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This study synthesized and characterized composites of graphene

oxide and TiO2 (GO–TiO2). GO–TiO2 thin films were deposited

using the doctor blade technique. Subsequently, the thin films

were sensitized with a natural dye extracted from a Colombian

source (Bactris guineensis). Thermogravimetric analysis, X-ray

diffraction, Raman spectroscopy, scanning electron microscopy

(SEM), X-ray photoelectron spectroscopy (XPS) and diffuse

reflectance measurements were used for physico-chemical

characterization. All the samples were polycrystalline in nature,

and the diffraction signals corresponded to the TiO2 anatase

crystalline phase. Raman spectroscopy and Fourier transform

infrared spectroscopy (FTIR) verified the synthesis of composite

thin films, and the SEM analysis confirmed the TiO2

films morphological modification after the process of GO

incorporation and sensitization. XPS results suggested a

possibility of appearance of titanium (III) through the formation

of oxygen vacancies (Ov). Furthermore, the optical results

indicated that the presence of the natural sensitizer and GO

improved the optical properties of TiO2 in the visible range.

Finally, the photocatalytic degradation of methylene blue was

studied under visible irradiation in aqueous solution, and

pseudo-first-order model was used to obtain kinetic information

about photocatalytic degradation. These results indicated that

the presence of GO has an important synergistic effect in

conjunction with the natural sensitizer, reaching a photocatalytic

yield of 33%.
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1. Introduction

In recent decades, the increased concentration of organic dyes in water has been a problem of growing concern;

the textiles, paper and plastics industries use dyes in the manufacture of their products and consume a large

quantity of water, increasing quantities of these pollutants in the final effluent [1,2]. Recent studies have

demonstrated that heterogeneous photocatalysis is a promising technology as an alternative for water

purification, especially in reducing the concentration of dyes in wastewater by the use of different kinds of

semiconductors under a specific radiation source [3–5]. Nowadays, titanium dioxide (TiO2) has been

broadly used as an efficient photocatalyst for environmental applications for both air and water purification

due to its great quality/price ratio, chemical stability, good optical transparency and non-toxicity [5–7].

However, TiO2 has two drawbacks: (i) it is photocatalytically active under ultraviolet irradiation (l ,

350 nm) due to its high band gap energy value (3.2 eV) and (ii) low quantum efficiency in charge-carrier

generation [8]. Many methods have been developed to increase or extend TiO2 photo-activity in the visible

light region: (i) preparing micro and nanostructures (e.g. spheres and three-dimensional hierarchical) using

different synthesis methods (e.g. CVD, CBD, solvothermal, sol–gel, template-free process and spray

pyrolysis) [9–11], (ii) doping TiO2 structure with other atoms (e.g. Cu, Co, Ni, Cr, Mn, Mo, Nb, V, Fe, S, N,

C, P and I) [12–14], (iii) surface plasmon resonance (e.g. Ag/TiO2, Au/TiO2 and Pt/TiO2) [15], (iv) coupled

semiconductor (e.g. CaTe/TiO2, CdS/TiO2, Bi2WO6 and ZnS/TiO2) [16–18], and (e) dye sensitization.

Among these, one of the methods most studied for TiO2 modification is dye sensitization [19]. Different

types of dyes are reported as sensitizers of TiO2 such as ruthenium complex, chlorophyll derivatives, natural

porphyrins and others for both energetic and photocatalytic applications [20,21]. In the last decade, natural

dyes have become an important source of dyes; Yuvapragasam et al. [22] synthesized and sensitized TiO2

nanorods with natural dyes extracted from Sesbania grandiflora flowers, Camellia sinensis leaves and Rubia
tinctorum roots for dye-sensitized solar cells (DSSC) fabrication. Sathyajothi et al. [23] reported an

investigation of two types of pigments as natural photosensitizers of TiO2 in DSSC, reporting henna

(efficiency 1.08%) and beetroot (efficiency 1.3%) for each extract. Despite all the applications of natural dyes

in solar cell systems, their use is limited as sensitizers for water purification. Buddee et al. [24] sensitized

TiO2 with curcumin natural extract for enhanced photodegradation of dyes under visible light. Additionally,

Zyoud et al. [25] sensitized TiO2 particles with anthocyanin for photodegradation of methyl orange,

showing a complete dye mineralization under solar simulator radiations. Recent study has reported the

improvement of the photocatalytic activity of TiO2 using Syzygium cumini as a natural sensitizer [26]. In

