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Despite the lifting of COVID-19 restrictions, the COVID-19 pandemic and its effects remain a global

challenge including the sub-Saharan Africa (SSA) region. Knowledge of the COVID-19 dynamics and
its potential trends amidst variations in COVID-19 vaccine coverage is therefore crucial for policy
makers in the SSA region where vaccine uptake is generally lower than in high-income countries.
Using a compartmental epidemiological model, this study aims to forecast the potential COVID-19
trends and determine how long a wave could be, taking into consideration the current vaccination
rates. The model is calibrated using South African reported data for the first four waves of COVID-19,
and the data for the fifth wave are used to test the validity of the model forecast. The model is
qualitatively analysed by determining equilibria and their stability, calculating the basic reproduction
number R0 and investigating the local and global sensitivity analysis with respect to R0. The impact
of vaccination and control interventions are investigated via a series of numerical simulations. Based
on the fitted data and simulations, we observed that massive vaccination would only be beneficial
(deaths averting) if a highly effective vaccine is used, particularly in combination with non-
pharmaceutical interventions. Furthermore, our forecasts demonstrate that increased vaccination
coverage in SSA increases population immunity leading to low daily infection numbers in potential
future waves. Our findings could be helpful in guiding policy makers and governments in designing
vaccination strategies and the implementation of other COVID-19 mitigation strategies.
i.10:221656
1. Introduction
Many countries are still strugglingwith the effects of the coronavirus SARS-CoV-2 and the associated disease
COVID-19, that was long declared a pandemic by the World Health Organization (WHO). Despite the
widespread global public health initiatives, for example social distancing, wearing face masks, hand
washing with clean water and soap or using alcohol-based hand sanitizer, the pandemic continued to
pose a serious threat with unmatched impact to public health. As of 18 October 2022, nearly 625 million
infected cases and 6.57 million COVID-19-related deaths were reported worldwide [1]. Nonetheless,
COVID-19 vaccination programmes, as a means of preventing an individual from catching the infection,
have been implemented on a global scale, with several vaccines approved [2]. However, several countries
especially in Africa have registered low uptake of COVID-19 vaccine [3]. Moreover, challenges still remain,
ranging from securing the vaccines to their distribution. The control measures that have, in the past, been
implemented have led to devastating effects on individual and global economies including the decrease in
industrial production which has in a way contributed to inflation and sharp rise in commodity prices [4,5].

Vaccination is a control measure that can be taken without substantially negatively impacting the
economy, but a number of questions need to be answered to realize the maximum benefits. Firstly,
determining the possible number of waves a country could possibly experience, determining what
percentage of a population should be vaccinated in order to curtail the disease, determining the
overall effect of vaccination in subsequent waves and forecasting the outcomes of infections with
several vaccination rates. Furthermore, a recovered individual is not immune to other variants and
waning of immunity towards COVID-19 has been reported [6].

Mathematical models have proven effective in describing the dynamics of numerous epidemics: by
estimating the reproduction numbers, estimating herd immunity thresholds and ascertaining the period
the epidemic would take to reach its peak or go to extinction. For example, numerous studies [7–24] have
characterized different aspects of COVID-19 dynamics, ranging from determining the epidemic curves
[10,11], investigating the efficacy of the control measures [8,11], to assessing the impact of vaccination [25].
Several excellent mathematical studies have been carried out on COVID-19 in southern Africa. We briefly
review some studies that are closely related to the objectives of our study in the context of South Africa.

Nyabadza et al. [7] proposed a susceptible–exposed–infected–recovered (SEIR) model to investigate the
impact of social distancing on the transmission dynamics of COVID-19 in South Africa in which
the predictions that were made were close to what was observed in South Africa at the beginning of the
epidemic. They fitted their model to data from cumulative number of reported infected cases in South
Africa. The results of their study depicted a continued increase in the number of infected cases even during
the first lock down period. Their analysis further showed that increasing the level of social distancing by
2% would reduce the number of cumulative cases by 18% whereas a reduction, of social distancing, by the
same margin would lead to a 23% increase in the number of cases. Anguelov et al. [10] investigated the role
played by asymptomatic cases in the disease propagation, premised on the notion that the asymptomatic
cases for COVID-19 are rarely recorded, thus representing an unknown effect that can be significant in
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determining the eventual long-term dynamics of the disease. They argue that the dynamics are greatly

influenced by the population’s acquired immunity which is built through both symptomatic and
asymptomatic infections. They assert that it is imperative to determine the ratio of symptomatic to
asymptomatic cases in order to determine the size and peak of infections such that plausible control actions
can be suggested. Garba et al. [23] used a compartmental model to analyse the transmission dynamics of
the disease in South Africa using available data. Analysis of the model revealed that its associated
continuum of disease-free equilibria was then globally asymptotically stable whenever the control
reproduction number was less than unity. The study suggested that the disease eventually dies out,
particularly if control measures are implemented early and for a sustainable period of time [23].

Mathematical modelling of COVID-19 has, however, moved away from simply determining epidemic
curves and/or determining effectiveness of the different control measures to investigating the complexity
of the disease. For example, current studies suggest determining wave periods and peaks, herd
immunity, assessing the impact of vaccination and determining the best vaccine [20–22,25–27]. The
concept of herd immunity, in relation to COVID-19, may be somewhat illusive, as it may not be
possible to obtain such a threshold where, by vaccinating a certain proportion of the population
would indicate that COVID-19 is put under control [28]. This is mainly due to the fact that COVID-19
has several variants and by vaccinating against one does not guarantee total immunity against the
others. Nonetheless, it should still be of great importance either to calculate a similar threshold or to
rather estimate the percentage of a certain population that would need to be vaccinated (against
which variants or generally) in order to lessen the disease effects (with minimal costs). Here, we strive
to determine the current COVID-19 dynamics after incorporating vaccination and then forecast the
possible future trends if such vaccination rates were to be maintained or if the rates were increased.
The study also forecasts future trends for different vaccination efficacy.

Generally, herd immunity is a key concept for epidemic control. It states that only a proportion of a
population needs to be immune (through overcoming natural infection or through vaccination) to an
infectious agent for it to stop generating large outbreaks. In studies [26,29], a key question with regard to
COVID-19 pandemic was how and when herd immunity can be achieved and at what cost. They found
that there was little evidence to suggest that the spread of SARS-CoV-2 might stop naturally before at
least 50% of the population had become immune. They also found that the cost of reaching herd
immunity through natural infection would be very high especially in the absence of improved patient
management and without optimal shielding of individuals at risk of severe complications. Another
study [27] found that in the absence of a vaccine, building up SARS-CoV-2 herd immunity through
natural infection is theoretically possible. However, there was no straightforward, ethical path to
accomplish that, as the societal consequences of achieving it are devastating.

