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One of the most celebrated findings in complex systems in
the last decade is that different indexes y (e.g. patents) scale
nonlinearly with the population x of the cities in which they
appear, i.e. y ∼ xβ , β �= 1. More recently, the generality of this
finding has been questioned in studies that used new databases
and different definitions of city boundaries. In this paper,
we investigate the existence of nonlinear scaling, using a
probabilistic framework in which fluctuations are accounted for
explicitly. In particular, we show that this allows not only to
(i) estimate β and confidence intervals, but also to (ii) quantify
the evidence in favour of β �= 1 and (iii) test the hypothesis that
the observations are compatible with the nonlinear scaling. We
employ this framework to compare five different models to 15
different datasets and we find that the answers to points (i)–(iii)
crucially depend on the fluctuations contained in the data, on
how they are modelled, and on the fact that the city sizes are
heavy-tailed distributed.

1. Introduction
The study of statistical and dynamical properties of cities
from a complex-systems perspective is increasingly popular [1].
A celebrated result is the scaling between a city-specific
observation y (e.g. the number of patents filed in the city) and the
population x of the city as [2]

y = αxβ , (1.1)

with a non-trivial (β �= 1) exponent. Super-linear scaling (β > 1)
was observed when y quantifies creative or economic outputs and
indicates that the concentration of people in large cities leads to an
increase in the per capita (y/x) production. Sublinear scaling (β < 1)
was observed when y quantifies resource use and suggests that
large cities are more efficient in the per capita (y/x) consumption.
Since its proposal, nonlinear scaling has been reported in an
impressive variety of different aspects of cities [3–9]. It has
also inspired the proposal of different generative processes to
explain its ubiquitous occurrence [10–14]. Scalings similar to the
one in equation (1.1) appear in physical (e.g. phase transitions)
and biological (e.g. allometric scaling) systems suggesting that
cities share similarities with these and other complex systems (e.g.
fractals).

More recent results cast doubts on the significance of the
β �= 1 observations [15–17]. Reference [15] agrees that economic
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Figure 1. Example of the data and their main statistical properties. (a) The distribution of the population of the cities for the regions
considered in this paper. The roughly straight line in this rank–population plot is in agreement with Zipf’s law and shows that, in most
cases, the data vary over two orders of magnitude in the population (e.g. from 100 000 to 10 million inhabitants). (b) Example of the
dataset analysed in our work, in which large fluctuations are clearly visible.

outputs are faster than linear in x, but claims that the population x has a limited explanatory factor
on the per capita rate y/x of cities and function (1.1) is not better than alternative ones (see [6,18] for
opposing arguments). Reference [16] focuses on the case of CO2 emissions and shows that depending
on whether city boundaries or metropolitan areas are used, the value of β changes from β > 1 to β < 1.
This point was carefully analysed in [17] for different datasets y. Through a careful study of different
possible choices of city boundaries, the authors report that the evidence for β �= 1 virtually vanishes.
These results ask for a more careful statistical analysis that rigorously quantifies the evidence for β �= 1 in
different datasets.

In this paper, we propose a statistical framework based on a probabilistic formulation of the scaling
law (1.1) that allows us to perform hypothesis testing and model comparison. In particular, we quantify
the evidence in favour of β �= 1 comparing (through the Bayesian information criterion, BIC) models
with β �= 1 to models with β = 1. We apply this approach to 15 datasets of cities from five regions and
find that the conclusions regarding β vary dramatically not only depending on the datasets, but also on
assumptions of the models that go beyond (1.1). We argue that the estimation of β is challenging and
depends sensitively on the model because of the following two statistical properties of cities:

(i) the distribution of city population has heavy tails (Zipf’s law) [1,19] and
(ii) there are large and heterogeneous fluctuations of y as a function of x (heteroscedasticity).

Points (i) and (ii) are shown, respectively, in figure 1a,b.
The paper is organized as follows. We start by describing the problem and the datasets we use (in §2)

and discussing (in §3) the limitations of the usual statistical approach based on least-squares fitting in
log-scale. We then propose a probabilistic formulation together with different statistical models (in §4)
and describe (in §5) how they can be compared with each other and to data. Finally, we discuss our main
findings (in §6) and summarize our conclusions (in §7).

2. Data
The general problem we are interested in is to test and estimate the parameters of equation (1.1) based on
observations (xi, yi) for i = 1, . . . , N cities, where xi is the population and yi is the amount of the quantity
of interest in city i (as in figure 1b). The quantities xi, yi are estimated within a measurement precision
which, in principle, could also be included in the analysis. However, in most cases, this information is
not available, and only single measurements of xi, yi exist. The datasets we choose include a variety of
different regions, aggregation methods to define city boundaries, and quantities y. They include the data
from various countries and regions: 100 metropolitan areas of the United Kingdom (UK), aggregated
as in [17]; 381 metropolitan areas of the United States of America (USA), as discussed in [12]; 459
urban areas of the USA; 472 large cities of the European Union (EU); 275 large cities from the members
of the Organization for Economic Co-operation and Development (OECD); and 5565 municipalities
(administrative units) from Brazil. For each database, we use indexes of economical activity (weekly
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income, GDP), innovation (patents filed), transportation (miles travelled, number of train stations),
access to culture (number of theatres, number of cinema seats, number of cinema attendances in 1 year,
etc.) and health condition (AIDS infections, death by external causes). Further details are presented in
appendix A.

