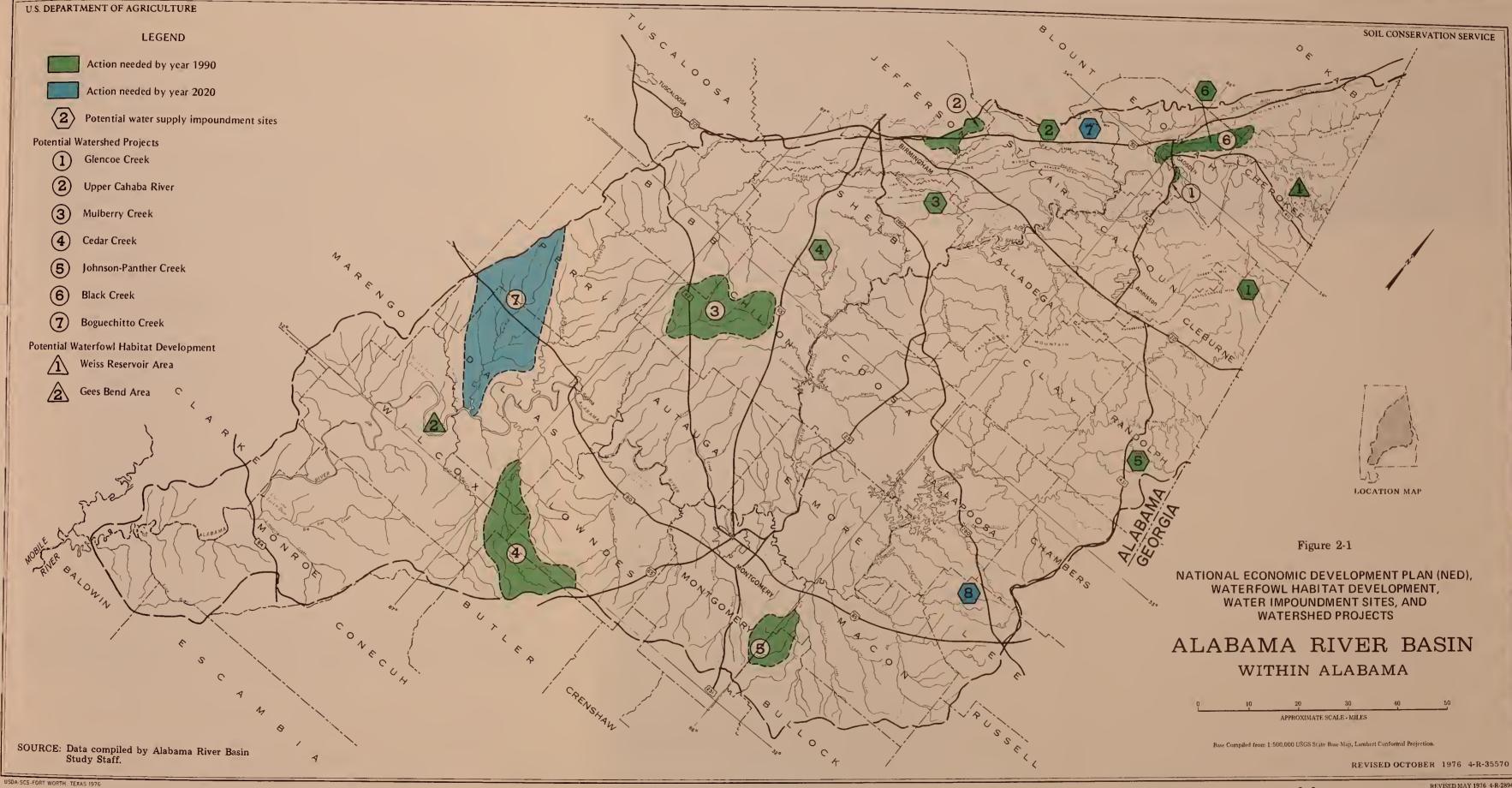
The changed land use method of reducing agricultural damages is most applicable in areas where crops and pasture currently grown on capability subclasses IIIw and IVw and can be moved to upland soils with suitable capability classes. The availability of suitable upland soils on a given farming unit will limit the extent that this measure can be applied. In the portion of flood plain where this measure was evaluated, it was assumed that damage reduction on about 15 percent of the cropland and about 20 percent of the pastureland could reasonably be accomplished. The desire by individual landowners to minimize flood losses and take advantage of other land use opportunities would provide the incentive to accomplish this measure. Land use in flood plains of these watersheds amounts to about 49,000 acres of crops and about 154,000 acres of pasture. Early action (1990) to remove crops and pasture from flooded areas would involve changed land use on about 7,000 acres of cropland and about 31,000 acres of pastureland. By the year 2020, this measure would be expected to increase to 8,000 acres for crops and 35,000 acres for pasture. The flood plain land where these crops and pastures were formerly grown could be used for timber production, open space, recreation, wildlife habitat, or other uses with lowdamageable values.

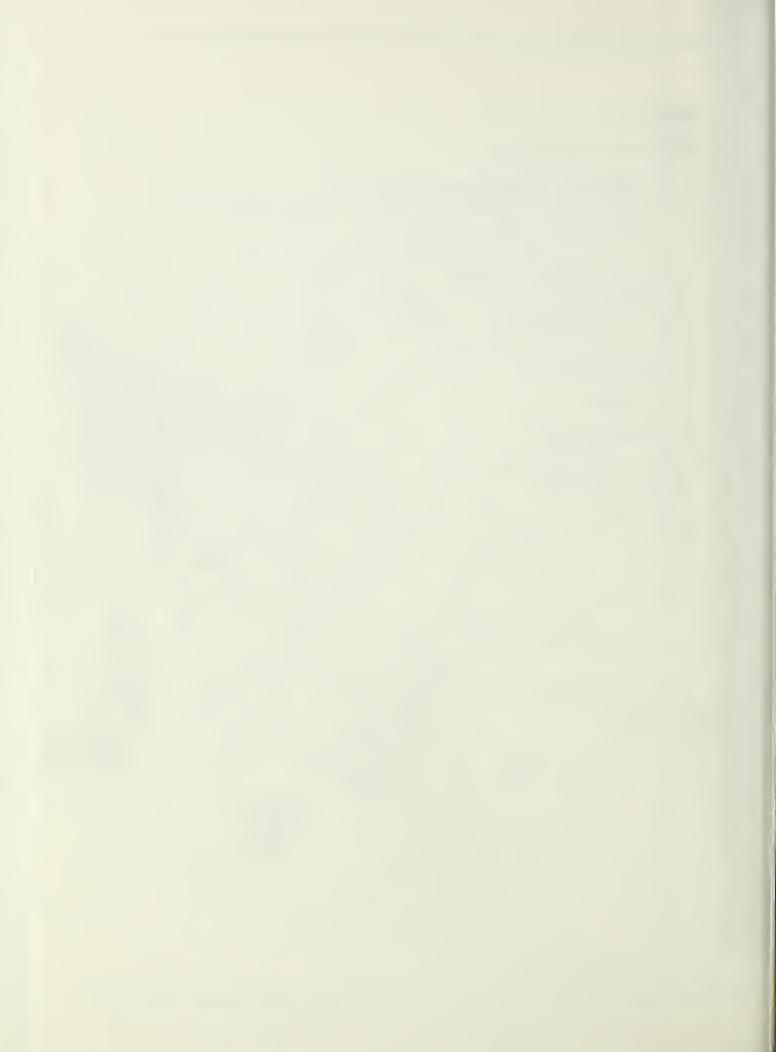
<u>Structural Measures</u>--The magnitude of flooding in the flood plain of some watersheds was so great it was not reasonable to assume that the problem could be adequately solved by changed land use alone. Structural measures for flood prevention were considered as an alternative method of flood damage reduction on agricultural areas for the remaining flood plain. These measures include floodwater retarding structures, flood dikes, and channel work. Structural measures were selected with assistance from officials representing the appropriate Soil and Water Conservation District, and state and federal agencies.

Structural measures to protect 2,000 acres of cropland and 8,000 acres of pastureland consist of 13 floodwater retarding structures, 3 multiplepurpose structures, 14.3 miles of channel work, and 0.7 miles of flood dikes. These measures are contained in six watershed projects shown in table 2-4 and located on the NED alternative map (see figure 2-1). These projects can be installed during the early action period under Public Law 83-566 or Resource Conservation and Development authority.

#### Erosion Reduction

The study reveals there is enough land in the basin to meet future forestry and agriculture production needs and reach a reasonable goal of erosion damage reduction thereby protecting the resource base. Unproductive acreage needed to adequately protect harvested areas was considered a part of cropland needed for an expected harvest.


An NED goal was selected that would use existing and new programs to reduce erosion on 75 percent of the cropland and pastureland to the acceptable limit of two to five tons per acre per year. The goal for reducing erosion on "Other" cropland and unimproved pasture was established for adequate treatment on 50 percent of this land.


Since a major portion of erosion is taking place on about one-third of the basin's land, the most logical method to reduce erosion is to convert these highly erodible lands to less intensive uses. The NED alternative proposes to change the use of most land classified as capability subclass IVe, VIe, and VIIe along with some acreage of shallow soils to some type of permanent cover, probably forest.

	CNI NO. 1970 R-B				TYPE AND AMOUNT OF	AVERAGE ANNUAL
WATERSHED	ATLAS	AVERAGE A	AVERAGE ANNUAL DIRECT BENEFITS 1/	BENEFITS	S	COST 2/
Early Action (1990)	(06	Flood	Recrea-	Loto Loto		
Mulberry Creek	35a-1,2,4,5	86, 500	•••	101,300	7 single purpose FRS 1 multiple purpose structure	101,100
Johnson-Panther Creeks	35a2-68	230,000	I	230,000	4 single purpose FRS 10.4 mi. channel work	182,200
Cedar Creek	35a-45,61,62	224,300	650,000	874,300	2 single purpose FRS 1 multiple purpose structure	403,500
Glencoe Creek	35a1-11	69,000	ı	69,000	3.9 mi. channel work	27,800
Upper Cahaba Tributary	35a3-1,2,4	3,800	I	3,800	0.7 mi. flood dike	2,200
Black Creek Subtotal	35a1-7	39,700 653,300	157,500 822,300 1	197,200 1,475,600	1 multiple purpose structure	108,600 825,400
Long Range (2020)	Ī					
Boguechitto Creek Watershed Bear Creek Trib.35a-29	k Watershed o.35a-29	122,000	,	122,000	l single purpose FRS	36,300
Washington Creek Trib.	ek 35a-23	86,000	ı	86,000	1 single purpose FRS	48,000
Dry Channey Creek Trib.	35a-27	25,000	I	25,000	1 single purpose FRS 2.6 mi. channel work	14,300
TOTAL		886.000	822,300 1	1.708.600		924,000

Table 2-4 -- Average annual benefits and costs for watersheds found economically feasible, NED alternative, Alahama River Basin 1975

2-8





In the NED alternative, 98 percent of the crops would be grown on land capability classes I through III. On these lands, conservation systems would restrict soil loss to within a 25 percent tolerance of the allowable loss established for the dominant soil in each soil resource group.

A program of prevention and rehabilitation can reduce forest erosion in 1990 from a projected 33.5 million tons annually to 13.7 million tons. This program is based upon the prescription and application of forest watershed standards and practices equal in effectiveness to those described in the U. S. Forest Service Watershed Management Standards for the Southern Appalachians.

The following is one of the more practical combinations of measures that will produce the necessary erosion reduction to meet the standards described in Chapter 4, Volume I:

- 1. Reduce the acreage of spur roads and skid trails disturbance from 60,000 to 35,000 acres through proper planning and location of roads. This will reduce the erosion volume by 2,160,000 tons per year.
- 2. Lower the combined erosion rate for skid trails and spur roads from 33.5 tons/acre/year to 9.0 tons/acres/year through practices such as water bars on spur roads and skid trails, seeding bare soil, and shaping banks. This will reduce erosion volume by 2,934,000 tons per year. A total of 30,000 acres will be treated.
- 3. Lower the erosion rate from mechanical site preparation areas from 96.7 tons/acre/year to 18 tons/acre/year to obtain a reduction of 13,363,000 tons per year; 19,000 acres will require modified installation, site preparation, and/or vegetative measures.
- 4. Attain the fire protection goal for 1990. This should reduce erosion volume by 406,000 tons per year.
- 5. Accelerating the conversion of 3,500 acres of cropland to forest each year of the early action plan will reduce erosion by 450,000 tons per year.

With the NED alternative, general erosion could be reduced from a projected 53.6 million tons annually in 1990 to 33.6 million tons. The reduction would be primarily from treatment of general erosion on cropland, pastureland, and forest land (table 2-5).

	PRESENT		90	2020		
TYPE OF EROSION	1970	W/O	NED	W/O	NED	
		Mill	lions of 7	Cons		
General <u>1</u> /	50.4	53.6	33.6	62.7	30.2	
Gullies and other critical	14.8	14.9	10.2	15.3	8.2	
TOTAL	65.2	68.5	43.8	78.0	38.4	

Table 2-5 -- Total annual erosion, present, projected and NED alternative, Alabama River Basin, 1990 & 2020

1/ Includes sheet erosion and forest erosion.

The general* erosion reduction measures included in the NED alternative for 1990 consists of conservation measures such as cover crops, sod in rotation, complete water disposal systems, pasture planting and management measures to protect 1,197,000 acres and forest site preparation and forest vegetative measures, to protect 74,000 acres. Treatment is summarized in table 2-6. Table 2-7 compares projected average erosion rates without a plan and with the NED alternative implemented.

#### Agricultural Drainage

The 1990 NED alternative provides for the installation of drainage measures on 7,000 acres of cropland, 32,000 acres of pastureland, and 6,000 acres of converted forest land and unimproved pastureland. Drainage to be installed under NED concepts includes land capability subclasses IIw and IIIw cropland and IIw, IIIw, and IVw pastureland which is not classified as wetland in Volume I. Drainage will also be installed on forest land converted to cropland, unimproved pastureland converted to cropland and unimproved pastureland converted to improved pastureland.

Past records indicate that it is possible and practical to accelerate present drainage programs 3,000 acres per year. The present programs are considered to be meeting the recurring needs.

The 2020 NED alternative provides for the installation of drainage measures on 21,000 acres of cropland, 98,000 acres of pastureland and 16,000 acres of converted forest land and unimproved pastureland.

^{*} Includes sheet erosion and other dispersed erosion in contrast to critical, or concentrated, erosion.

LAND TREATMENT TO MEET "T" VALUE NEEDS		90	20	20
(2 TO 5 TONS/ACRE/YEAR EROSION)		REMAINING		REMAINING
Cropland		1,000 Acres		
Crop residue use or cover cropping Contour farming or drainage systems	212	78	272	101
Contour farming Crop residue use, water disposal systems, sod in rotation	148	55	79	29
Other Cropland				
Establish perennial cover	220	247	258	313
Improved Pastureland				
Planting and management	480	144	592	179
Unimproved Pastureland				
Pasture management	137	293	108	130
Forest Land				
Site preparation	19	0	30	0
Log roads and skid trails installation and rehabilitation	55	-	84	-
TOTAL	1,271	817	1,423	752

Table 2-6 -- Erosion reduction measures, NED alternative, Alabama River Basin, 1990 & 2020

	PRESENT	19	990	202	20
LAND USE	1970	W/O	NED	W/O	NED
		Tons	per acre	per year	
Cropland harvested	9.5	7.6	3.8	7.5	3.8
Other Cropland	13.4	11.4	7.5	16.4	7.5
Improved Pasture	3.4	2.8	2.4	3.4	2.1
Unimproved Pasture	4.1	5.2	4.3	5.8	3.8
Forest, slight to undisturbed	0.9	0.9		0.7	
Forest, disturbed	33.6	33.0	2.5 <u>1</u> /	33.0	2.0 <u>2/</u>
Urban and "Other" Land	5.3	5.0	5.0	4.8	4.8

#### Table 2-7 -- Erosion rates, present, projected and NED alternative, Alabama River Basin, 1990 & 2020

1/ Weighted average erosion for all forest lands is 2.5.

 $\overline{2}$ / Average erosion for all forest lands is 2.0.

The planned drainage measures for cropland to be installed by 2020 will meet the need shown in the 1967 conservation needs inventory for subclasses IIw and IIIw cropland. All of the drainage needs for the converted land will be met by 2020. There will be 71,000 acres of pastureland remaining in 2020 that needs drainage. It was decided that it is not practical or economical to accelerate drainage programs sufficiently to meet all the drainage needs for pastureland.

#### Improved Production Efficiency

Elements to improve agricultural production efficiency are tied closely to nonstructural measures associated with erosion control. These measures center around shifting crop production from highly erodible to less erodible soils. Crop production would be shifted almost exclusively to capability classes I-III soils, with pasture limited to classes I-IV. This would be brought about through a program of technical assistance and landowner education conducted by Alabama Cooperative Extension Service and Soil Conservation Service field personnel. Another element would require removing 38,000 acres of severe risk flood plains from production of crops and pasture. Efficiency gains within the basin would stem from land use adjustments on 382,000 acres in the form of cropland shifted to pasture or vice-versa, conversion of idle pasture to crops, and clearing of forest land for conversion to crop production during the early action phase of the plan. The net effect within the basin would be an increase of about 150,000 acres of cropland harvested, offset by a similar reduction in improved pasture for beef.

Net returns to basin operators would increase about \$10 million annually, largely as a result of the increased share of state crop production--28 to 33 percent by 1990. A breakdown of the \$10 million benefit reveals that \$3 million accrues purely from efficiency gains, i.e., reduced per unit costs applied to the original output, while the remaining \$7 million results from a shift of crop production into the area coupled with increased efficiency of production.

#### Increased Forest Production

The NED alternative will provide the additional 82 million cubic feet of roundwood in 2020 assuring an output of 600 million cubic feet. Improved utilization measures will provide 70 percent of the increased volume, while 30 percent will come from accelerated forest management.

By increasing utilization efficiency 0.4 percent each year throughout the period 1980 to 2020, an additional 57.4 million cubic feet of roundwood can be produced. This increase may be achieved by training employees involved in manufacturing and harvesting wood products through operations analysis and recommendations, proper use of existing equipment, felling and bucking techniques for optimum use of trees and correct use of new equipment and techniques as they are developed.

Accelerated forest management will require reforesting 100,000 acres and improvement cutting on 687,000 acres. The program must be completed in 15 years, 1980 to 1995, in order to meet timber requirements for sawtimber and pulp in 2020. This will demand regenerating an additional 6,700 acres per year and timber stand improvement on 46,000 acres per year.

#### Reduction of Fire Losses

Presently, there are 39 forest fire control units in the basin. To meet the projected NED goals, an additional 31 units are necessary by 1990.

#### Increased Forest Grazing

The major result of the forest range program is not so much one of production, but a shift in range use from fragile to more compatible sites.

The NED grazing alternative will produce an additional 1.2 million pounds of beef in 1990. In 2020, 600,000 pounds will be supplied from forest grazing.

A minimum range program is built around prescribed burning of 110,000 acres of pine forests on favorable soils. A portion of such burning every year in stands up until they are 30 years old.

#### Urban Flood Damage Reduction

Approximately eighty communities in the basin have an urban flood problem (table 1-1). The number is expected to increase. In flood plain areas where urban developments are intense, flood damage could be reduced with the installation of various combinations of nonstructural measures such as watershed treatment, flood warning systems, flood proofing, and flood plain use regulations. Preparation of a detailed combination of measures for each community, and computation of the associated costs and benefits of each cannot be developed in a study of this intensity. Time and manpower limitations precluded detailed studies of individual communities. Therefore, no elements are included in either alternative plan for achieving urban flood damage reduction. When remedial efforts are undertaken, first consideration should be given to nonstructural measures described below (also discussed in the Suggested Plan.

Watershed Treatment--Conservation measures for watershed protection can be installed with assistance from state and federal agencies. This nonstructural measure is basic to watershed projects, Resource Conservation & Development project measures, and river basin plans. Combinations of agriculturally oriented measures make up a conservation cropping system that is tailored to meet the needs for protecting land and reducing runoff in urban as well as agricultural areas. These measures may include crop residue management, cover crops, terraces, grassed waterways, contour farming, grass in rotation with crops, or permanent grass cover.

<u>Floodwarning Systems</u>--Local communities should work with the National Weather Service and state agencies to obtain an effective floodwarning system. One type of warning system is based on the collection of rainfall data by time periods. The data is reported to a central location where a forecast of peak stage is made. An alternative system could include an automatic gaging station at selected stream locations that activate alarm systems. In either case, local residents are warned that flooding is imminent and appropriate action can be taken.

<u>Flood Proofing</u>--Flood proofing consists of measures designed to prevent or limit flood damage to structures and contents of buildings. Measures generally are installed to reduce damage once the water reaches a building and could result in substantial reduction in flood losses.

Flood Plain Use Regulations--To help bring about the economic use of flood plains, governmental bodies frequently adopt comprehensive flood plain regulations. They may also request the preparation of flood hazard maps based on detailed analysis as a means of securing flood insurance. Regulations may be incorporated in building codes, subdivision regulations and/or zoning ordinances to insure that flood plain use is compatible with the degree of flood risk.

#### Water Supply

Municipal water supply studies were conducted for 20 communities. Storage sites were selected based on potential to supply the amount of water needed and the comparable costs of other available sources. A total of six sites supplying 19.5 MGD were selected to serve 10 communities in 1990 (see figure 2-1). Two additional sites were selected to supplement long-range needs. Multiple use of these water supply reservoirs is planned. Water supply reservoirs are expected to furnish sufficient water for municipal, industrial, and domestic use commensurate with projected population growth (see table 2-8).

#### Increased Recreation

Development plans center around a system of six county parks located on major reservoirs between Lake Weiss and Jordan Lake (see figure 2-2). Emphasis is on family outings, with swimming, picnicking, playground areas, boating, skiing and hiking to be enjoyed. Campsites could be developed later as needed. The county parks, located about 40 miles apart, would be connected by a system of hiking trails with primitive campsites along the way. Initially, 40 miles of trail would run from Talladega County Park on Logan Martin Lake to Shelby County Park on Lay Lake. This trail would be of an experimental nature, and if successful, would be expanded to link the entire six park system. None of the six counties involved (Elmore, Chilton, Shelby, Talladega, St. Clair, and Cherokee) have a countywide park of this type, yet all are in the populous, Montgomery-Birmingham-Gadsden growth corridor. The general location and type of facilities to be provided are shown in table 2-9.

	OTHER PURPOSES SERVED	ı	FC <u>4</u> /	ł	ł	с. т.	ĩ	I	FC $\frac{4}{7}$	ed. isted.
	3/	2.0	7.0	18.1 <u>5/</u>		18.0 <u>6/</u>		8.0	2.0	Shelby Co. communities listed. St. Clair Co. communities listed
	/ WATER NEEDS (MGD)	1.5	3.6	9.0 <u>-</u> /		4.4 <u>6/</u>		4.0	1.0	communi o. comm
	WATER <u>2</u> , SUPPLY (MGD)	9.7	8.4	8.5	7.8	11.0	7.0	12.0	8.5	Shelby Co. St. Clair Co
	SURFACE AREA (AC.)	240	111	440	442	415	260	670	485	
	M&I STORAGE (AC. FT.)	2,000	2,000	3,000	4,800	4,000	3,500	4,500	2,000	needs needs - Recre
	DRAINAGE AREA (SQ. MI.)	37.2	29.0	21.5	13.6	37.8	14.4	40.2	29.8	<u>5/</u> Total <u>6/</u> Total <u>7/</u> Rec
	SITE I LOCATION S. T. R.	Sec. 2, T20S,R11E	Sec. 18, T13S,R11E	Sec. 31, T21S,RIW	Sec. 15, T18S,R18E	Sec. 21, T14S,R2E	Sec. 17418 T13S,R4E	Sec. 546 T19N,R25E	Sec. 29, T10S,R7E	cial.
4	STREAM NAME	Wedowee Cr.	Terrapin Cr.	Camp Branch	Bear Cr.	Canoe Cr.	Gulf Cr.	Loblockee Cr.	Black Cr.	long-range, 2020 ize the site potent ame
4	BASIN <u>1</u> / PLAN	1990	1990	1990	1990	1990	2020	2020	1990	<u>90 long</u> / utilize 1 ime frame 1trol
	COMMUNITIES SERVED	NED Plan Randolph Co. Wedowee Woodland	<u>Calhoun Co.</u> Jacksonville Piedmont	<u>Shelby Co.</u> Calera Columbiana	Sterrett-Vandiver Westover Wilsonville	St. Clair Co. Margaret Moody Odenville	Ashville Springville Steele	<u>Lee Co.</u> Auburn Opelika	Etowah Co. Lookout Mtn. (Gadsden)	$\frac{1}{2}$ Early action, 1990 long-range, 2020 $\frac{2}{2}$ Designed to fully utilize the site potential $\frac{3}{2}$ F. C Flood Control

Table 2-8 Potential water supply impoundment sites, NED alternative

A total of 27 recreation sites, providing 2.9 million activity occasions of recreation annually, are proposed during the early action phase of the 1990 NED plan. The plan would return an estimated \$3.1 million yearly, at a cost of \$1.5 million. In addition to the county parks, proposals include recreation in eight PL-566 watersheds, expansion of camping and hiking areas in both the Talladega and Tuskegee National Forests, and construction of three city parks along rivers. Several groups are actively seeking funds to identify and reestablish the Bartram Trail. This trail will meet a large portion of the basin's hiking trail needs.