Colombia, there are varieties of plants whose chemical constituents could satisfy the requirements for

photocatalytic applications as sensitizers, the species Bactris guineensis called ‘corozo’ is a wild palm, which

grows in Central/South America and is an important source of anthocyanins [27]. The modification of

semiconductors with electron-donating materials (e.g. graphene, graphene oxide (GO) and other carbon

materials) is another approach to improving the catalyst efficiency. This kind of donating materials reduces

the recombination rate of electron–hole pairs by increasing the charge-carrier mobility [28]. Graphene

sheets, nanotubes and nanoparticles with a higher specific surface area and excellent electronic properties

can be used as a photocatalytic support for TiO2 to improve the photocatalytic activity [29]. Gunnagol et al.
[30] obtained TiO2–graphene nanocomposites to study the photocatalytic degradation of Rhodamine B

under UV irradiation (degradation yield 98%) and under visible light irradiation (degradation yield 87.19%),

and reported that this activity was reached due to the large surface area, providing a greater number of

surface active sites in the materials. Yang et al. [31] successfully prepared TiO2/graphene porous composites

for methylene blue photodegradation, compared composites results to TiO2 Degussa P25 and verified that

the composites increased light-absorbing capacity accelerating the separation of electrons and holes,

suppressing the charge recombination owing to graphene properties. Finally, Stengl et al. [32] obtained

TiO2/graphene nanocomposites by thermal hydrolysis of suspension with graphene nano-sheets, and

titania-peroxo complex provided a good photocatalytic activity in the decomposition of butane under UV

and visible light.

The present study demonstrated photocatalytic properties for structured composites based on TiO2/

GO/natural dye extract.

2. Material and methods
2.1. Natural dyes extraction
The samples of the fruit B. guineensis (CO) were collected in the municipality of El Banco in the Department of

Magdalena, Colombia (geographical location, latitude: 980000300 N, longitude: 73o5802800 W to 25 m above sea
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level). In natural dye extraction, the fruit was placed inside a percolator with an ethanol : water mixture (1 : 3),

and the sample was acidified with HCl. The percolation process remained recirculating for 3 days. After that,

distillation performed under reduced pressure was carried out to obtain crude dry extract.

2.2. TO2/graphene oxide composites synthesis
The GO used in this study was synthesized using the modified Hummer’s method. Detailed information

about the preparation and characterization of the GO used in this study can be found in a recently

published study [33,34]. TiO2–GO catalysts were prepared by the sol–gel method. Titanium (IV)

tetraisopropoxide (TTIP) was added very slowly in a mixture of isopropyl alcohol in acidic medium

and the corresponding concentration of the GO dispersion previously performed by ultrasound. After

that, hydrolysis was applied in reflux equipment controlling the temperature. The precipitate was

dried at 1208C overnight and then calcined in air at 5008C for 4–5 h [35]. Finally, solid TiO2 with GO

0.15, 0.26, 0.51 and 1.1 (w/w %) were obtained; the samples were named A-TiO2–GO, B-TiO2–GO,

C-TiO2–GO and D-TiO2–GO, respectively.

2.3. TO2/GO composites sensitization
TiO2–GO powder was mixed and macerated with polyethylene glycol and isopropyl alcohol at acidic pH

and vigorously stirred to form a fine suspension. After that, the thin films were deposited on a glass

substrate using the doctor blade method, and the film thickness was measured using a Veeco Dektak

150 profilometer (6 mm of thickness). The thin films were heated at 5008C for 1 h. For natural dye

sensitization of the TiO2–GO thin films, the coatings were immersed in a solution at pH 3 of the

previously extracted dye. The adsorption process was carried out for 24 h in constant agitation; after

that, the sensitized film was washed and dried at room temperature.

2.4. TO2/GO composites characterization
The thermal decomposition behaviour of the compounds was studied by thermogravimetric analysis (TGA

Discovery) in a range of 30–9008C with a nitrogen atmosphere and a ramp of 108C min21. Studies on

adsorption–desorption of H2 at high pressure at 77.48 K and up to 6000 kPa were carried out in a high-

pressure gas adsorption device (BELSORP MAX-LP, BEL Japan, Inc.). The optical properties of the thin

films were analysed by the diffuse reflectance technique using a deuterium–halogen source (Mod.

AvaLight DH-S-BAL) and an AvaSpec-2048 optical fibre coupled to a bifurcated fibre (FCR-7UV100-2-

1X25) with an AFH-Eye of Avantes at 458. The measurements were normalized using a standard white

material (Spectralon as a reflective material, which has 99% reflectivity in the range of 200 nm to 2.5 mm,

Ocean Optics WS-1-SL). The surface reflectance spectra of all the samples were recorded in the visible

range in several zones to obtain a representative value (the illumination point was 1 mm in diameter) [36].

The semiconductor surface modification with GO was monitored by Raman spectroscopy (Witec Alpha

300 Raman/AFM equipment) in a range of 50–3500 cm21 with a length excitation laser of 488 nm and an

integration time of 1.00485 s. Furthermore, in order to obtain the compounds’ structural properties, an X-

ray diffraction analysis was performed (Bruker D8 Advance diffractometer, Bruker AXS, Germany) using

Cu–Ka radiation (l ¼ 0.15406 nm) under a voltage of 34 kV and a current of 25 mA. The morphological

properties (size, distribution and dispersion of the particles) were analysed by scanning electron

microscopy (model JSM-7600F, Jeol Ltd, Tokyo, Japan) under an excitation energy of 5 and 1 kV and

samples metalized with gold–palladium for 30 s. The elemental composition was analysed by X-ray

scattering spectroscopy. Modified and unmodified thin films with different GO loads were analysed

by X-ray photoelectron spectroscopy (XPS). Data were obtained using the Thermo ScientificTM K-AlphaTM

X-ray Photoelectron Spectrometer (ThermoFisher Scientific, USA), with a hemispheric analyser with

an X-ray source from KR Al (hn) 1486.6 eV using a vacuum of approximately 1027 Pa. The Avantage

V. 59902 software was used in the analysis of peaks in the XPS spectra; furthermore, the decomposition of

the peaks was performed with Gaussian components after a Shirley background subtraction.