3. Limitations of the usual statistical analysis
The following three steps summarize the usual approach used to test a nonlinear scaling in equation (1.1)
(see [2–4,8,11,12,16–18] for scalings in cities and [20] for scalings in biology):

1. The parameters of equation (1.1) are chosen based on least-squares fitting in log-transformed
data ln y, ln x, i.e. α, β are such that

∑N
i=1(ln αxβ

i − ln yi)2 is minimized.
2. The quality of the fitting is quantified by the coefficient of determination R2 ≡ 1 − (

∑
i(ln yi −

ln αxβ

i )2)/(
∑

i(ln yi −∑
j ln yj/N)2). R2 close to 1 is taken as evidence of the agreement between

the fit and the data.
3. The 95% confidence interval [βmin, βmax] around β is computed from the sum of the residuals

squared and β �∈ [βmin, βmax] is taken as an evidence that β �= 1.

This usual approach is appealing because of its simplicity and ease of numerical implementation.
However, it contains the following assumptions and limitations that are usually ignored:

1. The parameters obtained through least-squares fitting are maximum-likelihood estimators if (i)
the data points are independent and (ii) the fluctuations around the mean ln y, ln α + β ln x, are
Gaussian distributed in ln y with a variance independent of ln x. The value of β obtained in the
usual approach is meaningful if these assumptions hold.

2. R2 does not quantify the statistical significance of the model, it quantifies the correlation between
data and model (the amount of the variation in the data explained by the model). In particular,
R2 close to one is not an evidence that the data are a likely outcome of the model. Below, we
obtain that datasets are typically not consistent with the model underlying the usual approach.

3. The confidence interval [βmin, βmax] is a range in which the true value of β is expected to be found
only if the model holds [21]. Therefore, in the typical case in which the data are not compatible
with the model, one cannot conclude that β �= 1 based on the observation that 1 �∈ [βmin, βmax].
Usually, in this case, both β = 1 and β �= 1 are incompatible with the data.

4. A further limitation of the usual approach is that it requires removing the datapoints with yi = 0
(because it requires computing ln yi). This filtering is arbitrary, because y = 0 is usually a valid
observation (e.g. cities without any patents filed).

In the study of scaling laws in biology, the underlying hypothesis and alternatives to the usual least-
squares fitting have been extensively discussed [22,23]. In city data, statistical analysis beyond the usual
approach was performed in [3,5,7,8,10]. It typically amounts to an analysis of the residuals ln αxβ

i − ln yi,
e.g. a (visual) comparison of the residuals of the fit to the Gaussian distribution predicted by the model
underlying the linear fit in log–log scale. The controversies regarding a nonlinear scaling β �= 1 motivate
us to search for an alternative statistical framework to test the scaling (1.1) beyond the usual approach
with residual analysis.

4. Probabilistic models
The statistical analysis we propose is based on the likelihood L of the data being generated by different
models. Following [5], we assume that the index y (e.g. number of patents) of a city of size x is a random
variable with probability density P(y | x). We interpret equation (1.1) as the scaling of the expectation of
y with x

E(y | x) = αxβ , (4.1)

where E(f (y) | x) ≡ ∫
f (y)P(y | x) dy is computed over the ensemble of cities with fixed x. This relation does

not specify the shape of P(y | x), e.g. it does not specify how the fluctuations V(y | x) ≡ E(y2 | x) − E(y | x)2
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of y around E(y | x) scale with x. Here, we are interested in models P(y | x) satisfying

V(y | x) = γ E(y | x)δ . (4.2)

This choice corresponds to Taylor’s law [24]. It is motivated by its ubiquitous appearance in complex
systems [25], where typically δ ∈ [1, 2], and by previous analysis of city data that reported non-trivial
fluctuations [8,26,27]. The fluctuations in our models aim to effectively describe the combination of
different effects, such as the variability in human activity and imprecisions on data gathering. In
principle, these effects can be explicitly included in our framework by considering distinct models for
each of them.

Below, we specify different models P(y | x) compatible with equations (4.1) and (4.2). We consider
two classes of models. In the first class, which we call city models, we a priori choose a parametric
form for P(y | x), and we use equations (4.1) and (4.2) to fix the free parameters. In the second class,
which we call person models, we derive P(y | x) from a generative process for the assignment of y
to people that is compatible with equations (4.1) and (4.2). In both cases, the likelihood L of the
model is written as a function of the data {(xi, yi)}i=1,...,N and at most four free parameters (α, β, γ
and δ).