#### Solid Waste Disposal

Two 100-acre disposal sites needed for hazardous solid wastes should be located in the Blackland Prairies section of the basin by 1990. The specific location of these sites has not been selected. An additional 200 acres of disposal area will need to be developed by 2020. There is no precedent in the state at present for the location and operation of this type of solid waste disposal site though this is a critical need identified by the State Department of Public Health, Solid Waste Division. The best approach to solving this problem would be through a cooperative effort involving participating private industries with planning assistance provided by the State Department of Public Health, Solid Waste Division.

#### Reduction in Sedimentation

Basic assumptions were that (1) sediment reduction is directly proportional to erosion reduction and that (2) sediment production cannot be totally eliminated.

Plans to reduce sediment load are closely tied to conservation measures for erosion control. These measures include conservation treatment on cropland, pastureland, forest land and other dispersed sediment source areas as well as critical area treatment. The combined effects of all measures to be installed by 1990 will reduce sedimentation by 7.7 million tons per year (table 2-10). By treating more acres, the long-range plan would reduce sedimentation by 11.4 million tons annually by the year 2020. No debris basins or other reservoirs having sediment entrapment as a primary purpose are included in the plan. The sediment discharge of major streams was not estimated.

#### Reduction of Critical Erosion

Critically eroding areas are widely dispersed throughout the basin. Inventory estimates by counties are available in the river basin files.

21 FF				FACILITIES	TO BE	PROVIDED				
NO.	FACILITY	SWIMMING	PICNICKING	CAMP ING	GROUND	HIKING	BOATING	FISHING	WATERSKIING	GOLF
mmed	Immediate Need									
1	Weiss Lake Park (Cherokee)	×	Х	To be	Х	×	X	×	Х	Х
2	Neely Henry Park (St. Clair)	Х	Х	added as	X	×	×	×	: ×	:
3	Logan Martin Park (Talladega)	×	Х		×	×	×	×	×	
4	Lay Lake Park (Shelby)	X	Х		X	Х	Х	×	~	
S	Lake Mitchell (Chilton)	Х	Х		X	×	×	×	× ×	
6	Lake Jordan (Elmore)	×	Х		Х	×	Х	×	~	
7	Lake Minooka		Х	X		~	X	×		
00	Cornwall Furnace		Х	Х		×				
6	Hatchett Creek Canoe Trail						X	×		
10	Tallassee-Carrville Park	X	Х	Х	X		Х	Х	Х	
11	Brent-Centerville Park	×	Х	Х	X		Х	×		
12	West Blocton Park	X	Х	Х	X					
3	Canoe Creek	Х	Х	Х	Х		×	X		
4	Terrapin Creek		Х		Х		×	Х		
ŝ	Wedowee Creek		Х		X		X	×		
6	Bear Creek		Х		X		Х	X		
7	Camp Branch	Х	Х		Х		×	X		
80	Cedar Creek	Х	Х	Х	Х		×	X		
19	Mulberry Creek	Х	Х	X	Х		X	X		
20	HikingTalladega N.F.			X		×				
21	HikingSites 3 to 4			Х		×				
22	Bartram Trail			X		×				
23	HikingOak Mt.			Х		×				
24	Roadside ParkTuskegee N.F.		Х	Х	Х					
25	CampingTuskegee N.F.			Х						
26	CampingTalladega N.P.		Х	Х		Х				
27	Black Creek	×	Х	×	×	X	Х	Х		
20	Range							t		
28	Gulf Creek	Х	X	×	Х		X	X		
29	Loblockee Creek	Х	X	×	X		××	~ >	٨	
30	HikingTalladega N.F.			×	:	X	<	4	<	
31	HikingSites 2 to 3			X		×				
32				×		×				
33-38				Х		:				
	county parks									
20	Comptant Tallal									

Table 2-9 -- Recreation sites proposed in the NED Alternative, early action and long-range plans, Alabama River Basin

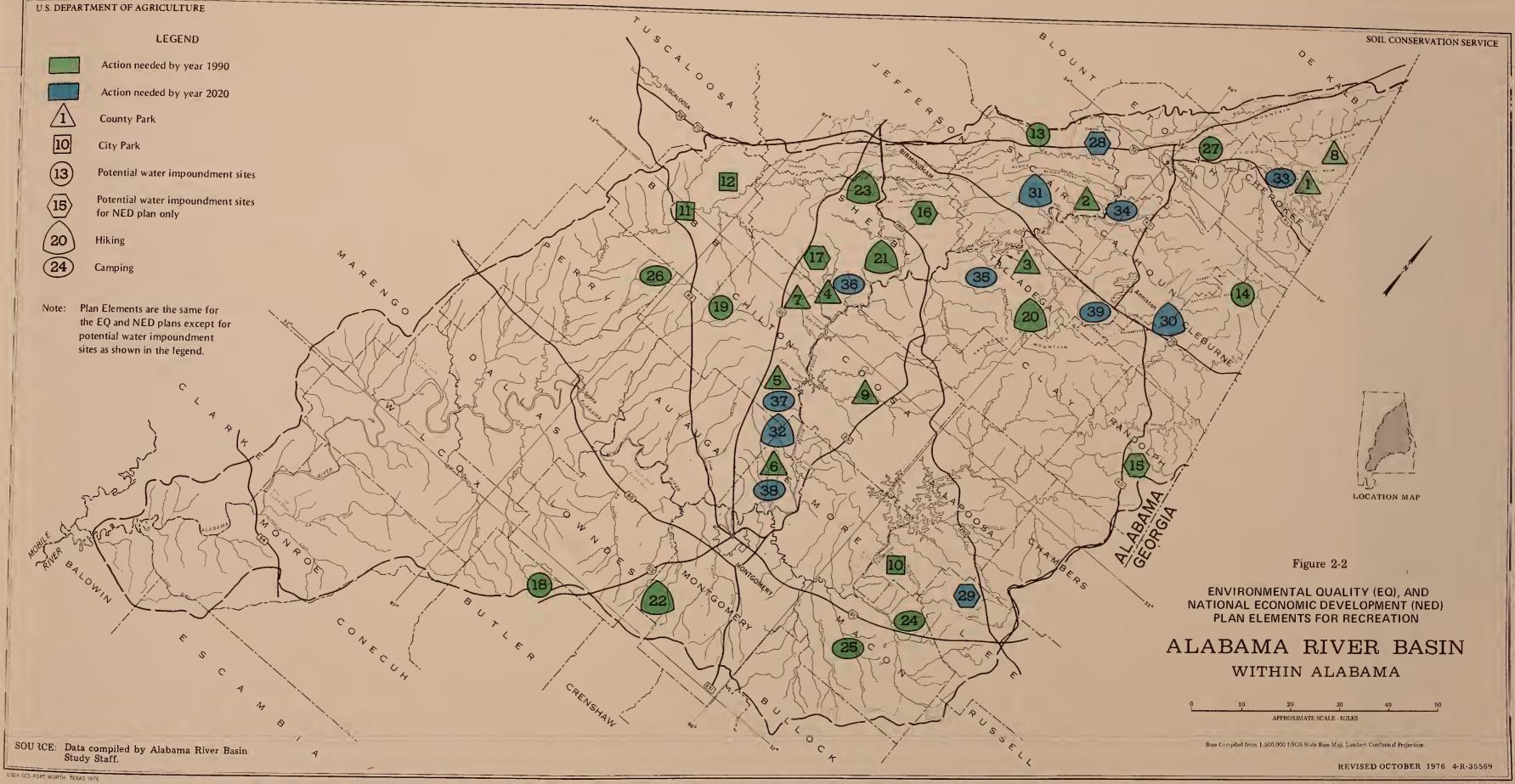



Table 2-10 -- Annual sediment production, present, projected and NED alternative, Alabama River Basin, 1990 & 2020

	· · · · · · · · · · · · · · · · · · ·	199	90	20	20
SOURCE OF SEDIMENT	PRESENT 1970	W/O	NED Lons of '	W/O Fons	NED
General erosion <u>1</u> /	12.7	13.4	8.5	14.8	7.8
Critically eroding areas	8.7	8.6	5.8	8.9	4.5
TOTAL	21.4	22.0	14.3	23.7	12.3

1/ Includes "disturbed" forest lands eroding at "critical" rates.

The NED alternative will provide erosion protection to 45,200 acres of gullied land by 1990 and to 70,200 acres by 2020. Treatment will consist of grading and shaping, installing simple diversions, planting and establishing temporary and permanent vegetation. In a few instances, because of large amounts of runoff to be handled, gullies will be stabilized by combining vegetative measures with structural outlet works such as concrete spillways and flumes.

Roadside erosion control measures are planned for 920 acres by 1990 and 1,380 acres by 2020. Roadside erosion will be controlled by combinations of vegetation, shaping, paved gutters, and concrete drop structures. No streambank or mine spoil treatment is included under the NED alternative.

# Scenic Rivers and Streams

Scenic rivers and streams were evaluated primarily on their aesthetic value, size, location, and water quality.

Data regarding scenic streams was obtained from the National Scenic Rivers Study, Alabama Statewide Comprehensive Outdoor Recreation Plan, and appraisals of potential for outdoor recreation development in each county. In addition, the county representative for state and federal agencies responsible for natural resource management was contacted and their input solicited.

The NED alternative would protect 75 miles of scenic streams by 1990 and 125 miles by 2020 through site acquisition and state legislation. A total of 225 miles will remain unprotected in 1990. This proposal would involve state, federal, and private programs in addition to existing USDA activities. The specific mileage by stream system to be protected should be determined through more detailed study. However, several streams such as Shoal Creek, Hatchett Creek, Little River, Tallapoosa River, and the Cahaba River should be given a priority consideration.

#### Natural Scenic Sites

Elements proposed for the preservation and protection of natural scenic sites involve the purchase or lease of five sites by 1990 and ten sites by 2020. The exact location of these sites was not finalized in this study. A properly designated state or federal agency should be authorized to recommend the specific natural scenic sites to be acquired as in the scenic river proposal. It is suggested, however, that one or two sites from each of five representative categories be selected. The major categories for natural scenic sites are overlooks, caves, springs or waterfalls, swamps, and unique rock formations. Obviously, some sites such as Horse Pens Forty and Blue Girth-Beech Creek Swamp could be considered in more than one division if they encompass more than one scenic characteristic.

# Fish and Wildlife Habitat Improvement

Elements for fish and wildlife habitat improvement were formulated primarily through the efforts of a multiagency work group. Local input was obtained from appropriate officials both at the county and state levels. Most of the elements are oriented toward improving habitat for fish and wildlife species that are utilized primarily in consumptive recreation endeavors such as hunting or fishing. However, consideration was given to habitat improvement for both game and nongame animals for nonconsumptive purposes such as nature photography.

It was assumed that 13,500 acres necessary to develop two waterfowl management areas could be obtained. Several assumptions were made regarding the status of wetland habitat without development include: a projected public access to at least 20 percent of the small impoundments and 30 percent of Type 1 and Type 2 wetlands, <u>1</u>/ existing wetland acre values would not decline significantly, and future utilization of waterfowl and other birdlife associated with wetland areas will remain at a relatively constant rate.

Habitat improvement needs were categorized by four habitat types upland, wetland, impoundment, and stream. The proposals for stream improvement assume certain point sources of pollution will be properly regulated by 1990.

^{1/} See Volume I, p. 2-57 and Circular 39, Wetlands of the United States.

<u>Upland Habitat</u>--The NED alternative will supply 50,000 acres of the needed 150,000 acres of habitat improvement by 1990 and 100,000 acres of the needed 250,000 acres by 2020. Specifically, the proposals include the leasing and management of 30,000 acres for public hunting, and intensified management on 20,000 acres of private, state and federal land.

Wetland Habitat--Wetland habitat for waterfowl refuges and management areas is noticeably absent from the basin. Wetlands are somewhat limited especially those areas which have a high value for waterfowl. The NED elements will supply 9,000 acres by 1990 with no increase projected for 2020.

The NED alternative consists of a waterfowl refuge and management area of 2,500 acres on Weiss Lake and a comparable area of 3,500 acres near Gee's Bend on the lower reaches of the Alabama River. Management of beaver ponds and greentree reservoirs 1/ would comprise the remaining 3,000 acres. The refuge areas would offer needed protection for waterfowl so they would be less likely to leave under hunting pressure.

<u>Impoundments</u>--Field surveys indicate a need for impoundment habitat management on at least 8,000 acres by 1990 and 10,000 acres by 2020. The NED alternative will contribute about 40 percent of these needs. The elements involve accelerated technical assistance and cost sharing to implement new management techniques and encourage more public access to private ponds.

<u>Streams</u>--The NED elements include accelerating or creating state and federal programs to improve 1,000 acres of streams by 1990 and 2,000 acres by 2020. This will be accomplished by selective snagging and clearing, selective stocking, instream devices to create habitat, bank stabilization, and improved access.

# Protection of Endangered Species of Flora and Fauna

The NED elements propose critical habitat acquisition (37,000 acres), habitat management (15,000 acres), and accelerated protection of 7 species of plants and animals by 1990 and 11 species by 2020. This alternative will stress protection of species with likely economical influences such as the American alligator.

^{1/} Greentree reservoirs are areas of bottomland hardwoods (mostly mast-bearing oaks) around which low dikes are built.

# Table 2-11 -- Benefits and costs, NED alternative, Alabama River Basin, 1990

COMPONENTS & PLAN ELEMENTS ·	TOTAL INST. COST	ANNUAL COSTS 1/	ANNUAL BENEFITS
JOHI ONENTS & LEAN ELEMENTS		usand Dollars	
Flood Reduction			
Changed land use	5,500	340	375
Structural measures	8,000	494	653
Urban-nonstructural	NA	NA	NA
increased Drainage		1474	1416
Surface and subsurface	2,700	170	200
increased Beef Production		270	200
Prescribed burning			
(forest land)	4,850	300	415
Create Water Supply	,,	000	115
Impoundments	4,000	255	339
increased Recreation	.,		000
Facilities	24,000	1,499	3,100
Frosion Reduction	24,000	1,400	5,100
Conservation systems	(21,000) 2/	(1,297) 2/	NA
improved Production Eff.	( <i>mi</i> )000) <u>m</u>	(1,20,7) -	1414
Changed land use	12,200	750	4,700
Reduced Fire Losses	12,200	,50	+,,,00
Equipment	(1,750) 2/	(110) 2/	NA
Critical Erosion Reduction	(1,700) 4/	(110) -/	1412
Stabilization	(60,000) 2/	(3,900) 2/	NA
Reduced Sediment Load	(00,000) 2/	(3,500) 2/	1174
Conservation systems	NA	NA	NA
Solid Waste Disposal	. MAL	TALL	141.0
Acquisition	(400) 2/	(25) 2/	NA
Scenic Streams Acquisition	$(180) \frac{2}{2}$	$(11) \frac{2}{2}$	NA
latural Scenic Sites	(100) 2/	(11) 4/	1474
Acquisition	(680) 2/	(42) 2/	NA
Fish and Wildlife Habitat	(000) 2/	(~2) 2/	INA
Management and improvement	(4,100) 2/	(253) 2/	NA
Protection of Flora and Fauna	(4,100) 2/	(200) 2/	INPL
Acquisition	(850) <u>2</u> /	(52) 2/	NA
increased Timber Production	(050) 2/	(32) 2/	1925
Utilization and Accel. Mgmt.	30,000	1,859	4,715
otilization and Accel. Mgmt.	50,000	1,035	4,713
OTAL	\$ 91,250	\$ 5,667	\$ 14,497
	4 01,200	4 0,007	φ 11, 10/

COMPONENTS	MEASURES OF EFFECTS	COMPONENTS	MEASURES OF EFFECTS
Beneficial effects: (	(Average Annual) <u>1</u> /	Adverse effects:	(Average Annual) $\underline{1}/$
A. The value to users of		A. The value of resources	
increased outputs of		required for the NED plan:	
goods and services			
		1. Multi-purpose reservoirs,	
1. Flood damage reduction	1,020,000	floodwater retarding struc-	
2. Increased drainage	198,000	tures, recreational and	
3. Increased beef production		water supply reservoirs,	
(forest)	410,000	channel work, and recrea-	
4. Create water supply	335,000	tional facilities	
5. Increased recreation	3,070,000	Project installation	1,513,000
6. Increased timber production	4,670,000	OMGR	1,000,000
7. Production efficiency	4,664,000	2. Nonstructuralincreased beef	ef
8. Utilization of unemployed		production on forest land	
and underemployed labor		prescribed burning	300,000
resources		3. Increased timber production	1,859,000
		4. Production efficiency	750,000
a. Project construction	130,000	5. Project administration	245,000
Total heneficial effects	14 497 000	Total adverse effects	5.667.000
		Net beneficial effects	8,830,000

2-27

Table 2-12 -- National economic development account, NED alternative, (dollars)  $\underline{1}/$ 

1/ Amortized over 100 years at 6-1/8 percent interest.

COMPONENTS	MEASURES OF STATE OF ALABAMA	* EFFECTS REST OF NATION	COMPONENTS	MEASURES OF STATE OF ALABAMA	EFFECTS REST OF NATION
Income			Income		
Beneficial effects:	(Average Ann	Annual) $\underline{1}$	Adverse effects:	(Average Annual)	ual) $\underline{1}/$
A. The value of increased output of goods and services to users re- siding in the region			A. The value of resources con- tributed from the region to achieve the output		
			<ol> <li>Multi-purpose reservoirs,</li> </ol>		
1. Flood damage reduction	1,020,000	0	floodwater retarding		
2. Increased drainage	198,000	0	structures, recreational		
3. Increased beef production 410,000	on 410,000	0	and water supply reservoirs,	S,	
	335,000	0	channel work and recreational	nal	
5. Increased recreation	2,770,000	300,000	facilities		
6. Increased timber prod.	4,670,000	0	Project installation	973,000	540,000
7. Production efficiency	4,664,000	0	OM&R	1,000,000	0
8. Utilization of unemployed	pa		2. Nonstructuralincreased		
and underemployed regional	lal		beef production on forest		
labor resources			landprescribed burning	300,000	0
				on 1,859,000	0
a. Project construction	130,000	0	4. Production efficiency		750,000
B. The value of output to users	S		5. Project administration	123,000	122,000
residing in the region from	u				
external economics			Total adverse effects	4,255,000	1,412,000
1. Indirect activities associ-	oci-				
ated with increased net			Net beneficial effects	10,582,000	-1,112,000
returns from flood damage	e				
reduction, and increased	F				
beef production	640,000	2/			
Total beneficial effects	14,837,000	300,000			

Table 2-12 -- cont'd., regional development account, NED alternative

 $\frac{1}{2}/$  Amortized over 100 years at 6-1/8 percent interest. Z/ National externalities were not evaluated.

cont'd., regional development account,	NED alternative
cont'd., regional development account,	NED
cont'd., regional development	•
cont'd.,	
	regional
able 2-12	cont'd.,
F	Table 2-12

|--|

2-29

Table	2-12		cont'd.,	regional	development	account,	NED	alternative
-------	------	--	----------	----------	-------------	----------	-----	-------------

	MEASURES OF E	
COMPONENTS	STATE OF ALABAMA	REST OF NATION
opulation Distribution		
Beneficial effects	Creates 312 permanent semi-skilled jobs, 150 permanent seasonal jobs and 200 semi-skilled jobs for 5 years in an area which has experienced a 1 percent reduction in population in the last 10 years.	-
Adverse effects	-	-
egional Economic Base and S	Stability	
Beneficial effects	Provides flood protection on 10,000 acres of crops and pasture, 18.5 million gallons per day of municipal water supply and 2,900,000 activity occasions of re- creation opportunities. Creates 312 permanent semi- skilled jobs, 150 permanent seasonal semi-skilled jobs, and 200 semi-skilled jobs for 5 years in an area where 27 percent of the families have incomes less than the national poverty level.	
Adverse effects	_	-

Table 2-12 -- cont'd., environmental quality account, NED alternative

COMPONENTS	MEASURES OF BENEFICIAL AND ADVERSE EFFECTS
A. Areas of natural beauty	<ol> <li>Project benefits will enhance 3,300,000 acres on 18,000 farms.</li> <li>Create 4 multi-purpose lakes of 2,570 acres with 61 miles of shoreline.</li> <li>Establish water-based recreational facilities at 26 locations.</li> <li>Disruption of rural tranquility by 2,900,000 recreational occasions annually.</li> </ol>
B. Quality consideration of water and land resources	<ol> <li>Reduce sediment load in streams by 7.7 million tons per year.</li> <li>Revegetation of 46,100 acres of critically eroded land and roadsides.</li> <li>Maintain quality of land on 237,000 acres by using less erosive soils.</li> <li>Reduce erosion on 496,000 acres of crop- land, 616,000 acres of pastureland, and 190,000 acres of forest land.</li> <li>Reduce fire losses on 7,129,000 acres of forest land.</li> </ol>
C. Biological resources and selected ecosystems	<ol> <li>Create 3,690 acres of flatwater fish and waterfowl habitat.</li> <li>Inundate 24 miles of stream fish habitat.</li> <li>Provide 3,690 acres resting areas for migratory waterfowl.</li> <li>Inundate 3,690 acres of wildlife habitat.</li> <li>Improve deer and other wildlife habitat by providing permanent watering places in lakes.</li> <li>Disrupt 14.3 miles of aquatic ecosystems through channel alterations.</li> </ol>
D. Irreversible or irretrievable commitments	<ol> <li>Conversion of 3,200 acres of forest land, 390 acres of pastureland, and 100 acres of cropland to reservoir pools.</li> <li>Commit 100 acres of land to channel rights-of-way.</li> </ol>

Table 2-12 -- cont'd., social well-being account, NED alternative

COMPONENTS	MEASURES OF BENEFICIAL AND ADVERSE EFFECTS
A. Real income distribution	<ol> <li>Create 425 low to medium income permanent jobs for area residents.</li> <li>Net monetary benefits of \$10,582,000 provide opportunities to improve the income of about 27 percent of the families within the basin whose income is below the poverty level.</li> </ol>
B. Life, health and safety	<ol> <li>Increased output will be in livestock, grain, and fiber products.</li> <li>Increased risk of drowning or injury at lake sites.</li> <li>Reduced water pollution resulting from reduced sediment load in streams.</li> <li>Develop 200 acres for solid waste disposal.</li> <li>Improved municipal water supply services for 12 communities.</li> </ol>
C. Cultural and recreational opportunities	<ol> <li>Creates 2,900,000 recreational activity occasions annually.</li> </ol>

#### ENVIRONMENTAL QUALITY ALTERNATIVE

The environmental quality objective is to enhance environmental quality by the conservation, preservation, and restoration of the quality of certain natural and cultural resources, and ecological systems. This objective reflects society's concern and emphasis for the natural environment and its maintenance and enhancement as a source of present enjoyment and a heritage for future generations.

The EQ alternative recognizes the desirability of diverting a portion of the Nation's resources from production of more conventional market-oriented goods and services in order to accomplish environmental objectives. As incomes and living standards increase, society appears less willing to accept environmental deterioration in exchange for additional goods and services.

Measures included in the EQ alternative are shown in table 2-13. The effectiveness of elements are displayed graphically in figure 2-3 and in detail in table 2-26. Benefit-cost analysis, and fouraccount displays are shown in tables 2-24 and 2-25.

#### Land Use

A primary objective of the EQ alternative is the maximum reduction of erosion while continuing to meet production needs. To do this, the alternative calls for the gradual shifting of row crops to classes I and II, and subclass IIIw soils. A concerted educational effort would be maintained to remove row crops from subclass IIIe soils. An effort would be made through increased numbers of educational personnel and/or incentive payments, to accelerate the necessary land use changes. Other EQ program elements are the same as in the NED alternative, i.e. the use of additional conservation acreage for each acre harvested, and the elimination of high risk class IV through VI flood plain land from crop production.

Implementation of the EQ alternative would have the effect of changing land used for crops and pasture from 1,639,000 acres to 1,634,000 acres in 1990. This change would be from 2,064,000 acres to 1,995,000 acres in 2020 (table 2-14). The mix of crops, pasture, and resulting net returns would be quite different basinwide. Eliminating subclass IIIe soils for row crops would result in 100,000 acres of pasture replacing land previously cropped. A trade-off would occur in the form of reduced erosion and sedimentation at the expense of increased income from crop sales. Net returns would total \$38.6 million, \$11.7 million less than with the NED option in 1990. Table 2-13 -- Measures included in the early action portion of the EQ alternative, Alabama River Basin

#### Land Resource Development

- Conservation treatment on 1,359,000 acres of agricultural and forest land for erosion reduction.
- Changed land use for improved production efficiency on 54,000 acres of cultivated land.
- Conservation measures to reduce sediment in streams by 12.5 million tons/year.
- Streambank, roadside, critical area, and strip mine stabilization to reduce critical erosion on 95,000 acres.
- Reduction of forest fire losses from 0.54 to 0.35 percent on 7,129,000 acres of forest land.
- Prescribed burning on 120,000 acres of forest to increase beef production.

Improve timber production efficiency on 1.8 million acres.

#### Water Resource Development

Five watershed flood control projects. Two reservoirs for municipal and industrial water supply.

#### Recreation and Culture

Recreational development at 23 sites to provide 2.9 million activity occasions annually. Acquisition of 150 miles of scenic streams and 25 natural scenic sites. Wildlife habitat improvement on 186,000 acres. Identification of 18 species of flora and fauna needing protection. Identification, investigation and/or preservation of 250 archaeological and historical sites.