2.5. Photocatalytic behaviour
This study sought to establish the GO and natural sensitization effect on the photodegradation activity of TiO2

under visible light radiation. For this purpose, methylene blue was chosen as the pollutant model taking into

account that since 2010, the International Organization for Standardization (ISO) published Standard
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10678:2010 [37]. Visible light was used as energetic source to determine the real impact of modification on the

TiO2 photocatalytic properties. The thin films were immersed in blue methylene solution (25 ppm was used

as target solution), and prior to irradiation, the system was magnetically stirred in the dark for 1 h to ensure

the equilibrium of dye adsorption–desorption on the thin film surface. The system was irradiated by a visible

lamp with an emission during 100 min. The concentration of dye was determined through the

spectrophotometric method (Thermo Scientific–Genesys 10S) using 665 nm as fixed wavelength, with a

calibration curve (correlation coefficient R ¼ 0.997) using the Lambert–Beer equation.
ing.org/journal/rsos
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3. Results and discussion
3.1. Adsorption characterization
The surface area values and pore volume obtained from the method of Brunauer–Emmett–Teller (BET) and

the adsorption and desorption isotherms are shown in figure 1. The specific surface area and total pore

volume of the prepared composites are listed in table 1. The results of the BET analysis showed that

composites had pore size around (8.06–9.23 nm), which are considered mesoporous composites

according to IUPAC notation (mesoporous materials include the range of pore diameters between 2 and

50 nm); furthermore, the isotherms shown in figure 1 have the behaviour of type IV isotherms attributed

to mesoporous solids [38]. Table 1 shows that, as GO concentration increases in the composite, the specific

surface area decreases. According to data reported by Stengl et al. about the influence of the GO in the

photocatalytic activity of TiO2, the reduction in the surface area could be due to an agglomeration given

by the carbonaceous material, in which the GO is completely covered by semiconductor particles.

Consequently, when it is required to measure the surface area of the modified materials, this depends

mainly on the surface properties that present the anatase particles in the material [32].

3.2. TGA characterization
The thermal analysis and the stability of the catalysts were determined by TGA. Figure 2 shows the TGA

curves for compounds. The unmodified TiO2 shows two stages of mass loss: (i) the first stage between 30

and 1508C with mass loss percentage of 2.96%—this change is associated with the evaporation of both

water and solvent (isopropanol) molecules adsorbed on the surface of the material; (ii) second mass

loss between 390 and 8008C with a loss percentage of 5.5%—this change is typical of the formation

and reorganization of rutile phase crystalline structure (600–7508C); such results are in line with

reports in the literature [39].

In relation to the modified samples (A-TiO2–GO, B-TiO2–GO, C-TiO2–GO and D-TiO2–GO), figure 2

shows three stages of mass loss: (i) the first stage is localized between 30 and 2008C with a loss percentage

of 2.95%—this change is attributed to the evaporation of the water and solvent molecules present on the

material surface [40]; (ii) the second stage is localized between 200 and 3508C with an average percentage

of 0.74%—this mass loss corresponds to the removal of oxygen molecules contained in the labile functional

groups (hydroxyl and carboxyl) present in the GO structure; at temperatures close to 3508C, the GO loses

more stable oxygenated groups like carbonyls on the edge of GO sheets [41]; (iii) the last stage of change is

localized between 450 and 8008C with a mass loss percentage of 4.14%—this stage is associated with the

GO breakdown, the catalytic surface dehydroxylation and carbon substrate combustion (the carbon

skeleton pyrolysis); furthermore, the formation and reorganization rutile phase occurs between 600 and

7508C [42]. For the sample D-TiO2–GO, two stages of weight loss were very resilient, with a loss

percentage greater than the other three modified samples. This result can be attributed to the greater

concentration of GO present in this sample; this greater proportion implies greater abundance of labile

oxygen functional groups attached to the surface in its hexagonal structure, leading to greater mass losses

in the second and third stages of the process [43].