4.1. City models
In this class of models, we assume that each data point yi is an independent realization from the
conditional distribution P(y | xi) and therefore the log-likelihood can be written as

lnL≡ ln P(y1, . . . , yN | x1, . . . , xN) =
N∑

i=1

ln P(yi | xi). (4.3)

In order to explore how the choice of P(y | x) affects the outcome of the statistical analysis, we consider
two different continuous distributions (Gaussian and lognormal).1

4.1.1. Gaussian fluctuations

Here, we consider that P(y | x) is given by a Gaussian distribution with parameters μN (x) and
σN (x)

P(y | x) = 1√
2πσN (x)

e−(y−μN (x))2/2σ 2
N (x). (4.4)

The relations (4.1) and (4.2) are fulfilled choosing the parameters as

μN (x) = αxβ

and σ 2
N (x) = γ (αxβ )δ .

⎫⎬
⎭ (4.5)

The log-likelihood (4.3) is given by

lnL=
N∑

i=1

− ln
(
σN (xi)

√
2π
)

− (yi − μN (xi))2

2σ 2
N (xi)

. (4.6)

This model has P(y ≤ 0 | x) > 0 and therefore observations with yi ≤ 0 can be accounted for. For the
observables considered here, y = 0 is a valid observation but y < 0 is not.

We consider two cases:
Fixed δ = 1. This is the typical fluctuation scaling found when yi is the result of a sum of random

variables [25].
Free δ ∈ [1, 2]. The general functional form that fulfils equation (4.2). We exclude δ > 2, because, in this

case, the probability P(y < 0 | x) of negative values (not feasible for most observables y) remains large for
large x.

1This framework also allows the use of discrete distributions.
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4.1.2. Lognormal fluctuations

Here, we consider that P(y | x) is given by a lognormal distribution with parameters μLN (x) and σLN (x):

P(y | x) = 1√
2πσLN (x)

1
y

e−(ln y−μLN (x))2/2σ 2
LN (x). (4.7)

The relations (4.1) and (4.2) are fulfilled choosing the parameters as (see appendix B)

μLN (x) = ln α + β ln x − 1
2 σ 2

LN (x)

and σ 2
LN (x) = ln[1 + γ (αxβ )δ−2].

⎫⎬
⎭ (4.8)

The log-likelihood (4.3) is given by

lnL=
N∑

i=1

− ln(σLN (xi)
√

2π) − ln yi − (ln(yi) − μLN (xi))2

2σ 2
LN (xi)

. (4.9)

This model has P(y ≤ 0 | x) = 0 and therefore observations with yi ≤ 0 cannot be accounted for. We again
consider two cases:

Fixed δ = 2. This scaling is obtained when yi is the product of independent random variables.
Furthermore, σ 2

LN (x) and the fluctuations of ln y are independent of x and therefore the maximum-
likelihood estimation of β coincides with the estimation obtained with minimum least-squares for ln y,
as discussed in §3.

Free δ ∈ [1, 3]. The general functional form that fulfils equation (4.2).

4.2. Person model
The starting point for this class of models is the natural interpretation of equation (1.1) that people’s
efficiency (or consumption) scales with the size of the city they are living in. This motivates us to consider
a generative process in which tokens (e.g. a patent, a dollar of GDP, a mile of road) are produced or
consumed by (assigned to) individual persons, in the same spirit as in [12,14]. Specifically, consider j =
1, . . . , M persons living in i = 1, . . . , N cities, on which the population of the city i is given by xi such that∑N

i xi = M. Consider also that there is a total of k = 1, . . . , Y tokens that are randomly assigned to the M
persons. A super-linear (sublinear) scaling suggests that a token is more likely to be assigned to someone
living in a more (less) populous city. In this spirit, we assume that the probability that a token is assigned
to person j depends only on the population x(j) of the city where person j lives as

p( j) =
xβ−1

(j)

Z(β)
, (4.10)

where Z(β) is the normalization constant, i.e. Z(β) =∑M
j xβ−1

( j) . For β = 1, p( j) = 1/M and each person is
equally likely to be assigned a token (independently of the population of its city). Equation (4.10) is a
microscopic model, and we are now interested in the macroscopic behaviour of the city: the probability
that a city i gets yi tokens, given that its population is xi. Assuming that besides their city, individuals
are indistinguishable, the probability p(i) that a token is assigned to a city i is given by a sum of p(j) over
persons j on city i, which contains exactly xi terms. Because x(j) = xi when the person j lives in city i,
represented by j ∈ i, we obtain

p(i) =
∑
j∈i

xβ−1
(j)

Z(β)
= xβ

i
Z(β)

. (4.11)

The probability of observing yi tokens in each city of size xi is a multinomial distribution

P(y1, . . . , yN | x1, . . . , xN) = Y!
N∏

i=1

1
yi!