#### Waste Disposal

Acquisition of 200 acres for solid waste disposal. Provide increased streamflow (230 cfs) for improved stream water quality. Table 2-14 -- Land use, present, projected and EQ alternative, Alabama River Basin, 1990 & 2020

			PROJECTED	CTED	
		1990 LAND USE		2020 LAND USE	
		W/0	EQ	M/0	EQ
LAND USE	1970	DEV.	PLAN.	DEV.	PLAN
			-1,000 Acres		
Cropland & conservation acres:	653	614	629	591	700
Harvested acres	653	580	571	560	622
Supporting conservation ac. 1/	NA.	34	88	31	78
Other cropland	620	625	200	650	62
Pasture, improved	531	1,025	975	1,473	1,295
Pasture, unimproved	796	542	235	160	80
Forest land	7,471	7,155	7,892	6,862	7,599
Urban and other land	682	774	770	963	961
Impounded water	245	263	267	300	302
Rivers & streams	17	17	17	16	16
TOTAL	11,015	11,015	11,015	11,015	11,015

 $\underline{1}$  Used for proper water disposal and/or grass rotations to reduce erosion.

2-35

Soybeans and corn should account for 70 percent of the basins cropland harvested in 1990. The basin would maintain a strong competitive position relative to other parts of the state, producing about 20 percent of the state's soybeans, 33 percent of the corn, 35 percent of the beef and veal, and 45 percent of the cotton in 1990. Production and net returns associated with the EQ alternative are shown in table 2-15.

The major change evident in table 2-14 is a substantial increase in forest acreage, from 7,155,000 acres to 7,892,000 acres in the early action phase of development. This land should be established in trees as soon as possible to provide the necessary increment to supply 2020 demands for forest products. Much of this increase would come from class IV and VI openland projected to be in crop or pasture production without development. This land totaling about 340,000 acres would supply roughly one-half of the acreage necessary to sustain production while reducing erosion losses to the level specified as the EQ goal.

	<u></u>	:	
ITEM	UNIT	1990 :	2020
Crop Production	Thou.		
Corn	Bu.	14,130	26,000
Cotton	Bales	127	20
Peanuts	Lbs.	6,300	4,900
Soybeans	Bu.	8,780	15,900
Wheat	Bu.	800	375
Oats	Bu.	140	300
Нау	Tons	350	790
Livestock	Mil		
Beef & Veal	Lbs.*	340	455
Pork	Lbs.*	49	65
Poultry	Lbs.*	615	830
Eggs	Doz.	116	150
Milk	Lbs.	150	75
Net Returns	Mi1		
EQ Plan Without accelerated	Dol.	38.6	74.6
resource development	Dol.	40.3	70.8

Table 2-15 -- Projected production of major farm commodities and total net returns, EQ alternative, Alabama River Basin, 1990

* Liveweight

#### Agricultural Flood Damage Reduction

The EQ elements for flood damage reduction include structural and nonstructural measures. Structural measures to protect 600 acres of cropland and 1,300 acres of pastureland consist of 3 multiple-purpose structures, 3.9 miles of channel work, and 0.7 miles of flood dikes.

These measures could be installed during the early action period under Public Law 83-566 or Resource Conservation and Development programs. They are included in five potentially feasible watershed protection projects identified on the EQ alternative map (see table 2-16 and figure 2-4).

Nonstructural means should be used where practical to reduce flood damage in all watersheds where crops and pasture are currently grown on capability subclasses IIIw and IVw. Damages in these watersheds could be reduced through changed land use by relocating a portion of the crops and pasture out of the most severely damaged portion of the flood plain. Evaluations indicate that about 17 percent of the cropland and 24 percent of the pastureland could be removed from the flood plain. This would amount to about 8,400 acres of crops and 37,700 acres of pasture by 1990. Long-range accomplishments to the year 2020 would include changed land use on 9,000 acres of crops and 39,000 acres of pasture. The flood plain land where these crops and pasture were formerly grown could be used for timber production, open space, recreation, wildlife habitat, or other uses with low damageable values.

#### Erosion Reduction

The EQ measures, if installed, would cut erosion losses from all sources to 31.5 million tons by 1990 (table 2-17).

The EQ alternative provides for conservation treatment and protection on 1.3 million acres of cropland, pastureland, and forest land (see table 2-18). This amounts to about 85 percent of the land in these uses. By the year 2020, an additional 130,000 acres of cropland and pastureland will be treated. Accelerated conservation planning will be needed to get additional landowners interested in shifting row crops to less erosive soils, and in protecting the additional acres. The EQ proposal would reduce the erosion rate on cropland to 3.7 tons per acre by 1990, compared to 7.6 tons without the plan (table 2-19).

4	Alabama River Basin	E				
WATERSHED	CNI NO. 1970 R-B ATLAS	AVERAGE A	AVERAGE ANNUAL DIRECT BENEFITS 1/	BENEFITS 1,	TYPE AND AMOUNT OF STRUCTURAL MEASURES	AVERAGE ANNUAL COST 2/
Early Action (1990)	(066	Flood		Ē		
Mulberry Creek	35a-1,2,4,5	Frevention 5,000	n tion 14,800	10tal 19,800	l multiple purpose structure	13,200
Cedar Creek	35a-45,61,62	20,000	650,000	670,000	l multiple purpose structure	335,000
Glencoe Creek	35a1-11	69,000	ı	69,000	3.9 mi. channel work	27,800
Upper Cahaba Tributary	35a3-1,2,4	3,800	ı	3,800	0.7 mi. flood dike	2,200
Black Creek	35a1-7	39,700	157,500	197,200	1 multiple purpose structure	108,600
lotal		13/,500	822, 300	959,800		486,800
1/ Price base:	Current normalized prices 1975, all dollar amounts.	ed prices 1	975, all dol	lar amounts.		

Table 2-16 -- Average annual benefits and costs for watersheds found economically feasible, EQ alternative,

2/ Amortized at 6-1/8 percent interest for 100 years.

Table 2-17 -- Total annual erosion, present, projected and EQ alternative, Alabama River Basin, 1990 & 2020

	PRESENT	19	990	2020	
TYPE OF EROSION	1970	W/O	EQ	W/O	EQ
		Mil:	lions of 7	Fons	
General <u>1</u> /	50.4	53.6	25.7	62.7 2	5.4
Gullies and other critical	14.8	14.9	5.8	15.3	3.8
TOTAL	65.2	68.5	31.5	78.0 2	9.2

1/ Includes sheet erosion and forest erosion.

A program of fire prevention and timber stand rehabilitation can reduce forest erosion in 1990 from an estimated 41 million tons annually to 14.8 million tons. This program is based upon the prescription and application of forest watershed standards and practices equal in effectiveness to those described in the <u>U.S.</u> Forest Service Watershed Management Standards for the Southern Appalachians.

The following combination of measures is one of the more feasible that will produce the same results as described on page 4-52, Vol. I:

- 1. Reducing the acreage of spur roads and skid trails disturbances from 64,000 to 38,000 acres will reduce the erosion volume by 2,750,000 tons per year.
- Lowering the combined erosion rate for skid trails and spur roads from 35.7 tons/acre/year to 8.9 tons/acre/year will further reduce the erosion volumes by 2,794,000 tons per year. A total of 26,000 acres will be treated with such measures as water-bars seeding on bare soil, shaping banks, etc.
- 3. Dropping the erosion rate from mechanically site prepared areas from 96.7 tons/acre/year to 17.8 tons/acre/year will yield a reduction of 14,100,000 tons per year. This can be achieved by modified installation and/or re-vegetation on 45,000 acres of site preparation.
- 4. Attaining the fire protection goal for 1990 should reduce erosion volumes by 450,000 tons per year.
- 5. Reforestation on 53,000 acres of abandoned cropland, by lowering the average erosion rate from 11.4 tons/acre/year to 4.8 tons/acre/year, will reduce the annual erosion volume some 900,000 tons per year.

LAND TREATMENT TO MEET			······································	
''T'' VALUE NEEDS (2 TO 5 TONS/ACRE/YEAR EROSION)		990 REMAINING	$\frac{20}{\text{TREATED}}$	20 REMAINING
		1,000 Acres		KLMAINING
Cropland				
Crop residue use or cover cropping, Contour farming or drainage systems	165	22	231	30
Contour farming Crop residue use, water disposal systems, sod in rotation	211	27	182	25
Other Cropland				
Establish perennial cover	114	13	37	1
Improved Pastureland				
Planting and management	634	63	843	84
Unimproved Pastureland				
Pasture management	85	97	27	30
Forest Land				
Site preparation	45	157	54	124
Log roads and skid trails installation and rehabilitation	52	173	62	144
Tree planting	53	177	90	211
TOTAL	1,359	729	1,526	649

Table 2-18 -- Erosion reduction measures, EQ alternative, Alabama River Basin, 1990 & 2020

	PRESENT	199		202	······································
LAND USE	1970	W/0	EQ	W/O	EQ
		ions j	per acre	per year	
Cropland harvested	9.5	· 7.6	3.7	7.5	3.5
Other Cropland	13.4	11.4	4.5	16.4	4.5
Improved Pasture	3.4	2.8	2.1	3.4	2.1
Unimproved Pasture	4.1	5.2	3.8	5.8	3.9 <u>1</u> /
Forest, slight to undisturbed	0.9	0.9		0.7	
Forest, disturbed	33.6	33.0	2.0 <u>2</u> /	33.0	2.0 <u>2</u> /
Urban and "Other" Land	5.3	5.0	4.8	4.8	4.5

1/ Erosion rate on unimproved pasture is projected to be slightly higher in the EQ alternative because of the small number of total acres with a high percentage of rough land.

2/ Weighted average erosion for all forest lands is 2.0.

# Improved Production Efficiency

The EQ alternative seeks to improve efficiency through accelerated technical assistance and conservation education aimed at shifting production to less erosive soils. The alternatives differ in several ways: (1) the EQ alternative includes gradually shifting row crop production to capability subclasses I, IIe, IIw, and IIIw. The use of subclass IIIe for row crops is reduced to a minimum. (2) 46,000 flood plain acres would be removed from possible crop and pasture production; (3) timber clearing for crop production is not considered because of detrimental environmental effects; and (4) the EQ proposal includes an extensive assistance program to accomplish the needed application of conservation measures at an accelerated rate.

Basinwide, net returns with the EQ proposal would be about \$1.7 million below that anticipated without accelerated development by 1990, largely as a result of a change in the mix of crops grown. As in the state, production cost per unit of basin output would remain about the same as in the without development option. Over the long run, however, the outlook for the basin within the EQ framework would improve. A substantial increase in row crop production between 1990 and 2020 would increase annual net returns to basin farmers about \$4 million above that expected without development. Beef production would continue to increase, though not as rapidly as expected without the EQ alternative.

# Increased Forest Production

The major difference in this alternative and the NED proposal is the added measure of increasing the forest land base to provide an increment of the 2020 demand for forest products. A 15-year installation period is necessary in order to meet these demands. The acreage must be held in forest production continuously throughout the projection period in order to yield the necessary volumes of specific wood products. Growth rates for this portion of the alternative are assumed to be the same as for the baseline projections. The 2020 demands are met as follows: 22 percent from the 737,000 acre increased forest land; 53 percent through better utilization; and 25 percent as a result of accelerated management as shown in table 2-20.

Table	2-20 -	· Timber	production	expected	from	elements	in	the	EQ
		alterna	ative						

	EQ	ELEMENTS NECESSARY	( TO SATISFY 20	20 TIMBER DEMA	NDS
	BASELINE		INCREASED		
YEAR	PRODUCTION	: ACREAGE INCREASE	: UTILIZATION	: ACCEL. MGMT.	: TOTAL
		Cubic Fe	eet/Acre/Year		
1970	56.1	-	-	-	56.1
1990	56.3	-	-	-	56.3
2020	75.8	+2.6	+6.1	+2.9	87.4
	ويجرونه والمستجهرة بالأمن والمتها ومعاكما المحمل ومقاعمتهم				

Utilization--An increase in the utilization rate of 0.26 percent each year throughout the period 1980-2020 will provide slightly over half of the necessary 91.5 million cubic feet of roundwood to be harvested in 2020 to meet the demands projected for that year.

Forest Acreage Increase--A total of 737,000 acres of current crop and pastureland is assumed to be available for forest management. This land will need reforestation at a rate of 49,000 acres a year to have all acreage in trees by 2000.

Accelerating Forest Management--Increasing the current forest stocking on ten percent of the acres not now well-stocked will increase the average net annual growth by 2.9 cubic feet per acre per year - 25 percent of the increment added to baseline production in 2020. This will require reforesting 90,000 acres (6,000 acres per year) and timber stand treatment and improvement cutting on 600,000 acres (40,000 acres per year) to complete the program within 15 years.

#### Reduction in Fire Losses

To meet the projected EQ fire control goals, an additional 39 fire control units are planned in the early action proposal to supplement the existing 39 units.

#### Increased Forest Grazing

Prescribed burning on about 120,000 acres of pine forest lands will provide increased forest grazing opportunities. This practice will be accomplished annually in pine stands up until they are 30 years old. This EQ grazing program will produce about 1.9 million pounds of beef annually in 1990.

#### Urban Flood Damage Reduction

No elements are included in this alternative for achieving urban flood damage reduction because this study did not include a detailed identification of individual communities having this problem. When remedial efforts are undertaken, first consideration should be given to nonstructural measures identified in the NED alternative.

#### Water Supply

Concepts used in formulating the EQ alternative placed constraints on water supply developments. To minimize the adverse effect on fish and wildlife habitat, surface storage was planned only where there was no other alternative water source available to supply the volume needed. Two reservoir sites, Terrapin Creek and Canoe Creek, were selected to meet the needs (see figure 2-4). These sites will supply 8 MGD of the 25 MGD needed by 1990 and 25 MGD of 71 MGD needed by 2020 (see table 2-21).

#### Increased Recreation

Basically, the EQ and NED recreation proposals are the same. The only difference involves exclusion of reservoir sites on Wedowee Creek, Bear Creek, and Camp Branch from the EQ proposal because of adverse environmental effects. Without these projects, the short range EQ alternative provides 2.7 million activity occasions annually at a cost of \$1.39 million.

$\circ$
$\sim$
0
2
1990 § 202
$\sim$
S
3
1990
Ô
5
.н
÷.
b)
Ц
5
ø
+
5
ιu
EQ alter
EQ
( and the second
•
S
٥
Ē.
t sites
S
4
E
ല
티
2
11
ลี
ŏ.
1
in
in
y impoundme
water suppl
water suppl
otential water supply
otential water supply
otential water supply
water suppl
Potential water suppl
Potential water suppl
otential water supply
Potential water suppl
Potential water suppl
2-21 Potential water supply
Potential water suppl

COMMUTTES	DACTN 1/	CTDEAM	SITE	DRAINAGE	MGI STODACE	SURFACE	WATER 2/ Sliddi v	WATER $\frac{3}{100}$	DIIDDOCES
SERVED	PLAN		S. T. R. (SQ.MI.) (AC.FT.)	(SQ.MI.)		ANEA (AC.)	(MGD)		SERVED
Eų Plan								1990 2020	
<u>Calhoun Co.</u> Jacksonville Piedmont	1990	Terrapin Cr.	Sec. 2, T20S,R11E	29.0	2,000	111	8.4 3	3.6 7.0	FC <u>4</u> /
St. Clair Co. Margaret Moody Odenville	1990	Canoe Cr.	Sec. 21, T14S,R2E	37.8	4,000	415	11.0 4	11.0 $4.45/$ 18.0 ^{5/}	r
Ashville Springville	2020								
1/ Early action, 1990long-range, 2020	1990long-	range, 2020							


·

.

2-44

ાઝાફાઝાઝા

Designed to fully utilize the site potential. Total needs by time frame. F.C. - Flood Control Total needs for all St. Clair Co. communities listed.



REVISED MAY 1976 4-R-28941-A



#### Solid Waste Disposal

Proposals include the establishment and operation by 1990 of two 100-acre solid waste disposal sites for the disposal of hazardous industrial wastes. An additional 200 acres would be developed by 2020.

#### Low Quality Stream Improvement

The 1990 and 2020 EQ proposals include 5 reservoir sites for lowflow augmentation to improve stream quality at five pollution problem locations (see figure 2-4). These sites are located upstream from the problem areas to utilize gravity flow.

A number of the pollution problems identified cannot be solved by low-flow augmentation. These areas were either physically located such that upstream reservoir sites did not exist or the required flow was greater than the dependable yield from the upstream drainage area. Structure cost and fixed improvements in the reservoir area were also considered in selecting feasible sites. The available storage and dependable yields from the drainage areas of the sites selected will meet, in whole or in part, the required discharge to augment low flows by 1990. Statistical data are shown in table 2-22.

# Reduction in Critical Erosion

The EQ alternative differs from the NED alternative in intensity of treatment of those items that contribute to aesthetic quality and general environmental improvement. The critical erosion features of the EQ alternative are based on the expectation of public desire for environmental improvement and emphasis on aesthetic quality.

Where there is a clear, strong public desire to improve the environmental quality, the public's willingness to pay for the improvement can be considered to indicate that the improvement is worth the cost; that is, the benefit is at least equal to the cost.

The EQ alternative will provide for the treatment of 67,800 acres of gullied land, 1,600 acres of roadsides, 9,200 acres of mined land and 16,500 acres of land affected by streambank erosion by 1990. The EQ alternative for 2020 provides for treatment of 87,000 acres of gullied land, 2,100 acres of roadsides, 11,500 acres of mined land, and maintenance of the 16,500 acres of streambanks which were treated in the early action phase.

Table 2-22 -- Statistical data for potential reservoir sites for low-flow augmentation,EQ alternative for early action

					TOTAL			
			POOL		STORAGE	USABLE		LOW
SITE		DRAINAGE	SURFACE	WATER	VOLUME	STORAGE	DEPENDABLE	FLOW
.ov	SITE LOCATION	AREA	AREA	DEPTH	AVAILABLE	VOLUME	YIELD	REQUIRED
		(SQ. MI.)	(ACRES)	(FEET)	(AC. FT.)	(AC. FT.)	(CFS)	(CFS)
1	Cahaba River							
	2 ¹ / ₂ mi. N of Trussville	12.7	140	50	2,825	2,200	9.5	1/
1	RIE, T16S, Sect. 12							ï
2	Big Black Creek							
	8 mi. NE of Trussville	10.5	255	45	4,780	4,200	7.9	1/
	RIE, TI5S, Sect. 36					Ň		1
3	Little Black Creek							
	6 mi. E of Trussville	11.4	304	45	6,765	6,000	8.5	1/
	R1E, T16S, Sect. 24							1
4	Waxahatchee Creek							
	$2^{1}_{2}$ mi. W of Columbiana	12.8	374	20	3,740	3,040	6.2	4.5
	RIW, T21S, Sect. 21							
S	Saugahatchee Creek							
	4 mi. NW of Auburn	5.4	178	35	2,375	2,000	3.2	23.0
	R26E, T19N, Sect. 2					×		

 $\underline{1}$  Three sites are needed to provide a required flow of 23.1 cfs.

See figure 4 for general location.

2-48

# Reduction in Sedimentation

The EQ alternative provides intensive treatment and protection from erosion, thereby, reducing sediment substantially (see table 2-23). This intensive treatment is costly but offers protection to the environment and helps to enhance the aesthetic quality of the landscape.

The combined effects of the erosion control measures would reduce the sediment load from a projected 22 million tons annually to 9.5 million tons in 1990.

		199	90	:	202	0	
SOURCE OF SEDIMENT	PRESENT 1970	W/O	EQ		W/O	EQ	
		Mil:	lions of	Ton	s		
General erosion <u>1</u> /	12.7	13.4	6.4		14.8	6.3	
Critically eroding areas	8.7	8.6	3.1		8.9	2.2	
TOTAL	21.4	22.0	9.5		23.7	8.5	

Table 2-23 -- Sediment production, present, projected and EQ alternative, Alabama River Basin, 1990 & 2020

1/ Includes "disturbed" forest lands eroding at "critical" rates.

#### Scenic Rivers and Streams

Elements in the EQ alternative provide for the protection and preservation of 150 miles of scenic waterways by 1990 and 200 miles by 2020. Elements include site acquisition, site improvement and the adaption of state legislation to reinforce preservation of scenic water courses. Proposals for the early time frame involve protecting and improving portions of the Cahaba River, Tallapoosa River, Little River, Shoal Creek, and Hatchett Creek. The long-range proposals include similar programs for portions of Shoal Creek and Little River. The specific location of mileage to be protected or preserved should be selected by an appropriately designated group in conjunction with the desires and interest of local landowners.

# Natural Scenic Sites

The proposed elements include the purchase or lease of 25 natural scenic sites by 1990 and 35 sites by 2020. These sites meet the criteria outlined in Volume I for natural sites needing protection. These sites are scattered throughout the river basin and represent a significant portion of those sites needing protection. Specific sites should be selected by appropriate state agencies, interested organizations, and local citizens. It is suggested, however, that several sites from each of the major categories be selected. This would include such areas as Horse Pens Forty and Blue-Girth Beach Creek Swamp. The major categories for natural scenic sites are overlooks, caves, springs and waterfalls, swamps, and geologic formations.

#### Fish and Wildlife Habitat Improvement

Upland Habitat--The EQ alternative will supply 133,000 acres of the 150,000 acres of habitat improvement needed by 1990 and 200,000 acres of the 220,000 acres needed by 2020. Specifically, the proposals include the purchase of 1,000 acres of nongame habitat, lease and management of an additional 100,000 acres for public hunting, and intensified management on 32,000 acres of private, state, and federal land.

Wetland Habitat--Wetland habitat for waterfowl refuges and management areas is lacking in the basin. Elements of the EQ alternative will supply 21,000 acres of the 25,000 acres needed by 1990. This includes 5,000 acres of habitat development and improvement in beaver ponds and greentree reservoirs, 13,500 acres in two waterfowl management areas (3,500 acres at Gee's Bend and 10,000 acres on Lake Weiss) and 2,500 acres of flood plain management. By 2020, the EQ elements will provide 25,000 acres of the projected 45,000 acres needed. Additional elements for 2020 include the acquisition of a 4,000 acre wetland area in the Blue Girth-Beech Creek Swamp.

Impoundments--Environmental quality elements will supply about 75 percent of the 8,000 acres needed by 1990 and the 10,000 acres needed by 2020. In essence, the elements involve accelerated technical assistance and cost sharing to implement new management techniques in exchange for public access to private ponds.

Streams--The EQ elements include improving 1,000 acres of stream habitat by 1990 and 2,000 acres by 2020. This can be accomplished by accelerating or creating state and federal programs under existing authorities. Specific practices would include selective snagging, bank stabilization, pollution control, and improved access.

# Protection of Flora and Fauna

The environmental alternative emphasizes habitat acquisition (92,000 acres), habitat management (20,000 acres), and accelerated protection of 18 species by 1990 and 25 species by 2020. The 18 species include 10 animals and 8 plants while the 25 species represent 15 animals and 10 plants. In addition to the proposed elements, it is assumed that ongoing programs to protect endangered organisms will be continued.

# Protection of Archaeological and Historical Sites

An intensified effort should be made through the Alabama Historical Commission to improve the consistency of archaeological and historical site identification. Sufficient federal legislation exists to protect important archaeological sites and those historic sites that meet the criteria for listing in the National Register of Historic Places. The adoption of state legislation should be considered to protect sites on the Alabama Register of Heritage and Landmarks where appropriate.

A preliminary investigation of many archaeological sites could be conducted if state or local funds were available to supplement federal funds. Following such investigations, sites could be classified as to their preservation value. If archaeological site investigation funding was coordinated at the state level, federal, state, and local funds for investigations could be directed into those areas of the basin most likely to be disturbed by future resource development.

While coordination of historic site identification and preservation is needed at the state level, some of the most valuable assistance could be provided through local groups such as the seven-county North Central Alabama Heritage Association organized recently in the northern portion of the basin. These local organizations can assist in site identification and provide the leadership in distributing information concerning historical sites. They can also erect historic markers, organize public tours to increase public awareness and appreciation of historic sites, and organize local fund-raising efforts for site acquisition.

Primary emphasis should be placed on the preservation of districts of all types rather than single structures. By concentrating on preservation of districts of all types, greater numbers of landmarks will be protected. It will also preserve more of a "place-in-time" than the preservation of single structures. Elements provide for the protection of 250 sites out of 310 sites designated as needing protection by 1990. No additional elements were designated for protection for 2020.

	TOTAL		
COMPONENTS & PLAN ELEMENTS	TOTAL INST. COST	ANNUAL COSTS 1/	ANNUAL BENEFITS
COMIONENTO & LEAN ELEMENTO		usand Dollar	and the second se
Flood Reduction			Ĩ
Changed land use	6,100	375	415
Structural measures	2,400	151	225
Urban-nonstructural	NA	NA	NA
Increased Beef Production			
Prescribed burning			
(forest land)	4,660	287	650
Create Water Supply			
Impoundments	1,800	116	154
Increased Recreation			
Facilities	22,000	1,386	2,840
Erosion Reduction			
Conservation systems	(24,000) <u>2</u> /	(1,495) <u>2</u> /	NA
Improved Production Eff.			
Changed land use	8,900	550	2,800
Reduced Fire Losses			
Equipment	(2,500) <u>2</u> /	(176) <u>2</u> /	NA
Solid Waste Disposal	(100) 0/		
Site acquisition	(400) <u>2</u> /	(25) <u>2</u> /	NA
Low Quality Streams	(4 550) 2/	(280) 2/	214
Low flow augmentation	(4,550) <u>2</u> /	(280) <u>2</u> /	NA
Reduced Sediment Load	NA	NA	NIA
Conservation systems Critical Erosion Reduction	NA	NA	NA
Stabilization	(150,000) 2/	(11 740) 2/	NA
Scenic Streams	(130,000) 2/	(11,740) 2/	NA
Acquisition	(350) <u>2</u> /	(22) 2/	NA
Natural Scenic Sites			
Acquisition	(3,250) 2/	(199) 2/	NA
Fish and Wildlife Habitat			
Management and improvement	(6,530) 2/	(401) 2/	NA
Protection of Flora and Fauna			
Acquisition	(1,800) 2/	(112) 2/	NA
Increased Timber Production			
Utilization & Accel. Mgmt.	50,000	3,079	4,715
Protection of Archaeological			
and Historical Sites			
Cooperative identification			
& preservation program	NA	NA	NA
TOTAL	\$ 95,860	\$ 5,944	\$11,799

# Table 2-24 -- Benefits and costs, EQ alternative, Alabama River Basin

 $\frac{1}{2}$  Amortized @ 6 1/8 percent interest for 100 years and includes O&M. Not included in total cost.