In Weitz et al. [13], a novel COVID-19 intervention (shield immunity) is proposed. The measure uses
serological tests to identify and strategically deploy recovered individuals that could have developed
protective antibodies to the pathogen. A mathematical model that uses the SEIR framework was
extended to incorporate serological testing. Their model simulations indicate that when serological
testing is employed such that seropositive individuals are purposefully placed, a substantial decrease
in the number of infected, hospitalized and mortality cases is observed. This study, however, ignored
the existence of several variants which would make the use of shield immunity less effective as
serological individuals would only give protection for a particular variant or only a few and certainly
not all. Nonetheless, studies like these have suggested better alternatives to the control of COVID-19
other than the traditional mitigation and suppression measures.

The COVID-19 pandemic caused multiple waves of cases and deaths in the USA. Despite the
introduction of vaccination, multiple waves continued to take their toll on the population [30]. In
order to examine the effects of the vaccination across US states, the classic SEIR model was used. It
was found that vaccination averted death but could not prevent subsequent waves occurring due to
the wild strain, the Alpha (B.1.1.7) and the Delta (B.1.617.2) variants of SARS-CoV-2 [30].

In the quest of identifying COVID-19 waves which is a matter of utmost importance both for research
and decision making, a study was carried out by Ayala et al. [31]. They used three different criteria to
define the duration of a wave, and performed a sensitivity analysis using multivariate linear models to
show their commonalities and differences. It was shown that defining a COVID-19 wave is not
necessarily simple. The results highlight the need to adopt well-defined and well-justified definitions for
COVID-19 waves [31].

This study seeks to build upon recent research on the impact of vaccination on COVID-19 dynamics,
determining how long a current wave could last and investigating other imperative aspects to do with
the disease. Here, we fit a SEIRV model to South African data for all the waves, determine feasible
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Figure 1. A schematic diagram of the model framework.
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parameter values of the model and use these to make further numerical simulations, analysis and forecasts.
Particularly, we aim to use the SEIRVmodel framework to determine the transmission dynamics of COVID-
19. A detailed qualitative analysis is carried out to infer the long-term behaviour of the model solutions,
thus depicting the long term epidemic trends. The model is calibrated using data from the different
disease waves in South Africa. The fitted parameter values are used to investigate the role of vaccination
(by quantifying the effect of vaccination rates and efficacy), and estimating how long a wave could last.

Thus, the remainder of this article is structured as follows. In §2, we present an SEIRV model
assuming vaccination of susceptible, exposed and recovered populations. In §3, we explore the
existence of an invariant region, determine the disease-free equilibrium, and derive the expression for
the reproduction number R0. Section 4 focuses on parameter identification for the model parameters
based on South African data. Section 5 contains numerical investigations, simulations and a model
forecast for the fifth wave to demonstrate the validity of our model. In §6, we perform global and
local sensitivity analyses to determine the most important parameters influencing the dynamics of
COVID-19 in South Africa. Finally, we conclude with a discussion in §7.
2. Model formulation
We propose a deterministic mathematical model to explore several scenarios to do with vaccination and
other non-pharmaceutical control measures such as social distancing, government action and face mask
usage (which we aggregate under one parameter ϕ). The model classifies the population into five classes
at times t: the population of the susceptible individuals S, exposed individuals that are infected but not
yet infectious E, vaccinated individuals V, infectious individuals I and recovered individuals R. Thus the
total population is given by N(t) where N = S + E + I +R +V, where susceptible individuals are vaccinated
at a rate θ. Here, we denote by L the recruitment rate of individuals into the population, μ the natural
mortality rate, 1 the vaccine efficacy, κ the average latent time and δ the disease-induced death rate.
The infected individuals are treated at a rate γ. Given our force of infection, it is worth noting that,
even though there is currently no cure against COVID-19, we assume that the vaccinated individuals
have a reduced rate of becoming infected. Thus, vaccinated individuals are infected with COVID-19 at
a rate (1−1Þl with 0 , 1 , 1 signifying the protective factor (efficacy) of the vaccine. We assume a
force of infection with COVID- 19, λ, given by

l ¼ bð1� fÞI
K þ Iq

, ð2:1Þ

where β is the probability of transmission by a COVID- 19 infectious individual and q is a scaling factor,
which determines the degree of the Holing-type function (we take q∈ {0, 1, 2, 3}). Initially, there was no
vaccination and several countries only started vaccinating against COVID-19 after a year. Thus, the
vaccination function that we consider is given by

uðtÞ ¼ 0, 0 � t � t1
f ðtÞ, t1� t � t2;

�

where t is time, t1 the time when vaccination was started and t2 is the maximum modelling time. Figure 1
shows the schematic of the model and all the model parameters are stated in table 1.



Table 1. Model parameters and their interpretations.

parameter description units

L recruitment of individuals in the susceptible population number of individuals per day

λ force of infection function per day

β transmission rate per day

ϕ COVID-19 control measures dimensionless

K 50% of individuals being infected half-saturation constant

q scaling parameter dimensionless

μ natural mortality rate per day

θ vaccination function per day

1 vaccination efficacy dimensionless

1/κ average latent time days

γ recovery rate per day

δ disease-induced death rate per day
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A mathematical model, which can be derived from figure 1 is postulated as follows:

dS
dt

¼ L� lS� ðmþ uðtÞÞS, ð2:2aÞ
dE
dt

¼ lSþ ð1� 1ÞlV � ðkþ uðtÞ þ mÞE, ð2:2bÞ
dI
dt

¼ kE� ðgþ mþ dÞI, ð2:2cÞ
dR
dt

¼ gI � ðuðtÞ þ mÞR ð2:2dÞ

and
dV
dt

¼ uðtÞðSþ Eþ RÞ � ½ð1� 1Þlþ m�V, ð2:2eÞ

together with non-negative initial conditions

Sð0Þ ¼ S0, Eð0Þ ¼ E0, Ið0Þ ¼ I0, Rð0Þ ¼ R0, Vð0Þ ¼ V0:
3. Model analysis
3.1. Feasible region V
To guarantee that system (2.2) is mathematically well-posed in a feasible region V, we provide that

V ¼ (SðtÞ, EðtÞ, IðtÞ, RðtÞ, VðtÞ) [ R5
þ :NðtÞ � L

m

� �
: ð3:1Þ

Theorem 3.1. There exists a domain V, shown in equation (3.1), in which the solution set {(S(t), E(t), I(t),
R(t), V(t))} with the given non-negative initial conditions is contained and bounded for all t≥ 0.