(
xβ

i
Z(β)

)yi

. (4.12)

Thus, the likelihood can be written as a function of the observed quantities (xi, yi) as

lnL≡ ln P(y1, . . . , yN | x1, . . . , xN) = ln Y! −
N∑

i=1

ln(yi!) +
N∑

i=1

yi ln

(
xβ

i
Z(β)

)
. (4.13)
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The scaling of the average and variance of y, i.e. equations (4.1), (4.2), is recovered as

E(yi | xi) = Yp(i) = Y
Zβ

xβ

i

and V(yi | xi) = Yp(i)[1 − p(i)] ≈ Yp(i) = E(yi | xi),

⎫⎪⎬
⎪⎭ (4.14)

where we identify that α = Y/Z(β), γ = 1 and δ = 1. For yi 	 1, this model coincides with the city model
with normal fluctuations and the latter choice of parameters. Note that the fluctuations of this model
account only for fluctuations of the assignment, and neglects potential fluctuations of measurement
imprecisions.

5. Results
In this section, we compare the models presented above against our 15 datasets. In particular, we address
the following questions whose answers are summarized in table 1:

1. What is the estimated value of β?
For each model, we calculate the parameters (α, β, γ , δ) that maximize L (see appendix C for details).
In table 1, we report β.
2. What is the error bar b around the estimated β?
We estimate b using bootstrapping with replacement (see appendix D for details). In table 1, b is shown
in parentheses. The interval [β − b, β + b] can be interpreted as the 95% confidence interval of β when
the model is not rejected. Otherwise, it can be interpreted as the robustness of the estimated β against
fluctuations in the data (cross validation).

Hypothesis testing
3. Are the data compatible with the model?
We test the hypothesis that the data were generated by the model. Specifically, for each model, we
compute a p-value that quantifies (i) whether the fluctuations in the data are compatible with the
expected fluctuations from the model and (ii) whether the residuals are uncorrelated (see appendix E
for details). In the case the model is not rejected, i.e. p-value > 0.05, the corresponding entry in table 1
is marked with an asterisk.

Model comparison
4. What is the statistical evidence for β �= 1?
We quantify the evidence for β �= 1 by comparing the maximum-likelihood L of each model with the
corresponding model where we fix β = 1. We account for the different number of free parameters (e.g.
to avoid overfitting) by using the BIC, BIC = −2 lnL + k ln N, where k is the number of free parameters
and N the number of observations (see appendix F for details). The difference in the BIC, �BIC ≡
BICβ=1 − BICβ indicates whether the model with β �= 1 provides a sufficiently better description of the
data. From this we infer that, for (i) �BIC < 0 the model with fixed β = 1 (linear scaling) is better, (ii)
0 ≤ �BIC < 6 the evidence for β �= 1 is inconclusive, and (iii) �BIC ≥ 6 the model with β �= 1 (nonlinear
scaling) is better. In table 1, these results are indicated by the symbols (i) → (linear), (ii) open circle
(inconclusive), or (iii) ↘ (sublinear) or ↗(super-linear).
5. What is the statistical evidence for fluctuation scaling (Taylor’s law)?
We quantify the evidence for δ �= 1 (δ �= 2), i.e. non-trivial scaling in the fluctuations in equation (4.2), in
the models of cities with Gaussian (lognormal) noise. Within each class, we calculate �BIC ≡ BICδ∗ −
BICδ , where we compare the BICs of the model where (i) δ is fixed (BICδ∗ ) and (ii) where δ is a free
parameter (BICδ). In case of �BIC > 0, the model with δ as a free parameter (non-trivial fluctuation
scaling) provides a better description of the data (see appendix F for details). In table 1, the entry for
the selected model is highlighted with a grey background.
6. Which model best describes the data?
We calculate the BIC of each of the five models (see appendix F for details) and select the one with
the lowest BIC as the one that best describes the data. In table 1, the β of the selected model is printed
in bold.
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Table 1. Summary of the application of our statistical framework to 15 different databases and five models. The entries in the table
represent the scaling exponentβ . The value obtained through least-squares fitting in log-scale coincides with the value reported in the
first column. The error bars were computed with bootstrap. The asterisk indicates that the model has a p-value higher than 0.05. If the
difference�BIC between the BIC of each model with the samemodel with a fixedβ = 1 is below 0, the model is linear (→), between
zero and six is inconclusive (open circle) and higher than six (strong evidence) is super-linear (↗)/sublinear (↘). The models were also
compared between each other using the respective BICs within the same noise model (grey background has lower BIC) and between all
others (bold text indicates the model with the lowest BIC).

lognormal Gaussian
(min. sq. fit)

6. Discussion
In this section, we interpret the outcome of the statistical analysis summarized in table 1. We focus on
specific findings and their significance to the problem of scaling in cities.