	COMPONENTS	MEASURES OF EFFECTS	COMPONENTS	MEASURES OF EFFECTS
1	Beneficial effects: (	(Average Annual) $\underline{1}/$	Adverse effects:	(Average Annual) $\underline{1}$
	À. The value to users of		A. The value of resources	
	increased outputs of		required for the EQ plan:	
	goods and services			
			<ol> <li>Multi-purpose reservoirs,</li> </ol>	
	1. Flood damage reduction	634,000	recreational and water	
	2. Increased beef production	644,000	supply reservoirs, channel	
	3. Create water supply	152,000	work, and recreational	
	4. Increased recreation	2,810,000	facilities	
	5. Increased timber production		Project installation	1,305,000
	6. Production efficiency	2,770,000	OM&R	600,000
	7. Utilization of unemployed		2. Nonstructuralincreased beef	
	and underemployed labor		production on forest land	
2	resources		prescribed burning	287,000
-5			3. Increased timber production	3,079,000
3	a. Project construction	124,000	4. Production efficiency	550,000
			5. Project administration	123,000
_	Total beneficial effects	11,799,000		
			Total adverse effects	5,944,000
			Net beneficial effects	5,855,000

Table 2-25 -- National economic development account, EQ alternative, (dollars)  $\underline{1}/$ 

 $\underline{1}$  Amortized over 100 years at 6-1/8 percent interest.

COMPONENTS	MEASURES OF EFFECTS STATE OF REST O	EFFECTS REST OF	COMPONENTS	MEASURES OF EFFECTS STATE OF REST 0	F EFFECTS REST OF
Income	ALADAWA	NOT TON	Income	ALABAWA	NAT LUN
Beneficial effects:	(Average Annu	Annual) $\underline{1}$	Adverse effects:	(Average Annual) $\underline{1}$	nual) <u>1</u> /
A. The value of increased output of goods and services to users re- siding in the region			A. The value of resources con- tributed from the region to achieve the output		
1 Flood damage reduction	000 424	C	l. Multi-purpose reservoirs, floodwater retarding		
2. Increased beef production		0	structures, recreational		
3. Create water supply		0	and water supply reservoirs	Š	
	2,560,000	250,000	channel work and recreational	nal	
5. Increased timber prod.	4,665,000	0	facilities		
6. Production efficiency		0	Project installation	825,000	480,000
7. Utilization of unemployed				600,000	0
and underemployed regional	1		2. Nonstructuralincreased		
labor resources			beef production on forest		
			landprescribed burning	287,000	0
a. Project construction	124,000	0	3. Increased timber prod.	3,079,000	0
			4. Production efficiency	0	550,000
B. The value of output to users			5. Project administration	62,000	61,000
residing in the region from					
external economics			Total adverse effects	4,853,000	1,091,000
1. Indirect activities associ-	i-				
ated with increased net			Net beneficial effects	7,246,000	-841,000
returns from flood damage					
beef production	550,000				
Total beneficial effects	12,099,000	250,000			

Table 2-25 -- cont'd, regional development account

2-54

1/ Amortized over 100 years at 6-1/8 percent interest.  $\overline{2}/$  National externalities were not evaluated.

account
l development account
regional
, b
cont'd,
1
S
Table 2-2

COMPONENTS	MEASURES OF EFFECTS STATE OF REST OF ALABAMA NATION	COMPONENTS	MEASURES OF EFFECTS STATE OF REST OF ALABAMA NATION
Employment		Employment	
Beneficial effects:		Adverse effects:	
A. Increase in number and types of jobs		A. Decrease in number and types of jobs	
1. Employment for pro-	175 semi- skilled	1. Loss in agricultural employment from pro-	8 man-yrs. of - aoricultural
	jobs for 5		employment
<pre>2 Emulorment in re-</pre>	yrs. 140 nermanent -	2. LOSS IN INDIFECT AND induced employment	12 permanent - semi-skilled -
creation service	1	associated with pro-	jobs
	skilled jobs	ject take area	
d 3. Employment for pro-	77 permanent -	Total advarce offects	20 normanat
Jeer onder	jobs	iotal adverse criteces	jobs
4. Indirect and induced	200 permanent -		
employment from	semi-skilled	Net beneficial effects	257 permanent -
output of projects's	jobs		semi-skilled
goods and services			Jous 140 permanent -
Total beneficial effects	277 permanent -		seasonal semi-
	semi-skilled		skilled jobs
	jobs		175 semi-skilled -
	140 permanent -		jobs for 5 yrs.
	seasonal semi-		
	SKILLEd JODS 175 cemi_ckilled		
	jobs for 5 yrs.		

# Table 2-25 -- cont'd, regional development account

	MEASURES OF EFFECTS
COMPONENTS	STATE OF ALABAMA REST OF NATIO
opulation Distribution	
Beneficial effects	Creates 257 permanent - semi-skilled jobs, 140 permanent seasonal jobs and 175 semi-skilled jobs for 5 years in an area which has experienced a 1 percent reduction in population in the last 10 years.
Adverse effects	
egional Economic Base and	Stability
Beneficial effects	Provides flood protection - on 1,900 acres of crops and pasture, 8.0 million gallons per day of municipal water supply and 2,900,000 activity occasions of re- creation opportunities. Creates 257 permanent semi- skilled jobs, 140 permanent seasonal semi-skilled jobs for 5 years in an area where 27 percent of the families have incomes less than the national poverty level.
Adverse effects	

# Table 2-25 -- cont'd, environmental quality account

	MEASURES OF BENEFICIAL AND ADVERSE EFFECTS
COMPONENTS A. Areas of natural beauty	<ol> <li>MEASORES OF BENEFICIAL AND ADVERSE EFFECTS</li> <li>Project benefits will enhance 3,300,000 acres on 18,000 farms.</li> <li>Create 4 multi-purpose lakes of 2,570 acres with 61 miles of shoreline.</li> <li>Establish water-based recreational facilities at 22 locations.</li> <li>Disruption of rural tranquility by 2,800,000 recreational occasions annually.</li> </ol>
B. Quality consideration of water and land resources	<ol> <li>Reduce sediment load in streams by 13.5 million tons per year.</li> <li>Revegetation of 79,000 acres of critically eroded land, streambanks, roadsides, and strip mines.</li> <li>Maintain quality of land on 54,000 acres by using less erosive soils.</li> <li>Reduce erosion on 279,000 acres of crop- land, 562,000 acres of pastureland, and 460,000 acres of forest land.</li> <li>Reduce fire losses on 7,129,000 acres of forest land.</li> </ol>
C. Biological resources and selected ecosystems	<ol> <li>Create 5,155 acres of flatwater fish habitat.</li> <li>Inundate 39 miles of stream fish habitat.</li> <li>Provide 5,155 acres resting areas for migratory waterfowl.</li> <li>Inundate 5,155 acres of wildlife habitat.</li> <li>Improve deer and other wildlife habitat by providing permanent watering places in lakes.</li> </ol>
D. Irreversible or irretrievable commitments	<ol> <li>Conversion of 4,700 acres of forest land, 330 acres of pastureland, and 125 acres of cropland to reservoir pools.</li> </ol>

Table 2-25 -- cont'd, social well-being account

COMPONENTS	MEASURES OF BENEFICIAL AND ADVERSE EFFECTS
Beneficial & adverse effects:	
A. Real income distribution	<ol> <li>Create 360 low to medium imcome permanent jobs for area residents.</li> <li>Net monetary benefits of \$7,246,000 will provide opportunities to improve the income of about 27 percent of the families within the basin whose income is below the proverty level.</li> </ol>
B. Life, health and safety	<ol> <li>Increased output will be in livestock, grain, and fiber products.</li> <li>Increased risk of drowning or injury at lake sites.</li> <li>Reduced water pollution resulting from reduced sediment load in streams.</li> <li>Improved municipal water supply services for five communities.</li> </ol>
C. Cultural and recreational opportunities	<ol> <li>Creates 2,800,000 recreational activity occasions annually.</li> <li>Identification and investigation and/or preservation of 250 archaeological and historical sites.</li> </ol>

EFFECTIVENESS EARLY ACTION - YEAR 1990 VIDES REMAINING NEED	Cropland 40 (49-7-2=40) Pastureland 115 (154-31-8=115)			Cropland 40 (49-8.4-0.6=40) Pastureland 115		
EI EARLY PROVIDES	$\frac{7.0}{38.0}$	$\begin{array}{c} 2.0\\ 8.0\\ 10.0\end{array}$	13 3 14.3 0.7	8.4 37.7 46.1	$\frac{1.3}{1.9}$	0 2 3.9 0.7
UNIT	Thou. ac.	Thou. ac.	No. No. Mi. Mi.	Thou. ac.	Thou. ac.	No. No. Mi.
PROPOSED ELEMENTS (EARLY ACTION)	Changed land use Cropland Pastureland Total	Structural measures Cropland Pastureland Total	FRS Multi-purpose str. Channel work Flood dike	Changed land use Cropland Pastureland Total	Structural measures Cropland Pastureland Total	FRS Multi-purpose str. Channel work Flood dike
ALTER- NATIVE	NED Alt.			EQ Alt.		
YEAR 1990 2020	•					
UNIT	Thou. ac. Thou. ac.					
COMPONENT NEEDS	Flood Damage Red. Cropland Pastureland	2	-59			

Table 2-26 -- Effectiveness of proposed elements in meeting component needs for NED and EQ alternatives, Alabama River Basin

EFFECTIVENESS	EARLY ACTION - YEAR 1990	KEMAINING NEED			380		96	341		0			0	817				62		58	129		0			0	0	249
EFF	EARLY A	PRUV IDES			580		191	426		19			55	1,271				490		226	466		45			52	53	1,332
		ITND			Thou. ac.		Thou. ac.			Thou. ac.								Thou. ac.		Thou. ac.			Thou. ac.					
	PROPOSED ELEMENTS	(EAKLY ACTION) Cronland	Covercrop or residue.	terraces or drainage.	sod in rotation	Pasture	Pasture planting	Pasture management	Forest	Site preparation	Log roads and skid	trails installation	and rehabilitation	Total	Cropland	Covercrop or residue,	terraces or drainage,	sod in rotation	Pasture	Pasture planting	Pasture management	Forest	Site preparation	Log roads and skid	trails installation	and rehabilitation	Tree planting	lotal
		NFD													ЕQ	Alt.												
	YEAR	2 088 2 175																										
		Thou ar																										
		COMPONENT NEEDS Frosion Reduction																										

EFFECTIVENESS EARLY ACTION - YEAR 1990 VIDES REMAINING NEED	125	170	1,256	897	0	1	1	- 0	0	0
EFFECTIVENESS EARLY ACTION - Y PROVIDES REMAIN	45	0	382	741	0	ı.	I	2.0	7,129	7.129
UNIT	Thou. ac.	Thou. ac.	Thou. ac.	Thou. ac.	) Mil.cu.ft./yr.	Mil.cu.ft./yr.			Thou. ac.	Thou. ac.
PROPOSED ELEMENTS (EARLY ACTION)	Surface and subsurface	Surface and subsurface	Changed land use	Changed land use	Regeneration (67,000 ac.) Timber stand improve- ment (460,000 ac.) Improve utilization (0.40% annually)	Reforestation (737,000 ac.) Accelerate	mgt. (690,000 ac.) Improve utilization	(v. 20% alliually) Total	Capital imp. and equipment	Capital imp. and equipment
ALTER- NATIVE	NED Alt.	EQ Alt.	NED Alt.	EQ Alt.	NED Alt.	EQ Alt.			NED Alt.	EQ Alt.
YEAR 1990 2020	1		Thou. ac. 1,638 2,064		0 82.0				Thou. ac. 7,129 6,845	
UNIT	Thou. ac.		Thou. ac.		Mil. cu. ft./yr.				Thou. ac.	
COMPONENT NEEDS	Increased Drainage		Improved Prod. Efficiency		Increase Forest Production <u>1</u> /				Reduced Fire Losses	

While there are no unmet needs for timber production in 1990, the timber management programs must begin no later than 1980 and be completed by 1995 in order that the timber requirements be met: softwood/hardwood; sawtimber/ pulpwood; veneer/construction, etc. Therefore, a forestry program is presented in the early action plan but only that portion of the program to be accomplished in the early action plan period and in terms of measures accomplished. 1

Table 2-26 -- cont'd

							EFFEC	EFFECTIVENESS
COMPONENT NEEDS UNIT	UNIT	1990 2020	YEAK 0 2020	ALTEK- NATIVE	FRUPUSED ELEMENTS (EARLY ACTION)	UNIT	EARLY AC	EARLY ACTION - YEAR 1990 VIDES REMAINING NEED
Increased Grazing Mil.1bs. Forest Land beef/yr.	Mil.lbs. beef/yr.	19.2 15.7	15.7	NED Alt.	Prescribed burning (110,000 ac.)	Mil.lbs. beef/yr.	12.6	6.6
				EQ Alt.	Prescribed burning (120,000 ac.)	Mil.lbs. beef/yr.	13.3	5.9
Urban Damage Red. No. of comm.	No. of comm.	06	110	NED- EQ	Non-structural	No. of comm.	N/A	N/A
Create Water Supply	MGD	25	71	NED Alt.	Impoundments (5 sites)	MGD	19.5	5.5
				EQ Alt.	Impoundments (2 sites)	MGD	8.0	17.0

	EFFECTIVENESS EARLY ACTION - YEAR 1990 ROVIDES REMAINING NEED	7,000		7,230	0
	EFFECT EARLY ACT PROVIDES	2,935		2,705	200
	UNIT	Thou.	act. occ. ac.)	Thou. act. occ. 0 ac.)	Ac.
	PROPOSED ELEMENTS (EARLY ACTION)	Picnic tables (1,410)	Swimming (43 ac. beach) act Boating (3,405 ac.) Golfing (1-9 course) Water skiing (2,225 ac.) Camping (715 sites) Hiking trails (2,45 mi.) Fishing (3,545 ac.) Hunting: Waterfowl habitat (9,000 ac.) Big game (193,000 ac.) Small game (140,000 ac.)	<pre>Picnic tables (1,320 ac.) Thou Swimming (38 ac. beach) act. Boating (2,285 ac.) Golfing (1-9 course) Water skiing (1,345 ac.) Camping (625 sites) Hiking trails (245 mi.) Fishing (2,425 ac.) Hunting: Waterfowl habitat (21,000 ac.) Big game (193,000 ac.) Small game (140,000 ac.)</pre>	Site acquisition
	ALTER- NATIVE	NED	Alt.	Alt.	NED Alt.
	AR 2020	9,935 29,368			400 NED Alt
-	YEAR 1990 2(	9,935			200
	UNIT	Thou.	act. occ.		Acres
	COMPONENT NEEDS	Increased	Recreation		Solid Waste Dis- posal Sites

1

1

COMPONENT NEEDS	UNIT	YEAR 1990 2020	R 2020	ALTER- NATIVE	PROPOSED ELEMENTS (EARLY ACTION)	SUNIT	EFFECTIVENESS EARLY ACTION - YE PROVIDES REMAI	EFFECTIVENESS EARLY ACTION - YEAR 1990 ROVIDES REMAINING NEED
Solid Waste Dis- posal SitesCont'd	t'd			EQ Alt.	Site acquisition	Ac.	200	0
Low Quality Streams Augmentation	cfs	230	230	NED Alt.	Low flow augmenta- tion	Flow (cfs)	0	230
				EQ Alt.	Low flow augmenta- tion	Flow (cfs)	35.3	194.7
Reduced Sedi- ment Load	Thou. tons/yr.	14.7 16.4	16.4	NED Alt.	See erosion re- duction measures	Thou. tons/yr.	7.7	7.0
				EQ Alt.	See erosion re- duction measures	Thou. tons/yr.	12.5	2.2
Critical Ero- sion Red.	Thou. ac.	151.6 155.6	55.6	NED Alt.	Streambank stab. Roadside stab. Critical area stab. Strip mine stab. Total	Thou. ac.	0.9 45.2 46.1	$15.3 \\ 1.4 \\ 67.8 \\ 21.0 \\ 105.5$

	1990 NEED							
EFFECTIVENESS	EARLY ACTION - YEAR 1990 VIDES REMAINING NEED	4.5 0.7	45.2 6.1	56.5	225	150	85	65
EFFEC	EARLY AC PROVIDES	16.5 1.6	67.8 9.2	95.1	75	150	Ω	25
	UNIT	Thou. ac.			Mi.	Mi.	Sites	Sites
	PROPOSED ELEMENTS (EARLY ACTION)	Streambank stab. Roadside stab.	Critical area stab. Strip mine stab.	Totals	Site acquisition	Site acquisition	Site acquisition	Site acquisition
	ALTER- NATIVE	EQ Alt.			NED Alt.	EQ Alt.	NED Alt.	EQ Alt.
	R 2020				350		75	
	YEAR 1990 2020				300		06	
	UNIT	-Cont'd			Mi.		Sites	
	COMPONENT NEEDS	Critical ErosionCont'd			Scenic Streams		Natural Scenic Sites	
1	0	0			03		20	

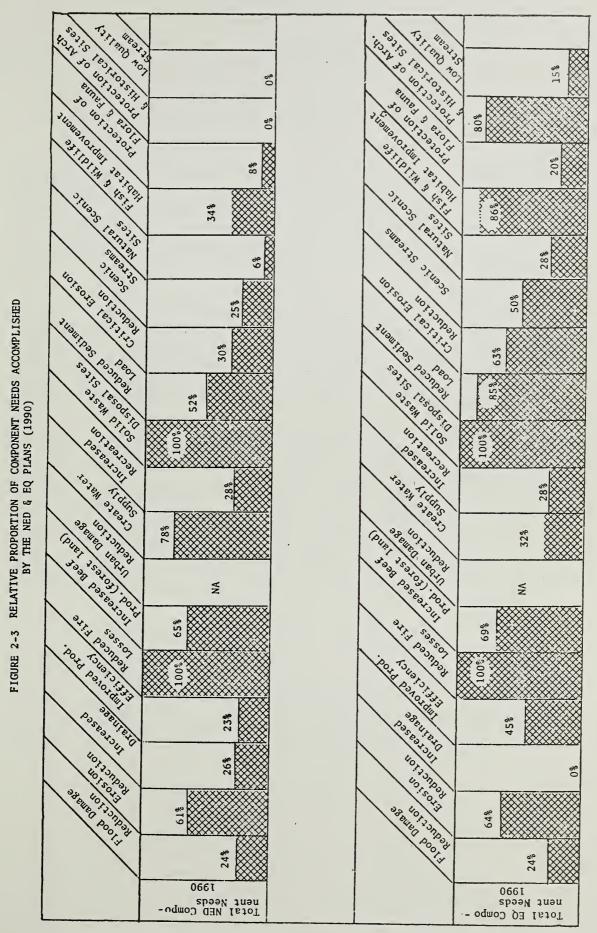
cont'd
ł
2-26
Table

 $\begin{array}{c}100\\16\\5\\123\\123\end{array}$ 

50 3 63 63

Upland habitat imp. Wetland habitat imp. Impoundment mgt. Stream improvement Total

NED Alt.


275

Thou. ac. 186

Fish & wildlife Habitat Imp.

Thou. ac.

							EEECTIVENECC	VENECC
COMPONENT NEEDS	TINU	YEAR 1990 2020	R 2020	ALTER- NATIVE	PROPOSED ELEMENTS (EARLY ACTION)	Id LINU	EFFECTI EARLY ACTI PROVIDES	EFFECTIVENESS EARLY ACTION - YEAR 1990 VIDES REMAINING NEED
Fish & Wildlife HabitatCont'd				EQ Alt.	Upland habitat imp. Wetland habitat imp. Impoundment mot.	Thou. ac.	133 21 5	17 4 3
					Stream improvement Total		1 160	<u>2</u> 26
Protection of Flora & Fauna	No.	06	112	NED Alt.	Identification Site acquisition	Species (no.)	7	83
				EQ Alt.	Ξ	Species (no.)	18	72
Protection of Archaeological & Historical	Sites	310	280	NED Alt.	Identification	Sites	0	310
Sites				EQ Alt.	Identification	Sites	250	60





## CHAPTER 3

## SUGGESTED PLAN

## INTRODUCTION

Formulation of the suggested plan was guided by a desire to select a balance of elements from the NED alternative and the EQ alternative that would emphasize economic development and contribute to environmental amenities. An effort was made to meet substantial portions of the national economic development and environmental quality objectives. Trade-offs among various elements were necessary to minimize conflicts in resource use.

Table 3-13 displays the beneficial and adverse effects for the four accounts of national economic development, regional development, environmental quality, and social well-being. Figure 3-4 and table 3-14 illustrate the effectiveness of the plan elements in meeting expressed component needs. Table 3-15 is a summary comparison between the Suggested Plan and the NED and EQ alternatives.

Interested groups and knowledgeable individuals made technical contributions and valuable suggestions to achieve the desired levels of national and regional output of goods and services, environmental amenities, and social opportunities. The suggested plan reflects physical, technological, and public policy constraints identified by the sponsoring state organization, state planning units, and the USDA planning agencies. Measures included in the early action portion of this plan are shown in table 3-1. Inclusions of measures generally reflects a high degree of local interest or an expression of interest by some agency, organization or unit of government.

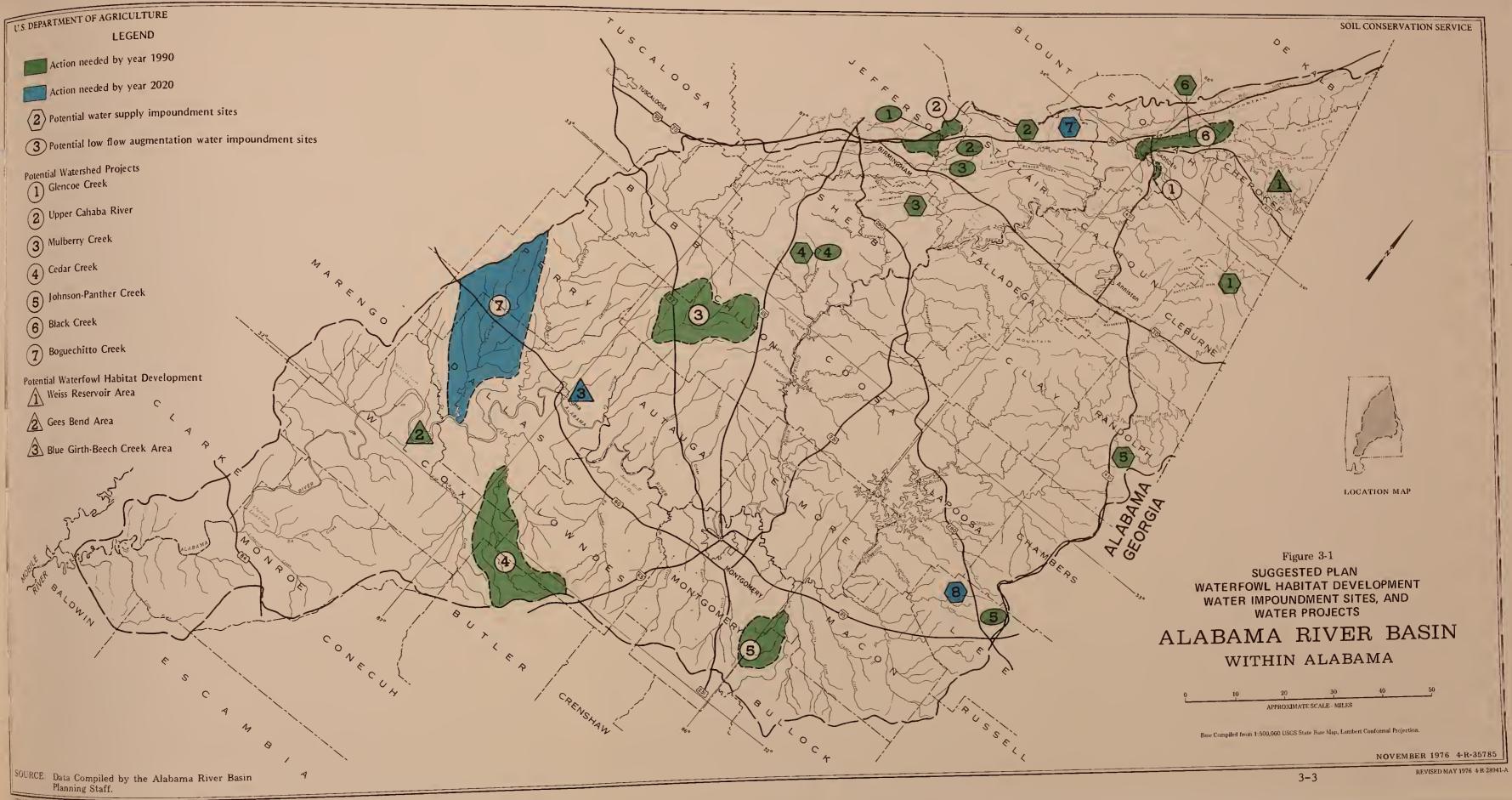
This plan contains the most effective combination of elements from the NED and EQ alternatives to reduce undesirable conditions to acceptable levels and to provide for resource needs in the future. The location and types of plan elements are mapped on figures 3-1 and 3-3. Figure 3-4 shows the effectiveness of this plan in satisfying component needs. Beneficial effects of those elements that could be elevated in monetary terms amount to \$9.8 million annually (table 3-12). Net beneficial effects total 4.9 million.