For the proof of theorem 3.1, refer to appendix A.

3.2. Disease-free state
The disease-free equilibrium (DFE) point describes the absence of COVID-19 in the population, and the
endemic equilibrium (EE) point which exists at any positive prevalence of COVID-19 in the population.
Due to the recruitment terms L, there are no trivial equilibrium points. This implies that (S�, E�, I�, R�,
V�)≠ (0, 0, 0, 0, 0, 0, 0). We set all the infectious compartment to zero (0) at the DFE point E0: E� = 0,
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I� = 0, R� = 0, and (S�, E�, I�, R�, V�) = (S�, 0, 0, 0, V�) for the system (2.2). Solving the right-hand sides

of equations (2.2a) and (2.2e) of the system (2.2) equated to zero, yields

S� ¼ L

mþ u
and V� ¼ uL

mðmþ uÞ :

Thus, we obtain

E0 ¼ L

mþ u
, 0, 0, 0,

uL

mðmþ uÞ
� �

:

3.3. Basic reproduction number
Epidemiological models usually have a threshold parameter, called the basic reproduction number, R0.
This threshold parameter enables us to determine the transmission and spread of the disease in the study
population, such that if R0 , 1, then the DFE is locally asymptotically stable, implying that the
population cannot be invaded by the disease, but if R0 . 1, then the DFE is unstable and invasion is
certain. R0 is defined as the average number of secondary cases produced by a ‘typical’ infected
(assumed infectious) individual during his/her entire life as infectious when introduced in a
population of susceptible. We employed the next generation matrix technique [32] to obtain R0, given by

R0 ¼ bð1� fÞLk ½mþ ð1� 1Þ u�
Km ðmþ uÞ ðkþ uþ mÞ ðgþ mþ dÞ : ð3:2Þ

From the inspection of equation (3.2), the calculated basic reproduction number shows that NPIs and
vaccination reduce the disease incidence. Particularly, the effect of an increase in θ on R0 is greater for
time interval [t1, t2].

The local stability of the DFE point is obtained from the basic reproduction number R0, and can be
summarized as follows.

Theorem 3.2. If R0 , 1 the disease-free state E0 is locally asymptotically stable. Otherwise, it is unstable if
R0 . 1.

The proof of theorem 3.2 can be found in appendix A. The global stability analysis of system (2.2) can
be inferred by constructing a suitable Lyapunov function. Refer to appendix A for details. In addition, the
bifurcation and the existence of EE states and their number can be found in appendix A.

Having looked at the mathematical analysis of system (2.2), we next consider the problem of
parameter identification of the model using South African COVID-19 data.
4. Model fitting and parameter estimations
Unlike other studies that did not calibrate their models or considered only a singlewave [7,16,17], the present
model is individually parameterized and fitted to the four different waves. Estimates for other model
parameters and their ranges were obtained from the literature [33]. Parameter values are estimated using
the cumulative recovery data from South Africa, obtained from the github repository [34]. To take into
account under reporting, daily infection numbers were multiplied by a detection probability, p, which is
also estimated. The rest of the unknown parameters were estimated by formulating a least-squares
algorithm, with an aim of minimizing the distance between daily recorded cumulative recovered cases
and the model output. The objective function to be minimized is the root mean square error defined by

fj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 (A
c
i � Ad

i )
2

N

s
, ð4:1Þ

whereAd represents the vector of daily recorded cumulative cases of recovered individualswithin the period
of consideration of length N while Ac is the corresponding model output.

The least-squares minimization problem in MATLAB is solved using the ‘fminsearchbnd’ function
[35,36]. This function allows parameter estimation from a bounded parameter range. We then
identified points at which each wave began, and hence implemented the parameter estimation
algorithm from the start of each wave to the end of that wave period, which is also the beginning of a
subsequent wave. The estimated parameter values are shown in table 2. The results are shown in
figures 2–6. In the first wave, we fitted all parameters, except L and μ which were fixed according to



Table 2. Table of fitted parameters for all the waves with the force of infection, λ, given in equation (2.1).

parameters

parameter values

wave 1 wave 2 wave 3 wave 4

L 3468 fixed fixed fixed

β 0.0969 0.4320 0.0958 0.1187

ϕ 0.5 fixed fixed fixed

K 6.1186 × 106 6.0035 × 107 9.4589 × 106 3.6715 × 106

q 1.0012 1.0000 1.0015 1.0091

μ 4.4159 × 10−5 fixed fixed fixed

θ 0 0.0001 0.0027 0.0013

1 0 0.5068 0.5072 0.8079

1/κ 4.9552 (fitted) fixed fixed fixed

1/γ 8.3018 (fitted) fixed fixed fixed

δ 0.0078 (fitted) fixed fixed fixed

detection rate 0.0133 0.0240 0.0346 0.0138
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Figure 2. Simulation output results using fitted parameter values in the first wave shown in table 2. (a) Simulation output plotted
alongside cumulative recoveries. (b) Simulation output plotted alongside daily reported cases.
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[37]. Since from equation (2.1) the term β(1− ϕ) can be aggregated into a single parameter, we fixed ϕ = 0.5
for all the waves and only estimated β, while θ = 0 and 1 are fixed in the first wave since vaccination had
not started. See figure 2 for the comparison of simulation output using estimated parameter values and
the observed numbers during the first wave.

In the second wave, most of the parameters were fixed from the first wave, and only estimated β, K, q,
θ, 1 and the detection probability, p. See the third column of table 2 for estimated parameters
corresponding to the second wave and figure 3 for the comparison between the model output and
observed numbers.

The estimation of parameters in the third and fourth waves followed a similar manner as in the
second wave. The estimated parameter values are shown in the fourth and fifth columns of table 2
and comparison of results shown in figures 4 and 5, respectively.

Following the estimation of parameters in all the four waves, we concatenated time series of
simulated values for all the four waves and plotted them alongside cumulative recovered population,
daily reported cases and cumulative vaccinated population as shown in figure 6.