3.3. Raman spectroscopy characterization
Figure 3 shows the Raman spectra of synthesized materials. All samples showed a similar pattern

characteristic to the TiO2 anatase phase peak; the structure of the semiconductor anatase phase has six

Raman active modes [44,45]:

anatase ¼ A1g þ 2B1g þ 3Eg: ð3:1Þ
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Table 1. BET and total pore volume of the prepared samples.

catalysts specific surface area (m2 g21) total pore volume (cm3 g21) pore size (nm)

unmodified TiO2 123.30 0.3229 9.23

A-TiO2 – GO 126.32 0.2755 8.06

B-TiO2 – GO 128.28 0.2746 7.05

C-TiO2 – GO 104.33 0.2534 8.06

D-TiO2 – GO 109.96 0.2956 9.13
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The Raman spectrum shows a strong signal localized at 145 cm21, which is caused by the external

vibration of the TiO2 anatase structure. The peaks localized at 145, 195 and 638 cm21 correspond to the

vibrational modes E1g, and the peak localized at 398 cm21 can be attributed to the B1g vibration mode.

Figure 3 shows the signal localized at 515 cm21, which is a double-signal corresponding to the modes Ag
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and B1g. Finally, none of the Raman bands corresponding to the TiO2 rutile phase were detected in the spectra

[46–48]. For GO, two Raman active E2g modes are predicted, each doubly degenerate. Furthermore, in GO

samples with defects, the overall momentum conservation can be satisfied by adding an electron-defect

scattering event to the process, and two processes can be presented: (i) one-phonon defect-assisted process

and (ii) two-phonon defect-assisted process [49]. Inside figure 3, a plot inset in the range of 1200–

3500 cm21 allows verifying the presence of the characteristic signals for GO, a band localized at 1350 cm21

and another band localized at 1652 cm21 corresponding to bands D and G, respectively. Band D is

attributed to defects of sp3 carbons localized at the edges or in the plane of GO sheets, while band G is

assigned to vibration of the atoms of carbon sp2 ordered in the hexagonal structure inside graphene

[50,51]. Finally, the bands at 2940 cm21 are associated with harmonics combination for bands D and D0,

which takes place through a defect-induced triple resonance process involving both ‘inter-valley’ and

‘intra-valley’ scattering processes, whose intensity increases with the amount of disorder [52].

Furthermore, figure 3 shows that the TiO2 Raman signals enhanced after the GO content increase inside

the catalysts (from TiO2 until D-TiO2–GO). Naumenko et al. [53] reported a significant electronic interaction

between the TiO2 nanoparticles deposited by chemical vapour deposition on graphene sheets, and proposed

that changes in Raman peak positions and intensity ratios could be due to the charge transfer process

between graphene and TiO2 nanoparticles, and this increased the Raman signal of the TiO2 nanoparticles

several times. Other reports have suggested that Raman intensity of TiO2 nanoparticles increased with the

disorder of the graphene structure; this change in the intensities of the Raman peaks for increasing

disorder has been reported for vacancies-type defects [54,55].
3.4. X-ray characterization
Figure 4 shows the X-ray diffraction patterns of the compounds. A qualitative analysis was carried out

using the Diffract Suite Eva software (Bruker AXS, Germany) and the JCPDS database. The diffraction

patterns indicate that films had a polycrystalline structure. Furthermore, the diffraction signals

corresponded to the TiO2 anatase crystalline phase (JCPDS #021–1272). Figure 4 shows that the

samples grown in a preferential crystalline plane were localized at 2u ¼ 25.58; this signal corresponds

to the plane (101). This result corroborates the information obtained from the Raman characterization.

Figure 4 shows that after the modification process, the diffraction pattern did not change significantly;

in addition, none of the films showed any evidence of the presence of the rutile and brookite phases [56].

This result is in line with other reports, for instance, Rasoulnezhad et al. [57] did not report additional

signals corresponding to the presence of doped elements into XRD patterns for TiO2 samples doped

with S and Fe. The characteristic peak of GO cannot be appreciated due to the low concentration of

GO used in the synthesis of the materials, which is in agreement with other reports on GO and TiO2
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composites synthesis [58,59]. The crystalline domain size of the materials was calculated using the

Debye–Scherrer formula and according to the preferential crystalline plane (101)

dhkl ¼
kl

b cosðuÞ , ð3:2Þ

X-ray (Cu–Ka radiation l ¼ 0.15406 nm), b is the diffraction angle to the full width at half maximum for

the highest peak (101) and u is the Scherrer diffraction angle [60], previous to applying the Debye–

Scherrer formula, the instrumental broadening contribution was subtracted using DIFFRAC.SUITE

EVA–XRD (Bruker, AXS, Germany). The average crystalline domain size obtained for all the TiO2–

GO films was near 9.63 nm, while for the unmodified TiO2 thin films, it was 9.80 nm.
3.5. Sensitization process and FTIR characterization
After the synthesis and characterization of TiO2–GO thin films, the thin films were sensitized with

natural extract. The FTIR characterization was carried out in the range of 700–4000 cm21 to verify the

type of chemical bonds present on thin films surface. Figure 5 shows the FTIR spectrum obtained for

the unmodified and the modified TiO2 thin films.