6.1. Data are almost never compatible with the proposed models
In almost all cases, the data are not a typical outcome of any of the five proposed models, leading to a
rejection of the models (p-value < 0.05). The only exceptions (marked by an asterisk in table 1) are the two
lognormal models in UK-income and UK-train stations, and the Gaussian model with free δ for OECD-
GDP. There are several possible reasons for the widespread rejection of the models: fluctuations of the
data may differ from the fluctuations P(y | x) of the models (e.g. measurement errors are not correctly
accounted for by P(y | x)); the observations are not independent (e.g. there are correlations between
residuals and city size); different scalings are observed for small and large cities (as discussed in [28]
and figure 3).

The rejections of the models considered here are a consequence of their strong simplifying hypothesis
and show that the development of better models is needed in order to understand the observations and
clarify the existence of the nonlinear scaling (1.1). It shows also that the estimated confidence interval
cannot be used (in the rejected models) to discard a linear scaling β = 1 [21]. Still, the widespread rejection
of models does not imply that the nonlinear scaling (1.1) is rejected altogether because it is possible that
the data are well described by another (unknown) model consistent with equation (4.1) but different
from the ones considered here, e.g. having different fluctuations in P(y | x). These alternative models can
have different fluctuation relations or can account for the known (e.g. spatial [3]) correlations in the data.
In particular, the generative process underlying the person model could be generalized to account for
other effects beyond city-size population (e.g. individuals could be segmented by income).

Even if most models are rejected, some models can still describe the data better than others (in terms of
BIC). The conclusions drawn from such model comparison analysis depend on the used set of models and
may change by the introduction of a better model in the future. Our investigations of scaling laws in cities
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Figure 2. Effect of fluctuations on the estimation of β . (a) In the ‘EU cinema usage’ database, the lognormal model with δ = 2 yields
β = 1.46, whereas free δ yieldsβ = 1.00. (b) In the ‘EU theatres’ database, the lognormal with free δ yieldsβ = 0.92, a lower value
thanβ = 1.14 obtained in the Gaussian model with free δ. Shaded areas represent the 68th percentile (±1 s.d.) of P(y | x).

in the next sections are mostly based on model comparison: we analyse which model and parameters best
describe the data, with particular interest in the parameter β.

6.2. Different datasets are best described by different models
There is no single model that best describes all databases (the bold value in table 1 appears in different
rows). A systematic observation on the 15 datasets is that the person model and the Gaussian model with
fixed δ are never the best ones. This indicates that the fluctuations in the (large) cities are much larger than
predicted by the scaling δ = 1 used in both models. For the other models, there are databases in which
they are the best models: the lognormal with fixed δ = 2 is the best model in the three UK cases and for
USA-GDP; the lognormal model with free δ is the best model for USA-roads and EU-cinema capacity;
and the Gaussian model with free δ is the best for EU-cinema usage, OECD-GDP and EU-libraries. The
inclusion of the additional parameter δ in the lognormal model, related to Taylor’s law in equation (4.2),
is considered beneficial in eight out of the 15 cases (shaded grey regions in the two first rows of table 1).
Altogether, these results show that the model underlying the usual approach (lognormal with fixed δ) is
often not the best model.

6.3. The estimatedβ depends on the model
Models consistent with the average scaling (4.1), but that have different assumptions regarding the
fluctuations, can lead to different estimations of β. Consider the case of EU-cinema attendance. The
value estimated from the lognormal model with fixed δ is β = 1.46 ± 0.19. It coincides with the usual
approach (least-square fitting) and suggests a super-linear relation between the number of cinema
visitors and the population of cities. However, if we allow for a different fluctuation scaling as in
the lognormal model with free δ, a model that is preferred according to our BIC test, we obtain that
β = 1.00 ± 0.30, i.e. a linear scaling. Conflicting conclusions are observed also in the EU-theatres database.
The data and fittings for these two cases are shown in figure 2. Visual inspection of the graph can
be misleading because of the log-scale and the different density of points, and shows the need for
more careful (quantitative) statistical analysis. Altogether, the variation of β across different models
shows that conclusions regarding β (e.g. β �= 1) cannot be done independently from the analysis of the
fluctuations. Considering also that different models are preferred for different databases (previous point),
this confirms the practical importance of going beyond the usual approach (least-square fitting) both in
terms of methods and models, as proposed in this paper.

6.4. Models are dominated either by the small or the large cities
The variation on the estimation of β across the different models can be better understood by analysing
how the city size distribution shown in figure 1a influences the estimation of β. The least-square fitting
minimizes the distance between the curve and the points in logarithmic scales (ln y). Therefore, when
data are viewed in the usual double logarithmic plot, the best curve will be the one that passes close



9

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150649

................................................