Next, we present simulation results on the effect of varying the contact rate β, the intervention rate ϕ,
vaccination rate θ and the vaccine efficacy 1 on infectious population. We use the definition of λ from
equation (2.1).
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5. Numerical simulations
In general, data for COVID-19 waves 1–4 were explored first to observe any changes for λ defined in (2.1),
and compare the observed infections to the model output. The computed infections agree well with the
observed infections as shown in figures 2–5.
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Except for the first and second waves (in figures 2 and 3), the profiles of disease dynamics in the third
and fourth waves (figures 4 and 5) follow similar trends. However, what is surprising is the profile of
infected individuals which displays a sharp rise at the beginning of the third and fourth waves before it
decreases. The results are consistent with a study of Madhi et al. [38] who reported that incidence of
SARS-CoV-2 infection increased and subsequently declined more rapidly during the fourth wave than it
had during the three previous waves in Gauteng province, South Africa. Probably the observed trend
may be attributed to the discovery of the new and potentially more transmissible variant of novel-corona
virus B.1.1.529 named ‘Omicron’ which heavily affected the population of South Africa from mid-2020 to
December 2021 [39,40]. Moreover, the vaccinated population remained low [41], thereby accelerating the
transmission. In addition, even during the presence of vaccine, Madhi et al. [38] reported that vaccinated
participants were more likely to be seropositive for SARS-CoV-2 than unvaccinated participants.
5.1. Effect of varying interventions on daily infections
To investigate the effects of interventionmeasures on daily infections, we simulated system (2.2) for all four
waves, with varying control parameters: non-pharmaceutical interventions (ϕ) and pharmaceutical
interventions (θ and 1).
5.1.1. Effect of varying non-pharmaceutical interventions

The effect of varying non-pharmaceutical control measures modelled by ϕ on the disease dynamics is
investigated for all four waves. The results are shown in figure 7. It can be seen from all the four
waves that as ϕ increases, the peak infection decreases, signifying the impact of non-pharmaceutical
interventions (NPIs) such as social distancing and stay-indoor scenarios on incidence rates, consistent
with [42–44]. From figure 7, it is evident that NPIs were more effective in the first and second waves
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than in the third and fourth, as attributed to the fact that South Africa had started vaccination in the third
and fourth waves.

In the first wave, shown in figure 7a, the red dashed curve shows the disease dynamics with the
estimated parameter values in table 2 under the first wave column. With these parameter values and ϕ =
0.5, the highest number of infections estimated are 11 094 people, on 15 July 2020. However, as ϕ is
increased to 0.6, peak infections decrease to 8450 on 17 August 2020. This shows that an increase in an
intervention may decrease the number of infections to a level that hospitals and government could
handle; however, the disease would last longer. Furthermore, simulating a scenario where we assume
government implements stringent measures, ϕ≥ 0.8, an epidemic does not start and the disease dies out.
This result agrees with Stokes et al. [44] whose study found that strict measures such as early school and
workplace closures were associated with lower COVID-19 mortality rates. If the interventions are
reduced, that is, a step-wise decrease in ϕ from 0.5, 0.4, 0.2 and 0, the infection peaks increase,
respectively, to 13 369 (27 June), 17 253 (2 June) and 20 398 (27 June 2020) implying that the first wave
would have ended earlier, before July 2020.

Similar observations are made with the remaining three waves. In the second wave, shown in
figure 7b, the estimated highest number of infections (corresponding to the red dashed arrow) is
10 273 (3 January 2021), simulated with parameter values in table 2. As ϕ varies from 0, 0.2, 0.4 and
0.6 then peak infections change, respectively, from 33 914 (24 November 2020), 25 952 (3 December
2020), 16 028 (19 December 2020) to 4495 (26 January 2021). For ϕ value after 0.8, an epidemic does
not occur and hence no wave is formed, perhaps signifying possible outcomes of implementing
stronger NPIs [45].

For the third wave (figure 7c), the estimated peak infections (corresponding to the red dashed arrow)
were 16 489 (13 July 2021), simulated with parameter values in table 2, under wave three column. As
the value of ϕ changes from 0, 0.2, 0.4 and 0.6 then peak infections change, respectively, from 41 703
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(12 June 2021), 33 143 (12 June 2021), 22 612 (2 July 2021) to 9709 (2 August 2021). Similarly to the previous
waves, there is no epidemic for ϕ≥ 0.8.

Lastly, regarding the fourth wave (figure 7d ), the estimated peak infections (corresponding to the red
dashed arrow) were 15 643 (19 December 2021), simulated with parameter values in table 2, under wave
four column. As we investigate the effect of varying NPIs, we increased values of ϕ from 0, 0.2, 0.4 0.6 and
0.8 which resulted in the respective peak infections changing from 25 018 (10 December 2021), 21 906 (12
December 2021), 18 004 (16 December 2021), 12 923 (23 December 2021) to 5898 (10 January 2022). In all
four waves, varying ϕ results in similar qualitative dynamics. Here, we also varied ϕwhile keeping all the
remaining parameters fixed. To investigate the optimal combination of pharmaceutical and NPIs
sufficient to control COVID-19, we look at the heat maps of R0 with pairwise variations of
pharmaceutical and non-pharmaceutical parameter values (figure 14).
5.1.2. Effect of varying pharmaceutical interventions

In this section, we investigate the effect of pharmaceutical interventions. That is, the effect of vaccinations.
We therefore investigate the effect of vaccination rate θ and the vaccine efficacy, modelled as 1. Since
COVID-19 vaccination was initiated towards the end of the second wave, our investigation here
focused on the third and fourth waves. The results are displayed in figure 8. In all the graphs, the red
dashed curve shows simulation with the corresponding fitted parameters in each wave.

Effect of vaccination rate, θ.We investigate the effect of varying vaccination rate, θ. Since vaccination began
towards the end of the second wave, the investigation was only done for two waves, namely the third and
fourth. The results are displayed in figure 8a,b. It was observed, from figure 8a,b, that higher vaccination
rates reduce the disease incidence. These results are consistent with Watson et al. [24] who reported that
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more COVID-19 related deaths could be averted if vaccine coverage (rate) is increased. Although it has been
widely reported that vaccinated populations experience COVID-19 fatality rates lower than non-vaccinated
[46,47], figure 8 depicts that the reverse is true. Perhaps, the results might raise an important question: was
the vaccine used effectively enough? leading us to the subject of interest in §5.1.2.We observe that in general,
vaccination reduces the number of infections. In the third wave, results shown in figure 8a, the highest
infection rates occur when θ = 0. This implies that if there were no vaccination, then the peak infections
would have occurred on 12 July 2021 with daily infections being 19 193. As θ increases taking the values
0.011, 0.02 and 0.035, then peak infection decreases, respectively, to 9617 (16 July 2021), 4698 (16 July
2021) and 2447 (4 July 2021). For θ = 0.04 and 0.05, then the infections start and die out almost
immediately. Simulation with the fitted vaccination parameter θ = 0.00266 gives peak infection of 16 498
and occurred on 13 July 2021.