Figure 5a shows a broad band in the range from 3500 to 3000 cm21 and a band at 1672 cm21, which

are typical bands of both strain and bending of O–H bonds, and are attributed to the interaction of

adsorbed water molecules on the thin films surface [61]. For TiO2–GO thin films, an intense wide

band near 3200 cm21 is observed, which increases in intensity as the concentration of GO increases in

all the modified samples. This band could be attributed to the O–H stretching of the molecules of

water absorbed on the catalyst surface and the hydroxyl groups present in the GO network—this

behaviour was observed in all modified materials [62]. Furthermore, a weak band localized at

2335 cm21 is assigned to O–C¼O bonding, which are bonds present in the hexagonal GO. Another

band is observed at 1638 cm21, whose signal is assigned to the O–H bending of water molecules and

C¼C strain on the aromatic ring of GO. It is possible to observe a band at 1136 cm21 which

corresponds to the C–O bond of the epoxy groups, and a band at 1046 cm21 can be assigned to

¼C–H bond stretching and C–OH strain for the alkoxy groups in the GO sheets [63]. Figure 5b
shows the FTIR spectrum for the TiO2–GO films sensitized with anthocyanins extracted from corozo

fruits (B. guineensis). The characteristic bands assigned to the O–H bond strain are observed. The

bands localized at 2900, 2100 and 1638 cm21 can be assigned to the vibrations of C–H bond,

the C¼O strain and the vibration of C¼C conjugates of both the GO sheets and the anthocyanin

structure of the natural dye, respectively. Figure 5b shows a typical band localized at 1430 cm21 due

to the OH–CH2 bonds of the phenolic rings present in the anthocyanins. The bands around 1300 and

1060 cm21 are assigned to the asymmetric and symmetrical vibration of the C–O bond of the

functional ether-type groups in the anthocyanins. This band is more intense for TiO2–sensitizers film
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than for TiO2–GO–sensitizer thin films, indicating a greater absorption of the natural dye on the

semiconductor surface [64,65].
3.6. Morphological characterization
Figure 6 shows SEM images with four TiO2 thin films. Figure 6a shows that the TiO2 films were formed

by micro-aggregates with a narrow size margin of 15 nm. Figure 6b,c shows that, as the concentration of

GO increased, agglomeration also increased. The agglomeration process is commonly reported when
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TiO2 nanoparticles are combined with graphene sheets. The agglomerates of TiO2 could enhance the

photocatalytic activity because the photogenerated charge pairs can be efficiently separated through

the inter-particle charge transfer within the agglomerates [66,67]. Furthermore, Ryu et al. [68] reported

that rGO–TiO2 agglomerates promoted CH3CHO oxidation. Finally, figure 6d shows an

agglomeration reduction in the particles on the surface after natural sensitization, owing to the fact

that the natural dye adsorption on the catalyst surface improves the morphology of the films.

3.7. XPS thin films characterization
Figure 7 shows the XPS spectra obtained by all the synthesized films in the present study, and the spectra

show the typical peaks for the elements C 1s, Ti 2p and O 1s corresponding to the bonding energy values

localized at 284.5, 458 and 530 eV, respectively [69]. Figure 7a shows an increase in the signal for O 1s and C

1s as the concentration of GO increases in the samples, indicating a greater atomic percentage for these

elements compared to the other samples—this is directly related to the concentration of graphene

incorporated into the catalyst [70]. Figure 7b shows the spectra of the modified films with GO sensitized

with anthocyanins extracted from B. guineensis, showing greater intensity in the peaks C 1s and O 1s,

attributed to the extra contribution of these atoms by the anthocyanins from the fruit, which has an

abundance of oxygen and carbon in its chemical structure, in addition to the contribution of GO [71]. In

order to verify the kind of bonding in the synthesized compounds, a high-resolution XPS (HRXPS) was

carried out in the specific region of (Ti 2p) for both TiO2 and D-TiO2–GO films (figure 8a). The peaks

localized at 464.28 and 458.78 eV correspond to the spin-orbital splitting photoelectrons Ti 2p1/2 and Ti

2p3/2, respectively. The chemical shift of Ti 2p1/2 and Ti 2p3/2 was 5.6 eV, indicating that Ti4þ is present

in the thin films [72]. Figure 8a also shows a red shift displacement of the spin to peak 0.6 eV, indicating

the possibility of appearance of Ti3þ and that, under synthesis conditions, carbon tends to react with

oxygen in the TiO2 lattice leading to the formation of oxygen vacancies (Ov) and the low valence state

of Ti3þ [73]. Rasoulnezhad et al. [74] reported the formation of Ti3þ species in N-doped TiO2 thin films

deposited by chemical vapour deposition. The formation of Ov and Ti3þ could act as electron traps and

inhibit the recombination process. Furthermore, the peak ascribed to Ti–C bonds at 281 eV was not

detected in the TiO2–GO samples, which indicates that carbon was not doped into the TiO2 lattice
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[73,75,76]. The high-resolution spectra of O 1s and C 1s (figure 8b,c) were obtained from the sample with