#### Land Resource Development

Conservation treatment on 1,271,000 acres of agricultural and forest
land for erosion reduction.
Drainage of 7,000 acres of cropland, 32,000 acres of pastureland, and 6,000 acres of converted woodland and unimproved pastureland.
Changed land use for improved production efficiency on 382,000 acres
of cultivated land.
Conservation measures to reduce sediment in streams by 10.4 million tons/year.
Streambank, roadside, strip mine, and gullied area stabilization to reduce critical erosion on 95,000 acres.
Reduction of forest fire losses from 0.54 to 0.35 percent on 7,129,000 acres of forest land.
Prescribed burning on 110,000 acres of forest to increase beef production.
Improve timber production efficiency on 530,000 acres. 1/

#### Water Resource Development

Six watershed flood control projects. Six reservoirs for municipal and industrial water supply.


## Recreation and Culture

Recreational development at 27 sites to provide 2.9 million activity occasions annually. Acquisition of 150 miles of scenic streams and 25 natural scenic sites. Wildlife habitat improvement on 160,000 acres. Identification of 18 species of flora and fauna needing protection. Identification, investigation and/or preservation of 250 archaeological and historical sites.

## Waste Disposal

Acquisition of 200 acres for solid waste disposal. Provide increased streamflow (230 cfs) for improved stream water quality.

1/ This area needs treatment during the early action period in order to meet harvesting requirements in 2020.



·

#### Land Use

The suggested plan seeks to reduce soil loss while sustaining agricultural output, the aim being to focus on the use of those soils that can be utilized without continuous degradation of the land resource. This is a very real development need which, if not corrected, will seriously damage Alabama's ability to sustain production.

Statewide application of elements similar to those in the suggested plan would substantially reduce the amount of land needed to supply projected production. Land use efficiencies would reduce state agricultural land needs about three percent by 1990, and by about nine percent by 2020. At the state level more than 500,000 acres could be released for other uses by 2020, while maintaining projected without plan production levels, and adequately treating land remaining in production.

Implementation of plan elements to achieve both conservation and production goals, would shift production throughout the state. A region with highly erosive soils could be expected to gradually shift from row crops to pasture. Other areas with flat, less erosive slopes would gradually capture a larger share of state row crop production. The net effect would be a substantial improvement in land use efficiency on all acres in production.

This explains the apparent incongruency within the Alabama River Basin, i.e., cropland harvested increasing despite the many elements for improving efficiency and ultimately reducing land needs. This would be the case only if production at the basin level was held constant, which it was not. The suggested plan increases basin row crop production and slows the rate of increase in improved pasture from a projected 25,000 acres annually to about 17,000 acres each year. The combined efficiency gains from crop and pasture shifts within the basin would total \$3 million annually by 1990.

The plan calls for no appreciable change in the total amount of land used for crop, livestock, and timber production through 1990 (see table 3-2). It would, however, result in a substantial change in the mix of crops and pasture as shown in figure 3-2. An additional 130,000 acres of the state's corn and cotton would shift into the basin by 1990. This, combined with a slight expansion of soybean and minor crops, would increase the basin's share of Alabama's cropland harvested from a projected 27 percent to 34 percent. Offsetting the increase in crops would be a reduction in the rate of increase of improved pasture used for beef (see table 3-3). The net effect of the trade-off in terms of land use would be no change in the projected 1.64 million acres used for crops and improved

2020
5
, 1990 & 2020
Basin,
River
d Plan, Alabama River Basin,
Plan,
l use, present, projected and Suggested Plan,
and
projected
present,
use,
Land
1
3-2
Table

PROJECTED

			<b>PROJECTED</b>	red	
		1990 LAND USE		2020 LAND USE	
			SUGGESTED	W/0 SU	SUGGESTED
LAND USE	1970	DEV.	PLAN		PLAN
		1,000	000 Acres		
Cropland & conservation acres:	653	614	766	591	718
Harvested acres	653	580	687	560	658
Supporting conservation ac. 1/	NA.		79		60
Other cropland	620		610		761
Pasture, improved	531	1,025	872	1,473 1	1,076
Pasture, unimproved	796		558		319
Forest land	7,471		,155		,862
Urban and other land	682		770		961
Impounded water	245		267		302
Rivers & streams	17	17	17	16	16
TOTAL	11,015	11,015 11	11,015	11,015 11	11,015

 $\underline{1}$  Used for proper water disposal and/or grass rotations to reduce erosion.

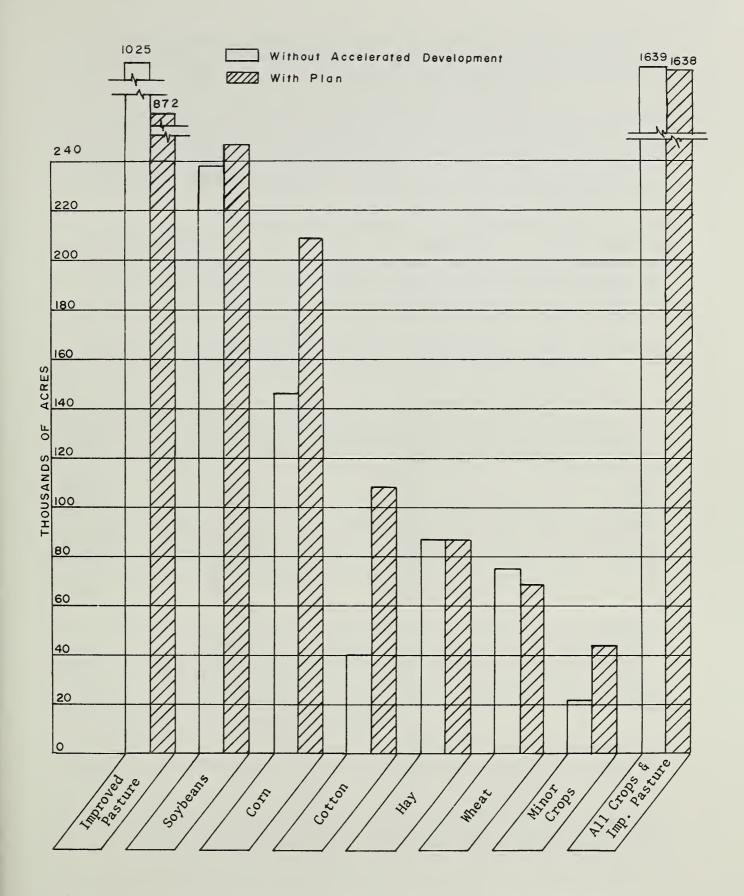



Figure 3-2 -- Agricultural land use, with and without the Suggested Plan, Alabama River Basin, 1990

pasture in 1990. Roughly 58 percent of the basin's open land would be utilized for crops and pasture, leaving 1.1 million acres, most of which would be suitable only for pasture.

The erosion control measures would change 58,000 acres of capability subclasses IVe and VIe soils from projected cropland harvested to timber by 1990. This shift, together with the concentration of row crops on class I through III land, would reduce the projected annual soil loss from sheet and rill erosion to 33.6 million tons, compared to more than 53.6 million tons without the plan.

The plan would not affect the trend in total forest acreage. Forest land will continue to decline, reaching 7,155,000 acres by 1990. This represents a 4 percent loss of the current forest base. However, with improved management and technology, timber production can be sustained on the available acreage.

ITEM	UNIT	1990	2020
Crop Production	Thou.		
	And 10 10 10 10 10 10 10 10 10 10 10 10 10	16 160	21 000
Corn	Bu.	16,160	21,900
Cotton	Bales	150	47
Peanuts	Lbs.	13,200	39,700
Soybeans	Bu.	10,650	22,200
Wheat	Bu.	2,280	430
Oats	Bu.	525	300
Нау	Tons	500	690
Livestock	Mil.		
Beef & veal	Lbs.*	300	420
Pork	Lbs.*	49	65
Poultry	Lbs.*	615	830
Eggs	Doz.	116	150
Milk	Lbs.	150	75
Net Returns	Mil.		
NED Plan	Dol.	50.3	84.8
Without accelerated			
resource development	Dol.	40.3	70.8

Table 3-3 -- Projected production of major farm commodities and total net returns, Suggested Plan, Alabama River Basin, 1990 & 2020

*Liveweight

The plan would have minimal effects on land used for urban and other purposes. About 4,000 acres of water would be impounded in small reservoirs by 1990. These impoundments would provide municipal and industrial water as well as recreational opportunities.

In essence, land use resulting from the suggested plan corresponds closely to that outlined in the NED alternative. This course of action appears to be the most effective and acceptable means of reaching the goal of resource conservation and continued expansion of farm output.

## Erosion Reduction

A plan goal was selected that would use existing and new programs to reduce erosion on 75 percent of the harvested cropland and pastureland to the acceptable limit of two to five tons per acre per year ("T" averages 4 tons per acre per year in the basin). The goal for reducing erosion on "other" cropland and unimproved pasture was set for 50 percent of the land adequately treated by 1990 and 2020.

The suggested plan would remove land in capability subclasses IVe, VIe, and VIIe along with some acreage of shallow soils in other capability classifications from cultivation. These lands would be converted to permanent cover, probably forest. Crops would be grown primarily on land capability classes I through III.

Erosion rates on cropland could be reduced from a projected 7.6 tons per acre in 1990 to 3.8 tons per acre under the plan. Erosion rates for other uses could be cut by 15 to 55 percent. The 25 to 50 percent of land not treated under this plan accounts for some erosion rates being projected higher than the 4 ton ("T") average for the basin.

A program of prevention and rehabilitation can reduce forest erosion in 1990 from an estimated 33.5 million tons annually to 13.7 million tons. This program is based upon the prescription and application of forest watershed standards and practices equal in effectiveness to those described in the U. S. Forest Service Watershed Management Standards for the Southern Appalachians.

Applying the following combination of measures is one of the more feasible that will produce the necessary erosion reduction to meet the standards described on page 4-52 of Volume I:

1. Reduce the acreage of spur roads and skid trails disturbance from 60,000 to 35,000 acres through proper planning and location of roads. This will reduce the erosion volume by 2,160,000 tons per year.

- 2. Lower the combined erosion rate for skid trails and spur roads from 33.5 tons/acre/year to 9.0 tons/acre/year through practices such as water bars on spur roads and skid trails, seeding bare soil and shaping banks. This will reduce erosion volume by 2,934,000 tons per year. A total of 30,000 acres will be treated. 1/
- 3. Lower the erosion rate from mechanical site preparation areas from 96.7 tons/acre/year to 18 tons/acre/year to obtain a reduction of 13,363,000 tons per year; modified installation, site preparation, and/or vegetative measures. 2/
- Attain the fire protection goal of 0.35 percent burn on 7,129,000 acres by 1990. This should reduce erosion volume by 406,000 tons per year.
- 5. Accelerating the conversion of 3,500 acres of cropland to forest each year of the early action plan will reduce erosion by 450,000 tons per year.

Table 3-4 shows a comparison of projected total erosion from general and critical areas without a plan and with the suggested plan implemented. With the suggested plan general erosion could be reduced 37 percent by 1990 and 52 percent by 2020. Total (basinwide) erosion could be reduced 42 percent by 1990 and 56 percent by 2020. Critical area erosion is presented in table 3-4.

Table 3-4	Erosion	totals,	prese	nt, pr	rojecte	d an	d Suggested	Plan,
	Alabama	River Ba	asin, 1	1970,	1990,	and	2020	

PRESENT	19	90	20	20
1970	W/O	PLAN	W/O	PLAN
	Million	s of tons	5	
50.4	53.6	33.6	62.7	30.2
14.8	14.9	5.8	15.3	3.8
65.2	68.5	39.4	78.0	34.0
	1970  50.4 14.8	1970         W/O          Million           50.4         53.6           14.8         14.9	1970         W/O         PLAN          Millions         of tons           50.4         53.6         33.6           14.8         14.9         5.8	1970         W/O         PLAN         W/O          Millions         of tons         50.4         53.6         33.6         62.7           14.8         14.9         5.8         15.3

The general erosion reduction measures in the suggested plan for 1990 consist of best management practices such as cover crops, sod in rotation, complete water disposal systems, and pasture and hayland planting and management to protect 1,197,000 acres; and forest site preparation

1/ Treating this acreage will result in an equivalent three-fold reduction for skid trails and spur roads and a four-fold reduction for the site prepared areas.

2/ Many other combinations of measures can be prepared which will also reach the erosion control goals.

and vegetative measures to protect 74,000 acres. The kinds and amounts of erosion reduction measures to be provided in this plan are presented in table 3-5.

Table 3-6 compares projected average erosion rates with and without the suggested plan. An apparent contradiction exists when average erosion on other cropland and unimproved pasture increases while ongoing programs continue to operate (future without accelerated resource development). It should be noted that the increases in average erosion are on steep, marginal land (see Volume I, page 4-40). This abused land is not only very erosive but is most difficult to reach with voluntary treatment programs since the areas are generally small acreages not returning enough to the landowner to encourage investment in soil conservation practices.

Table 3-5 -- Erosion reduction measures, Suggested Plan, Alabama River Basin, 1990 and 2020

LAND TREATMENT TO MEET "T" VALUE NEEDS	199	0	202	20
(2 TO 5 TONS/AC./YR. EROSION)		REMAINING		REMAINING
(2 10 3 10N3/ RC. / IR. ER0310R)		1,000		REMAINING
Cropland Harvested		1,000 /		
Crop residue use or cover cropping,				
Contour farming or				
drainage	212	78	272	101
Contour farming,		, .		202
crop residue use,				
water disposal				
systems, sod in				
rotation	148	55	79	29
Other Cropland				
Establish perennial cover	220	247	258	313
-				
Improved Pastureland				
Planting and management	480	144	592	179
In improved Destruction 1				
Unimproved Pastureland Pasture management	137	293	108	130
Pasture management	157	293	108	130
Forest Land				
Site preparation	19	0	20	0
Installation and				
rehabilitation of				
log roads and				
skid trails.	55	0	84	0
TOTAL	1,271	817	1,423	752

	PRESENT	199	0	20	20
LAND USE	1970	W/O	PLAN	W/O	PLAN
		Tons per	acre per	year	
Cropland harvested	9.5	7.6	3.8	7.5	3.8
Other cropland	13.4	11.4	7.5	16.4	7.5
Improved pasture	3.4	2.8	2.4	3.4	2.1
Unimproved pasture	4.1	5.2	4.3	5.8	3.8
Forest, slight to					
undisturbed	0.9	0.9	2.5 1/	0.7	2.0 2/
Forest, disturbed	33.6	33.0		33.0	_
Urban and Other	5.3	5.0	5.0	4.8	4.8

Table 3-6 -- Erosion rates, present, projected and Suggested Plan, Alabama River Basin, 1990 and 2020

1/ Weighted average erosion for all forest land is 2.5.

 $\overline{2}$  Weighted average for all forest land is 2.0.

## Reduction of Critical Erosion

The suggested plan will provide treatment for 67,800 acres of gullied land, 1,600 acres of roadsides, 9,200 acres of mined land and 16,500 acres of streambank land by 1990. By 2020, the plan provides treatment for 87,000 acres of gullied land, 2010 acres of roadsides, 11,500 acres of mined land and maintenance of the 16,500 acres of streambanks which were treated in the early action plan. Implementation of the suggested plan will reduce critical area erosion 61 percent by 1990 and 75 percent by 2020 (see table 3-6).

## Reduction in Sedimentation

The suggested plan will accomplish reduction in sedimentation by treatment of erosion which is the source of sediment. The erosion reduction features of the plan are a combination of conservation treatment on 75 percent of the cropland and improved pastureland, 50 percent of the unimproved pastureland and other land, and 100 percent of the disturbed forest land (NED general erosion features); and 75 percent of the critically eroding areas (EQ - critical erosion features). The plan emphasizes conservation treatment that will produce substantial reductions in stream sediment loads. Intensive treatment is planned for streambanks, roadbanks, and gullied land which introduce sediment directly into streams. Slightly less intensive treatment is planned for forests, cropland and pastureland (general erosion sources). The combined effects of the erosion control measures would reduce stream sediment load from a projected 22 million tons annually in 1990 to 11.6 million tons (table 3-7).

Table 3-7	Sediment production,	present,	projected a	and Suggested Plan
	Alabama River Basin,	1990 and	2020	

SOURCE OF	PRESENT	19	990	20	020
SEDIMENT	1970	W/O	PLAN	W/O	PLAN
		Millior	ns of Tons	;	
General erosion	12.7	13.4	8.5	14.8	7.8
Critical Area	8.7	8.6	3.1	8.9	2.2
Total	21.4	22.0	11.6	23.7	10.0

## Improved Production Efficiency

The suggested plan calls for changed land use on 4 percent of the state's 8.8 million acres projected to be in agricultural production by 1990. Roughly one-third of the change, 136,000 acres, would involve clearing of subclasses IIw and IIIw forest land for row crops. The remaining 246,000 acre adjustment would involve the transfer of steep erosive cropland to pasture, the use of flat pastureland for row crops, and the conversion of idle pasture to cropland.

In addition to the conservation benefits, the proposed land use changes would effectively reduce per unit production costs for most commodities, resulting in a substantial increase in net farm income.

With the suggested plan, net returns to basin farm operators should increase about \$10 million annually by 1990. The increase would depend on the basin capturing a larger share of the state's crop production, and increasing production efficiency. Studies indicate that \$3 million in benefits would accrue solely from reduced unit production costs, while the additional \$7 million would result from increased crop sales. Efficiency gains associated with this plan are similar to those presented in the NED alternative.

## Increased Recreation

This plan involves development of 27 recreation sites which would provide 2.9 million activity occasions of recreation annually. Included are six large (250-acres each) county parks, three city parks, recreation at eight multi-use reservoirs, expansion of camping areas in both the Talladega and Tuskegee National Forests, and the establishment of 240 miles of hiking trails by 1990. The 2020 plan consists of a total of 39 projects and will provide 2.3 million activity occasions annually. A detailed listing of all facilities to be provided in the early action phase is shown in table 3-8 and on figure 3-3. The plan would cost \$1.5 million annually, while returning \$3.1 million.

A major feature of the plan would be a system of six county parks located on major reservoirs along the Coosa River between Lake Weiss and Jordan Lake. The parks would serve the populous Montgomery-Birmingham-Gadsden area of the state, where 80 percent of the basin's recreation demand originates. The parks would be family oriented, offering swimming, white sand beaches, picnicking, playground facilities, boating, skiing, and hiking trails. Campsites would be developed as needed. The parks, shown in figure 3-3, would be roughly 40 miles apart. A system of hiking trails with primitive campsites would eventually link the entire six park system.

Currently none of the six counties involved (Elmore, Chilton, Shelby, Talladega, St. Clair, and Cherokee) have a county park or facility similar to this. Demands for such a development can be expected to intensify. Recreation proposals presented in the NED alternative were chosen for the suggested plan.

### Increased Forest Production

The suggested plan will provide the additional 82 million cubic feet needed by 2020 to bring production to 600 million cubic feet. Improved utilization measures will provide 70 percent of the increased volume, or about 57.4 million cubic feet of round wood. This increase can be achieved by improved manufacturing and harvesting methods as well as proper use of equipment and felling and bucking techniques.

Accelerated forest management will provide the remaining 30 percent of the needs. This measure includes reforesting 100,000 acres, improved cutting on 687,000 acres, regenerating 6,700 acres per year and timber stand improvement on 46,000 acres per year.

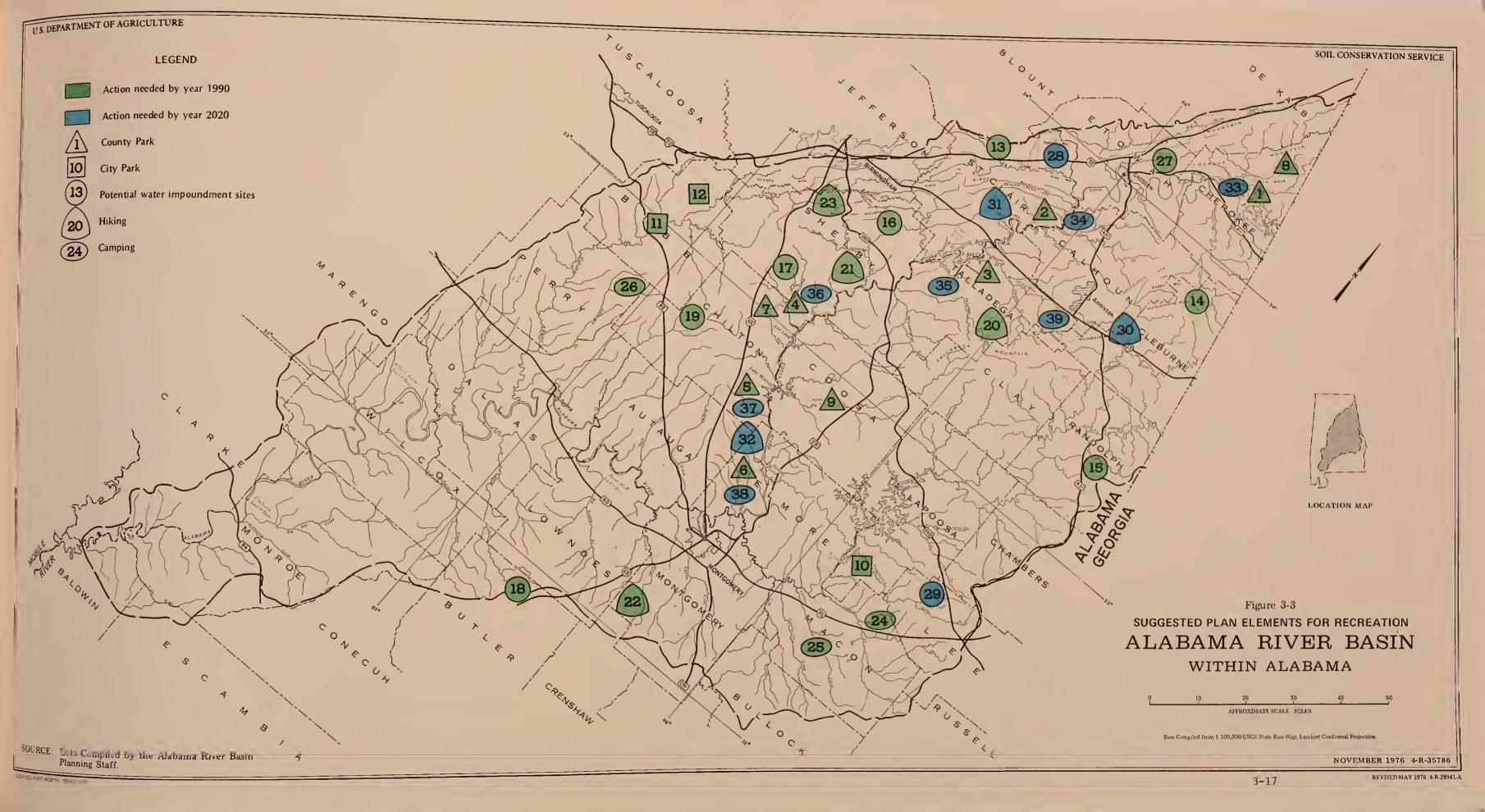
#### Reduction of Fire Losses

Presently, there are 39 fire control units in the basin. To meet future needs, an additional 31 units are recommended by 1990. The units, as they are acquired, will be stationed in those counties where they will do the most good (see figure 4-16, Vol. I).

#### Increased Forest Grazing

The major result of the forest grazing program is a shift in range use from fragile sites to sites more compatible to forage production. A minimum grazing program involves prescribed burning of 110,000 acres of pine forests on favorable soils. A portion of such burning will be prescribed every year in stands up until they are 30 years old. The timing of the burning and the size of the area burned will be based on ambient pollution levels to insure that the burning is conducted in compliance with the State's air quality regulations and standards. This grazing alternative will produce an additional 1.2 million pounds of beef in 1990 and 600,000 pounds by 2020.

## Agricultural Flood Damage Reduction


The suggested nonstructural means of reducing agricultural flood damage consists of changed land use. In the portion of the flood plain where this measure is suggested, it was assumed that about 15 percent of the cropland and about 20 percent of the pastureland could reasonably be relocated to higher elevations. This method is most applicable in small watersheds where crops and pasture are currently grown on soil capability subclasses IIIw and IVw. This change could be accomplished through intensive conservation planning efforts that would utilize flood hazard information in selecting the best use for current cropland and pastureland.

Early action (by 1990) to remove crops and pasture from flooded areas would involve changed land use on about 7,000 acres of cropland and about 31,000 acres of pastureland. By the year 2020, this measure would be expected to increase to 8,000 acres for crops and 35,000 acres for pasture. The desire by individual farmers to minimize flood losses and take advantage of other use opportunities would provide the incentive to accomplish this measure. The flood plain land where these crops and pastures are currently grown could be used for timber production, open space, recreation, wildlife habitat, or other uses less susceptible to damage.