In the fourth wave, figure 8b, we see similar qualitative dynamics to the third wave. Simulation with
the estimated vaccination rate θ = 0.00132 gives rise to peak infection of 15 643 and occurred on
19 December 2021. An increase in vaccination rate from the estimated vaccination resulted in
decreased infection rates, with the infection peaks decreasing from 12 405 (18 December 2021), 9584
(17 December 2021), 7492 (16 December 2021), 5874 (15 December 2021) and 4557 (14 December
2021). With no vaccination, then peak infection would have been 16 128.

Effect of vaccination efficacy, 1. Recently, di Lego et al. [48] argued that unless vaccinated people are also
tested for COVID-19 infection, it is difficult to unravel the effect of vaccines in reducing case fatality rate
(CFR). Therefore, the effect of varying vaccine efficacy rate 1 on the dynamics of the disease among the
infectious population was investigated for the second, third and fourth waves. The results are displayed
in figure 8c,d. The results in figure 8c,d show that a higher vaccination rate reduces the disease incidence
although by smaller margins in the fourth wave. Moreover, for most countries, studies have shown that
despite a high proportion of vaccinated individuals, the CFR does not significantly decrease for almost a
year after vaccine uptake [48–51].

5.2. Model forecasting
In this section, we forecast the model output to generate the predicted fifth wave, using the approximated
model parameters in the fourth wave (the wave four column of table 2), and compare this to the
South African COVID-19 data corresponding to the fifth wave. See results in figures 9–11.

First, we sought to forecast the model output, considering different dates for initiating the fifth wave.
Hence, we generate different scenarios, each corresponding to a different date of initiating the wave as
shown in figure 9, with parameter values generated from the previous (fourth) wave. From this, we
identified the closest scenario which corresponds to a wave initiated on 5 April 2022 as shown in
figure 9b. From this scenario, the forecasted model output predicts higher infection rates than the
observed; therefore we sought to analyse the dynamics of this scenario, by changing the control
parameters (θ, 1 and ϕ), to identify parameter values which generate forecasted results as close as
possible to the observed data.
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Having obtained a date of initiating a wave that describes as close as possible the observed daily
infection numbers, next, we proceeded to investigate the effect of varying vaccination parameters θ
and 1 on the model forecast dynamics as shown in figure 10. While fixing all the other parameters
and varying only the vaccination rate, θ, our forecasted fifth wave results (figure 10a) described the
COVID-19 observed infection numbers for some parameter values (higher vaccination rate than in
fourth wave). Consistent with Watson et al. [24], our model forecasts mean that there was an increased
vaccination, or possibly increased immunity due to larger population’s exposure to the disease,
and hence low observed daily infection numbers in the fifth wave.

When fixing vaccination rate low (θ = 0.0013), vaccine efficacy seems to not have contributed
significantly to the reduced daily infection numbers in the fifth wave (figure 10b); however, we note
from figure 11a that when vaccination rate is increased slightly to about θ = 0.01, then 1 has a
significant contribution to a reduction in daily infection numbers. This implies that COVID-19
observed dynamics are due to different intervention strategy combinations. We also sought to forecast
COVID-19 dynamics with changing non-pharmaceutical interventions (ϕ) as shown in figure 11b. We
observe that increasing ϕ leads to a decrease in the daily infection numbers, as observed in the data.
6. Sensitivity analysis
In modelling infectious diseases, care should be taken on the input parameters, since their uncertainty
determines the disease dynamics and the extent of progression. To overcome this challenge, sensitivity
analysis is employed to help measure the adequacy and robustness of the model and to determine
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which parameters substantially affect the model output [52–55]. In this study, we considered both local
and global sensitivity analysis to investigate the influence of model parameters u, b, k, K, 1, g, f and d

on the basic reproduction number R0. We did not investigate the sensitivity with respect to the
parameters L and m since they were also kept fixed throughout the fitting process and simulations.

6.1. Local sensitivity analysis
The direct differential method (DDM) is used for carrying out local sensitivity analysis. The DDM
allows us to fully characterize each sensitivity index as a function of the independent variable [56,57].
Therefore, given the analytic expression of the reproduction number, we differentiate it with respect
to each parameter and evaluate the resulting derivatives with the estimated (nominal) parameters for
each wave. The local sensitivity analysis is described as, given R0 and a parameter, say p, then the
sensitivity of R0 with respect to p, denoted SR0

p , is given by

SR0
p ¼ @R0

@p
: ð6:1Þ

Due to the differences in magnitudes of the parameters, equation (6.1) is modified by computing the
sensitivity ST R0

p of the logarithm of values as

ST R0
p ¼ @ logðR0Þ

@ logðpÞ ¼ p
R0

� SR0
p : ð6:2Þ

Normalized sensitivity indices were computed independently for each wave with the respective nominal
parameter values given in table 2. Local sensitivity analysis results are shown in figure 12. The sensitivity
values are scaled to lie in the interval [− 1, 1]. It is clearly seen from the figure that the local effect of
parameters is dependent on the base parameter value. From the global sensitivity analysis, the most
influential parameters on the disease dynamics are the contact rate, NPIs, vaccination rate and vaccine
efficacy. Further, infinitesimal changes in vaccine efficacy greatly influence the disease progression.
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A tiny increase in the vaccine efficacy leads to a bigger decrease in the basic reproduction number R0. As
expected, the vaccine efficacy is mostly influential in the third and fourth waves.

In the first wave, as shown in figure 12a, the dominant parameters are β, K, γ and ϕ; the transmission
rate β has a positive effect on R0, which is in contrast to the other parameters. COVID-19 vaccinations
had not been initiated during the first wave, hence θ = 0 and 1 ¼ 0. In the remaining waves, the
dominant parameter is 1 whose increase leads to a decrease in R0. Therefore, we can conclude that
infinitesimal changes in vaccine efficacy greatly influence the disease progression.

6.2. Global sensitivity analysis
The partial rank correlation coefficient (PRCC) [58,59] is used to carry out the global sensitivity analysis.
The Latin hypercube sampling (LHS) was used to independently obtain 10 000 samples from each
parameter and hence 10 000 runs were made per simulation. Since the distribution of the parameters
is unknown, we used uniform distribution for each parameter, identifying maximum and minimum
such that all the realistically possible values are considered, covering the entire range of estimated
parameters for each wave as shown in table 2. Table 3 contains ranges of parameter values used to
carry out global sensitivity analysis. In addition, the table also contains the PRCC and p-values for
each parameter.

Figure 13 shows the global sensitivity analysis results. From the figure, β and κ are the only
parameters which have significant positive PRCC values. However, the PRCC value for κ is
approximately 0.39 implying that this parameter does not significantly affect R0; on the other hand
increasing β increases R0. Physically this means that increasing the transmission rate increases the
spread of the disease. By contrast, the parameters u, K, 1f, d and γ have negative PRCC values,
implying that an increase in these parameters leads to a reduction in R0. Comparing local and global
sensitivity analysis, it can be seen that the effect of parameters on R0 is qualitatively similar.