the highest load of GO (D-TiO2–GO); signals that were submitted to the decomposition process. Figure 8b
shows the HRXPS spectrum to O 1s peak, with resolution of four signals: (i) the first is centred at 530.3 eV,

attributed to the O–Ti bonding of the semiconductor lattice; (ii) the peak localized at 531.6 eV corresponds

to the bonds O¼C and 2COO of the functional GO groups; (iii) the peak localized at 531.98 eV could be

assigned to the Ti–O–C bond, a signal generated by the interaction between the oxygen atoms present in

the functional groups in the graphene sheet and the TiO2 particles; (iv) the signal localized at 532.86 eV is

assigned to the links C–OH and C–O–C [77,78]. Figure 8c shows HRXPS to element C 1s; the

decomposition process of the signals shows resolution of four signals: (i) the main signal localized at

284.8 eV is assigned to carbon sp2 (C¼C) and the unhybridized sp3 links (C–C); (ii) the second peak

localized at 286.3 eV is attributed to C–O–Ti; this interaction is generated between the semiconductor

and GO [79,80]. Finally, figure 8d shows HRXPS for the D-TiO2–GO film sensitized with natural

extract, and in these spectra, the peak localized at 286.4 eV can be assigned to interaction C–O–Ti,

indicating that the anchoring of the natural sensitizer to the TiO2 surface occurs through an interaction

between semiconductor Ti and hydroxyl groups of the natural sensitizer anthocyanins; this is in line

with computational studies reported on the adsorption of anthocyanins on TiO2 clusters [26].
3.8. Optical characterization
Figure 9 shows the diffuse reflectance spectra for TiO2, TiO2–GO and TiO2–GO–CO thin films. The

spectra show that GO affects significantly the optical properties of TiO2. Figure 9a shows a red shift of

the absorption edge as GO concentration increases. The results suggest that the samples containing

GO can absorb electromagnetic radiation with wavelength higher than TiO2; absorption increased

linearly with the increase in GO concentration, which indicates that GO could narrow the band gap of

TiO2 photocatalysts. For the samples sensitized with natural extract, a significant shift in the light

absorption towards lengths greater than 400 nm was observed. The anthocyanins of the extract
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contained chromophore groups into their chemical structure, which absorb in this range of the

electromagnetic spectrum. This result is in line with those in other reports [81–83].

The band gap energy value was determined for all samples using the Kubelka–Munk remission

function [84]

k
s
¼ F(R1) ¼ (1� R1)2

2R1

, ð3:3Þ

where R1 is the material reflectance value and F(R1) represents the ratio between the absorption and the

scattering coefficients (k/s), F(R1) is proportional to the constant of absorption of the material, an

indication of the sample absorbance at a particular wavelength. From equation (3.3) and the curves

shown in figure 9, an analogue to Tauc plots ((F(R1)*hv)1/2 against photon energy can be constructed,

according to [85,86]

ðFðR1ÞhvÞ1=2 ¼ Aðhv� EgÞ: ð3:4Þ

Figure 10 shows plots of ðFðR1ÞhvÞ1=2 versus (hv) for the diffuse reflectance spectra shown in figure 9.

The optical band gap of the films was determined by extrapolating the linear portion of the graph onto

the x-axis [87]. Table 2 lists the optical properties of the thin films.

Figure 10 shows that the unmodified TiO2 had a band gap value of 3.21 eV, which accords with

reports in the literature [88,89]. The energy values for TiO2–GO were reduced as GO concentration

was increased until reaching a value of 2.96 eV for the catalyst with the highest load of GO (D-TiO2–



Table 2. Energy band gap values for the composites synthesized.

composites band gap (eV) composites band gap (eV)

unmodified TiO2 3.21 TiO2 – CO 2.78

A-TiO2 – GO 3.16 A-TiO2 – GO – CO 2.66

B-TiO2 – GO 3.12 B-TiO2 – GO – CO 2.70

C-TiO2 – GO 3.05 C-TiO2 – GO – CO 2.59

D-TiO2 – GO 2.96 D-TiO2 – GO – CO 2.45
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GO). The presence of GO allowed the generation of Ti3þ and Ov, and such a low valence state could

generate intra-gap states with lower energy than that in the TiO2 band gap, improving the absorption

of light at higher wavelengths [73,75,90,91]. For the TiO2–GO–CO films, a greater change in the

energy band gap values was observed; an energy value of 2.78 eV was obtained for TiO2–CO thin

films up to 2.45 eV for D-TiO2–GO–CO thin films (thin film sensitized with higher loads of

graphene). The presence of a natural sensitizer significantly improves the optical properties of TiO2–

GO in the visible range of the electromagnetic spectrum, and this result is relevant to photocatalytic

properties under visible irradiation [92].
3.9. Photocatalytic results
The photocatalytic activity of TiO2–GO composites was studied by degradation of MB under visible light

irradiation. TiO2, TiO2–CO and TiO2–GO–CO were compared with different GO loads. Figure 11 shows

the results of photodegradation for different materials. All results indicate that modifications improved

the catalytic activity of the semiconductor. Furthermore, the photodegradation yield increases when the

concentration of GO increases inside TiO2 thin films. This behaviour is associated with the GO properties

(e.g. electrical conductivity and capacity of charge transportation). GO sheets can promote the effective

charge separation of electron–hole pair. In addition, the presence of Ti3þ and oxygen vacancies would

facilitate the separation of charge carriers and suppress the recombination of charge carriers

improving the photocatalytic activity [93,94].