1

10

102

103

104

1.0

103 104 105 106 107

0.8
0.6
0.4
0.2

0

80% of the cities

75% of the population

city model
person model
running mean

x, population

fr
ac

tio
n

<
x

y,
 B

ra
zi

l-
A

ID
S

(b)

(a)

Figure 3. Comparison of the model of cities and persons. (a) Scaling of the city model, i.e. lognormal with free δ, and the person model
(solid lines) for the data of Brazil-AIDS (dots). While the city model captures a sublinear scaling present in small cities β = 0.61, the
person model describes the roughly linear scaling β = 1.04 of large cities. Shaded areas represent 1 s.d. The running mean (red line) is
the average (〈x〉, 〈y〉) over 50 datapoints, {x, y}, in a sliding window over the data ordered in x. (b) Cumulative distribution of heavy-
tailed distribution of city sizes in terms of cities and persons, i.e. the fraction of (i) cities of size≤x (city model) and (ii) the population in
cities of size≤x.

to most points, i.e. it weights a village as much as a million-size city. The fit will be thus dominated
by the large number of small cities. The disadvantage of this is that, even if the model describes well
most cities, it may fail to describe the behaviour of most of the population. Our person model addresses
this issue by giving the same weight to each person, leading to the problem of describing most people
but potentially not most cities. To see this, consider the example of the 5565 Brazilian cities. Half of the
Brazilian population lives in the 201 largest cities (3.6% of cities); yet, 50% of smallest cities account for
only 8.2% of the total population. This is a direct consequence of the heavy-tailed distribution of city
sizes, which holds in all our databases (figure 1a). Our city models with free δ in equation (4.2) allow
cases beyond the least-squares fitting (δ = 2) and person model (δ = 1). The exponent δ controls how
the variance of P(y | x) grows with x. A small variance for large x, obtained for small δ, will force the
fitted curve (average) to pass close to the points of large cities. The weight of the large cities is inversely
proportional to δ.

The general considerations above explain a great extent of the variation of β across the models
observed in table 1. The values obtained for the Gaussian model with δ = 1 and the person model are
dominated by large cities, in the lognormal δ = 2 case, they are dominated by small cities, whereas for the
free δ models, it depends on which best δ is obtained. In the Brazil-AIDS dataset δ ≥ 2 and β is dominated
by the small cities (δ = 2 in the Gaussian model and δ = 2.79 in the lognormal model). Accordingly, the
values of β for these two models in the second to last row of table 1 are β � 1 in agreement with the
lognormal with δ = 2 case and in contrast with the Gaussian δ = 1 and person model which have β > 1
and are dominated by the large cities. Figure 3 shows the results for this dataset and emphasizes how
different models describe different city sizes. The same reasoning also explains the values of β of other
databases reported in table 1 (e.g. all UK cases).

In summary, the ‘weights’ each statistical model attributes to cities have an impact on the estimated
value of β and, in particular, on the visual agreement between the data and the fit in the usual double-
logarithmic plots. When the scaling relation (4.1) holds for all x, the difference between the models will
not be significant. However, as we showed in §6.1, data are typically not compatible with models. In
the cases in which β varies substantially across models, generalization beyond the simple scaling (1.1)
[6] should be considered in order to account for the x dependence of β. In this case, the heavy-tailed
distribution of city sizes leads many models to be dominated either by the large amount of small cities
or by the few cities containing most of the population. This reasoning explains why cut-offs in minimum
city size and aggregation of cities (different city borders) [9,16,17] influence the estimated β. All these
procedures have a strong influence on the small cities, which are the dominant ones in the least-square
fitting (e.g. aggregation of cities into metropolitan areas reduces the number of small cities). While
applying cut-offs for small cities increases the visual agreement between the data and the fit in the log–log
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plot, this is only justified if the scaling (1.1) is interpreted as being valid only for large cities. The latter
interpretation limits the relevance of the scaling because it becomes limited to a small fraction of the total
cities.

6.5. Is the scaling nonlinear?
New answers to this central question emerge from the results of our paper (summarized in table 1). In
three of the 15 cases, we found models which are reasonably compatible with the data, and we can base
our conclusions on these models, i.e. on the obtained β and on the model comparison with the case
β = 1 (arrows →, ↑, ↘ in table 1). This leads to the conclusion that the UK-income and UK-train stations
show linear and OECD-GDP shows super-linear scaling. In the remaining 12 cases, conclusions are based
solely on model comparison, and we feel more confident to give an answer to this question only when
the same conclusion is obtained for models with different fluctuations (i.e. we compare the conclusions
obtained in the best model with lognormal and Gaussian fluctuations). We find such an agreement in
eight of the 12 cases, so that the scalings are: UK-patents and OECD-patents are linear; USA-GDP, EU-
museum usage and Brazil-GDP are super-linear; USA-roads, EU-libraries and Brazil-AIDS are sublinear.
For the remaining four cases, our analysis is inconclusive on the question of linear or nonlinear scaling.
Two reasons can lead to this conclusion. The first is that the nonlinear scaling qualitatively changes
from β < 1 to β > 1 depending on the assumptions of the fluctuations (e.g. EU N. theatres). The second
reason is that in one of the best models there is no sufficient statistical evidence for β �= 1 (marked by an
open circle in table 1, EU-cinema capacity, EU-cinema usage and Brazil-external). One interesting case
falling in this second reason is EU-cinema usage, for which both the lognormal with fixed δ and the
best model (Gaussian with free δ) yield β > 1. We still consider this case inconclusive, because the best
model, despite showing β = 1.13 ± 0.11, only marginally improves (0 < BIC < 6) upon the model with
β = 1. In this case, additional data are required in order to increase the statistical evidence in favour of
either situation. The possibility of reaching an inconclusive answer shows the advantage of the statistical
framework proposed here. In summary, in 15 datasets, we found four linear, four super-linear and three
sublinear scalings.