To further supplement the sensitivity results, contour plots of R0 for different parameter
combinations (while keeping others fixed) were plotted. Figure 14 shows heat maps of the
reproduction number as a function of pairwise control parameters, the vaccination rate θ, the vaccine
efficacy 1 and the control parameter ϕ. Figure 14a depicts that the epidemic would better be controlled
with a bigger vaccination efficacy than the vaccination rate in order to have R0 , 1. For example, a
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70% vaccine efficacy would only require a vaccination rate of θ = 0.1. Figure 14b shows that the
vaccination rate is more influential than NPIs and thus a bigger vaccination rate with considerable
usage of the other measure would guarantee R0 , 1. For example, a vaccination rate of θ = 0.4 would
only require ϕ = 0.1 to ensure that R0 , 1. Figure 14a depicts that a combination of vaccination
efficacy and NPIs would only yield optimal results if they are all used in large quantities.
7. Conclusion
In this paper, an SEIRV model framework has been presented for analysing the transmission dynamics of
COVID-19. The main aim of this article was to investigate the effect of COVID-19 vaccination on possible
duration of wave occurrences and to determine the effect of vaccination rate and efficacy. A thorough
qualitative analysis was carried out. This included determining model equilibria and their stability,
determining R0, investigating the existence of backward bifurcation and determining the existence of
an EE. The model was calibrated using South African reported data for COVID-19 from the start
of the epidemic until February 2022 and data for the fifth wave was used to test the model
predictability. Local and global sensitivity analyses were carried out in order to determine the factors,
in the form of parameters, that most influence disease progression via the basic reproduction number.

This study found that the combination of NPIs with vaccination would certainly beat COVID-19 even
in the absence of a cure for the disease. It has further been observed that massive vaccination would only
be beneficial if a highly effective vaccine is used. Moreover, further studies could consider constructing a
force of infection that replicates all waves rather than fitting the model to individual waves. Depending
on data availability, it could as well be interesting to consider an age-based model which would
provide deeper insights on the disease dynamics in different age groups. Further studies could
investigate how the disease incidence changes if vaccine induced immunity wanes or if there are
vaccine resistant sub-types.
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Appendix A. Mathematical analysis

Proof of theorem 3.1. We obtain the total dynamics of the population by adding the equations of system
(2.2). This yields

NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ RðtÞ þ VðtÞ:

It then follows that

dN
dt

¼ L� mN � dI � L� mN,

so that

dN
dt

þ mN � L: ðA1Þ

The solution to the first-order linear differential inequality (A 1) is given as

NðtÞ � L

m
ð1� expð�mtÞ Þ þNð0Þ expð�mtÞ: ðA2Þ

As t �! 1, we have NðtÞ � L=m. Therefore, N(t) is a bounded function of time. This implies that V is
bounded and at limiting equilibrium limt�!1 NðtÞ ¼ L=m. System (2.2) is well-posed with all solutions
in V remaining in V or in a neighbourhood of V if initial conditions are positive. Thus, V is
positively invariant and is attracting with respect to the flow of System (2.2). ▪

https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
http://malthus.micro.med.umich.edu/lab/usadata/
http://malthus.micro.med.umich.edu/lab/usadata/
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A.1. Basic reproduction number

To calculate the basic reproduction number R0, we employ the next generation matrix technique [32].
First, the infectious compartment model is expressed in the form

dxi
dt

¼ F iðxÞ � ViðxÞ,

where F i are the new infections and Vi are the transfers of infections from one compartment to another.
ViðxÞ ¼ V�

i ðxÞ � Vþ
i ðxÞ, x [ R5

þ, and i = 1, 2,…, m is the number of infectious compartments. It is
assumed that each function is continuously differentiable at least twice in each variable. Evaluating at
the DFE E0, we then have F ¼ ½ð@F i=@x jÞ ðE0Þ� and V ¼ ½ð@Vi=@x jÞ ðE0Þ� with i≤ 1 and j≤m such that
R0 is the maximum or dominant eigenvalue of the matrix formed from FV−1. In the case of system
(2.2), we have

F ¼ lSþ ð1� 1ÞlV
0

� �
and V ¼ ðkþ uðtÞ þ mÞE

ðgþ mþ dÞI � kE

� �
:

Taking the derivatives of F and V at the DFE point E0, we have F and V, respectively,

F ¼ 0 bð1�fÞ ½S0þð1�1ÞV0 �
K

0 0

� �

and

V ¼ ðkþ uþ mÞ 0
�k ðgþ mþ dÞ

� �
:

Hence, it follows that

V�1 ¼ ðkþ uþ mÞ�1 0
k

ðkþuþmÞ ðgþmþdÞ ðgþ mþ dÞ�1

" #
,

so that

FV�1 ¼
bð1�fÞ ½S0þð1�1ÞV0 �k
K ðkþuþmÞ ðgþmþdÞ

bð1�fÞ ½S0þð1�1ÞV0�
K ðgþmþdÞ

0 0

" #
:

The basic reproduction number is the spectral radius of the product FV−1, that is, R0 ¼ rðFV�1Þ. Hence,
for system (2.2), we obtain

R0 ¼ bð1� fÞ ½S0 þ ð1� 1ÞV0�k
K ðkþ uþ mÞ ðgþ mþ dÞ : ðA3Þ

Now, substituting the values of S0 and V0 into equation (A 3), yields

R0 ¼ bð1� fÞLk ½mþ ð1� 1Þ u�
Km ðmþ uÞ ðkþ uþ mÞ ðgþ mþ dÞ : ðA4Þ

Equation (A 4) is the expression of the reproduction number R0 corresponding to system (2.2).