Figure 11 shows that TiO2–GO–CO films showed greater photocatalytic activity than TiO2 films

sensitized with natural extract (TiO2–CO), which indicates that the presence of GO has an important

synergistic effect in conjunction with the natural sensitizer. The presence of GO can improve the

electron transport transferred from the sensitizer to TiO2. Moreover, GO can reduce the recombination

process of the photogenerated charge carrier; GO and sensitizer extend the photo-activity of TiO2 to the

visible and improve the electrical transport significantly, increasing the values of photodegradation. The



Table 3. MB degradation percentages and speed constant values for dye-sensitized TiO2 – GO thin films.

thin films kapp (min21) degradation (%)

TiO2 3.4 � 1024 5.61

TiO2 – CO 2.0 � 1023 19.82

A-TiO2 – GO – CO 2.4 � 1023 23.38

B-TiO2 – GO – CO 3.3 � 1023 30.72

C-TiO2 – GO – CO 3.5 � 1023 32.42

D-TiO2 – GO 3.9 � 1023 33.28
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photodegradation kinetics of methylene blue (MB) was studied using the Langmuir–Hinshelwood kinetic

model (L–H) [95,96]

v ¼ �d½AM�
dt

¼ k �K½AM�
1þ K½AM� , ð3:5Þ

where v is the dye mineralization rate, K is the speed constant, [AM] is the concentration of methylene blue

and k is the adsorption coefficient. Equation (3.5) can be explicitly resolved for (t) to use discrete changes in

[AM] from the initial concentration to a zero-reference point. In the present case, an apparent first-order

model can be supposed

v ¼ �d½AM�
dt

¼ kapp½AM� ¼ kK½AM�, ð3:6Þ

and
[AM] ¼ [AM]o e�kappt : ð3:7Þ

where time (t) is expressed in minutes and kapp (k * K) is the apparent reaction speed constant (min21). The

kapp values for synthesized catalysts are listed in table 3. Results show that the natural sensitization of TiO2

thin films increased the speed constant from a value of 3.40 � 1024 min21 for the unmodified TiO2 film to a

value of 2.0 � 1023 min21 in TiO2–CO and, in this case, degradation yield increased by a factor of 4. The

introduction of GO in the TiO2 semiconductor lattice was reflected in the increase in the speed constant

from a value of 3.4 � 1024 min21 for the unmodified TiO2 film to a value of 3.9 � 1023 min21 for TiO2

modified with GO, which resulted from a reduction in the recombination process and the electrical

conductivity of GO. In turn, for the sensitized TiO2–GO thin films, the kapp value reached higher values

as GO concentration was increased in the films. The photodegradation rate was increased by 2 (D-TiO2–

GO–CO thin films) in comparison to the TiO2 sensitized with natural extract, which indicates that the

presence of GO has an important synergistic effect in conjunction with the natural sensitizer. Besides,

the results suggest that the optical activity in visible range and the charge carrier’s electrical transport

were improved.

Rasoulnezhad et al. [97] reported a kapp value of 7.3 � 1023 min21 for photocatalytic degradation of

MB after 300 min under visible light irradiation using Fe-doped TiO2 thin films as photocatalyst. In

another study, Yang et al. [98] reported a kapp value of 3.3 � 1023 min21 for photocatalytic

degradation of MB after 180 min using poly-o-phenylenediamine-modified TiO2 nanocomposites as

photocatalysts. Also, Jaihindh et al. [99] reported a kapp value of 8.7 � 1023 min21 for visible light

photocatalytic degradation of MB after 150 min using GO-supported Ag-loaded Fe-doped TiO2 as

photocatalysts. Sohail et al. [100] also reported a kapp value of 12.2 � 1023 min21 for photocatalytic

degradation of MB after 120 min under UV light irradiation using TiO2-reduced GO nanoparticles as

photocatalyst. In the present study, TiO2–GO–CO films have a suitable photocatalytic activity

compared to these reports.

In order to build more knowledge in this research field, and taking into account the results presented

in the previous section, a theoretical scheme of energetic levels was proposed for the material synthesized

here (TiO2–GO–CO thin films). In the first stage, natural sensitizer (S) absorbs the visible light and, after

that, it is excited to a state of greater energy, leaving an electron in the lowest energy unoccupied

molecular orbital (LUMO) (equation (3.8)) [101]

Sþ hvvisible ! S�LUMO ð3:8Þ
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and
S�LUMO þ TiO2 ! Sþ þ TiO2ðe�CB Þ: ð3:9Þ

This electron can be transferred to the conduction band of TiO2 (equation (3.9)). At this point, Ti3þ

and Ov act as electron traps and inhibit the recombination process (equations (3.10) and (3.11)).