Intensive land use and the extent of flooding in many watersheds indicated that flood damages could not be substantially reduced by nonstructural means. Structural measures for flood prevention would be needed for protecting the remaining flood plain. These measures include floodwater retarding structures, flood dikes, and channel work. The suggested plan for flood damage reduction include structural measures to protect 2,000 acres of cropland and 8,000 acres of pastureland by 1990. These measures consist of 13 floodwater retarding structures, 3 multiple purpose structures, 14.3 miles of channel work, and 0.7 miles of flood dikes. They are contained in six watershed projects shown in table 3-9, and located on the suggested plan map (see figure 3-1). One additional project suggested for

NO. FA Immediate Nocod Wciss La Nocely He Lay Lake Mit Lake Mit Lake Mit Lake Mit Lake Mit Hatchett	144 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CONTRACTOR OF THE OWNER OWNE		0 2 4 D 1 1	FACILITIES TO BE PROVIDED	YUV IDED				
Immediate New New New New New New New New New New	FACILITY	SWIMMING	PICNICKING	CAMP ING		HIKING	BOATING	FISHING	WATERSKIING	GOLF
	> Need									
	Weiss Lake Park (Cherokee)	×	×	To be	X	X	X	X	Х	Х
	Neely Henry Park (St. Clair)	X	X	added as	×	×	×	×	: ×	:
	Logan Martin Park (Talladega)	Х	X		×	×	×	×	×	
	Lay Lake Park (Shelby)	X	×		×	×	×	×	: ×	
	Lake Mitchell (Chilton)	X	X		×	×	×	×	: ×	
	Lake Jordan (Elmore)	×	X		×	X	×	×	×	
	Lake Minooka		Х	×		×	×	*	1	
	Cornwall Furnace		X	Х		×				
	Hatchett Creek Canoe Trail						×	X		
10 Tal	Tallassee-Carrville Park	Х	×	X	×		×		Х	
11 Bre	Brent-Centerville Park	X	Х	X	×		X	×		
12 Wes	West Blocton Park	×	×	X	×					
13 Can	Canoe Creek	×	×	×	×		×	X		
14 Ter	Terrapin Creek		×		×		×	X		
15 Ned	Wedowee Creek		X		×		×	×		
16 Bea	Bear Creek		X		X		×	×		
17 Can	Camp Branch	×	×		×		× ×	: ×		
18 Ced	Cedar Creek	X	X	X	X		×	×		
19 Mul	Mulberry Creek	X	X	X	×		×	×		
20 IIIk	llikingTalladega N.F.			×		X	:	:		
21 Hik	HikingSites 3 to 4			X		×				
22 Bar	Bartram Trail			×		×				
23 Hik	HikingOak Mt.			×		×				
	Roadside ParkTuskegee N.F.		X	Х	X					
25 Cam	CampingTuskegee N.F.			x						
	CampingTalladega N.F.		×	Х		Х				
27 Bla	Black Creek	X	X		×	X	×	×		
Long Range	9			13		1	ł	ł		
	Gulf Creek	X	×	×	×		X	Х		
29 Lob	Loblockee Creek	X	×	*	: ×		× ×	~ >	X	
30 Hik	HikingTalladega N.F.			: ×	:	X	¢	<	¢	
	HikingSites 2 to 3			×		: ×				
32 Hik	HikingSites 4 to 6			× ×		: >				
33-38 Add	33-38 Addition of camping to existing			×		:				
COL	county parks									
39 Can	CampingTalladega N.F.			×						

Table 3-8 -- Recreation sites proposed in the Suggested Plan, early action and long-range plans, Alabama River Basin





	CNI NO. 1970 R-B					AVERAGE ANNUAL
WATERSHED	ATLAS	AVERAGE A	AVERAGE ANNUAL DIRECT BENEFITS 1/	BENEFITS	I/ STRUCTURAL MEASURES	COST 2/
Early Action (1990)	(06	Flood	Recrea-	Lo + C H		
Mulberry Creek	35a-1,2,4,5	86, 500	-	101,300	7 single purpose FRS 1 multiple purpose structure	101,100
Johnson-Panther Creeks	35a2-68	230,000	1	230,000	4 single purpose FRS 10.4 mi. channel work	182,200
Cedar Creek	35a-45,61,62	224, 300	650,000	874,300	2 single purpose FRS 1 multiple purpose structure	403,500
Glencoe Creek	35a1-11	69,000	ı	69,000	3.9 mi. channel work	27,800
Upper Cahaba Tributary	35a3-1,2,4	3,800	I	3,800	0.7 mi. flood dike	2,200
Black Creek Subtotal	35a1-7	39, 700 653, 300	157,500 822,300 1	197,200 ,475,600	1 multiple purpose structure	108,600 825,400
Long Range (2020)						
Boguechitto Creek Watershed	k Watershed					
Bear Creek Trib.35a-29 Washington Creek	b.35a-29 ek	122,000	ı	122,000	1 single purpose FRS	36,300
Trib. Dry Channey	35a-23	86,000	ı	86,000	l single purpose FRS	48,000
Creek Trib.	35a-27	25,000	ı	25,000	1 single purpose FRS 2.6 mi. channel work	48,000
TOTAL		886.300	822.300 1	. 708 . 600		924 000

Table 3-9 -- Average annual benefits and costs for watersheds found economically feasible, Suggested

installation by 2020 would protect 800 acres of cropland and 1,800 acres of pasture. Three floodwater retarding structures and 2.6 miles of channel work are included in this potential project. Measures to reduce flood damages were selected from the NED alternative.

## Urban Flood Damage Reduction

Eighty communities in the basin have an urban flood problem. In flood plain areas where urban developments are intense, flood damage could be reduced with the installation of various combinations of nonstructural measures such as watershed treatment, flood warning systems, flood proofing, and flood plain use regulations. Time and manpower limitations precluded detailed studies of individual communities. Therefore, no elements are included in this plan for achieving urban flood damage reduction. When remedial efforts are undertaken, first consideration should be given to nonstructural measures identified and described below.

<u>Watershed Treatment</u>--Conservation measures may include crop residue management, cover crops, terraces, grassed waterways, contour farming, grass in rotation with crops, or permanent grass cover. Combinations of agriculturally oriented measures make up a conservation cropping system that is tailored to meet the needs for protecting land and reducing runoff in urban as well as agricultural areas.

<u>Floodwarning Systems</u>--Local communities should work with the National Weather Service and state agencies to develop an effective floodwarning system. One type of warning system is based on the collection of rainfall data by time periods. The data is reported to a central location where a forecast of peak stage is made. An alternative system could include an automatic gaging station at selected stream locations that activate alarm systems.

<u>Flood Proofing</u>--Flood proofing consists of measures designed to prevent or limit flood damage to structures and contents of buildings. Measures generally are installed to reduce damage once the water reaches a building and could result in substantial reduction in flood losses.

<u>Flood Plain Use Regulations</u>--Governmental bodies can adopt comprehensive flood plain regulations. They may also request the preparation of flood hazard maps based on detailed analysis as a means of securing flood insurance.

Regulations may be incorporated in building codes, subdivision regulations and/or zoning ordinances. The use allowed is usually based on degree of flood risk.

#### Water Supply

Local community officials and planning agencies selected the proposed water supply sites after all sites were identified that had potential to supply the amount of water needed. A total of six sites supplying 19.5 MGD were selected to serve 10 communities in 1990. The six reservoir sites selected are located on the suggested plan map (see figure 3-1). Two additional sites were selected to supplement long range needs. Multiple use of these water supply reservoirs is planned. Water supply reservoirs in the suggested plan are expected to furnish sufficient water for municipal, industrial, and domestic use commensurate with projected population growth. Detailed information for each site is shown in table 3-10. The municipal water supply for the suggested plan and the NED alternative are identical.

### Agricultural Drainage

The early action phase of the suggested plan provides for installation of drainage measures on 7,000 acres of cropland, 32,000 acres of pastureland and 6,000 acres of converted woodland and unimproved pastureland. In the long run, the plan provides for installation of drainage measures on 21,000 acres of cropland, 98,000 acres of pastureland and 16,000 acres of converted woodland and unimproved pastureland. The drainage measures for the suggested plan are the same as those for the NED alternative.

#### Low Quality Stream Improvement

The 1990 suggested plan includes five reservoir sites for low-flow augmentation to improve stream quality at five pollution problem locations (see figure 3-1). These sites are located upstream from the problem areas to utilize gravity flow. The available storage and dependable yields from the drainage areas of the sites selected will meet, in whole or in part, the required discharge to augment low flows in 1990. Statistical data is shown in table 3-11.

## Scenic Rivers and Streams

Many waterways in the basin have sections displaying scenic value but five stream systems were selected as having exceptional scenic qualities. This plan recommends that about 150 miles of scenic waterways be preserved or protected from unregulated development by 1990 and 200 miles by 2020. Proposals for the early action time frame involve protecting and preserving portions of the Cahaba River, Tallapoosa River, and Hatchett Creek. The long-range proposals include similar programs for Shoal Creek and Little River. Priority of plan elements and specific locations of scenic stream segments should be selected at the appropriate time.

Table 3-10 Potential water supply impoundment	lal wate	er supply impound	ment sites,	Suggeste	Suggested Plan, Alabama River Basin,	abama Riv	er Basin		1990 and 2020	
COMMUNITIES SERVED	BASIN <u>1</u> / PLAN	<u>1</u> / STREAM NAME	SITE LOCATION S. T. R.	DRAINAGE AREA (SQ. MI.)	M&I STORAGE (AC. FT.)	SURFACE AREA (AC.)	WATER <u>2</u> SUPPLY (MGD)		1 1	OTHER PURPOSES SERVED
Randolph Co. Wedowee Woodland	1990	Wedowee Cr.	Sec. 2, T20S,R11E	37.2	2,000	240	9.7	1.5	2.0	ı
Calhoun Co. Jacksonville Piedmont	1990	Terrapin Cr.	Sec. 18, T13S,R11E	29.0	2,000	111	8.4	3.6	7.0	FC <u>4</u> /
<u>Shelby Co.</u> Calera Columbiana	1990	Camp Branch	Sec. 31, T21S,R1W	21.5	3,000	440	8.5	9.0 <u>-</u> /	18.1 ^{5/}	I
Sterrett-Vandiver Westover Wilsonville	1990	Bear Cr.	Sec. 15, T18S,R18E	13.6	4,800	442	7.8			
St. Clair Co. Margaret Moody Odenville	1990	Canoe Cr.	Sec. 21, T14S,R2E	37.8	4,000	415	11.0	4.4-/	18.0 ^{6/}	н ^с
Ashville Springville Steele	2020	Gulf Cr.	Sec. 17618 T13S,R4E	14.4	3,500	260	7.0			I
<u>Lee Co</u> . Auburn Opelika	2020	Loblockee Cr.	Sec. 546 T19N,R25E	40.2	4,500	670	12.0	4.0	8.0	ı
Etowah Co. Lookout Mtn. (Gadsden)	1990	Black Cr.	Sec. 29, T10S,R7E	29.8	2,000	485	8.5	1.0	2.0	FC <u>4/</u> Rec. <u>7</u> /
$\frac{1}{2}$ Early action plan, 1990long-range plan, 202 $\frac{2}{3}$ Designed to fully utilize the site potential. $\frac{3}{4}$ F.C Flood Control	1, 1990- v utiliz me fran rol	1990long-range plan, utilize the site potent e frame.	, 2020. tial.	5/ To 6/ To <u>7</u> / Re	Total needs for a Total needs for a Rec Recreation	==	Shelby Co. St. Clair			listed. es listed.

Table 3-11 -- Potential reservoir sites for low-flow augmentation, Suggested Plan, Alabama River Basin, 1990

				DOOL		TOTAL STORAGE	USABLE		TOW
SI	SITE		DRAINAGE	SURFACE	WATER	VOLUME	STORAGE	DEPENDABLE	FLOW
N	NO.	SITE LOCATION	AREA	AREA	DEPTH	AVAILABLE	VOLUME	YIELD	REQUIRED
)			(Sq. Mi.)	(Acres)	(Feet)	(Ac. Ft.)	(Ac. Ft.)	(cfs)	(cfs)
-		Cahaba River							
		2 ¹ ₂ mi. N of Trussville	12.7	140	50	2,825	2,200	9.5	1/
		RIE, T16S, Sect. 12							I
2		Big Black Creek							
		8 mi. NE of Trussville	10.5	255	45	4,780	4,200	7.9	1/
		RIE, T15S, Sect. 36							I
3		Little Black Creek							
		6 mi. E of Trussville	11.4	304	45	6,765	6,000	8.5	1/
3-		RIE, T16S, Sect. 24							I
4		Waxahatchee Creek							
		$2^{1_{2}}$ mi. W of Columbiana	12.8	374	20	3,740	3,040	6.2	4.5
		RIW, T21S, Sect. 21							
S		Saugahatchee Creek							
		4 mi. NW of Auburn	5.4	178	35	2,375	2,000	3.2	23.0
		R26E, T19N, Sect. 2							

 $\underline{1}$  Three sites are needed to provide a required flow of 23.1 cfs.

See figure 3-1 for general location.

#### Natural Scenic Sites

A list of 130 natural scenic sites that warrant protection to preserve and maintain their unique or aesthetic qualities was developed from the Alabama SCORP,  $\frac{1}{2}$  Volume 18, and the County Appraisals of Potential for Outdoor Recreation. The list included about five sites per county, ranging from two sites in Lowndes County to ten sites in Talladega County. It was projected that 90 sites would merit protection by 1990 and that 75 additional sites would need attention by 2020.

The suggested plan includes elements to protect, preserve or maintain 25 sites by 1990 and 35 sites by 2020. It is recommended that several sites from each of the major categories (e.g., overlooks, caves, springs, waterfalls, swamps, and geologic formations) be considered when specific sites are selected.

## Improve the Quality and Quantity of Fish and Wildlife Habitat

The suggested plan will supply 160,000 acres of the 186,000 acres of habitat improvement needed by 1990 and 234,000 acres of the 275,000 acres needed by 2020. The need to improve fish and wildlife habitat was based primarily on the anticipated acreage needed to satisfy public demand, both consumptive and non-consumptive, for animal resources in the Alabama Basin.

Upland Habitat--Suggested plan elements that will improve upland habitat include the purchase of 1,000 acres of non-game habitat, lease and management of an additional 100,000 acres for public hunting, and intensified management on 32,000 acres of private, state, and federal land.

Wetland Habitat--Elements of the suggested plan will supply 21,000 acres of the 25,000 acres of wetland habitat needed by 1990. This includes 5,000 acres of habitat development and improvement in beaver ponds and green tree reservoirs, 13,500 acres in two waterfowl management areas (3,500 acres at Gee's Bend and 10,000 acres on Lake Weiss) and 2,500 acres of flood plain management. Additional plan elements for 2020 include the acquisition of a 4,000 acre wetland area in the Blue Girth-Beech Creek Swamp.

<u>Impoundments</u>--Suggested plan elements will supply about 75 percent of the 8,000 acres needed by 1990 and the 10,000 acres needed by 2020. In essence, the plan elements involve accelerated technical assistance and governmental cost sharing to implement new management techniques in exchange for public access to private ponds.

^{1/} Statewide Comprehensive Outdoor Recreation Plan.

<u>Streams</u>--The suggested plan elements include improving 1,000 acres of stream habitat by 1990 and 2,000 acres by 2020. This can be accomplished by accelerating or creating state and federal programs under existing authorities. Specific practices include selective snagging, restocking, bank stabilization, pollution control, and improved access.

# Protection of Endangered Species of Flora and Fauna

Presently, about 66 species in Alabama are classified as "endangered" on a state or federal list. This number is expected to increase to 90 by 1990 and 112 by 2020. These species were assumed to be in need of protection even though an Endangered Species Act was passed by Congress in 1973 to protect threatened and endangered plants and animals.

The suggested plan will emphasize habitat acquisition, habitat management, and accelerated protection for 18 species by 1990 and 25 species by 2020. This includes 10 species of animals and 8 species of plants.

# Protection of Archaeological and Historical Sites

Presently, there are about 120 archaeological sites and 255 historical sites in the basin that need preliminary investigation and/or protection. These numbers are projected to diminish to 110 archaeological sites and 200 historical sites by 1990. The suggested plan encourages action that will identify and protect about 250 historical and archaeological sites by 1990. These sites are expected to remain the same through 2020.

Primary emphasis should be placed on the preservation of residential districts possessing similar historical qualities rather than single structures. By concentrating on preservation of districts, greater numbers of landmarks will be protected. It will also preserve more of a "place-in-time" than the preservation of single structures.

A preliminary investigation of many archaeological sites could be conducted if state or local funds were available to supplement federal funds. Following such investigations, sites could be classified as to their preservation value. If archaeological site investigation funding was coordinated at the state level; federal, state, and local funds for investigations could be directed into those areas of the basin most likely to be disturbed by future resource development. Solid Waste Disposal

Two 100 acre disposal sites for hazardous solid wastes needed in the basin should be located in the Blackland Prairies section of the basin by 1990. The specific location of these sites has not been selected as part of this basin study. An additional 200 acres of disposal area will need to be developed in the basin by 2020. There is no precedent in the state at present for the location and operation of this type of solid waste disposal site. The best approach to solving this problem would be through a cooperative effort involving participating private industries with planning assistance provided by the State Department of Public Health, Solid Waste Division. Financial assistance could be provided through various state and federal programs with participating industries sharing the major portion of the costs.

	TOTAL	ANNUAL	ANNUAL
COMPONENTS & PLAN ELEMENTS	INST. COST	COSTS 1/	BENEFITS
Flood Reduction	Ino	usand Dollars	5
Changed land use	5,500	\$ 340	\$ 375
Structural measures	8,000	494	φ 373 653
Urban-nonstructural	NA NA	NA NA	NA
Increased Drainage	INA	INA	IIA
Surface and subsurface	2,700	170	200
Increased Beef Production	2,700	170	200
Prescribed burning			
(forest land)	4,850	300	415
Create Water Supply	4,000	500	415
Impoundments	4,000	255	339
Increased Recreation	4,000	255	555
Facilities	24,000	1,499	3,100
Erosion Reduction	24,000	1,455	3,100
Conservation systems	(21,000) 2/	(1,297) 2/	NA
Improved Production Eff.	$(21,000) \frac{27}{2}$	$(1,257)$ $\underline{27}$	INA
Changed land use	12,200	750	4,700
Reduced Fire Losses	12,200	750	4,700
Equipment	(1,750) 2/	(110) 2/	NA
Critical Erosion Reduction	$(1, 750) \frac{27}{27}$	(110) 2/	
Stabilization	(150,000) 2/	(11,740) 2/	NA
Reduced Sediment Load	$(130,000) \frac{2}{2}$	(11,740) 27	IA
Conservation systems	NA	NA	NA
Solid Waste Disposal	INA	INA	INA
Acquisition	(400) 2/	(25) 2/	NA
Scenic Streams			1410
Acquisition	(350) 2/	(22) 2/	NA
Natural Scenic Sites			- MA
Acquisition	(3,250) 2/	(199) 2/	NA
Fish and Wildlife Habitat			
Management and improvement	(6,530) 2/	(401) 2/	NA
Protection of Flora and Fauna			
Acquisition	(1,800) 2/	(112) <u>2</u> /	NA
Low Quality Streams			
Low flow augmentation	(4,550) 2/	(280) 2/	NA
Protection of Archaeological			
and Historical Sites			
Cooperative identification			
and preservation program	NA	NA	NA
Increased Timber Production			
Utilization and Accel. Mgmt.	30,000	1,859	4,715
TOTAL	\$ 91,250	\$ 5,667	\$ 14,497

 $\frac{1}{2}$  Amortized @ 6 1/8 percent interest for 100 years and includes O&M.  $\frac{1}{2}$  Not included in total cost.

COMPONENTS	AEASURES OF EFFECTS	COMPONENTS	MEASURES OF EFFECTS
Beneficial effects: (	(Average Annual Dollars) <u>1</u> /	Adverse effects:	(Average Annual Dollars) $\underline{1}/$
A. The value to users of		A. The value of resources	
increased outputs of goods and services		required for the NED plan:	
5		l. Multi-purpose reservoirs,	
1. Flood damage reduction	1,020,000	floodwater retarding struc-	
2. Increased drainage	198,000	tures, recreational and	
3. Increased beef production		water supply reservoirs,	
(forest)	410,000	channel work, and recreational	al
4. Create water supply	335,000	facilities	
5. Increased recreation	3,070,000	Project installation	1,513,000
6. Increased timber production		OMĘR	1,000,000
7. Production efficiency	4,664,000	2. Nonstructuralincreased beef	f
8. Utilization of unemployed		production on forest land	
and underemployed labor		prescribed burning	300,000
resources		3. Increased timber production	1,859,000
		4. Production efficiency	750,000
a. Project construction	130,000	5. Project administration	245,000
Total beneficial effects	14,497,000	Total adverse effects	5,667,000
		Net beneficial effects	8,830,000
1/ Amortized over 100 years at 6-1/8 percent interest.	-1/8 percent interest.		

-- National economic development account, Suggested Plan alternative, Alabama River Basin, 1990 Table 3-13

COMPONENTS	MEASURES OF STATE OF ALABAMA	² EFFECTS REST OF NATION	COMPONENTS	MEASURES OF EFF STATE OF RE ALABAMA NA	EFFECTS REST OF NATION
Income			Income		
Beneficial effects:	(Average Annual)	11/1	Adverse effects:	(Average Annual)	1/
A. The value of increased output of goods and services to users re- siding in the region			A. The value of resources con- tributed from the region to achieve the output		
<ol> <li>Flood damage reduction</li> <li>Increased drainage</li> <li>Increased beef production</li> <li>Create water supply</li> </ol>	1,020,000 198,000 n 410,000 335,000	0000	<pre>1. Multi-purpose reservants, floodwater retarding structures, recreational and water supply reservoirs, channel work and recreational</pre>	s, nal	
	2,770,000	300,000	facilities Project installation	973,000	540,000
production 7. Production efficiency 8. Utilization of unemployed	4,670,000 4,664,000 d	00	OM&R 2. Nonstructuralincreased beef production on forest		0
and underemployed regional labor resources	al		<pre>landprescribed burning 3. Increased timber production 4. Production efficiency</pre>	300,000 1,859,000 0	0 0 750,000
a. Project construction B. The value of output to users	130,000 s	0			122,000
residing in the region from external economics			Total adverse effects	4,255,000	
<ol> <li>Indirect activities associ- ated with increased net returns from flood damage reduction, and increased</li> </ol>	e ci-		Net beneficial effects	10,582,000 -1,112,000	.12,000
beef production	640,000	2/			
Total beneficial effects 1	14,837,000	300,000			
$\frac{1}{2}$ Amortized over 100 years at 6-1/8 percent $\frac{2}{2}$ National externalities were not evaluated	6-1/8 percent not evaluated	nt interest. ed.			

Table 3-13 -- cont'd., regional development account

COMPONENTS	MEASURES OF EFFECTS STATE OF REST OF ALABAMA NATION	COMPONENTS	MFASURES OF EFFECTS STATE OF REST OF ALABAMA NATION
Employment		Employment	
Beneficial effects:		Adverse effects:	
A. Increase in number and types of jobs		A. Decrease in number and types of jobs	
<ol> <li>Employment for pro- ject construction</li> </ol>		<ol> <li>Loss in agricultural employment from pro-</li> </ol>	10 man-yrs. of - agricultural
	jobs for 5 yrs.	ject take area 2. Loss in indirect and	employment 15 permanent –
2. Employment in re-	150 permanent -	induced employment	semi-skilled -
creation service sector	seasonar semir- skilled jobs	associated with pro- ject take area	Jobs
3. Employment for pro-	97 permanent -		
ject OM&R	semi-skilled jobs	Total adverse effects	25 permanent - semi-skilled jobs
4. Indirect and induced	290 permanent -		
employment from	semi-skilled	Net beneficial effects	362 permanent -
output of projects's goods and services	Jobs		semi-skilled jobs
Total beneficial effects	387 permanent -		l50 permanent - seasonal semi-
	semi-skilled		skilled jobs
	jobs		200 semi-skilled -
	150 permanent -		jobs for 5 yrs.
	seasonar semi- skilled iohs		
	200 semi-skilled -		
	jobs for 5 yrs.		

Table 3-13 -- cont'd., regional development account

# Table 3-13 -- cont'd., regional development account

	MEASURES OF E	FFECTS
COMPONENTS	STATE OF ALABAMA	REST OF NATION
Population Distribution		
Beneficial effects	Creates 362 permanent semi-skilled jobs, 150 permanent seasonal jobs and 200 semi-skilled jobs for 5 years in an area which has experienced a 1 percent reduction in population in the last 10 years.	-
Adverse effects	-	
Regional Economic Base and	Stability	
Beneficial effects	Provides flood protection on 10,000 acres of crops and pasture, 18.5 million gallons per day of municipal water supply and 2,900,000 activity occasions of re- creation opportunities. Creates 362 permanent semi- skilled jobs, 150 permanent seasonal semi-skilled jobs, and 200 semi-skilled jobs for 5 years in an area where 27 percent of the families have incomes less than the national poverty level.	