A.2. Local stability of disease-free equilibrium point

Proof of theorem 3.2. We need to show that the Jacobian matrix, J ðE0Þ, of system (2.2) has negative
eigenvalues at the DFE, E0. Evaluating J ðE0Þ at E0, yields

J ðE0Þ ¼

�ðmþ uÞ 0 � b ð1�fÞ S0
k 0 0

0 �ðk þ uÞ b ð1�fÞ ½S0þð1�1Þ�V0)
K 0 0

0 k �ðgþ mþ dÞ 0 0
0 0 g �ðmþ uÞ 0

u u �b ð1�fÞ ð1�1ÞV0
K u �m

2
6666664

3
7777775
: ðA5Þ

The first and fifth columns of the Jacobian matrix in (A 5) contain only the diagonal terms which form
the two negative eigenvalues, −(μ + θ) twice, and −μ. The remaining two eigenvalues are obtained
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from the sub-matrix

J 2ðE0Þ ¼ �ðkþ uþ mÞ b ð1�fÞ ½S0þð1�1Þ�V0)
K

k �ðgþ mþ dÞ
� �

, ðA6Þ

where the roots of the characteristic equation are the eigenvalues of the matrix J2(E0):

l�2 þ ðkþ uþ mÞ ðgþ mþ dÞl� þ ðkþ uþ mÞ ðgþ mþ dÞ � kb ½S0 þ ð1� 1ÞV0�
K

¼ 0: ðA7Þ

Equation (A 7) can be written in terms of R0 as

l�2 þ ðkþ uþ mÞ ðgþ mþ dÞ l� þ ðkþ uþ mÞ ðgþ mþ dÞ ð1�R0Þ ¼ 0: ðA8Þ

Now, using the Routh Hurwitz criterion [61], we can see that the solutions of the polynomial (A 8) have
negative real parts ifR0 , 1, since (κ + θ + μ) (γ + μ + δ) > 0 and (κ + θ + μ)(γ + μ + δ) > 0. Hence, the DFE E0

is locally asymptotically stable when R0 , 1. ▪

A.3. Global stability of the disease-free equilibrium
We develop a Lyapunov function to show that the DFE of system (2.2) is globally asymptotically stable.
Constructing the Lyapunov function of the form

LðtÞ ¼ k

ðkþ uþ mÞðgþ uþ dÞ EðtÞ þ
1

ðgþ uþ dÞ IðtÞ, ðA9Þ

and differentiating (A 9) along the trajectory of the system, yields

L0ðtÞ ¼ k

ðkþ uþ mÞðgþ uþ dÞE
0ðtÞ þ 1

ðgþ mþ dÞ I
0ðtÞ: ðA10Þ

Substituting for E
0
(t) and I

0
(t) in (A 10) gives

L0ðtÞ ¼ k

ðkþ uþ mÞðgþ uþ dÞ [lSþ ð1� 1ÞlV � ðkþ uþ mþ mÞE] ðA11Þ

þ 1
ðgþ mþ dÞ [kE� ðgþ mþ dÞI]: ðA12Þ

On expanding (A 12), we have

L0ðtÞ ¼ k

ðkþ uþ mÞ ðgþ mþ dÞ (l ðSþ ð1� 1ÞVÞ)� I: ðA13Þ

Substituting for l ¼ bð1�fÞI
KþIq in (A 13), yields

L0ðtÞ ¼ kb ð1� fÞ
ðkþ uþ mÞ ðgþ mþ dÞ ðK þ IqÞ (½Sþ ð1� 1ÞV�)� 1

� �
I:

It can then be easily shown that

L0ðtÞ ¼ kb ð1� fÞ ½S0 þ ð1� 1ÞV0�
ðkþ uþ mÞ ðgþ mþ dÞK � 1

� �
I

� kb ð1� fÞ
ðkþ uÞ ðgþ mþ dÞ

K(ðS0 � SÞ þ ð1� 1Þ ðV0 � VÞ)þ Iq½S0 þ ð1� 1ÞV0�
ðK þ IqÞ

� �
I,

so that

L0ðtÞ � ðR0 � 1Þ, ðA14Þ

since S0 > S and V0 >V. Thus, L
0
(t)≤ 1 if R0 , 1, and equal to zero if E = I = 0.

A.4. Bifurcation analysis
The change in the qualitative characteristics of a solution as a control parameter is varied is known as a
bifurcation. Bifurcation analysis is a powerful method for studying the dynamics of the steady state of
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nonlinear dynamical systems. At R0 ¼ 1, it implies that the bifurcation parameter b ¼ b̂, where

b̂ ¼ Kðkþ uþ mÞ ðgþ mþ dÞ
k (s0 þ ð1� 1Þv0) ¼ Km ðmþ uÞðkþ uþ mÞ ðgþ mþ dÞ

kL ðmþ ð1� 1Þ uÞ : ðA15Þ

Solving the Jacobian matrix J ðE0Þ, (A 5), at R0 ¼ 1 gives a zero eigenvalue, and negative eigenvalues
λ� =−μ,− (μ + θ) twice and λ� =−(κ + θ + μ)(γ + μ + δ).

Let ω = (ω1, ω2, ω3, ω4, ω5) and ν = (ν1, ν2, ν3, ν4, ν5) be the left and right eigenvectors of the matrix
J ðE0Þ at R0 ¼ 1. To get the eigenvector ω, we multiply the matrix J ðE0Þ with ω and equate to zero,
then solve for ω. This gives

v1 ¼ �b ð1�fÞS0
K ðmþuÞ v3; v2 ¼ ðgþmþdÞ

k v3; v4 ¼ g
ðmþuÞ v3;

and v5 ¼ 1
m ðmþuÞ

uððgþmþdÞðmþuÞþgKÞ
k � b ð1�fÞ (S0uþð1�1ÞV0ðmþuÞ)

K

h i
v3:

9=
; ðA16Þ

For the eigenvector ν, we multiply the transpose of J ðE0Þ with ν and equate it to zero, then solve for ν
to get

n1 ¼ n4 ¼ n5 ¼ 0 and n2 ¼ k

kþ uþ m
n3:

The expression

f2 ¼ b ð1� fÞ x1 x3
K þ xq3

þ b ð1� fÞ ð1� 1Þ x3 x5
K þ xq3

is used to compute the coefficients a and b. The non-zero second partial derivatives of f2 at DFE are

@2f2
@x1 @x3

ðE0Þ ¼ b ð1� fÞ
K

,
@2f2

@x3 @x5
ðE0Þ ¼ b ð1� fÞ ð1� 1Þ

K
:

Hence

a ¼ n2 v1 v3
@2f2

@x1 @x3
ðE0Þ þ v3 v5

@2f2
@x3 @x5

ðE0Þ
� �

¼ k

kþ uþ m
n3 v3

�b ð1� fÞ S0
K ðmþ uÞ � b ð1� fÞ

K
v3 þ b ð1� fÞ ð1� 1Þ

K
v3 � 1

mðmþ uÞ�
�

� u ððgþ mþ dÞðmþ uÞ þ g kÞ
K

� b ð1� fÞ ðS0 uþ ð1� 1ÞV0 ðmþ uÞÞ
K

� ��
,

which entails that

a ¼ b ð1� fÞ k
K ðkþ uþ mÞ ðmþ uÞ n3 v

2
3

ð1� 1Þ
m

�
�

u ðgþ mþ dÞ ðmþ uÞ þ g u k

k
� b ð1� fÞ ðS0 þ ð1� 1ÞV0 ðmþ uÞÞ

K

� �
� b ð1� fÞS0

K

�
:

ðA17Þ

To obtain for b, we solve

@2f2
@b @x3

ðE0Þ ¼ S0 þ ð1� 1ÞV0

K
,

so that

b ¼ n3 v3
@2f2

@b @x3
ðE0Þ ) b ¼ n3 v3

(S0 þ ð1� 1ÞV0)
K

. 0,

since 0 , 1 , 1.
Hence, the direction of the bifurcation depends on the value of a. If a < 0, it is a forward bifurcation

and if a > 0, it is a backward bifurcation.