Furthermore, the photogenerated electron could be transferred to GO as well (equation (3.12)). The

electrons localized in CB, Ti3þ/Ov or GO can be transferred to an oxygen molecule to produce

superoxide anion (equations (3.10)–(3.12)) [73,102]

e�CB ! e�ð Ti3þÞ þ O2 ! O†�
2 , ð3:10Þ

e�CB ! e– ð OvÞ þ O2 ! O†�
2 ð3:11Þ

and e�CB ! e�ð GOÞ þ O2 ! O†�
2 : ð3:12Þ

In this stage, more reactive oxygen species can be generated and the degradation of pollutant begins

[102,103] (figure 12)

O†�
2 þ H2O! OH† : ð3:13Þ
4. Conclusion
The present study synthesized TiO2–GO composites and studied the natural dye sensitization of TiO2–

GO thin films with natural dyes extracted from B. guineensis. The spectroscopic, morphological and

structural characterization of the composites was presented in detail. All results corroborated that the

presence of GO and the natural sensitizer have an important synergistic effect on the physical

chemistry properties of the composites. A red shift in the band gap values was detected after GO

incorporation and natural dye sensitization from 3.21 eV (TiO2) to 2.45 eV (D-TiO2–GO). Results

showed that the photodegradation yield of D-TiO2–GO was greater than that of TiO2–CO, indicating

that GO could facilitate the separation of charge carriers suppressing the recombination of charge

carriers, and the photodegradation yield was improved by the presence of GO and natural dye

sensitization. The best photodegradation yield was reached by D-TiO2–GO, indicating that the

presence of GO has an important synergistic effect in conjunction with the natural sensitizer. Finally,

the results corroborate that natural sensitizers are an economic, harmless and promising source of

dyes to be used in semiconductor sensitization.
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from IPN-CINVESTAV.

Acknowledgements. The authors thank Centro de Investigación y de Estudios Avanzados del IPN-CINVESTAV for

supporting all physical chemistry characterization measurements. W.V. thanks Universidad del Atlántico (Project
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55. Cançado LG et al. 2011 Quantifying defects in
graphene via Raman spectroscopy at different
excitation energies. Nano Lett. 11, 3190 – 3196.
(doi:10.1021/nl201432g)

56. Mali SS, Shinde PS, Betty CA, Bhosale PN, Lee
WJ, Patil PS. 2011 Nanocoral architecture of TiO2

by hydrothermal process: synthesis and
characterization. Appl. Surf. Sci. 257,
9737 – 9746. (doi:10.1016/J.APSUSC.2011.
05.119)

57. Rasoulnezhad H, Hosseinzadeh G, Yekrang J.
2018 Preparation and characterization of
nanostructured S and Fe co-doped TiO2 thin film
by ultrasonic-assisted spray pyrolysis method.
J. Nanostruct. 8, 251 – 258. (doi:10.22052/JNS.
2018.03.4)

58. Qiu J, Lai C, Wang Y, Li S, Zhang S. 2014
Resilient mesoporous TiO2/graphene
nanocomposite for high rate performance
lithium-ion batteries. Chem. Eng. J. 256,
247 – 254. (doi:10.1016/J.CEJ.2014.06.116)

59. Chun H-H, Jo W-K. 2016 Adsorption and
photocatalysis of 2-ethyl-1-hexanol over
graphene oxide – TiO2 hybrids post-treated
under various thermal conditions. Appl. Catal. B
Environ. 180, 740 – 750. (doi:10.1016/j.apcatb.
2015.07.021)

60. Liu S, Sun H, Liu S, Wang S. 2013 Graphene
facilitated visible light photodegradation of
methylene blue over titanium dioxide
photocatalysts. Chem. Eng. J. 214, 298 – 303.
(doi:10.1016/J.CEJ.2012.10.058)

61. León A et al. 2017 FTIR and Raman
characterization of TiO2 nanoparticles coated
with polyethylene glycol as carrier for 2-
methoxyestradiol. Appl. Sci. 7, 49. (doi:10.3390/
app7010049)

62. Ali G, Leila V, Nader NMR. 2015 A new
application of nano-graphene oxide (NGO) as a
heterogeneous catalyst in oxidation of alcohols
types. Chem. J. 1, 151 – 158.

63. Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-
D, Kim S, Chung JS, Kim EJ, Hur SH. 2011 The
role of graphene oxide content on the
adsorption-enhanced photocatalysis of titanium
dioxide/graphene oxide composites. Chem.
Eng. J. 170, 226 – 232. (doi:10.1016/J.CEJ.2011.
03.060)

64. Vanessa B, Henry B, Marco CHT. 2014 Isolation
and chemical characterization of two new
anthocyanin pigments from Güiscoyol (Bactris
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