-

-

Adverse effects

# Table 3-13 -- cont'd., environmental quality account

COMPONENTS	MEASURES OF BENEFICIAL AND ADVERSE EFFECTS
A. Areas of natural beauty	<ol> <li>Project benefits will enhance 3,300,000 acres on 18,000 farms.</li> <li>Create 9 lakes of 3,820 acres with 98 miles of shoreline.</li> <li>Establish water-based recreational facilities at 26 locations.</li> <li>Disruption of rural tranquility by 2,900,000 recreational occasions annually.</li> </ol>
B. Quality consideration of water and land resources	<ol> <li>Reduce sediment load in streams by 10.4 million tons per year.</li> <li>Revegetation of 95,100 acres of critically eroded land, streambanks, roadsides, and strip mines.</li> <li>Maintain quality of land on 237,000 acres by using less erosive soils.</li> <li>Reduce erosion on 496,000 acres of crop- land, 616,000 acres of pastureland, and 190,000 acres of forest land.</li> <li>Reduce fire losses on 7,129,000 acres of forest land.</li> <li>Low flow augmentation at 5 sites for water quality improvement.</li> </ol>
C. Biological resources and selected ecosystems	<ol> <li>Create 4,940 acres of flatwater fish and waterfowl habitat.</li> <li>Inundate 36 miles of stream fish habitat.</li> <li>Provide 4,940 acres resting areas for migratory waterfowl.</li> <li>Inundate 4,940 acres of wildlife habitat.</li> <li>Improve deer and other wildlife habitat by providing permanent watering places in lakes.</li> <li>Disrupt 14.3 miles of aquatic ecosystems through channel alternations.</li> </ol>
D. Irreversible or irretrievable commitments	<ol> <li>Conversion of 4,450 acres of forest land, 390 acres of pastureland, and 100 acres of cropland to reservoir pools.</li> <li>Commit 100 acres of land to channel rights- of-way.</li> </ol>

Table 3-13 -- cont'd., social well-being account

COMPONENTS	MEASURES OF BENEFICIAL AND ADVERSE EFFECTS
A. Real income distribution	<ol> <li>Create 475 low to medium income permanent jobs for area residents.</li> <li>Net monetary benefits of \$10,582,000 provide opportunities to improve the income of about 27 percent of the families within the basin whose income is below the proverty level.</li> </ol>
B. Life, health and safety	<ol> <li>Increased output will be in livestock, grain, and fiber products.</li> <li>Increased risk of drowning or injury at lake sites.</li> <li>Reduced water pollution resulting from reduced sediment load in streams.</li> <li>Develop 200 acres for solid waste disposal.</li> <li>Improved municipal water supply services for 10 communities.</li> </ol>
C. Cultural and recreational opportunities	<ol> <li>Creates 2,900,000 recreational activity occasions annually.</li> </ol>

		QUANT	QUANTITIES		PLAN EFFECTIVENESS		
COMPONENT NEEDS	UNIT	NEEDED 1990	DED 2020	YEAR PROVIDES	REMAINING	YEAR PROVIDES	2020 REMAINING
Flood Damage Red. Nonstructural measures	c.						
Cropland	Thou. ac.		49	7.0	Cropland 40	00   	Cropland 38
Pastureland Total		<u>154</u> 203	$\frac{154}{203}$	$\frac{31.0}{38.0}$	(49-7-2=40) Pastureland 115	<u>35</u> 43	(49-8-3) Pastureland
					(154-31-8=115)		109 (154-35-10)
Structural measures							
Cropland	Thou. ac.			2.0		3	
Pastureland Total				8.0 10.0		<u>13</u>	
282 3-	ON	16	16	13	٢	16	C
	NO	4	2 14	4		24	р. с
	Mi	ر ۱۸ ۹	16.0	2 7 A I	с ч С	0 JF 0	
Flood dike	Mi.	0.7	0.7	0.7	0	0.7	0
Erosion Reduction Cronland		2,088	2,175				
Covercrop or							
residue, terraces							
or drainage, sod							
in rotation	Thou. ac.			580	380	609	443
Pasture planting	Thou. ac.			191	96	220	100
Pasture management				426	341	480	209
Forest							
Site preparation	Thou. ac.			19	0	20	0
trails installation							
and rehabilitation				55	0	84	0
10101				1,2,1	/10	L,423	761

Table 3-14 -- Effectiveness of plan elements in meeting component needs for the Suggested Plan, Alabama River Basin

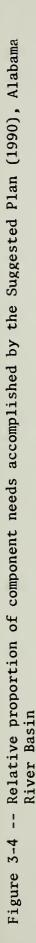
nt'd
Con
-
14
3-
le
Tab

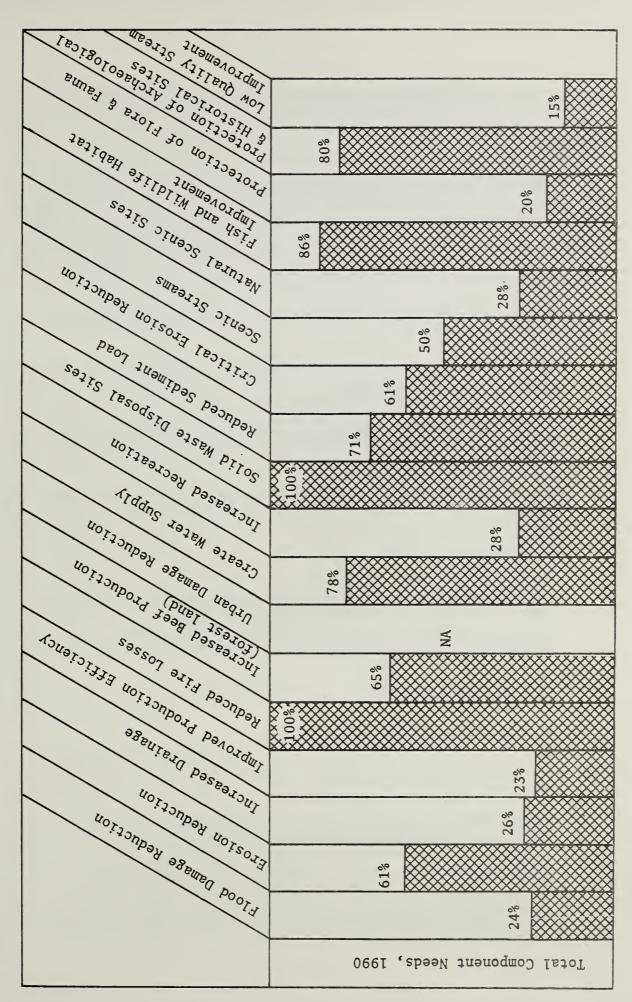
		QUANTITIES	<b>FIES</b>		PLAN EFFECTIVENESS		
		NEEDED		YEAR	YEAR 1990	YEAR	YEAR 2020
COMPONENT NEEDS	UNIT	1990	2020	PROVIDES	REMAINING	PROVIDES	REMAINING
Increased Drainage Surface and subsurface	Thou. ac.	170	202	45	125	135	67
Improved Production Efficiency Changed land use	Thou. ac.	1,638	2,064	382	1,256	650	1,414
Increase Forest Production 1/ Improved utilization	Mil. cu.	0	82.0	0	0	57	0
Accelerated forest management	it./yr.			0	0	25	0
Reduced Fire Losses Capital imp. and equipment	Thou. ac.	7,129	6,845	7,129	0	6,845	o
Increased Grazing Forest Land Prescribed burning	Mil. lbs. beef/yr.	19.2	15.7	12.6	6.6	6.0	9.7
Urban Damage Red. Nonstructural	No. of Comm.	06	110	NA	NA	NA	NA
Create Water Supply Impoundments	MGD	25	71	19.5	5.5	53.3	17.7
1/ While there are no unmet needs for timber production in 1990. the timber management programs must begin no later	nmet needs f	or timber pj	oduction i	n 1990. the t	imber management r	programs must be	gin no later

pulpwood; veneer/construction, etc. Therefore, a forestry program is presented in the early action plan but only that portion of the program to be accomplished in the early action plan period and in terms of measures accomplished. than 1980 and be completed by 1995 in order that the timber requirements be met: softwood/hardwood; sawtimber/

	2020 REMAINING	N	0	c
	YEAR 2 PROVIDES	M	400	020
PLAN EFFECTIVENESS	1990 REMAINING	7,000	0	c
	YEAR PROVIDES	2,935	200	020
ES	2020	29, 368	400	020
QUANTITIES	1990 NEEDED	9,935	200	020
	UNIT	Thou. act. occ.	Acres	يون
	COMPONENT NEEDS	Increased Recreation Picnic tables (1,375) Swimming (41 ac. beach) Boating (2,810 ac.) Golfing (1-9 course) Water skiing (2,225 ac.) Camping (680 sites) Hiking trails (2,20 ac.) Hiking trails (240 mi.) Fishing (2,950 ac.) Hunting: Waterfowl habitat (9,000 ac.) Big game (193,000 ac.) Small game (140,000 ac.)	Solid Waste Disposal Sites Site acquisition	Low Quality Streams Augmentation Low flow

Table 3-14 -- Cont'd


			ANTITIES NEEDED	YEAR 1990	PLAN EFFECTIVENESS	IVENESS YEAR 2020	2020
COMPONENT NEEDS	UNIT	1990	2020	PROV IDES	REMAINING	PROVIDES	REMAINING
Reduced Sediment Load See erosion reduc- tion for specific measures	Thou. tons/yr.	14.5	16.1	10.4	4.1	10.0	6.1
Critical Erosion Red. Streambank stab. Roadside stab. Critical area stab. Strip mine stab. Total	Thou. ac.	151.6	155.6	$16.5 \\ 1.6 \\ 67.8 \\ 9.2 \\ 95.1 \\ 95.1$	4.5 0.7 45.2 6.1 56.5	$16.5 \\ 2.0 \\ 87.0 \\ 11.5 \\ 117.0 \\ 117.0 \\ 117.0 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 110 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 1$	9.5 0.3 3.8 <u>39.6</u>
Scenic Streams Site acquisition	Mi.	300	350	150	150	200	150
Natural Scenic Sites Site acquisition	Sites	06	75	25	65	35	40
Fish & Wildlife Habitat Imp. Upland habitat imp. Wetland habitat imp. Impoundment mgt. Stream improvement Total	Thou. ac.	186	275	132 21 6 <u>160</u>	18 4 2 <u>5</u> 26	199 25 8 <u>234</u>	39 0 4 <u>1</u>
Protection of Flora & Fauna Identification	No.	06	112	18	72	25	87
Protection of Archaeological & Historical Sites Identification	Sites	310	280	250	60	260	20


Table 3-14 -- Cont'd

ACCOUNTS	NED PLAN	EQ PLAN	SUGGESTED	DIFFERENCES (SUGGESTED PLAN MINUS ALTERNATIVE SHOWN)	UGGESTED PLAN ATIVE SHOWN)
1. National economic development				NED	EQ
Beneficial effe	\$14,497,000	\$11,799,000	\$14,497,000	0	\$2,
Adverse effects Net beneficial effects	5,667,000 8,830,000	6,144,000 5,655,000	5,667,000 8,830,000	00	- 477,000 + 3,175,000
<ol> <li>Lunvironmental quality</li> <li>Beneficial and adverse effects</li> </ol>					
A. Create lakes for natural beauty and human enjoyment	20 lakes	19 lakes	25 lakes	+5 lakes	+6 lakes
B. Disrupt aquatic ecosystems of natural streams	14.3 miles of streams	3.9 miles of streams	14.3 miles of streams	0	+10.4 miles of streams
C. Wildlife habitat improvement- enhanced by all measures	63,000 acres of habitat	160,000 acres of habitat	160,000 acres of habitat	+97,000 acres of habitat	es 0
D. Erosion Reduction	21.4 mil. tons	33.7 mil. tons	25.8 mil. tons	+4.4 mil. tons	-7.9 mil. tons
<ol> <li>Regional development - State of Alabama</li> <li>Income:</li> <li>Beneficial effects Adverse effects</li> <li>Net beneficial effects</li> </ol>	\$14,837,000 4,255,000 10,582,000	\$12,099,000 4,853,000 7,246,000	\$14,837,000 4,255,000 10,582,000	000	+\$2,738,000 - 598,000 + 3,336,000
B. Employment Net beneficial effects	462 medium income permanent jobs	437 medium income permanent jobs	512 medium income permanent jobs	+50 medium income permanent jobs	+75 medium income permanent jobs
<ol> <li>Social well-being</li> <li>A. Provide a more stable water supply</li> </ol>	10 communities	5 communities	10 communities	0	+5 communities
B. Provide recreational opportunities	2,935,000 activity occs.	2,705,000 activity occs.	2,935,000 activity occs.	0	+230,000 activity occs.
C. Acquisition of scenic streams	75 miles	150 miles	150 miles	+75 miles	0
D. Acquisition of scenic sites	5 sites	25 sites	25 sites	+20 sites	0
E. Preservation of archaeological and historical sites	0 sites	250 sites	250 sites	+250 sites	0
F. Identification of flora and fauma species	7 species	18 species	18 species	+11 species	0

Table 3-15 -- Summary comparison between the Suggested Plan and the NED and EQ Alternatives, Alabama River Basin

.





#### ENVIRONMENTAL IMPACTS OF U.S.D.A. PLAN ELEMENTS

#### General Introduction

The suggested plan is a complementary and economically feasible combination of projects and measures to satisfy water and related land resource problems and needs of the Alabama River Basin. The primary needs are for flood control, erosion and sediment control, improved conservation management systems, reduction in agricultural pollution, and improvement to the environment. The suggested plan will satisfy a portion of these needs.

Plan elements of the early action plan that can be implemented through USDA program assistance are identified below.

Changed Land Use - shift an additional 130,000 acres of corn and cotton into the basin

Flood Damage Reduction - on 10,000 acres of flood plain by installing 16 floodwater retarding structures and 14.7 mile channel improvement; also changed land use on 38,000 acres

Erosion Reduction - on 1,271,000 acres of agricultural and forest land

Production Efficiency - improvement on 382,000 acres of cultivated land

Increased Forest Production - on 530,000 acres of timberland

Reduction in Fire Losses - from 0.54 percent to 0.35 percent annually on 7,120,000 acres

Increased Forest Grazing - to produce about 1.2 million pounds of beef

Increased Recreation - at 23 sites

Reduction in Critical Erosion - on 95,000 acres of roadsides and gullies

Wildlife Habitat Improvement - on 16,000 acres of National Forest Service land and 16,000 acres of private land

Fish Habitat Improvement - 4,000 acres of impoundments

Table 4-1 provides more detailed discussion for implementation of the plan elements proposed for inclusion in the early action plan.

In general, most USDA plan elements will contribute to the overall improvement of environmental quality within the basin. Flooding, erosion and sediment damages will be reduced. Revegetation of critical areas, planting of trees, installation of terraces, timber stand improvement, and other conservation practices will help improve the aesthetic quality of the landscape. Water quality will be improved by the combined results of all practices which reduce erosion resulting in stream pollution. Impetus most likely will be generated to guarantee the preservation of these areas and enhance the basin's environmental appeal.

The environmental impacts of the USDA plan elements in the early action plan are discussed below. In addition, a system of accounts to display beneficial and adverse effects of the entire suggested plan is shown in table 3-9.

During detailed planning, the implementing federal state and local agencies providing assistance to project sponsors should give full consideration to minimizing and mitigating adverse impacts on the environment. This should include consideration of all resource values necessary for the orderly development of the basin's water and related land resources.

The projected land use changes resulting from implementation of USDA plan elements for selected time frames are shown in table 3-2. These projections are compared to future conditions without planned development.

The suggested plan, in contrast to the future without accelerated resource development condition, should generally improve habitat conditions for most animal life in the basin by increasing cropland by 137,000 acres and decreasing total pastureland by a comparable amount. Usually, pastureland is inherently low value wildlife habitat.

#### Environmental Impacts

Non-Structural Measures--Non-structural plan elements primarily involve accelerated land treatment programs and reallocating land use within soil capabilities. The environmental impacts of these elements will be to maintain quality of land on 237,000 acres by using less erosive soils, and to reduce erosion on 496,000 acres of cropland, 616,000 acres of pastureland and 190,000 acres of forest land through land treatment measures and proper land use. The combined effects of all measures will be to reduce erosion by 20 million tons per year and sediment by 5.9 million tons per year. Reduced sediment will improve water quality, thus benefiting associated aquatic life. The plan will provide erosion protection to 95,000 acres of gullied land which will reduce sediment production by 5.5 million tons per year. Improved fire protection will improve hydrologic conditions on the total forest land acreage. Flood damages will be reduced on 38,000 acres of flood plain by converting this acreage to less intensive uses.

Structural Measures--The early action plan includes 22 impoundments in 10 project proposals providing 3,690 acres of surface water at normal pool level. About 3,230 acres of forest land and 460 acres of open land will be inundated by these impoundments. Preliminary field investigations indicate that no unique wildlife habitat exists at proposed impoundment sites. However, more detailed surveys will be conducted prior to planning any particular project. About 60 acres (23 miles) of free-flowing stream habitat will be changed to lake-type aquatic habitat. The floodwater retarding structures will reduce flood damages on 10,000 acres.

The 22 impoundments will create approximately 3,690 acres of aquatic habitat and an estimated 88 miles of shoreline to benefit animal life associated with small lake habitat. The flood pools will include capacity for 8,000 acre-feet of sediment storage. These impoundments will also provide 49,000 acre-feet of floodwater storage during periods of storm runoff.

Six municipal and industrial water supply structures will supply 19.5 million gallons of water per day. Water-based recreation facilities will be established at 23 sites providing over 2 million recreational occasions annually. There will be a disruption of tranquility in some rural areas associated with increased recreation.

Channel alterations are planned for about 14 miles of existing streams by 1990. This will cause adverse effects to fish and wildlife resources. Fish habitat will be degraded as water courses are widened and become more shallow. Water temperatures are generally increased as streamside vegetation is removed. Some wildlife habitat is destroyed as channels are widened and excavated.

#### Alternatives

There were basically two alternatives considered during the formulation of the suggested plan; one alternative to promote national economic development (NED) and another to enhance environmental quality (EQ). The impact effects of these two alternatives are displayed by the four-accounts system in tables 2-11 and 2-17. A third viable alternative would be no accelerated project action. Future-without-development conditions were used as baseline data to establish projected needs by the selected time frames. Obviously, if no project action is taken as recommended in the suggested plan, anticipated economic and environmental benefits as displayed in Table 3-9 will be foregone. Future economic and environmental conditions in the basin without resource development are presented in Chapter 4, Volume I. One would expect an increase in erosion rates, sedimentation, flood problems and continued encroachment on ecologically sensitive areas without positive resource planning.

### Short-Term Vs. Long-Term Use of Resources

Trends in the basin indicate future land use will be agricultural with increased rural-residential development. The suggested plan is expected to be compatible with short-term uses of land, water, and other natural resources in the basin without precluding any significant long-term options. Short-term food and fiber needs can be met through continuation of the present allocation of land resources. Changes in land use and the acceleration of conservation treatment application is essential, however, to preserve the quality of the land resource base for use in meeting long-term needs. Continued depletion of the soil resource would have serious detrimental effects on the basin's capacity to sustain food and fiber production for future generations.

The suggested plan was formulated to meet present and future needs without depeleting the basin's resources. Major interaction of shortterm vs. long-term uses are summarized below.

1. Accelerated conservation land treatment and use of soils within their inherent capability will contribute to both an immediate and long-range improvement of water quality in the basin's streams through reduction of sediment entering the waterways.

2. The present level of forest resource management and forest product utilization will meet the basin's needs only through 2000. The measures proposed in the suggested plan will provide for these needs to be met on a long-term basis.

3. Short-range objectives of increased timber production, mostly through increased pine tree plantings, coupled with a conversion of hardwood lowlands to other forest types or other land uses will have a long-term detrimental impact on animal life associated with mature hardwood stands.

4. Residential and industrial water supply is adequate on a community basis for only a short-term period. Additional supply needs to be developed for six communities as indicated in the suggested plan.

5. Without adequate planning, the allocation of land resources for non-agricultural uses such as transportation system rights-of-ways, residential areas, and industrial parks may result in a long-term loss of prime agricultural land.

# Irreversible and Irretrievable Commitments of Resources

An estimated 3,690 acres of land will be committed to the installation of 13 floodwater retarding structures, 3 multipurpose impoundments, 6 water supply sites and their associated dams, spillways, and borrow areas. Of this total, about 3,230 acres are forest land and about 460 acres are in pasture and row crops. Production lost on the land committed to impoundments is expected to be offset by benefits that will require an initial irretrievable commitment of labor and additional labor for operation and maintenance of plan elements.

# CHAPTER 4

# PLAN IMPLEMENTATION

#### IMPLEMENTATION OF THE EARLY ACTION PORTION

The suggested plan includes a mix of elements from the NED and EO alternatives with implementation opportunities for individual plan elements through a variety of federal, state, and local programs. The priorities and schedule for installation of various elements will depend upon the willingness of local units of government and other local organizations to initiate requests for assistance and assume leadership, financial, and legal responsibilities as appropriate. Technical and financial assistance for most plan elements can be obtained through existing programs of local, state, and federal agencies. The regional planning and development commissions can assist in making applications for this assistance. Some plan elements can only be installed with significant increase in levels of funding or additional local, state, or federal legislation and program authorities may be needed. Consideration should be given to rearranging some USDA program priorities if funding and personnel increases are not realized. Higher prioroties could be given to such work as soil surveys and critical erosion stabilization.

The ADO is responsible for coordinating the development of the state's human, physical and economic resources; and to promote the health, safety, and general welfare of its citizens; and to comprehensively plan for the state's total development. It therefore can effectively serve as the pivotal state agency for involving and coordinating the programs of the various agencies, in order to accomplish the objectives of local units of government. If additional funding or legislative support is identified as being required, ADO would also be the appropriate agency to initiate these actions.

Local organizations have indicated a high degree of interest and support for many of the measures included in the suggested plan. The kind and amount of measures that can be implemented under USDA programs and other programs are identified in tables 4-1 and 4-2. Additional information on methods of implementing these elements are described in the following sections:

# Erosion Damage Reduction

Erosion damage reduction will be accomplished on cropland, pastureland, and forest land by applying best management practices that are tailored to soil groups in use. Programs of the USDA provide technical

ELEMENTS	UNITS		IER THAN USDA AGENCY/PROGRAM
ELEMENTS	UN115	AGENCI/PROGRAM UNIIS	AGENCI/PROGRAM
Flood Damage Reduction			
Changed Land Use	38,000 ac.	PL-75-46, Co-op Ext.	National Weather
Changea Lana 030	50,000 ac.	Service	Service, USGS,
Watershed Projects	6 watersheds	PL-83-566 & RC&D	Corps of Engineers,
Matershed Projects	0 water sheas		HUD-FIA
			NOD I IX
Erosion Reduction			
Cropland	36,000 ac.	PL-83-566, RC&D, ACP,	PL-92-500, AWIC
CI OF I III I	,	PL-75-46	
Pastureland	544,000 ac.	PL-75-46, ACP	
	38,000 ac.	PL-83-566, RC&D, ACP	
Forest	579,000 ac.	PL-75-46, ACP	
	5,000 ac.	PL-83-566, RC&D, ACP	
	69,000 ac.	CM-2, CFM	Alabama Forestry
			Commission
			PL-92-500
Critical Erosion			
Reduction			
Streambank Stab.			
(16,500)	1,000 ac.	PL-83-566, RC&D, ACP	PL-92-500, C. of E.,
Roadside Stab.			AWIC, Ala. State
(1,600)	15,500 ac.	PL-75-46, ACP	Hwy. Dept., Ala.
	100 ac.	PL-83-566, RC&D, ACP	Surface Mining
Critical Area Stab.			(Act 551)
(67,800)	1,500 ac.	PL-75-46, ACP	
	4,200 ac.	PL-83-566, RC&D, ACP	
Strip Mine Stab.			
(9,200)	63,600 ac.	PL-75-46, ACP	
	600 ac.	PL-83-566, RC&D, ACP	
	8,600 ac.	PL-75-46, ACP	
Increased Drainage			
Surface and			
Subsurface	45,000 ac.	PL-75-46, PL-83-566, ACP	
		& FmHA	
Improved Production			
Efficiency	728 000		
Changed Land Use	328,000 ac.	PL-75-46, Co-op Ext.	
		Service	
Increased Forest			
Increased Forest Production			
	67 000 00	USES_EDU CEM	Alabama Forestru
Regeneration	67,000 ac. 460,000 ac.	USFS-FPU, CFM,	Alabama Forestry Commission
Timber Stand Imp.	400,000 ac.	GFA, CM-4, FIP, & RC&D, NFS	COMMIT221011
		g rugu, Nrs	

# Table 4-1 -- Suggested Plan elements and program means for implementation, early action portion, Alabama River Basin

# Table 4-1 -- Cont'd

			OTTI	
	the second se	ENT OF AGRICULTURE		IER THAN USDA
ELEMENTS	UNITS	AGENCY/PROGRAM	UNITS	AGENCY/PROGRAM
Reduced Fire Losses				
Capitol Imp. &				
Equipment	7,129,000 ac.	RM-2, PL-83-566,		Alabama Forestry
Equipment	7,129,000 ac.	RC&D		Commission
Increased Forest		RCGD		COMMISSION
	110 000 00	CES CM 2		
Grazing	110,000 ac.	CFS, CM-2		
Unhan Damago Roduction				
Urban Damage Reduction Nonstructural				
Measures	NA	DI - 97 - 566 DCED	NA	National Weather
Measures	NA	PL-83-566, RC&D	NA	
				Service, HUD,
				Corps of Engineers
Waton Supply				
Water Supply	6 sites			
Impoundments	o siles	PL-83-566, RC&D		HUD, EDA, Revenue
		FmHA		Sharing, HEW
Increased Recreation				
County Parks				
Systems along				
Alabama River	( (250 ac	DCCD		Alahama Davis Ca
Alabama River	6 (250 ac.	RC&D		Alabama Power Co.
Other	ea.)			ADC & NR
	8	PL-83-566	7	USDI-BOR (15.400)
City Parks			3	HUD
Uiking Trails				
Hiking Trails			105	
Bartram trail			125	USDI-BOR (15.400)
			mi.	USDI-NPS (15.904)
Connecting Co.				ADC & NR
Parks	65 mi.	RC&D		
Talladega N.F.	50 mi.	N.F.		
Other Camping:				
Talladega N.F.	180 sites	N.F.		
Canoe Trail			40	USDI-BOR (15.400)
			mi.	ADC & NR
	1 0 1 -			
Golf Course	1-9 hole	RC&D		
Waterfowl Mgt. Area			6,000	Alabama Power Co.
			ac.	USDI-F&WS Pittman-
				Robertson Program
Historic Sites			Civil	USDI-NPS Historic
			War	Preservation
			Furn-	Program
			ace	

	and the second	NT OF AGRICULTURE		ER THAN USDA
ELEMENTS	UNITS	AGENCY/PROGRAM	UNITS	AGENCY/PROGRAM
Solid Waste Disposal Site Acquisition			200 ac.	Alabama Department of Public Health, EPA, Revenue Sharing, Private Industry
Improved Stream Water Quality Low Flow Augmentation			35 cfs	Alabama Department of Public Health, EPA
Reduced Sediment Load	See erosion reduction	See erosion reduction		
Scenic Streams Site Acquisition			150 mi.	USDI, Land & Water Conservation Fund, Wild & Scenic Act, Open Space Act
Natural Scenic Sites Site Acquisition			25 sites	USDI, National Trails System Act, Land & Water Con- servation Fund, Open Space Program
Fish & Wildlife Hab. Imp		PL-83-566, ACP		Dingell-Johnson
Upland Hab. Imp.	17,000 ac.	RC&D, PL-75-46 Water Bank Act	116,000 ac.	Act, Duck Stamp Act, Federal Aid in Fish & Wild-
Wetland Hab. Imp.	2,000	100	19,000	life Restoration
Impoundment Mgt.	3,000 ac.		ac. 2,000 ac.	Acts, Pittman- Robertson Act, Ala. Dept. of Consvn. & Nat. Resources

# Table 4-1 -- Cont'd

	U. S. DEPAR	TMENT OF AGRICULTURE	ОТН	ER THAN USDA
ELEMENTS	UNITS	AGENCY/PROGRAM	UNITS	
<u>Fish &amp; Wildlife</u> <u>Hab. Imp. (Cont'd)</u> Stream Improvement			1,000 ac.	Fish & Wildlife Coordination Act, Wetlands Acquisition Act, Migratory Bird Conservation Act
Protection of Flora & Fauna				
Identification & Sit Acquisition (18 spec			18 species	Endangered Species Act of 1973, Lacy Act, Dingell-Johnson Act, Fish & Wildlife Coor- dination Act
Protection of Archaeological				
<u>&amp; Historical Sites</u> Identification (250	sites)		250 sites	National Register of Historic Places, Alabama Historical Com- mission, Alabama Environmental Quality Council, HUD-Community Development Program, ADC & NR

assistance on a limited basis. Acceleration of this assistance by an estimated 8,600 man-days annually for a 10 year period or 86,000 man-days by 1990 is needed to provide management plans and the knowledge operators need to treat the acreage outlined in the suggested plan. Evaluation of accomplishments shows that these acres will not be treated by current going programs.