A.5. Existence of an endemic state
The EE point is the solution of the steady state when the disease, COVID-19, persists in the population. In
this section, we prove the existence of an EE point for all possible assumed values of q; i.e. q = {0, 1, 2, 3}.
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At the endemic equilibrium state I≠ 0, θ(t) = θ and β� = β(1− ϕ)/(K + Iq), we have

S� ¼ L
b�I�þuþm , E� ¼ ðgþ uþ dÞI�

k

and R� ¼ gI�
mþu , V� ¼ uðS�þE�þR�Þ

ð1�1Þb�I�þm :

9>=
>; ðA18Þ

Next, we consider different cases for the exponent q.

A.6. Case q = 0
When q = 0, b� ¼ bð1�fÞ

K . Substituting b� ¼ bð1�fÞ
K into

b�I�S� þ ð1� 1Þb�I�V� � ðmþ kþ uÞE� ¼ 0, ðA19Þ
and solving for I�, yields

A2I�2 þ A1I� þ A0 ¼ 0, ðA20Þ
where

A2 ¼ ð1� 1Þb2ð1� fÞ2H,
A1 ¼ Kð1� 1Þð1� fÞbðmþ uÞH þ Kbð1� fÞmðmþ kþ uÞðgþ mþ dÞðmþ uÞ

�Lð1� 1Þkb2ð1� fÞ2ðmþ uÞ

and A0 ¼ K2mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞ
"
1� bð1�fÞbLkðmþð1�1ÞuÞ

KmðmþuÞðmþkþuÞðgþmþdÞ

#
,

9>>>>>>=
>>>>>>;

ðA21Þ

with

H ¼ ½mðmþ kþ uÞðgþ mþ dÞ þ kðuðmþ dÞ þ mðgþ mþ dÞÞ�:
By the definition of R0,

A0 ¼ K2mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞ½1� R0�:

A.7. Case q = 1
When q = 1, b� ¼ bð1�fÞ

KþI . Substituting b� ¼ bð1�fÞ
KþI into equation (A 19) and solving for I� gives

C2I�2 þ C1I� þ C0 ¼ 0, ðA22Þ
where

C2 ¼ bð1� 1Þð1� fÞ½ð1� fÞbþ mþ u�H
þmðmþ uÞðmþ kþ uÞðgþ mþ dÞ½ð1� fÞbþ mþ u�,

C1 ¼ Kð1� 1Þð1� fÞbðmþ uÞH þ Kð1� fÞbmðmþ kþ uÞðgþ mþ dÞðmþ uÞ
�Lð1� 1Þkb2ð1� fÞ2ðmþ uÞ þ K2mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞð2� R0Þ

and C0 ¼ K2mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞð1� R0Þ:

9>>>>>=
>>>>>;

ðA23Þ

A.8. Case q = 2
When q = 2, β� = β(1− ϕ)/(K + I2). Substituting β� = β(1− ϕ)/(K + I2) into equation (A 19) and solving for I�

gives

E4I�4 þ E3I�3 þ E2I�2 þ E1I� þ E0 ¼ 0, ðA24Þ
where

E4 ¼ mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞ,
E3 ¼ bð1� 1Þð1� fÞðmþ uÞH þ bð1� fÞmðmþ uÞðmþ kþ uÞðgþ mþ dÞ,
E2 ¼ b2ð1� fÞ2ð1� 1ÞH þ Kmðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞð2� R0Þ,

E1 ¼ Kð1� 1Þð1� fÞbðmþ uÞH þ Kð1� fÞbmðmþ kþ uÞðgþ mþ dÞðmþ uÞ
�Lð1� 1Þkb2ð1� fÞ2ðmþ uÞ

and E0 ¼ K2mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞð1� R0Þ:

9>>>>>>>>=
>>>>>>>>;

ðA25Þ



Table 4. Number of possible positive real roots for cases q = 0, 1.

A2 A1 A0 range of R0 no. of possible positive real roots

+ � − R0 > 1 1

+ − + R0 < 1 0,2

C2 C1 C0 range of R0 no. of possible positive real roots

+ � − R0 > 1 1

+ − + R0 < 1 0,2
�Shows the possibility of all signs ( + ,− , 0).

Table 6. Number of possible positive real roots for q = 3.

G6 G4 G3 G2 G1 G0 range of R0 no. of possible positive real roots

+ + − + � − R0 . 2 1,3

+ + + + � − 1 , R0 � 2 1

+ + + + − + R0 , 1 0,2

+ + + + + + 0

Table 5. Number of possible positive real roots for case q = 2.

E4 E3 E2 E1 E0 range of R0 no. of possible positive real roots

+ + + � − R0 . 2 1

+ + − − −
+ + − + − 1,3

+ + + � − 1 , R0 � 2 1

+ + + − + R0 , 1 0,2

+ + + + + 0
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A.9. Case q = 3
When q = 3, β� = β(1− ϕ)/(K + I3). Substituting β� = β(1− ϕ)/(K + I3) into equation (A 19) and solving for
I� gives

G6I�6 þ G4I�4 þ G3I�3 þ G2I�2 þ G1I� þ G0 ¼ 0, ðA26Þ
where

G6 ¼ mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞ,
G4 ¼ bð1� 1Þð1� fÞðmþ uÞH,

G3 ¼ Kmðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞð2� R0Þ,
G2 ¼ b2ð1� fÞ2ð1� 1ÞH,

G1 ¼ Kð1� 1Þð1� fÞbðmþ uÞH þ Kð1� fÞbmðmþ kþ uÞðgþ mþ dÞðmþ uÞ
�Lð1� 1Þkb2ð1� fÞ2ðmþ uÞ

and G0 ¼ K2mðmþ uÞ2ðmþ kþ uÞðgþ mþ dÞð1� R0Þ:

9>>>>>>>>>>=
>>>>>>>>>>;

ðA27Þ

We study the existence of the possible number of endemic states by using the Descartes rule of
sign, looking at the value of R0. We study the possible number for each case of q. The results are
summarized in tables 4–6.
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