7. Conclusion
In summary, we investigated the existence of non-trivial β �= 1 scalings in city datasets. We introduced
five different models, showed how to compare them and how to estimate β, and finally tested our
methods and models in 15 different datasets. We found that in most cases models are rejected by the data
and conclusions can be based only on the comparison between the descriptive power of the different
models considered here. Moreover, we found that models which differ only in their assumptions on
the fluctuations can lead to different estimations of the scaling exponent β. In extreme cases, even
the conclusion on whether a city index scales linearly β = 1 or nonlinearly β �= 1 with city population
depends on assumptions on the fluctuations. A further factor contributing to the large variability of β

is the broad city-size distribution that makes models to be dominated either by small or by large cities.
In particular, these results show that the usual approach based on least-square fitting is not sufficient to
conclude on the existence of nonlinear scaling.

Recent works focused on developing generative models of urban formation that explain nonlinear
scalings [10–14]. Our finding that most models are rejected by the data confirms the need for such
improved models. The significance of our results on models with different fluctuations is that they show
that the estimation of β and the development of generative models cannot be done as separate steps.
Instead, it is essential to consider the predicted fluctuations not only in the validation of the model,
but also in the estimation of β. Finally, the methods and models used in our paper can be applied to
investigate scaling laws beyond cities [20,23].
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Appendix A. Databases
We used 15 datasets from five different databases. In each database (UK, USA, EU, OECD and Brazil), the
same cities xi were used, and the different datasets are different indexes y. Some of our models cannot
consider yi ≤ 0. In order to allow for a comparison across all models, we ignored yi ≤ 0 in all cases, and
below we report the number N of cases yi > 0 in each dataset.

— UK: this database corresponds to fig. 5b of [17], was provided by the authors of that paper,
includes the aggregation of population in cities proposed in that paper, and corresponds to
the period 2000–2011.

— Income: N = 100, total income (weekly).
— Train stations: N = 97, number of train stations.
— Patents: N = 93, number of patents filed in the period.

— USA: this database corresponds to metropolitan areas of the USA (GDP) and urban areas
(roads) in 2013. It was constructed from three different sources: the population was provided
by US Census Bureau [29]; the GDP was provided by the US Bureau of Economics Analysis
of the Department of Commerce [30]; and the miles of roads was provided by the US Federal
Administration of Highways of the Department of Transportation (table HM-71) [31]. Similar
data were used in [12].

— GDP: N = 381, gross domestic product of metropolitan areas.
— Roads: N = 459, length (in miles) of roads of urban areas.

— EU: this database is provided by Eurostat [32]. It contains population and different indexes
related to culture in European cities in the year 2011.

— Cinema capacity: N = 418, total number of seats of cinemas.
— Cinema usage: N = 221, attendance of cinemas in the year.
— Museums usage: N = 443, attendance of museums in the year.
— Theatres: N = 398, number of theatres.
— Libraries: N = 597, number of public libraries.

— OECD: this database contains indexes of cities from the Organization for Economic Co-operation
and Development in the years 2000–2012 [33].

— GDP: N = 275, gross domestic product in 2010.
— Patents: N = 218, number of patents filed in 2008.

— Brazil: this database contains different indexes of all municipalities of Brazil. The data are from
the year 2010 and are provided by Brazil’s Health Ministry (Brazilian Health Ministry. July 2015;
population corresponds to census data).

— GDP: N = 5565, gross domestic product.
— AIDS: N = 1812, number of deaths by AIDS.
— External: N = 5286, number of deaths by external causes.

All the above databases are provided at http://dx.doi.org/10.5281/zenodo.49367.

Appendix B. Taylor’s law in lognormal
Here, we express the parameters of the lognormal distribution, μLN (x) and σ 2

LN (x), as a function of the
parameters of the scaling laws

E(y | x) = αxβ (4.1)

and
V(y | x) = γ E(x)δ , (4.2)

α, β, γ and δ. Noting that the expectation and the variance of the lognormal distribution, equation (4.7),
are given by

E(y | x) = eμLN (x)+σ 2
LN (x)/2 (B 1)

and
V(y | x) = (eσ 2

LN (x) − 1)E(y | x)2, (B 2)

http://dx.doi.org/10.5281/zenodo.49367
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we find a unique solution for μLN (x) and σ 2

LN (x) by comparing with equations (4.1) and (4.2):

μLN (x) = ln α + β ln x − 1
2 σ 2

LN (x)

and σ 2
LN (x) = ln[1 + γ (αxβ )δ−2].