Assistance under going programs is now provided through organized Soil and Water Conservation Districts at the county level. Public Law 75-46, through the Soil Conservation Service, provides for furnishing technical assistance in treating any land within the districts. Annual accomplishments under going programs are currently offset by obliteration of practices.

Detailed soil surveys are used as a basis for making conservation planning decisions. In the Alabama River Basin, soil surveys are completed and published for only nine counties. Four other counties have field work for soil surveys completed. Five additional counties have soil surveys in progress. The remaining counties have soil surveys made for selected areas only after requests for assistance are received from landowners and planning can be scheduled. Acceleration of soil surveys needs to be made on about 6,000,000 acres to provide adequate soils information in the other 17 counties. This would require an estimated additional 35,000 man-days to complete the surveys by 1990.

Acceleration of services occurs when a watershed is planned under PL 83-566 or a project measure is planned in an RC&D project area. Thirty PL 83-566 projects and 11 RC&D water resource project measures have applications that include land treatment acceleration. The Soil Conservation Service and U. S. Forest Service have the major responsibilities for planning and installing these projects. Watershed restoration and resource development work on state and private forest lands can be performed by the Alabama Forestry Commission in cooperation with the U. S. Forest Service; and by the U. S. Forest Service on National Forest lands. Local landowners or sponsors are responsible to county governments for operating and maintaining the installed measures.

County Agricultural Stabilization and Conservation Service (ASCS) programs provide cost sharing on some treatment measures throughout the basin when financial assistance is available. Currently, funds are available to individual counties that range from \$40,000 to \$100,000 per county depending upon the needs to treat land through going programs.

Major practices applied for erosion reduction are as follows:

Establishing Permanent Vegetative Cover Planting Trees Improving a Stand of Forest Trees Constructing Terrace Systems Animal Waste Storage and Diversion Facilities Improving Permanent Vegetative Cover Water Impoundment Reservoirs Diversions Permanent Wildlife Habitat Sediment Retention, Erosion or Water Control Structures Sediment, Chemical or Water Runoff Control Measures Developing Facilities for Livestock Water Winter Cover Crop Streambank Stabilization Permanent Open Drainage Systems Underground Drainage Systems Conservation Tillage Strip Cropping

The present level of funding is not sufficient for cost-sharing in an accelerated program. Funds will have to be more than doubled to meet the needs of going programs and the additional measures included in the suggested plan for protecting the productive base of the soil.

The Alabama Water Improvement Commission will prepare a statewide plan under PL 92-500 that will contain guidelines for erosion control measures to reduce non-point sources of pollution.

### Critical Erosion Reduction

The USDA programs for the treatment of critical areas include providing technical assistance for all items and cost-sharing on other items. Rapid acceleration of services will be required in order to achieve the planned level of treatment. Some acceleration will occur when the suggested watersheds are planned and installed under PL-83-566; acceleration will also occur as project measures are installed in RC&D project areas. The Soil Conservation Service and U. S. Forest Service have the major responsibilities for planning and installing these projects. Local landowners or sponsors are responsible for operating and maintaining the installed measures.

Critical areas which are not in authorized watersheds or RC&D Project Areas are limited to technical assistance provided to local Soil and Water Conservation Districts (PL 75-46). In counties where the local ASCS committee has programs that cover these measures, financial assistance (cost-sharing) is available. The U. S. Forest Service treats critical areas on National Forest lands under several programs which allow for complete management and conservation treatment on those lands.

Additional authorization is needed to stimulate accelerated installation of protective measures. Going programs have historically been funded at a low level of cost-sharing (incentive) which has had the effect of producing a low level of participation on the part of private landowners.

### Non-USDA Programs for Critical Erosion Reduction

The Water Pollution Control Act Amendment of 1972 (PL 92-500), administered by the Environmental Protection Agency (EPA), contains sections that affect critically eroding areas. Section 208 of the act includes authority for EPA to require studies on an area basis relating to non-point sources of pollution, specifically sediment and related non-point pollution. Study plans have been proposed to EPA which will result in non-point pollution control. Soil and Water Conservation Districts, and state agencies that control air and water quality, will have major inputs. The Alabama State Department of Public Health, the Alabama Water Improvement Commission, the Alabama Forestry Commission, and the Alabama Soil and Water Conservation Committee are the primary state agencies involved.

All federal agencies are required to comply with the laws that deal with pollution occurring as the result of any construction project of the agencies.

Surface mined land is reclaimed by the operators under provisions of the Alabama Surface Mine Reclamation Act of 1975. Technical assistance (only) is available through the Soil Conservation Service as discussed under USDA implementation programs.

At present, there is no statewide cost-share or project implementation program for abandoned ("orphan") mined lands or streambank protection. This is an area where additional authorization is needed, and may become available when non-point pollution abatement planning is completed under Section 208 of the Water Pollution Control Act, or by new or amended Surface Mine Acts.

#### Reduction of Sedimentation

Programs for reduction of sedimentation are primarily erosion control measures. Implementation of these erosion control measures is discussed under Erosion Damage Reduction and Reduction of Critical Erosion. Other reductions in sedimentation occur as a result of installation of reservoirs. USDA programs that include reservoir construction are the Watershed Protection and Flood Prevention Program (PL 83-566) and RC&D project measures.

### Non-USDA Implementation - Reduction of Sedimentation

Plans to control non-point sources of pollution, including sedimentation, are being prepared for the Environmental Protection Agency under Section 208 of the Water Pollution Control Act Amendment of 1972. These plans will, hopefully, provide the needed new programs to accomplish accelerated treatment.

# Flood Damage Reduction

Structural and nonstructural means are available to alleviate flood problems in a variety of ways. These measures to reduce flood damages through USDA programs include the Small Watershed Program (PL 83-566) and the Resource Conservation and Development Program (PL-87-703). Potential watershed projects are identified in table 2-3. Application for assistance in planning watershed projects are submitted to the State Soil and Water Conservation Committee. The Soil Conservation Service has primary responsibility for administering PL 83-566 and the RC&D Program. Local sponsorship and public participation is required before planning can be initiated. The Farmer's Home Administration (FmHA) can make grants on low interest and deferred payment loans to sponsoring organizations to assist in implementing flood prevention projects. Loans are used to finance the local cost-sharing items as required by individual projects.

When remedial measures are undertaken, first consideration should be given to nonstructural measures such as land treatment to reduce storm runoff and changed land use in the flood plain to reduce monetary damages. An increase in funding is needed so that technical assistance can be provided by SCS through PL 75-46 to identify those areas most adaptable to this means.

The Soil Conservation Service participates in flood hazard analyses to identify flood plains in urban and adjacent areas subject to future development. Requests for this assistance can be directed (after co-ordination with the appropriate regional planning and development commission) to the Alabama Development Office. The purpose of these studies is to provide data to state and local governments in their flood plain management programs.

# Agricultural Drainage

The drainage in the suggested plan can be accomplished by installation of surface drainage ditches, subsurface drainage systems, channel work, and associated conservation treatment. Open ditches are the most common measure used to remove surface water. Internal water caused by an inherently high water table can be removed by subsurface drainage systems. Large channels may be needed in some cases to provide a suitable outlet for other drainage systems. A group or project-type action may be necessary to obtain an adequate outlet.

The PL 75-46 program of the Soil Conservation Service can provide technical assistance through the local Soil and Water Conservation Districts for planning and installing conservation treatment measures. An acceleration of this technical assistance is available for watersheds planned under PL 83-566 and for areas where project measures are planned in the RC&D project areas. A portion of the drainage will be installed by individual landowners with no assistance from outside sources.

Alabama Law, Act No. 685, provides for the formation of Water Management Districts to accomplish projects which are beyond the scope of individual landowners.

Cost-sharing for installing some of the plan elements are available through the Agricultural Stabilization and Conservation Service where the county committees have an applicable program. Assistance is available on both individual and group projects. The Farmers Home Administration has loan programs for group projects and the installation of land improvement measures by individual landowners.

#### Water Supply

Programs of the USDA are presently available for use by local sponsors to develop potential water supply impoundment sites in the basin. Provisions of the Watershed Protection and Flood Prevention Act (PL 83-566) include multi-purpose reservoirs, including water storage for water supply. Assistance is given in developing plans. The Farmers Home Administration (FmHA) can make grants and loans to local sponsors to assist in implementing flood prevention projects. Loans are used to finance the local cost-sharing items as required by the individual projects.

The Coosa Valley RC&D project plan includes provision for developing water supply within a portion of the basin. State and county revenue sharing funds are used by local sponsors to finance developments in addition to local funds.

Financial assistance is available from various departments and agencies of the federal government. Long-term loans are provided by the U. S. Department of Housing and Urban Development for the development of water supply and distribution systems. In addition, financial assistance is provided by the Economic Development Administration and Appalachian Regional Commission for the development of water resources and other employment generating projects, and by the Department of Health, Education, and Welfare for water supply and treatment facilities.

# Low Quality Stream Improvement

Low-flow augmentation for pollution abatement is generally considered to be a last resort solution to water quality problems. After all practical levels of waste treatment have been achieved in a drainage basin, low-flow augmentation could be used as a supplemental method of maintaining desired water quality requirements during periods of low flow.

The reservoirs listed in table 3-7 and shown on figure 3-1 could be impounded by earth fill dams with concrete inlet and outlet structures. Each dam would have an ungated emergency spillway.

City or county governments near the location of the pollution problems could sponsor planning and installation of these reservoirs. Projects of this nature should have the concurrence of the Alabama Water Improvement Commission. The Sanitary Engineer for Jefferson County has expressed interest in proposed reservoir sites on the Cahaba River and its tributaries. Usually, the Environmental Protection Agency will consider low-flow augmentation as an approach to solving pollution problems only after the best available treatment systems have been installed.

# Improved Production Efficiency

Efficiency gains resulting from using less erosive soils for crops and pasture can only be achieved through landowner decisions based on detailed soil capability information. Soil Conservation Service technical assistance can be provided to (1) make soil surveys; (2) educate producers as to which soils are best suited for various crops; and most importantly, (3) follow through and guide landowners in accomplishing the needed land use changes. A statewide educational program aimed at soil conservation and utilization will require a significant increase in SCS technical personnel and funding. The Alabama Co-operative Extension Service can make significant contributions to this effort by providing information and education to landowners.

Currently, only one-half of the state is covered by modern soils maps. At the present rate of mapping, complete state coverage will not be achieved until 1995. The Alabama legislature is currently studying a bill sponsored by the Alabama Agricultural Council to provide for a 10-year plan to complete mapping by 1987.

This study suggests that landowners will gradually change the use of their lands to more efficient patterns, but this will be retarded by the time required for normal consolidation of farm units and changes in legal and personal preferences of individual landowners. But some short run exploitation of soil resources will continue. Incentive payment in the form of cost sharing on establishment costs and on conservation practices will induce some farmers to make desirable but marginally feasible changes in the short run. Education, technical assistance, and social pressure will correct some land uses considered undesirable from a conservation and environmental standpoint. Remaining instances of undesirable land use should be addressed by local units of government with broad powers.

# Recreation

Recreation proposals in the suggested plan could be implemented through a combination of federal assistance programs, state appropriations, and local funding. Local cost sharing is usually involved; consequently, the success of the recreation measures depend largely upon the financial ability of the public to accept this type of obligation.

Several federal programs are available, a major one being the Resource Conservation and Development Program administered through the USDA, Soil Conservation Service. This program provides project grants and planning assistance for public water based recreation and fish and wildlife developments. Each of the six major county parks proposed along the Coosa River could qualify for this type of funding. State and county governments must assume a leadership role if these parks are to become a reality.

The Outdoor Recreation-Acquisition and Development Program (15.400) administered by the Bureau of Outdoor Recreation, U. S. Department of the Interior, is another federal source of recreation funds. Grants are made to state and county agencies for purchase and development of outdoor recreation areas. These funds could be used to develop county parks, city parks emphasizing outdoor recreation, the Hatchett Creek Canoe Trail, and the Bartram Trail.

The PL 83-566 program of the Soil Conservation Service provides grants for planning assistance, land acquisition, and development of public recreation areas. The early action phase of the suggested plan includes eight such developments. These parks would be adjacent to multi-purpose reservoirs, averaging about 400 acres in size. The Farmers Home Administration, USDA, provides low interest loans for recreational developments through their Watershed Protection and Flood Prevention Loan Program (10.419). These loans are made to sponsoring local organizations and may equal total project costs.

The U. S. Department of Interior, National Park Service, offers grants for the preservation of historic sites through a Historic Preservation Program (15.904). Additional assistance in site preservation can be provided by the Alabama Historical Commission. The Cornwall Furnace project, and sections of the Bartram Trail should qualify for such funds.

The Forest Service, USDA, maintains hiking trails and campsites in all National Forest areas. Funds are appropriated through the Forest Service for developments in both the Talladega and Tuskegee National Forests.

Two waterfowl refuge and management areas are proposed in the suggested plan. Grants for this type of development are available through the Wildlife Restoration (Pittman-Robertson) Program offered by the U. S. Department of Interior, Fish and Wildlife Service. These funds go directly to state fish and game departments for restoration and management of wildlife populations.

#### Solid Waste Disposal

The Solid Waste Division of the State Health Department assists cities, counties, and the Association of Industries plan for solid waste disposal systems. Planning and installation of systems for solid waste should be coordinated with EPA and the State Health Department. Programs to fund construction of solid waste disposal areas are not presently available.

#### Reduced Fire Losses

The Alabama Forestry Commission provides the essential manpower, equipment and organization for forest fire protection and control on state and private lands. Through the Cooperative Forest Fire Control (CM-2) program, the U. S. Forest Service provides coordination and financial and technical assistance including training of fire control personnel, development and acquisition of equipment, and application of research findings. All state, industrial, and federal resources must be integrated in order to be able to reach the stated goal of 0.25 percent burn by 1990. In areas of especially high fire incidence, supplemental funding for fire control can be provided through PL 83-566 and RC&D programs.

### Increased Forest Grazing

There are two major means for increasing forest grazing on favorable soil and vegetative types: prescribed burning to increase forage production, and shifting grazing to more productive and less hazardous lands. The Cooperative Forest Fire Control (CM-2) program can provide assistance in accomplishing the goal of prescribed burning on 11,000 acres of pine forest per year. Burning can be accomplished without violating air quality standards by following methods prescribed by the USFS and the Alabama Forestry Commission. Aid in encouraging a shift in grazing to more suitable lands can be handled through the Cooperative Forest Management (CFM) program administered by the Forest Service in cooperation with the Alabama Forestry Commission.

### Increased Forest Production

The U. S. Forest Service, in cooperation with the Alabama Forestry Commission, can provide the training necessary to increase forest utilization through the Forest Products Utilization (FPU) program authorized by the Cooperative Forest Management Act of 1950. Acceleration of this program will provide the skill and knowledge necessary to achieve the goals of the suggested plan.

Technical and financial assistance needed to reach stated goals in reforestation and improvement cuttings is available through acceleration of such programs as: Cooperative Forest Management (CFM), General Forestry Assistance (GFA), Cooperative Tree Seeding (CM-4), and Forestry Incentives Program (FIP) administered by ASCS and State Forestry Commission.

In addition, supplemental funding for both increased forest utilization and accelerated forest management can be provided through Resource Conservation and Development (RC&D) programs.

# Improve the Quality and Quantity of Fish and Wildlife Habitat

Implementation of plan elements to achieve the desired improvements in fish and wildlife habitat in the basin will be accomplished primarily through programs other than USDA activities. However, several plan elements can be accomplished, at least partially, through PL 83-566, RC&D projects, and ASCS cost-sharing programs. The primary responsibility for management and protection of fish and wildlife resources rests with the Alabama Department of Conservation and Natural Resources and the U. S. Fish and Wildlife Service. Specific plan elements that were suggested for implementation include land acquisition and lease for wildlife management areas, accelerated wildlife management on state and federal lands, continued cost sharing for fish and wildlife habitat development on private lands, and improved access to streams and private lands by the public. These elements are compatible with accomplishments toward wildlife habitat preservation and development on private lands, funded by private sources.

Federal laws under which the selected plan elements may be implemented include Dingell-Johnson Sport Fish Restoration Act, Duck Stamp Act, Federal Aid in Fish and Wildlife Restoration Acts, Fish and Wildlife Coordination Act, Migratory Bird Conservation Act, Pittman-Robertson Wildlife Restoration Act, Water Bank Act, Wildlife Restoration Projects, and the Wetlands Aquisition Act.

### Scenic Rivers and Streams

The suggested plan includes provisions for the protection of 150 miles of scenic waterways by 1990. Plan elements involve site acquisition, site improvement, and enactment of appropriate state legislation to ensure preservation of scenic water courses.

Proposals for the early action time frame would protect or preserve portions of the Cahaba River, Tallapoosa River, and Hatchett Creek. The programs necessary to implement this aspect of the plan are, for the most part, outside current USDA activities. Protection for many of the rivers and streams may be achieved through PL 93-621, the Wild and Scenic Rivers Act as amended. This program is administered through the Department of Interior. It is essential that local sponsorship and interest in support of projects be apparent and be directed through proper channels. For example, local interested citizens and concerned organizations have been instrumental in the recently initiated study of the Cahaba River as a scenic or recreation river.

#### Natural Scenic Sites

Implementation of the suggested plan would protect, preserve or maintain 25 sites by 1990 and 35 sites by 2020. Plan elements to accomplish the desired level of protection can be achieved through programs administered by the Department of Interior, the Alabama Department of Conservation and Natural Resources, HUD and by laws enacted through the Alabama Legislature. Specific programs are provided through the Land and Water Conservation Fund Loan Act, National Trails System Act, Open Space Program, and the American Land Trust.

It is important that project support exists on the local level for effective implementation of available state and federal programs.

The Alabama Environmental Quality Council as well as regional councils have given splendid leadership to various environmentally oriented groups in their efforts to protect and preserve the scenic areas within the state.

### Protection of Endangered Flora and Fauna

Implementation of the suggested plan will emphasize habitat acquisition and accelerated protection for 18 species of endangered plants and animals in the basin. In addition, efforts should be made to increase public awareness and appreciation of endangered species.

These elements can be implemented through existing programs administered by the Department of Interior and the Alabama Department of Conservation and Natural Resources. The programs include the Endangered Species Act of 1973, Environmental Education Act and the Lacey Act. Private organizations such as the Alabama Conservancy, Sierra Clubs, Alabama Wildlife Federation, etc., could provide valuable assistance in the public education effort.

# Protection of Archaeological and Historical Sites

The suggested plan includes elements that will identify and/or protect about 250 historical and archaeological sites by 1990. Implementation should be made through the Alabama Historical Commission assisted by Regional Planning and Development Commission and representatives of appropriate local, state, or federal agencies. Sufficient federal legislation exists to protect important sites that meet the criteria for listing in the National Register of Historic Places. The adoption of state legislation should be considered to protect sites on the Alabama Register of Heritage and Landmark where appropriate. Coordination of historic site identification and preservation is needed at the state level. Valuable assistance could be provided through local groups such as the North Central Alabama Heritage Association as well as the state and regional environmental quality councils. These local organizations can assist by erecting historic markers, increasing public awareness, and by organizing local fund-raising efforts for site acquisition.

Table 4-2	Summary of	program and	agency means	for implementing
	Suggested 1	Plan element	s, Alabama Ri	ver Basin

		USDA PR	OGRAMS	AND AGE	ENCIES	
PLAN	PUBLIC	PUBLIC				U. S. FOREST
ELEMENTS	LAW 75-46	LAW 83-566	RC&D	FmHA	ASCS	SERVICE
Changed Land Use	Х	Х	Х			
Watershed Projects		Х	Х	Х		Х
Increased Drainage	Х	Х	Х	Х	Х	
Imp. Production						
Efficiency - Crops						
& Pasture	Х	Х	Х		Х	
Increased Forest						
Production	Х	Х	Х	Х	Х	Х
Reduced Fire Losses	Х	Х	Х			Х
Recreation	Х	Х	Х	Х		Х
Erosion Reduction	Х	Х	Х		Х	Х
Critical Erosion						
Reduction	Х	х	Х		Х	Х
Increased Forest						
Grazing		х	Х	Х		Х
Urban Flood Damage						
Reduction		х	Х	Х		Х
Water Supply		Х	Х	Х		
Solid Waste						
Disposal			Х			
Low Quality Streams		Х	Х	Х		
Reduced Sediment	Х	х	Х	х		Х
Scenic Streams			Х			Х
Natural Scenic						
Sites			Х			
Fish & Wildlife						
Habitat	Х	Х	Х	Х	х	Х
Protection of						
Flora & Fauna			Х			
Protection of						
Archaeological						
and Historical						
Sites			х			
			~			

	IAN- TSON														
	PITTMAN- ROBERTSON ACT	×										X			
	DINGELL- JOHNSON ACT	×										X	Х		
	END. SPECIES ACT	×					×					X	Х		
IES	WILD & SCENIC ACT						×			Х	Х				
AGENCIES	NPS			х							x				
AND	EDA						х								
OTHER FEDERAL PROGRAMS	NSGS						××		××						
AL PR	EPA	×		××	×		×	×	××	×	×	×	Х		×
FEDER	IUD						×		××						Х
OTHER	C OF E			××	Х		X		××						
	100		×	×	×	Х			×	×	Х		×		Х
	NATIONAL WEATHER SERVICE						X								
	ARC	×		×	×			X	×						
	F&WL SERVICE			×									Х		
	BOR			X						Х	Х	х			Х
	PLAN ELEMENTS	Changed Land Use Watershed Projects Increased Drainage Imp. Production Efficiency - Crops and Pasture	Increased Forest Production Reduced Fire Losses	Recreation Erosion Reduction	LILLEAL ELOSION Reduction Increased Forest	Grazing Urban Flood	Damage Reduction Water Supply Solid Waste	Disposal Domonation	Streams Reduced Sediment	Scenic Streams Natural Scenic	Sites Fish E Wildlife	Habitat Protection of	Flora & Fauna	Frotection of Archaeological and Historical	Sites

Table 4-2 -- cont'd

				STATE AGENCIES & PROGRAMS,	LES & PROG	AAMS, L	LOCAL GOVTS	:	AND PRIVATE INDUSTRY	INDUSTR	X	
PLAN ELEMENTS	GEO. SVY. AL	STATE HIWY. DEPT.	AL DEPT. PUBLIC HEALTH	S SU MIN	AL FORESTRY COMM.	AWIC	ADC դ NR	AL HIST. COMM.	AL ENV. QUALITY COUNCIL	COOP . EXT . SER .	PRIVATE INDUSTRY	LOCAL GOVTS. & ORG.
Changed Land Use Watershed Projects					×					××	×	××
Increased Drainage Imp. Production Ffficiency -										×		×
Crops and Pasture										Х	×	×
Increased Forest Production					X					X	×	
Recreation Erosion Reduction		×		×	:	×	×			:	××	××
Critical Erosion		: ;		;		;					2	,
Reduction Increased Forest		×		X		×					×	X
Grazing					Х							
Damage Reduction												Х
Water Supply Solid Waste	×		×									X
Disposal	Х		x						X		×	X
Streams	×		×	x		×			x			x
Reduced Sediment	×	X		X		×	>	>	>			>
Natural Scenic	<						<	<	<			<
Sites rick swithiffo	×						Х	×	Х			Х
rısın q mılulile Habitat							Х			Х	×	×
Protection of							>		>			,
Protection of							<		<			<
Archaeological and Historical												
Sites	×						×	×	Х			×

Table 4-2 -- cont'd

.

.

.