⎫⎬
⎭ (4.8)

Appendix C. Maximization of the likelihood
The maximization of the likelihood is performed by minimizing minus the log-likelihood, using the
algorithm ‘L-BFGS-B’ [34], whose implementation can be found on the Python package SciPy [35],
and the details can be found at http://dx.doi.org/10.5281/zenodo.49367. Given that the minimization
algorithm can converge to a local minimum, our procedure repeats the optimization 512 times, each with
random initial parameters, and selects the lowest. We confirmed that increasing from 256 to 512 samples
did not change the computed minima, an indication that the algorithm found the global one.

Appendix D. Computation of the error estimates
The error estimates were computed using bootstrap [36]. The method consists of sampling N pairs (xi, yi)
with replacement from the set of N available data points, and repeating the maximization procedure
outlined in the previous section for each set. This procedure (sampling + maximization) was repeated
100 times for each combination (model, dataset) and the error estimates were computed as the standard
deviation of the distances from the measured parameters to the estimated parameter from the true
dataset. We confirmed that the bootstrap error estimates for the lognormal fixed-δ case are within 1%
equal to the values of the least-square fit.

Appendix E. Computation of the p-value
The computation of the p-value was done by defining a statistic that tests the hypothesis used in each
model; in the case of the lognormal and normal models these are (i) data are independent and (ii) the data
are compatible with the model. We used a statistic based on the D’Agostino K2 test [37] (over ln y or y,
respectively) that computes the deviations from 0 of the empirical kurtosis and skewness; the test consist
of comparing it with the fluctuations expected from a finite-size sample from the (null) model. In detail,
we compute two statistics, Zs and Zk for the kurtosis and skewness, respectively. Each of them has a χ2

1
distribution under the null hypothesis, so the sum K2 = Z2

s + Z2
k has a χ2

2 distribution (with 2 degrees of
freedom). Because this test does not test independence of the samples, we include in the test statistic the
Spearman’s rank correlation [38] of the residuals of the fit, ZS (also distributed as a χ2

1 ) because if the
residuals are correlated, the data are not independent. The p-value is thus computed by measuring how
extreme K2 = Z2

s + Z2
k + Z2

S is in the χ2
3 distribution (with 3 degrees of freedom). The implementation of

this is available at http://dx.doi.org/10.5281/zenodo.49367.
In the population model, the calculation of the p-value must be different, because the variance is not

being left as a free parameter, so we take a more classical approach. The p-value is computed by measuring
how extreme is the difference between the data and its fit with respect to the difference between a sample
from the model and its fit. In practice, we use a χ2 statistic to measure the distance between two sets of
points {yi}i (data) and {mi}i (the model), χ2 =∑

i(yi − mi)2/yi. Then, we generate from the model 200
different samples. For each of these samples, we compute the χ2 between the sample values and their
fits. Finally, we compute the p-value as the fraction of samples whose χ2 is bigger than the one that
belongs to the real data. Note that this statistic is not taking into account independence of the residuals
(if we consider the multinomial distribution as the null model, then they should not be independent) or
normality in the strict sense, so this test is more permissive than the previous.

Appendix F. Model comparison using Bayesian information criterion
We compare two models m = 1, 2 by calculating the BIC [39], BICm ≡ −2 lnLm + km ln N, where N is the
number of data points (observations), Lm is the maximum-likelihood of the model, and km is the number
of estimated (free) parameters of the model. In this approach, the model with a lower value for the BIC
gives a better description of the data.

We can quantify how much better one model compares with the other by looking at the Bayes
factor [40], B12 = P(data | m = 1)/P(data | m = 2), where P(data | m) is the evidence for model m, i.e. the

http://dx.doi.org/10.5281/zenodo.49367
http://dx.doi.org/10.5281/zenodo.49367
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probability of the data given the model. It can be shown [36] that this quantity can be approximated by

B12 ≈ e�BIC/2, (F 1)

where �BIC ≡ BIC2 − BIC1 is the difference of the respective BICs. Thus, if BIC1 < BIC2, it follows that
B12 > 1, i.e. that model 1 provides a better description of the data than model 2. Regarding the decision
about nonlinear scaling, i.e. β �= 1, we require that �BIC ≡ BICβ=1 − BICβ ≥ 6 (see main text), in line
with [40], where it is suggested that this implies strong or very strong evidence for a model with β �= 1.
This corresponds to B12 ≥ e3 ≈ 20.08, i.e. it is at least 20 times more likely that the data come from a model
with β �= 1.
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